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Abstract
The agriculture and horticulture industries generate many by-products while processing commodities, leading to significant 
environmental and societal dilemmas. Bioactive compounds obtained from by-products of plants are also known as 
ingredients in traditional medicines and the food industry due to their potential health benefits for humans as antioxidant, 
anti-inflammatory, and antimicrobial agents. On the other hand, an extensive array of colorants from natural sources has been 
scrutinized recently in different sectors to mitigate the negative ecological impacts of synthetic dyes, especially in modern 
textile manufacturing. Approaching these matters, this paper reviews various chemical compositions of plant secondary 
metabolites, including flavonoids, tannins, phenolic acids, essential oils, tulipalins, and factors that influence the isolation 
process. Moreover, the article offers an updated view of the advanced technologies for extraction, focusing on eco-friendly 
solvents such as water, supercritical carbon dioxide, and deep eutectic solvents. Eventually, a comparison of different 
extraction methods is highlighted to devise the most appropriate strategy for industries.

Keywords  Sustainable production · Waste reduction · Flavonoids · Tannins · Polyphenols · Tulipalins

1  Introduction

With a history spanning millennia, agriculture, including 
the horticulture industry, has undergone notable devel-
opment and stands as one of the most paramount fields 
of human knowledge. Additionally, it has a vital role to 
support and develop other industries such as cosmetics, 
pharmaceuticals, and nutraceuticals. Correspondingly, 
the agriculture industry produces a significant number 
of residues during the agricultural production process, 

which can be known as by-products [1]. As a solution, 
the concept inception of circular bioeconomy is applied 
to reduce the losses induced by food waste disposal, com-
prising agricultural by-products. The key point of circular 
bioeconomy is to diminish environmental—societal and 
economic—costs, economic competitiveness intensifica-
tion, and to mitigate poverty and hunger. Moreover, the 
circular bioeconomy focuses on “waste-to-wealth” con-
cept that creates new technologies, jobs, and livelihoods 
[2]. Therefore, by-products valorization from plants is 
one of the crucial biomass to decrease the pollution risks 
for the environment and, significantly, to enable sustain-
able development and a generally circular bioeconomy 
[1, 3]. Those production by-products are traditionally 
treated as wastes and are typically landfilled or burned, 
resulting in an observable production of carbon dioxide 
(CO2) [4]. In this regard, by-products, consisting of roots, 
flowers, seeds, leaves, buds, fruits, etc. from agriculture 
and horticulture, are attractive options because of their 
low cost and biodegradability, besides featuring essential 
properties [5]. Originating from plants, secondary metab-
olites are chemical substances that gain diverse benefi-
cial health effects in humans and animals. Some of them 
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are performed as defense compounds against diseases, 
predators, ultraviolet radiation, parasites, and oxidants, to 
facilitate the reproductive processes (for example, attrac-
tive fragrance and coloring agents) [6]. Bioactive com-
pounds are referred to as secondary plant metabolites that 
present as natural constituents in plants, including food, 
which contribute health benefits beyond the fundamen-
tal nutrition value of the plants. Some of the bioactive 
compounds are hydroxybenzoic acids, hydroxycinnamic 
acids, carotenoids, f lavonoids, stilbenes, and lignans 
[6–8]. Several notable attributes of bioactive compounds 
are antimicrobial, antioxidant, antiviral, anticancer, and 
antiradical activities [9]. Other applications of bioactive 
compounds from plants are providing colors for food [10], 
dyes for textiles [11, 12], dye-sensitized solar cells [13], 
and fragrance [14].

Excluding the benefits of minimizing the volume of 
crops residues, the efficient use of by-product resources 
is proposed to reduce the production costs of natural anti-
microbial agents and colorants [15]. Beyond the goal of 
employing natural compounds and reducing by-product 
quantities, 92 million tons of textile waste were produced 
in 2015, and the volume is expected to increase by 62% by 
2030 [16]. Many papers have therefore studied the current 
state of sustainability innovation concerning textile indus-
try. Specifically, researchers have employed frameworks 
to find novel approaches to remodeling traditional textile 
methods and processes, which incorporate the basic princi-
ples of the circular economy in the textile industry [17–19]. 
These ideas indicate preventive measures to mitigate emis-
sions and effluents from the textile chains by substituting 
some synthetic compounds with organic natural materials 
such as bamboo fibers, natural dyes, and less toxic chemical 
products [20].

Awarding these matters, extracting bioactive com-
pounds from agriculture and horticulture by-products is 

an essential topic. Particularly, the bioactive substances 
can be served as natural antimicrobial agents and col-
orants for the textile industry. To enhance the contribu-
tion to the circular economy, innovative technologies 
including using green solvents will be focused to inves-
tigate the possibility of isolating bioactive compounds 
sustainably. This paper critically considers floral waste 
such as roses and tulips, vegetable by-products such as 
tomato and cucumber crop residues, and garden waste 
like fall foliage. It also conducts and discusses a general 
outlook, including an order of magnitude estimate of the 
global potential of horticultural and vegetable produc-
tion streams. This review paper also points to the bottle-
necks that could hinder the implementation of advanced 
technologies, in which the parameter extraction, solvents 
used, superiorities, and drawbacks of various isolation 
methods are comprehensively studied.

2 � A general outlook on agricultural 
and horticultural production streams

This paper analyzes the phenolic-based agricultural by-
products in the context of global horticulture and veg-
etable production. The world’s largest ornamental mar-
kets in 2019 and fresh vegetable producers in 2020 are 
shown in Figs. 1 and 2 respectively. According to the 
vision of the Association Internationale des Producteurs 
de l’Horticulture (AIPH) in 2019 [21], China, Japan, and 
North America (the USA and Canada) were the major 
mature producer countries for both the production and 
consumption of the horticultural industry. From a global 
perspective, Europe will be one of the world’s most 
prominent actors in horticultural production and con-
sumption growth over the next decade, following the lead 
of major markets like China, Japan, and North American 

Fig. 1   Major producers of orna-
mentals in the world in 2019 
(adapted from [21])
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countries [23]. The global horticultural market was 
approximately USD 70 billion in 2017 and is expected 
to reach 100 billion USD by 2027. The Netherlands has 

been the international flower market leader for years, 
with a 60% market share. However, it is projected to 
decline to 35% in 2027, with continued market growth in 
absolute terms. The market growth decline of the Nether-
lands is related to the sharp forecast growth rate in Asia 
at 80%, and in Europe and North America at a relatively 
modest growth rate of 20% by 2027 [24].

Among flowers, roses are still the absolute number one in 
cut flower production, where red-colored roses represent 30% 
of the market. About 10 billion rose stems are sold annually 
worldwide. Otherwise, potted roses (80 million potted plants 
per year) and garden roses (220 million plants per year) are 
also important. In the economic overview of roses, the largest 
rose production areas are India (61,000 hectares) and China 
(14,348 hectares) [21, 25]. In the Netherlands, rose production 
has reduced rapidly, decreasing from 850 to 238 hectares in 
2016. The reduction in rose production in the Netherlands is 
more rapid than the overall decrease in total cut flowers [25]. 
Although the strongest rose production sites are outside Europe, 
the production of cut roses still shows promise in some coun-
tries such as the southern parts of Germany, France, and Italy 
because of their suitable conditions for rose cultivation [26].

Moreover, the world’s fresh vegetable production 
(Fig. 3) promptly increased between 2000 and 2019. In 
Fig. 3, the five main vegetable types accounted for 42–45% 
of the total amount during the period: tomatoes (16% in 
2019); dry onions (9%); cucumbers and gherkins (8%); 
cabbages (6%); and eggplants (5%). Generally, until 2020, 
Asia, particularly China and India, where tomatoes, onions, 
and cucumbers accounted for a considerable volume, pro-
duced the largest amount of vegetables [27]. The produc-
tion volume expansion in recent years therefore boosts 
biomass availability, opening new opportunities for recov-
ering and expanding the bioproducts field [28], especially 
its capacity as a good source of phenolic compounds [29].

Fig. 2   Global production of fresh vegetables in 2020; (a) by region 
and (b) worldwide (adapted from [22])

Fig. 3   Fresh vegetable produc-
tion globally from 2000 to 2019 
(adapted from [27])
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3 � Phytochemical compounds in plants

The main classes of polyphenols in plants include flavo-
noids, phenolic acids, tannins, stilbenes, and lignans. These 
polyphenolic compounds are presented in Fig. 4, and some 
chemical structures are illustrated in Fig. 5. Flavonoids and 
phenolic acids account for 60% and 30% of the total dietary 
polyphenols respectively [30]. Overall, phenolics are pri-
marily found in fruit and vegetables, including horticul-
tural and ornamental crops, teas, and cereals. They are often 
associated with mono- or polysaccharides and functional 
derivatives such as esters or methyl esters. Phenolics also 
possess various hydroxylation patterns, and they can appear 
in acylated and glycosylated forms [31].

The abundant phenolic compounds in some agricultural 
and horticultural by-products are exhibited in Table 1. 
Quercetin, phenolic acids, catechins, and tannins are the 
main compounds in rose plants’ leaves, buds, and flowers 
[32–35]. Other chemical constituents include flavonoids, 
triterpenes, polysaccharides, fatty acids, organic acids, 
carotenoids, vitamins, and essential oils. Specifically, 
the phenolic compounds in rose leaves such as ellagitan-
nins (73.69 mg/g of plant dry weight (DW)), gallotan-
nins (21.23 mg/g of plant DW), and hydroxycinnamates 
(1.47 mg/g of plant DW) were found to be significant. The 
report also showed that petals accumulated anthocyanins 
(ANCs), flavonoids (flavonol and dihydroflavonols), and 
water-soluble polysaccharides, while root samples con-
tained catechin and proanthocyanidins [34].

The fall foliage presents an attractive opportunity to 
obtain valuable polyphenolic compounds. Manninen et al. 
[36] studied the collected fall leaves to extract carotenoids 
and ANCs. The ANC content varied from 0 to 2.8 mg/g 
of plant DW, with an average of 0.6 mg/g, and carotenoid 
content ranged from 0 to 83 mg/g, with an average of 
26 mg/g. Lisandru et al. [37] studied the extracts from 
cherry fall leaves. They observed that the carotenoid con-
tent was more dominant than the ANC content, and the 
ANC composition was inversely proportional to carot-
enoid yield.

From the perspective of agricultural by-products, Silva 
et al. [38] found phenolic compounds such as gallic acids, 
chlorogenic acid, rutin, caffeic acid, ferulic acid, and 
quercetin were abundant in this order in tomato plants 
comprising stems, leaves, and roots. Another study by 
Guuntekin et al. [39] reported that the number of phenolic 
compounds was highest (7.14%) in the extract of tomato 
stalks compared to other plants. For the most widely 
grown vegetables in Europe and the USA, around 33 kg 
of leaf and stem biomass is gathered for every 100 kg of 
tomato fruit harvested. Each tomato plant produces an 
average of 0.75 kg of leaf biomass, resulting in a total of 
15 tons per hectare [40].

In addition, cucumber (Cucumis sativus L.) stems are 
unique in that they contain sphingolipid glycosides, which 
distinguishes them from other field residues [41–43]. An 
equivalent amount (36.6%) of stem and leaf biomass is 
found in cucumber plants grown in the greenhouse under 

Fig. 4   Examples of typical polyphenolic compounds in plants
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supplemental light [44]. C. sativus L. leaf extracted with 
acetone contains alkaloids, glycosides, steroidal terpenes, 
flavonoids, saponins, reducing sugars, and tannins [45]. The 
identification of chemical compounds reveals phenols, flavo-
noids, carotenoids, alkaloids, glycosides, tannins, and terpe-
nes in methanol (MeOH) and ethanol (EtOH) extract from 
cucumber leaves (C. sativus L.) [46]. Meanwhile, Mallik 
and Akhter [47] claimed that the EtOH extracts of cucum-
ber leaves and stems showed the absence of flavonoids and 
reducing sugars, while the presence of alkaloids, glycosides, 
saponins, sterol, and tannins was found instead. Table 2 lists 

all the conditions, solvents used, methods, and extracted bio-
active compounds from agricultural and horticultural by-
products in detail.

3.1 � Flavonoids

Flavonoids form one of the major subclasses of polyphenols, 
representing the most significant group of compounds among 
over one million metabolites in plants. They consist of two 
or more aromatic rings, and each ring possesses at least one 
hydroxyl group and is linked by a three-carbon bridge [52–54]. 

Fig. 5   Chemical structures of some polyphenols

Table 1   Abundant phenolic compounds in some agricultural and horticultural by-products

Sources Abundant phenolic compounds

Fall foliage Anthocyanins and carotenoids
Crop residues from roses (leaves, stems, buds) Quercetin, phenolic acids, tannins (ellagitannins, gallotannins, and proanthocyanidins), 

hydroxycinnamates, flavonoids, and catechins
By-products of tomato (leaves, stems, buds) Gallic acids, chlorogenic acid, rutin, caffeic acid, ferulic acid, and quercetin
By-products of cucumber (leaves, stems, buds) Flavonoids, carotenoids, alkaloids, glycosides, sterols, saponins, tannins, sphingolipids 

glycosides, and terpenes
Tulip biomass Tulipalins
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Flavonoids have the most comprehensive color range, from 
pale yellow to intense violet. Moreover, flavonoids protect 
against ultraviolet (UV) radiation due to their capacity to 
absorb the most energetic solar wavelengths, e.g., UV-B and 
UV-A. This property of flavonoids is the decisive factor for 
aquatic plants’ evolution and terrestrial existence [55, 56].

Flavonoids primarily have six major subclasses based 
on their complexity in the chemical structure: flavones, fla-
vanols, isoflavones, flavonols, flavanones, and ANCs [57]. 
Among these subclasses, ANCs are studied more compre-
hensively than others, as they are attractive components of 
the targeted crop residues. ANC originates in flavonol; it 
has the basic structure of the flavylium ion. ANC is in the 
form of a glycoside, while an anthocyanidin is known as 
an aglycone. Anthocyanidins are grouped into 3-hydroxy-
anthocyanidin, 3-deoxyanthocyanidin, and O-methylated 
anthocyanidins, whereas ANCs are in the forms of antho-
cyanidin glycosides and acylated ANCs [58]. Flavonoids are 
well-known for the red, blue, and purple colors that ANCs 
produce [36, 58, 59].

ANCs are water-soluble and stored in cell vacuoles. The 
empirical formula for the flavylium ion of ANC is C15H11O+, 
with a molecular weight (MW) of 207.24 g/mol. ANCs, 
glycosylated ANCs, and proanthocyanidins (polymers that 
produce ANCs when hydrolyzed, or “condensed” tannins) 
contribute to the color of flowers and fruit, with a range from 
reddish purple to intense blue. The most common ANCs are 
cyanidin, pelargonidin, peonidin, petunidin, and malvidin. 
ANCs are present in higher plants, e.g., in juvenile leaves 
and senescing plants [58]. For example, in the fall foliage 
of sugar maple trees (Acer saccharum), the red expression 
is influenced by foliar nitrogen concentration. Leaves with 
lower concentrations of nitrogen tend to turn red earlier than 
those with higher concentrations [60].

3.2 � Phenolic acids

Phenolic acids form one-third of phenolic compounds. 
They are carboxylic acids derived from either benzoic or 
cinnamic acid. They can be in free and conjugated, and 
soluble and insoluble states. Hydroxycinnamic acids have 
nine carbon atoms (C6–C3), but those found in vegetables 
have seven carbons. Typically, they have a benzene ring, a 
carboxylic group, and one or more hydroxyl and methoxy 
groups in the molecule [61]. In contrast, benzoic acids 
have seven carbon atoms (C6–C1), including gallic and 
protocatechuic acids [61, 62]. Hydroxycinnamic acids 
comprise 4-hydroxycinnamic acid, ferulic acid, caffeic 
acid, and sinapic acid. Hydroxybenzoic derivatives include 
4-hydroxybenzoic acid, protocatechuic acid, vanillic acid, 
gallic acid, and syringic acid [62]. Hydroxybenzoic acids 
can be found in very low contents in edible plants, while 
hydroxycinnamic acids are one of the most abundant 

phenolic compounds. Hydroxycinnamic acids are present 
in coffee, medicine plants, fresh fruit, and vegetables in 
free form (rarely) or associated with polysaccharides in 
the cell wall [63, 64]. For example, ferulic acids are linked 
to polysaccharides (cellulose, hemicellulose, pectin, and 
glycoprotein), lignins, and suberin [65].

3.3 � Tannins

Tannins are a heterogeneous group and complex phenolic 
compounds with MWs ranging from intermediate to very 
high (500–30,000 Dalton (Da)) [66]. Tannins obtain from 
12 to 16 phenolic groups and 5 to 7 aromatic rings per 
1000 Da. Because of the numerous hydroxyl groups in their 
structure, it has been demonstrated that tannins possess 
various biological activities, e.g., antioxidant and antitumor 
activities [67, 68]. Tannins can conjugate with proteins, 
carbohydrates, nucleic acid, and alkaloids, either by non-
covalent bonds primarily driven by hydrogen bonding 
and hydrophobic interactions or by covalent binding after 
polyphenol activation [68, 69].

Tannins fall into two main classes: hydrolyzable tannins 
and condensed tannins. The other two classes of tannins are 
complex tannins and phlorotannins. Specifically, hydrolyz-
able tannins are subdivided into gallotannins and ellagitan-
nins. Gallotannins produce gallic acids and their derivatives 
from hydrolysis, while ellagitannins produce ellagic acid 
after hydrolysis [70]. Moreover, condensed tannins have 3 
to 8 repetition units and mainly originate in flavan-3-ol and 
flavan-3,4-diol structures [70, 71]. Hydrolyzable tannins can 
be found in the fruit, leaves, seeds, and bark of plants of the 
Leguminosae, Fabaceae, Combretaceae, and Anacardiaceae 
families [72]. On the other hand, condensed tannins represent 
90% of total commercial tannins worldwide. Condensed tan-
nins and their flavonoid precursors are widely distributed in 
nature, particularly in various Acacia (wattle or mimosa bark 
extract), Schinopsis (quebracho wood extract), Tsuga (hem-
lock bark extract), Pinus (bark extract), and Rhus (sumach 
extract) species [73].

3.4 � Essential oils from flowers

The volatile organic compounds are called essential 
oils, with a molecular weight lower than 300 g/mol. 
These volatile compounds have a high vapor pressure at 
atmospheric pressure and room temperature. They belong 
to various chemical classes, e.g., alcohols, ethers or oxides, 
aldehydes, ketones, and esters [74]. However, the amounts 
and types of essential oil are determined by the plant parts 
e.g., leaves, buds, fruits, flowers, herbs, twigs, bark, wood, 
roots, and seeds. Another decisive factor is the plant species, 
as they are derived from terpenes and their oxygenated 
derivatives such as aromatic terpenoids, aliphatic acid esters, 
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and phenolic compounds [75]. The average extracted oil 
content in flowers is 0.035% but varies from 0.03 to 0.05%. 
They typically have a yellow to yellow-green color and 
characteristic odor [76, 77].

3.5 � Carotenoids in fall leaves

ANCs are not the only color-producing compounds present in 
fall leaves. Additionally, carotenoids contribute to the bright 
fall colors, as they absorb light in the range of 400–500 nm. 
Unlike ANCs, carotenoids are synthesized during the 
growing season to enable or protect photosynthetic light 
capture [37, 78]. Carotenoids are non-polar compounds 
belonging to a class of isoprenoid compounds. They are 
organic molecules of a C40 polyene backbone containing 
terminal ionone rings at both ends. The conjugated double 
bonds of carotenoids make them good light absorbers. The 
absorbed wavelengths depend on the number and nature of 
double bonds and other attached substituents. Carotenoids 
are classified into two types: (1) hydrocarbon carotenes, 
which include α-carotene, β-carotene, γ-carotene, and 
lycopene; (2) xanthophylls, which contain oxygen and 
therefore differ from carotenes. Xanthophylls are therefore 
more polar compounds than carotenes [15, 79–82]. 
Carotenoids occur in plants with 0.07–0.2% of the dry mass. 
They appear primarily as free carotenoids in leaves and as 
esterified carotenoids in other tissues. They are commonly 
found in higher plants’ flowers, fruits, leaves, and roots, e.g., 
carrots, peaches, tomatoes, paprikas, annatto, and pumpkins 
[15]. Most leaves contain similar carotenoid composition, 
while flowers possess individually characteristic carotenoid 
profiles, which rely on each plant species [79].

3.6 � Tulipalin from tulip biomass

Tuliposides are the glucose esters of 4-hydroxy-2-methyl-
enebutanoate and 3,4-dihydroxy-2-methylenebutanoate, the 
major secondary metabolites in tulips (Tulipa gesneriana). 
Tulipalins are tulipalin A and tulipalin B, which are the 
lactonized aglycons of tuliposides: 6-tuliposide A 6-O-(4′-
hydroxy-2-methylenebutanoyl-D-glucopyranose and 6-tuli-
poside B 6-O-[(3S)-3,4–dihydroxy-2-methylidenebutanoyl]-
D-glucopyranose [83, 84]. In nature, the 6-tuliposide A and 
B were found in tulip tissues such as petals, pistils, leaves, 
stems, bulb scales, and roots [85]. The tuliposides are unstable 
and are readily chemically converted into their correspond-
ing lactone forms, tulipalin A and tulipalin B (Fig. 6) [84]. In 
general, tulipalins have the common structure α-methylene-
γ-butyrolactone, of which tulipalin A is the simplest 
α-methylene-γ-butyrolactone first extracted from Erythronium 
americanum for its anticancer properties [49, 86].

4 � Bioactive compounds as antimicrobial 
agents and colorants for textiles

Apart from being known as plant-derived colorants, bioac-
tive components from plants are also acknowledged for their 
antimicrobial properties [87, 88]. In textiles, the growth 
of bacteria on fabrics causes undesirable effects such as 
unpleasant odors, skin infections, fabric stains, discolora-
tion, and material deterioration. Hence, microbial activity 
prevention from plants becomes necessary to contribute 
bioproducts for textiles. For example, ANCs have not only 
benefited from antioxidant and anti-obesity effects, but they 
also possess antimicrobial activity against a wide range of 
microorganisms. ANCs extracted from blueberry, bilberry, 
raspberry, blackcurrant, and strawberry can inhibit the 
growth of gram-positive and gram-negative bacteria [58, 
89–91]. Additionally, antimicrobial finishing in clothing 
can prevent the formation of foul odors due to bacterial 
processes in sweat. Colorful and antibacterial ANCs from 
Cinnamomum camphora waste (fall leaves) extract were 
considered a potential dyeing agent for wool fibers, valor-
izing their application in biomedical textiles [92].

Food, cosmetics, and textile industries also use micro-
bial carotenoids for coloration purposes. In textile produc-
tion, carotenoids are investigated as potent antimicrobial 
agents [78]. Carotenoids were extracted from annatto by 
different solvents, and their microbial inhibition activities 
were observed against Escherichia coli, Klebsiella pneu-
moniae, Pseudomonas aeruginosa, Bacillus subtilis, and 
Staphylococcus aureus. The leaf extracts displayed high 
antibacterial activity even in low concentrations, while 
the fruit extracts obtained a similar effect in higher con-
centrations [93].

Tannins have an antibacterial effect, which is explained 
by the ability to pass through the bacterial cell wall up to 
the internal membrane, interfere with cell metabolism, and 
destroy the cell [94]. The abundance of tannins in various 
natural dyes is reported to contribute strong antibacterial 
effects against common pathogens [95, 96]. Gupta et al. [97] 
studied the antibacterial effect of tannin-containing natural 
dyes against bacteria. Besides E. coli and K. pneumonia, 
Proteus vulgaris is known to convert urea to ammonia, 
resulting in unpleasant odors. The study claimed that most 
of the tested substances were more effective than the com-
mercial antimicrobial Fabshield, as 99% of these bacterial 
colonies were reduced. In another article, Zhang et al. [98] 
discovered that tannic acid–treated silk also exhibited excel-
lent antibacterial properties, with an inhibition rate of 99%. 
Tannin with a metal salt is therefore suggested for improv-
ing the antibacterial properties of hospital textiles. It could 
also be applicable in sports or domestic clothing to avoid 
unpleasant odors [99].
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Essential oils also act as antimicrobial compounds and 
alternatives for treating infectious diseases, e.g., a disease 
caused by Herpes simplex virus [100, 101]. By inducing 
disturbances in membrane-embedded proteins, hindering 
respiration, and altering ion transportation processes, essen-
tial oils exhibit significant microbial prevention properties 
that ultimately cause bacterial death [102]. Sufficient in vitro 
data also proved that essential oils could be utilized as anti-
bacterial agents to inhibit a wide range of bacterial strains, 
comprising Listeria monocytogenes, Salmonella typhimu-
rium, E. coli O157:H7, Shigella dysenteriae, S. aureus, etc. 
[103, 104]. Walentowska and Foksowicz-Flaczyk [105] suc-
cessfully applied essential oil from thyme. They evaluated 
its potential to restrain bacterial growth in linen and cotton 
fabric. The results showed that using the essential oil of 
thyme as a finishing agent could highly impede the growth 
of bacteria for linen-cotton type fiber blends.

For tulipalins from tulip biomass, there are seldom studies 
that use tulipalins as antimicrobial agents for textiles, despite 
tulipalins and tuliposides showing strong antimicrobial 
effects [106]. For example, tulipalins can resist the growth of 
cancer cells [86], and some gram-positive and gram-negative 
bacteria [83] such as methicillin-resistant S. aureus [107].

5 � Extraction methods

The extraction of antimicrobials from natural sources 
is one of the most essential steps before the treatment 
of textile to achieve the target antimicrobial activity. 
In general, the conventional extraction techniques are 
maceration, Soxhlet extractions, and hydro-distillation 
[108]. Maceration is an inexpensive and straightforward 

technique for obtaining essential oil and bioactive 
compounds. In this method, the material is soaked in a 
container by immersing the sample in the solvent with 
or without stirring. This method consumes extensive 
solvents and time, and the extraction yield is low. 
Solvent and time consumption can be reduced by using 
Soxhlet extraction; yet in Soxhlet extraction (automatic 
continuous extraction), thermo-labile compounds may 
be degraded during the procedure [109, 110]. On the 
other hand, hydro-distillation is a traditional technique 
for extracting essential oils from plants. Organic solvents 
are not involved in this process and can be performed 
before dehydration. There are three types of hydro-
distillation: water, water and steam, and direct steam 
distillation. It has three steps: hydro diffusion, hydrolysis, 
and decomposition by heat. However, volatile components 
in plants may be lost when high extraction temperatures 
are employed, which limits their use for thermo-labile 
compound extraction [108].

Traditionally, solvent extraction is the common method 
for isolating bioactive compounds, which applies the mecha-
nisms of a solid matrix [111]. The diffusivity and solubil-
ity of bioactive compounds from raw materials promote 
the extraction process [110]. A solvent is chosen for its 
selectivity and the ability to extract phenolic compounds 
(Table 3). The solvent affects the constituent elements in 
plant cells through a chemical or biophysical alteration. For 
example, MeOH is used to extract lower MW polyphenols. 
Alternatively, higher MW polyphenols are extracted with 
aqueous acetone. Water is a suitable solvent for extract-
ing phenolic acids and their glucosides. It provides higher 
extraction yields than organic solvents such as MeOH, 
EtOH, or butanol, particularly under ultrasonic treatment 
[112, 113]. Moreover, flavonols such as quercetin show high 
solubility in alcohols, as higher isolation yields are obtained 
with an increasing percentage of EtOH up to 70% v/v [114]. 
A few common organic solvents can be listed, from least 
polar to most polar, such as hexane < chloroform < ethyl 
acetate < acetone < EtOH < MeOH < water [115, 116]. In 
addition to the organic solvents, some reagents or salts are 
utilized industrially to isolate bioactive compounds. As an 
example of tannin extraction, tannin solution in water gen-
erally results in an acidic environment; it forms insoluble 
precipitates due to the tannin self-condensation reaction. On 
an industrial scale, reagents such as sodium sulfite (Na2SO3), 
sodium carbonate (Na2CO3), sodium bisulfite (NaHSO3), 
EtOH, or sodium hydroxide (NaOH) are therefore normally 
used [71, 117]. The addition of alkali will increase the pH 
and the incorporation of EtOH will improve extraction effi-
ciency [118]. Similarly, the addition of salts such as Na2SO3 
and Na2CO3 increases the extraction yield of tannins and 
reduces the viscosity of the extracts derived from the tannin 
self-condensation reactions [119].

Fig. 6   Chemical structures of 6-tuliposide A (1a), 6-tuliposide B 
(1b), tulipalin B (2a), tulipalin B (2b)
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Nevertheless, the observed drawbacks of conventional 
extraction processes are, e.g., longer extraction times, expen-
sive and high-purity solvents, an excessive amount of energy 
and solvent used, low extraction selectivity, and poor-quality 
extracts [108, 120]. Various novel technologies have there-
fore been investigated to overcome these challenges. The 
non-conventional extraction techniques use green solvents, 
including pressurized fluids, deep eutectic solvents (DESs), 
bio-based solvents, some auxiliaries such as microwave, 
pulse electric field, and ultrasound [112, 121, 122].

5.1 � Solvent extraction

Besides techniques based on the use of compressed fluids 
as extracting agents and methods with advanced auxiliaries, 
finding appropriate solvents having low toxicity and dimin-
ished environmental effects, elevated extraction ability, and 
biodegradability is important [123]. Ionic liquids (ILs) are 
known as novel solvents for extracting phenols besides other 
green solvents such as hot water or conventional organic 
liquids. ILs are defined as salts that present as liquids at 
room temperature and have melting points or glass transi-
tion temperatures below 100 °C. ILs are better solvents than 
water, as they have greater solubility power. Depending on 
their unique chemical properties, ILs gain many merits in 
destroying the cell walls and capturing the targets by chemi-
cal selectivity, thus, improving the efficiency of the extract 
in a short time. On the other hand, ILs gain some major 
disadvantages such as a high cost and poor solvent recovery 
[123–126]. ILs are classified based on their physical proper-
ties, which are named as neutral ILs, acidic ILs, basic ILs, 
ILs with amphoteric anions, functionalized ILs, protic ILs, 
chiral ILs, supported ILs, bio-ILs, poly-ILs, and energetic 
ILs [127]. Because of a variety of ions combination, ILs 
can be acknowledged as “designer solvents” that alter their 
physical properties to tackle the challenges of common 
volatile organic solvents [128]. In solid–liquid extraction, 
ILs were used to extract flavonoids from Larix decidua tree 
bark, in which [C4C1im]Br (25% wt) was evaluated to be 
the best solvent. The results from the antioxidant activity of 
extracts, energy-saving process, and flavonoid extractabil-
ity were very positive, confirming their potential in differ-
ent applications [129]. Sillero et al. [130] developed a new 

procedure to extract rutin from the leaves of A. theophrasti 
using IL [C4mim]Br based on ultrasonic- and microwave-
assisted extraction. The isolated rutin from that method 
yielded 5.49 mg/g, increasing 2.01 folds than that of heating 
reflux extraction with MeOH.

Since 2003, another advanced selection in solvent extrac-
tion has been the substitution of traditional solvents for 
DESs, a novel technology still in development. Principally, 
DES is usually known as a subclass of ILs because of many 
similar characteristics, such as low volatility, low flamma-
bility, and broad electrochemical and thermal stability win-
dows. However, these materials are considered inexpensive 
to synthesize and can be produced by biodegradable and 
non-toxic constituents [131]. DESs contain large and non-
symmetric ions that possess lattice energy and thus have 
low melting points [134]. Also, DESs can be characterized 
by a very large depressing freezing point. They are liquid 
at temperatures lower than 150 °C, and most of them are 
liquid between room temperature and 70 °C [135]. In gen-
eral, DESs are obtained by the complexation of a non-toxic 
quaternary ammonium salt with a metal salt or a naturally 
derived uncharged hydrogen-bond donor (organic acids, pol-
yalcohols, sugars, amino acids) in a particular molar ratio 
[121, 123]. At the optimum component ratio, the mixture 
obtains the deepest eutectic point. When the temperature 
exceeds the eutectic point, the mixture will be liquid. Oth-
erwise, it will be solid [129]. For example, ammonium salt 
mixed with urea in the ratio of 2:1 (urea:salt) leads to the 
freezing point from –38 to 113 °C for the corresponding 
DES. In addition, the anion of choline-derived salts also 
influences the freezing points of DESs. The freezing point 
of DES made of choline-derived salts and urea decreases 
in the order: F– > NO3

– > Cl– > BF4
–, proposing a correla-

tion with the hydrogen bonding strength [135]. Because of 
the affordable prices, biodegradability, pharmaceutically 
acceptable toxicity, and sustainability, DESs gain significant 
attraction as alternatives to conventional solvents to extract 
phenolic compounds [136–139], including bioactive flavo-
noids [129–133]. As an example, rutin was extracted from 
flower buds of Sophora japonica by choline chloride–based 
DESs. The solvents showed extremely low toxicity and sub-
stantial biodegradability [140]. In a different paper, choline 
chloride–betaine hydrochloride–ethylene glycol formed 

Table 3   Examples of some extracted bioactive compounds by different solvents (adapted from [108])

Water EtOH MeOH Chloroform Dichloromethane Ether Acetone

Anthocyanins
Tannins
Saponins
Terpenoids

Tannins
Polyphenols
Flavonols
Terpenoids
Alkaloids

Anthocyanins
Tannins
Saponins
Terpenoids
Flavones
Polyphenols

Terpenoids
Flavonoids

Terpenoids Alkaloids
Terpenoids

Flavonoids
Tannins
Phenolic diterpenes
Terpenoids (carotenoids)
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DES with the mole ratio of 1:1:2, combined 20% v/v water 
was proposed to extract and separate flavonoids. The study 
indicated that DESs could be used as green solvents for the 
extraction of active components in plant matrices [141]. 
Despite there are many possible combinations between qua-
ternary ammonium salt and hydrogen-bond donors to make 
DESs, the predictive comprehension of structure–property 
relationships of DESs is ambiguous. For instance, tunning 
high viscosity of DESs is not approached entirely; thus, it 
hinders applications of DESs in many technologies [131]. 
As a consequence, to reduce the viscosity, increase the mass 
transfer, and improve the extraction efficiency, water is often 
used to control the polarity of DESs and the dissolution of 
the target compounds [142, 143].

Bio-based solvents can be an alternative besides ILs and 
DESs, which are produced by renewable sources. The raw 
materials that are considered feedstocks in biorefinery are 
usually: agricultural, such as waste from production; for-
estry, and wood processing; processing waste from other 
industries, and biomass of marine origin, including algae 
[144]. The manufacture of bio-based solvents consists of the 
fermentation of vegetable oils, carbohydrates, and the steam 
distillation of wood [145]. The most common bio-based 
solvents are 2-methyl tetrahydrofuran, glycerol, ethanol, 
γ-valerolactone, p-cymene, and D-limonene. Those solvents 
are produced from feedstocks such as cellulose, hemicel-
lulose, lignin, and starch [123, 146]. Although they origi-
nate from renewable feedstocks, it is essential to mention 
the energy and solvent consumptions, high cost, and waste 
generation possibilities. Those factors might influence the 
valorization of those green solvents [147]. EtOH, ethyl ace-
tate, ethyl lactate, and D-limonene were selected to recover 
fucoxanthin (an oxygenated carotenoid) from P. tricornu-
tum under pressurized conditions. Among them, D-limonene 
was the most selective bio-based solvent, although it was 
not able to extract all fucoxanthin present in biomass unless 
supercritical fluid under continuous conditions was added 
[148]. Santos and Martins [149] evaluated the influences of 
bio-based solvents EtOH, acetic acid, and water on the con-
tent of ANC, flavonoids, and phenolics from onions (Allium 
cepa). The extracts from inions exhibited great antioxidant 
activities in ABTS, DPPH, and FRAP assays, demonstrating 
efficient antimicrobial activity against gram-positive bacte-
ria. Especially, bioactive compounds isolated by EtOH 60% 
v/v showed the best performance that phenol, ANC, and 
flavonoid content were 3.4, 2.5, and 4.45 times higher than 
the other solvents, respectively.

5.2 � Supercritical fluid extraction

A supercritical fluid (SF) is a liquid with a temperature and 
pressure above its critical point. SF can diffuse like gas through 
the solid matrix and dissolve materials like a liquid [150]. SF 

behaves as a single phase and retains the properties of both gas 
and liquid. Because SF lacks a phase boundary between gas 
and liquid, it has no surface tension either. The most significant 
advantage of SF is its tunability. Close to the critical point, 
even small changes in temperature and pressure have drastic 
effects on its density. SF can be adjusted to a more gas-like or 
liquid-like mobile phase, depending on the material’s solubil-
ity [151]. The selection of SF is determined by factors such as 
safety, hazards, energy requirements, and operability [152].

Among SFs, compressed CO2 fluid is used to extract bio-
active compounds. A generalized vapor pressure curve of 
CO2 and its end are presented in Fig. 7. As the nature of 
supercritical CO2 fluid (scCO2) is between gas and liquid, 
it has unusual properties compared to other solvents, e.g., 
strong solubility and a large mass transfer coefficient; it is 
non-toxic and easily accessed [153, 154]. However, scCO2 
has a disadvantage: It is a non-polar solvent. It therefore 
needs co-solvents or modifiers like EtOH, MeOH, water, or 
combinations of co-solvents to increase the polarizability 
of scCO2 and strengthen the solvating power. The different 
co-solvent interactions strongly enhance solubility. On the 
other hand, scCO2 can work as a co-solvent if the mixture 
contains at least 60% EtOH or water. Conversely, it may act 
as an anti-solvent when the extract is insoluble in scCO2 
during the depressurizing step [155, 156].

Jiao and Kermanshahi [157] used scCO2 to extract haskap 
berries with water as a co-solvent. ANCs were successfully 
extracted employing 45 × 106 Pa, 65 °C at 15–20 min. The 
data showed that using scCO2 and water as a co-solvent 
would result in a higher extraction yield than using water or 
EtOH as a solvent, 52.7% and 38.3% respectively. Studies 
by B. Wang et al. [158] and Lao et al. [159] also showed 
that high-pressure CO2–H2O (107 Pa, 60 °C, 15–20 min) 
generated more colorants from red cabbage and purple 
sweet potato respectively than traditional extraction methods 
with water and 70% acidified EtOH. Both studies revealed 
the feasibility of the scCO2–H2O extraction method as a 
promising technology in the future because of higher extract 
yields. Despite this, this technology has yet to be applied in 
the industry and is not used on a large scale because of the 
high cost of the equipment, enormous technical investments, 
and difficult control parameters [122, 124].

5.3 � Pressurized hot water extraction

Pressurized hot water extraction (PHWE) or “subcritical” 
water extraction (SWE) is operated between 100 and 
374 °C. Usually, the temperature ranges from above the 
boiling temperature (100 °C, 105 Pa) to below the critical 
temperature (374 °C, 221 × 105 Pa). The pressure is therefore 
adjusted to maintain the liquid state of water during the 
extraction. PHWE is superior because of the fast extraction 
time and high content of the collected phenolics compounds 
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[160]. In PHWE, water can be heated up to 200 °C, and 
the change in the dielectric constant of the water with the 
temperature makes water act like an organic solvent. For 
example, the dielectric constant of water at 200 °C is about 
36, roughly similar to MeOH [112].

The water-based extraction process has been reported 
to be appealing because of its ready-for-use and cost-free 
availability, nontoxicity, non-flammability, and acceptance 
as an eco-friendly solvent [161]. Both high pressure and 
temperature will disrupt the surface equilibrium. The 
elevated temperature can overcome some obstacles such as 
the solute-matrix interaction caused by van der Waals forces, 
hydrogen bonding, dipole attraction of the solute molecules, 
and active sites in the matrix [162]. Compared to SF 
extraction, pressurized liquid extraction, including water as 
a fluid, provides an inert environment and protects samples 
from light and oxygen. Additionally, higher temperatures 
and pressure increase the extraction capacity. Otherwise, the 
essential advantage of supercritical fluid extraction is the 
increased capacity of diffusion by the extraction fluid for 
accessing these compounds in the matrix [163, 164].

In PHWE, the use of the optimal high temperature is pre-
ferred to the highest temperature. The typical extraction pres-
sure is 5 × 106–107 Pa, but the extraction time depends on the 
operating parameters such as the amount of water used, tem-
perature, and pressure [160]. PHWE at 100–110 °C appears 
to be a potent alternative to organic solvents in extracting 
polyphenolic compounds [165]. The tannins were isolated 
by PHWE from Phyllanthus niruri at a temperature of 100 
°C and pressure of 107 Pa. The PHWE achieved the highest 
overall tannin and corilagin yield with the shortest extrac-
tion time compared to the Soxhlet and SF extraction methods 
[166]. In another study, gallic acids, ellagic acids, and corilagin 

from Terminalia chebula Retz. PHWE extracted fruits at tem-
peratures (120–220 °C) and waterflow rates (2–4 mL/min) at 
a pressure of 4 × 106 Pa. The extracts had the highest phenolic 
compound content with the highest antioxidant activity, reveal-
ing the efficiency of PHWE [167]. Chopping or macerating 
materials together with the homogenization steps can also 
increase economic feasibility for industrial purposes [168].

5.4 � Ultrasound‑assisted extraction

Ultrasound-assisted extraction (UAE) uses the cavitation and 
strong shear force generated by ultrasound with frequencies 
ranging between 20 kHz and 100 MHz to improve the extrac-
tion and shorten the extraction time [169, 170]. This sonica-
tion forms microbubbles, oscillates quickly, and eventually 
collapses strongly when the acoustic pressure is sufficiently 
high. The collapse occurs near the solid surface to produce 
high-speed micro-jets of liquid onto the surface. When these 
jets are associated with shocking waves, they can break solid 
surfaces. The behavior is based on two contrasting mecha-
nisms. The first describes the high pressure and temperature 
produced in the bubbles during adiabatic compression. It is 
accountable for the cleavage of molecular bonds and radical 
forming. The second involves micro-discharges because of 
the high electrical field [169, 171, 172].

UAE is an inexpensive and valuable technology that does 
not require complex equipment. UAE has been broadly utilized 
in the extraction of compounds from leaves [173], stalks [114], 
fruit and berries such as strawberries [174], and plant seeds 
[175]. The main factors during extraction are ultrasound power, 
temperature, a solvent with low vapor pressure, extraction time, 
and sonication mode (continuous or pulsed). These elements 
determine the extracts’ yield and composition. Non-optimized 

Fig. 7   Pressure–temperature 
phase diagram of pure CO2
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parameters could lead to the degradation of thermo-labile 
compounds. If the solvent is too viscous, it will increase the 
wave amplitude because it is necessary to obtain the mechani-
cal vibrations for the cavitation [171, 172, 176]. A temperature 
range between 20 and 70 °C can increase the extraction yield. 
The influence of temperature is explained by the increase of 
the amount of cavitation bubbles, large solid–liquid contact 
areas, and solvent diffusivity improvement. The effect there-
fore enhances the desorption and solubility of the interest com-
pounds. However, if the temperature is near the solvent’s boil-
ing point, the extraction yield will decrease due to the thermal 
instability of biomass which causes the degradation of bioactive 
compounds [171, 177, 178]. Notably, most of the works in UAE 
focus on the application of continuous ultrasound field, and few 
researchers considered pulsating acoustic field. Although there 
are no essential differences between modes of UAE such as 
efficiency of extraction and times, pulse mode results in great 
energy saving compared to continuous UAE, better temperature 
control, and a reduction in corrosion on the ultrasound probe tip 
[176, 179–181].

UAE coupled with DES was considered an alternative 
green method to conventional technologies. Thus, combin-
ing DESs and UAE has the benefits of both methods, such as 
a shorter extraction time and lower solvent consumption than 
conventional solvent extraction [182, 183]. Sukor et al. [184] 
introduced intensified DES-mediated ultrasound extraction 
of tannic acids from onion peels. Using DES in extraction 
gave a higher tannic acid yield than MeOH. The concentra-
tion of tannic acids was maximized by adjusting the DES 
ratio to 1:1, the solid-to-solvent ratio to 1:10, and the duty 
cycle to 10%. Aslan Türker and Doğan [185] used a mixture 
of choline chloride with five different components. Among 
the tested DESs, choline chloride–based DES prepared with 
citric acid obtained the best solvent. This finding demon-
strated that ultrasound could be used as a substituent energy 
source. Using DESs would also improve the flavonoid yield 
and maintain the color of the black carrot extract.

5.5 � Pulse electric field extraction

The pulse electric field (PEF) method or pulse electric field 
pre-treatment is known for improving the pressing, drying, 
extracting time, and diffusing process without using a high 
temperature [108, 186]. It is an emerging non-thermal green 
process for isolating phytochemical compounds from plant 
parts such as leaves, roots, and fruit [152]. In principle, PEF 
destroys cell membrane structures to improve extraction. An 
electric potential pass through the membrane of a living cell 
in the electric field. The molecules are separated accord-
ing to the charge in the cell membrane, whose functions 
are based on the dipole nature of the membrane molecules. 
Afterward, a drastic permeability increase is induced by the 

repulsion occurrence when the transmembrane potential 
exceeds 1V [108].

The impact of PEF on bioactive compounds depends 
on the field strength, specific energy input, pulse number, 
treatment temperature, and properties of the materials to 
be treated [187]. PEF treatment at a moderate electric field 
(from 500 to 1000 V/cm for 10–4–10–2 s) is found to damage 
the cell membrane of plant tissue with localized heating, 
resulting in the inactivation of enzymes and microorganisms. 
Hence, this can prevent the degradation of heat-sensitive 
compounds [188–190]. The industrial batch PEF extraction 
of polyphenols from grape peels is normally carried out 
at 50–60 °C for 20 h [191]. Corrales et al. [192] extracted 
ANCs from grape by-products using different isolation 
methods. The result indicated that PEF remarkably enhanced 
the extraction of ANC monoglucosides compared to the 
number of acylated glucosides extracted. PEF treatment is 
preferable before the maceration step in the winemaking 
process to reduce the extraction time. The performance of 
the ANC content and total extracted polyphenolic amount 
increased significantly after the maceration process when the 
electric field strength increased from 5 to 10 kV/cm [193].

5.6 � Microwave‑assisted extraction

Compared to conventional solid–liquid extraction, microwave-
assisted extraction (MAE) gains higher efficient recovery and 
superior product quality at a low cost. MAE uses microwave 
energy to generate the molecular movement rotation of liquid 
under a permanent dipole, which results in the fast heating of 
both solvent and samples. This technology extends efficiency 
and reduces extraction time with low solvent consumption and 
a high level of automation [194, 195]. During microwave heat-
ing, the temperature radiation elevates the temperature of sol-
ids and solvents, and the subsequent viscosity of the extract is 
reduced; it thus promotes the solubility of the compounds, e.g., 
tannins. In addition, microwave radiation breaks the plant cells’ 
microstructure. This leads to the reduction of the mass transfer 
resistance of the components and encourages the diffusion of 
components from the source materials [196, 197]. MAE has 
recently been applied to extract various plant resources such as 
purple sweet potato, red cabbage, blackberry, cranberry, and 
sour cherry. However, the utilization of MAE and UAE tech-
nologies should be controlled with caution, as these methods 
can destroy the structure of flavonoids and tannins by attributing 
high temperature and excessive vibration to the samples respec-
tively [122, 124].

5.7 � Extraction methods for tulipalins

Few studies focus on extracting tuliposides from tulip bio-
mass, despite the studies of their antibacterial activity [49, 



	 Biomass Conversion and Biorefinery

1 3

107]. Typically, α-methylene-γ-butyrolactones have been 
prepared by the organic synthetic method [198]. Neverthe-
less, researchers have used tulip biomass years later to recover 
α-methylene-γ-butyrolactones with facile synthetic schemes. 
Tuliposides are considered the storage form of active tulipal-
ins. Despite the conversion of tuliposides to tulipalins occur-
ring non-enzymatically in nature due to their chemical lability, 
they can be converted spontaneously to tulipalin under neutral 
to basic conditions in vitro [199, 200].

Generally, the precursors of tulipalins would be converted 
into their active counterparts under stress with ethylene gas 
or an enzyme-mediated condition [201]. For example, Kato 
et al. [49] facilely extracted tulipalins from tulip tissue (pet-
als). The extract was dissolved in cold water affording a 
tuliposide-containing extract of the tulip flowers. Potassium 
phosphate (KPi) buffer was then added to the extract. The 
procedure was then followed by incubation with and without 
the partially purified tuliposide-converting enzyme from the 
tulip bulb. The results showed that the yield of tulipalins was 
significantly higher than the extract incubated without tuli-
poside-converting enzyme, suggesting the potential applica-
bility of tulipalins production. The study also indicated that 
using non-polar organic solvents was more effective than 
solvents with alkenes.

Similarly, Nomura et al. [50] explained a novel method: 
tulipalin B was directly formed from the precursor glucose 
ester 6-tuliposide B by an endogenous Pos-converting 
enzyme. The compounds were suspended in KPi buffer for 
2 h at 4 °C. The combination of gum and resin contained 
contaminated starch granules, which were removed with 
a cheesecloth and water solution (equilibrated with 1 M 
NaCl). Nomura and co-workers also adopted coconut 
shell–derived activated charcoal (Yashi coal) as an absorbent 
of the hydrophobic impurities for partial purification of the 
flower extracts. Kerssemakers in 2018 [51] also introduced 
a method to extract tulipalin A from tulip bulbs by cutting 
them into smaller pieces to enhance the surface area. 
Artificial stressing of the bulb using ethylene gas triggered 
the mechanism, which eventually led to the conversion of 
tuliposides. Toluene and demi-water at 4 °C were used as 
solvents. The study also suggested that decreased polarity 
resulted in a higher affinity for non-polar solvents. As a 
result, tulipalin A would be more soluble in non-polar 
solvents such as benzene or toluene.

6 � Impact of the extraction parameters

The effectiveness of the extraction process is principally 
based on the polarity of solvents because it contributes 
to the selectivity of the partition system. Therefore, the 
significant impacts of solvents on the extraction process are 
the extraction yield, composition profiles, and antioxidation 

activity of the extract [202]. Besides many selections of 
solvent as mentioned in Sect. 5, other conditions such as 
solid-to-solvent ratio, time and temperature, pH of the 
medium, and particle size of the matrix strongly influence 
the extraction efficiency [110].

6.1 � Time, solid‑to‑solvent ratio, and temperature

Time, solid-to-solvent ratio, and extraction temperature are 
vital parameters to optimize to decrease the energy cost of 
the procedures. Many researchers enhanced the solubility of 
solute and the diffusion coefficient of the extraction process 
by elevating time and temperature. However, beyond a cer-
tain value, the phenolic compounds can be denatured [203]. 
The extracting time and temperature vary among studies. 
For example, the thermal stability of tannins is limited, and 
they therefore last from roughly 2 to 6 h at high temperatures 
(80–120 °C), and up to 24 h when the temperature is lower 
(25 °C) [71]. Sood and Gupta [204] reported that total phe-
nol content extracted from pomegranate peel decreased with 
increased time and temperature. The same result was shown 
in the study of Silva et al. [205]. It indicated that 46.8 min 
with 58.2 °C was the most appropriate duration to extract 
phenols from Inga edulis leaves, which excessive time was 
not useful to extract more phenol content. If the temperature 
is elevated sufficiently, the time to reach equilibrium for the 
extraction of phenol compounds will be shortened. Neverthe-
less, long extraction time results in partially extracted poly-
phenols exposed to oxygen and light that were determined to 
degrade the extracts [206–208].

It is reported that the lower solid-to-solvent ratios would 
lead to higher extraction yields. Yet, too low solid-to-sol-
vent ratios might lead to an excessive amount of solvent 
and a longer concentration time [110]. Also, at low solid-
to-solvent ratios, the differences between the extraction effi-
ciencies are usually inconsiderable. Thus, this parameter is 
generally optimized at a certain value [124]. In the study of 
Wang et al. [209], the increase of solvent used enhanced the 
flavonoid extract until the point 1:30 w/v, and then the yield 
decreased. Similarly, although several solid-to-solvent ratios 
from low to high were used to isolate bioactive compounds, 
the optimum conditions were not at the highest ratio but at 
a specific value, which was 1:4 w/v among from 1:1 to 1:7 
w/v [210], or 1:8 w/v among 1:2 to 1:10 w/v [211].

A temperature range between 20 and 80 °C can promote 
higher analytic solubility by accelerating both the mass 
transfer rate and solubility. The viscosity and surface 
tension of solvents decrease at higher temperatures, which 
permit solvents to solvate phenolic compounds more 
efficiently and enhance the extraction rate. In contrast, 
some phenolic compounds such as ANCs start to degrade 
at high temperatures (above 70 °C). It is therefore pivotal 
to have the correct temperature to control the stability of 
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phenolic compounds and reduce the thermal degradation of 
flavonoids [112, 212, 213]. For example, the thermostability 
of ANC is in a temperature range of 80–120 °C, and ANC 
starts to degrade following the first-order kinetics model 
in a temperature range of 120–180 °C [214, 215]. Using 
a temperature that is too high (above 150 °C) during 
the extraction degraded some antioxidant compounds 
in grape biomass and cultured red-wine berries [216, 
217]. Additionally, tannins were extracted from Quercus 
infectoria (Manjakani) galls at different temperatures (50, 
75, and 100 °C). The temperature effects on tannin content 
and antioxidant activity were thoroughly examined. The 
results suggested that the highest concentration of tannin 
and its highest antioxidant activity was achieved when the 
temperature was at 75 °C [218].

6.2 � pH of the medium

Under the same time and temperature, the yield of 
chemical extraction depends on the types of solvents with 
varying polarities and pH. Phenolic compounds such as 
hydroxycinnamic acids and hydroxybenzoic acids are 
covalently linked to the polysaccharides of the cell walls 
by ester bonds. In addition, they are linked by ester or 
ether bonds to form lignin components. In mild alkaline 
hydrolysis, ester bonds are cleaved, and the ester-bonded 
phenolic compounds are released. On the other hand, in 
acidic conditions, alkyl-aryl-ether bonds are cleaved, and 
the ether-bonded compounds are released. As a result, 
many extraction methods are operated under mild alkaline 
or acidic conditions [219]. The polyphenol yield obtained 
from vine shoots was examined by basifying water with 
NaOH and EtOH. The results demonstrated that basified 
water with NaOH produced a higher polyphenol yield. The 
finding indicated that NaOH and EtOH had opposing action 
mechanisms, potentially caused by the carboxylic acid group 
in phenolic compounds. In an alkaline solution, the COOH 
group becomes COO–, which is soluble in water and not in 
EtOH [220]. Other studies found that the highest extraction 
yield of hydroxycinnamic acid glycosides from flaxseeds 
was obtained in alkaline hydrolysis by NaOH solution [221].

It has also been shown that acetic acid (about 7% v/v) or 
trifluoroacetic acid (TFA) (about 3% v/v) is more sufficient than 
mineral acids because mineral acids may cause the loss of the 
attached acyl group [222]. The use of hydrochloric acid (HCl) 
in many studies is therefore restricted, as it may break down the 
acylate groups. To acquire the best yield of flavonoid extrac-
tion, weak organic acids like formic acid, acetic acid, citric 
acid, tartaric acid, and phosphoric acid or low concentrations 
of strong acids such as 0.5–3.0% of TFA and less than 1.0% of 
HCl are suggested [112, 223]. Furthermore, sulfured water can 
be used as an alternative extraction solvent to reduce the use 
of organic solvents and extraction costs [224]. Ju and Howard 

[165] demonstrated that sulfured extraction possessed the high-
est flavonoid yield compared to subcritical water extraction and 
conventional solvent extraction (60% v/v MeOH at 50 °C for 1 
h). Notably, most of the ANC compounds provide stability in 
acidic conditions and start to degrade at higher pH. Conversely, 
at higher pH or alkaline conditions, e.g., petanin, the degrada-
tion resistance occurs at pH 8 [58, 225].

6.3 � The particle size of the matrix

The ideal temperature and the particle size of the samples are 
the essential factors that affect the yield during extraction. 
A smaller size prefers higher mass transfer facilitation. The 
smaller the particle size, the shorter path of the solvent to 
penetrate the solid matrices [226]. The reduction of the 
particle diameter is associated with the increased surface area. 
It therefore increases the contact area between the solvent and 
the samples [227]. Phenolics can be extracted from fresh, 
dried, and frozen plant samples. Pre-treated plant samples are 
usually air-dried and/or freeze-dried because freeze-drying 
generally retains more phenolics than air-drying [112, 228].

Gião et al. [229] proposed that a particle size of 0.2 mm was 
sufficient to assure a reasonable extraction rate by conducting 
conventional coffee mill grinding. Moreover, the highest yield 
of gallic acid (0.15 mg/g DW) was achieved when reducing the 
particle size to 125 µm. Particles smaller than 125 µm would 
not be used for the extraction since they tend to float [226]. 
Bucić-Kojić et al. [230] discovered that the extraction rate of 
polyphenol compounds from grape seed was extended when 
the particles were smaller. In this manner, a smaller particle 
size class (160–125 µm) induces a higher temperature impact 
on the extraction extent than a bigger particle size class (630 
µm). This observation was supported by the highest value 
of activation energy (Ea) from the model of the solid–liquid 
extraction kinetics of total polyphenols.

Nevertheless, downsizing material steps such as grind-
ing and milling consumes intense energy, correlated to the 
device type, dimensioning, and operating mode. Although 
the particle size range of biomass (ca. 100 µm) is limited at 
the laboratory scale due to the small powder amount, it can-
not be neglected at the industrial scale. Some issues regard-
ing the size handling process are health risks and explosion 
hazards. It must therefore be considered as soon as the pro-
cess design in the scale-up procedures is built, as it influ-
ences technological options and induces the implementation 
of safety procedures and risk management [231].

7 � Separation and purification methods

During the extraction process, impurities like sugars, oligo-
saccharides, proteins, and organic acids should be removed 
to increase the purity of the target molecules. Purification is 
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a tedious, time-consuming, and expensive procedure. Usu-
ally, the protocols are optimized according to the targeted 
phenolic compounds [122]. Centrifugation for 15–20 min 
at 20,000–25,000 rpm may be applied to separate the crude 
plant matrix from the extract [232]. In principle, polyphenols 
can also be separated based on their MW, with the particles 
with an MW of 3000 Da to 100 kilodaltons (kDa). It can be 
removed by gel filtration, and higher MW compounds can be 
separated by regular ultrafiltration membranes [233].

In addition, the solvents used to extract polyphenols can 
be evaporated in rotary evaporation under vacuum condi-
tions. The separation of phenolic compounds can also be 
accomplished using solvent separation methods (liquid–liq-
uid phase separation) followed by chromatographic meth-
ods [232]. Until now, the common purification methods for 
polyphenols include column chromatography, membrane 
separation, high-speed counter-current chromatography, and 
high-efficiency preparative liquid chromatography [122]. In 
particular, few papers work with novel techniques to isolate 
tulipalin A and B, yet it remains feasible to separate tulipa-
lins by high-efficiency preparative liquid chromatography 
[106] or by solid–liquid separation by vacuum filtration and 
rotary evaporation [51].

7.1 � Column chromatography

Column chromatography is the conventional method for sep-
arating impurities and purifying polyphenols. It is also uti-
lized for active molecule isolation and metabolite extraction 
from a broad variety of samples. Column chromatography 
is based on the principle of the various distribution coeffi-
cients of phenolic compounds between the solid and mobile 
phases [122, 234]. In principle, compounds are adsorbed, and 
the elution is based on the differential adsorption of a sub-
stance by adsorbents. In column chromatography, stationary 
phases can be silica, alumina, calcium phosphate, calcium 
carbonate, starch, etc. With different polarities, compounds 
are adsorbed for different reasons and desorbed at compat-
ible solvent polarity. In the elution process, fractions get 
desorbed and pass through the column when solvents are 
added [235]. Column chromatography is classified into three 
classes: gas chromatography (GC), liquid chromatography 
(LC), and supercritical fluid chromatography (SFC). As the 
titles imply, the mobile phases in the three methods are gas, 
liquid, and supercritical fluid chromatography, respectively. 
As illustrated in Table 4, many chromatography methods are 
categorized into the first two classes. Notably, LC can be 
performed either in a column or planar surface. On the other 
hand, GC and SFC are limited to column procedures, so the 
column walls enclose the mobile phase [236]. The identi-
fication of components separated by column chromatogra-
phy requires additional analytical methods to confirm the 
fractions. The crude extracts (complex chemical structures) 

then can be analyzed by many techniques such as thin layer 
chromatography (TLC), high-performance liquid chroma-
tography, and GC to distinguish and quantify the desired 
compounds [234].

The typical column for separations is a reverse phase 
(RP) C18 column. EtOH, MeOH, acetone, and water are 
commonly used as eluting a solvent. For example, in the 
case of size exclusion column chromatography, MeOH is 
more commonly used than EtOH to elute non-tannin com-
pounds, whereas the acetone–water mixture is preferred to 
the MeOH–water mixture when polymeric procyanidins are 
the targeted compounds [112]. The adsorption mechanism 
of flavonoids on the resin is unclear, as multiple interac-
tions occur at the solid–liquid phase, e.g., hydrophobic, 
dipole–dipole, and hydrogen bonding. Besides, the rates and 
equilibria of adsorption vary significantly in physical and 
chemical properties like surface area, pore radius, porosity, 
solvent, pH, and temperature. Although column chromatog-
raphy is the most common purification method for bioactive 
compounds, it has been abandoned because it is too labor-
intensive in large-scale production [112, 122].

7.2 � Membrane separation

Membrane separation is an efficient method for 
purifying and concentrating desirable compounds. The 
semipermeable membrane allows smaller molecules 
to pass through and retain larger molecules. The 
membrane selectively restricts the transportation of 
various chemicals, including solids, liquids, and gases. 
The membrane separation is based on the pore size 
of the applied membrane and can be separated into 
microfiltration, ultrafiltration, nanofiltration, and reverse 
osmosis [110, 237]. Membrane filtration is operated in 
two different ways: dead-end and cross-flow modes. The 
dead-end operation forces all the feed transportation 
through the membrane, causing build-up and subsequent 
performance loss; it therefore requires frequent cleaning. 
In the cross-flow operation, the flow is parallel to the 
membrane surface, with the inlet stream passing through 
the membrane in a specific position [237].

In the food and beverage industries, membrane separa-
tion operation is based on the particle or molecular size 
and is driven by pressure. Other membrane technologies 
such as osmotic distillation, membrane distillation, and 
pervaporation have been studied recently for the same 
application area. In particular, ultrafiltration and nanofil-
tration have gained great interest in separating and purify-
ing bioactive compounds from plant extracts and among 
agro-food-based industries [238–242]. The membrane pro-
cess has been used industrially for agro-food by-products 
such as olive mill wastewater. For example, Karakulski, 
Kozlowski, and Morawski [243] introduced ultrafiltration 
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technology to decrease the chemical oxygen consumption 
for the direct sewer discharge of waste.

Table 5 shows the characteristics of polyphenols in 
terms of their MW. Nanofiltration has a pore size in the 
range of 0.5–1 nm, and the primary range of the MW cut-
off (MWCO) is between 200 and 1000 Da. Ultrafiltration 
consists of membranes, with the MWCO in the range of 
1–300 kDa and a 0.01 µm pore size [242]. Single mem-
brane filtration does not purify the extracts effectively. A 
sequence of microfiltration, ultrafiltration, and nanofiltra-
tion was applied to isolate a bioactive compound from an 
olive leaf extract. Microfiltration followed by ultrafiltration 
separated the impurities more prominently than 5 kDa, 
whereas the nanofiltration recovered the antibacterial and 
antioxidant polyphenol compounds [244].

7.3 � High‑performance liquid chromatography

High-performance liquid chromatography (HPLC) is based 
on the different distribution coefficients of solute molecules 
in stationary (pack material of column) and mobile (eluent) 
phases. Depending on the chemical structure of the samples, 
the molecules are retarded while passing the stationary 
phase in the column under high pressure. The intermolecular 
interactions between the sample molecules and packing 
material determine the retention time. Thus, the separation 
process is achieved [246].

There are two types of phase systems used in HPLC: 
normal phase and reserved phase. In the normal phase, the 
stationary is a polar adsorbent such as silica. These bonded 
phases contribute to better elution profiles because they are 
moderately polar and have a more uniform surface. The 
mobile phase in this mode includes a non-polar solvent such 
as hexane that added a more polar modifier, or methylene 
chloride to control solvent strength and selectivity [247]. On 

the other hand, HPLC uses mostly reserved phase (RP) as an 
analytical technique for separating complex mixtures in the 
chemical, pharmaceutical, and biotechnological industries. 
RP-HPLC utilizes a non-polar stationary phase and a polar 
aqueous mobile phase. The mobile phase is usually water 
mixed with at least one of the water-miscible organic sol-
vents such as acetonitrile, MeOH, EtOH, tetrahydrofuran, and 
isopropanol, which act as modifiers. The solutes are separated 
using their hydrophobicity, to which a more hydrophobic sol-
ute will be retained on the column longer than a less hydro-
phobic one [247–249]. The selection of the mobile phase 
compositions, consisting of solvents, buffers, and other addi-
tives, will control the interaction degree between the solutes 
and the stationary phase. For example, acetonitrile is the most 
popular selection as a modifier due to its low viscosity, which 
decreases the back pressure, low cut-off wavelength for UV 
detection, adequate large elution strength, reduced reactivity, 
and ability to dissolve a wide range of solutes. As alternatives, 
MeOH or EtOH can be used as a solvent in the mobile phase 
because they are less toxic, less expensive, and have higher 
polarity compared to acetonitrile [249]. The introduction of 
RP columns gains significantly improved HPLC separation for 
different classes of phenolic compounds, and RP C18 columns 
are exclusively utilized, followed by C8. The reasons for these 
references are the relatively high organic content for solute 
interaction and sufficient chemical stability of the working 
pH range compared to shorter alkyl chain phases [249, 250]. 
HPLC is divided into two types: analytical or preparative 
scale. Analytical HPLC is used for identification, detection, 
and small-scale preparation. Meanwhile, preparative HPLC 
is employed to separate and prepare samples [251]. Hence, 
pure compounds can be obtained by high-performance pre-
parative liquid chromatography. This technique is based on 
the different physicochemical properties of each component 
in the crude extract, including ANCs, proanthocyanidins, 

Table 4   Classification of column chromatography techniques (adapted from [236])

Classification Specific method Stationary phase Equilibrium type

Gas chromatography (GC) a. Gas–liquid chromatography 
(GLC)

Liquid bonded or adsorbed to a 
solid surface

The partition between gas and 
liquid

b. Gas–solid Solid Adsorption
Liquid chromatography (LC) a. Liquid–solid (or adsorption) Solid Adsorption

b. Liquid–liquid (partition) Liquid bonded or adsorbed to a 
solid surface

Interaction with or partitioning 
between immiscible liquids

c. Ion exchange Ion exchange resin Ion exchange
d. Size exclusion The liquid in the interstices of a 

polymeric solid
Partition/sieving

e. Affinity Group-specific liquid bonded to a 
solid surface

The partition between surface 
liquid and mobile liquid

Supercritical fluid chromatography 
(supercritical fluid as mobile 
phase)

Organic species bonded to a solid 
phase

The partition between bonded 
surface and supercritical fluid
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hydrolyzable tannins, flavonols, flavan-3-ols, flavanones, fla-
vones, and phenolic acids in different plant and food samples 
[112]. However, the HPLC method has limitations such as 
with the complex matrixes. An initial preconcentration and 
purification of the polyphenols from the complex matrixes are 
therefore crucial before the analysis by HPLC [250].

Also, the chromatographic behavior of the HPLC column 
will be altered and increased operating pressure under 
intensive use by the strongly retained materials such as lipids, 
or hydrophobic proteins. To solve this problem, washing the 
column with one or a series of strong solvents is essential. 
Lipids, for example, can be removed by using non-polar 
solvents such as MeOH, acetonitrile, and tetrahydrofuran. 
There is no solvents or series of solvent used to strip or remove 

proteins from the stationary phase. Yet, several solvents, such 
as acetic acid, (1% v/v in water) or aqueous sodium chloride, 
sodium phosphate, or sodium sulfate (1–2M) can be applied as 
eluent or solubilizing agents that strip all adsorbed proteins in 
HPLC column [252]. In reversed phase column, when a mobile 
phase does not use buffers or salts, the column can be washed 
with eluent by the same solvents as that of the mobile phase, 
only with higher organic solvent concentration [253]. In the 
case of buffered aqueous mobile phase, using strong solvents 
immediately is not recommended. A sudden change in the high 
content of organic solvent might lead to buffer precipitation 
in the HPLC flowing system and cause plugged frits, plugged 
connecting tubing, pump seal failure, a scratched piston, or 
injection valve rotor faults. Therefore, a buffer-free mobile 
phase, eluent containing the same ratio of water and organic 
solvent, is used to flush the column then strong solvents are 
applied to pass through the column [254]. Under the normal 
phase column, the column is cleaned by using a solution having 
the same solvents as that of the mobile phase, but in a higher 
concentration. When polar components adsorb in the column, 
isopropanol or similar solvents are used to flush them [253].

7.4 � High‑speed counter‑current chromatography

High-speed counter-current chromatography (HSCCC) is 
an alternative to liquid chromatography. It is a liquid–liquid 
extraction without the support of any solid that eliminates the 
irreversible adsorption of compounds onto the solid support 
matrix. HSCCC is considered a potent candidate for large-
scale production, with high recovery and high efficiency, which 
can improve the loading capacity of samples. The impurities 
of the desired fraction would be removed, and the yield of 
purified polyphenols increases after purification. HSCCC 
can be operated in various phases and modes: normal phases, 
reserve phase, pH zone refining, dual mode, gradient mode, 
and recycling mode [255, 256]. According to Degenhardt et al. 
[257], methyl tert-butyl ether (MTBE)/n-butanol/acetonitrile/
water 2:2:1:5 v/v/v/v acidified with 0.1% TFA was employed as 
eluent to isolate ANCs from red cabbage, black currant, black 
chokeberry, and roselle. In addition, HSCCC can be applied 
to separate monomeric catechins, their galloylated esters, 
and caffeine from tea and other polyphenols from food like 
procyanidins, phenolic acids, and flavonol glycosides using 
MTBE/acetonitrile/0.1% aqueous TFA (2:2:3, v/v/v) [258].

8 � Challenges and prospects in bioactive 
compounds extraction

This review provides an adequate understanding of differ-
ent advanced extraction methodologies used to separate/
extract bioactive compounds widely solicited as colorants 

Table 5   Structural characteristics of the assayed micro-molecules 
(adapted from [245])

Groups of micro-molecules Compounds MW (Da)

Sugars Glucose 180
Fructose 180
Galactose 180
Saccharose 342
Lactose 342

Hydroxycinnamic acid 
derivatives

Cinnamic acid 148
4-Hydroxycinnamic acid 164
Ferulic acid 194

Hydroxycinnamic acid 
derivatives/o-diphenols

Caffeic acid 180

o-Diphenols/phenolic alcohols Gallic acid 170
Protocatechuic acid 154
Hydroxytyrosol 154

o-Diphenols/phenolic alcohols Catechol 110
4-Methyl catechol 124

Phenolic alcohols Tyrosol 138
Isovanillic acid 152
γ-Resorcylic acid 154
Cresol 108
Resveratrol 228

Flavonols Procyanidin B2 579
Quercetin 302
Kaempferol 286

Flavones Apigenin 270
Luteolin 286
Luteolin-7-glucoside 448
Apigenin-7-glucoside 432

Anthocyanins Malvidin 331
Cyanidin 287
Cyanidin-7-ritunoside 631
Delphinidin 303
Peonidin 301
Rutin 610
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and antibacterial agents. As a result, Table 6 provides a 
summary of the different extraction techniques of phyto-
chemicals from plants, presenting details on the conditions, 
merits, and demerits of each method. In terms of natural 
products extraction, particularly bioactive compounds from 
innovative technologies, six principles have been proposed: 
(1) selection of varieties and use of the plant resources; (2) 
use of alternative solvents, mainly water or agro-solvents; 
(3) decrease of energy consumption by advanced extraction 
technologies; (4) produce co-products instead of wastes, 
consisting of bio-and agro-refining industry; (5) decrease 
unit operations and favor safe, robust, and controlled 
process; (6) target for non-denatured and biodegradable 
extracts in the absence of contaminants. When choosing 
a suitable extraction technology, one should follow those 
principles to connect with the biorefinery concept [259]. 
Indeed, the use of plant-derived colorants and antimicro-
bial agents has been perceived as having health-promoting 
benefits and coloring qualities. However, in the textile field, 
the major problem of its natural colorants and antimicro-
bial agents encountered is inadequate availability because 
of the matters in the collection, prices, compounds’ char-
acteristics, and especially standardized methods of their 
production [260]. By applying the biorefinery concept, the 
evaluations of extraction efficiency, economic feasibility, 
and environmental perspectives are crucial to designing 
an appropriate extraction process for eco-textile products. 
Several extraction strategies have been conducted over the 
years, concerning properties such as sources of matrix, 
chemical structures, solubility, and chemical properties of 
both raw materials and solvents used, as well as the condi-
tions during the procedure such as pH, temperature, and 
extraction time [108].

The manuscript also demonstrates that the utilization 
of green solvent with auxiliaries under pressurized condi-
tions is the key factor in designing a novel extraction pro-
cess. Under the advancement of technology, combinations 
like ultrasound-assisted DES extraction are more effec-
tive than a single method. The supplement of enzymes, 
including cellulose and pectinase for the extraction process 
such as ultrasound processing, is broadly used to recover 
ANCs from grape skin and raspberry wine residues. From 
another perspective, solvent utilization is under investiga-
tion to eliminate hazards using non-toxic chemicals and 
improve the yield of bioactive compounds, and energy 
consumption. For instance, DESs are promising alterna-
tives to organic solvents [273]. Likewise, the addition of 
ultrasound-assisted technology allows the tannin extrac-
tion process to save 34% energy and 34% water, improving 
the feasibility of scaling up the extraction process in the 
industry [274]. As a highlight of solvent selection, the 
employment of Hansen Solubility Parameters is known 
as a tool to investigate the solubility parameter theory, to 

narrow the choice of the most sufficient green solvents to 
isolate bioactive compounds [275, 276].

Therefore, these advanced techniques encourage the 
idea that it may be possible to develop chemicals with 
improved safety profiles, utilizing safe solvents auxilia-
ries, design for energy efficiency, and degradation preven-
tion [108]. However, scaling up the extraction methods 
for industry also faces many demerits and complexities 
such as limited recovery, the degradation of phenolic 
compounds, equipment cost, and maintenance feasibil-
ity. Importantly, energy and solvent consumption can be 
mentioned as essential subjects [277, 278]. For instance, 
in the SF extraction process, many factors such as extrac-
tors, reactors, CO2 reservoirs, heat exchangers, piping, 
valves, and operations automation to reduce manpower 
costs need to be appropriately considered. These units add 
significant costs, increasing the total investment cost of 
building a pilot or industrial-scale SF extraction. Moreo-
ver, the cleaning section should receive attention due to its 
time consumption in large-scale operations [279]. Accord-
ingly, the need for scaling up should be integrated with 
the application of environmental assessment tools (life 
cycle assessment, etc.) and economic studies to propose 
safer and cleaner alternatives to more ordinary processes 
[259]. Consequently, more data from relevant materials 
and resources to emissions and wastes can be collected to 
study the potency of different bioactive compound extrac-
tion processes for diverse applications [280].

9 � Conclusion

Innovative extraction method trends have been evolving. 
This paper critically reviews the extraction technologies, 
separation methods, and influential parameters of bioactive 
compound extraction. The review indicates the potential of 
novel extraction techniques for utilizing greener solvents in 
shorter times and less energy, such as scCO2 and PHWE. 
However, the advances in isolating phenolic compounds are 
restricted due to the necessity of more optimization efforts 
between the laboratory and industrial scales. Advanced 
extraction technologies can be advantageous in time, energy, 
and product yield; yet the overall efficiency, notably the 
equipment and maintenance costs, are not as affordable as 
conventional techniques. Each extraction method can only 
sufficiently extract some of the valuable compounds in 
plants. The most appropriate methodology is chosen based 
on the plant matrix and the targeted compounds. Strategies 
should therefore be determined to achieve higher efficiency 
and profitability. The initial step is to select the appropri-
ate plant matrix according to local availability. In addition, 
extraction conditions such as time, temperature, pressure, 
reactor types, and the quality of raw materials should be 
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optimized during methodological conduction. Numerous 
opportunities can expand natural raw feedstocks and their 
utilization as textile finishing agents and colorants, as well 
as other valuable applications in the future.
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