

WEB BASED GAME ENGINE DESIGN

Lappeenranta–Lahti University of Technology LUT

Master’s Programme in Software Engineering and Digital Transformation, Master’s Thesis

2023

Mikko Mustonen

Examiners: Associate professor Jussi Kasurinen

 D.Sc. (in tech) Jani Rönkkönen

ABSTRACT

Lappeenranta–Lahti University of Technology LUT

LUT School of Engineering Science

Software Engineering

Mikko Mustonen

Web Based Game Engine Design

Master’s thesis

2023

43 pages, 1 figures, 0 tables and 0 appendices

Examiners: Associate professor Jussi Kasurinen and D.Sc. (in tech) Jani Rönkkönen

Keywords: Game engine, HTML5, web, design science

This thesis is a study about what is needed to develop a web-based game engine with some

unique requirements of Seepia Playables. It goes through what the requirements for the

engine are and what existing solutions there are and why the existing solutions don’t fit the

requirements. Components for building a new solution are explored. Where possible existing

solutions are recommended, and their potential issues are described, and solutions for these

issues are suggested. Some of the issues are caused by the limitation of the web platform and

others are by the solutions itself. For the requirements that don’t have existing solutions, one

is designed and proposed.

TIIVISTELMÄ

Lappeenrannan–Lahden teknillinen yliopisto LUT

LUT Teknis-luonnontieteellinen

Tietotekniikka

Mikko Mustonen

Web pohjaisen pelimoottorin suunnittelu

Tietotekniikan diplomityö

2023

43 sivua, 1 kuvaa, 0 taulukkoa ja 0 liitettä

Tarkastajat: Apulaisprofessori Jussi Kasurinen ja TkT Jani Rönkkönen

Avainsanat: Pelimoottori, HTML5, web, suunnittelutiede

Tämä opinnäytetyö on tutkimus siitä mitä tarvitaan kehittääkseen web pohjainen

pelimoottori Seepia Playbles yrityksen tarpeiden mukaisesti. Työssä käydään läpi mitä

vaatimuksia pelimoottirille on, mitä olemassa olevia ratkaisuja on ja miksi ne eivät ole

vaatimuksiin sopivia. Uuteen ratkaisuun vaadittavia komponentteja tutkitaan. Milloin

mahdollista olemassa olevia ratkaisuja suositellaan ja niiden mahdollisista ongelmista

kerrotaan sekä niihin ehdotetaan ratkaisua. Jotkin näistä ongelmista johtuvat web alustasta

ja muut varsinaisesta ratkaisusta itsestään. Niille vaatimuksille, joille ei ole olemassa

ratkaisua suunnitellaan ja ehdotetaan uutta ratkaisua.

ABBREVIATIONS

API Application Programming Interface

GUI Graphical User Interface

UI User Interface

OOP Object Oriented Programming

5

Table of contents

Abstract

Abbreviations

1 Introduction .. 7

1.1 Scope and limitations .. 7

1.2 Goals of this project .. 8

1.3 Structure of the thesis .. 8

2 Game engines ... 9

3 Related work ... 10

4 Research method .. 13

5 Research and design ... 15

5.1 Requirements ... 15

5.2 Existing game engines ... 17

5.3 Existing libraries ... 19

5.3.1 2D rendering engine ... 19

5.3.2 2D physics engine .. 22

5.3.3 2D particle system ... 23

5.3.4 Audio library .. 23

5.3.5 UI library for the editor .. 23

5.3.6 Input manager .. 26

5.3.7 Animation system .. 26

5.3.8 GUI components .. 27

5.3.9 Asset optimization ... 27

5.3.10 Build variations and dependencies .. 28

5.3.11 Scene format and loader .. 30

5.3.12 Build system that support various targets .. 31

5.3.13 Running typescript in browser ... 31

5.3.14 Localization ... 33

5.3.15 Version control .. 33

6

6 Discussion... 34

7 Conclusions .. 36

References .. 37

7

1 Introduction

Making games is complex and time-consuming task. Some of it is because creating

something new and unique is hard but there are also many tedious repetitive tasks. Some

tasks also are easier to accomplish using textual editing and others benefit from a visual

editor. That is why game engines, in this case referring to the development tools, are so

popular. At Seepia Playables however playable ads, which are usually small demos of

games, are still mostly made manually. Some tasks are automated, but many aren’t, and

visual tools are barely used for constructing the games. This makes making the games

unnecessarily tedious and time consuming. Some examples are having to manually add asset

loading for every asset and editing game levels and animations by changing values in code

and then reloading the game. These can be greatly simplified with a visual editor and asset

manager. So, a game engine is needed.

There are many existing game engines out there but many of them are not suitable for simple

reasons like wrong target platform, which in this case is web, or because the company has

some rather unique requirements. The company’s requirements for the game engine are to:

- Output very small builds

- Be easy to use for non-coders

- Support lots of build variations and their easy development

- Support running games and building them in a web browser

- Support any game aspect ratio and the possibility of it changing dynamically

These unique requirements come from the fact that Seepia is mostly making playable ads. A

more detailed and descriptive list of requirements is further in the thesis in the

implementation chapter.

1.1 Scope and limitations

As the task of making a game engine from scratch is quite a large one this project makes

heavy use of pre-existing software libraries. Things like physics engine or rendering engine

8

are some of the bigger examples which would be an entire thesis on their own but since there

are suitable open-source implementations for them there is no need to reinvent the wheel.

The available implementations will be compared and the most suitable selected. This project

focuses on the editor and user experience part of a game engine by integrating necessary

libraries together and designing what doesn’t yet exist or can be improved relatively easily.

During this project only 2D graphics support will be considered because the company

doesn’t need 3D that much, but it will be designed in such a way that later implementing 3D

graphics shouldn’t be difficult.

As it is supposed to be possible for non-coders to make games just by combining components

in the editor some components need to be designed. Only some of the most commonly

needed and basic components will be designed during this project and the creation of more

game specific components will be left to the game projects.

1.2 Goals of this project

The goal for this project is to find out what is needed for making a game engine with specific

requirements and what problems there are. This will require research into the existing

solutions and libraries and their integration into a functional piece of software. New solutions

will need to be suggested for any requirements that don’t have viable existing solutions.

1.3 Structure of the thesis

The thesis starts with an introduction. Then the game engines as a concept are explained.

Third chapter covers the research method chosen for this thesis. Fourth chapter is all about

the research and design. It includes the requirements for the engine, research into existing

solutions and designs for new solutions. Finally, the thesis ends with conclusions.

9

2 Game engines

Game engines are software used to make creating games easier. The term can be used both

for the framework consisting of core libraries for making the games but also the combination

of a framework and a visual editor for it. (Christopoulou and Xinogalos, 2017; “Common

game development terms and definitions | Game design vocabulary | Unity,” 2022; Cowan

and Kapralos, 2014; Valencia-García et al., 2016, p. 146) The terms game engine and

framework are somewhat interchangeable and are used differently in different sources. In

(Cowan and Kapralos, 2014) game engine is defined as the core that is part of the completed

game but in (“Common game development terms and definitions | Game design vocabulary

| Unity,” 2022) game engine is the suit of tools used for game development. This study uses

the latter definition and the artifact that will be created will be a suite of tools with emphasis

on the editor part. The frameworks consist of low-level components of games like rendering

and physics engine leaving the higher-level game logic for the actual game developer to do

(Cowan and Kapralos, 2014). Games are of course very diverse, and it is hard to make an

engine that could support every type of game optimally. It is much easier to make a game

engine that is optimized to one specific type of game. There are of course some very popular

game engines like Unreal and Unity that do a good enough job in being a general-purpose

game engine that they have become the most used engines in Steam marketplace according

to information scavenged from games in Steam (Doucet et al., 2021). These are commercial

game engines available for anyone to use with a certain license agreement (“Plans and

pricing,” 2022; “Unreal Engine (UE5) licensing options - Unreal Engine,” 2022). There are

also many in-house game engines that are not publicly available and open-source game

engines that are freely available. There is a huge number of game engines programmed in

different languages, for different platforms, with different designs, and with different

licenses. A list of engines in Wikipedia has 190 of them. (“List of game engines,” 2022)

In addition to making games for entertainment, game engines can be used for serious games

or simulators for education and learning and in architecture visualization (Cowan and

Kapralos, 2014; Valencia-García et al., 2016, pp. 143–146). The game engines are also being

used in film production such the use of Unreal in the making of The Mandalorian series

(Farris, 2020; “Unreal Engine Powers Film & Television Production,” 2022).

10

3 Related work

While research this topic it became evident that there isn’t much prior research on the subject

of game engine architecture or game engines as a whole. Game engine related research is

mostly about specific parts of the engine like rendering or physics. This has also been noticed

by some prior studies (Maggiorini et al., 2016, p. 279). Nevertheless, some works with value

were found.

Warren (Warren, 2019) studied small purpose built online game engines. The game engines

studied were Twine, Bitsy and PuzzleScript. All of their current versions run in web browser,

and they are made for easily creating very specific types of games. Twine is for creating

interactive stories and it supports some simple logic and images and sounds. Bitsy is for

creating The Legend of Zelda like top-down adventure games with very limited graphics.

PuzzleScript is for creating different kinds of puzzle games like the name would suggest.

Their logic is made with PuzzleScripts own simple scripting language. The study gather

some data form itch.io marketplace from 5001 games created using these engines. The data

revealed that the games created using these engines are mostly free and short. More

interestingly a survey was conducted where 161 developers that had made some of the 5001

games answered. This showed that Twine had 45.9%, Bitsy 59.3% and PuzzleScript 93%

male users. The rest were female and non-binary. PuzzleScript users also had the most

programming experience which would make sense since it is the only engine that needs

programming.

Campos et al. (Campos et al., 2022) studied, design and developed a small 2D specific game

engine. Their goal was to make it flexible, easy to extend and easy to use. They achieved the

flexibility by constructing the engine from modules that can be easily customized and

plugged into the game. They also used Entity Component System architecture for the code.

They tested the project by implementing a platform game and also asked 12 developers, 2

experts and 10 newbies to create a short game in 2 days. They were given manual, a video

tutorial and assets. A survey was then conducted on their experience using the engine. 91.6%

of the respondents were satisfied with the design of the application, 75% found the

functionalities useful for what they were meant for, “85% of the participants noticed a

11

reduction of time and increase of efficiency … with our solution vs the tools that they usually

use such as Unity, Unreal Engine or Godot” and 75% considered using it for future projects.

Park and Baek (Park and Baek, 2020) design and developed a small light-weight 3D game

engine prototype. Their goal was to develop an engine where they can quickly implement

and test new features. Like Campos et al. they used a modular approach. Their game logic

uses event-based system where functions are automatically called when a certain event is

detected.

Maggiorini et al. (Maggiorini et al., 2016) studied game engines as a whole and identified 3

possible problems and proposed a solution for them and an alternative approach. The

problems they identified are monolithic software, centralized software and platform

dependency. Monolithic software is problematic because of build times since even small

changes could lead to big rebuilds. Their solution is to use plug-in approach where there are

smaller standalone modules. Centralized software is problematic because it’s hard to scale

up if more computational power is needed. In their example they talk about online games

where currently the games need to be specifically made with distributed computation in mind

if it is needed. Their solution is to create a high-performance messaging system between

modules in engine so that they can be transparently distributed. Platform dependency is

problematic because the engines need to have multiple lower-level implementations for

different platforms. The implementations may not be work equally well. Their solution again

is to use modularity to make the implementation easier and possibly use the messaging

system to create platform independent communication between modules. Their proposed

alternative approach is to create a new engine where everything is modules, and they

communicate using a messaging system. They likened it to a microkernel.

Chover et al. (Chover et al., 2020) studied 2D game engines and designed and developed a

simplified game engine. They analyzed some game engines capable of creating 2D games

and classified into a table their platform, scripting method, behavior specification and how

many predefined functions or behaviors the engines have. Their architecture consists of

physics, input, logic, sound and render modules. Their games use a very simplified

representation of scenes which have actors, and these actors have properties and rules. Every

actor has same properties but can have also custom properties. The rules defined the game

logic, and they are constructed using decision trees. The decision trees can use a set of fifteen

predefined actions and six conditions. They created a Candy Crush like match-three

12

mechanic to test the engine. They also evaluated the engine on a summer camp. There were

120 participants aged between 7 and 14. 74 were boys and 46 girls. Groups of children were

each assigned on of 9 different kinds of arcade games to create. All of them were able to

complete the assignments. A survey was then conducted about the engine’s ease of use and

user satisfaction and the results were very positive. 23 three of the children were also asked

to create a game using Scratch and they were then asked to compare their simplified game

engine experience to Scratch experience. Only creating loops was considered harder in the

simplified game engine since there isn’t a predefined way to do it.

Charrieras and Ivanova (Charrieras and Ivanova, 2016) study game engines from a very

philosophical standpoint. The most relevant part is their analysis of game engine

architectures where they describe how game engines have evolved from more game specific

to more generalized. They give discuss in more detail the programming paradigms used for

game engines and more specifically object-oriented programming (OOP) and inheritance-

based design, and component-based data driven design. While noting that OOP is more

prevalent, they point out that it is inflexible once the inheritance hierarchy is designed. They

do note though that it works well with smaller systems but as the amount of content increases

it becomes increasingly harder to work with. Component-based design on the other hand is

described as more flexible since it is possible to compose new game objects of any number

of components. They also describe it as more content creator friendly since new objects can

be made without recompiling the game.

13

4 Research method

Design science is a research method that produces an artifact to solve a practical problem

(Hevner et al., 2004). It also closely resembles a normal software development workflow of

designing, building, and iterating based on feedback. Thus, it is a good fit for this study.

Hevner et al. have made guidelines for this type of research in the field of information

systems. The 7 guidelines are for design science research are:

1. Design as an artifact: Design-science research must produce a viable artifact in the

form of a construct, a model, a method, or an instantiation.

2. Problem relevance: The objective of design-science research is to develop

technology-based solutions to important and relevant business problems.

3. Design evaluation: The utility, quality, and efficacy of a design artifact must be

rigorously demonstrated via well-executed evaluation methods.

4. Research contributions: Effective design-science research must provide clear and

verifiable contributions in the areas of the design artifact, design foundations, and/or

design methodologies.

5. Research rigor: Design-science research relies upon the application of rigorous

methods in both the construction and evaluation of the design artifact.

6. Design as a search process: The search for an effective artifact requires utilizing

available means to reach desired ends while satisfying laws in the problem

environment.

7. Communication of research: Design-science research must be presented

effectively both to technology-oriented as well as management-oriented audiences.

The first guideline of producing an artifact is fulfilled by the resulting list of found libraries

and made designs that will be produced during this study. The second guideline of problem

relevancy is fulfilled by the company’s need for improved game making tools and

workflows. The third guideline of design evaluation is fulfilled by making sure that the

requirements are met. The fourth guideline of research contributions is fulfilled by the

designed game engine’s improved and unique features compared to other available solutions.

14

The fifth and sixth guidelines are closely linked and are about the research and design

process and then iterating on the design to improve it. The seventh guideline of

communication of research is fulfilled is fulfilled by explaining the research in this thesis

sufficiently clearly and detailedly.

15

5 Research and design

This chapter has the different steps of the game engine’s design process. First there are

requirements for the game engine which include both basic requirements for any game

engine and unique requirements for the company’s use case. These requirements are based

on experience of working on various projects and discovering difficult or time-consuming

tasks that could be solved with a well-made tool. After requirements there is a look into

existing game engines and libraries to see if there are any that could be used. There will also

be suggestions for any found issues and designs for new solutions.

5.1 Requirements

As the target build platform is web and the developers at the company are already familiar

with web technologies it makes sense to use them also for the game engine and its editor

part. The game engine and its editor should be made using typescript and other common web

project tooling. The editor should run in a web browser and be able to run the games and

build them. While the target platform is web it should be possible to build into various

slightly different formats for different publishing services.

The build size limitations for the playable ads by ad networks are very strict and are usually

at the maximum 5MB. In practice it is better to aim even lower to enhance the ad

performance since smaller size means the ad will be downloaded and shown faster. This is

why 2MB is usually the target size. The worst-case scenario is when the output needs to be

a single HTML file with everything embedded into it including the engine and all the assets.

This is a problem because the assets need to be encoded in Base64 to be embedded in the

HTML file which causes their size to grow by about 33% (“Base64 - MDN Web Docs

Glossary,” 2023). To help with this the used fonts should be automatically optimized by

making a subset of only the used characters and using an optimized format. The sounds and

textures should also be optimized as much as possible while keeping acceptable quality, and

the optimization should be easily configurable.

16

The editor should make developing build variations easy. There should be a support for

variations and sub variations or dependencies. It should also be easy to switch between the

variations in the development environment and test them.

The engine should have a visual editor interface that is easy to use for even non-coders. The

interface should be familiar and use common components where applicable while improving

on things when possible. The interface should also have resizable and movable elements to

support different workflow preferences.

The engine should support 2D graphics and physics and have easy to use editors and gizmos

for them. There should also be 2D particle system component that supports complex particle

behaviour and sub particles. There is also a need to support any aspect ratio and the

possibility of the screen orientation changing during gameplay. For this some UI components

and system is needed. They should support placing the components in different positions in

different aspect ratios. Animations should also be taken into account. Normal elements are

easy to animate by just interpolating between their start and end values but in the case of the

UI components some extra functionality is needed. Since the start and end values can change

mid-animation, the animation must update accordingly. To make managing the animations

easier a timeline or similar editor is needed.

The editor itself and the games as well should support localization. In addition to building

the game with a single localization to save space it should be also possible to make a build

with multiple languages. The language could then be automatically detected or manually set.

To save the created game levels and user interfaces (UI) there is a need for a scene file

format. This will also need an accompanying scene loader.

The engine should support sounds. Only very basic functionality is needed including playing

and stopping audio and changing its volume and playback rate.

The coders may be used to various different code editors. It should be possible to use any of

them in the workflow.

It should be easy to add and reuse game components. They should only be included in the

builds when they are actually used.

17

The editor should support version control. Git is the most popular version control solution

and it has many good features (Mustonen, 2019). The company is also already using Git so

it makes sense to try to make it work in the editor as well.

The engine should have an input manager. The main input method is touch but other methods

should be considered.

5.2 Existing game engines

As mentioned in the game engines chapter, there are a lot of game engines out there. This

begs to question if there would already be a suitable game engine for the company to use.

Thus, there is a need to find out what is available.

Using the previously mentioned game engine list as a base for the search, the requirements

above quickly filter out most of the game engines. After taking out all engines that don’t

have web as a target platform there is only 25 engines left of 190. Then taking out all that

don’t use a web interface leaves 9 options with some sort of web interface. Further taking

out the ones that don’t support 2D leaves 6 alternatives. Then removing the ones that don’t

support TypeScript development technically leaves nothing but 4 of the engines have the

option to use JavaScript. Since TypeScript compiles to JavaScript, it would be possible to

use it through some tinkering but as it is not built into the tools it is not optimal. In Construct

and GDevelop the primary programming method is their event sheets which are a sort of

higher level more visual and descriptive programming. The remaining engines are:

- Construct (“Game Making Software - Construct 3,” 2022)

- GDevelop (“Free and Easy Game-Making App | GDevelop,” 2022)

- PlayCanvas (“PlayCanvas - The Web-First Game Engine,” 2022)

- Twine (“Twine / An open-source tool for telling interactive, nonlinear stories,” 2022)

Twine is tool for creating interactive stories, so it doesn’t fit the use case. Construct is a

commercial game engine and GDevelop is open source. PlayCanvas has open-source engine

and commercial editor. PlayCanvas is 3D first but has also some 2D features whereas both

Contruct and GDevelop support only 2D. Minimal PlayCanvas builds are too big as the

runtime is about 1.3 MB and physics adds another 1.8 MB, so it is out. GDevelop has more

18

reasonable build size but its physics engine uses WebAssembly which is not allowed in the

use case. GDevelop’s interface is also more confusing than either PlayCanvas or Construct.

As Construct is closed source it is harder to make changes to it if necessary but both

GDevelop and Construct do support extensions. Neither of them has premade solutions for

build variations, robustly handling dynamically changing aspect ratio, asset optimization,

localization or version control and the other requirements are not fulfilled ideally.

(“HTML5 Game Engines - Find Which is Right For You,” 2022) and (Valencia-García et

al., 2016, p. 146) also list some game engines which are specifically those with HTML5

target. The lists have many similarities and many of them were also on the Wikipedia list

above. Many of the engines have discontinued development and thus are not suitable. Most

of them are also just frameworks and not game engines with an editor. Interesting ones are:

- Phaser (“Phaser - A fast, fun and free open source HTML5 game framework,” 2022)

- Pixi.js (“PixiJS,” 2022)

- MelonJS (“melonJS,” 2022)

Phaser and MelonJS are game frameworks with renderer, audio, input, physics, and other

utilities already included. Pixi.js is mostly just rendering library though it comes with support

for pointer events and it has some plugins available for example for sound (“PixiJS Sound,”

2022). MelonJS is interesting mostly because it is quite a bit smaller than either Pixi.js or

Phaser (“melonjs v14.1.2 ❘ Bundlephobia,” 2022; “phaser v3.55.2 ❘ Bundlephobia,” 2022;

“pixi.js v7.0.5 ❘ Bundlephobia,” 2022). Upon further research an editor for Phaser (“Phaser

Editor 2D | HTML5 Game IDE,” 2022) and Pixi.js based game editors (“Ct.js — a free game

editor,” 2022; Kostin, 2022) was found. Phaser Editor 2D is quite good but doesn’t have all

the necessary features. Large part of its source code is open source, but the core is closed.

Ct.js is Pixi.js based open-source game editor which has somewhat unusual user interface.

Thing-editor is another Pixi.js based open-source game editor. Unfortunately, its

documentation is currently only in Russian. All these editors have a web-based user

interface, but they don’t run purely in browser instead run a server locally that does the file

operations and serves the user interface to a browser.

None of these options fill the requirements. As such it is reasonable to build a custom game

engine more fitting to the use case.

19

5.3 Existing libraries

To minimize the work required to make the custom engine it makes sense to use as many

existing libraries as possible provided that they are good enough. The needed functionalities

that require a library or need to be implemented from scratch are:

- 2D rendering engine

- 2D physics engine

- 2D particle system

- UI library for the editor

- Audio library

- Input manager

- Scene format and loader

- Animation system

- GUI components

- Asset optimization

- Build system that support various targets

- Build variations and sub variations

- Running typescript in browser

- Localization

- Version control

5.3.1 2D rendering engine

There are plenty of 2D rendering engines out there. Some game frameworks, like Phaser,

come with their custom renderer on top of many other libraries already integrated (“Phaser

- A fast, fun and free open source HTML5 game framework,” 2022). A simple performance

benchmark has multiple canvas engines compared against each other in drawing squares on

20

screen (“Canvas Engines Comparison,” 2022). There are 16 different implementations of the

benchmark with Pixi.js being the fastest. Another benefit about Pixi.js is that the company

already uses it, so it is familiar to the developers there. While Pixi.js is not the smallest of

the options, it has a lot of features whereas some of the others are too minimal. To optimize

the size the unnecessary features can be removed. There is even an implementation for

Three.js 3D rendering engine which is good but doesn’t compete with Pixi.js in 2D.

Unfortunately, Phaser framework doesn’t have an implementation there but it’s performance

and features seem to be similar to that of Pixi.js.

A test project was made that implement a just rotating image to compare the build sizes of

Pixi.js, Phaser and MelonJS (Mustonen, 2023). It was found that MelonJS had some aliasing

in the image and the image jittered while rotating so it is not a suitable library. Pixi.js and

Phaser on the other hand produced nearly identical results. The difference can be seen in

Figure 1. The image’s edges in the Pixi.js renderer are slightly aliased because by default

Pixi.js doesn’t use anti-aliasing whereas Phaser does.

Figure 1. From left to right Pixi.js, MelonJS and Phaser test results.

In this very simple case Pixi.js was simpler to use since it didn’t need to use predefined way

of how things should work. With the normal package imports for both libraries the final

JavaScript bundle sizes for the project were 371.16 kB for Pixi.js and 1357.45 kB for Phaser.

This is obviously a massive difference, but it is expected since Phaser comes with a lot more

built in like physics, sound, input, camera, and particle systems. Still, it shows that out of the

box Pixi is clearly better for small simple projects. Both libraries can be optimized though

to include only what is needed. For Pixi this means using separate packages for features and

only importing what is needed. The import for this test project went from this:

import { Application, Assets, Sprite } from 'pixi.js';

21

to this:

import { Application } from "@pixi/app";

import { Assets } from "@pixi/assets";

import { Sprite } from "@pixi/sprite";

Phaser has a far more tedious process to optimize it since it needs to be manually rebuilt with

a configuration specifying what to include in the build (Davey, 2022). The configuration

used for the test is as follows:

const Phaser = {

 Cameras: {

 Scene2D: require('./cameras/2d')

 },

 Events: require('./events'),

 Game: require('./core/Game'),

 GameObjects: {

 DisplayList: require('./gameobjects/DisplayList'),

 UpdateList: require('./gameobjects/UpdateList'),

 Image: require('./gameobjects/image/Image'),

 Factories: {

 Image: require('./gameobjects/image/ImageFactory')

 },

 Creators: {

 Image: require('./gameobjects/image/ImageCreator')

 }

 },

 Loader: {

 FileTypes: {

 ImageFile: require('./loader/filetypes/ImageFile')

 },

22

 LoaderPlugin: require('./loader/LoaderPlugin')

 },

 Scale: require('./scale'),

 ScaleModes: require('./renderer/ScaleModes'),

 Scene: require('./scene/Scene'),

}

After the optimizations the projects final JavaScript bundle sizes were 226.16 kB for Pixi.js

and 543.79 kB for Phaser. Both are significantly smaller while Phaser still being way bigger.

With Pixi.js being smaller, easier to work with and the developers are already familiar it, it

is recommended as the rendering engine.

5.3.2 2D physics engine

For physics engine the company has previously used Matter.js (liabru, 2023) which is small

and has nice documentation. It lacks some features though like a revolute joint. Revolute

join is useful for example for ragdolls to limit the rotation of its limbs. The performance of

Matter.js also isn’t amazing. There are many other physics engines some of which use

WebAssembly and others that aren’t maintained or are too big to be suitable. Here are some

interesting engines and their sizes are:

- Matter.js 77.7 kB

- P2-es 89.5 kB

- Cannon-es 123 kB

- Planck.js 186.5 kB

- @box2d/core 233.1 kB

Cannon-es (“cannon-es,” 2023) is actually a 3D physics engine unlike the others that are 2D.

It is on the list mainly because its size is surprisingly small while being fully featured. 3D

engine could of course be used for 2D physics by locking an axis but a 2D engine is more

optimized for its purpose. Planck.js (Shakiba, 2023) and @box2d/core (“@box2d/core,”

2023) are TypeScript implementations of Box2D (Catto, 2023) a quite popular C++ 2D

physics engine. There is a benchmark comparing different JavaScript or TypeScript

23

implementations of Box2D and these two engines are the interesting maintained engines

from the list (“@box2d/benchmark,” 2023). @box2D/core is over twice as fast as Planck.js

in this benchmark. @box2D/core doesn’t have its own API documentation and instead

redirects to the Box2D documentation. Planck.js has good documentation. Both of these are

however over twice as big as p2-es which also has good documentation and features. P2-es

is also tree shakeable which means only the features that are used will be included in the

final builds. For these reasons p2-es is recommended.

5.3.3 2D particle system

Since Pixi.js was chosen as a rendering engine, it could make sense to just use PixiJS Particle

Emitter library (“PixiJS Particle Emitter,” 2023). Another option could be modular-particle-

system library that can be easily extended with modules as the name would suggest

(“Lightweight Particle System for TypeScript,” 2023). Both of them use their own kind of

modules though in Pixi’s particle emitter they are called behaviours. Since they are modular

it is possible to only include what is needed saving some space. As Pixi’s particle emitter is

more tested and under active development, it is recommended.

5.3.4 Audio library

Pixi.js has a library for sound as well called PixiJS Sound (“PixiJS Sound,” 2022). There is

also a popular audio library called Howler (Simpson, 2023) that is also used at the company

already. These libraries are about the same size but have some different features. PixiJS

Sound has audio filters whereas Howler has 3D spatial sound and stereo panning. As spatial

sound is quite nice for many games and Howler also handles edge cases and bugs on different

platforms it is the recommended option.

5.3.5 UI library for the editor

There are many UI frameworks to choose from. BestOfJs site has a seach for all things

JavaScript. Searching with UI framework tag results in a list of 48 projects that can be sorted

based on a few different criteria including Github stars which are basically favorites on

24

Github used to follow a project (“Best of JavaScript,” 2023). Sorting by total number of stars

gives Vue.js 2, React and Angular as the top three frameworks with 202, 200 and 86

thousand stars respectively. When sorting by stars added in the last 30 days the top three are

now React, Svelte and Solid with 43.4, 28.9 and 19.8 stars added per day respectively. Vue

and Angular aren’t far behind at 5th and 7th places. On the total number of stars list Svelte is

4th with 65 thousand and Solid 10th with 25 thousand stars. These results show that React

and Vue are hugely popular and React is gathering popularity fast. On the other hand, there

are also newer frameworks like Svelte and Solid that are also increasing in popularity.

A benchmark testing the performance of many UI frameworks also includes the afore

mentioned frameworks except Vue.js 2 only having Vue.js 3 (“js web frameworks

benchmark,” 2023). Looking at the “keyed results” table and its geometric mean of all the

factors in the table puts the frameworks from fastest to slowest in the following order:

- Solid: 1.09

- Vue (3): 1.23

- Svelte: 1.29

- Angular: 1.61

- React: 1.72

Most of the frameworks that are faster than Solid are experimental or don’t have good

documentation. There are though couple interesting ones, Inferno and Mikado. Mikado is

one of the fastest with score of 1.03 and Inferno is about the same with Solid with a score of

1.09. Inferno is fairly popular with 15.6 thousand stars, but Mikado only has 574.

Popularity has the benefit of having existing resources like tutorials and ready-made

components, but performance and size matter as well. Solid has very similar syntax to React

and Inferno even describes itself as React-like and has a compatibility layer to directly use

existing React-based modules. In the end Solid is recommended because it is quite popular,

similar to React while being more performant and smaller and has nice resources.

These are all HTML frameworks. Another option would be to use the 2D rendering engine

to also make the editor but using HTML framework has the benefit of being able to utilize

the layout and styling functionality that already exists in browsers. It also makes it easier to

25

later add an integrated code editor since there are already nice barebones editors that can be

used like CodeMirror (“CodeMirror,” 2023).

While these frameworks make creating UI components easier they don’t have anything to

aid in setting their layout. One of the requirements was for the UI to have resizable and

movable elements. This means that basically a tiling window manager should be created.

This can be quite complicated. Many tiling window managers make use of binary trees to

store the windows (Dejean, 2023; “i3 - improved tiling wm,” 2023). The windows are stored

in containers that are split in two either horizontally or vertically. This has the problem that

organizing the windows is inconsistent. For example, if the screen were to be divided into

four quadrants. In this configuration the tree would look like this:

- Root

o Container

▪ Window 1

▪ Window 2

o Container

▪ Window 3

▪ Window 4

This means that if you would try to resize a window by moving its edge it would work as

expected on the edges between two windows in the same container but not on the edges of

windows in different containers. Instead, it would resize the containers thus resizing all the

four windows instead of only the two that intuitively should have resized. Blender 3D

modelling software has quite nice tiling where this has been handled and when window

corners are aligned the windows can be resized either way as one would expect (“Blender,”

2023). When resizing its application window, the sub windows are scaled which means the

window sizes are a percentage of the main window size instead of a certain pixel value. This

is very simple and may not be the best for user experience. For example, if the application

was split horizontally into main content and an inspector, the inspector would likely only

need certain width but couldn’t practically be any narrower. In this case when resizing the

application window, it would make sense to only resize the width of the main content.

26

Another user experience issue is that when resizing a sub window its edge can only be moved

within it and its neighbour. It could be nicer if the edge would push the other windows once

they have reached their minimum size. Though both of these changes add quite a bit of

complexity to the window management. Another nice feature would be extending windows

to other windows’ areas. For example, if the application was split into three and there would

be two windows on the left and one on the right and you would want to have the left bottom

window be at the bottom and the other two at the top, it would be handy to be able to extend

the left bottom window into the right window’s area. It should also be possible to move

windows into another window’s edge, splitting its area.

5.3.6 Input manager

The games only required touch input and Pixi.js has input manager which does support it. It

would make sense though to implement some helper functions so that it is easier to disable

multi-touch. The editor will need input manager that supports keyboard shortcuts and

different contexts. Contexts would be for example 2D view editor, animation timeline and

global context. With different contexts it is possible to use same shortcut for different actions

depending on the contexts. The context is selected based on what part of the editor is

currently focused. Hotkeys (小弟调调, 2023) is an actively developed library for exactly

this purpose and may be a good option but creating a custom solution shouldn’t be too hard

either should it be needed. Mouse input is handled by each UI element individually and 2D

view editor uses Pixi’s input manager.

5.3.7 Animation system

There are many animation libraries available but some of them are not maintained anymore

and others are too big or are meant for some specific environment. Couple small interesting

libraries are Shifty and Popmotion (“Popmotion,” 2023; “Shifty,” 2023). Both are small and

maintained but Shifty has nicer features like better playback controls. There is also available

a more advanced library called Rekapi which builds upon Shifty with a timeline functionality

27

for more complex animations (“Rekapi,” 2023). It’s not clear whether Shifty will easily

support dynamically changing targets but other libraries don’t seem to do it either so it will

be discovered during integration. The animation editor which is usually called timeline needs

to be made practically from scratch because while some timeline libraries exist, none were

found that would be easily pluggable.

To account for dynamically changing layouts the start and end values of animation should

be set for each different layout. Basically, they would be components that don’t have a visual

representation but can otherwise act like any other component and be positioned in the

layouts however wanted. Then the animation would lerp between the start and end

components values and when the layout is changed it would change to use the corresponding

components.

5.3.8 GUI components

The graphical user interface (GUI) components in this case means just the very basic

containers that have the ability to be nicely positioned on screen by anchoring and offsets to

the parent element. Other GUI components are basically just regular elements as a child of

GUI container, but they could be implemented in other ways as well.

5.3.9 Asset optimization

Textures need to be compressed and packed into spritesheets. For this there is free-tex-

packer (Norynchak, 2022). Sounds need to be converted to mp3 and WASM version of

FFMPEG could be used (“ffmpeg.wasm,” 2023). Fonts need to be converted to woff2 and

made into a subset of only the characters used in the localizations and there is a tool for just

this called subset-font (Lind, 2023). Sound compression is just for convenience and doesn’t

need an UI other than for setting the compression settings. The sound files itself should just

go to one folder and all of them should automatically get converted and placed to another

folder. Any other sound changes like cutting should be done in other software. The texture

packer would also need UI for settings but it could also show a preview of the packed texture

so the UI could be very similar to TexturePacker (“TexturePacker - Create Sprite Sheets for

your game!,” 2023). The font optimization first of all needs a localization file where it gets

28

the used characters. The UI for font optimization should have also a place to select which

localizations are used with each font so that all the required characters can be gathered.

5.3.10 Build variations and dependencies

So that the variations can be easily edited using the editor, variations need to be saved into

the scene data. The data is further described in the next part. The unused variation data must

then be removed from each build during the build process to minimize the used space. There

could also be functional variations in the TypeScript which could be handled by using a code

minifier like Terser to optimize out conditional expressions that evaluate to false (“API

Reference · terser,” 2023). The variation data itself could be for example:

[

{

 dependencyRule: “”,

 length: [“short”, ”long”]

},

{

 dependencyRule: “”,

 boss: [“skeleton”, “slime”]

}

]

This is then used to build multiple builds. The above example would build:

- Short, skeleton

- Short, slime

- Long, skeleton

- Long, slime

29

Basically, a list of all the different combinations is created. As an example of dependencies

the data would instead be:

[

{

 dependencyRule: “”,

 length: [“short”, ”long”]

},

{

 dependencyRule: “long”,

 boss: [“skeleton”, “slime”]

}

]

In this case only the following builds would be built:

- Short

- Long, skeleton

- Long, slime

This is because the boss variations are added only when “long” variations is true. This can

be useful to not make unnecessary builds. The rule can also have multiple variations

combined with logical operators. Since the boss variation depends on the length variation,

the length variation must be set first. It would be easiest to implement it by having the list of

variations be manually ordered so that the dependencies are met.

30

5.3.11 Scene format and loader

Scene formats are quitter engine specific unless compatibility with some other engine is

desired. In this case since variations need to be supported a more specialized format is even

more necessary. A custom format should be made with simple JSON file with the necessary

object properties saved to it. It will need to take into account variations and different UI

layouts in different aspect ratios. The form can be:

{

 type: NameOfClass,

 children: [Array of data in this same format],

 position: [

 {

variationRule: “variation1”,

data: [

 {

aspect: number,

x: number,

y: number

 }

]

 }

],

 ...

 Other class properties

 ...

31

}

In this example position property has an array of variations. The variations are checked until

a variation with variationRule that evaluates to true is hit. Variation rule would be a string

that has variation names and logical operators which needs to be parsed and evaluated to see

if it is true. The variation then contains data which is an array of property specific data for

possibly but not necessarily different aspect ratios.

5.3.12 Build system that support various targets

This part is similar to build variations but is more about the files used for building and the

output files of the build. Different build targets need different integration to their respective

publishing platform and have some unique requirements. The chosen bundler will need to

be able to output single HTML builds as well as with separated assets and a JavaScript

bundle. The next part includes information about bundlers.

5.3.13 Running typescript in browser

As TypeScript cannot be run directly in browser there needs to be some system to transpile

it into JavaScript. After it has been transpiled it can be run with a simple JavaScript eval and

if all the code uses EcmaScript modules it should just work. This is basically what

CodeSandbox has done (“Creating a parallel, offline, extensible, browser based bundler for

CodeSandbox,” 2017). Their first plan was to use Webpack JavaScript bundler because it is

widely used, and they got it somewhat working but not up to their needs. A bundler has the

advantage that it may be able to use other module types like CommonJs modules and it is

already made and has various optimizations. A disadvantage is that they are mostly made

for NodeJs environment and thus won’t work in browser out of the box and may need quite

a bit of work to make it function. Divriots have made a browser version of Vite bundler

(“Vite in the browser - ‹div›RIOTS,” 2022). Their version doesn’t support node_modules

folder and instead a plugin has to be made that resolves module imports. Unfortunately, the

Vite version they use is still 2.7.0 whereas Vite has moved to 4.0.4. Vite actually uses

ESbuild bundler for development environment and RollUp bundler for production bundling

32

both of which have browser compatible versions (“esbuild - API,” 2023; “Frequently Asked

Questions | Rollup,” 2023). There is also the option of going lower level and running NodeJs

environment in browser by using WebAssembly which StackBlitz has done (“Introducing

WebContainers,” 2021). This makes it possible to do almost anything one could normally

do in NodeJs environment including running unmodified bundlers like Vite. Unfortunately,

it isn’t available as open source. Any of these solutions may be good for this project though

running a whole NodeJs environment in browser might be an overkill. It must be tested

during implementation what will be the best option to go with.

One common thing is that all of them need a file system implementation, or it at least make

things easier. For that there are some libraries like BrowserFS, lightning-fs and filer

(“DustinBrett/BrowserFS at FileSystemAccess,” 2023; “filerjs/filer,” 2023; “lightning-

fs/src at main · isomorphic-git/lightning-fs,” 2023). Filer and lightning-fs only have

IndexedDB backend so the files are only accessible in browser and only the files in that

filesystem can be used. BrowserFS has multiple backends and this fork of it also includes

implementation for File System Access API which provides access to local file system files

though only in Chromium based browsers. Other browsers only support Origin Private File

System which is only accessible by from the web page that created it like IndexedDB (“File

System Access API | Can I use... Support tables for HTML5, CSS3, etc,” 2023; “File System

Access API - Web APIs | MDN,” 2023). While using the File System Access API allows to

read and write the files outside of browser, there is no way to watch for the file changes.

This means that for the changes to be updated in the engine all the files would need to be

checked for changes once the engine gains focus. This is will obviously became slower as

more files are added. There could also be an option to just check for changes in manually

selected files.

The file system is needed for accessing the source code that is to be transpiled and built but

also for serving the files to the browser since local files can’t be normally served because of

cross-origin request sharing policy. To get around this a service worker needs to be

implemented that acts like an in-browser server serving the game and engine files. (Samuele,

2022)

33

5.3.14 Localization

Localization can be simply accomplished with a JSON for the languages with the localized

strings. For example an English localization file could look like this:

{

 play_now: “PLAY NOW!”,

 you_won: “YOU WON!

}

This object can then be queried for the needed string. There is even a handy module for it

called dlv (Miller, 2023). The language variable can be either set with a build variation or in

case of a multi-language build it can be automatically checked from user’s browser or there

can be a switch in the game. The correct localization is then chosen based on set language.

When switching language during game the changes texts won’t automatically change so it

will need some sort of a function to update the text objects.

5.3.15 Version control

Since the company already uses Git version control it is natural to look for a solution that

can utilize it. Fortunately there is a library for just that called Isomorphic-git (“isomorphic-

git · A pure JavaScript implementation of git for node and browsers!,” 2023). It works both

in node and in browsers which is of course required for this project. Unfortunately, there is

a browser security feature which blocks cloning and pushing repositories to different website

origins unless it is explicitly enabled in the Git hosts servers settings, which unfortunately

the big public Git hosts don’t support (“isomorphic-git,” 2023). Isomorphic-git suggest to

use a proxy server as a way to circumvent the restriction or use a service which does support

it. Another option would be to use a browser extension that bypasses the restriction like

Hoppscotch does (“Hoppscotch,” 2023). Isomorphic-git also needs a node fs like file system

implementation and the BrowserFS mentioned previously can be used.

34

6 Discussion

In many of the related works modularity was found to be a good thing and it is also what this

papers engine aims for. While making the lower-level modules easily replaceable such as

changing the physics engine could be nice it is not the first priority. Making things work

comes first. However higher level modularity of reusable game components is important.

How granular the modularity is will depend on the implementor but for example a match-

three mechanic could be a component. It would then expose configuration in the editor such

as adding graphics for the puzzle pieces. It could also be composed of subcomponents like

grid component with basic grid management functions.

Warren and Chover et al. (Chover et al., 2020; Warren, 2019) papers also showed that

simplified programming interfaces are viable for content creation by non-programmers.

While this papers engine aims to be easy to by non-programmers it is more related to creating

user interfaces and level layouts. Of course, also using premade components like the

aforementioned match-three component is possible. It may be possible to a compose a more

complex component from simpler one but creating totally new functionality is left for

programmers.

Many of the related works also showed that small light weight purpose-built engines have

benefits. While this papers engine is not specific to one type of game, in fact it should be

possible to create anything, it is specific to certain kind of output in this case playable ads.

An engine optimized for creating small builds, with varying specifications and lots of

variations is sure to speed up development.

The problems identified by Maggiorini et al. (Maggiorini et al., 2016) don’t ably in this

papers engine’s design. The monolithic nature is solved by modularity, centralization issue

doesn’t ably to the use case. Since this paper’s engine outputs to web platform only the

platform dependency basically doesn’t ably but web is slightly fractured platform because

of different browser versions and their application programming interface (API)

compatibility. Also, different ad networks are sort of different platforms though they still

run in browser. The API issue is handled by only using APIs that are commonly available,

so the latest and greatest APIs can’t be used. The networks are abstracted away, and their

specifics are handled in their own modules.

35

Finally Charrieras and Ivanova’s (Charrieras and Ivanova, 2016) discussed the programming

paradigms. The libraries used by this paper’s engine use OOP, so it is likely easier to use

that. Also, since the engine aims to be minimal it may not become problematic. The game

logic and component should still be a possible to be freely made just like each developer

wants to. How game object properties are exposed to the editor interface should work with

any paradigm.

36

7 Conclusions

The goal of this study was to find out what is needed to make a game engine with certain

requirements. Initially it was also meant to include implementation of a game engine based

on the research, but it turned out to be more challenging and time consuming than what was

first estimated so that part was dropped out.

In this study a list of requirements for the game engine were gathered, and based on that

research into each component required to compose a game engine was done. Many good

existing libraries were found, and some parts were designed. Some web platform specific

challenges were identified, namely that browsers have very limited access to the local file

system and browsers have a cross-origin resource sharing security policy that blocks some

use cases unless it is bypassed one way or another.

This research will be valuable in the future when actually implementing a game engine, but

it most definitely won’t be enough to make it without a hitch. While the solutions found in

this study seem good there may be unforeseen issues and bugs in the recommended solutions.

Thus, it could be even a good subject for a further study.

37

References

API Reference · terser [WWW Document], 2023. URL https://terser.org/ (accessed 1.24.23).

Base64 - MDN Web Docs Glossary: Definitions of Web-related terms | MDN [WWW

Document], 2023. URL https://developer.mozilla.org/en-US/docs/Glossary/Base64

(accessed 1.30.23).

Best of JavaScript [WWW Document], 2023. URL

https://bestofjs.org/projects?tags=framework (accessed 1.10.23).

Blender [WWW Document], 2023. . blender.org. URL https://www.blender.org/ (accessed

4.24.23).

@box2d/benchmark [WWW Document], 2023. . npm. URL

https://www.npmjs.com/package/@box2d/benchmark (accessed 1.9.23).

@box2d/core [WWW Document], 2023. . npm. URL

https://www.npmjs.com/package/@box2d/core (accessed 1.9.23).

Campos, S.A.E., Morales, B.A.M., Núñez, Á.A.V., 2022. Open-Source Game Engine &

Framework for 2D Game Development, in: 2022 IEEE Engineering International Research

Conference (EIRCON). Presented at the 2022 IEEE Engineering International Research

Conference (EIRCON), pp. 1–4. https://doi.org/10.1109/EIRCON56026.2022.9934816

cannon-es [WWW Document], 2023. URL https://github.com/pmndrs/cannon-es (accessed

1.9.23).

Canvas Engines Comparison [WWW Document], 2022. URL

https://benchmarks.slaylines.io/ (accessed 12.13.22).

Catto, E., 2023. Box2D [WWW Document]. URL https://github.com/erincatto/box2d

(accessed 1.9.23).

Charrieras, D., Ivanova, N., 2016. Emergence in video game production: Video game

engines as technical individuals. Soc. Sci. Inf. 53, 337–356.

https://doi.org/10.1177/0539018416642056

38

Chover, M., Marín, C., Rebollo, C., Remolar, I., 2020. A game engine designed to simplify

2D video game development. Multimed. Tools Appl. 79, 12307–12328.

https://doi.org/10.1007/s11042-019-08433-z

Christopoulou, E., Xinogalos, S., 2017. Overview and Comparative Analysis of Game

Engines for Desktop and Mobile Devices. Int. J. Serious Games 4.

https://doi.org/10.17083/ijsg.v4i4.194

CodeMirror [WWW Document], 2023. URL http://codemirror.net/ (accessed 4.5.23).

Common game development terms and definitions | Game design vocabulary | Unity [WWW

Document], 2022. URL https://unity.com/how-to/beginner/game-development-terms

(accessed 12.8.22).

Cowan, B., Kapralos, B., 2014. A Survey of Frameworks and Game Engines for Serious

Game Development, in: 2014 IEEE 14th International Conference on Advanced Learning

Technologies. Presented at the 2014 IEEE 14th International Conference on Advanced

Learning Technologies, pp. 662–664. https://doi.org/10.1109/ICALT.2014.194

Creating a parallel, offline, extensible, browser based bundler for CodeSandbox [WWW

Document], 2017. . CodeSandbox. URL https://codesandbox.io/blog/creating-a-parallel-

offline-extensible-browser-based-bundler-for-codesandbox (accessed 1.23.23).

Ct.js — a free game editor [WWW Document], 2022. URL https://ctjs.rocks/ (accessed

12.16.22).

Davey, R., 2022. Creating Custom Phaser 3 Builds [WWW Document]. URL

https://github.com/photonstorm/phaser3-custom-build (accessed 1.9.23).

Dejean, B., 2023. baskerville/bspwm [WWW Document]. URL

https://github.com/baskerville/bspwm (accessed 4.24.23).

Doucet, L., September 02, A.P., 2021, 2021. Game engines on Steam: The definitive

breakdown [WWW Document]. Game Dev. URL

https://www.gamedeveloper.com/business/game-engines-on-steam-the-definitive-

breakdown (accessed 11.28.22).

DustinBrett/BrowserFS at FileSystemAccess [WWW Document], 2023. . GitHub. URL

https://github.com/DustinBrett/BrowserFS (accessed 2.4.23).

39

esbuild - API [WWW Document], 2023. URL https://esbuild.github.io/api/#browser

(accessed 1.24.23).

Farris, J., 2020. Forging new paths for filmmakers on The Mandalorian. Unreal Engine. URL

https://www.unrealengine.com/en-US/blog/forging-new-paths-for-filmmakers-on-the-

mandalorian (accessed 12.8.22).

ffmpeg.wasm [WWW Document], 2023. URL

https://github.com/ffmpegwasm/ffmpeg.wasm (accessed 1.24.23).

File System Access API | Can I use... Support tables for HTML5, CSS3, etc [WWW

Document], 2023. URL https://caniuse.com/native-filesystem-api (accessed 4.18.23).

File System Access API - Web APIs | MDN [WWW Document], 2023. URL

https://developer.mozilla.org/en-US/docs/Web/API/File_System_Access_API (accessed

4.18.23).

filerjs/filer [WWW Document], 2023. URL https://github.com/filerjs/filer (accessed

4.18.23).

Free and Easy Game-Making App | GDevelop [WWW Document], 2022. URL

https://gdevelop.io/ (accessed 12.8.22).

Frequently Asked Questions | Rollup [WWW Document], 2023. URL

https://rollupjs.org/faqs/#how-do-i-run-rollup-itself-in-a-browser (accessed 1.24.23).

Game Making Software - Construct 3 [WWW Document], 2022. URL

https://www.construct.net (accessed 12.8.22).

Hevner, A.R., March, S.T., Park, J., Ram, S., 2004. Design Science in Information Systems

Research. MIS Q. 28, 75–105. https://doi.org/10.2307/25148625

Hoppscotch [WWW Document], 2023. URL

https://docs.hoppscotch.io/documentation/features/interceptor (accessed 4.5.23).

HTML5 Game Engines - Find Which is Right For You [WWW Document], 2022. URL

https://html5gameengine.com/ (accessed 12.16.22).

i3 - improved tiling wm [WWW Document], 2023. URL https://i3wm.org/ (accessed

4.24.23).

40

Introducing WebContainers: Run Node.js natively in your browser [WWW Document],

2021. URL https://blog.stackblitz.com/posts/introducing-webcontainers/ (accessed

1.23.23).

isomorphic-git · A pure JavaScript implementation of git for node and browsers! [WWW

Document], 2023. URL https://isomorphic-git.org/ (accessed 1.9.23).

isomorphic-git [WWW Document], 2023. URL https://github.com/isomorphic-

git/isomorphic-git (accessed 1.9.23).

js web frameworks benchmark [WWW Document], 2023. URL https://krausest.github.io/js-

framework-benchmark/2022/table_chrome_108.0.5359.71.html (accessed 1.10.23).

Kostin, V., 2022. Thing-editor [WWW Document]. URL

https://github.com/Megabyteceer/thing-editor (accessed 12.16.22).

liabru, 2023. liabru/matter-js [WWW Document]. URL https://github.com/liabru/matter-js

(accessed 1.9.23).

lightning-fs/src at main · isomorphic-git/lightning-fs [WWW Document], 2023. . GitHub.

URL https://github.com/isomorphic-git/lightning-fs (accessed 4.18.23).

Lightweight Particle System for TypeScript [WWW Document], 2023. . GitHub. URL

https://github.com/Risto-Paasivirta/ParticleSystem (accessed 1.10.23).

Lind, A., 2023. subset-font [WWW Document]. URL

https://github.com/papandreou/subset-font (accessed 1.24.23).

List of game engines [WWW Document], 2022. . Wikipedia. URL

https://en.wikipedia.org/w/index.php?title=List_of_game_engines&oldid=1124258896

(accessed 11.28.22).

Maggiorini, D., Ripamonti, L.A., Cappellini, G., 2016. About Game Engines and Their

Future, in: Mandler, B., Marquez-Barja, J., Mitre Campista, M.E., Cagáňová, D., Chaouchi,

H., Zeadally, S., Badra, M., Giordano, S., Fazio, M., Somov, A., Vieriu, R.-L. (Eds.),

Internet of Things. IoT Infrastructures, Lecture Notes of the Institute for Computer Sciences,

Social Informatics and Telecommunications Engineering. Springer International Publishing,

Cham, pp. 276–283. https://doi.org/10.1007/978-3-319-47063-4_28

41

melonjs v14.1.2 ❘ Bundlephobia [WWW Document], 2022. URL

https://bundlephobia.com/package/melonjs (accessed 12.16.22).

melonJS [WWW Document], 2022. URL https://melonjs.org/ (accessed 12.16.22).

Miller, J., 2023. dlv: Safe deep property access in 120 bytes [WWW Document]. URL

https://github.com/developit/dlv (accessed 1.23.23).

Mustonen, M., 2023. moiman100/web-game-engine-test [WWW Document]. URL

https://github.com/moiman100/web-game-engine-test (accessed 1.9.23).

Mustonen, M., 2019. Parhaiten opetuskäyttöön soveltuvan versionhallintajärjestelmän

löytäminen. Finding the most suitable version control system for education.

Norynchak, O., 2022. free-tex-packer-core [WWW Document]. URL

https://github.com/odrick/free-tex-packer-core (accessed 1.24.23).

Park, H.C., Baek, N., 2020. Design of SelfEngine: A Lightweight Game Engine, in: Kim,

K.J., Kim, H.-Y. (Eds.), Information Science and Applications, Lecture Notes in Electrical

Engineering. Springer, Singapore, pp. 223–227. https://doi.org/10.1007/978-981-15-1465-

4_23

Phaser - A fast, fun and free open source HTML5 game framework [WWW Document],

2022. URL https://phaser.io (accessed 12.13.22).

Phaser Editor 2D | HTML5 Game IDE [WWW Document], 2022. URL

https://phasereditor2d.com/ (accessed 12.16.22).

phaser v3.55.2 ❘ Bundlephobia [WWW Document], 2022. URL

https://bundlephobia.com/package/phaser (accessed 12.16.22).

PixiJS Particle Emitter [WWW Document], 2023. URL https://github.com/pixijs/particle-

emitter (accessed 1.10.23).

PixiJS Sound [WWW Document], 2022. URL https://github.com/pixijs/sound (accessed

12.16.22).

pixi.js v7.0.5 ❘ Bundlephobia [WWW Document], 2022. URL

https://bundlephobia.com/package/pixi.js (accessed 12.16.22).

42

PixiJS [WWW Document], 2022. URL https://pixijs.com/ (accessed 12.16.22).

Plans and pricing [WWW Document], 2022. URL https://store.unity.com/ (accessed

12.8.22).

PlayCanvas - The Web-First Game Engine [WWW Document], 2022. . PlayCanvas.com.

URL https://playcanvas.com (accessed 12.9.22).

Popmotion: The animator’s JavaScript toolbox [WWW Document], 2023. URL

https://popmotion.io/#quick-start-animation-animate-playback-controls (accessed 1.24.23).

Rekapi [WWW Document], 2023. URL http://jeremyckahn.github.io/rekapi/doc/index.html

(accessed 1.24.23).

Samuele, 2022. How To Serve a Local Folder of Files in Your Browser [WWW Document].

Strani Anelli. URL https://blog.stranianelli.com/how-to-serve-a-local-folder-of-files-in-

your-browser/ (accessed 2.4.23).

Shakiba, A., 2023. Planck.js [WWW Document]. URL https://github.com/shakiba/planck.js

(accessed 1.9.23).

Shifty [WWW Document], 2023. URL http://jeremyckahn.github.io/shifty/doc/index.html

(accessed 1.24.23).

Simpson, J., 2023. Howler [WWW Document]. URL https://github.com/goldfire/howler.js

(accessed 1.10.23).

TexturePacker - Create Sprite Sheets for your game! [WWW Document], 2023. URL

https://www.codeandweb.com/texturepacker (accessed 4.18.23).

Twine / An open-source tool for telling interactive, nonlinear stories [WWW Document],

2022. URL https://twinery.org/ (accessed 12.8.22).

Unreal Engine Powers Film & Television Production [WWW Document], 2022. . Unreal

Engine. URL https://www.unrealengine.com/en-US/solutions/film-television (accessed

12.8.22).

Unreal Engine (UE5) licensing options - Unreal Engine [WWW Document], 2022. URL

https://www.unrealengine.com/en-US/license (accessed 12.8.22).

43

Valencia-García, R., Lagos-Ortiz, K., Alcaraz-Mármol, G., del Cioppo, J., Vera-Lucio, N.

(Eds.), 2016. Technologies and Innovation: Second International Conference, CITI 2016,

Guayaquil, Ecuador, November 23-25, 2016, Proceedings, Communications in Computer

and Information Science. Springer International Publishing, Cham.

https://doi.org/10.1007/978-3-319-48024-4

Vite in the browser - ‹div›RIOTS [WWW Document], 2022. URL

https://divriots.com/blog/vite-in-the-browser (accessed 1.23.23).

Warren, J., 2019. Tiny online game engines, in: 2019 IEEE Games, Entertainment, Media

Conference (GEM). Presented at the 2019 IEEE Games, Entertainment, Media Conference

(GEM), pp. 1–7. https://doi.org/10.1109/GEM.2019.8901975

小弟调调, 2023. Hotkeys [WWW Document]. URL https://github.com/jaywcjlove/hotkeys

(accessed 4.5.23).

