
ON THE ESTIMATION OF THE NUMBER OF SOLUTIONS FOR
NONOGRAMS

Lappeenranta-Lahti University of Technology LUT

Master’s Program in Computational Engineering , Master’s Thesis

2022

Henrik Valve

Examiner: Professor Tapio Helin
Professor Lassi Roininen

ABSTRACT

Lappeenranta-Lahti University of Technology LUT
LUT School of Engineering Science
Computational Engineering

Henrik Valve

On the estimation of the number of solutions for nonograms

Master’s Thesis
2022
87 pages, 47 figures, 0 table, 1 appendix
Examiners: Professor Tapio Helin, and Professor Lassi Roininen

Keywords: Nonograms, Japanese Puzzle, Number of Solution, Approximation, Estimation,
NP-completeness

How possible is it to estimate the number of solutions of a nonogram problem? Although this
thesis does not fully answer this question, it shows there is a category of nonograms where
polynomial time can be achieved. The proposed algorithm for estimation partial solves a
nonogram and then finds switching components from the partial solution. Switching com-
ponent types are identified and the number of solutions for a type is estimated. The thesis
concludes with a discussion of the feasibility of extending the algorithm by adding more
types. Most likely, extending the algorithm will lead to a non-polynomial time algorithm.
This could be because there is no finite amount of switching component types or detectors
for a combination of types. Regardless, more types could be added to the algorithm.

TIIVISTELMÄ

Lappeenrannan-Lahden teknillinen yliopisto LUT
LUTin insinööritieteiden tiedekunta
Laskennallinen tekniikka

Henrik Valve

Nonogrammin ratkaisujen määrän arviointiin liittyen

Diplomityö
2022
87 pages, 47 figures, 0 table, 1 appendix
Tarkastajat: Professori Tapio Helin, ja Professori Lassi Roininen

Avainsanat: Nonogrammi, Japanilainen ristikko, Vastausten lukumäärä, Approksimaatio, Es-
timaatio, NP-täydellisyys

Kuinka mahdollista on NP-täydellinen nonogrammin vastausten määrän estimointi? Tähän
ei tämä työ täysin vastaa, mutta työ osoittaa nonogrammien kategorian, jota voidaan poly-
nomisessa ajassa estimoida. Ehdotettu algoritmi estimointiin osittaisratkaisee nonogrammin,
ja sitten etsii osittaisratkaisusta vaihto komponentit. Vaihto komponentin tyyppi tunnistetaan
ja vastausten määrän estimointi tehdään tyypille. Työn lopussa pohditaan algoritmin jatkoa
tyyppejä lisäämällä. Todennäköisesti, tyyppien lisääminen päättyy epäpolynomiseen algo-
ritmiin. On mahdollista, että vaihto komponentteja ei saada luokiteltua rajattomalla tavalla
tai tyyppien yhdistelmiä ei pystytä havainnoida. Joka tapauksessa tyyppejä voidaan lisätä
algoritmiin.

4

LIST OF SYMBOLS

Number sets

N Set of natural numbers (0,1,2,3,4, ...).
N≤9 Set of natural numbers less than or equal to 9.

Graph Theory

+ Set of vertices.
� Set of edges. Pairs (D0, D1) of vertices of + .
(+, �) A graph.

Complexity Theory

$$$ (5) Big-Oh notation.
PROBLEM Set of instances of some problem or just the problem.
ASP-PROBLEM ASP version of some problem.
<ASP-PROBLEM <th ASP version of some problem.
#PROBLEM Counting version of decision problem.
CLASSCLASSCLASS Complexity class (set of problems).
CLASSCLASSCLASS-complete Complete subset of complexity class under some reduction.

Nonogram

2F Fth pixel in the line. Possible values are black, white, and unknown.
2F,G Pixel at column Fand row G.
18 8th block in the line’s description.(
18,!, 18,'

)
Block range of 8th block in the line’s description.

12,:,8 Block 8 in : line index of column descriptions.
1@,:,8 Block 8 in : line index of row descriptions.
&7 8th pixel group in the line.
Nonogram.
) Partial solution or proposed partial solution.
A Switching component.
(Set of switching components.

5

CONTENTS

1 INTRODUCTION 6
1.1 Background . 6
1.2 Objectives and delimitations . 10
1.3 Structure of the thesis . 11

2 OVERVIEW 12

3 PARTIAL SOLVER 18
3.1 Rules to partially solve nonograms . 19
3.2 Partial solver implementation detail . 35

4 PARTIAL SOLUTION POST-PROCESSING 39
4.1 Partial solution verification . 39
4.2 Unknown pixel graph . 43

5 ESTIMATION ALGORITHM AND TYPE SUBCASE 55
5.1 One-black colourable one-pixel Square switching component (SSC) detector 56

6 ANALYSIS OF ALGORITHMS 67
6.1 Empirical data generation . 67
6.2 Results . 68

7 DISCUSSION 82
7.1 Future work . 85

8 CONCLUSION 86

REFERENCES 87
Appendix 1 Complexity Theory for uninitiated

6

1 INTRODUCTION

1.1 Background

Aim of the Thesis it to investigate feasibility of Fully polynomial-time randomized approx-
imation scheme (FPRAS) for counting number of solutions of a nonogram. This is done
because:

• In the literature there are no attempts to make FPRAS to solve the number of nonogram
solutions.

• If no FPRAS exists (which is the conjecture at the moment), then it is not obvious
why. Is there a small subset of special cases which do not allow it? What difference is
there between instances which allow FPRAS and which do not?

Nonogram is a puzzle where the player colours a grid of pixels to make a pixelated image
based upon numbers at the sides called descriptions. Each row and column has one descrip-
tion. Numbers in descriptions are lengths of the black pixel blocks. Rows and columns of
nonograms are generally called lines in this Thesis. Blocks have to be in the same order
in the line as they appear in the description. Between each block there has to be at least
one white pixel. Crossovers of row and column descriptions define where black pixels are.
Figure 1 shows an empty (a), partially coloured (b), and coloured nonogram of a cat (c).

(a) (b) (c)

Figure 1. Nonogram of a cat. (a) Empty, (b) partially coloured, and (c) fully solved. [1]

Nonogram can have multiple solution. Figure 2 shows five by four (5× 4) nonogram’s six
solutions. There are two sets of solutions. Solutions, on Subfigures (a) to (d), have a 2
by 2 black box in the upper left corner. Three black pixels down right are allowed in this

7

configuration to “move” around. Last two solutions, on Subfigures(e) and (f), have jagged
pattern in the upper left. This allows only two black pixels on left to “move” around.

2
2

2 1
1
1

2 1 1 1

(a)

2
2

2 1
1
1

2 1 1 1

(b)

2
2

2 1
1
1

2 1 1 1

(c)

2
2

2 1
1
1

2 1 1 1

(d)

2
2

2 1
1
1

2 1 1 1

(e)

2
2

2 1
1
1

2 1 1 1

(f)

Figure 2. All solutions of a five times four nonogram.

Nonogram’s solutions may not have simple structure. An example of very different solutions
for a nonogram was presented in [2] shown at Figure 3.

Although nonograms are solved by people for fun, computationally solving Nonogram is
known to be NPNPNP-complete problem [3]. Nonogram’s solution counting is also known to be
#PPP-complete. Problem #3SAT is #PPP-complete[4]. Problem 3SAT has parsimonious reduc-
tion to 3DM making #3DM #PPP-complete [5]. Since reduction from 3DM to NONOGRAM is
parsimonious, #NONOGRAM is #PPP-complete [3].

Nonogram being NPNPNP-complete and #PPP-complete means that, if FPRAS exists for counting
number of solution of a nonogram then RPRPRP is equal to NPNPNP which is not expected. However,
that does not mean there is not subset of instance, which are easily solvable. For example,
counting number of solutions for Boolean Constraint Satisfaction Problem has subset of
instances which can be calculated exactly in polynomial time [6].

Nonogram’s multiple solutions are caused by switching components. Switching components
are sets of pixels in the solution which can move around to give another solution [2]. The
simplest switching component is Elementary switching component (ESC). Example of ESC
is shows as Figure 4. This is 2 by 2 nonogram where every description is one block length
of one. In the Subfigure (a) nonogram is empty. Subfigures (b) and (c) are solutions to ESC.

8

Figure 3. Two solutions for nonogram which are rather different [2].

Four pixels in a ESC do not have to be next to each other [2].

?

?

?

?1

1

1

1

(a)

?

?

?

?1

1

1

1

1

1

1

1

(b)

?

?

?

?1

1

1

1

1

1

1

1

1

1

1

1

(c)

Figure 4. Most basic ESC. (a) Nonogram empty. (b) First solution. (c) Second solution.

One nonogram may have multiple switching components depend upon surrounding pixels.
Pixels in the Figure 5 have values black, white, or unknown. Pixel in the Figure 5 value
is shown at left corner of the pixel. Black pixel has black filled square. White pixel has
white filled square. Unknown pixel has question mark at the corner. Figure 5 shows two
isolated (as described in [7]) ESC as unknown pixel groups. Arrows drawn between pixels
are block’s ranges of uncoloured blocks. They show range in which uncoloured block has to
be. More on them later. Isolation layer is the immediate surrounding pixels of the ESC. In
isolation layer, pixels along the line next to unknown pixels must be white. Isolation layer
does not need to have black pixels as corners.

For number of solutions approximation, literature does not have anything nonogram specific
algorithm. Daniel Berend et al. in [7] gave exponential time algorithm for getting exact
number of solutions. Their algorithm calculates number of solutions recursively by finding
every possible colour configuration of a column while considering already coloured columns.

9

?

2 3 1 1

2
1
1

1 2 2

2
1

?

?

?

?

? ?

?

1
1

1
1

1 1 1

2
2

1 1 1

2 2 1

1 1 3 2

2
2

1
1

1
1

1
2

1
1
2

Figure 5. Two isolated ESC in a partial solution of nonogram.

If all the columns are coloured so that rows are valid, then count is increment by one. Other-
wise, (or if column has no valid configuration) zero is added. It is a brute force method with
some consideration. Problem of using brute force method is that potential solution count of
nonogram is exponentially high. So visiting all solution of a nonogram can take too much
time. There is potential in [7] algorithm in terms of modifying to sampling but that is taken
as outside of scope.

Literature did not have FPRAS for counting number of solution for nonogram. However,
general methods for counting do exists. Vazirani in his book about approximation [8] has
an chapter on counting problems. It focuses on problems in which random variable - over
solutions which expectation is number of solutions. Essentially, algorithm works by generat-
ing solution with such a probability that value for - will cause the expectation to be number
of solution. If variance is only in “polynomial range”, then algorithm is FPRAS.

Previous method requires that solution can be generated by sampling. For NPNPNP-complete
problem this is not possible because solution generator can be a solution searcher, so it would
imply PPP is equal to NPNPNP. Hence, some form of Monte Carlo is used to sample a space which
solutions are a subset. Still, every sampling method for counting does come back to having
random variable - in which expectation is number of solutions and variance is “polynomial
range” from expectation. For example, in [9] Rubinstein experimented with more advanced
Monte Carlo methods cross-entropy and minimum entropy. To thesis purposes sampling is
avoided as it can be tacked on later when more information about nonogram itself does exists.

There are multiple attempts of using machine learning algorithms to solve NONOGRAM
(for example see [10]). These studies usually experiences exponential behaviour, but given
methods are modifiable for probabilistic approximation of a solution. Thesis does not jump

10

to these machine learning methods. Rather, starting point is logical rules from [11].

1.2 Objectives and delimitations

Objective of this thesis is to investigate the feasibility of efficient probabilistic approximation
algorithm for #NONOGRAM. This is done by partially solving nonogram and then inves-
tigating the sets of unknown pixels (switching components). Unfortunately, due to time
limitations, fully working approximation algorithm was not possible to implement. In fact,
the thesis does not get to probabilistic approximation at all.

To be more precise, the objectives of this Thesis are:

• Provide algorithm for 1 and most of its subalgorithms:

– partial solver using line rules,

– nonogram verifier with partial solution support,

– algorithm to find switching components from the partial solution,

• Provide complexity analysis main algorithms both mathematically and empirically.

The biggest delimitations of the study are:

• function 4AB7;0B4(E7B2ℎ�=;>=<4<B4AB7;0B4(E7B2ℎ�=;>=<4<B4AB7;0B4(E7B2ℎ�=;>=<4<B is restricted to exactly counting of one-black colourable
one-pixel SSC,

• it is assumed that it is possible that #NONOGRAM has a FPRAS even though there are
two reasons to doubt:

– there is no proof that NONOGRAM is self-reducible which would indicate Nono-
gram does not have a FPRAS,

– as nonogram is NPNPNP-complete and #PPP-complete there is conjecture against #NONOGRAM
having a FPRAS which involves PPP vs NPNPNP,

Reason for assuming #NONOGRAM has a FPRAS because Thesis still generates information
about boundary between Nonograms which solution count can be approximated.

Francisco Pesquita’s nonogram-solver program (found at [12]) was used as inspiration for
the Thesis software (found at [13]).

11

1.3 Structure of the thesis

Previous sections already used Complexity Theory terminology. If this field is alien to reader,
Appendix 1 is provided those how want overview into the subject. Chapters of thesis focus
on different parts of the Algorithm 1 and theoretics.

Chapter 2 explain notation used in the Thesis, main definition, and describes the overall
idea of the algorithm.

Chapter 3 explains the partial solver. Partial solver uses logical rules per line deduce infor-
mation. These rules are mostly directly from the [11] and explained in Section 3.1. In the
Subsection 3.2 is more detailed discussion on the implementation of the partial solver.

Chapter 4 is about post-processing useful information out of a proposed partial solution.
In Subsection 4.1 algorithm for verifying is proposed partial solution a partial solution, a
solution, or invalid result is explained. Subsection 4.2 introduces unknown pixel graph and
an algorithm to generated it from a partial solution.

Chapter 5 Explains detection algorithms for ESC and one-black colourable one-pixel SSC.

Chapter 6 provides complexity analysis of Algorithm 1 and it’s direct sub-algorithms in
Subsection 6.2. Both mathematical and empirical methods are used. In Subsection 6.1 is
short explanations of generator used to drive empirical testing results.

Chapter 7 discusses FPRAS feasibility and Chapter 8 concludes the Thesis. Chapter 7
Subsection 7.1 discusses more future work regarding nonograms.

12

2 OVERVIEW

To formalize some definitions, Nonogram is a pair of finite sequences of descriptions. De-
scription is finite sequence of blocks. They are marked

{
12,:,8

}
for column description and{

1@,:,8
}

for row description where : is index for the line and 8 is index for the block. If only
blocks of one line is discussed a shorter version of 18 is used for the blocks. If 18 is used in
arithmetic, it means length of the block. Otherwise, notation means the block “object”.

Block range is a pair of pixel indexes
(
18,!, 18,'

)
for block 18 where 18,! is the leftmost possible

position of the block and 18,' is the rightmost. Refinement or updating the block range is to
make ether 18,! or 18,' closer to other.

Partial solution to a nonogram (#) is table of pixels) which is logically deduced. For
pixel 2F,G in) subscript variables are column index F and the row index G. When discussing
single line in nonogram, only column index is used. In Thesis purposes, pixel 2F,G can have
three values. Two colours black and white, and unknown for pixels the colour is undecided.
What logically deduced means is that, if) is fully coloured to a solution, then number of
such colourings would be same as #NONOGRAM(#). Before partial solver solution table
for nonogram is full of unknown pixels.

A solution) to a nonogram # is a table of pixels with every 2F,G having ether value black
or white, and lines of) are coloured according to descriptions of # . If white and black
are encoded as 0 and 1, the solution is valid if following equations apply for each row and
column:

The sum over pixels on every column F0 before zeroth block starts (12,F0,0,!) is 0 (pixels are
white)

12,F0 ,0,!−1∑
G=0

(
2F0, G

)
= 0. (1)

The sum over pixels on every row G0 before zeroth block starts (1@,G0,0,!) is 0

1@,G0 ,0,!−1∑
F=0

(
2F,G0

)
= 0. (2)

13

On every column F0 and every block index 8 between block starting (1@,F0, 8,!) and ending
(1@,F0, 8,') there has to be block amount of black pixels, without any white pixels. Hence,
since black pixel is encoded 1

12,F0 , 8,'+12,F0 , 8−1∑
G=12,F0 , 8,!

(
2F0, G

)
=

12,F0 , 8,'∑
G=12,F0 , 8,'−12,F0 , 8+1

(
2F0, G

)
= 12,F0, 8. (3)

On every row G0 and every block index 8 between block starting (1@,G0, 8,!) and ending (1@,G0, 8,')
there has to be block amount of black pixels, without any white pixels. Hence, since black
pixel is encoded 1

1@,G0 , 8,'+1@,G0 , 8−1∑
F=1@,G0 , 8,!

(
2F,G0

)
=

1@,G0 , 8,'∑
F=1@,G0 , 8,'−1@,G0, 8+1

(
2F,G0

)
= 1@,G0, 8. (4)

On every column F0 block 12,F0,0 range must at pixel zero at least

0 ≤ 12,F0,0,!. (5)

On every row F0 zeroth block must end at pixel zero at least

0 ≤ 1@,G0,0,!. (6)

On every column G0 between blocks (18 and 18+1) has to be space for at least one white pixel

12,G0, 8,' < 12,G0, 8+1,! +1. (7)

On every row F0 between blocks (8 and 8+1) has to be space for at least one white pixel

1@,F0, 8,' < 1@,F0, 8+1,! +1. (8)

14

On every column G0 last block 12,G0,9 must be less than length of the line (;)

12,F0,9,' < ;. (9)

On every row F0 last block 1@,F0,9 must be less than length of the line (<)

1@,G0,9,' < <. (10)

On every column F0 between two blocks (8 and 8+1) is only white pixels

12,F0 , 8+1,!−1∑
G=12,F0 , 8,'+1

(
2F0, G

)
= 0. (11)

On every row G0 between two blocks (8 and 8+1) is only white pixels

1@,G0 , 8+1,:−1∑
F=1@,G0 , 8,'+1

(
2F,G0

)
= 0. (12)

On every column F0, with ; pixels, after last block (9 been last block in description) pixels
has to be white

;−1∑
G=12,F0 ,9−1,'+1

(
2F0, G

)
= 0. (13)

On every row G0, with < pixels, after last block (9 been last block in description) pixels has
to be white

<−1∑
F=1@,G0 ,9−1,'+1

(
2F,G0

)
= 0. (14)

Rules here are written in the same vein as in [14] which describe an Integer Programming
formulation for nonogram. Main difference between here and [14] is that [14] indicated

15

starts and end of the blocks by “boolean” per pixel, block, and line rather than variables 18,!
and 18,' indicating, which pixel in the line block starts and ends.

From equations two trivial types of nonogram with no solutions can be identified. One is
total number of pixels in column descriptions vs. row descriptions, other one is regarding
maximum number of blocks description can have for given line. Thesis assumes that nono-
gram inputted to algorithms are not these trivial cases as they can be detected in polynomial
time before algorithm is run.

Nonogram does not have any solutions, if row and column descriptions do not colour the
same amount of pixels. This is, because some pixel would have to be white according to one
line and black according to an other. This would be failing of Equation 3, or 4.

Length of the description is minimum length of the line for description to fit into a line [15].
It is defined as

:::(
{
18
}
) =

9−1∑
8=0

(
18
)
+ 9−1, (15)

where 9 is number blocks in the description. Sum is number of black pixels line blocks take
and last term 9−1 is the minimum number of white pixels the line must have. Minimum is
number of white pixels occurs if zeroth block starts at pixel zero, 9th block ends at last pixel
of the line, and between blocks there is only one white pixel. If ::: > < , where < is the length
of the line, then description does not fit to the line, hence there is no solution. If nonogram
has description with length longer than the line then description would end up violating one
of the Equations 1 to 14 as there simple is not enough space.

In [15] the description is called forceless if

;0F;0F;0F
({
18
})

+ :::
({
18
})

≤ <

, where < is length of the line. From this Thesis call forceful description (or line) is as the
logical opposite. Special case of forceful description where

:::
({
18
})

= <

is called static.

In [2] switching component and its relation to Discrete Tomography was discussed but no

16

formal definition was given. To fix this, let’s define proposed switching component as set of
unknown pixels in which colouring of one of them affects colour or block range covering
of other unknown pixel in the set. Switching component is then a proposed switching com-
ponent with multiple colourings. By the definition proposed switching component does not
necessarily have multiple solutions, or colouring one pixel in switching component does not
imply colour of all the other unknown pixels in the set.

Since nonogram with multiple switching components do not affect each other total number of
solutions switching components cause to a nonogram is simply product of number colourings
switching components have (as seen used in the Algorithm 1).

Theorem 2.1. If partial solution) for Nonogram # has*+1 switching components �0, ..., �*

with�0, ...,�* colourings for each switching component then #NONOGRAM (#) =∏*
7=0 (�7).

By definition of switching component colouring pixels of �0 will not affect any
other switching components �1, ..., �* colouring. Hence, by simple multiplication
principle #NONOGRAM (#) =∏*

7=0 (�7).

As an analogue, situation is the same as having * number of different sized (�7)
decks of unique cards. If a person takes one card from each deck, then number of
configurations of cards is also

∏*
7=0 (�7). �

If it is possible to estimate the number of possible colourings for every type of switch-
ing component, then algorithm to estimating #NONOGRAM would reduce down to find-
ing and identifying switching components in the nonogram. Algorithm 1 shows the overall
idea. It takes in description of a nonogram and calculates a partial solution (here function
%0@B70:(=:D4@%0@B70:(=:D4@%0@B70:(=:D4@ does this). The role of partial solver is to get the switching components to be as
small as possible. Algorithm uses modified nonogram’s polynomial time verifier algorithm,
(#=<=+4@75 74@#=<=+4@75 74@#=<=+4@75 74@) to check, if partial solver ends up to a solution, to state where nonogram
does not have any solution, or to a partial solution) . If output is a partial solution) , then
switching component finding algorithm (�7<3(E7B2ℎ4A�=<>=<4<BA�7<3(E7B2ℎ4A�=<>=<4<BA�7<3(E7B2ℎ4A�=<>=<4<BA) is called. This creates set
(of proposed switching components in the partial solution) .

Each member of set (contribute to the number of solutions of the nonogram with their
own way. Function 4AB7;0B4(E7B2ℎ�=;>=<4<B4AB7;0B4(E7B2ℎ�=;>=<4<B4AB7;0B4(E7B2ℎ�=;>=<4<B estimates the number of solutions a switching
component causes. It returns 2=C<B it estimates for the switching component and boolean
5 =C<3 telling did it detect the type. The variable 2=C<B stores the number of nonogram solu-
tions approximation. The variable C<342B43 stores number of switching components which
were not recognized by Function 4AB7;0B4(E7B2ℎ�=;>=<4<B4AB7;0B4(E7B2ℎ�=;>=<4<B4AB7;0B4(E7B2ℎ�=;>=<4<B. If type was not detected (5 =C<3
is false) then 4AB7;0B4(E7B2ℎ�=;>=<4<B4AB7;0B4(E7B2ℎ�=;>=<4<B4AB7;0B4(E7B2ℎ�=;>=<4<B returned estimation is one. This prevents variable

17

2=C<B be effect by detection failure.

If 4AB7;0B4(E7B2ℎ�=;>=<4<B4AB7;0B4(E7B2ℎ�=;>=<4<B4AB7;0B4(E7B2ℎ�=;>=<4<B is a FPRAS or better for every type of switching component,
then Algorithm 1 is also a FPRAS.

Algorithm 1 NonoEstimateSolutionCount

Input: Nonogram #

Output: Pair (2=C<B,C<34B42B43)where 2=C<B is estimation for number of solutions of # and
C<34B42B43 is number of switching components not detected.

1. (), 4) B #=<=%0@B70:(=:D4@#=<=%0@B70:(=:D4@#=<=%0@B70:(=:D4@ (#) ; Run partial solver

2. if 4 is true return (0,0) ; Error happened in partial solver which means no solutions

3. D4@75 720B7=<B #=<=+4@75 74@#=<=+4@75 74@#=<=+4@75 74@ (#,)) ; Check is) a solution, invalid, or partial solution

4. if D4@75 720B7=< = isSolution

5. return (1,0) ;) is solution for # so it is only solution

6. if D4@75 720B7=< = isInvalid

7. return (0,0) ;) can not produce solution for #

8. 2=C<B B 1

9. C<34B42B43 B 0

10. (B �7<3(E7B2ℎ4A�=<>=<4<BA�7<3(E7B2ℎ4A�=<>=<4<BA�7<3(E7B2ℎ4A�=<>=<4<BA (#,)) ; Get switching components

11. for each A in (

12. (B4;>, 5 =C<3) B �AB7;0B4(E7B2ℎ�=;>=<4<B�AB7;0B4(E7B2ℎ�=;>=<4<B�AB7;0B4(E7B2ℎ�=;>=<4<B (#,), A)

13. 2=C<B B B4;> · 2=C<B

14. if 5 =C<3 is false then C<34B42B43 B C<34B42B43+1

15. return (2=C<B,C<34B42B43)

18

3 PARTIAL SOLVER

Partial solver’s idea is to take in a nonogram and solve as much as possible. Figure 6 shows
image of partial solver taking a nonogram and outputting proposed partial solution. Partial
solver gives out proposed partial solution because algorithm can give out the unique solution
of the nonogram or an end up in an error if invalid nonogram was given. Note that in the Fig-
ure 6 nonogram # is represented as empty nonogram but in the implementation nonogram
stores only size of itself and descriptions without pixel table. In fact pixel table is allocated
in the partial solver algorithm. Other hand proposed partial solution) stores the pixel table
and block range information but no description or size information.

2 3 1 1

2
1
1

1 2 2

2
1

1
1

1
1

1 1 1

2
2

1 1 1
2 2 1

1 1 3 2

2
2

1
1

1
1

1
2

1
1
2

?

2 3 1 1

2
1
1

1 2 2

2
1

?

?

?

?

? ?

?

1
1

1
1

1 1 1

2
2

1 1 1
2 2 1

1 1 3 2

2
2

1
1

1
1

1
2

1
1
2

Partial SolverIN OUT

Figure 6. Partial solver takes in Nonogram # and outputs Proposed partial solution) .

There is plenty of solvers in the literature. Partial solver used in this Thesis is from [11]
with some rules added and initialization made more clear. Solver in [11] uses line rules to
”reduce the [solution] search space” for a “chronological backtracking” (a form of depth-
first search). Line rules are consecutively applied to a line in nonogram. After that algorithm
moves to next line for the same treatment. After this is done for every line, and if any lines
were updated, then new run of applying rules to lines is executed. If run does not have any
updates, then chronological backtracking is used to get a solution. Thesis is not interested in
chronological backtracking as it is to find a solution from partial solution.

Algorithm 2 is the algorithm presented in [11] without chronological backtracking. At begin-
ning of Algorithm 2 is allocation of returning proposed partial solution ()) and initialization
of it. Allocation here is for both pixel table and block ranges. It is also possible to initializa-
tion to detect in-valid nonogram so error check is performed in step 3. The main “do-while”
loop of the Algorithm 2 (steps 4 to 9) loops until) is not updated. Inside main loop is
“for each” loop that goes through every line (rows and columns) in nonogram # . Inside
“for each” loop is second “for-each” loop which applies rules in set � to the line in partial
solution) . Line rules are explained in detail in Section 3.1.

19

For the initialization function [11] gave an initialization rule. Reference did not give im-
plementation on how to detect updates in) for the main “do-while” loop. In Section 3.2
more detailed version of Algorithm 2 is given. There initialization function is opened up,
update detection explained, and error detection capability added. Section 3.2 also details
hypothetical and real problems encountered with the implementation.

Algorithm 2 Partial Solver in [11]

Input: Nonogram #

Output: Pair of partial solution and a boolean indicating an error (), 4).

1. Allocate proposed partial solution) .

2. (), 4) B �<7B70:7H4�<7B70:7H4�<7B70:7H4 ()) ; Initialize the partial solution.

3. if 4 is false ; check for an error during initialization.

4. do

5. for each row and column :7<4 in #

6. for each @C:4@C:4@C:4 ∈ �

7. (), 4) B @C:4@C:4@C:4 (:7<4,))

8. if 4 is true break ; error has happened end the loop.

9. while there was an update in)

10. return (), 4)

Reason for choosing partial solver in [11] rather than some other one was its simple imple-
mentation. Algorithm in [11] does have cleaner mathematical properties for partial solving.
For example, it is harder to adapt simulated annealing solver presented in [10] to partial solv-
ing, because it is not clear how visible switching components are during simulated annealing.

3.1 Rules to partially solve nonograms

Nonogram’s lines (rows or columns) are in some colour configuration (of unknown, black,
and white pixels) during the solving process. Line rules update this state to be closer to fully
coloured state (less unknown pixels). Line rules presented here are mostly from [11]. It
divided line rules to 4 categories:

20

• initialization,

• rules which deduce pixel colour (1.1 to 1.5),

• rules which refine block ranges (2.1 to 2.3),

• rules which do both, pixel colour deduction and refining block ranges (3.1 to 3.3).

While testing individual rules in the implementation, they had problems to get block ranges
to correct position. To solve these problems, rules 2.4 and 2.5 where added. Even these
additions seem not to be enough when partial solver was tested. There were single solution
nonograms which could not be solved (example in Section 3.2). Rule 0.0 was also added to
have special handling for zero description lines in the initialization.

Common subalgorithm need in rules and in Chapter 4 is finding blocks which cover a pixel.
Cover means pixel is in the block range. Algorithm 3 find the set of blocks which cover pixel
2F. Algorithm just goes through the blocks of given line and adds them to the set of pixel 2F
is within block range.

Algorithm 3 FindBlocksCoveringPixel

Input: Nonogram # , Proposed solution) , Line :7<4, pixel index F

Output: finite sequence of blocks
{
18
}
8
covering pixel 2F of line :.

1. for each 18 of :7<4’s description in # ,) .

2. if 18,! ≤ F ≤ 18,'

3. add 18 to
{
18
}
8

4. return
{
18
}
8

Rule 0.0 was added which marks every pixel in zero description line to white. Rule was
added to initialization phase even though rule 1.2 does cover the same area, because it is
faster to handle zero description lines on initialization phase.

In initialization starting block ranges are calculated by looking at the line’s leftmost and

21

rightmost arrangement for the blocks. For line size of < and with description {17}9−1
7=0 then:

10,! B 0
∀8 ∈ {1, ..., 9−1}

(
18,! B

∑8−1
7=1 (17 +1)

)
∀8 ∈ {0, ..., 9−2}

(
18,' B <−1−∑9−1

7=8 (17 +1)
)

19−1,' B <−1

(16)

Rule 1.1 checks every block (18) in the line. Pixel 27 is black if exists block 18 such that
18,' + 1− 18 ≤ 7 ≤ 18,! − 1+ 18. Figure 7 shows how initialization and rule 1.1 work. In Sub-
figure (a) line has unknown pixels before initialization. Initialization looks at leftmost and
rightmost solution of the line. These are Subfigures (b) and (c). Resulting blocks ranges are
in Subfigure (d). Applying rule 1.1 length of block 1 is 3 so that it has ”middle” pixel (fourth
in the line) which has to be black. This is shown in Subfigure (e). With Rule 1.1 you can
fully solve static lines.

(d)

(b)

(c)

(a) ? ? ? ? ? ? ? ? ? ?1 3 2

1 3 2

1 3 2

0 1 2 3 4 5 6 7 8 9

? ? ? ? ? ? ? ? ? ?1 3 2

Block 0 Block 1 Block 2

(e) ? ? ? ? ? ? ? ? ?1 3 2

Block 0 Block 1 Block 2

Z
e
ro

th
Fi

rs
t

S
e
co

n
d

Th
ir

d
Fo

u
rt

h
Fi

ft
h

S
ix

th
S
e
ve

n
th

E
ig

h
th

N
in

th

Figure 7. How initialization and rule 1.1 work. (a) The line before initialization, (b) leftmost solution
of the line, (c) rightmost solution of the line, (d) the line after initialization, (e) line after rule 1.1 is
applied to it.

Rule 1.2 handles situations where range update leaves pixels outside of any block range.
Pixels in this state must be white, because Equations 1, 2, 11, 12, 13, and 14. Such pixels 27
satisfies following logical formula:

0 ≤ 7 < 10,!∨ 19−1,' < 7 ≤ <−1∨∃ 8 ∈ {0, ..., 9−2}
(
18,' < 7 < 18+1,!

)
(17)

How rule 1.2 works is shown in Figure 8. In Subfigure (a) pixels 0, 3, and 9 are outside of

22

any block range because all black pixels of block 0 are known and block 1 range refined.
Using rule 1.2 pixels 0, 3 and 9 can be deduced to be white. This is shown in Subfigure (b).

?

(a) ? ? ? ? ? ? ? ? ? ?2 3
0 1 2 3 4 5 6 7 8 9

Block 0 Block 1

(b) ? ? ? ? ? ? ? ? ?2 3

Figure 8. Shows how rule 1.2 works. (a) is the line before, (b) is the line after.

Rule 1.3 looks at each block 18. If pixel 218,! or 218,' is black, and covered by other block
ranges which are length of one then 218,!−1 or 218,'+1 is white. Figure 9 shows how rule is
used. Subfigure (a) is the initial state of the line. Pixel 8 is black and 13,! = 8. Pixel 8 ether
belongs to second block or third block. In the Subfigures (b) pixel 8 belongs to second block,
and in the Subfigure (c) to third block. Pixel 7 is white in both choices so pixel 7 should be
white, as shown in (d). Do note that pixel 10 being black is not requirement of rule 1.3.

???(a) ? ? ? ? ? ? ? ? ? ?2 2 1 3
0 1 2 3 4 5 6 7 8 9 10 11 12

Block 0 Block 1 Block 2 Block 3

???(b) ? ? ? ? ? ? ? ? ? ?2 2 1 3

???(c) ? ? ? ? ? ? ? ? ? ?2 2 1 3

???(d) ? ? ? ? ? ? ? ? ? ?2 2 1 3

Figure 9. Visual of rule 1.3 in action. (a) is the line before, (b) has the pixel 8 is part of block 2 length
of one, (c) has the pixel 8 be part of the block 3, (d) pixel 7 is set to white as it was white in both (b)
and (c).

Rule 1.4 line has three consecutive pixels 27−1, 27, and 27+1 where 27−1, and 27+1 are black. If
biggest block covering 27 is less than block which be created, if 27 would be black, then 27
is white. Figure 10 shows an example case of rule 1.4. Subfigure (a) is the state of the line
before rule 1.4. Block 1 has pixels 2, 4, and 5 as black in its range. In Subfigure (b) it is
tested how long the block would be if the third pixel would be black. Block would be four
pixels long which is bigger than block 1 which is a length of three. This means according to
rule 1.4 that the third pixel is white, as pixel 2 has to be part of block 0, and pixels 4 and 5
has to be part of block 1.

23

(a) ? ? ? ? ? ? ? ? ? ?1 3 1
0 1 2 3 4 5 6 7 8 9

Block 1Block 0 Block 2

(b) ? ? ? ? ? ? ? ? ? ?1 3 1

(c) ? ? ? ? ? ? ? ? ? ?1 3 1

4

Figure 10. Rule 1.4 in action. (a) is line before applying the rule. (b) shows middle step in rule 1.4
computation if pixel 3 would be black line would have block length of 4. (c) shows that after rule 1.4
pixel 3 can be deduced to be white.

Rule 1.5 handles a scenario where pixel 27 is black and there is other pixel 2E which is clos-
est white pixel left to 27 and the minimum block covering 27 is . If E ∈ {7− +1, ..., 7−1}
then ∀> ∈ {7+1, ..., E+ }

(
2> B black

)
. This also works to right side of 27 so if exists E ∈

{7+1, ..., 7+ −1} where 2E is the closest white pixel to 27 then∀> ∈ {E− , ..., 7−1}
(
2> B black

)
.

Additionally, if all the blocks covering 27 are the same length and, if black pixels next to 27
create a block of length starting at 2A ending to 24, then 2A−1 B white and 24+1 B white, if
they exist.

Idea of the Rule 1.5 is that 27 been black means it must be part of some block. Necessarily,
it is not known which block, but the nearby white pixel gives a boundary. Taking account
this boundary, leftmost and rightmost placement of the block is narrowed down. If in every
possible case block “goes over” the 27 in this narrowed down region, then pixels “going over”
which every case agrees must be black. The smallest block is used because it’s possibilities
cause the least amount of colouring. The additional colouring of pixels to white is made,
because there is ready-made block in the line.

Figure 11 shows rule 1.5 in action. Subfigure (a) is the line before the rule is applied, where
the third pixel is white and the fifth pixel is black. This pixel can be part of ether block 0
or block 1. Also, the fourth pixel could be either black or white. This causes four possible
answers round the fifth pixel. These answers are shown in Subfigures (b) to (e). Note that
the sixth pixel in every answer is black. These are the kinds of pixels rule 1.5 detects. The
resulting line is shown in Subfigure (f).

Figure 12 shows an example where the additional last step is used to colour pixels 4 and 7
to white. Block 1 and 2 lengths are two. Pixels 5 and 6 are coloured black from rule 1.5
previous steps. This means that these pixels are ether block 1 or block 2 but either way fourth
and seventh pixel can not be black or the block would be too long.

24

?

?? ???(a) ? ? ? ? ? ? ? ? ?3 4
0 1 2 3 4 5 6 7 8 9 10 11 12

Block 0 Block 1

13

?? ???(b) ? ? ? ? ? ? ? ? ?3 4

?? ???(c) ? ? ? ? ? ? ? ? ?3 4

?? ???(d) ? ? ? ? ? ? ? ? ?3 4

?? ???(e) ? ? ? ? ? ? ? ? ?3 4

?? ???(f) ? ? ? ? ? ? ? ?3 4

Figure 11. Idea behind rule 1.5 without last step of checking block lengths. (a) line before applying
rule 1.5. (b)-(e) show every possible answer round fifth pixel. (f) is line after rule 1.5.

?????

?? ?? ???(a) ? ? ? ? ? ? ?1 2 2 3
0 1 2 3 4 5 6 7 8 9 10 11 12

Block 0 Block 1

13

?? ???(b) ? ? ? ?1 2 2 3

Block 2 Block 3

Figure 12. Example of rule 1.5 last step. (a) line has initial state before rule 1.5. (b) is line after rule
1.5 is applied.

Rule 2.1* checks that block 18 range satisfies block order requirement of Equations 7 and 8.
If not block range can be refined to such state via logical formulas:

18,! ≤ 18−1,! + 18 ⇒ 18,! B 18−1,! + 18−1 +1
18,' ≥ 18+1,' − 18 ⇒ 18,' B 18+1,' − 18+1 −1.

(18)

Figure 13 shows an example of rule 2.1. In Subfigure (a) is the line before rule 2.1 is applied.
In it, block 0 has been solved to be the third pixel, because pixels 2 and 4 are marked white.
This means that block 1 can not be left of pixel 4, as it would break block order (Equation 7
and 8). Subfigure (b) is after rule 2.1 was applied. This means block 1 range is inside block
2 range. Applying rule 2.1 again moves block 2 leftmost further right as shown in Subfigure
(c).

Rule 2.2 attempts to leave space between the blocks. If the pixel before the leftmost or after
the rightmost pixel of the block range is black, then the block range can be tightened by one
pixel, because blocks have to have at least one white pixel between (Equation 7 or 8). More

*Rule 2.1 trigger is more sensitive than in [11]

25

(a) ? ? ? ? ? ? ? ? ? ?1 2 1
0 1 2 3 4 5 6 7 8 9

Block 0
Block 1 Block 2

(b) ? ? ? ? ? ? ? ? ? ?1 2 1

Block 0
Block 1

Block 2

(c) ? ? ? ? ? ? ? ? ? ?1 2 1

Block 0 Block 1
Block 2

Figure 13. Example of rule 2.1. (a) before rule 2.1 is applied. (b) is after rule 2.1 is applied once. (c)
is after rule 2.1 is applied second time.

formally rule is:
218,!−1 = black ⇒ 18,! B 18,! +1
218,'+1 = black ⇒ 18,' B 18,' −1

(19)

In Figure 14 rule 2.2 is illustrated. Subfigure (a) shows the initial situation. Subfigure (b)
shows line after the rule 2.2 was applied. Block 0 range end can be moved one to left because
pixel 7 is black, and block 0 range rightmost is the sixth pixel. Block 1 range leftmost pixel
can be moved one to the right because pixel 3 is black, and block 1 range starts at the fourth
pixel.

???(a) ? ? ? ? ? ? ?3 2
0 1 2 3 4 5 6 7 8 9

Block 0 Block 1

???(b) ? ? ? ? ? ? ?3 2

Block 1Block 0

Figure 14. Example of rule 2.2. (a) the line before. (b) the line after. Note the red arrows.

Rule 2.3 checks that block 18 range does not cover a black pixel group which is bigger than
18 on it’s left or right side. Pixel Group means pixels in the line which are the same ”colour”
(black, white, or unknown) or not that ”colour” (non-black, non-white, or non-unknown)
and are right next to each other (if 2F−1, 2F, and 2F+1 are black and 2F−1, 2F+1 are in black
pixel group &= then 27 is also in &=). Let’s define set of black pixels groups in 18’s range

as & 8 B
{
&7,8

}��& 8

��−1
7=0 where

��& 8

�� is the number of these groups. Let’s also define 2A7,8 and

26

247,8 pixels which start and end black pixel group &7,8 for 18. With these rule 2.3 formally
becomes:

0 < min
{
=|4=,8− A=,8 ≤ 18

}
⇒ 18,! B 4min

{
=|4=,8−A=,8≤18

}
−1, 8 +2

��& 8

��−1 > max
{
=|4=,8− A=,8 ≤ 18

}
⇒ 18,' B Amax

{
=|4=,8−A=,8≤18

}
+1, 8−2

(20)

Constant plus 2, and minus 2 refines block range out from group which is too large and
leaves space for a white pixel.

Figure 15 shows an example of rule 2.3. In block 1 range there are two black pixel groups.
The first one from the left is the length of three pixels. The second one has a length of one.
According to the description, block 1 is the length of two, hence the group, whose length is
three, can not be block 1. The block range is changed from Subfigure (a) to (b).

??

Block 0

3 2 1 ? ??? ????

Block 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

??3 2 1 ? ??? ????

Block 0

Block 1

Block 2

Block 2

(a)

(b)

Figure 15. Example of rule 2.3. (a) the line before the rule is applied. (b) the line after the rule is
applied.

Rule 2.4 refines block range to ready-made block. Ready-made means white pixel 2E fol-
lowed by black pixel group &1 which is followed by another white pixel 2D. Pixel group &1

must be one of the blocks in the description, as no black pixel can be added to &1 without
writing over a white pixel. (Just to be extra clear E < D∧∀2F ∈ &1 (E < F < D).) Hence, if
there is one block of length |&1 | covering pixels of &1, then that block range can be reduced
to bounds of black pixel group. If multiple such blocks are found, then rule 2.4 tries to
reduce block ranges of first such found block and last such found block. Since pixel pattern
has to be explained by some block, deduction is made that leftmost block could explain the
pattern. It cannot have any pixels more right than the pattern. For rightmost block, that could
explain the pattern, opposite holds. It cannot have pixels more left than the pattern.

Figure 16 shows an example of Rule 2.4 in both cases. In Subfigure (a) is initial setup where
there is two ready-made blocks. In Subfigures (b) and (c) these are marked by blue number
on top of the line as zero and one pixel groups. In the initial setup block ranges are almost

27

? ?

??? ? ? ? ? ?1 3 2 2
0 1 2 3 4 5 6 7 8 9

(a)
10 11 12 13 14

Block 1Block 0 Block 2 Block 3

? ? ? ? ? ???(b)

Block 1 Block 2 Block 3

1 3 2 2

? ? ? ? ? ?(c)

Block 1 Block 2 Block 3

1 3 2 2

0

0

1

1

15 16

Block 0

Block 0

Figure 16. Example of rule 2.4. (a) the line before the rule is applied. (b) the line after rule 2.4 is
applied to zeroth pixel group. (c) the line after rule 2.4 is applied to first pixel group.

in the position of which Initialization rule would give to them. In Subfigure (b) zeroth pixel
group has a three black pixels. Since there is only block 1 covering pixel group zero, which
length is 3, then block 1 is only block which could explain the pixel group 0. Hence, block 1
range is reduce to the pixel group. Rule 2.4 does not touch block 0 range since rule 2.1 would
handle this situation. Subfigure (c) show rule 2.4 applied to pixel group 1. In this case, there
are two blocks with length of two covering black pixel group of length two. Hence, block
2 right side has to be at least at pixel group 1 and block 3 left side has to be at least at pixel
group 1.

Rule 2.5 was added in the same vein as rule 2.4. Rule 2.5 calculates most leftmost position
and rightmost position of whole description of the line, taking into account white pixels. If
calculated leftmost position for a block would be higher than block range left, then update
would move border to leftmost position. If block 18 would fit between white pixels with
space to spare, then algorithm would check does block 18+1 (if it exists) fit to that spare space
accounting white pixel between the blocks. If block 18+1 does not fit, then algorithm would
be moved to right of the white pixels. Same process is also done to right to left.

Figure 17 goes through step by step of rule 2.5 for example line. In Subfigure (a) is initial
state of the line. Pixels 1, 7, and 11 are white and blocks 0, 1, and 2 are in the positions
caused by initialization rule. There is four unknown pixel groups which block can be sep-
arated by white pixels. Processing of rule 2.5 takes two passes at the line. Left-right and
then right-left. In Subfigure (b) left to right processing starts by trying to find location for
block 0. Between starts of the line and leftmost pixel is unknown pixels group of length
1. (Pixel group and its length is shown as yellow bar bottom the Subfigure (b).) Length of
block 0 is one hence block 0 can fit in that group. Since block 0 range left end starts at that
pixel, no refined is made. Processing moves on from this to block 1 and pixel 2. In Subfigure

28

(c) same test as Subfigure (b) is made. Block 1 fits the unknown pixel (marked in yellow
is the location and size). This time there is empty space after block 1 leftmost fit. Hence,
in the Subfigure (d) block 2 is tested on that remaining space. After taking account the one
white space needed to separate the blocks, Block 2 fits in the remaining space. This does not
refine any block range as both block 2 and 3 leftmost location possible is the same as block
ranges leftmost end. After this there is no more remaining space but also there is no more
blocks to handle so left to right pass concludes. Right to left pass does refine block ranges.
In Subfigure (e), on the right, there is a unknown pixel group of length one. However, block
3 in processing cannot fit in to that space. Hence, block 3 range is refined left to the white
pixel (Subfigure (f)). Test is again made and, as shown in the Subfigure (g), this time block 3
does fit in the space. There is some remaining space left of the fit location but taking account
for white pixel between the blocks this space is zero pixels. Zero pixel space is marked in
Subfigure (h). Since block 2 cannot fit with block 3, its rightmost edge has to be on the next
unknown pixel group. This means Block 1 range can be refined, as it is still in the righter
pixel group (seen in the Subfigure (i)). In Subfigure (j) it is shown that block 0 and 1 can
share the next unknown pixel group (pixels 2 to 6). However, the block 0 calculated right-
most position is more left than block 0 range rightmost. Hence, as shown in Subfigure (k),
block 0 range is refined.

Rule 2.5 does also have nice feature of reducing block range if range’s end is at white pixel
because rule 2.5 calculates leftmost or rightmost position of the block. This is expressed as
equations for later use: (

218,! = white
)
⇒ 18,! B 18,! +1(

218,' = white
)
⇒ 18,' B 18,' −1

(21)

Rule 3.1 deals with black pixels which are covert only by one block range (18), and have
unknown pixel between them. This causes unknown pixels to be black and to 18 range
update when more of the block is known. First black pixel after 18−1,' is 2< and last black
pixel before 18+1,! is 2; then:

∀> ∈ {<+1, ...,;−1}
(
2> B black

)
18,! B ;+1− 18
18,' B <−1+ 18

(22)

Figure 18 shows rule 3.1 in action on a line where block 1 can be refined. Pixels 4 and 6
are black and are only inside block 1 range. Pixel 5 has to be black since otherwise block 1
would be violate Equation 3, or 4. Block 1 range can be refined as pixel 2 or 8 being black
and belonging to block 1 would make block 1 too long.

29

?

?

?? ??? ? ? ? ? ?1 2 2
0 1 2 3 4 5 6 7 8 9

(a)
10 11 12

Block 1Block 0 Block 2

? ??? ? ? ? ? ?1 2 2(b)

? ??? ? ? ? ? ?1 2 2(c)

? ???? ? ? ? ? ?1 2 2(d)

1

1

2

2 2

?? ??? ? ? ? ? ?1 2 2(e)
1
?? ??? ? ? ? ? ?1 2 2(f)

Block 1Block 0
Block 2

?? ??? ? ? ? ? ?1 2 2(g)

Block 1Block 0 Block 2

2

?? ??? ? ? ? ? ?1 2 2(h)
20

?? ??? ? ? ? ? ?1 2 2(i)

Block 1Block 0 Block 2

?? ??? ? ? ? ? ?1 2 2(k)

?? ??? ? ? ? ? ?1 2 2(j)
2

Figure 17. Example or rule 2.5 passing a line from left to right and then right to left. (a) In the
initial state of the line. (b) is the test for placing block 0 to the left. (c) is test to place block 1 to
the left most position. (d) is test to place block 2 to leftmost position. (e) is test to place block 2 to
rightmost position. (f) block 2 range is refined to left as test failed. (g) is the test to place block 2 to
new rightmost position which succeeds. (h) is test to place block 1 to rightmost position. (i) is block
1 range refined after test fails. (j) is the test to place block 1 and 0 to same unknown pixel group. (h)
is refined of block 0 range which results.

30

? ??? ?? ???(a) ? ? ? ? ?1 4 3
0 1 2 3 4 5 6 7 8 9 10 11 12

Block 0 Block 1

13

Block 2

? ??? ?? ???(b) ? ? ? ? ?1 4 3

Block 0 Block 2Block 1

Figure 18. Example of rule 3.1. (a) the line before the rule is applied. (b) line after rule 3.1.

Rule 3.2 solves somewhat opposite of rule 3.1. If in the block 18 range is white pixels, then
non-white pixels between white pixels can be grouped to finite sequence & B {&7} |& |−1

7=0
where |& | is number of these groups in 18 range. If a group which is at the side of block
18 range is less than block length, it can be removed from the range. This can be done for
the block’s range left and right end separately. From the left or the right, range refining is
stopped when a non-white pixel group, in which 18 fits, is found. If no group is found, then
line is unsolvable. Block 18 range refining does not have to end from the left or the right to
the same non-white pixel group. This can mean that there is non-white pixel groups in the
middle of the two groups which are too small for block 18. If these groups have pixels that
are just in block 18 range, then pixels has to be white as no block can utilize them.

The algorithm for rule 3.2 is shown in Algorithm 4. Remainder, that in the input and output
18 means the whole block but in the arithmetic operation it means length of the block. The
Algorithm starts by iterating the non-white pixel group & from the left. After that, iteration
is done from the right. Finally, (starting from step 15) groups in the middle are checked.

Figure 19 is an example of rule 3.2. In the Subfigure, a line is in the state where non-white
pixel groups 1 and 5 are in block 1 range. Block 1 has a length of 3. Non-white pixel group
1 is one pixel and 5 two pixels. Block 1 can not fit into non-white pixel groups 1 and 5 so
according to rule 3.2 block range can be reduced from both ends to the start of non-white
group 2 and start of non-white group 4. Checking does block 2 fit into group 2 or group 4,
the algorithm notices that block 1 fits into both, hence block 1 range reduction portion of rule
3.2 is done. Non-white pixel group 3 haves a length of 1 pixel. Since no other block range
covers the group and block 1 would not fit into the group, it can be deduced to be white.

Rule 3.3 has three sub-cases for situation where block 18 range does not overlap with 18−1 or
18+1 range. Sub cases are explained for 18−1 range does not overlap with 18 range, but sym-
metry applies, and rules work for 18+1 range not overlapping long as directions are reversed.

31

Algorithm 4 Rule 3.2

Input: Line of pixels 27, line length <, block 18, finite sequence of non-white pixel groups &.

Output: New Line of pixels 27, and refined block 18.

1. Set 7! B 0 ; Variable 7! iterates & from the left to right

2. If
��&7!

�� ≥ 18 go to 6 ; Try to find group which in 18 fits

3. Set 7! B 7! +1 ; Increment the iterator

4. If 7! = |& | then stop ; Error as block 18 can not be fitted anywhere

5. Go to 2 ; Run other iteration of a loop

6. Find pixel 2A which is first pixel from left in &7!

7. Set 18,! B A ; Removes left side groups too small for the block

8. Set 7' B |& | −1 ; Variable 7' iterates & from right to left

9. If
��&7'

�� ≥ 18 or 7' = 7! go to 12. ; Try to find group which in 18 fits before &7!

10. Set 7@ B 7@ −1 ; Decrement the iterator

11. Go to 9. ; Run other iteration of the loop

12. Find pixel 24 which is last pixel from left in &7'

13. Set 18,' B 4 ; Removes right side groups too small for the block

14. If 7! = 7' stop ; No non-white groups middle of &7! and &7' to handle

15. Set 7" B 7: +1 ; Variable 7" iterates groups middle of &7! and &7' left to right

16. If
��&7"

�� ≥ 18 go to 19 ; Jump over since group is big enough for 18

17. For all pixels 2> in &7" ; Colour were pixel 2> is not in other block range

18. if 18−1,' < > < 18+1,! set 2> B white

19. Set 7" B 7" +1 ; Increment the iterator

20. If 7" < 7' go to 16 Loop until 7" gets to most right group which 18 fits

Rule 3.3-1 is for situation when leftmost pixel of the block 18 range is black and block left

32

?

? ???????? ? ???? ? ???(a) ? ? ?2 3 2

0 1 2 3 4 5 6

Block 0 Block 1 Block 2

???????? ? ???? ? ???(b) ? ? ?2 3 2

Block 0 Block 1 Block 2

Figure 19. Example of rule 3.2. (a) the line before the rule. (b) the line after the rule. Note the red
markers.

of 18 and 18 do not overlap. Following applies in this situation:

∀> ∈
{
18,! +1, ..., 18,! + 18−1

} (
2> B black

)
18,' B 18,! + 18−1
18,' −1 ≥ 18+1,! ⇒ 18+1,! B 18+1,' +2
18−1,' = 18,: −1 ⇒ 18−1,' B 18,!−2
218,!−1 B white
218,!+18 B white.

(23)

Figure 20 shows how rule 3.3-1 works. Subfigure (a) is before rule 3.3-1 was used. Subfigure
(b) is the line after Equation 23’s black pixel colouring. Pixels 7 and 8 can be coloured black
as the leftmost pixel in block 1 range is black meaning the rest of the pixels in the block
must be right of it. Subfigure (c) has range updates of the blocks according to Equation 23.
As block 1 pixels are known, block 1 range is updated to those pixels meaning that 11,! is
reduced as 11,' is already in place. Since block 2 range overlaps with new block 2 range,
12,' can be moved right leaving space for a white pixel. Block 0 range is also updated to
put space for a white pixel. The finally sentences in Equation 23 marks pixels 5 and 9 to be
white as they are not in any block range.

Rule 3.3-2 is case where additionally there is black pixel 29 which is then followed by white
pixel 2E (9 < E) in 18’s range. The deduction here is that 18 should not need to reach the other
side of the white pixel, since 29 is either part of it or 18+1. As 18−1 does not overlap with 18 it
can be ignored to have anything to do with 29. Blocks have to be in order (Equations 7 and
8) so 18,' = E−1.

Figure 21 shows practical example of the rule. Subfigure (a) is a line before rule 3.3-2 was
applied. The line’s zeroth block is solved making block 0 range and 1 range not overlap.
Pixel 9 (black) and pixel 12 (white) are covered of block 1 range and block 2 range. No
deduction can be made to tell, if pixel 9 is part of block 1 or 2. However, with rule 3.3-2

33

??? ???? ? ?? ???(a) ? ? ? ?4 3 4
0 1 2 3 4 5 6 7 8 9 10 11 12

Block 0 Block 1

13

Block 2

14 15 16

?? ???? ? ?? ???(b) ? ? ? ? ?4 3 4

?? ???? ? ?? ???(c) ? ? ? ? ?4 3 4

Block 0 Block 1 Block 2

?? ???? ? ?? ???(d) ? ? ? ? ?4 3 4

Block 0 Block 1 Block 2

Block 0 Block 1 Block 2

Figure 20. Example of rule 3.3-1. (a) the line before the rule. (b) first part colouring additional black
pixels. (c) updating block ranges. (d) marking pixels outside of ranges to white.

deduction can be made because the order of blocks. If pixel 9 is part of block 2, then block
1 range right side (11,') has to be less than 9. On the other hand, if pixel 9 is part of block
1 then pixel 11 is the rightmost pixel possible for block 1. Otherwise, block 1 would have
white pixel in the middle of it, cutting it to two blocks. According to rule 3.3-2 block 1 range
rightmost side is reduced to pixel 11.

???? ??? ???? ?? ???(a) ? ? ?2 4 3
0 1 2 3 4 5 6 7 8 9 10 11 12

Block 0 Block 1

13

Block 2

14 15 16 17 18

???? ??? ???? ?? ???(b) ? ? ?2 4 3

Block 0 Block 1 Block 2

Figure 21. Example of rule 3.3-2. (a) is the line before. (b) is the line after rule 3.3-2 was applied.

Rule 3.3-3 checks that if there is black pixel groups (& B {&7} |& |−1
7=0) in the 18 range so that

they are not too far away from each other to make block 18 with correct length. Block 18

range can be reduced if groups are too far from each other.

Algorithm 5 shows how rule 3.3-3 is done. Figure 22 shows how rule 3.3-3 works. Rule
3.3-3 is applied to block 1 in the example. Subfigure (a) is a line before rule 3.3-3 is applied
to the line. Block 1 does not overlap with block 0 and several pixels are known to be black.
In Block 1 range there is three black pixel groups. Black pixel 4 is indexed as group 0.
Pixel 6 is black indexed as group 1. Pixels 9 and 10 are black and are indexed as group
2. Pixel 1 (black) is not indexed as it is not in block 1 range. In block 1 range are black

34

Algorithm 5 Rule 3.3-3

Input: Line of pixels 27, line length <, block 18, finite sequence black pixel groups &.

Output: Refined block 18.

1. Find the first black pixel 25 in &0 ; Variable 5 tells where block starts

2. Set 7 B 1 ; Variable 7 is iterator for &

3. If 7 = |& | stop ; Stopping here means that everything fits to 18

4. Find first black pixel 2= and last black pixel 2C in &7

5. If C− 5 +1 > 18 go to 8 ; Check that 18 is too short to be between &0 and &;

6. Set 7 B 7+1 ; Increment the iterator

7. Go to 3 ; Make another iteration

8. Set 18,' B =−2 ; update the 18 range to remove groups which make 18 too long

pixel groups which are visible in Subfigure (b) and (c) as blue numbers on top of the line.
Algorithm 5 starts with finding the first pixel of black pixel group 0 in block 1 range. This
is pixel 4, hence 5 = 4. Then the algorithm sets variable 7 to 1. The next steps find the first
and last black pixel of &7 (that is group 1). Both the first and last pixel is pixel 6 (= = C = 6).
Subfigure (b) shows the next step. The step is to check that number of black pixels for block
1, if unknown pixels between the black pixel groups would be black, is lower than length of
block 1 (12). With current values C− 5 +1 = 6−4+1 = 3 which is less than blocks 1 length of
4. This means that the algorithm’s “go to” does not happen. Rather, 7 is incremented to 2 and
algorithm jumps back to stopping check 3. Stopping check makes sure that the algorithm
stops if all black pixels groups in block 1 range are processed. If there are still unprocessed
black pixel groups, new 7 value is used to search the first and last black pixel of the group
7. First black pixel is 9 (= = 9) and last black pixel is 10 (C = 10). The length check is done
again illustrated by Subfigure (c). This time C− 5 + 1 = 10− 4 + 1 = 7 which is more than
length of block 1 (11 = 4). Hence, go to of step 5 does happen. The algorithm jumps to block
1 range refining (step 8). As block 2 would be too large if pixels 9 and 10 are part of the
block, right side 11,' can be reduced to omit pixels 9 and 10. To do this, and count for a white
pixel to separate block 1 from block 2, first pixel 2= of the group 7 is used as a reference point
and two is reduced to make space for a white pixel. The finished line is shown at Subfigure
(d) with red arrows indicating range reduction.

35

???? ? ?? ?? ???(a) ? ? ?2 4 3
0 1 2 3 4 5 6 7 8 9 10 11 12

Block 0 Block 1

13

Block 2

14

???? ? ?? ?? ???(b) ? ? ?2 4 3
0 1 2

3

???? ? ?? ?? ???(c) ? ? ?2 4 3
0 1 2

7

???? ? ?? ?? ???(d) ? ? ?2 4 3

Block 0 Block 1 Block 2

Figure 22. Example of rule 3.3-3. (a) the line before (b) first length check between groups (c) second
length check between groups (d) line after the rule is applied.

3.2 Partial solver implementation detail

Implemented partial solver Algorithm 6 is similar to Algorithm 2 at start of Chapter 3. First
loop initializes block ranges according to Equation 16 then applies rule 0.0 since it is only
needed to be run once. Finally, first loop runs rule 1.1 to get some possible initial black pixel
to the solution. Set � is the set of logical rules excluding initialization and rule 0.0

� =
{
@C:41.1@C:41.1@C:41.1,@C:41.2@C:41.2@C:41.2,@C:41.3@C:41.3@C:41.3,@C:41.4@C:41.4@C:41.4,@C:41.5@C:41.5@C:41.5,@C:42.1@C:42.1@C:42.1

,@C:42.2@C:42.2@C:42.2,@C:42.3@C:42.3@C:42.3,@C:42.4@C:42.4@C:42.4,@C:42.5@C:42.5@C:42.5,@C:43.1@C:43.1@C:43.1,@C:43.2@C:43.2@C:43.2,@C:43.3@C:43.3@C:43.3
}
. (24)

Rule implementations take in partial solution and the line, and return tuple(), 4,C)where)
is the possible updated partial solution, 4 is a boolean to indicate error, and C for number of
updates rule performed. Update counter adds up all updates done in one “do-while” loop. By
resetting the update counter every “do-while” loop, “do-while” is stopped when no update is
made by any rule in �.

There are two hypothetical problems which have to be addressed. First problem is that some
rule is recolouring a pixel. This is addressed by error detection. Second problem is block
ranges swapping. This is addressed with function #=<=�ℎ429�:=29'0<64(E0>#=<=�ℎ429�:=29'0<64(E0>#=<=�ℎ429�:=29'0<64(E0>.

There is a possibility, that at the crossings of two lines, the rule applied from the other
directing causes recolouring. Forced example of this is show in Figure 23. Nonogram is first
empty as shown in Subfigure (a). Subfigure (b) is after Algorithms 6 initialization (steps 2
to 8) for columns. Since zeroth and second column are static lines and first column is zero,
the whole nonogram is coloured. Now in Subfigure (c) Rule 1.1 is applied to the lowest row.

36

Algorithm 6 NonoPartialSolver

Input: Nonogram #

Output: Pair proposed partial solution and a boolean indicating an error (), 4)

1. Allocate proposed partial solution) for #

2. for each row and column :7<4 in #

3. (), 4,C) B 1:=29A'0<64�<7B1:=29A'0<64�<7B1:=29A'0<64�<7B (:7<4,))

4. if 4 is true return (), 4) ; Initialization rule at Equation 16

5. (), 4,C) B @C:40.0@C:40.0@C:40.0 (:7<4,))

6. if 4 is true return (), 4) ; This only needs to be done once

7. (), 4,C) B @C:41.1@C:41.1@C:41.1 (:7<4,)) ; To get possible initial pixels

8. if 4 is truereturn (), 4)

9. do

10. C>30B4B 0

11. for each row and column :7<4 in #

12. for each @C:4@C:4@C:4 ∈ � ; Rules returns amount updates it did

13. (), 4,C) B @C:4@C:4@C:4 (:7<4,))

14. if 4 is true then return T,e ; Something was recoloured

15. C>30B4B C+C>30B4

16. while C>30B4 > 0 ; If updates were done go for another round

17. if #=<=�ℎ429�:=29'0<64(E0>#=<=�ℎ429�:=29'0<64(E0>#=<=�ℎ429�:=29'0<64(E0> ()) is true

18. return (),true) ; Error check for block range swap

19. return (), 4)

This would recolour the middle pixel to black. This goes against first column to be all white.
There is conflict on what value pixel marked red should be.

Since recolouring is an error, rules which colour pixel are given the ability to detect this.
Hence, it is assumed that output from partial solver does not have this.

An other error that hypothetically can happen is one in which block range swaps. Block

37

?

?

?

2
2

05

3
1 1
1
1 1
1 1

?

?

?

?

?

?

?

?

?

?

?

?

(a)

2
2

05

3
1 1
1
1 1
1 1

(b)

2
2

05

3
1 1
1
1 1
1 1

(c)

Figure 23. Example of recolouring. (a) Example nonogram empty. (b) example nonogram after
columns where initialized. (c) lowest row has to repainted a pixel (marked red) white to black.

range swap means that 18,' < 18,! for some block 18. However, because rules 1.1 and 1.2, it
is not clear, if this can ever happen without recolouring. On the other hand, hypothetically
rule 2.1 can reduce block ranges a lot. To get rule 2.1 trigger condition is hard to imagine,
and does not guarantee recolouring would not happen later. Regardless, it is a clear violation
of Equations 3 or 4. It could be proven that recolouring does handle block range error but
for time limitations/scope simple algorithm for checking partial solution was added instead.
This is shown as Algorithm 7. Algorithm goes through every block checking that no swap
has happened.

Algorithm 7 NonoCheckBlockRangeSwap

Input: Nonogram # , Proposed Partial solution)

Output: true if there is block’s range swap, false if there is not.

1. for each row and column :7<4 in)

2. for each block 18 in :7<4

3. if 18,! > 18,' ; check for swap

4. return true ; swap was found

5. return false

While testing the partial solver (Algorithm 6) on known one solution nonograms, it was no-
ticed that lines with the description and state (colour configuration and block ranges) shown
in Figure 24 could not be deduced further, even thought deduction does exist. Subfigure
(a) is state of the line before deduction. Block ranges overlap with each other rather much.
From the pixels, which have known values, deduction can be made, that pixel 20 belongs
ether block 2 or 3. Deduction that can be made here, is that leftmost pixel of block 3 can

38

only be pixel 20 as the block 4, the size of which is 2, can not fit with pixel 20. Hence, block
3 cannot be further left, and if pixel 20 belongs to block 2, then pixel 22 or 23 belongs block
3. After block 3 range is reduced, block 4 range is also reduced by rule 2.1 to pixel 22. This
state is shown as Subfigure (b).

Further deduction can be made by pixel 13 being black. If Block 2 range rightmost is less
than 13, then no block explains pixel 13 being black. Hence, Block 2 leftmost has to be pixel
13. This is show as Subfigure (c).

No rule makes deduction for block 3 range reduction. Rule 2.4 can deduce block 3 and 4
order but reducing block 2 range to be right of pixel 9 does not happen. Block ranges overlap
just fine to not trigger rule 2.1. Rule 2.2 does not trigger, because block 3 covers the only
black pixels. Rule 2.3 triggers only if black pixel group is bigger than block itself, which
is not case here for any black pixel group. Rule 2.5 does not trigger, as there is plenty of
space for leftmost arrangement. Pixel 20 is covered by three block ranges, so rule 3.1 does
not trigger. Rule 3.2 does not trigger as it only looks at one block at the time and does not
understand block order, and rules 3.3 need non-overlapping block ranges, which do not exist
in the line. Rule for this deduction is not programmed as it is too much out of scope of the
Thesis.

??????????????????

??????????????????

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Block 0

(a)

??????????????????

Block 0 Block 1 Block 2 Block 3 Block 4

(b)

?????????????????

(c)

(d)

Block 3 Block 4

3 2 1 1 2
Block 0 Block 1 Block 2 Block 3 Block 4

3 2 1 1 2

3 2 1 1 2

3 2 1 1 2

Block 1 Block 2

Figure 24. Deduction which rules did not make. (a) is state of the line before deduction. (b) is
deduction of block ranges. (c) is final deduction of black pixel.

39

4 PARTIAL SOLUTION POST-PROCESSING

After partial solver has run, Algorithm 1 process more information out of the results. These
steps are verification of the result, and finding possible switching components if result was
partial solution. Verification Algorithm 9 in Section 4.1 is used. This algorithm is build on
top of NONOGRAM’s solution verifier.

Internals of Subalgorithm �7<3(E7B2ℎ7<6�=;>=<4<B�7<3(E7B2ℎ7<6�=;>=<4<B�7<3(E7B2ℎ7<6�=;>=<4<B are shown in Algorithm 8. It is made
of two parts. Algorithm which produces an unknown pixel graph (Algorithm 11) and Al-
gorithm to “find the connected components of a graph” (�7<3�@0>ℎ�=;>=<4<BA�7<3�@0>ℎ�=;>=<4<BA�7<3�@0>ℎ�=;>=<4<BA). Idea is
to make a graph where each vertex is an unknown pixel of the Partial solution) such that
unknown pixels, which directly effect each others colours have an edge between them. Since
switching components by definition do not affect each other, then switching components are
components of the unknown pixel graph. Set of switching components (is then internally
a set of components of an unknown pixel graph.

More on unknown pixel graph in Section 4.2. Function �7<3�@0>ℎ�=;>=<4<BA�7<3�@0>ℎ�=;>=<4<BA�7<3�@0>ℎ�=;>=<4<BA is not pre-
sented in this Thesis as it is well known algorithm from literature. In [16] is explanation of
it and proof that complexity of algorithm is$$$ (;0F;0F;0F (|+ | , |�|)).

Algorithm 8 FindSwitchingComponent

Input: Nonogram # , Solution)

Output: Set of switching components (.

1. (+, �) B #=<=%@=3C24%7F4:�@0>ℎ#=<=%@=3C24%7F4:�@0>ℎ#=<=%@=3C24%7F4:�@0>ℎ (#,)) ; Algorithm 11

2. (B �7<3�@0>ℎ�=;>=<4<BA�7<3�@0>ℎ�=;>=<4<BA�7<3�@0>ℎ�=;>=<4<BA ((+, �)) Algorithm from [16]

3. return (

4.1 Partial solution verification

Since NONOGRAM is a NPNPNP problem, for it exists a polynomial time solution verifier. This
algorithm can be determent from the Equations 1 to 14. However, solution verifier does
not handle unknown pixels as it is designed for checking full solution of given nonogram.
Algorithm 9 add navy handling of unknown pixels to verifier. Point is to identify if partial

40

solver produces a partial solution, a solution, or that nonogram cannot have any solution.
Algorithm 9 takes in a nonogram # and proposed partial solution) . Output is enumerator
value on partial solution, a solution, or no solution possibilities.

Algorithm 9 starts with variable D0:C4 set to isSolution. Value of the variable will be
returned to the caller of the Algorithm at the end. It’s value may change to indicate a partial
solution if unknown pixels is found (steps 8 and 15). If line has unknown pixel, then
processing of that line is stopped.

Since Equations 1 to 14 are per line Algorithm 9 also can just look at one line at the time.
Hence, step 2 starts “for each” loop per line in # and) . Meaning of “in # and)” is just
because information of the line is divided between # and) . So “for each” iteration variable
line hold information from both # (description for that particular line) and) (pixels and
block ranges for that particular line).

There is two inner loops in the “for each” loop for lines. First one of these checks per block
line has first white pixels and then block amount of black pixels. Second inner loop checks
that after blocks have been found there is only white pixels (as Equations 13 and 14 want).
Pixels which are unknown, are not accepted in the second inner loop since there should
not be a block for black pixels and something like rule 1.2 should colour these pixels white
anyway.

First loop has two inner inner loops. First inner inner loop (steps between 5 to 10) moves
the F over white pixels left of block 18. This includes white pixels before first block (as
Equations 1 and 2 want) and white pixels between the blocks (as Equations 11 and 12 want).
When black is found at first inner inner loop processing is moved to second inner inner loop.
Second inner inner loop checks that block amount of black pixels exist. This is requirement
of Equations 3 and 4. Check is done by counting number of black pixels to variable 2=C<B
until white pixels is found. When white pixel is found processing is moved on a step 19
which checks that block amount of black pixels was counted.

Example how this rejects in valid proposed partial solutions. Algorithm 9 indexes pixels in
the line with variable F which is used in both inner loops. In the first inner loop if it happens
that descriptions first blocks take too much space (by leaving too much empty space between
them) then variable F will hit length of the line (:7<4.:4<6Bℎ). This causes inner inner loops
not to run which means that when current block or next block is in processing counting for
that block does not happen. This then causes step 19 return isInvalid.

Other interesting example is zero description. In this case, the first inner inner loop incre-

41

ments F to :7<4.:4<6Bℎ. This causes second inner inner loop to be jumped over but because
variable 2=C<B was set to zero check at step 19 does not trigger processing continues to next
line.

Algorithm 9 could be improved. Currently, block’s ranges are not considered at all. If
Algorithm 9 would consider block range fully coloured blocks which are after unknown
pixels could be checked. For our purposes however, Algorithm 9 is enough.

42

Algorithm 9 NonoVerifier

Input: Nonogram # , proposed partial solution)

Output: answer is) is a solution, partial solution, or not valid.

1. D0:C4B isSolution

2. for each row and column :7<4 in # and)

3. F B 0 ; line’s pixel index

4. for each block 1 in the :7<4.34A2@7>B7=<

5. while F < :7<4.:4<6Bℎ ; go through white pixels between black pixels

6. if 2F for :7<4 is black then break ; start of a block found so go to next loop

7. else if 2F for :7<4 is unknown

8. D0:C4B isPartialSolution ; mark solution as partial

9. continue at step 2 ; line is not fully coloured so go to next line

10. F B F+1

11. 2=C<B B 0

12. while F < :7<4.:4<6Bℎ

13. if 2F of :7<4 is black then 2=C<B B 2=C<B+1 ; counting black pixels

14. else if 2F of :7<4 is unknown

15. D0:C4B isPartialSolution

16. continue at step 2 ; mark solution as partial

17. else break ; white pixel so stop counting

18. F B F+1

19. if 2=C<B ≠ 1 then return isInvalid ; count must equal block length

20. while F < :7<4.:4<6Bℎ ; check for end is only white pixels.

21. if 2F of :7<4 is black or unknown

22. return isInvalid ; remaining pixels should be expected to be white

23. F B F+1

24. return D0:C4

43

4.2 Unknown pixel graph

To represent switching components in the algorithms graph is used. This is because switch-
ing component can be very few unknown pixels from the total amount of pixels. In the lit-
erature [2] presented dependency graph for solving nonograms. Dependency graph is build
via constructing 2SAT clauses from partial solution. These clauses are constructed by not-
ing that if certain pixel is coloured it may imply other unknown pixels are coloured. These
implications can be represented by a graph. Figure 25 shows example of this type of graph
made from nonogram in Figure 4. In side of the node >7,8 means statement: “pixel at column
7 and row 8 is black”. Negation of it means: “pixel at column 7 and row 8 is white”. If in
the graph exists path from >7,8 to ¬>7,8 then choosing a black colour for pixel would lead to
contradiction and no valid solution for the instance. Implication other way works as well. In
Figure 25 implications go both directions however this does not need to happen.

p0,0

¬p0,0

p0,1

¬p0,1

p1,0

¬p1,0

p1,1

¬p1,1

Figure 25. Dependency graph of ESC

Problem with dependency graph are:

• it does not handle block ranges at all,

• deriving 2SAT clauses in general is hard,

• having two vertexes per unknown pixel is excessive.

Better graph is to have unknown pixels connected to its nearest unknown pixels in the line.
Additional information can put in to edges of the graph to speed up processing of getting
the type information. Types of switching components are then dictated by how graph is
structures and the additional information on the edges.

Reason edges are created along the lines of the nonogram is because nonograms validity
equations (Equations 1 to 14) look at pixel along the lines. This means any consequence
that comes from colouring a pixel are felt at the line as well. This is why it is possible to

44

get separate switching components be top of each other. In figure 26 is and example of two
switching component top of each other. In the “middle” is unknown pixels 23,3, 27,7, 23,7,
and 27,3 form a switching component (an ESC to be exact). Outer edge and centre pixel
is separate from the switching component of unknown pixels 21,1, 25,1, 29,1, 21,5, 21,9, 25,5,
25,9, 29,5, and 29,9. This can be seen if one enumerated all 12 solutions for this nonogram.
Switching component finding algorithm can separate these out when it creates edges along
the lines.

?

?

?

?

? ?

? ?

? ?

? ? ?

1 3 3 1

1 3 3 1
1 1 1

1 1 1

2 4 2

2 4 2
1 3 3 1

1 3 3 1

1 1 1
1 1 1 1 1 1

1 1 1 1 1 1

1
3
3
1

1
1
1

1
1
1

2
4
2

2
4
2

1
1
1
1
1
1

1
1
1
1
1
1

1
1
1

1
3
3
1

1
3
3
1

1
3
3
1

Figure 26. Example of switching component overlapping with other switching component.

There is a state where even when unknown pixels along the line should not have edge be-
tween them. Back at 1 Figure 4 showed such a case. If unknown pixels 2F0, G0 and 2F1, G0 are
next in line, but they are covered by different blocks which do not overlap in block ranges,
then colouring one of them does not cause colour of other (unless there is an other unknown
pixel which through implication comes).

Figure 27 shows example case where edge should not be created between unknown pixels.
Subfigure (a) gives initial state. There is two unknown pixels 2F0, G0 and 2F0, G1 . There is two
blocks 180 covering 2F0, G0 and 180+1 covering 2F0, G1 . Blocks do not overlap. In Subfigure (b)
is a case when unknown pixel 2F0, G0 is coloured black. Immediate result of this is shown
in Subfigure (c). Other unknown pixel left of the 2F0, G0 will be coloured to black or white
depend upon length of the block 180 . Pixel 2F0, G1 will not be effected. In Subfigure (d)

45

unknown pixel 2F0, G0 is coloured to white. In Subfigure (e) result of this is shown. Block 180
range is refined to left and depend upon length of 180 other unknown pixel left of is coloured
ether black or white. Nothing happens to colour of 2F0, G1 . In Subfigure (f) unknown pixel
2F0, G1 is coloured white. Result of this, shown in Subfigure (g), is that block 180+1 is refined
out of the segment of the line we are looking at. Nothing happens to unknown pixel 2F0, G0 .
In Subfigure (h) unknown pixel 2F0, G1 is coloured to black. In Subfigure (i) is the results.
Since block 180+1 is only block which can explain black pixel 2F0, G1 , block 180+1 is reduce to
it. Nothing is done for unknown pixel 2F0, G0 .

?

?

??

Block Block

??

Block Block Block Block

??

Block Block Block

(a)

(b)

(c)

(f)

(g)

??

Block Block

(d) ??

Block Block

(h)

?

Block Block

(e) ??

Block Block

(i)

Figure 27. Example where two unknown pixels do not effect each other. (a) is initial state of the line
segment. (b) is state after colouring 2F0 , G0 to black. Subfigure (c) is consequence of colouring 2F0 , G0

to black. (d) is state after colouring 2F0 , G0 to white. Subfigure (e) is consequence of colouring 2F0 , G0

to white. (f) is state after colouring 2F0 , G1 to white. (g) is consequence of colouring 2F0 , G1 to white.
Subfigure (h) is state after colouring 2F0 , G1 to black. (i) is consequence of colouring 2F0 , G1 to black.

Additional information to edges should tell about pixels between the unknown pixels. These
edges can be typed to four categories. Edge type is referred to as an edge state since there
is simple state machine to deduce correct one. Figure 28 shows state diagram of those
states. When leaving, unknown pixel (:0ABC<9<=E<) starting state is nextto meaning next
unknown pixel is right next to last one. If next pixel read is white, then state is changed to
fullwhite. This state correspondence to edge which all the in between pixels are white.
If next pixel read from nextto is black, then state is changed to fullblack which cor-
respondence to edge which in between pixels are all black. State in both fullwhite and
fullblack keeps the state on itself if pixel continues to be same colour but if colour changes
then state is changed to mix. State mix means there is mixture of black and white pixels in
the between. If following pixels are black or white state mix will keep itself on that state.
From every state (nextto, fullwhite, fullblack, and mix) if next pixel is an unknown
pixel which means new vertex in the unknown pixel graph then type of the edge is the last

46

state the machine was in.

Start from
unknown pixel

nextto

full
black

full
white mix

New unknown
pixel

white

black

unknown

unknown

unknown

unknown

white

black

white

black

black/white

Figure 28. Edge state diagram.

These four where selected because each of them does have an implication cross the edge.
Figures 29, 30, 31, and 32 show example of each edge in line segment and implication of
colouring the unknown pixel groups of the edge.

Figure 29 shows how nextto edge works. Subfigure (a) is a segment of line relevant to
implication. No other block covers unknown pixel groups &C! or &C' . Subfigures (b), (c),
and (d) show how implication works if &C! is coloured black. Subfigures (e), (f), and (g)
show same implication steps if &C' is coloured black. In Subfigure (b) and (e) respected
groups are coloured. In Subfigures (c) and (f) block 180 range is reduced to only cover the
black pixel group. Reasoning for this is that avoid violations of 3 and 4 or application of
Rules 3.3-1 and/or 2.4. Subfigures (d) and (g) shows colouring of the unknown pixel group
left outside of block range to white as what is pixel are not covered by any block (Equations
11 and 12 or rule 1.2).

Figure 30 shows a fullblack edge with colouring example. In Subfigure (a) is the relevant
segment’s initialize state on the line. Block 180 has length of 11 pixels and it covers whole
segment of the line. In the top of each Subfigure is markings for each pixel group in yellow.
No other block covers unknown pixel groups &C! or &C' . Subfigure (b) and (c) show im-
plication where unknown pixel group is coloured black. In Subfigure (b) unknown pixel
group &C! is coloured black and block 180 range is reduced to cover only 11 black pixels to
avoid violations of 3 and 4 or by rule 3.3-1 and/or 2.4. In Subfigure (c) rule 1.2 is applied
to the line colouring &C' to white. Subfigures (d) and (e) show implication when unknown
pixel group &C! is coloured white. Subfigure (d) shows the colouring of &C! and block 180
range reduction done by rules 2.5. Subfigure (e) is colouring of &C! to black by rule 3.3-1.

47

??? ???? ?

Block of length 4

Block

(a)

(b) ??? ?

(c) ??? ?

Block

Block

(e) ??? ?

(f) ??? ?

Block

(d)

Block

(g)

Block

Figure 29. Shows an example of nextto where block is length of 4. (a) is initial state of segment
of line. Subfigures (b), (c), and (d) shows implication step by step if &C! is coloured black and
Subfigures (e), (f), and (g) shows implication step by step if &C' is coloured black.

Figure 31 show example of fullwhite edge and the deduction when colouring &C! to black.
Subfigure (a) is the initial state of the relevant segment of line. Subfigure (b) colouring of
&C! to black is shown. Subfigure (c) is the reduction of the block 180 range to black pixels
by rule 3.3-1 (Equation 23) which form the block 180 . Subfigure (d) is the colouring of the
pixel group &C' to white as it is no longer covered by any block range (Rule 1.2).

Figure 32 show a mix edge of length 4 and a consequence when &C' is coloured black. In
Subfigure (a) is the initial state before colouring &C' black. No other block covers unknown
pixel groups &C! or &C' . In Subfigure (b) &C' is coloured black. In Subfigure (c), to avoid
violations of 3 and 4 or rule 3.3-1 and/or 2.4 is used to refine block 180+3 to &C' . After that
rule, 2.4 can be used again to refine blocks 180+2, 180+1, and 180 . This is shown in Subfigures
(d) to (f). In Subfigure (g) unknown pixel group &C! is without block range hence it is
coloured to white by rule 1.2.

Additional information given to edge value depends upon what edge state is outputted. For
nextto and fullwhite no additional information is needed. For state nextto this is be-
cause there are no pixels to make information out of. For state fullwhite this is because
only interesting matter is to detect if block has changed, in which point no edge should be
created between the two unknown pixels. For state fullblack additional information is
number of pixels between the unknown pixels. In Figure 30 unknown pixel group is used
with black pixel group to create the block. To make checking calculation for this easier,
length of black pixel group is basically cached for every fullblack edge. For state mix
additional information is triplet of: length of the biggest black group in the mix edge, length
of the latest black group or zero (used to calculate the biggest black group), and number of

48

??? ?

? ??? ??? ?

Block of length 11

Block

Block

??? ?

Block

Block

(a)

(b)

(c)

(d)

(e)

Figure 30. Shows example of fullblackedge with colouring example on a segment of the line. (a)
is the initialize state, (b) and (c) are the deductions if &C! is coloured black, and (d) and (e) if &C! is
coloured white.

black pixel groups in the mix edge.

Algorithm 10 updates the edge state according to Figure 28 and keeps track of the additional
information. Algorithm 10 takes in previous edge state (AB0B4), previous additional informa-
tion (AB0B47<5 =), and new non-unknown pixel colour 2. The algorithm first asks: is 2 black
or white, then it asks what edge state was give. Variable AB0B47<5 = is an integer after state is
moved to fullblack and triplet on mix. Before moving in these states AB0B47<5 = is assumed
to be null. When changing edge state from nextto to fullblack variable AB0B47<5 = is set
to 1 (step 4) because 2 is already first black pixel. Similarly, reason why fullwhite change
to mix variable AB0B47<5 = triplet are set to all one (step 8). When changing edge state from
fullblack to mix, previously collected information about number of pixels in the AB0B47<5 =
is used to initialize the largest black pixel group (step 17). There needs to be a system which
updates stateinfo in mix state. When in mix state and 2 is a black pixel, then size of the cur-
rent block group’s size is incremented and check is made if group is now the largest detected
(steps 10 to 12). If 2 would be white then determination is made if last pixel was black (by
asking: is black group length counter more than zero at step 19) and then group count is
incremented if so. Variable 7<2 is used to in step 21 to increment group count by one or zero.
Step 21 also reset black pixel group length count to zero for next black pixel group.

Algorithm 11 produces the unknown pixel graph. In the algorithm, unknown pixel graph
is expressed as standard pair of two sets. Set + for vertices of the graph and set � for the

49

Algorithm 10 UpdateEdgeState

Input: previous edge state AB0B4 and additional information AB0B47<5 =, pixel colour 2.

Output: updated AB0B4 and AB0B47<5 =

1. if 2 = black

2. if AB0B4 = nextto

3. AB0B4B fullblack ; Change state.

4. AB0B47<5 =B 1

5. else if AB0B4 = fullblackthen AB0B47<5 =B AB0B47<5 =+1

6. else if AB0B4 = fullwhite

7. AB0B4B mix ; Change state.

8. AB0B47<5 =B (1,1,1) ; Change to triplet.

9. else if AB0B4 = mix

10. AB0B47<5 =B AB0B47<5 =+ (0,1,0) ; element-wise addition.

11. if AB0B47<5 =0 < AB0B47<5 =1 ; is zeroth element smaller than first element.

12. AB0B47<5 =B (AB0B47<5 =1, AB0B47<5 =1, AB0B47<5 =2)

13. else if 2 = white

14. if AB0B4 = nexttothen AB0B4B fullwhite ; Change state.

15. else if AB0B4 = fullblack

16. AB0B4B mix ; Change state.

17. AB0B47<5 = = (AB0B47<5 =,0,1) ; Change to tuple.

18. else if AB0B4 = mix

19. if AB0B47<5 =1 > 0 then 7<2 B 1 ; Should black pixel groups count be
incremented.

20. else 7<2 B 0

21. AB0B47<5 =B (AB0B47<5 =0,0, AB0B47<5 =2 + 7<2) ; Reset the count.

22. return (AB0B4, AB0B47<5 =)

50

??? ???? ?

Block of length 4

(a)

??? ?

Block

(b)

??? ?

Block

(c)

Block

(d)

Figure 31. Shows an example of fullwhite edge where block is length of 4. Subfigure (a) is the
segment of the line initially, (b) is colouring of pixel group &C! to black, (c) is block range reduction
to black pixels, and (c) is colouring of pixel group &C' to white.

(undirectional) edges which are pairs of vertices of + . Algorithm 11 rows and columns are
handled in separate loops. Row loop is steps 1 to 26 and column loop is steps 27 to 51.
Both loops differ only that row loop creates a vertex (steps 7 and 8) and column loops finds
a vertex (step 33).

Variable :0ABC<9<=E< is used to store previous loop’s iterations vertex. Variable :0ABC<9<=E<
is set to null for first iteration of the line because there is no previous unknown pixel to
create edge to. Vertex creation and found is done regardless to store correct value to variable
:0ABC<9<=E<.

Two variables are store edge value information in Algorithm 11. Variable AB0B4 for edge
state and variable AB0B47<5 = for the additional information. Variable AB0B4 is initialized to
nextto as it is starting point of the state machine and variable AB0B47<5 = is initialized to null
for Algorithm 10. Inner loop goes through every pixel in the line (steps 5 to 24). In both
loops if inner loop going through the pixels does not found an unknown pixels and variable
:0ABC<9<=E< is not null Algorithm 10 (steps 25 and 50). Variable :0ABC<9<=E< check is done
to avoid running it when it is not needed.

Algorithm 11 avoids creating an edge between unknown pixels where they are not covered
by same block or do not have amix edge between them. Check is done in both inner loops
steps 10 to 18 and steps 35 to 43. For the mix edge sanity check is done to make sure there is
no overlapping chain of block ranges before skipping the edge creation. If there is chain of
overlapping block ranges, then most likely then edge is created. For nextto, edge is always

51

??? ???? ?(a)

Block Block Block Block

??? ?(b)

Block Block Block Block

??? ?(c)

Block Block Block Block

??? ?(d)

Block Block Block Block

??? ?(e)

Block Block Block Block

??? ?(f)

Block Block Block Block

(g)

Block Block Block Block

Figure 32. Shows an example of edge mix. (a) is state of relevant line segment initially, (b) is
colouring of &C' to black, (c) to (f) are chaining block’s range reductions, and (g) .

52

created. For fullblack and fullwhite edge if only one block covers the found unknown
pixel then check is performed to check that block range does include :0ABC<9<=E<. If it does
not, then edge should not be created.

53

Algorithm 11 NonoProducePixelGraph

Input: Nonogram # , Partial solution)

Output: Unknown pixel graph (+, �)

1. for each row G in the)

2. :0ABC<9<=E<B null

3. AB0B4B nextto ; edge type. Default state is next pixel being unknown

4. AB0B47<5 =B null ; information associated with some edge states

5. for each column F in the)

6. if 2F,G = unknown ; Add a vertex for unknown pixel

7. create new (labelled) vertex DF,G

8. add vertex DF,G to +

9. if :0ABC<9<=E< ≠ null

10. find blocks
{
12,G,8

}
8
which covers 2F,G ; Algorithm 3

11. set 80 leftmost index of
{
12,G,8

}
8

12. if AB0B4 = mix ; different check for mix edge

13. set 1:0AB to right most block covering :0ABC<9<=E< ; Algorithm 3

14. if between 1:0AB and 12,G,80 is non-overlapping blocks

15. goto 24 ; do not create edge

16. else if
���{12,G,8} 8��� = 1∧ AB0B4 ≠ nextto

17. if F:0ABC<9<=E< < 12,G,80,!

18. goto 24 ; do not create edge

19. create new (undirectional) edge
(
DF,G , :0ABC<9<=E<

)
20. add edge

(
DF,G , :0ABC<9<=E<

)
to � ; column directional edge

21. set value of the edge to (B G>4, B G>47<5 =)

22. AB0B4B nextto ; reset edge state

23. AB0B47<5 =B null

24. :0ABC<9<=E<B DF,G

25. else if :0ABC<9<=E< ≠ null ; else means that 2F,G was not unknown

26. update AB0B4 and AB0B47<5 = ; Algorithm 10

54

27. for each column F in the)

28. :0ABC<9<=E<B null

29. AB0B4B nextto ; edge type. Default state is next pixel being unknown

30. AB0B47<5 =B null ; edge type sometimes stores extra info

31. for each row G in the)

32. if 2F,G is unknown ; find existing vertex for unknown

33. find vertex DF,G from +

34. if :0ABC<9<=E< ≠ null

35. find blocks
{
1@,F,8

}
8
which covers 2F,G ; Algorithm 3

36. set 80 leftmost index of
{
1@,F,8

}
37. if AB0B4 = mix ; different check for mix

38. set 1:0AB to rightmost block covering :0ABC<9<=E< ; Algorithm 3

39. if between 1:0AB and 1@,F,80 is non-overlapping blocks

40. goto 49 ; do not create edge

41. else if
���{1@,F,8} 8��� = 1∧ AB0B4 ≠ nextto

42. if G:0ABC<9<=E< < 1@,F,80,!

43. goto 49 ; do not create edge

44. create new (undirectional) edge
(
DF,G , :0ABC<9<=E<

)
45. add edge

(
DF,G , :0ABC<9<=E<

)
to � ; row directional edge

46. set value of the edge to (AB0B4, AB0B47<5 =)

47. AB0B4B nextto ; Reset edge state for new edge

48. AB0B47<5 =B null

49. :0ABC<9<=E<B DF,G

50. else if :0ABC<9<=E< ≠ null ; else means that 2F,G was not unknown

51. update AB0B4 and AB0B47<5 = ; Algorithm 10

52. return (+, �)

55

5 ESTIMATION ALGORITHM AND TYPE SUBCASE

Idea to probabilistically approximate the number of colourings of a switching component
needs a detector for the type of switching component and function to get the approximation
for that type. Algorithm 12 does this if build-in set of switching component types / is finite
in size and complete in covering of types. Randomization for FPRAS algorithm can happen
in the approximation phase. Randomization in detector phase would need some guarantee
other type detector to pick up the approximation.

Every type in / detector is called until type is detected or there is no more types to test. If
switching component type H is detected variable 7AB G>4 equals true. If this happens Algo-
rithm 12 allows types approximator function to be called. Return value out of Algorithm
12 is estimated number of colourings for A and indicator was type found or not (found or
notfound). When A is not a type in /, estimated number of colourings returned is given as
one. This is done so that counting back at caller (Algorithm 1) would not be effected.

Algorithm 12 EstimateSwitchComponent

Input: Nonogram # , Partial solution) , Switching component A .

Output: Pair (2=C<B, 5 =C<3) where 2=C<B is the estimate for the number colourings switching
component has and 5 =C<3 is ether true or false to indicated was A type in /.

1. for each switching component type H in /

2. Set 7AB G>4 to answer of the detector for type H when (in) of # is given

3. if 7AB G>4 = true ; If 7AB G>4 is false go to next type.

4. Set 2=C<B to result to type H approximator when (in) of # is given.

5. return (2=C<B,true)

6. return (1,false) ; A was not type in /

This Thesis does not provide complete set of types for /. In Chapter 7 challenge to provide
such a set is discussed. Rest of this Chapter focus on a subcase of switching components
which can be exactly counted if detected.

56

5.1 One-black colourable one-pixel SSC detector

There is a simple instance of #NONOGRAM that do not need the randomizing to estimate
the solution count. One such, set of instance are SSCs. SSC is any "square" arrangement
unknown pixels from the set

{{
DF7 , G8

��∀7, 8 ∈ N≤C−1

(
∀> ∈ N≤C−1

(
F7,> = F

′
7 ∧ G>,8 = G′8

))
∧∀7 ∈ N≤C−2, 8 ∈ N≤C−1

((
DF7 , G8 , DF7+1, G8

)
∈ �∧

(
DF 8 , G7 , DF 8 , G7+1

)
∈ �

) }���
∃
{
F′7
}C−1
7=0 ⊆ N≤<−1,

{
G′8

}C−1

8=0
⊆ N≤;−1

} (25)

for some C. Value C is the side length of the "square" in number of unknown pixels. For
example, the three by three Nonogram of Figure 33 is a SSC with side length of 3. Partial
solution in Subfigure (a) is show as unknown pixel graph of in Subfigure (b).

Equation 25 states two conditions needed to be SSC. First, every vertex in a line relevant to
SSC must have C vertices. Second vertexes in the line must have path keeping to the line.
This is stated in Equation 25 as each vertex DF7 , G which 7 is less than or equal to C− 2 must
have an edge to DF7+1, G and each vertex DF,G8 which G8is less than or equal to C− 2 must have
edge to DF,G8+1 . Less then equal is C−2 because first indexing starts at zero. Second vertexes
with the highest index number are at edge of a SSC and hence cannot have edge to higher
index vertex.

In Subfigure (b) unknown pixel graph satisfies these two conditions for side length of 3.
Every line has three vertexes. For example, Row 0 (relevant to SSC) has vertexes D0,0, D1,0,
and D2,0. Vertexes D0,0, D1,0, D2,0, D0,1, D1,1, and D2,1 have an edge to higher index vertex on
the row and vertexes D0,0, D1,0, D0,1, D1,1, D0,2, and D1,2 have edge to higher index vertex on the
column.

It does not matter to the definition of SSC what state the edge value is. In Subfigure (b)
every edge is a nextto edge but in Figure 34 this is not the case. Subfigure (a) is the partial
solution of the nonogram. Unknown pixels form a SSC of size 3. Subfigure (b) is unknown
pixel graph of partial solution of Subfigure (a). Unknown pixel graph is the same as before
but coordinates of the vertexes are different and some edges are not nextto.

Most of the time, it is easy to count exactly number of solution a SSC causes for a nonogram.

57

? ? ?
???

? ? ?

1
1
1

1 1 1

(a)

v0,0 v1,0

v0,1 v1,1

v2,0

v2,1

v0,2 v1,2 v2,2

nextto

nextto

nextto

nextto

nextto

nextto nextto

nextto

nextto

nextto

nextto nextto

(b)

Figure 33. 3 by 3 Nonogram with SSC length of 3. (a) is the partial solution of the nonogram.
(b)unknown pixel graph of (a).

?

?
?

?
?

?

?

?

?

1 11 1 11 11

1

1
2

1 1

1 3 1 1
1 1

(a)

nextto

v1,0 v5,0

v1,1 v5,1

fullwhite

fullwhite

mix v7,0

nextto nextto

v7,1

v5,3 v7,3

fullwhite

v5,3 mix fullwhite

fullwhite fullwhite fullwhite

(b)

Figure 34. Partial solution 9 by 4 nonogram which has SSC and where unknown pixels are not next
to each other. (a) is a partial solution of the Nonogram. where unknown pixels are not next to each
other. (a) is the unknown pixel graph of the partial solution.

The exceptions from this in SSCs have an fullblack edge state and have size larger than
2. To focus on this easy exactly countable subset two additional properties are defined. First
>-pixel, and then second one-black colourable.

Property >-pixel means that block to be coloured by colouring unknown pixels is size of >
on every line relevant to switching component. Focus is on the one-pixel as scaling does not
appear to effect number of solutions.

One-black colourable means that there is only one block not fully coloured in the line.
When combined with one-pixel (one-black colourable one-pixel) property of colouring one
unknown pixel on the line, then rest of the line’s unknown pixels (relevant to switching
component) will be coloured white. This property is in symbolic logic formulation for a line
relevant to unknown pixels is:

∀7 ∈ N≤C
(
2F7 = black ⇒∀8 ∈ N≤C

(
7 ≠ 8⇒ 2F 8 = white

))
. (26)

58

This section focuses on making a detector for one-black colourable one-pixel SSC. For this
type amount of solutions is C! so Function 0>>@=F7;0B4 is known. Algorithm 14 is the
detector for one-black colourable one-pixel line SSC. This algorithm needs to check every
edge is compliant to one-black colourable one-pixel line. For this compliant check Algorithm
13 is used.

Algorithm 13 input is the edge (
(
DF0, G0 , DF1, G1

)
) under inspection (this includes the unknown

pixel locations), leftmost block covering pixel 2F0, G0 (180), and boolean (5C::10290::=E43) to
indicate if fullblack edge is allowed. Output from the Algorithm 13 is boolean which is true,
if the edge is compliant with one-black colourable one pixel line. The input parameter 180 is
assumed to be rightmost block covering the pixel 2F1, G1 got from result of Algorithm 3. (Note
that pixels are in same line :7<4 but since it is not known is this column or row both index
lower index are different.)

Algorithm 13’s steps 1 and 3 are just setup. Value of the edge is extracted to variables AB0B4
and AB0B47<5 =. Variable 181 is set to rightmost block covering the pixel 2F1, G1 .

Running of the Algorithm 13 divides into three parts based upon value in AB0B4. Steps from
5 to 6 handle case where AB0B4 is a nextto or fullwhite. Steps from 8 to 11 handle case
where AB0B4 is a fullblack. Steps from 13 to 15 handle case where AB0B4 is a mix.

Two checks are preformed for nextto or fullwhite. First check makes sure block indexes
are the same. This means pixels 2F0, G0 and 2F1, G1 are covered by the same block. This block
has to be size of 1 which is the other check performed. Size check is needed for 1 pixel
requirement of one-black colourable one-pixel line.

For fullblack edge same block index check as in nextto or fullwhite edges is per-
formed. Since that block must be length of one plus black pixel group in the middle, check
is performed that block size minus the length of edge (in between pixels) is 1. Algorithm 11
stores the block size to AB0B47<5 =. Other test performed is the allowance of fullblack edges in
the line relevant to a switching component.

For mix edge block size has to be one for the one-black colourable one-pixel line. This test is
done for both blocks, because for the mix edge they are not the same. Blocks have to overlap
on black pixel groups and by definition of one-black colourable one-pixel every black pixel
group must be size of one. This requirement reduces down to checking that biggest black
pixel group is size of one (hence all of them are size of 1) and checking that between 80 and
81 is a block for every black pixel group and for one of the unknown pixels. Block range are
not needed to be checked because of rule 2.2 makes sure that block range end is not next to

59

black pixel, rule 2.5’s Equation 21 makes sure no block range ends to white pixel, and fact
that mix edge exists (hence blocks overlap).

Algorithm 13 input parameters 180 , and 5C::10290::=E43 are used in these steps. Boolean
5C::10290::=E43 gets its value from the question � = 2. For 180 support array

{
@=E1:9A8

}
8
and

variable 2:;1:9 are used to store block index of a block covering the unknown pixel under
investigation. Array

{
@=E1:9A8

}
8

and variable 2:;1:9 are needed since mixed edge change
the block in between the two unknown pixels. Array

{
@=E1:9A8

}
8

stores block index of the
rows and 2:;1:9 for each column. Their value is updated by the second element in the output
pair of Algorithm 14.

Algorithm 13 CheckOneBlackColourableOnePixelCompliance

Input: edge
(
DF0, G0 , DF1, G1

)
, block previously on line :7<4 is 180 , and boolean 5C::10290::=E43.

Output: Pair (0, 1), where 0 true or false on is edge compliant and 1 is leftmost block covering
2F1, G1

1. set variable AB0B4 to
(
DF0, G0 , DF1, G1

)
’s value’s zeroth member.

2. set variable AB0B47<5 = to
(
DF0, G0 , DF1, G1

)
’s value’s first member.

3. set 181 to rightmost block that covers pixel 2F1, G1 on line :7<4

4. if AB0B4 = nextto or AB0B4 = fullwhite

5. if 80 = 81 ∧ 180 = 1 then return
(
true, 180

)
; only acceptable block size is one.

6. else then return
(
false, 180

)
7. else if AB0B4 = fullblack

8. if 180 − AB0B47<5 = = 1∧ 5C::10290::=E43 ; only one black pixel is to be coloured

9. if 80 = 81 then return
(
false, 180

)
; check that blocks keeps itself to same

10. else then return
(
true, 180

)
11. else then return

(
false, 180

)
12. else if AB0B4 = mix

13. if 180 > 1∧ 181 > 1 then return
(
false, 180

)
; only acceptable block size is one.

14. if AB0B47<5 =1 = 1∧ 80 + AB0B47<5 =2 = 81 then return
(
true, 181

)
15. else return

(
false, 180

)

60

Actual detector (Algorithm 14) has three parts: setup (steps 1 to 14), loop for handling zeroth
column (steps 15 to 25), and double loop (26 to 49) to handle rest of the columns. Main idea
to the algorithm is to check that every vertex in a column has edges:

• to higher G index vertex without skipping a row,

• and that there is an edge to lower F index vertex that is same as the previously handled
column.

The setup starts with finding of the boundary coordinates of the switching component (steps
1 to 4). Since one-black colourable one pixel SSC is a square then vertices DF;7<, G;7< , DF;7<, G;0F ,
DF;0F , G;7< , and DF;0F , G;0F have to be the four corners of the that rectangle. Corners DF;0F , G;7< ,
and DF;0F , G;0F are checked in the third part but for the zeroth column existence of vertexes
DF;7<, G;7< , and DF;7<, G;0F is checked in step 5. If nether exist then given unknown pixel graph
(+, �) cannot be one-black colourable one pixel SSC.

Rest of the setup (steps 7 to 14) initializes variables for the second and third parts loops.
Variable C is number of unknown pixels squares side has. It is used to memory allocation
big enough for other variables in the setup. This cannot be calculated by G;0F − G;7< since
these are coordinates in partial solution) which is not number of unknown pixels. In the
case where (+, �) is a one-black colourable one-pixel SSC, variable C can be got by counting
number of vertices in the shortest path between DF;7<, G;7< and DF;7<, G;0F . In the implementation
the shortest path finder should not be used because there is cases of non-SSC which can give
more than needed. Better implementation, for example, is to just pass through zeroth column
to get the variable C.

As Algorithm 14 checks compliance with Algorithm 13 block which edge starts is needed.
Variables 2:;1:9 and @=E1:9A8 store current block covering unknown pixels for this check.
These variables are updated by the return value of the Algorithm 13. Variable 2:;1:9 is
recalculated by start of every column unlike array @=E1:9A8.

Array .8 is the previous columns row indexes. These values should not change column to
column in a SSC hence there are initialized ones in the zeroth column loop.

Variables D>F ,>G , ><4FB and 8 are used to index the iteration. Vertex D>F ,>G is the vertex which
edges are under checking. Hence, >F is the column under process and >G is the row under
process. Variable ><4FB is the next row index in the column. Vertex D>F ,>G is initialized to
DF;7<, G;7< (which is top left corner) and is initialized to next higher row index. Variable 8

indexes the arrays @=E1:9A8 and .8.

61

Zeroth column loop (steps 15 to 25) runs as long as there is an edge to higher row index
(step (15)). Right after this is usage of Algorithm 13 to check that edge

(
D>F ,>G , D>F ,><4FB

)
is in

compliance. If the compliance of the edge is fine, then loop updates the 2:;1:9 add adds row
index to .8. After that D>F ,>G , ><4FB, and 8 are incremented for the next iteration. This will
go through all the rows of the zeroth column. When loop exits, there is final check row loop
ended on G;7<.

Next is double loop handling rest of the columns (steps 15 to 25). Outer loop goes through
the columns along zeroth row index. If given (+, �) does not have zeroth row index with
all of the columns, then (+, �) is not a SSC. This is checked by two ways. One is that
last column iterated was F;0F (step 49), other one is using variable 6F to check that current
column >F has an edge to previous column in step 33. Other check done in that step is that
row matches with what is stored in . .

Inner loop (steps 32 to 45) goes through the rows of the column >F and check that edge to
column lower and row higher is exists and is in compliance with one-black colourable one-
pixel line. For cycle, there is no check that column has lower row index since if that is the
case there would be G;7< value which would have been rejected at step 5.

62

Algorithm 14 NonoDetectOneBlackColourableOnePixelSquareSwitchingComponent

Input: Nonogram # , Partial solution) , Unknown pixel graph (+, �).
Output: answer (true or false) to is a (+, �) a one-black colourable one-pixel square switch-
ing component.

1. F;0F B ;0F;0F;0F
({
F | DF,G ∈ +

})
; Get the bounds of the unknown pixel graph.

2. G;0F B ;0F;0F;0F
({
G | DF,G ∈ +

})
3. F;7< B ;7<;7<;7<

({
F | DF,G ∈ +

})
4. G;7< B ;7<;7<;7<

({
G | DF,G ∈ +

})
5. if vertexes DF;7<, G;7<and DF;7<, G;0F do not exist

6. return false

7. set C to number of vertices in the shortest path between DF;7<, G;7< and DF;7<, G;0F

8. set 2:;1:9 to block that covers pixel 2F;7<, G;7< on column F;7<

9. allocate
{
@=E1:9A8

}C−1
8=0 ; Array of blocks for each row in switching component

10. set @=E1:9A8 to block that covers pixel 2F;7<, G;7< on row G;7<

11. allocate
{
.8
}C−1
8=0 ; Previous columns row indexes

12. D>F ,>G B DF;7<, G;7< ; Also sets iterator variables >F and >G

13. 8 B 0

14. ><4FB =;7<;7<;7<
({
G | D>F , G ∈ + ∧ >G < G

})
; Next row

15. while
(
D>F ,>G , D>F ,><4FB

)
∈ �

16. @4AC:B from Algorithm 13 for
(
D>F ,>G , D>F ,><4FB

)
, 2:;1:9, and C = 2

17. if @4AC:B0 = false ; Zeroth member of the variable

18. return false

19. 2:;1:9 B @4AC:B1

20. .8 B >G

21. D>F ,>G B D>F ,><4FB ; Move to next edge

22. ><4FB =;7<;7<;7<
({
G | D>F , G ∈ + ∧ >G < G

})
23. 8 = 8+1

24. if >G ≠ G;0F

25. return false

63

26. >F B F;7<

27. while;7<;7<;7<
({
F | DF,G;7< ∈ + ∧ >F < F

})
≤ F;0F

28. 6F B >F

29. >F B ;7<;7<;7<
({
F | DF,G;7<∈+∧>F<F

})
30. >G B G;7<

31. 8 B 0

32. while >G ≤ >;0F

33. if ¬
((
D6F ,>G , D>F ,>G

)
∈ �∧ >G = .8

)
34. return false

35. @4AC:B from Algorithm 13 for
(
D6F ,>G , D>F ,>G

)
, @=E1:9A8, and C = 2

36. if @4AC:B0 = false

37. return false

38. @=E1:9A8 B @4AC:B1

39. ><4FB B ;7<;7<;7<
({
G | D>F , G ∈ + ∧ >G < G

})
40. @4AC:B from Algorithm 13 for

(
D>F ,>G , D>F ,><4FB

)
, 2:;1:9, and C = 2

41. if @4AC:B0 = false

42. return false

43. 2:;1:9 B @4AC:B1

44. 8 B 8+1

45. >G B ><4FB

46. if >G ≠ G;0F

47. return false

48. if >F ≠ F;0F

49. return false

50. return true

64

Algorithm 14 uses features of#=<=%0@B70:(=:D4@#=<=%0@B70:(=:D4@#=<=%0@B70:(=:D4@(Algorithm 6) to get guarantee that detected
switching component is always one-black colourable one-pixel ((�. In partial solution of
Algorithm 6:

• Chain of overlapping block ranges starts and ends to an unknown pixel.

• There is no unknown pixel group sandwiched between black pixel groups covered by
one block.

• There is no pattern unknown pixel group, white pixel group, and unknown pixel
group sandwiched between blackpixel groups covered by one block.

By rule 2.5 guarantee (Equation 21), white pixels can not be and start and end of chain
of overlapping block ranges. For black pixel Rule 3.3-1 (Equation 23) would refine block
ranges of the starting block or ending block so that no overlap would exist. Hence, only
scenario left is one in which unknown pixels starts and ends a chain of overlapping block
ranges. This is important since Algorithm 6 can assume when processing is at the border of
the unknown pixel graph block range also starts at that border and does not go beyond it.

Figure 35 shows example of overlapping chain of blocks. In Subfigure (a) is the initial state
of the line segment. There are four blocks overlapping with each other; block 180 , block 181 ,
block 182 , and block 183 . Block 180 range leftmost pixel is black and block 183 rightmost is
white pixel. Block 180 is size of 2 and it does not have overlapping block left to it. Hence,
block 180 can be refined by rule 3.3-1 to pixels 2F0 and 2F1 removing block 180 from overlap
chain. Rule 2.5 other hand refines block 183 to rightmost from pixel 2F7 to pixel 2F6 These
changes are reflected at Subfigure (b). Notice that now overlapping block chain leftmost and
rightmost pixels are unknown. In the middle of the chain, however, block ranges can end on
black pixel (2F3 compared to 2F4 or 2F5).

? ? ? ??? ? ?? ?

Block Block Block Block

... 2 3 2 3 ...(a)

? ? ? ??? ? ?? ?

Block Block Block Block

... 2 3 2 3 ...(b)

Figure 35. Example chain of overlapping block sequences. (a) is initial state of the line. (b) is refined
state of the line.

For latter two, Rule 3.1 would be colour the middle of black pixel groups which middle is

65

only covered by one block. For the case, where middle has white pixel group recolouring
would happen which would be detected by Rule 3.1, whereas without unknown pixel would
be coloured black. Rule 2.2 would also make sure that, if block range would start or end in
middle of black pixel group then it would be refined out of the black pixel group. These two
means there is no need to take account situations where two fullblack edges are covered
by one block as they do not happen.

Figure 36 shows proof visually. Initially line segment is shown at Subfigure (a). Initially
block 180 is covers unknown pixel group, black pixel group, unknown pixel group, black
pixel group, unknown pixel group and overlaps with blocks 180−1 and 180+1. In Subfigure (b)
is resulting segment of the line. Rule 2.2 refines block 180−1 and 180+1 ranges. Block 180−1

rightmost is refined to 2F2 from 2F3 and block 180+1 leftmost is refined from pixel 2F6 to 2F7 .
After this rule 3.1 would colour pixels 2F4 and 2F5 to black and refine block 180 leftmost to
pixel 2F1 from 2F0 since including pixel 2F0 would make 14 pixels long block. Block 180 is 13
pixels.

????? ??? ?
Block Block Block

(a)

?????? ?
Block Block Block

(b)

... 13 ...

... 13 ...

Figure 36. Shows proof visually. (a) is the line segment initially. (b) is line segment after rule 2.2
and then rule 3.1 are applied.

Figure 37 shows example of the situation. In Subfigure (a) is the initial state of the line
segment. Segment has on block 180 which covers an black pixel group, unknown pixel
group, white pixel group (&E"), unknown pixel group, black pixel group. In Subfigure
(b) is what result when Rule 3.1 is used. Red coloured pixels mark recolouring what would
happen.

Algorithm 11 checks (mostly with Algorithm 13) that every line relevant to given unknown
pixel graph (+, �) that is shaped in ((�

• If there is one block 10 covering the line relevant to (+, �) then

– If 10 = 1.

– If line has fullblack edge then line relevant to (+, �) has just two unknown
pixels.

66

?? ? ? ?? ? ??

Block

??

Block

(a)

(b)

Figure 37. Example of pattern unknown ,white, and unknown covered by one block. (a) is the
initial state of the line. (b) is the resulting recolouring from rule 2.3.

– If line has no fullblack edge then edges can be a mixture of fullwhite pixel
edges and next to edges.

• If there is multiple blocks
{
18
}9−1
8=0 covering whole line relevant to (+, �) then

– If every block is length of one (18 = 1).

– If exists mix edges which total black group amount is 9−1.

– If every black pixel group in mix edge is length of one.

– If no fullblack edge exists in line relevant to (+, �)

then (+, �) is a one-black colourable one-pixel SSC.

Edge state being fullblack and part of a one-black colourable one-pixel line can only
happen in ESC. As mentioned, unknown pixels group between the fullblack edges is
not possible. Having fullblack edge, fullwhite edge, fullblack edge would not be
explained with one block. Any black edge created by Algorithm 6 could not be bigger than
block as no rule used in Algorithm 6 has that ability. Hence, possibility for fullblack edge
happening outside of ESC is that of unknown pixel groups larger than 1 sandwiches the
fullblack edge. This does not produce one-black colourable one-pixel line since colouring
edge unknown pixels black would cause two black pixel groups under one block. Having
mix edge middle between fullblack edges has a problem with block size. Since mix edges
have to change the block, there is not big enough unknown pixel group with one block
covering it. Otherwise, more than one black pixel would be coloured hence it is not possible
be part of one-black colourable one-pixel line anyway.

Other edges on their own do produce valid one-black colourable one-pixel line (see Figures
29, 30, 31, and 32) . Mixture of these edges is also a one-black colourable one-pixel line.
Only property is needed to be checked is regard to mix edge has one less black pixel group
middle of it then blocks cross it.

67

6 ANALYSIS OF ALGORITHMS

This chapter analysis the complexity of the Algorithm 1 and it’s subalgorithms. Analysis
was done mathematical without assuming much computation model and empirically using
implemented software [13]. Test samples for empirical data were generated via support
program. Both methods are used to demonstrate that algorithms run efficiently (meaning in
polynomial time). They are not used to show best exact running time.

Software was run on AMD Ryzen 7 2700X (3.7 GHz) with 32 gigabytes of RAM. Software
utilizes only one thread of execution. Operating system used was Linux 5.15.63. To gather
the timing data, Linux’s system call clock_gettime with CLOCK_PROCESS_CPUTIME_ID

flag was used. With this flag, time given is the amount of CPU time process (every thread)
has spent. It was chosen, because it does not include time spend on other processes or in the
kernel [17].

It was observed that there is some natural variance on the timing information. This is why
every nonogram generated was sampled 10 times. For some plots average over 10 samples
was plotted.

Timing information was taken:

• On total time of the implemented (Algorithm 1).

• On partial solver (Algorithm 6).

• On verification and switching component finder (Algorithm 9).

• On switching component detection (steps 11 to 14 of algorithm 1) .

• On one switching component’s estimation (Algorithm 14).

6.1 Empirical data generation

To create the nonograms to test the software with, generator program was created. This
generator is able make nonograms with one-black colourable one-pixel SSC most of the
time. There is a change created nonogram does not have one-black colourable one-pixel
SSC or nonogram with solutions at all. This is a good thing as program’s failure of detection
is also tested. Nonogram with no solutions which are noticed by verifier are ignored from
data gathering.

Generator works by first choosing between nextto edge and other edges. This is because
next to nextto has to be other nextto edge. Probability for generating this nextto line is

68

weight so that each edge has about the same probability being nextto, fullwhite, or mix
when C > 2 or when C = 2 with nextto, fullwhite, mix, or fullblack. Probability for
the line of nextto edges exactly would be (2C−1 +1)−1 where C is the size of the switching
component. To estimate this probability generator uses is (2<+1)−1. If line of nextto edges
is not generated, then length of line of edges in pixel is randomly chosen. After that each
edge is uniformly assigned ether mix, or fullwhite edge type. If C = 2, then special case of
having fullblack edge is allowed.

After generating edge type of each edge and their length, generator fills these segments of the
with pixels according to the type. Rest of the nonogram is filled so that coloured pixels not
part of the switching component edge next to unknown pixels are white and rest are black.
This filling is done so that lines not part of switching component would be static. However,
this is not perfect and occasion static line filling fails and switching component larger than
indented is generated which can also lead to non-valid nonogram.

Generator can generate nonograms with one-black colourable one-pixel SSC or multiple
one-black colourable one-pixel SSC as a column. Nonogram with column of one-black
colourable one-pixel SSC places some padding between switching components. Padding
grows the probability switching components are isolated from each other. Column nono-
grams are generated to have data on nonograms which include multiple switching compo-
nents.

6.2 Results

Often used support Algorithm 3 complexity is $$$
(
02
<,;

)
where 0<,; is ether < or ;. This is

proven in Theorem 6.1.

Theorem 6.1. Algorithm 3 runs in$$$
(
02
<,;

)
.

Algorithm 3 runs an operation per block in the line. As discussed in the Chapter
2, description length longer than line would not be valid nonogram. These caps
amount of block sane description can have to less than number of pixels in the
line. Hence, complexity is $$$

(
0<,;555

(
0<,;

))
. Function 555 here is deferment by “if“

sentence and addition to set operations. At worst both of these operations are linear
time in complexity. This mostly depends on does underline computational model
need to go through the blocks for these operations. Hence, Algorithm 3 runs in
$$$
(
02
<,;

)
. �

Complexity of partial solver is proven to be$$$
(
<4;4) in Theorem 6.2.

69

Theorem 6.2. Partial solver (Algorithm 6) runs in$$$
(
<4;4) .

Algorithm 6 starts with allocation of a partial solution. This step takes at max
$$$ (<;).

Next step is initialization loop (steps 2-8). This runs initialization rule, rule 0.0,
and rule 1.1 <+; times. Initialization rule goes through every block once hence
it is $$$

(
0<,;

)
complexity, where 0<,; is ether < or ; depend upon is line column

or row. Rule 0.0 goes if triggered goes through every pixel in the line so it is also
$$$
(
0<,;

)
. Rule 1.1 goes through every block and colours at max the block amount

of pixels. Hence, assuming (unrealistically) that there is 0<,; blocks of 0<,; length
complexity of rule 1.1 is$$$

(
02
<,;

)
.

Next loop (9-16) applies rules until no updates are made to) . At max partial
solver makes <;+1 updates if every update cycle makes one update. The biggest
rule complexity wise are rules 1.5, 2.4. Rules 1.5, and 2.4 go through the pixels
and calls find blocks covering pixels making them$$$

(
03
<,;

)
.

Block swap guard goes through each block ones adding$$$ (<;) to the complexity.

Some portion of pixels which are updated per cycles are updated by rule applied
to a row others to a column. Marking portion when update is on a row by f means
that complexity of update loop is

$$$ (<;) +$$$
(
f (;<+1)<3 + (1− f) (;<+1);3

)
+$$$ (<;)

= 2$$$ (<;) +$$$
(
f (;<4 + <3) + (1− f) (;4<+;3)

)
=$$$ (<;) +$$$

(
f (;4<4) + (1− f) (;4<4)

)
=$$$

(
;4<4

)
.

�

Empirically complexity of partial solver seems to be somewhere between second degree
polynomial and linear. In Figure 38 red curve is 3rd degree polynomial. Green curve is 2nd
degree polynomial without any coefficients. Blue curve is a linear line. Yellow curve is a
manually adjusted 2nd degree polynomial to find what coefficient blue dots follow. Blue dots
are average over 10 samples. Figure 39 is same plot but 10-base logarithm has been taken
in both dimensions. Complexity is better than analysed because complexity analysis was

70

done without assuming any computational model and because in practise implementation
has max sized nonogram it can handle. Latter, for example, means that addition arithmetic
is in constant time until breaking point.

0
150000

300000
450000

600000
750000

900000
Size of the nonogram

 (nm
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Nano seconds (ns)

1e11
n³m

³
n²m

²
nm0.15n²m

²

Figure 38. Plot of partials solvers complexity

71

0
1

2
3

4
5

6
Log size of the nonogram

 (lg(nm
))

0 2 4 6 8 10

Log nano seconds (lg(ns))

n³m
³

n²m
²

nm0.17n²m
²

Figure 39. Log-log plot of partial solvers complexity

72

Complexity of verifier is $$$ (<;) as it just goes through every pixel in partial solution)

twice. Complexity of switching component finder does have more going on with it. Theorem
6.3 analyses complexity of switching component finder analytically. Figure 40 shows the
empirical results of the implementation.

Theorem 6.3. Algorithm 8 runs in$$$
(
<4;4) where proposed solution) is for Nonogram of

< by ; size.
Algorithm 8 calls algorithm 11 and component separator algorithm.

Algorithm 11 goes through every line twice so $$$ (<;) times. Inside of the loops
is vertex/edge creation, set addition, finding vertex, finding blocks covering the
vertex, counting members of the set, checking block overlap, and updating edge
state information.

Vertex and edge creation runs in$$$
(
0<,;

)
(just memory allocation).

Find from and adding to a set are depended upon computation model and data
structure used. However, both at worst go through pixels again so$$$ (;<). This is
because at worst read-write head has to be moved over from other side. In reality,
implementation has addition $$$ (1) and find $$$

(
0<,;

)
because set at max has every

block of line which for sane description is less than 0<,;, since description the
length of valid nonogram has to less than or equal to the length of the line.

Algorithm 3 is by Theorem 6.1 as $$$
(
02
<,;

)
. Counting could take constant time if

underline data structure already stores the information but at worst it is$$$
(
0<,;

)
.

Checking block overlap is just$$$
(
0<,;

)
so checking multiple overlapping blocks is

at worst$$$
(
02
<,;

)
.

Function 10 is a constant time algorithm and so does not contribute to overall
complexity among other processing. As such, assumption is made that every inner
loop iteration ends up being unknown pixel.

For first loop’s inner (steps 5 to 24) first run is$$$ (1) +$$$ (<;) (because
:0ABC<9<=E< = null jumps over lot of processing). Succeeding iteration amount
of processing depends upon value of AB0B4. The worst case scenario here is that
every AB0B4 is valid mix edge as non-overlap check is $$$

(
02
<,;

)
and block cover

find is $$$
(
02
<,;

)
. This does not really make sense with the assumption every pixel

is unknown but it simplifies the analysis. Hence, at worst succeeding iterations
are$$$

(
0<,;

)
+$$$ (<;) +$$$

(
0<,;

)
+$$$

(
02
<,;

)
+$$$

(
02
<,;

)
+$$$

(
02
<,;

)
+$$$

(
0<,;

)
+$$$ (<;) +

73

$$$
(
0<,;

)
+$$$

(
0<,;

)
+$$$

(
0<,;

)
+$$$

(
0<,;

)
. These reduces to in big Oh terms to$$$ (<;)

and $$$
(
<;+ <2) since first loop handles rows 0<,; = < and rest of the terms are

constants that do not matter.

Second outer loop’s inner loop (steps 31 to 49) similarly has $$$ (<;) for first iter-
ation and $$$

(
<;+;2) for succeeding iterations. Inner loop will goes every in the

pixel therefore $$$
(
0;,<555

(
0<,;,;, <

))
with 0<,; = < for first inner loop and 0<,; = ;

for second. However, because first iteration is different for both inner loops, first
inner loop’s complexity is$$$

(
(<−1)$$$

(
<;+ <2) +$$$ (<;)

)
and second inner loop’s

complexity is$$$
(
(;−1)$$$

(
<;+;2) +$$$ (<;)

)
.

To reduce these further$$$ (<;) can be removed. Reduce even further (<−1)$$$ (<) .
and (;−1)$$$

(
<;+;2) =$$$ (

<;2 +;3) =$$$ (
<3;3) .

Outer loops are $$$
(
0;,<555

(
0<,;,;, <

))
except 0<,; has different values. First outer

loop has ; and second outer loop has <. From previous paragraph$$$
(
;$$$

(
<3;3))

=$$$
(
<4;4) and$$$

(
<$$$

(
<3;3)) =$$$ (

<4;4) .
Putting both loops together complexity comes to$$$

(
<4;4) .

Complexity of Component finding algorithm for a graph according to [16] is
$$$ (;0F;0F;0F (|+ | , |�|)) which for us means $$$ (<;). This is morphed by complexity
of Algorithm 11 hence complexity of Algorithm 8 is$$$

(
<4;4) . �

Empirical results of verifier and switching component finder combination is show in Figure
40. Their complexity in the implementation seems to be linear. Blue line is linear line
without coefficient. Yellow line is manually adjusted linear line to see where about exact
complexity is. Here exact complexity seem to be around 11<; plus some constant. Blue
dots are average over 10 samples. In the implementation these three are combined to together
so that only two passes are taken through partial solution) for verification and production
of unknown pixel graph. This does not explain the order difference complete. The cause
probably is the simplification in the analytical analyses of every pixel in partial solution) is
a mix edge. This is probably over killing simplification.

74

0
150000

300000
450000

600000
750000

900000
Size of the nonogram

 (nm
)

0.0

0.2

0.4

0.6

0.8

1.0

Nano seconds (ns)

1e7
nm11nm

Figure 40. Plot of Algorithms 9 and 8 complexity

75

Complexity of the Algorithm 14 is proven in Theorem 6.4 to be$$$
(
<3;3) .

Theorem 6.4. Algorithm 14 is$$$
(
<3;3) algorithm.

The boundary calculation in steps 1 to 4 can be group up to a single Algorithm
which goes through every vertex. Since only operation done in functions like;0F;0F;0F

and ;7<;7<;7< are simple comparisons (so at max $$$
(
0<,;

)
) then going through every

pixel these steps take$$$
(
;2<2) . Number of switching components per Nonogram

has to be less than ;< since unrealistically every pixel could be a switching com-
ponent.

Initializing arrays can take $$$ (;) depend upon computational model. This is be-
cause � is at worst height of the nonogram.

Rest of the Algorithm 14 basically goes through every edge ones. Overall algo-
rithm would be$$$ (<;555 (<,;)).

Function 555 is a bit complicated in Algorithm 14. This is because Algorithm 13 has
to find block cover (step 3) which means usage of Algorithm 3. Since Algorithm
13 runs Algorithm 3 for both dimensions so it safe to take 555 =$$$

(
<2;2) because

Theorem 3.

One could perhaps reduce this down to$$$ (<;) by algorithm which takes a starting
point and would not always run to the last block. This is not analysed in the Thesis
because just knowing algorithm is polynomial in more important.

Hence, Algorithm 3 runs in$$$
(
<3;3) . �

Time spend for Algorithm 14 and calculating factorial for the detected one-black colourable
one-pixel SSC is plotted on Figure 41 over size of the switching component. Figure 42
gives log-log plot on same plot as in Figure 41. It appears that green curve of 2nd degree
polynomial is higher than running time of the Algorithm 11. Blue curve in the Figure 41
is linear line. Blue dots are made per sample. This is why there are columns of blue dots
caused by natural error of time measurement. Lower dots forming a line are most likely
switching component which are not one-black colourable one-pixel SSC. Two reason for
this speculation are:

• Rejecting path is faster than accepting path for same sized switching components.

• Because generator most like makes larger switching components then intended one-
black colourable one-pixel SSC when it fails.

76

Calculating factorial is just $$$
(
;7<;7<;7< (<,;) (:=6:=6:=6 (;7<;7<;7< (<,;)) :=6:=6:=6

(
:=6:=6:=6 (;7<;7<;7< (<,;)))2)) so it is

smaller than complexity of the detector [18].

One degree lower complexity in the Figure 41 is mostly likely caused by faster block finding
than what Theorem 6.4 would suggest. It is good to note that switching component size is
always less than or equal to nonogram size. At worst, for the detector, there is one switching
component same size as the whole nonogram. Most of the time though, detector gets far
more smaller switching component to analyse.

77

0
300

600
900

1200
1500

1800
2100

2400
Num

ber of pixels in a switching com
ponent.

0

30000

60000

90000

120000

150000

180000

210000

240000

Nano seconds (ns)

xx²

Figure 41. Plot of Algorithm 11 complexity

78

1
2

3
Log num

ber of pixels in a switching com
ponent.

0 1 2 3 4 5Log Nano seconds (lg(ns))

xx²

Figure 42. Log-log plot of 11 complexity

79

From Theorems 6.2, 6.3, and 6.4 overall complexity of the algorithm seem to be $$$
(
<4;4) .

Figure 43 show the empirical complexity of the whole algorithm (thus far). Figure 44 shows
the log-log plot on same plot as in Figure 43. The overall estimators time complexity em-
pirically similar as partial solvers. This is because around 95% of the computation time was
spent on partial solver. Curves on the plot are same as last time but that blue dots should be
different. Blue dots are average over 10 samples.

This result is not that surprising when reasons for reduced complexity in empirical result
are considered. Algorithm 8 runs much faster when implemented and Algorithm 14 is faster
than partial solver because more switching components nonogram has smaller switching
components are. Partial solver also has high coefficient hidden behind big Oh notation.

80

0
150000

300000
450000

600000
750000

900000
Size of the nonogram

 (nm
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Nano seconds (ns)

1e11
n³m

³
n²m

²
nm0.15n²m

²

Figure 43. Plot of Algorithm 1

81

0
1

2
3

4
5

6
Log size of the nonogram

 (lg(nm
))

0 2 4 6 8 10

Log nano seconds (lg(ns))

n³m
³

n²m
²

nm0.15n²m
²

Figure 44. Log-log plot of Algorithm 1

82

7 DISCUSSION

Algorithm 1 thus far would be complexity of $$$
(
<4;4) . However, total algorithm does not

have enough type detectors and type estimators to be for every possible nonogram. For unde-
tected switching components sampling method could be used. This algorithm would count
number of black pixels are missing per column of switching component. Daniel Berend et

al. algorithm in [7] could also be used here to have some early rejection. However, right now
adding sampling method for undetected switching components would not work. One of the
missing types is large category of one-black colourable SSC. This is category still have the
feature that if one black block is fully coloured in the line relevant to switching component
other unknown pixels in the line relevant to switching component will be coloured white.
Hence, this type can have switching components with factorially growing colourings. Figure
45 is an example of one-black colourable SSC. Figure 45 is essentially ESC scaled up width
by 3 and height by 2.

??????
??????
??????
??????

3
3
3
3

2 2 2 2 2 2

(a)

3
3
3
3

2 2 2 2 2 2

(b)

3
3
3
3

2 2 2 2 2 2

(c)

Figure 45. Example of one-black colourable SSC. (a) is the nonogram empty. (b) is a solution to the
nonogram. (c) is an other solution to the nonogram.

Since, there can be other switching components which have same amount of unknown pixels
then one-black colourable SSC, but only polynomial amount of solutions, general sampling
method cannot distinguish between the two as it is restricted to have polynomial amount of
attempts. For example, Figure 46 shows a nonogram with same amount unknown pixels
than nonogram in Figure 45 and same amount solutions. Point is that, if patterns in theses
nonogram is grown, then solution count of pattern in Figure 45 grows factorial whereas
Figure 46 would have same 2 solutions regardless of size increase. Figure 46 type could be
called a Rectangle switching component (RSC) since it is a rectangle rather than SSC.

But, for argument sake, assumed it is possible to detect and estimate any SSC and RSC ether
by probabilistically or deterministically. Is this enough to create a FPRAS for nonogram?
Simple, no. There are switching component types which are not SSC or RSC so it is not

83

???

4 4 4 4 4 4
1
1

1
1

1
1

???

??????

??????

??????3 3 3
3 3 3
3 3 3
3 3 3

1
1

1
1

1
1

(a)

4 4 4 4 4 4
1
1

1
1

1
1

3 3 3
3 3 3
3 3 3
3 3 3

1
1

1
1

1
1

(b)

4 4 4 4 4 4
1
1

1
1

1
1

3 3 3
3 3 3
3 3 3
3 3 3

1
1

1
1

1
1

(c)

Figure 46. Example pattern which always will have two solution if nonogram is grown with the
pattern. (a) is the nonogram after partial solver. (b) is a solution for the nonogram. (c) is another
solution for the nonogram.

known if type categorizing or sampling would work on them.

Most important problem however, is that one can “overlap” switching components together
to create bigger switching components. For example, Figure 47 shows how overlapping three
SSCs creates a new switching component. In Subfigure (a) is the results of partial solver. In
Subfigure (b) SSCs locations are coloured, and in Subfigure (c) is example that colouring
SSC with size of 3 in the middle. This leaves two ESCs to be coloured. Green marked
ESC in Subfigure (b) does not have same unknown pixels in Subfigure (c). This is because
colouring SSC colours overlapping pixels but leaves other to possibilities.

To make detector for this one maybe have to call another detector inside a detector to get
what is overlapping and adjust calculations accordingly. However, as nonograms grow pos-
sibilities to create overlaps grows. This may at some point cause too deep of a recursion
tree. Another way do to the detector for overlap is to do it per shape which will not work.
As Nonogram grows number of shapes will grow hence one would have to make infinite de-
tectors and estimators. As such, it could be very like that the multi-solution nonogram with
SSC or RSC are small group that do have an FPRAS.

84

?????
??

???

????

2 1 1 3

2 1 1 1
1 1 1

5

1
1
1

1
1 1

1 1 1 1

1 1 1 1

1
1
1

1
1

1
1
1
1

3
1
1

1
1
1
1

1 1 1

1 1 1

(a)

?????
??

???

????

2 1 1 3

2 1 1 1
1 1 1

5

1
1
1

1
1 1

1 1 1 1
1 1 1

1 1 1 1

1
1
1

1
1

1
1
1
1

3
1
1

1
1
1
1

1 1 1

(b)

??
??

??

??

2 1 1 3

2 1 1 1
1 1 1

5

1
1
1

1
1 1

1 1 1 1
1 1 1

1 1 1 1

1
1
1

1
1

1
1
1
1

3
1
1

1
1
1
1

1 1 1

(c)

Figure 47. Example of nonogram with overlapping SSC. (a) is the partial solution of nonogram after
partial solver. (b) shows were overlapping SSCs are in the partial solution. (c) is example of two
ESCs remain if bigger SSC is coloured out.

85

7.1 Future work

First and form most, since Logical rules used in the thesis where not enough and overlapped
with each other in terms of deductions:

• What is the smallest set of logical line rules which do not overlap?

• Can solve any line with only one possible configuration?

• Does such set even exist? To get this complete set of rules consequences of the nono-
grams validity constraint should be used.

Further, rather than using mathematical formalization used in this thesis it would be better to
develop more standard formalization. Discrete tomography can easily be turned into algebra
by column and row sums. Could similar technique be used to turn Nonogram simple algebra
where rules are the operations of the algebra? This would help describe the more complex
switching components. Specially proposed switching components internal colouring impli-
cations.

More general theoretical questions left for future work relate how much solving a nonogram
is effected. Limiting multi solution nonogram to SSC or RSC, is it possible build FPRAS
for these instances? Right now, algorithm does not need to use probability so there is lot
of room here. For solving nonograms, how many more instance can said have a solution in
polynomial time because of it?

For the software implementation, how to memory efficiently implement unknown pixel
graph could use some work. Current implementation just creates memory pointers between
data structures storing information about the edges and the unknown pixel. If switching
component involves only few pixels of the whole partial solution, then current implementa-
tion is efficient. However, if most pixel of the nonogram are involved, meaning unknown
pixels are right next to each other, implementation is rather wasteful and scales poorly as
memory address cost lot of memory. For this method where some time efficiency is traded
for grouping unknown pixel next to each other together could fix the scaling issue.

86

8 CONCLUSION

There was not any algorithm that would approximate number of solution to a nonogram.
Exact number of solution algorithm does exist in the literature. This Algorithm is exponen-
tial and is essentially solves all the solutions of a nonogram. Current thesis lays looks into
creation of FPRAS algorithm estimating number of solutions for #NONOGRAM. Proposed
estimator for number of solutions a nonogram has comes down to processing of switch-
ing components from a partial solution. If there is finite amount of types which all have
probabilistic polynomial time detector and estimator FPRAS is possible. This Thesis show
that type one-black colourable one-pixel SSC can be detected and estimated in determinis-
tic polynomial time. This type has C! solutions where C is the side length of the switching
component.

Full algorithm with all the parts presented in this Thesis was calculated to be $$$
(
<4;4) . In

empirical testing implementation behaved like$$$
(
<2;2) due to assumptions real implemen-

tation can have. Complexity of partial solver (Algorithm 6) is analytically calculated to be
$$$
(
<4;4) but empirical testing shows$$$

(
<2;2) . Complexity of switching component finder

(Algorithm 8) is analytically $$$
(
<4;4) . Empirically verifier (9) and switching component

finder (Algorithm 8) combination seems linear in complexity. Switching component finder
should be bigger of the two complexity vice. Most like analytical analyses of the Algorithm 8
is making a big worst case assumption. Detector for one-black colourable one-pixel SSC an-
alytical complexity is$$$

(
<3;3) . Empirical Complexity seems to be$$$

(
<2;2) . Surprisingly,

implementation spends around 95% of computation time in the partial solver (Algorithm 8).

At discussion, speculation is made that idea behind Algorithm 1 does not work as FPRAS
because switching components types can be combined to make new switching components.
Hence, there is problem of finding basic types which can explain combined types in polyno-
mial time. There is also no guarantee that it is possible to have finite amount types or that
these types would keep in polynomial time constraint.

At the background of the Thesis is a software develop for it. This software’s source code is
accessible at [13].

87

REFERENCES

[1] ”cat”. (), [Online]. Available: https://www.nonograms.org/nonograms/
i/8563 (visited on 09/05/2020).

[2] Batenburg, K. Joost, and W. A. Kosters, ”Solving nonograms by combining relax-
ations”, Pattern Recognition, vol. 42, no. 8, pp. 1672–1683, 2008.

[3] N. Ueda and T. Nagao, ”Np-completeness results for nonogram via parsimonious re-
ductions”, Tokoy Institute Of Technology, Tech. Rep., 1996.

[4] Miklós, István, Computational complexity of counting and sampling. CRC Press,
2019.

[5] ”Why is the reduction from 3-sat to 3-dimensional matching parsimonious?” (), [On-
line]. Available: https://cstheory.stackexchange.com/questions/
47491/why-is-the-reduction-from-3-sat-to-3-dimensional-

matching-parsimonious (visited on 06/07/2022).

[6] M. Dyer, L. A. Goldberg, and M. Jerrum, ”An approximation trichotomy for boolean#
csp”, Journal of Computer and System Sciences, vol. 76, no. 3-4, pp. 267–277, 2010.

[7] D. Berend, D. Pomeranz, R. Rabani, and B. Raziel, ”Nonograms: Combinatorial ques-
tions and algorithms”, Discrete Applied Mathematics, vol. 169, pp. 20–42, 2014.

[8] V. V. Vazirani, Approximation algorithms. Springer, 2003, ISBN: 978-3-642-08469-0.
[Online]. Available: https://www.springer.com/gp/book/9783540653677.

[9] R. Y. Rubinstein, ”How many needles are in a haystack, or how to solve# p-complete
counting problems fast”, Methodology and Computing in Applied Probability, vol. 8,
no. 1, pp. 5–51, 2006.

[10] W.-L. Wang and M.-H. Tang, ”Simulated annealing approach to solve nonogram puz-
zles with multiple solutions”, Procedia Computer Science, vol. 36, pp. 541–548, 2014.

[11] C.-H. Yu, H.-L. Lee, and L.-H. Chen, ”An efficient algorithm for solving nonograms”,
Applied Intelligent, vol. 35, no. 1, pp. 18–31, 2011.

[12] F. " Pesquita. ”Nonogram solver”. (), [Online]. Available: https://github.
com/Stabbath/nonogram-solver.

[13] H. A. Valve. ”Nonosolver application”. (), [Online]. Available: https://github.
com/HenrikAkseliValve/Nonogram.

[14] R. A. Bosch, ”Painting by Numbers”, Optima, vol. 65, pp. 16–17, 2001.

[15] R. Mullen, ”On Determining Paint by Numbers Puzzles with Nonunique Solutions”,
Journal Of Integer Sequences, vol. 12, Article 09.6.5, 2009.

https://www.nonograms.org/nonograms/i/8563
https://www.nonograms.org/nonograms/i/8563
https://cstheory.stackexchange.com/questions/47491/why-is-the-reduction-from-3-sat-to-3-dimensional-matching-parsimonious
https://cstheory.stackexchange.com/questions/47491/why-is-the-reduction-from-3-sat-to-3-dimensional-matching-parsimonious
https://cstheory.stackexchange.com/questions/47491/why-is-the-reduction-from-3-sat-to-3-dimensional-matching-parsimonious
https://www.springer.com/gp/book/9783540653677
https://github.com/Stabbath/nonogram-solver
https://github.com/Stabbath/nonogram-solver
https://github.com/HenrikAkseliValve/Nonogram
https://github.com/HenrikAkseliValve/Nonogram

88

[16] J. Hopcroft and R. Tarjan, ”Algorithm 447: Efficient algorithms for graph manipula-
tion”, Communications of the ACM, vol. 16, no. 6, pp. 372–378, 1973.

[17] ”Clock_getres(2) — linux manual page, Linux programmer’s manual”. (), [Online].
Available: https : / / man7 . org / linux / man - pages / man2 / clock _
gettime.2.html (visited on 09/12/2022).

[18] P. B. Borwein, ”On the complexity of calculating factorials”, Journal of Algorithms,
vol. 6, no. 3, pp. 376–380, 1985, ISSN: 0196-6774. DOI: https://doi.org/
10.1016/0196-6774(85)90006-9. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/0196677485900069.

[19] A. Sanjeev and B. Barak, Computational complexity: a modern approach, 1st. Cam-
bridge University Press, 2009.

[20] D. E. Knuth and O. Patashnik, Concrete mathematics: a foundation for computer sci-

ence. Addison-Wesley, 2003.

[21] A. Sinclair, Algorithms for random generation and counting: a Markov chain ap-

proach. Springer Science & Business Media, 2012.

https://man7.org/linux/man-pages/man2/clock_gettime.2.html
https://man7.org/linux/man-pages/man2/clock_gettime.2.html
https://doi.org/https://doi.org/10.1016/0196-6774(85)90006-9
https://doi.org/https://doi.org/10.1016/0196-6774(85)90006-9
https://www.sciencedirect.com/science/article/pii/0196677485900069
https://www.sciencedirect.com/science/article/pii/0196677485900069

1

Appendix 1. Complexity Theory for uninitiated

Computational complexity theory is study of complexity classes and what problems are in
what complexity class. Complexity classes are defined to be set of computation problems

computable in some resource limit. Computation problem is a function mapping {0,1}∗

to subset of {0,1}∗ (where {0,1}∗ is every possible pattern of 0 and 1 like 000 or 1011).
Decision problems or languages are computation problem which maps to {0,1} as no and
yes answers. Decision problems are usually represented by subset of {0,1}∗ which maps to 1
[19]. For a bit pattern F ∈ {0,1}∗ and a decision problem L ⊆ {0,1}∗ if F ∈ L then F is called
a (yes) instance of L[8]. Search problem is a problem where computation finds a solution
(some times called certificate) to given instance of the problem. Any search problem has
associated decision problem which asks does any solution exist [19].

Every decision problem L computable by deterministic algorithm† in polynomial time is in PPP.
Computable means that if F ∈ L then 1 or “yes” is outputted by the algorithm. Deterministic
algorithm means that if algorithm’s input and state at time step B are known then there is
only one possible state for time step B + 1. Polynomial time means that exists 0 ∈ N such
that algorithm runs in $$$ (|F |0) time steps for all F ∈ {0,1}∗ where |F | is length of the input
(number of bits). Set PPP is referred as everything ”efficiently” computable.[19]

Function $$$ (pronounced as big O or big Oh) means that if 555 =$$$ (666), then there are natural
numbers 2 and # such that ∀< ∈ N (< ≥ # ⇒ 555 (<) ≤ 2666 (<)). Idea behind using notation is
to get overall complexity of the algorithm somewhat independent of detail of computational
model. [19] It is good to note that 555 =$$$ (666) equal sign here is one way.

Graham, Knuth, and Patashnik in [20] gave some rules on how to use big Oh in arithmetic.

555 =$$$ (555) (27)

; ≤ ;′ ⇒ 0; =$$$

(
0;

′
)

(28)

$$$ (555) +$$$ (666) =$$$ (|555 | + |666 |) (29)

2$$$ (555 (-)) =$$$ (555 (-)) (30)

$$$ ($$$ (555)) =$$$ (555) (31)

555 ·$$$ (666) =$$$ (555 · 666) (32)

†More formal definition would be using Turing machine. For this thesis, Turing machines are not relevant.

2

From Equations 28 and 30 polynomials can be reduced to the highest term in big Oh notation.∑
<

(0<F<) =$$$ (F<) (33)

Time complexity of an algorithm is determent by knowing complexity of basic operation and
subalgorithms, and counting how many times they are called. So for example, consecutive
bit-flipping operations would take constant time ($$$ (1)) because steps are not rerun and op-
eration itself is a constant time. If bit operations are in a non-constant loop, then analysis is
figuring out how many cycles loop has. For example, loop that flips every bit on input F to
it’s opposite would be$$$ (|F |).

Complexity class NPNPNP is every decision problem which can be calculated with deterministic
algorithm (called verifier) in polynomial time providing certain extra bit pattern called a
certificate which length is a polynomial to input length.‡ Extra bits like names suggest is a
solution for the problem (for example nonogram it would be fully coloured table). Essentially
proposed solution has to be verifiable in polynomial time problem to be considered be in NPNPNP.

It is known that PPP is subset of NPNPNP but it is not known are they equal. This question is
sometimes referred as PPP vs NPNPNP [19]. It is wildly held that they are not equal considering
absurdity which would result [19].

Finding an algorithm for a new problem which matches definition of some complexity class
is sometimes hard. This is where reductions help a lot. Idea is to take input F meant for
problem L and pass F to a function which outputs F′ which is input of problem L′. Essentially,
if L′ is in some complexity class, then reducing to it may show L is also in the class. There is
a lot of different types of reductions with different properties. Important one is polynomial-

time Karp reduction which takes polynomial time and F ∈ L if and only if F′ ∈ L′ [19].

There are decision problems in NPNPNP,which any other problem in NPNPNP reduce to by polynomial-
time Karp reduction. Set of these problems is called NPNPNP-complete. Because of this NPNPNP-
complete is regarded as hardest decision problems in NPNPNP. If one decision problem in NPNPNP-
complete would be proven also to be in PPP then PPP =NPNPNP [19].

Counting problem version of a decision problem L ∈NPNPNP is a computational problem counting
number of certificates of F ∈ {0,1}∗ for algorithm computing L. This function is marked #L.

‡There is other equivalent definition which involves decision problem being computable for non-
deterministic machine in polynomial time.

3

Every counting problem version of a decision problem L ∈ NPNPNP form complexity class #PPP§

This class has complete subset #PPP-complete. If 555 ∈ #PPP-complete then every other 666 ∈ #PPP
exists two polynomial time functions ''' and (((which can compute 666 (F) = ((((F,555 (''' (F))) for
all F ∈ {0,1}∗ [8].

There are multiple ways to show that counting problem is #PPP-complete. One is to show
reduction from decision version of #PPP-complete to target problem is parsimonious. Parsimo-

nious reduction keeps the solution count same after reduction [4].

The simplest form of approximation would be guarantee answer to be within some ratio.
In literature, algorithm ��� is ddd-approximation of algorithm 555 if and only if for all inputs F ∈
{0,1}∗:

ddd (|F |) 555 (F) ≤ ��� (F) ≤ 555 (F)
ddd (|F |) . (34)

If for ! ∈ #PPP existed polynomial time ddd-approximation then PPP vs. NPNPNP would be solved. This
is because zero would not be included in the lower-bound which would imply that ! has a
solution[21].

Previous definition’s problem is general for approximating counting. This is fixed (some-
what) by using probability. Usually this is done by using FPRAS. Algorithm ���, which takes
in F and additional error ratio n, is FPRAS for 555 if and only if for all inputs F ∈ {0,1}∗:(

%@%@%@

(
n555 (F) ≤ ��� (F) ≤ 555 (F)

n

)
≥ 3

4

)
(35)

and ��� runs in polynomial time in |F | and n−1.[21] Probability in the Equation 35 could be any
value higher than 1

2 . This is because calling ��� multiple times will increase the probability to
higher value [21]. Variable n is a constant not a function because polynomial growing error
ratio would be equivalent to FPRAS [21].

It is not guaranteed that #PPP-complete problem has an FPRAS [8]. Problem which are self-

reducible have a FPRAS. Requirements for self-reducibility are that problem is roughly-
speaking in #PPP and that it’s set of solutions for given instance F can be partitions to smaller
instance of the same problem.

§Definition does exist where problem being in NPNPNP is not needed [19].

	INTRODUCTION
	Background
	Objectives and delimitations
	Structure of the thesis

	OVERVIEW
	PARTIAL SOLVER
	Rules to partially solve nonograms
	Partial solver implementation detail

	PARTIAL SOLUTION POST-PROCESSING
	Partial solution verification
	Unknown pixel graph

	ESTIMATION ALGORITHM AND TYPE SUBCASE
	One-black colourable one-pixel SSC detector

	ANALYSIS OF ALGORITHMS
	Empirical data generation
	Results

	DISCUSSION
	Future work

	CONCLUSION
	REFERENCES
	Appendix 1 Complexity Theory for uninitiated

