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This paper presents a comparative advanced study on parameter identification and
dynamic analysis of lightweight and heavy-duty robotic manipulators. The ultimate goal
is to enhance the performance and control of these manipulators through precision in
parameter estimation.

The initial section investigates the dynamics of harmonic drive systems in lightweight
arms. Here, a data acquisition-based algorithm is introduced for offline dynamic
parameter analysis. The Markov chain Monte Carlo (MCMC) method is central to this
analysis, facilitating accurate parameter estimation for a friction model while
considering uncertainty and sensitivity. Furthermore, the prediction of the GMS model,
based on the MCMC method, exhibited a commendable improvement in accuracy,
further emphasizing the efficacy of the chosen methods.

Subsequent sections explore heavy-duty arms, particularly those with planetary
gearboxes. These discussions focus on friction, hysteresis issues, and the complexities of
parameter estimation. The Bouc-Wen model is highlighted as a useful tool for
identifying and addressing errors caused by hysteresis.

Beyond core analysis, the paper shows the potential combination of digital twin and
control robot technologies for remote maintenance, especially in fusion reactor
circumstances. Integration of these technologies promises to improve the operational
capabilities of robotic systems, resulting in more reliable remote maintenance in
challenging conditions.

The results of our various investigations provided a thorough understanding of robot
dynamics and advanced parameter estimations. The focus of the first study was on
identifying the joint dynamics of the robot. Incorporating the friction model for
simulation of harmonic drives, along with the unique perspective of hysteresis
characteristics, has enriched this understanding even further. Furthermore, the MCMC
and SGHMC algorithms were thoroughly evaluated and validated, with the first
exhibiting enhanced prediction accuracy by more than 5% and the second demonstrating



robustness in parameter estimation for heavy-duty manipulators.

Based on our findings, integrating these methods, especially the GMS model,
significantly impacts the field. In our subsequent research, the fractional-order
Bouc-Wen (FOBW) model has emerged as a key tool for illustrating hysteresis behaviors
in different systems. It is based on the popular Bouc-Wen model and has been expanded
to include more features. Our research underscores the importance of these advanced
tools and models, suggesting an important development in the reliability and accuracy of
robotic dynamic control in complex real-world situations.

Keywords: Robotic manipulators, parameter identification, dynamic analysis, heavy-duty
arms, light weight arms
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Nomenclature

Latin alphabet

i current of the servo motor
M(t) system input control or torque of the motor
Tf total frictional torque of the robot joint
T1 driving torque output to the connecting rod by the harmonic reducer
h height parameter in the gravitational torque equation
g acceleration due to gravity
m mass parameter in the gravitational torque equation

Greek alphabet

θ (angular displacement)
u̇(t) (velocity or derivative of the input position to the joint)
Γ(u(t), t) (hysteresis restoring torque in the Bouc-Wen-like hysteresis model)
D (internal damping coefficient)
ẋ(t) (derivative of the state variable in the hysteresis model)
k ( rate-dependent stiffness parameter in the hysteresis model)
θ̈ (angular acceleration)
τ1 (joint torque transmitted from the motor side to the input point of the

harmonic reducer)
fc (Coulomb friction)
fv (viscous friction)
fτt (load-dependent friction term)
G(q) (gravitational torque)
z(t) (backlash)
∆θ(t) ( joint torsion and position deviation: discrepancies between desired input

and actual output in the joint)
τm (torque of the motor)
τt (payload or load)
ω (angular velocity)
J1 (moment of inertia on one side of the joint)
q (angle of rotation of the joint)
q̈ (angular acceleration of the joint)
C(q, q̇) (Coriolis term in the dynamic equation)
f (friction torque)
Jm (moment of inertia on the motor side)
n (exponent determining the rate dependence of the hysteresis loop)

Abbreviations
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CFETR China Fusion Engineering Test Reactor
CMOR CFETR Multipurpose Overload Robot
DOF Degrees of Freedom
CBW the classic Bouc-Wen model
FOBW the fractional-order Bouc-Wen model
MCMC Markov Chain Monte Carlo
MPD Multi-Purpose Deployer
PCA Principal Component Analysis
PLSR Partial least squares Regression
SGHMC Stochastic Gradient Hamiltonian Monte Carlo
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1 Introduction

1.1 Objective of the research

Robotic arms and their precise parameter identification are important in both industrial
applications and scientific research. These versatile mechanical components have
applications in fields such as manufacturing, healthcare, space exploration, and more.
Their ability to perform complex tasks with speed, precision, and repeatability has
revolutionized various industries, leading to increased efficiency and reduced human
involvement in hazardous environments. To gain a complete understanding of the
importance of this study, we begin with a broader context that underscores the pivotal
role of robotic arms and parameter identification in modern technology and industry.

Robotic arms are the basis for contemporary automation. In manufacturing, they
assemble complex electronic components with microscopic precision (Metzner et al.,
2021), weld large structures (Vasilev et al., 2021), and perform quality inspections with
precision (Vojić, 2020). In healthcare, robotic surgical arms aid surgeons in performing
delicate procedures, minimizing invasiveness (Kalan et al., 2010) and improving patient
outcomes (Marchand et al., 2019). In the domain of space exploration (Ticker,
Cepollina, and Reed, 2015), robotic arms in spacecraft have revealed the secrets of
distant planets and stars, making discoveries that humans had previously been unable to
reach.

The efficacy of these robotic arms is based on a critical factor: precise knowledge of
their parameters. These parameters, which range from joint friction and inertia to motor
dynamics, govern arm behavior. Accurate parameter identification enables engineers and
researchers to develop control algorithms that optimize performance, minimize energy
consumption, and ensure safety. Without accurate knowledge of the parameters, robotic
arms can malfunction, leading to inefficiency, decreased product quality, and safety risks.

This research aims to comprehensively investigate parameter identification methods for
a range of robotic arms, including lightweight models with harmonic drives and heavy-
duty versions equipped with planetary gear systems. Accurate parameter identification
and dynamic analysis are fundamental to achieving maximum performance, improving
safety, and optimizing efficiency in these robotic arms.

Moreover, our research address the distinctive challenges presented by the CMOR robot
arm within the CFETR superconducting Tokamak fusion device. Operating within an
environment characterized by extreme temperatures, intense radiation, and formidable
magnetic fields, this specialized robotic arm poses unique challenges. To address these
complexities, we explore the adaptation of advanced Monte Carlo algorithms (MCMC or
SGHMC) for precise parameter identification.



14

In short, the purpose of our research is to provide an understanding of parameter
identification methods adapted to the specific requirements of various robotic arms,
while also addressing the unique challenges posed by advanced fusion technology.

The effects of friction and hysteresis have been identified as factors that can affect the
efficiency of torque transmission in robotic manipulators (Ruderman, Hoffmann, and
Bertram, 2009). Estimation of these effects is crucial to improving overall performance.
In particular, harmonic drives, commonly used in lightweight robotic arms, are
susceptible to these effects due to their nonlinearity and complex structure (Ruderman,
Hoffmann, and Bertram, 2009). Various inference methods have been developed to
accurately estimate manipulator parameters, including gear stiffness, backlash, and
transmission ratios, in lightweight arms equipped with harmonic drives (Hao et al., 2021;
Qi, Huapeng, Cheng, et al., 2022).

However, heavy-duty robotic arms often employ planetary gear systems known for their
robustness and high torque transmission capabilities. Accurate estimation of parameters,
such as gear ratios and stiffness, is vital for the safe operation and longevity of
heavy-duty robotic manipulators. The comparative study presented here evaluates
different inference methods applicable to heavy-duty robotic manipulators equipped with
planetary gear systems, considering factors such as gear wear, system flexibility, and
dynamic interactions.

Additionally, this study incorporates the unique challenges posed by the CFETR
superconducting Tokamak fusion device’s CMOR robot arm. The CMOR arm operates
in a demanding environment characterized by high temperatures, intense radiation, and
strong magnetic fields. Understanding the parameters of this specialized robotic arm is
essential to ensure its reliable and efficient operation in the fusion device. We explore the
application of inference methods to accurately identify the parameters specific to the
CFETR CMOR arm, facilitating its successful integration into the fusion device
(Jiasheng et al., 2020).

To address the challenges of parameter identification in both lightweight and heavy-duty
arms, the study incorporates the use of the Markov chain Monte Carlo (MCMC)
algorithm and the Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) algorithm.
MCMC provides a powerful and flexible framework for parameter estimation by
sampling from the parameter space to approximate the posterior distribution. By
incorporating prior knowledge and observed data, the MCMC algorithm offers an
effective approach to estimate the parameters of robotic manipulators (Brooks et al.,
2011).

The SGHMC algorithm is a variant of the popular Hamiltonian Monte Carlo (HMC)
method, which uses stochastic gradients to improve sampling efficiency and
convergence. By incorporating the SGHMC algorithm, this study aims to enhance the
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accuracy and speed of parameter identification in robotic manipulators (Welling and Teh,
2011; Chen, Fox, and Guestrin, 2014).

The following studies have contributed significantly to our understanding of the topic.

(Chunxia et al., 2016) conducted a comprehensive investigation into control strategies to
reduce hysteresis effects in robotic systems. The study highlighted the importance of
accurately modeling and compensating for hysteresis to achieve precise control.
Chunxia’s findings provided valuable insights for improving the performance of robotic
systems in practical applications.

(Shengzheng et al., 2021) conducted an in-depth analysis of the parameter distributions in
robotic arm models. By considering the uncertainties in the model parameters, the authors
proposed a robust control strategy that improved the tracking accuracy and robustness of
the robotic arm. Their work emphasized the importance of accounting for parameter
uncertainties in control design.

(Cai, Dong, and Nagamune, 2023) proposed a novel approach to modeling the dynamic
equations of a single-joint mechanism. Their extended model takes into account various
factors such as inertia, friction, and external disturbances. The authors demonstrated
the effectiveness of their approach through experimental validation. In addition to these
influential studies, several other notable works have contributed to our understanding of
the subject matter. For example, (Ravenzwaaij, Cassey, and Brown, 2018) proposed an
MCMC approach.

These studies, along with numerous other relevant works, have formed the basis for our
research. Based on these existing findings, we aim to make novel contributions to the field.
In the following sections, we present our research background and scientific contribution.

1.2 Research background

1.2.1 Diverse Robotic Arms for Remote Fusion Maintenance Applications

1. The Articulated Inspection Arm (AIA): Robotic operations pose significant
challenges to the maintenance of the ITER and future fusion reactors. In response
to this issue, CEA (the French Alternative Energy and Atomic Energy
Commission) has successfully developed a versatile carrier capable of performing
in-vessel deployments under the Ultra High Vacuum (UHV) and temperature
conditioning requirements. Over the span of a six-year research and development
program, the CEA-LIST Interactive Robotics Unit and the Institute for Magnetic
Fusion Research (IRFM) demonstrated the viability and dependability of an
in-vessel inspection robot specifically designed to meet ITER’s stringent
requirements. The AIA robot carrier, depicted in Figure 1.1a, is a remarkable eight
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(a) The AIA robot is deployed into the
Tore Supra fusion reactor, navigating
under the challenging Ultra High Vacuum
(UHV)
conditions (Gargiulo et al., 2009).

(b) Comprehensive schematic view of the EAMA system (Kun, Qi, Huapeng,
et al., 2018; Kun, Qi, Yong, et al., 2019).

Figure 1.1: (a)The AIA robot (b) The EAMA robot.

meter long multilink arm consisting of five modules made of titanium, each with a
diameter of 160 mm. These modules incorporate pitch (±45◦ in the vertical plane)
and yaw (±90◦ in the horizontal plane) joints, offering a unique combination of
elevation and rotation motions that provide the robot with a total of eight degrees
of freedom. This innovative design allows for comprehensive inspections of Tore
Supra plasma vessel components (Team, 2002), all from a single median port. This
feature allows the AIA robot to be introduced through a small port of just 250 mm
in diameter, showcasing its versatility and adaptability in confined spaces.
Operating seamlessly within the challenging environment of the tokamak plasma,
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the AIA robot adheres to strict tokamak conditioning conditions, demonstrating its
reliability and suitability for in-vessel tasks. This development opens up new
possibilities to perform maintenance and inspection tasks remotely and effectively
on fusion reactors, significantly enhancing operational efficiency and safety.

2. The East Advanced Superconducting Tokamak (EAST) articulated maintenance
arm (EAMA) system: To meet the demanding operational parameters of the
EAST, the inner components of the first wall must withstand increasing
electromagnetic and heat loads (Shi et al., 2016). Practical experiments have
revealed various failures of internal parts, making timely maintenance based on the
condition of damaged components essential during the experimental period (Pan
et al., 2017). Taking inspiration from the AIA designed for visual inspections
inside the Tokamak (Gargiulo et al., 2009), ASIPP and CEA-IRFM collaborated to
develop the EAMA system (Shi et al., 2016). The primary objective of this system
is to inspect and maintain damaged internal components during plasma discharges
without breaking the ultra-high vacuum condition of EAST. The challenging
environment of the EAST led to the design of the EAMA as a snake-like robot
with a highly redundant articulated series mechanism and several modules,
ensuring obstacle avoidance and achieving the required coverage ratio. The
EAMA system consists primarily of the highly redundant snakelike robot, the
EAMA itself, and a storage cask containing several condition maintenance
systems, as shown in Figure 1.1b.

1.2.2 Remote handling system with CMOR

The CFETR Multipurpose Overload Robot (CMOR) motion control system is a
specialized system designed to handle heavy loads and perform intricate tasks in
challenging environments. The CMOR system in Figure 1.2a comprises a macro arm,
which includes the Multi-Purpose Deployer (MPD), and two micro arms.

In general, the CMOR system, with its macro and micro joints, provides a comprehensive
solution for the remote control, maintenance, and operation of complex systems. The
combination of the macro and micro joints offers versatility and adaptability, making it
suitable for a wide range of applications in challenging environments.

The CMOR system in Figure 1.2a is a comprehensive remote handling solution used
in various industries to control, maintain, and operate complex systems. It combines
advanced robotic manipulators with precise motion control systems to perform tasks in
hazardous or challenging environments. CMOR is known as the CFETR (China Fusion
Engineering Test Reactor) Multipurpose Overload Robot (CMOR) motion control system
(Qin, Cheng, et al., 2022).

The Multipurpose Deployer (MPD), depicted in Figure 1.2b, is an integral component of
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the heavy-duty manipulator. The CMOR Multipurpose Overload Robot motion control

(a) Modeling the operational scenario of
the CMOR (CFETR Multipurpose Overload
Robot) in the China Fusion Engineering Test
Reactor (CFETR).

(b) The configuration of the Multi-Purpose
Deployer (MPD).

Figure 1.2: (a) Simulation of CMOR in CFETR and (b) Structure of MPD in Heavy-Duty
manipulator

system consists of a macro arm and two micro arms. The MPD is responsible for
handling heavy loads and executing complex tasks. It is designed to operate in the
challenging environment of the CFETR fusion device, where precision and robustness
are crucial. The CMOR consists of nine components labeled B1 to B9 and features eight
rotation joints designated J1 through J8. The system possesses a total of eight degrees of
freedom, accommodating various joint actuators to meet specific requirements. In
particular, horizontal yaw motions are facilitated by J1 and J2, while axial rotational
motions are enabled by J3, J5 and J7. Vertical pitch motions, on the other hand, are
achieved through J4, J6, and J8 (Qin, Ji, et al., 2021).

The micro arms, on the other hand, are dual 7-DOF robots that provide enhanced agility
and precision for delicate operations such as assembly, maintenance, and manipulation of
components (Tao et al., 2023).

The integration of these macro and micro joints within the CMOR system enables the
remote handling of various components and systems in challenging environments. It
offers a versatile and adaptable solution for controlling and maintaining complex
machinery and equipment. The CMOR system is specifically designed to meet the
requirements of the CFETR project, which aims to develop advanced fusion energy
technology in China (Song, Wu, et al., 2014).

To ensure the optimal performance of the CMOR system, advanced parameter
identification and dynamic analysis techniques are essential. Accurate modeling of the
system dynamics, including the behavior of individual joints and the interaction between
the arms and the environment, is crucial to achieving precise control and efficient
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operation. Additionally, control algorithms must be designed to handle the uncertainties
and complexities inherent in remote handling tasks, ensuring the safety of both the
robotic system and human operators.

1.2.3 Lightweight robotic arms and the snake arm manipulator (SAM) in the
CFETR system

1. Lightweight robotic arms

Lightweight robotic arms are a key part of the CMOR motion control system for jobs
that need to be performed remotely. These arms, which are known for their speed and
accuracy, are designed to handle delicate tasks such as assembling, fixing, and moving
parts (B’Elanger and Taghirad, 2002). However, challenges arise due to the inherent
complexities associated with remote tasks. Friction, harmonic factors, and the robot’s
interaction with its environment can hinder optimal performance. This study aims to
address these challenges by developing improved control algorithms and building
accurate models for these systems.

Figure 1.3a presents a 3D model of the CMOR system, which includes the MPD
(Multipurpose Deployer) and the lightweight robotic arm. This image provides a visual
representation of the CMOR system and the lightweight robotic arm, aiding the reader in
better understanding the research background and experimental setup.

Figure 1.3b displays the lightweight robot data acquisition interface, together with the
experimental equipment for the fourth joint. The lightweight robotic arm is part of the
CMOR system and is used for precise operations. Through this interface, data can be
collected and experiments can be controlled to investigate and test the performance and
behavior of the fourth joint.

Harmonic drives have been used a lot since 1955 because they have a high torque output,
are light, and are more efficient than standard drives (Kennedy and Desai, 2005). They are
used in flight, aircraft systems, industrial robots, and heavy-duty and lightweight robotic
systems. When studying how robots move, it is important to use correct mathematical
models that take into account friction and harmonic drives (Ema et al., 2020).

Accurate prediction of force is important for safety, accuracy and teaching through the
introduction (Luca and Mattone, 2005). For example, in robot operations, torque sensing
and control are important for the safety of the device, especially when a robot and a
person collide (Morel and Dubowsky, 1996). To ensure that people are safe, it is
important to know exactly what forces or torques are working on the robot from the
outside. Similarly, torque monitoring is of significant importance for flexible production
and work scenarios, such as industrial applications like grinding and assembly, where
precise control and performance are critical. When it comes to heavy-duty industrial
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(a) The 3D model of CMOR system that
contains MPD and light robotic arm.

(b) Data acquisition interface of the
lightweight robot, and experimental
equipment of the fourth joint.

Figure 1.3: The CMOR system and lightweight robotic arm: 3D model and experimental
setup.

robots, parameter errors become even more important. Because of this, it is important to
make control methods that work well with CMOR, CFETR, EAMA, and various other
heavy-duty manipulators in industrial settings (Song, Wu, et al., 2014; Shi et al., 2016;
Wang et al., 2019).

In addition, dynamic models of manipulators often have many unknown parameters,
making it difficult to make accurate models. Static nonlinearity is usually used to
describe the friction of harmonic drives. This includes things such as velocity, load,
stiffness, hysteresis, and motion error behavior (Kircanski and Goldenberg, 1997;
Ruderman, Hoffmann, and Bertram, 2009; Yuhsiu et al., 2019; Kesner and Howe, 2011).
Several studies have tried to figure out how harmonic drives work by making dynamic
models that take into account transmission wear, kinematic error, and other factors
(Tuttle and Seering, 1993; Taghirad and Belanger, 1998). The goal of these models is to
make modeling and control algorithms for harmonic drives more accurate. This will
make them easier to control and improve their overall performance.

Different friction dynamic models have been suggested, such as Dahl’s model, the
LuGre model, the Leuven model, and the GMS model (Kennedy and Desai, 2003; Jatta,
Legnani, and Visioli, 2006; Marton and Lantos, 2007; Sato, 2012). Some of these
models have taken into account temperature effects and the polynomial form of friction
models (Simoni et al., 2017; Do et al., 2014; Jan et al., 2000; Dewit et al., 1991; Simoni
et al., 2015; Han, Ma, and Li, 2016). Noise, however, makes it difficult to think about
how temperature affects output torque and to correctly find parameters using least square
methods (Zhiguo et al., 2017; Trumper and Yoon, 2014; Gandhi, Ghorbel, and Dabney,
2002; Astrom and Canudas-De-Wit, 2008), and (Lampaert, J. Swevers, and Al-Bender,
2002).
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This study suggests using the Markov chain method to determine the dynamic
parameters of flexible manipulators (Tri et al., 2011). This is done to avoid these
problems. The method requires figuring out how friction, speed, and load torque depend
on each other in a static, nonlinear way. The generalized Maxwell-slip (GMS) model is
used to estimate hysteresis features, and the MCMC method is used to find the dynamic
parameters of flexible robots with greater precision (Al-Bender, Lampaert, and Swevers,
2005). In parameter fitting, the MCMC method has some benefits over the LS method.
Although least-square methods are a classic way to estimate parameters, they may not be
strong enough when there is noise and uncertainty. By minimizing the sum of squares
difference between the actual data and the model’s forecasts, least square methods may
give less accurate estimates of the parameters. The MCMC method, which is based on
the Markov chain Monte Carlo algorithm, is a more reliable way to estimate parameters,
especially when noise and uncertainty are present. It makes it easier to figure things out,
such as friction and stiffness, in flexible manipulators. Therefore, the proposed friction
model and the MCMC method can improve the control precision based on the model,
and can be used to improve the total performance and accuracy of regular industrial
robots.

2. Introduce the snake arm manipulator (SAM) into the CFETR system.

Regular monitoring and maintenance of the CFETR through the RH system is necessary
for the safe and reliable operation of this test reactor. However, conventional industrial
robotics are inadequate for the confined, obstacle-filled, and highly radioactive vacuum
chamber of the reactor. This inefficiency in maintenance presents a significant challenge,
as it hinders the realization of essential automated equipment for future fusion power
plants. The SAM’s design and function aim to overcome this challenge.

Hyper-redundant SAMs have attracted attention because of their exceptional adaptability
and ability to avoid obstacles. Consequently, the SAM plays a crucial role in monitoring
and maintaining complex and expansive apparatuses. It also excels at navigating and
managing confined spaces, making it a practical robot.

SAM draws inspiration from natural creatures, such as snakes, an elephant’s trunk, and
animal tails, due to its multi-jointed hyper-redundancy.

The drive unit (motor, etc.) of an SAM is external to its working space, simplifying its
structure, and allowing for a more streamlined posture. This configuration removes all
electronics from the robot arm, making it ideal for high-risk, radioactive, and confined
environments such as nuclear power plants.

The primary objective of this project was to develop the SAM as a vital subsystem for
the CFETR remote handling maintenance system. It performs duties such as visual
inspections and dust removal within the complex pipeline areas of the upper window and



22

bottom diverter of the vacuum chamber. By incorporating SAM onto the quick-change
interface at the end of the CFETR multipurpose overload robot (CMOR), maintenance
operations in the vacuum chamber’s intricate, confined spaces are made possible.

In order to accommodate the tight confines of the CFETR vacuum chamber, we designed
a layered drive SAM, as depicted in Figure 1.4. Attached to the CMOR heavy-duty arm,
SAM facilitates maintenance, repair, and dust removal of the reactor environment. Its
distinguishing characteristics include a capacious operating area and radiation resistance.
During reactor operation, it efficiently removes a large quantity of particles generated by
the high-temperature plasma, thereby contributing to the efficient operation of the reactor.

(a) The SAM as a CMOR end-effector
for dust cleaning at the bottom of
divertors (Qin, Ji, et al., 2021; Qiang,
Ling, and Zengfu, 2017).

(b) The SAM robot monitoring and
observation in a vacuum chamber
environment (Qiang, Ling, and Zengfu,
2017; Qin, 2022).

Figure 1.4: The SAM robot monitoring and observation in a vacuum chamber
environment.

In addition to the Micro Arm and Lightweight Robotic Arm, the CMOR system
incorporates the ’Snake Arm Manipulator’ (SAM), a unique robotic arm resembling a
snake. Although specific parameter identification for the SAM snake-like manipulator
was not pursued in this study, it plays a crucial function within the CMOR system. Due
to its flexible structure resembling a snake, SAM implements precise operations in
complex environments. The joint flexibility of SAM, which was inspired by serpentine
organisms in nature, enables unrestricted movement in confined or obstructed areas.

Collaboration: SAM and the lightweight robotic arm in action

The incorporation of the Snake Arm Manipulator (SAM) into the CFETR system
highlights its function as a flexible and adaptable instrument in complex maintenance
scenarios. As SAM excels at traversing intricate and confined spaces, it complements the
array of robotic assets in the CMOR system, including the lightweight robotic arm
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mentioned previously.

Designed with precision and accuracy, the lightweight robotic arm increases the
capabilities of the CMOR system. Its lightweight construction and innovative joint
design enable efficient manipulation in restricted environments. Working together with
SAM, this arm aids a variety of maintenance tasks, providing a comprehensive approach
to overcoming obstacles within the vacuum chamber of the CFETR.

The integration of SAM and the lightweight robotic arm into the CMOR system shows
an integrated strategy to address the complex remote maintenance requirements of the
CFETR. Next, we detail how to further enhance the capabilities of the robotic arm through
digital twin integration to meet the challenges of future fusion energy technologies.

1.3 Enhancing robotic manipulators with digital twin integration

The main goal of this section is to thoroughly explore the application of digital twin (DT)
technology in robotic manipulators, and to explore how to use DT technology to enhance
the dynamic performance of robotic arms. We will focus on the principles of digital twin
technology, its benefits, and how it can be integrated into robotic operations for greater
precision, safety, and operational efficiency.

Digital twin technology, as a virtual simulation and simulation method, has attracted
widespread attention in many fields. It can be used to build a virtual robot model,
simulate the movement and behavior of the robot, and evaluate the robot’s performance
in tasks. For example, with a digital twin, we can test the dynamics of a robotic arm in a
virtual environment and optimize its control algorithms for greater precision and
efficiency in real-world operations (Grieves and Vickers, 2017).

The dgital twin concept provides a comprehensive representation of an entity, capturing
vital information across its entire lifecycle. Modeling and simulation, which are critical
in system design and validation, merge physical and virtual realms, helping various
professionals understand and manage mechatronic systems (Boschert and Rosen, 2016).
In addition, dgital twin can also be used for remote operation and monitoring of robots,
as well as real-time health monitoring and maintenance of robotic systems. In the
following sections, we will explore in more depth the specific application of dgital twin
technology in the field of robotic manipulators and how it affects the performance and
operation of robotic arms.
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1.3.1 Fusion of light and heavy load robotic arms and dgital twin

Robotic manipulators come in various designs, from lightweight arms with harmonic
drives to heavier arms using planetary gear systems. These designs cater to different
needs, including safety, precise control, and operator training. However, they also
introduce challenges such as friction, hysteresis, and dynamic response. To address these
challenges, a deep understanding of robotic arm behavior is crucial and digital twin
technology is instrumental.

Safety is essential in robotic arms, pushing design evolution to ensure human-machine
coexistence. Precise control has led to complex mechanical structures with advanced
control systems. Additionally, the need for skilled operators of varying levels has driven
the development of user-friendly robotic arms.

The heart of these challenges lies in understanding the robotic arm’s behavior, from
every joint to servo interaction. The digital twin comes into play by faithfully replicating
the precise behavior and characteristics of physical robotic arms. It directly addresses
challenges such as friction, hysteresis, and dynamic response.

A digital twin is a remarkable digital replica of a physical object, system, or process. It
mirrors the real-world entity in real time, using insights from sensors and simulations to
mimic its behavior and performance. The primary goal is to gain comprehensive insights
into the physical object’s behavior, continuously monitor its condition, and enhance its
operation, all without direct interaction with the physical counterpart.

The conceptual DT-HRC framework (Chitta et al., 2017) suggested is shown in
Figure 1.5. The digital twin is a new idea that has the potential to change many different
industries. This approach has enabled the creation of virtual counterparts for physical
entities, opening avenues for simulation, analysis, and optimization. Figure 1.5 visually
display this framework, with the description of the robot that captures essential attributes
such as geometry, structure, kinematics, and dynamics, all the same as in the physical
robot.

The system operates through a structured process consisting of six sequential steps, each
integral to various key applications. This process follows a two-stage model: the “3C
Setup” includes steps one to three, and the “operate” stage covers steps four to six. In the
initial stage, the focus is on establishing the system’s environment. This involves
configuring communication channels, collecting data, merging real and virtual datasets,
and superimposing digital content. Through these steps, a comprehensive digital
representation of the real world is constructed, enhanced by virtual sensors that mirror
physical counterparts. By executing code, the virtual controller simulates the movements
of the real robot, thereby demonstrating the capabilities of the framework.
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Figure 1.5: The human–robot collaborative (HRC) application of the dgital twin (DT)
framework.

The implementation of the digital twin involves several pivotal phases. These include
visualizing the corresponding objects and environments, creating sensors and controllers,
facilitating communication among these elements, and executing tasks within the virtual
domain. A key distinguishing feature of the digital twin, in contrast to standard
simulations, lies in its bidirectional communication capacity. This bidirectional
capability is achieved by adopting the ROS framework (Chitta et al., 2017), which
facilitates data exchange between the physical and virtual domains. Integral to this
architecture are the dynamic equations embedded within the robot’s Universal Robot
Description Format (URDF) file (Yeon, Donghan, and Kwangjin, 2019). This integration
underscores the indispensable role of dynamic equations in both the ROS system and the
digital twin framework.

Figure 1.6: The controller of DT and real robot.
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1.3.2 Robot operating system: empowering flexible and collaborative robotic
control

ROS, short for Robot Operating System, is an open source framework designed to
facilitate the control and coordination of robotic components through a computer. It
operates under the BSD license and functions as a system that includes multiple
individual nodes. These nodes operate independently and communicate with each other
using a publishing or subscription messaging pattern. In practical terms, ROS allows for
modular and distributed robotics development. Each node can serve a different purpose
and interact through message exchange. A prime example is a sensor driver which acts
as a node that publishes sensor data in the form of messages. These messages can then
be consumed by a variety of other nodes, ranging from loggers to higher-level systems
such as pathfinding algorithms.

The attractiveness of ROS lies in its flexibility and adaptability. Nodes within the ROS
ecosystem are not restricted to a single system or architecture. This means that nodes
could be running on disparate devices, from an Arduino generating messages, to a laptop
subscribing to them, and even an Android phone controlling motors. This makes ROS
suitable for various applications.

Furthermore, ROS is open source, enjoying contributions from a multitude of developers.
This collaborative nature ensures ongoing maintenance and refinement of the framework,
keeping it relevant and well maintained. Central to this approach is the ROS server, which
enables a cyclic computation process that combines robot, object, sensor, control input,
and environment configurations. The final result of this strategy is the construction and
use of a parallel world. When the ROS client works with Gazebo, it creates a vivid 3D
visualization that shows how the estimated world is set up. Figure 1.6 shows the controller
framework for the digital twin, which is controlled by the built-in ROS controller (Chitta
et al., 2017).

1.3.3 The role of dynamics in connecting robot control and digital twin technology

The four-layer tower design is a fundamental structure widely utilised in the field of robot
control as shown in Figure 1.7. In this design, which is made up of dynamics, parameter
identification, motion planning, and motion control, dynamics stands out as the most
important part. It is the foundation on which the entire control framework is built.
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Figure 1.7: A four-level architectural structure for robotic control, with a foundation in
dynamics.

Planning and control strategies are based on the layers of dynamics and system
identification, which are a crucial basis. Effective control methods are made possible by
a deep understanding of a robot’s dynamics and an exact identification of its system.
Precise trajectory planning is crucial for efficient robot control, optimizing the robot’s
path, and improving overall performance. Dynamics are fundamental to enhanced
control and to ensuring accuracy. These dynamic equations also power digital twin
technology, which recreates real-world behavior virtually. When it comes to digital
twins, dynamic equations bridge the physical and virtual worlds, allowing accurate
simulation. This precision is vital to simulating real-world scenarios, including human
interactions, enhancing predictions. Dynamic equations link robot control to digital
twins, allowing for more accurate models that help people make better decisions and
improve performance.

1.4 Dynamics in modern robotic systems
1.4.1 State of the art in robotic dynamics and digital twins

In recent years, the integration of digital twin technology with the principles of dynamics
has enabled significant progress in the field of robotic applications. Through digital
twins, engineers have achieved the capability to virtually simulate the dynamic response
of robotic systems when subjected to varying input and external forces. Such virtual
replications promise enhancements in control algorithms while addressing potential
issues before they materialize in real-world scenarios.

A deep understanding of these dynamics is vital for intricate maintenance operations,
particularly those pertaining to the internal maintenance of vacuum chambers. Key tasks
in this regard include the maintenance and cleaning of deflector tubes, inspection,
calibration, and repair of diagnostic components, among others. These tasks are highly
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dependent on dual-arm actuators, as depicted in Figure 1.8a. Furthermore, dual arm end
effectors, as shown in Figure 1.8b, comprise a multitude of tools, including, but not
limited to, external welding tools and non-destructive testing instruments.

In practice, consider a welding robot workstation armed with two robotic appendages. A
primary challenge here lies in the synchronization of the robot arm and the workstation
to ensure collision-free operations and the preservation of welding quality. The initial
tests are conducted in a simulated environment. Upon satisfactory performance in this
virtual setup, the programs are transferred to the physical workstation, ensuring seamless
coordination between the real and virtual robotic arms.

The synthesis of digital twin technology and dynamics principles not only fosters a
deeper understanding of robotic system behaviors but also equips us with the tools to
tackle complex challenges. The essence of this integration hinges on the precise
modeling of dynamics, as only accurate dynamic equations can enable the intricate
controls aforementioned. Such advancements herald a promising future for robotics,
especially in the realm of intricate tasks and challenges.

(a) Dual-arm actuator for divertor
maintenance.

(b) Actuator for a lightweight robotic arm
at the end of a heavy robotic arm.

Figure 1.8: Different actuators for robotic arm systems in maintenance.
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1.4.2 Force control methods and applications in robotic manipulation

Precision remains fundamental to robotics. The overall efficacy of the system is
determined by the precision of each operation, calculation, and subsequent action. As
technology advances, the landscape of problems and applications is in an ongoing
process of change. From intricate medical procedures to expansive industrial settings,
the need for refined force control is evident. Such precision requires techniques that can
handle both mechanical and computational complexities.

Many techniques have emerged to improve force control in robotic manipulators, based
on our understanding of robotic behavior and the central role of dynamics modeling. Each
technique offers its unique advantages and is adapted to specific applications:

1. Joint torque sensors:
By fitting single-axis torque sensors on each robot joint, force interactions can be
precisely measured. Located close to the motor, these sensors reduce interference
from the robot’s dynamic body properties. They capture comprehensive torque
information, including factors such as gravity and inertia moments. Traversaro
(Traversaro et al., 2015) and Suh (Suh, Joonwook, and Dong-Eun, 2020) have
explored the potential of this technique. However, the complexity and costs
associated with their integration can limit their widespread adoption.

2. End multiaxis torque sensor:
Employed by many robotic systems, end torque sensors detect forces at the robot’s
extremity. However, challenges arise due to the separation between the torque
sensor and the execution motor. Sun (Sun et al., 2015) worked on designing such
sensors for space robots. This separation often limits the robot’s force control
dynamic performance.

3. Base multiaxis torque sensor:
Some researchers, including Sim (Sim et al., 2018), have considered installing the
torque sensor at the base of the robot to detect interactive force information
throughout the arm. But its effectiveness is questioned with non-co-located modes,
and calibration becomes intricate.

4. Joint current feedback:
This method is best for direct-drive robots or those with a small reduction ratio. In
such contexts, joint friction remains minimal. Wahrburg (Wahrburg et al., 2018)
introduced an approach that employs this method, emphasizing its relevance when
joint frictions are negligible.

5. Series elastic drive (SEA):
The SEA approach uses mechanical deformation to control the force of the robot,
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which transforms it into position control. Researchers like Kim (Kim and Oh, 2019)
and Ni (Ni et al., 2018) have investigated its dynamics and potential challenges,
including the need for complex joint torque sensors.

6. Harmonic reducer:
Like a torsion spring, the harmonic reducer detects torsional deformation to
determine the torque. This method (Song, Huang, et al., 2020) utilizes the inherent
elasticity of the harmonic reducer. It is believed that its efficacy is similar to that of
joint torque sensors, although comprehensive research remains limited.

Such diverse methods demonstrate the importance of dynamics in robotics. Precise
modeling of these dynamics increases robot efficiency across a variety of tasks.
Furthermore, understanding the applications of these principles in robotic manipulation
reinforces the critical role of dynamics in myriad robotic operations. Whether it is
control simulations, position adjustments, or vibration suppression, the granular details
of dynamic modeling remain paramount for the success of these endeavors.

In summation, the importance of determining dynamic equations for force control is
paramount. A deep understanding of the dynamics underlying robotic systems is
essential for force control precision. Our strategies for force control will only be as
effective as our ability to identify and model these dynamics with exactitude.
Incorporating dynamic principles into robotic applications ensures that they function
with heightened efficiency, safety, and precision across a spectrum of tasks.

1.4.3 Dynamics in practical robotic applications

With this foundational understanding of the significance of dynamics in force control,
it is crucial to recognize how these principles apply to robotic manipulation. Dynamics
not only provides a theoretical foundation but also actively informs and improves a vast
array of practical robotic duties. From control simulations to position adjustments and
vibration suppression to compliant control, the specifics of dynamic modeling are crucial
to the success of these operations.

1. Control simulation: forward kinematics challenges. Dynamics finds a vital
application in control simulation, particularly when addressing forward-kinematics
challenges. By leveraging dynamic models, simulations can accurately predict the
robot’s motion and behavior, aiding in optimizing control strategies.

2. Position control: enhancing precision and speed (Wei, 2005)

(a) High-speed, high-precision position response dynamics are instrumental in
achieving precise and rapid position control. By accounting for dynamic
effects, controllers can be fine-tuned to deliver swift and accurate responses,
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crucial in applications demanding intricate positional adjustments.

Figure 1.9: Utilizing dynamic equations for precise position control in space.

To show how flexible dynamics can be in robotics applications, we use a
specific use case that shows how dynamic equations can be used to control a
robot’s position precisely in a space environment. This application shows
how smoothly dynamic concepts can be used in real-world situations.

The dynamic position control of space robotics follows the following steps:

1. Define the intended Cartesian trajectory for the path of the robot through
space. 2. Continuously record the actual position of the robot using joint
encoders. 3. Compare the actual position to the desired trajectory to generate
a Cartesian position error. 4. Use the position error to alter the control rate,
bringing the robot into alignment with the intended path. 5. Use the Jacobian
matrix to transform Cartesian errors into joint-specific errors. 6. Apply
techniques to compensate for system non-linearities that affect joint
movements. 7. Create individualized commands for each joint’s actuators
based on the refined position errors.

(b) Vibration suppression: resonance frequency identification. Identification and
suppression of vibrations are enabled through dynamic analysis. Identifying
resonance frequencies allows for the implementation of strategies that mitigate
vibrations, enhancing the stability and performance of robotic systems.

(c) Collision detection. Dynamics-based techniques enable effective collision
detection. By modeling the robot’s dynamics, potential collisions can be
predicted and preemptively addressed, preventing damages, and ensuring
safe operation.
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(d) Flexible joint control: the example of an iiwa robot. Dynamics-based control
is crucial in managing flexible joints, as exemplified by robots such as the
iiwa. These robots incorporate dynamic models to adaptively control their
flexible joints, enabling smoother and more precise movements.

3. Compliant control (Wei, 2005; Qian, Dai, and He, 2007)

(a) Physical interaction: polishing, guided manipulation. Dynamic principles
underpin physical interactions between robots and their environment.
Applications such as polishing and guided manipulation rely on dynamic
models to facilitate controlled physical interactions, ensuring accurate and
controlled movements.

(b) Compliant control of flexible joints: the case of the iiwa robot. Dynamic
approaches also shine in achieving compliant control for robots with flexible
joints, similar to the iiwa robot. When dynamics are taken into account, these
robots exhibit more natural and adaptable movements, making them suitable
for tasks that demand flexibility.

These varied applications underscore the foundational role of dynamics in modern robotic
control systems. By integrating dynamic principles into these applications, robots can
operate more efficiently, safely, and precisely on a diverse range of tasks.

1.5 Expanded background and selection of inference methods
In this section, we explore the history of parameter identification for heavy-duty
manipulators further and expand the discussion to incorporate additional conventional
methods for parameter estimation. When estimating model parameters in the domain of
dynamic parameter identification, techniques such as least squares or maximum
likelihood estimation are frequently employed to acquire point estimates. Although these
methods are widely employed, they frequently lack the capacity to completely capture
the uncertainty surrounding the model parameters.

1.5.1 Various parameter identification methods in robotics research

Various parameter identification methods are utilized in robotics research to improve the
understanding and control of robotic systems. These methods provide an extensive tool
for researchers and engineers in the field. They range from classical approaches like least
squares methods and extended Kalman filters to cutting-edge techniques involving deep
learning. Each method has its strengths and limitations, making them suitable for different
scenarios and system complexities. In addition to MCMC and SGHMC, a variety of other
parameter identification methods exist within the realm of robotics research. Here, we
enumerate some of the prominent parameter identification techniques used in robotics
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research and then delve into the motivation behind our choice of MCMC.

1. Least Squares Methods:

• Advantages: Simplicity, broad applicability, and computational efficiency.

• Disadvantages: Can be ineffective for complex, nonlinear models; sensitive to
outliers.

2. Partial Least-Squares (PLS) Regression (Llorens-Bonilla and Asada, 2014):

• Advantages: Manages high-dimensional data, identifies latent variables,
adapts to small sample sizes, and exhibits predictive utility.

• Disadvantages: At risk of overfitting, sensitive to noisy data and outliers.

3. Gradient-Based Optimization:

• Advantages: Systematic iterative optimization, appropriate for convex
problems (e.g., Adam (Kingma and Ba, 2014), RMSProp (Ramadhan,
Usman, and Pratiwi, 2021)).

• Disadvantages: Requires good initialization, can get trapped in local minima.

4. Extended Kalman Filter (EKF) (Gautier and Poignet, 2001; Nguyen, Zhou, and
Kang, 2015):

• Advantages: Manages nonlinear models through linearization; robust state
and parameter estimation.

• Disadvantages: Sensitive to linearization errors, noise, and computationally
intensive for complex models.

5. Deep Learning Methods (Shoujun et al., 2020):

• Advantages: Can handle large datasets, model complex non-linearities, and
capture intricate patterns.

• Disadvantages: Requires significant data and computational resources;
interpretability is challenging.

6. Convolutional Neural Networks (CNNs) (De León et al., 2022):
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• Used for capturing environmental characteristics, anticipating robot state and
dynamics through visual input, and improving the accuracy of robot dynamics
models.

• Advantages: Reduced parameters, shift-invariant (Krizhevsky, Sutskever, and
Hinton, 2012).

• Disadvantages: The computational complexity of the convolutional layers
increases with the depth of the network and the size of the filters. It is not
suitable for non-image data. The structure of CNN is mainly aimed at image
data and needs to be improved for other types of data.

7. Recurrent Neural Networks (RNNs) (Mukhopadhyay et al., 2019):

• Enhancing modeling and control of robot dynamics by distinguish temporal
correlations in motion and dynamics, which is especially useful for processing
sequential data such as time-series and sensor readings.

Deep learning techniques, despite their prowess in capturing complexities, treat robotic
systems as black boxes. While this can produce well-trained networks, it falls short in
providing results beyond the training data range. Moreover, pinpointing the specific
parameter responsible for unexpected outcomes becomes challenging.

Bayesian methods, such as MCMC, provide a solution by generating posterior
distributions of parameters, offering a more comprehensive view that includes optimal
estimates and uncertainty indications. Traditional Bayesian methods come with the
complexity of intricate integrals that are often infeasible to solve directly. MCMC
provides a way of approximating these challenging integrals (Brooks et al., 2011),
making Bayesian methods more practical and feasible, which is why we chose MCMC
for our research.

1.5.2 Methods and justifications for parameter identification in MCMC and
SGHMC

In robotics research, the selection of Markov chain Monte Carlo (MCMC) and Stochastic
Gradient Hamiltonian Monte Carlo (SGHMC) for parameter identification in dynamic
equations is supported by their special characteristics.

MCMC:

MCMC is an effective method that is ideally adapted to parameter estimation in
situations involving complex, high-dimensional models and non-Gaussian probability
distributions. Its greatest strength is its capacity to explore parameter spaces by
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generating a Markov chain that converges to the posterior distribution. In the context of
robotic systems, this convergence provides a robust estimation of parameter distributions
and their corresponding uncertainties. Frequently, these systems display nonlinear
behaviors and inherent uncertainties.

MCMC comprises two fundamental components: a Markov chain for sampling from
arbitrary probability distributions and a Monte Carlo element for addressing complex
integral problems. The Metropolis-Hastings (MH) algorithm, one of the foundational
MCMC techniques, has gained widespread popularity in various fields due to its
simplicity and its ability to sample intricate target distributions (Sarkis and Dhavale,
2015; Thrane and Talbot, 2019; Rens van de Schoot, 2017).

Furthermore, advancements in MCMC methodology have led to the emergence of the
Hamiltonian Monte Carlo (HMC) algorithm, which is renowned for its enhanced
sampling efficiency. Recent innovations and modifications in the field of computational
statistics have given rise to derivative algorithms (Radivojevi and Akhmatskaya, 2019)
rooted in the principles of HMC.

Bayesian methods offer several advantages in robotics research when integrated into
MCMC:

1. Uncertainty quantification: Bayesian methods within MCMC provide posterior
probability distributions, encompassing not only point estimates of parameters, but
also uncertainty indications. This is crucial in robotics, where uncertainty is
prevalent due to sensor noise, environmental variations, and model simplifications.

2. Robustness: MCMC, with Bayesian principles, exhibits robustness to outliers and
noisy data. It can effectively handle situations where traditional optimization
methods might get stuck or provide suboptimal solutions.

3. Incorporating prior knowledge: Bayesian approaches allow the incorporation of
prior knowledge or beliefs about parameters. This is especially valuable when
dealing with limited data, as it provides a way to leverage existing information.

4. Sampling complex distributions: MCMC techniques, in particular, excel at
sampling complex, high-dimensional parameter spaces. They can explore the
posterior distribution effectively, even when it is multimodal or has intricate
shapes.

MCMC has clear advantages over other parameter identification approaches, especially
for complicated robotics research:

1. Nonlinear dynamics and high-dimensional state spaces are common in robotic
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systems. MCMC can solve nonlinear and high-dimensional problems because it
explores the entire parameter space, unlike other optimization approaches that tend
to find local optimal solutions.

2. Uncertainty and noise: Sensor noise and environmental influences affect robotic
systems. MCMC approaches provide a posterior probability distribution for
parameters, allowing researchers to estimate their uncertainties and point
estimates, improving noise and uncertainty adaptation.

SGHMC:

This is an algorithm that combines the strengths of both MCMC and stochastic gradient
descent. It excels in scenarios involving extensive data sets or complex models. SGHMC
leverages minibatch gradient information for efficient parameter updates. This makes it
particularly valuable in the realm of robotic dynamics, where real-time processing may be
imperative, and where high-dimensional and nonconvex parameter spaces are common.

Both MCMC and SGHMC share the feature of providing parameter distribution
estimates. This characteristic is important in the context of robotics, where dynamics can
be influenced by a wide range of parameters and uncertainties. A probabilistic
perspective on parameter estimation, offered by these methods, is indispensable for
ensuring robust control and accurate predictions in the dynamic and ever-evolving field
of robotics.

Compared with other methods, SGHMC has clear advantages when dealing with some
specific challenges of robotics research:

1. Big data and real-time processing: In modern robot applications, it is often
necessary to process large amounts of data and perform real-time decision-making
and control. SGHMC makes it well-suited for such applications by exploiting
mini-batch gradient information for efficient parameter updates.

2. High-dimensional parameter spaces: Robot dynamics often involves
high-dimensional spaces. SGHMC is able to efficiently explore such parameter
spaces, providing accurate estimates of parameter distributions.

The following is an overview of the advantages of SGHMC compared to the methods
listed above.

1. SGHMC offers probabilistic insight into parameter uncertainty, showing improved
resilience to overfitting compared to PLS and enhancing adaptability to noisy data. 2.
It provides a comprehensive view of parameter distributions, rather than just singular
optimal values. 3. Unlike EKF, it is not heavily dependent on linearization, thus reducing
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model approximation errors. 4. Compared to deep learning models, SGHMC offers a
clearer quantification of uncertainty, bolstering generalization in various scenarios. It
also explicitly addresses uncertainties in sequential data, providing profound probabilistic
insights into time series. 5. By quickly handling large data sets with stochastic gradients,
SGHMC is more efficient than MCMC. Its use of minibatch gradients helps it to converge
faster in high-dimensional spaces and reduces the autocorrelation problems that can occur
with MCMC. This makes it a good choice for dynamic robotics applications.

1.6 Research methods
This section aimed to comprehensively compare methods for parameter identification
and dynamic analysis. Real-world data from robotic arms was collected in various
scenarios. A core part of our approach was crafting a dynamic model for robotic motion
control. Created using analysis and simulation, the model was validated with real data
and compared to existing ones.

Though ROS-MATLAB integration was not pursued, we used tools like sensors to gather
data from various robotic joints. Crucial parameters for the manipulators were identified
through data collection and sensors. Statistical analysis refined the models by deducing
unknown parameters.

In general, these methods improve the understanding of the manipulator and the
identification of parameters. The goal is to develop precise dynamic models and improve
control. While a full digital twin was not made, the focus on dynamic parameter
identification is key for future development.

In accordance with these main goals, the following discussion analyzes the steps that were
taken to develop a robust framework for dynamic modeling and parameter identification.
This comprehensive strategy not only improves our knowledge of robotic systems, but
also provides foundations for future advancements in control methods.

1.6.1 Suggested approach for constructing models.

In this section, we outline a comprehensive strategy for building models and obtaining
parameters from real-world data in Figure 1.10. Multiple stages contribute to the
successful development of a dynamic model and subsequent parameter identification in
this procedure. The overall goal is to accurately capture the complex behavior of
nonlinear dynamics.

Step 1: Construct the kinematic structure.

We begin the modeling procedure by constructing a kinematic structure with
Denavit–Hartenberg parameters. This foundational stage enables the representation of
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Figure 1.10: Suggested approach for constructing models using collecte real data.

complex system dynamics by establishing the framework for subsequent analysis.

Step 2: Data cleansing and collection.

To guarantee the accuracy of our model, we meticulously collect and preprocess data
from the actual world. Thorough data cleaning improves the precision and quality of
subsequent analysis.

Step 3: Model non-linear dynamics.

Using the cleansed data, we construct a model capable of faithfully representing the
complex behavior of non-linear dynamics. This model is essential for subsequent
parameter identification.

Step 4: Identification of nonlinear dynamics parameters

In this important stage, we refine the accuracy and efficacy of our model by identifying
the model parameters.

Step 4.1: Model output calculation and RMSE calculation.

We begin by calculating the predicted model output and evaluating its precision by
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calculating the root mean square error (RMSE). This metric measures the deviation
between the predictions of our model and the actual measured data.

Step 4.2: Calculation of the objective function.

To refine our parameter estimates, the Objective Function is computed. This function
includes the estimation of the log likelihood based on RMSE, the negative log-likelihood
computation, and the assimilation of any available prior information. The Objective
Function is an important criterion for refining our parameter estimations.

Step 4.3: Check for convergence.

To ensure the consistency and dependability of our parameter estimates, we performed
a convergence test. By monitoring the consistency and coherence of parameter values
across iterations, the convergence of the algorithm is determined. If non-convergence is
detected, we investigate potential causes and recommend additional parameter estimation
adjustments.

In the case of convergence, our efforts culminate in the accomplishment of dynamic
modeling and parameter identification. This success represents the accomplishment of
stable parameter values through the iterative process, allowing us to accurately predict
and comprehend the underlying nonlinear dynamics.

In conclusion, our proposed method consists of a thorough collection of steps that take us
from the establishment of a kinematic structure to the successful identification of complex
nonlinear dynamics parameters. This method not only improves our understanding of
real-world systems but also provides the basis for accurate model prediction.

1.7 Scientific contribution

This study constitutes a scientific contribution by conducting a comprehensive analysis
of inference methods for lightweight and heavy-duty robotic manipulators. Focusing on
lightweight arms with harmonic drives, heavy-duty arms with planetary gear systems,
and the distinctive challenges posed by the CMOR robot arm of the CFETR
superconducting Tokamak fusion device, this study embarks on a comparative analysis.
Various inference methods tailored to each gear system are explored and juxtaposed,
augmented by the incorporation of the Monte Carlo algorithm. The purpose of the study
is to refine and enhance the use of these techniques to precisely determine the parameters
of the manipulator. Research aims to enable the development of improved robotic
manipulator systems that excel in handling complex tasks with precision, efficiency, and
safety in diverse industrial settings.
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1.7.1 Comparative study of advanced parameter identification and dynamic
analysis

The Figure 1.11 represents three of the most significant technical challenges in the paper
and their innovative solutions. In a lightweight manipulator, overcoming friction and
hysteresis is the first obstacle. To solve this problem, the GMS model is used to describe
the frictional characteristics of the harmonically driven joint, while the FOBW model is
utilized to characterize the influence of the hysteresis effect. The second challenge is that
the heavy-duty arm has a similar issue.

The third challenge is how to efficiently estimate model parameters and account for
uncertainty. The optimal estimate and the uncertainty indication are obtained by
adopting the SGHMC method for parameter identification and the Bayesian method for
obtaining the posterior distribution. Together, these two creative ideas resolve essential
technical issues in heavy-duty manipulators and offer a new method for precise control
and optimization in industrial applications.

Designed to address the specific requirements of the CFETR remote handling system and
to consider the limitations of current robotic arms, the study is dedicated to overcoming
technical challenges in the following domains.

1. Addressing the challenge of accurately identifying and comprehensively
characterizing friction within harmonic drive joints of robotic systems. Due to friction,
the performance of these joints, which are common in robotics because of their precision
and compactness, is impaired. Conventional techniques for friction identification
encounter difficulties in comprehensively capturing friction behavior in harmonic drives,
particularly when considering factors such as temperature.

The proposed solution involves the application of the MCMC method in conjunction
with the generalized Maxwell-Slip (GMS) model. MCMC is a powerful statistical
technique that excels in parameter estimation and uncertainty quantification. By
combining it with the GMS model, which is adept at capturing the nonlinear and
time-dependent characteristics of harmonic drive friction, the authors offer a robust
framework for accurate friction identification.

Moreover, the article tackles the challenge of the influence of temperature on friction
behavior by incorporating temperature as a variable in the model. This is crucial because
temperature fluctuations can significantly alter the friction dynamics within robotic
joints. The use of temperature as a factor in the friction identification process improves
the accuracy and applicability of the model, allowing a more realistic representation of
friction under varying conditions.

By integrating MCMC, the GMS model, and the consideration of temperature, this
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Figure 1.11: Crafting a path forward: technological development roadmap.
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article offers a comprehensive solution to the intricate problem of friction identification
in harmonic drive joints. This approach not only provides accurate characterization of
friction but also contributes to the broader field of robotics by enabling more precise
control and better performance of robotic manipulators in various industrial applications.

2. Addressing the challenge involves tackling the accurate identification of hysteresis
behavior within robotic joints utilizing harmonic drive transmission. The intricate and
complex nature of hysteresis, a non-linear phenomenon characterized by
history-dependent effects, poses a primary technical obstacle. In the realm of robotic
systems, precise modeling and prediction of hysteresis play a pivotal role in achieving
precise control and optimizing overall performance.

The solution to this challenge is introducing the application of the Fractional Order
Bouc-Wen (FOBW) model in conjunction with the Monte Carlo method. The FOBW
model extends the classical Bouc-Wen model by incorporating fractional-order
derivatives, effectively capturing memory effects, and enhancing the model’s ability to
accurately depict nonlinear behaviors. The Monte Carlo method, a powerful
probabilistic technique, is used for parameter identification. It overcomes the limitations
of deterministic approaches by taking into account uncertainties and variations inherent
in hysteresis behavior.

The synergy of the FOBW model and the Monte Carlo method addresses the technical
difficulty through a two-fold approach. First, the capacity of the FOBW model to
accurately represent complex hysteresis behavior provides a theoretical foundation.
Second, the probabilistic sampling of the Monte Carlo method enables robust parameter
estimation even in the presence of uncertainties and variations.

3. Addressing the technical difficulty of accurately identifying parameters for
heavy-duty manipulators, particularly focusing on the disruptive influences of friction
and hysteresis on torque transmission efficiency. Friction and hysteresis are challenging
to quantify due to their non-linear and complex nature, especially in the context of
heavy-duty manipulators equipped with differential planetary gears. These effects not
only hinder the overall performance of these manipulators, but also complicate their
control strategies and dynamic analysis.

The solution introduced in this article involves the innovative utilization of the Stochastic
Gradient Hamilton Monte Carlo (SGHMC) method. This Bayesian approach
revolutionizes parameter identification by offering posterior distributions of model
parameters, allowing a more comprehensive understanding of uncertainties associated
with friction and hysteresis effects. The strengths of the SGHMC method, including
accelerated convergence, automatic step size adaptation, and scalability, effectively
address the challenges posed by the intricate dynamics of heavy-duty manipulators.
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Using SGHMC, this study bridges a critical knowledge gap by quantitatively
characterizing friction and hysteresis effects, providing accurate parameter estimates,
and enhancing the dynamic analysis of heavy-duty manipulators. Consequently, this
research contributes to the optimization of control strategies and the overall operational
efficiency of these complex robotic systems.

1.7.2 Expectations of control strategy optimization in the digital twin framework

The digital twin framework faces a central challenge: capturing the dynamics of the
mechanical system with precision. For precise control of systems such as robotic arms,
relying solely on sensors is expensive, while complex control methods require extensive
tuning, which poses the risk of decreasing precision. Dynamic equations, which are
fundamental to comprehending system behavior, enable informed control strategy design
decisions.

Dynamic equations in the digital twin framework expedite the creation of precise control
strategies aligned with the system’s structure. This improves controller performance,
stability, and adaptability. Here is how dynamic equations aid control strategy
development:

Model Predictive Control (MPC): MPC uses dynamic equations for simulation
predictions, optimizing control inputs to minimize prediction errors (Qahmash et al.,
2023). This suits complex control problems considering system dynamics and
constraints.

Feedforward Compensation: By identifying key terms in the dynamic equations that affect
the response of the system, a feedforward control strategy can anticipate and counteract
disturbances, potentially reducing the reliance on feedback tuning (Ema et al., 2021; Chia-
Pei et al., 2020).

Control Mode Switching: Dynamic equations guide the strategy to switch between
different modes, such as position, velocity, or force control, depending on the dynamics
and the state of the system (Zhang, 2013).

In summary, dynamic equations offer detailed insight into the behavior of the system,
which guides informed controller design decisions. We select strategies, optimize
parameters, and ensure controllers meet performance goals in practical applications.

1.8 Dissertation outline

Chapter 2 of the dissertation provides a comprehensive overview of the parameter
identification method in robotic manipulators.
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Chapter 3 presents an in-depth analysis of the inference methods used for parameter
identification in lightweight arms, including the incorporation of harmonic gear reducers.

Chapter 4 focuses on the CMOR robot arm of the CFETR. It addresses the unique
challenges associated with this robotic arm and investigates analytical methods for its
parameter identification. Furthermore, it includes an in-depth discussion on experimental
methods for the CMOR robot arm, concluding with a comparative analysis.

Chapter 5 concludes the most important results from the comparisons conducted in the
earlier sections, with a discussion on the proposed strategies to advance robotic
manipulators in industrial applications, providing information on future directions.
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2 Bayesian inference for parameter identification

2.1 Introducing the Markov chain Monte Carlo (MCMC) method

Bayesian inference provides a statistical methodology that incorporates prior knowledge
and updates it based on observed data. The MCMC methods are instrumental tools for
Bayesian inference, allowing sampling from the posterior distribution of parameters.
When such methods are employed, it becomes feasible to obtain a probabilistic
assessment of parameter values while considering both prior information and observed
data.

Nonlinear models with Gaussian noise can be formulated as Y = f (X ,θ)+ ε where X
denotes the input and Y represents a measurement of the output. Parameters, denoted by
θ , are unknown. Using Bayesian methodology, one incorporates both a likelihood
function ℓ(y | θ ,M ) and a prior probability density function g(θ | M) to examine the
distributions of unknown parameters. The model, denoted by M , describes the
underlying relationships between the data variables.In this context, M would define how
the input X and the parameters θ relate to the output Y in the presence of Gaussian noise
ε .

Given a specific parameter value θ , ℓ(y | θ ,M) offers a probability distribution of the
observed value Y , denoted as P(θ | y), which is the posterior distribution. The Bayes
formula is outlined as (Llorente et al., 2020):

P(θ | y,M) =
ℓ(y | θ ,M)g(θ |M)

p(y |M)
(2.1)

Z = p(y |M) =
∫

θ

ℓ(y | θ ,M)g(θ |M)dθ (2.2)

Here, Z is recognized as evidence (Friel and Wyse, 2012). When assuming that the
likelihood follows a Gaussian distribution, the function of this probabilistic relationship
can be expressed as detailed in Equation (2.3).

ℓ(y | θ ,M) =
n

∏
i=1

ℓ(yi | θ ,M) =
1

(
√

2πσ)n
exp

{
− 1

2σ2 SSθ

}
(2.3)

where

SSθ =
n

∑
i=1

(yi− f (xi,θ))
2 (2.4)
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The complexity in utilizing the Bayesian approach lies in computing the normalizing
constants or the ratios of these constants (Liang, Liu, and Carroll, 2010). However, the
MCMC method offers a solution to this computational challenge. This method uses a
Markov chain to obtain samples that resemble a distribution of P, followed by a Monte
Carlo analysis (Martino, 2018).

The main steps for employing the MCMC method in Bayesian inference are:

1. Define the prior distributions: Based on prior knowledge or hypotheses, specify
the prior distributions for the model parameters. These distributions represent the
hypotheses regarding parameter values prior to data collection.

2. Define the likelihood function: the likelihood function is formulated to assess the
agreement between the observed data and the model predictions, indicating the
probability of encountering the observed data with the given model parameters.

3. Calculate the posterior distribution: using the observed data and Bayes’ theorem,
calculate the posterior distribution of the model parameters. Prior information and
the likelihood function are combined to form the posterior distribution.

4. Initialize the Markov chain by assigning an initial value to each model parameter.
This initial value may be chosen at random or according to prior knowledge.

5. Sample generation: the MCMC algorithm is employed to generate samples from
the parameter space. Starting with the initial parameter values, new samples are
generated by proposing updated parameter values based on the current parameter
values and a proposal distribution.

6. Acceptance evaluation: the acceptability of each proposed sample is evaluated
using the acceptance criteria of the MCMC algorithm. Acceptance criteria
determine whether a proposed sample should be accepted or rejected on the basis
of the posterior distribution.

7. Parameter update: the parameter values are updated based on whether the proposed
samples were accepted or rejected. Accepted samples contribute to the estimation
of the posterior distribution, while rejected samples are discarded.

8. Repeat steps: the process of sample generation, acceptance evaluation, and
parameter update is repeated iteratively until a sufficient number of samples are
collected and the Markov chain has converged.

9. Convergence assessment: the convergence of the Markov chain is evaluated to
ensure that the collected samples are representative of the true posterior
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distribution. Various convergence diagnostics, such as trace plots, autocorrelation
plots, and Gelman-Rubin statistics, can be utilized.

10. Parameter estimation: Based on the collected samples, the model’s parameters are
estimated. Statistical measures such as the mean, median, or mode of the posterior
distribution are used to calculate parameter estimates.

11. Sensitivity analysis: A sensitivity analysis is performed to determine the impact of
changes in antecedent distributions or observed data on the parameter estimates,
providing insights into the robustness of the estimated results.

12. Validation and interpretation of results: the estimated parameters are validated by
comparing the predictions of the model with the observed data. The results are
interpreted in the context of the specific problem, drawing conclusions about the
significance and impact of the identified parameters on the system.

In the Metropolis-Hastings phase, particularly during the acceptance evaluation, the
algorithm ensures that the generated samples align closely with the true posterior
distribution of the parameters.

The pseudo-code of the MH algorithm is as follows.

In conclusion, the Bayesian inference method based on MCMC is an effective
instrument for the identification of friction and hysteresis in harmonic drive joints. By
utilizing a Markov chain process to explore the parameter space, this method permits
accurate estimation of the model parameters, resulting in enhanced modeling and control
of harmonic drive systems.

2.2 Introducing the Stochastic Gradient Hamiltonian Monte Carlo
(SGHMC) method

Building on the foundational concepts of Hamiltonian Monte Carlo (HMC) in
(paper11), the SGHMC algorithm emerges as a pivotal advancement, mainly marked by
the incorporation of stochastic gradients. Such an inclusion is instrumental in optimizing
sampling capabilities, particularly in expansive, high-dimensional parameter spaces,
typically found in extensive datasets and intricate models (Neal, 2012).

Unlike its predecessor, the traditional HMC, which operates primarily within the bounds
of the Metropolis-Hasting mechanism, SGHMC takes a different trajectory.It aims to use
Hamiltonian dynamics, which are carried out by specific partial differential equations,
to make changes in the initial state. Such an approach results in augmented acceptance
probabilities, propelling a faster convergence rate. Equations (2.5) and (2.6) show the
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Algorithm 1 The method of sampling used by the Metropolitan Hastings (MH) algorithm

1: Input: Proposed distribution q(x | x′), Sampling interval M, sample set V =∅.
2: Output: Sample set V
3: Initialization: Random initialization x0, t = 0;
4: repeat
5: Randomly generate a sample x̂, according to q(x | x′);
6: Calculate acceptance probability A(x̂,xt);
7: Randomly generate z from the uniform distribution of (0, 1)
8: if z≤ A(x̂,xt) then
9: xt+1 = x̂;

10: else
11: xt+1 = xt ;
12: end if
13: t ++;
14: while Steady state not reached do
15: if t mod M = 0 then
16: V = V ∪{xt}
17: end if
18: end while
19: until Obtain N samples (|V |= N);
20: End

Hamiltonian system:

H(q, p) =U(q)+K(p) (2.5)

∂qi

∂ t
=

∂H
∂ pi

=
∂K(p)

∂ pi
,
∂ pi

∂ t
=

∂H
∂qi

=−∂U(q)
∂qi

(2.6)

In the HMC model, every state has a representation in two dimensions, where Q and P
represent position and momentum, respectively. The fact that SGHMC is good at
reducing problems caused by random-walk behavior and the relatively low rejection
rates of MH can be acknowledged to a few important items: (a) The conservation law of
energy of Hamiltonian holds because Hamiltonian dynamics are always the same. This
can be formally expressed as −H(Q∗,P∗)+H(Q,P) = 0. The rejection rate of HMC is,
on average, significantly lower than that of many other competing algorithms. (b) The
existence of the momentum, P, serves as a regulator of the motion speed in any given
state. With each iterative cycle, P undergoes recalibration.
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Taking into account the SGHMC methodology, it is imperative to understand the
parameters θ and τ2. In our equation in (Qi, Huapeng, Yuntao, et al., 2023):

p
(
θ ,τ2 | y

)
∝ p

(
y | X,θ ,τ2) p(θ)p

(
τ

2)
∝

N

∏
i=1

N
(
yi | xT

i θ ,τ2) 5

∏
j=1

N (θ | 0,1) · Inv-Gamma
(
τ

2 | 2,2
) (2.7)

The parameter θ represents a vector of model parameters that interact with predictor
variables X to estimate the response y.

∏
N
i=1 N

(
yi | xT

i θ ,τ2) represents the likelihood of observing the data y given the input X ,
the parameter vector θ , and the variance τ2.

∏
5
j=1 N (θ | 0,1) specifies a prior belief in the parameters θ before any data is observed.

It suggests that each parameter in θ is drawn from a standard normal distribution (mean
of 0 and variance of 1). The product implies that this prior is applied independently for 5
parameters (hence the range from 1 to 5).

Inv-Gamma
(
τ2 | 2,2

)
represents the prior distribution of the variance τ2. The inverse

gamma distribution is a common choice for a prior on the variance of a normal
distribution in Bayesian analysis. Here, the shape and scale parameters of the inverse
gamma distribution are set to 2.

On the other hand, τ2 means the variance of the errors, which captures the discrepancies
between the model predictions and the actual values. Given the equation that describes
the posterior distribution of θ and τ2, we will now outline the procedure of the SGHMC
algorithm, specifically tailored for parameter identification, while taking into account the
previous distributions for θ and τ2.

The following is the flow of the algorithm to use SGHMC for parameter identification,
considering the prior distributions for θ and τ2.

1. Initialize parameters: Set initial values for the model parameters θ and τ2 to start
the SGHMC algorithm.

2. Precompute noise: Precompute the stochastic noise for the gradient estimates. This
noise term is introduced to make the algorithm robust to noise and sampling errors.

3. Initialize momentum: Set the initial momentum r for each parameter. The
momentum is introduced to improve the exploration of the parameter space during
the sampling process.
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4. Initialize prior distributions: Specify the prior distributions for the model
parameters θ and τ2. Assume a normal distribution for θ and an inverse gamma
distribution for τ2.

5. Iterate over the MCMC Steps: a. Compute stochastic gradients: Compute the
stochastic gradients of the log-posterior with respect to the model parameters
using mini-batches of data. This step allows the algorithm to handle large datasets
efficiently. b. Update momentum: Update the momentum r of each parameter
based on the computed stochastic gradients and the precomputed noise term. c.
Update parameters: Update the model parameters θ and τ2 using the calculated
momentum and the pre-computed noise term. This step incorporates momentum
and noise to explore the parameter space more effectively.

6. Sample from prior distributions: At the beginning of each iteration, sample new
values for θ and τ2 from their respective prior distributions.

7. Accept or reject step: Evaluate the acceptability of the proposed parameter updates
using the Metropolis-Hastings acceptance criteria, considering the prior
distributions. Decide whether to accept or reject the proposed updates based on the
posterior distribution and Hamiltonian dynamics.

8. Repeat steps 5 through 7: Repeatedly perform parameter updates, prior sampling,
and accept/reject steps for a fixed number of iterations to collect samples from the
posterior distribution.

9. Evaluate the convergence: Assess the convergence of the Markov chain to ensure
that the samples obtained are representative of the true posterior distribution.

10. Estimate parameters: Based on the samples collected, estimate the model
parameters θ and τ2 using statistical measures such as the mean or median of the
posterior distribution.

The pseudocode of the SGHMC algorithm with prior distributions:
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Algorithm 2 SGHMC Algorithm with Prior Distributions

1: Initialize model parameters θ , τ2, momentum r, learning rate η , and pre-computed
noise B

2: Initialize prior distributions for θ : θ ∼N (µθ ,σ
2
θ
) and τ2 ∼ Inv-Gamma(ατ ,βτ)

3: while not converged do
4: Sample mini-batch of data Db
5: Sample new values for θ from N (µθ ,σ2

θ
) and τ2 from Inv-Gamma(ατ ,βτ)

6: Compute stochastic gradients: ∇θ log p(θ |Db)
7: Update momentum: r← r− η

2 ∇θ log p(θ |Db)−ηBr+
√

2ηε

8: Update parameters: θ ← θ +ηr
9: Evaluate acceptance: Based on the Metropolis-Hastings acceptance criteria and

prior distributions
10: end while
11: End Estimate model parameters θ and τ2 using collected samples.

2.3 Evaluation criteria for inference methods

In this section, we perform a comparative analysis of the inference methods discussed
above for parameter identification in lightweight arms with harmonic gear reducers. We
define evaluation criteria to assess the performance of these methods and provide a
comprehensive discussion of the results and findings obtained from applying these
methods to real-world data.

Selection of evaluation criteria:

Both R2 (R square) and RMSE (Root Mean Square Error) are widely utilized as
evaluation metrics because they intuitively reflect the degree of correlation between
model predictions and experimental data.

R2 offers a statistical measure of the goodness of fit, while RMSE provides a
quantification of the prediction error.

Although there are other potential evaluation criteria, such as mean absolute error (MAE)
or mean absolute percentage error (MAPE). MAPE expresses the prediction error as a
percentage, which can be useful when you want to understand the relative error rather than
the absolute magnitude of the error. However, it should be used with caution, especially
when the actual values are close to zero, as it can lead to very high or undefined percentage
errors. In this context R2 and RMSE are perhaps considered the most informative. R2

gives a relative measure of fit, while RMSE provides an absolute measure of fit. Their
combination can offer a comprehensive view of model performance.
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Evaluation criteria for inference methods for ligthweight robot

We evaluate inference methods based on criteria such as accuracy, computational
efficiency, noise resistance, and the ability to handle nonlinearities of harmonic gear
reducers. These methods help identify the strengths and weaknesses of each method.

In the comparative analysis of inference methods for parameter identification in
lightweight arms with harmonic gear reducers, it is essential to establish evaluation
criteria to assess the performance of these methods. Two widely used criteria are fitness
(R2) and root mean squared error (RMSE).

Fitness, also known as the coefficient of determination or R2, is a statistical measure
that indicates how well the model predictions fit the experimental data. It quantifies the
proportion of the total variation in the data that is explained by the model. A higher R2

value indicates a better fit of the model to the data.

The value of R2 is defined as follows:

R2 = 1− ∑
n
i=1 (yi− ŷi)

2

∑
n
i=1 (yi− ȳ)2 (2.8)

where n is the number of data points. yi is the experimental data observed. ŷi is the
corresponding prediction of the model and ȳ is the mean of the observed data. An R2

value close to 1 indicates that the model’s predictions closely match the experimental
data, whereas a value closer to 0 suggests poor model performance.

The root mean square error (RMSE) is another commonly used metric to evaluate the
accuracy of model predictions. It calculates the average magnitude of the differences
between the prediction of the model and the observed data.

The RMSE is defined as follows:

RMSE =

√
1
n

n

∑
i=1

(yi− ŷi)
2 (2.9)

where n is the number of data points, yi is the experimental data observed, and ŷi is the
corresponding prediction of the model. A lower RMSE value indicates better agreement
between the model and the data.

Using R2 and RMSE as evaluation criteria, we can quantitatively compare the
performance of different inference methods to accurately estimate friction and hysteresis
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parameters for lightweight arms with harmonic gear reducers. These criteria provide
valuable insight into the strengths and limitations of each method and help in selecting
the most suitable approach for specific applications.

Evaluation criteria for inference methods for the CMOR robot arm

For parameter identification in the CMOR system, the three main criteria are fitness
((R2), RMSE, and computational efficiency. A higher R2 suggests a better fit to the
model, a lower RMSE denotes greater precision, and computational efficiency measures
the speed and effectiveness of the method. These criteria guide researchers in selecting
the best inference method for parameter estimation in lightweight arms with harmonic
gear reducers.

In addition to these three evaluation criteria, comparing MCMC and stochastic gradient
Hamilton Monte Carlo (SGHMC) for the identification of the heavy duty manipulator
parameters in (Qi, Huapeng, Yuntao, et al., 2023) required evaluating both the
convergence speed and the computational time.

The autocorrelation time measures how many iterations MCMC or SGHMC needs for the
samples to be nearly independent. Shorter autocorrelation times mean faster convergence
and efficiency. SGHMC outperformed MCMC in this aspect, suggesting that it converges
faster and samples more efficiently.

The Gelman-Rubin convergence statistic (Rhat) is an additional important metric for
assessing convergence in the MCMC and SGHMC methods. Rhat compares the
variability within and between multiple chains to determine whether convergence has
occurred. A value of Rhat near 1 signifies convergence, while values significantly greater
than 1 indicate that additional iterations are required. In this study, the Rhat values for
the SGHMC algorithm were closer to 1 than for MCMC, indicating that SGHMC
estimated the model parameters with greater convergence and stability.

In terms of computational speed and efficacy, the SGHMC algorithm outperformed
MCMC. The implementation of the SGHMC method benefited from the use of
stochastic gradients, which made it more computationally efficient than the traditional
MCMC approach, which requires calculating gradients across the entire dataset at each
iteration. The reduced computational burden of SGHMC enables faster parameter
estimation and reduces the time required to obtain accurate results.

In the next section, we will explore experimental methods for parameter identification,
which supplement analytical approaches by providing real-world data for validation and
estimation.
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3 Inference methods for the identification of parameters
in lightweight arms with harmonic gear reducers

3.1 Parameter identification in lightweight arms with harmonic gear
reducers

In this chapter, we focus on the problem of parameter identification in lightweight arms
equipped with harmonic gear reducers. Lightweight arms are widely used in various
robotic applications due to their high payload-to-weight ratio and flexibility. However,
accurate parameter identification is crucial to ensure safe and efficient operation of these
arms. Harmonic gear reducers, which are commonly used in lightweight arms, introduce
nonlinearities and uncertainties that further complicate the parameter identification
process. In this section, we provide an overview of lightweight arms with harmonic gear
reducers and discuss the challenges associated with parameter identification in these
systems.

3.1.1 Overview of lightweight arms with harmonic gear reducers

Lightweight arms are robotic manipulators designed to be low in weight while
maintaining high strength and dexterity. These arms are typically constructed using
lightweight materials such as aluminum or carbon fiber composites. Harmonic gear
reducers, also known as strain wave gears, are often employed in lightweight arms to
achieve high torque density and compactness. Figure 3.1 presents an illustration of a

(a) Install the temperature sensor directly onto
both the stator coil and the motor driver.

(b) Data acquisition interface, and
experimental equipment.

Figure 3.1: (a)The temperature sensor and (b) Lightweight arm with harmonic gear
reducers.

lightweight arm with a harmonic gear reducer. The harmonic gear reducer provides
torque amplification and speed reduction while maintaining a compact design. The
temperature sensor is mounted directly on both the stator coil and the motor driver.
Within harmonic gear reducers, three key components are integrated: a wave generator, a
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flex spline, and a circular spline. The flex spline is deformed by a wave motion produced
by the wave generator, which causes it to mesh with the circular spline. This interaction
results in a speed reduction and an amplification of the torque. However, the non-linear
and complex nature of the harmonic gear mechanism poses challenges for parameter
identification.

(a) Components of a harmonic gear reducer. (b) Schematic diagram of flexible joint
(Dhaouadi, 2003).

Figure 3.2: (a)The temperature sensor and (b) Schematic diagram of flexible joint:
lightweight arm with harmonic reducers.

In Figure 3.2a the components of a harmonic gear reducer are shown. The wave generator
(top), the flex spline (middle), and the circular spline (bottom) work together to achieve
torque amplification and speed reduction.

The parameter identification process for lightweight arms with harmonic gear reducers
involves estimating various parameters such as arm mass, link length, joint stiffness, and
friction coefficients. These parameters directly affect the arm’s dynamics and
performance. However, due to the nonlinearities introduced by harmonic gear reducers,
traditional parameter identification techniques may not be directly applicable. For the
specific parameters in the picture, refer to (Qi, Huapeng, Cheng, et al., 2022).

In the following sections, we will explore analytical and experimental methods for
parameter identification in lightweight arms with harmonic gear reducers, and conduct a
comparative analysis of different inference methods to evaluate their performance.

3.2 Friction identification
In (Qi, Huapeng, Cheng, et al., 2022), researchers tackled the challenging task of
identifying friction in lightweight robotic arms equipped with harmonic gear reducers.
Friction is a critical factor that significantly impacts the overall performance of robotic
systems, and accurate identification of friction parameters is essential to improve control
precision and overall system efficiency.

To address this issue, the authors adopted the GMS model, which is a sophisticated and
versatile model that effectively captures various friction effects, including stiction and
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hysteresis. The GMS model is used to describe the friction characteristics in harmonic
drive joints and is presented in Section 2.2.1 of the paper.

3.2.1 Dynamic model of a joint

A diagram of the flexible joint is presented in Figure 3.2b. In simplified dynamic analysis,
the joint module can be regarded as being composed of a permanent magnet synchronous
motor and harmonic reducer, as presented in Figure 3.4. In Figure 3.3, τm means that the
drive torque is applied by the joint motor, where i is the current in the motor.

τm = K× i (3.1)

Figure 3.3: Diagram of elastic joints(paper11).

Figure 3.4: The simplified dynamic model of a joint module system (Zhen et al., 2021).
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The dynamic model is given in (3.2):

τm = Jmwθ̈ +Bmwθ̇ + τ f + τext

τw = λητext
(3.2)

Table 3.1: The parameters of the flexible joint.

Symbol Quantity
τm motor output torque
K motor torque coefficient

Jmw Moment of inertia of joint module system
Bmw viscous friction coefficient
τ f the friction torque in the harmonic reducer.
τw the harmonic reducer output torque
η transmission efficiency of the harmonic reducer
λ the reduction ratio of the harmonic reducer.
q joint position
θ motor position

τext Load torque

where τ f includes Coulomb and viscous friction, as well as static friction. Bmw can be
included in τ f . The moment of inertia of the joint module system Jmw is 1.65× 10−3,
and the reduction ratio of the harmonic reducer is 101. The lubrication method of the
harmonic reducer is to use harmonic reducer grease. Please, see the paper (Zhen et al.,
2021) for other specific data.

3.2.2 Dynamics equations of GMS model and friction

The GMS model is a comprehensive friction model that accounts for multiple friction
elements in parallel, including Coulomb, viscous, and static friction components. It also
considers the angular velocity θ̇ , temperature T , and the torque τt applied by the joint
motor to accurately model the friction torque τ f under different operating conditions.

The friction torque τ f is expressed as follows:

τ f (θ̇ ,T,τt) =

[
fc +( fı0 + fvT × (T −15))×

(
1− e−

|θ̇ |
β+α×(T−15)

)]
× sgn(θ̇)+ fl (3.3)

where fc, fı0, fvT , β , and α are parameters to be identified, and fl represents the load-
dependent friction term.
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The first term in (3.3), fc, represents the Coulomb friction coefficient, which accounts
for the friction present when the joint is in a static state. The second term captures the
viscous friction component and considers the joint temperature, allowing the model to
characterize the variation of viscous friction with temperature. The third term introduces
a term related to the joint angular velocity θ̇ , modeling the Stribeck effect and capturing
the friction dependence on the velocity. The sgn(θ̇) function ensures the friction torque
changes direction when the joint velocity changes direction, accounting for hysteresis.

The final term fl represents the load-dependent friction component, taking into account
the load torque τl applied to the joint. This term captures the Stribeck effect under load
conditions and further enhances the model’s accuracy.

To identify the parameters fc, fı0, fvT , β , α , and fl , the researchers employed the Markov
chain Monte Carlo (MCMC) method, a powerful statistical approach that effectively deals
with complex and nonlinear systems. The MCMC method fits the GMS model to the
experimental data at different speeds, temperatures, and load conditions, enabling the
precise identification of the friction parameters.

The GMS model describes the friction force, denoted as F , in a robotic joint as the sum
of individual friction elements, represented by Fi, and the contribution of viscous friction
with coefficient σ multiplied by speed ω . Mathematically, it can be expressed as:

F =
L

∑
i=1

Fi +σ ×ω (GMS model) (3.4)

where L is the number of the equivalent friction element of the joint. Fi represents the
friction force of a single friction element, and there are L such elements. ω is the angular
speed of the joint, and σ is the coefficient of viscous friction. The behavior of each friction
element Fi in the GMS model depends on the state it is in.

In the viscous state, the rate of change in friction force with respect to time (dFi
dt ) is

proportional to speed (ω) with a stiffness coefficient ki. This can be expressed as:

dFi

dt
= ki×ω (Viscous state) (3.5)

where ki is a coefficient that represents the stiffness of the friction element model.

When the friction element Fi is sliding, the rate of change of friction force with respect to
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time is given by:

dFi

dt
= sgn(ω)×C×

[
ξi−

Fi

s(ω)

]
(Sliding state) (3.6)

Where sgn(ω) is the sign function that returns +1 for positive ω and -1 for negative ω . C
is a constant.

ξi is a parameter related to the friction element Fi, and is calculated based on the torque
at specific points.

By incorporating the parameters ξi and ki determined from the critical points, the authors
derive the friction curve s(ω), which represents the relationship between friction force and
speed during sliding. This friction curve s(ω) is the same as the τ f (θ̇ ,T,τt) mentioned
in the global friction model (GFM). Therefore, in this context, the GMS model and the
GFM are closely related, as τ f (θ̇ ,T,τt) represents the friction curve obtained from the
GMS model, incorporating the identified parameters ξi and ki.

In conclusion, the use of the GMS model for friction identification in harmonic drive
joints provides a robust and accurate representation of friction behavior. The model
successfully captures the complex friction phenomena under various operating
conditions. Accurate identification of friction parameters contributes significantly to
improving the control precision and efficiency of lightweight robotic arms, resulting in
more effective and reliable robotic operations.

3.2.3 Experimental results

Dependence of friction on velocity

Figure 3.5 shows the correlation between joint speed and friction force. In particular, this
friction force exhibits symmetry during both forward and reverse rotations. By assessing
the friction during these rotations, we can determine the gravitational influence factors
and subsequently streamline our equations.

The Stribeck curve shows a decrease as the velocity increases, where the highest point is
represented by the static friction Fs and the lowest is represented by the Coulomb
friction Fc. However, a distinct non-linear association between friction and velocity can
be observed from Figure 3.5. Moreover, despite variations in temperature, the Coulomb
friction remains unaltered. Given these findings, it is evident that traditional friction
models fail to capture the entire essence of friction dynamics.

Friction’s relationship with load torque
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Figure 3.5: The friction changes with velocity and temperature (payload = 0).

Figure 3.6: The friction changes with joint velocity, and load.
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An examination of Figure 3.6 reveals a quadratic relationship between friction and load
torque (Ema et al., 2020).

Output torque using the GMS model

Figure 3.7: Simulation and real friction
torque using (3.3). (Without load at room
temperature, 15 ° C.)

Figure 3.8: Simulation and real friction
torque using (3.3). (temperature T = 15 °C,
payload is 1 kg).

Figure 3.9: The reconstruction of output
torque using the GMS model with MCMC
and its credible interval (temperature 15°C
and load 2 kg).

Regarding Figure 3.7 and Figure 3.8, it becomes evident that precision is reduced when
taking into account three parameters, velocity, temperature, and load, in contrast to just
considering velocity and temperature. The introduction of more variables tends to
increase noise, particularly when the load reaches 15 kg and the temperature increases to
45 °C. Under pronounced noise disturbances, the reconstructive capabilities of the
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MCMC method exceed those of the LS method.

The average of the MCMC reconstruction results, along with its 95% confidence range
under ambient conditions of 15 °C and a load of 2 kg, is illustrated in Figure 3.9. Beyond
providing merely reconstructive results, the MCMC technique also indicates their
associated uncertainties. An examination of Figure 3.9 reveals that the 95% confidence
bounds for the MCMC samples are quite narrow, which means minimal sample
fluctuation. From the 95% predictive bounds of the adjusted models, there is a clear
concordance between the predictions of the model and the actual observations.

3.2.4 Discussion

In (Qi, Huapeng, Cheng, et al., 2022), the proposed MCMC method was validated
through real-world experiments on a lightweight robotic arm. The experimental setup
involved applying different torque inputs to the arm and measuring the displacements of
the joints. The collected data was then used in the MCMC algorithm to estimate the
friction parameters of the harmonic drive joints. The experimental results demonstrated
the effectiveness of the MCMC based approach in accurately identifying friction
parameters. The identified friction model significantly improved the joint performance in
terms of control accuracy and efficiency, making it suitable for various robotic
applications.

The paper presented an innovative approach for the identification of parameters in
lightweight arms with harmonic gear reducers using the MCMC method. Through
rigorous experimentation, the authors successfully identified friction parameters, crucial
for optimizing the arm’s performance in various applications. The MCMC-based
approach showcased its superiority in accurately estimating parameters in the presence
of nonlinearities and uncertainties. This study opens up new possibilities for improving
the control and automation of lightweight arms in industrial and robotic applications,
contributing to the advancement of precision engineering and automation technologies.

3.3 Hysteresis identification in joints with harmonic drive
transmission

This subsection delves deeper into the complexities of hysteresis identification in joints
with harmonic drive transmission. The paper introduces the fractional-order Bouc-Wen
model (FOBW) as an innovative approach to accurately model hysteresis effects, making
it different from traditional models. The Monte Carlo method, which is a key part of
this study, is used efficiently to identify parameters. This method shows its strength by
making sure that estimates are accurate, which is especially important in situations with a
lot of unidentified factors.
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In addition to explaining the methods, this part will give a full summary of the most
important results and findings of the paper. There is a lot of focus on how well the
FOBW model works, showing how much better it is at capturing complicated hysteresis
patterns. The Monte Carlo method’s ability to capture the complex hysteresis
phenomenon in dynamic systems is also emphasized, giving a full picture of its
applicability and effectiveness.

3.3.1 Dynamics equations and model description

The paper focuses on the identification of hysteresis characteristics in joints with
harmonic drive transmission. It introduces the Fractional Order Bouc-Wen (FOBW)
model, an extension of the traditional Bouc-Wen model, to accurately represent the
nonlinear hysteresis behavior observed in the system. The harmonic drive-based joint
consists of the wave generator (WG), flex spline (FS), and circular spline (CS),
connected to the base. The experimental platform system is used to measure the
kinematic properties of joints with harmonic reducers and includes a permanent magnet
servo motor (PMSM) and the harmonic drive inside the joint module.

The dynamics of the joint with harmonic drive transmission can be described by the
following equations.

First, the general dynamics model is:

τT = H(θ)θ̈ +C(θ , θ̇)+G(θ)+ τ f (3.7)

where τT is the joint torque. H(θ) is the joint inertia matrix. C(θ , θ̇) is the nonlinear
coupling term, including centrifugal and Coriolis forces. G(θ) is the gravitational torque.
θ̈ is the acceleration of the joint, and τ f is the friction torque.

For single-axis flexible manipulators, the dynamics model is:

τT = Ja× θ̈ +Ba× θ̇ + τ f (3.8)

τ f
(
θ̇ ,τt

)
=

[
fc +( fv0)×

(
1− e

|θ̇ |
β

)]
× sgn(θ̇)+ fl (3.9)

where τ f is the friction torque, θ̇ is the angular velocity, τt represents the load, fc refers to
the constant coefficient, fl represents the load-dependent friction term, fv0 is the velocity
coefficient, and β is a parameter used to adjust the effect of the exponential term. Please
refer to (Qi, Huapeng, Cheng, et al., 2022) for a more detailed explanation.

Second, harmonic drive hysteresis model (classical Bouc-Wen model):
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Γ(u(t), t) = wk|u(t)|+(1−w)k|x(t)| (3.10)

ẋ(t) = α u̇(t)−β |u̇(t)||x(t)|n−1x(t)− γ u̇(t)|x(t)|n (3.11)

where Γ(u(t), t) is the hysteresis component of the transmitted joint torque, w, k, α , β , n,
and γ are the model parameters that govern the hysteresis behavior, u(t) is the joint input
position, u̇(t) is the velocity of the joint, and x(t) is the hysteresis variable that represents
the difference between the input and output positions.

The CBW (Classical Bouc-Wen) model is formulated to characterize the hysteresis effect,
and the constants are defined as follows: ku = wk,kh = (1−w)Dkh0.

T (t) = Ba× u̇(t)+ ku×u(t)+ kh×h(t)+a× sgn(u̇(t))× τ
2
l (3.12)

ḣ = D−1×
(
A× u̇−β ×|u̇|× |h|n−1×h− γ× u̇×|h|n

)
(3.13)

In the hysteresis model, we have the following coefficients and variables:

ḣ is the rate of change of the hysteresis variable h(t) over time, D is a coefficient that
determines the scaling of the influence of the input velocity on the hysteresis variable, A
is a coefficient that scales the contribution of the input velocity u̇(t), β is a coefficient
that governs the influence of the velocity-dependent term on the hysteresis variable, n
is an exponent that controls the shape of the hysteresis loop and γ is a coefficient that
modulates the influence of the velocity-dependent term on the hysteresis variable. These
coefficients and variables play an essential role in defining and understanding the behavior
of the hysteresis model.

Third, the fractional-order Bouc-Wen model (FOBW): The FOBW model extends the
CBW model by introducing fractional derivatives to capture the noninteger order
dynamics of the joint. This model is particularly useful for describing systems with
memory-dependent behavior, such as joints with harmonic gear reducers. The FOBW
model is described by fractional-order differential equations. Its equation is as follows:

Dλ2h = ρ

(
Dλ1u−σ

∣∣∣Dλ1u
∣∣∣ |h|n−1h+(σ −1)Dλ1u|h|n

)
(3.14)

Equation (3.14) presents an extension of the non-linear hysteresis effect from integer
order to fractional order (Shengzheng et al., 2021). It incorporates a fractional derivative
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operator and introduces additional parameters to capture the fractional order behavior.
Here is an explanation of each parameter:

The fractional derivative operator Dλ2 with order λ2 represents the differentiation of the
hysteresis variable h(t) in fractional order.

The hysteresis variable h(t) represents the dynamic response associated with the
hysteresis effect.

The coefficient ρ scales the influence of the fractional derivative term on the hysteresis
variable. It determines the overall effect of the fractional derivative on the hysteresis
response.

The term Dλ1u represents the fractional derivative of the input signal u(t) of the order λ1.
It describes the impact of the input signal on the hysteresis variable.

The coefficient σ determines the influence of the velocity-dependent term on the
hysteresis variable. It accounts for the non-linearity introduced by the
velocity-dependent behavior.

The exponent n controls the shape of the hysteresis loop. It affects the nonlinearity and
sensitivity of the hysteresis response.

The term (σ − 1) captures the difference between the velocity-dependent term and the
elastic term in the hysteresis model.

In summary, Equation (3.14) provides a fractional-order extension of the hysteresis effect,
allowing for a more comprehensive representation of complex hysteresis phenomena in
dynamic systems. By incorporating fractional derivatives, this model offers increased
flexibility and accuracy in capturing the intricate dynamics of hysteresis.

The fractional-order Bouc-Wen (FOBW) model for asymmetric hysteresis is as follows:

Dλ2 h̄
Dλ1u

= ρ (1− h̄n) , h̄≥ 0,Dλ1u≥ 0 (3.15)

Dλ2 h̄
Dλ1u

= ρ (1+(2σ −1)h̄n) , h̄≥ 0,Dλ1u≤ 0 (3.16)
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Dλ2 h̄
Dλ1u

= ρ (1− (−1)nh̄n) , h̄≤ 0,Dλ1u≤ 0 (3.17)

Dλ2 h̄
Dλ1u

= ρ (1+(−1)n(2σ −1)h̄n) , h̄≤ 0,Dλ1u≥ 0 (3.18)

where Dλ2 h̄/Dλ1u is the fractional derivative of the hysteresis variable h̄(t) with respect
to the input position u(t). h̄(t) represents the hysteresis variable (scaled version of x(t))
with fractional order dynamics. λ1 and λ2 are fractional orders, and ρ , σ , and n are
model parameters that control the fractional-order hysteresis behavior. The FOBW
model extends the traditional Bouc-Wen model to capture asymmetric and
rate-dependent hysteresis behavior, providing a more accurate representation of the
system dynamics. The paper also compares the FOBW model with the traditional
dynamic equation to demonstrate its improved accuracy in modeling hysteresis.

3.3.2 Experimental results of identification using Least Squares and MCMC

Figure 3.10: Comparison of parameter identification methods: the Least Squares, the
MCMC, and the SGHMC for the Newton-Euler Dynamics model Equation (3.8), the
CBW model Equations (3.12) and (3.13), and the FOBW model Equations (3.12)
and (3.14).

The relationship graph compares the accuracy and convergence speed of LS, MCMC, and
SGHMC for parameter identification in three models: the Newton-Euler model, the CBW
model, and the FOBW model.

R2 and RMSE are used to assess the accuracy of the method. These metrics quantify the fit
of the model using identified parameters. We may compare the accuracy and performance
by computing R2 and RMSE for each approach in the three models.
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Furthermore, the convergence speed of the Bayesian methods (MCMC and SGHMC) is
examined by analyzing the average values of autocorrelation parameters.
Autocorrelation measures the correlation between subsequent samples and is a
diagnostic parameter that indicates convergence of the Markov chains used in Bayesian
inference. By comparing the average autocorrelation values for MCMC and SGHMC,
we can assess the convergence speed of these methods and determine which one
converges faster.

We can completely evaluate the three techniques in parameter identification for the
Newton-Euler model, CBW model, and FOBW model considering accuracy (R2 and
RMSE) and convergence speed (Autocorrelation).

The parameter results from applying the LS approach to determine the FOBW, BW and
Equation (3.8) formulas are shown in Table 3.2, Table 3.3, and Table 3.4, respectively. In
Figure 3.11 to Figure 3.15 you can find the specific graphics.

The identification results of the CBW models in Equation (3.13) are shown in Figure 3.11.
The red line represents the actual model hysteresis value in the upper image, the blue
line represents the simulated hysteresis loop, and the error value is shown in the lower
picture. There is a 7.5 N ·m payload. The maximum load was chosen because the effect
of hysteresis is more significant the higher the load.

The identification results of the CBW models of Equation (3.12) are shown in Figure 3.12.
The red in the upper image represents the actual torque output value of the model, while
the blue value in the lower image represents the model torque output error. The loads are
0 N ·m, 2.5 N ·m, 3.75 N ·m, 5 N ·m, 6.25 N ·m and 7.5 N ·m, respectively.

The identification results of the suggested FOBW models are shown in Figure 3.13 of
Equation (3.14). The red one is the actual model hysteresis value in the upper image.
Bleu one shows the simulated hysteresis loops, and the lower image shows the error value.
There is a payload of 7.5 N ·m.

The identification results of the suggested FOBW models are shown in Figure 3.14 of
Equation (3.12). Red in the top image represents the actual torque output value of the
model, while blue in the lower image represents the model torque output error. The loads
are 0 N ·m, 2.5 N ·m, 3.75 N ·m, 5 N ·m, 6.25 N ·m and 7.5 N ·m, respectively.
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Table 3.2: Paremater identification results of the single joint system using FOBW model
in Equations (3.12) and (3.14) using the LS method.

Notation Definition Value Unit
Ba the output torque coefficient of

PMSM motor
1.4e-4 N ·m/◦/sec

ku the post-yield stiffness -0.0169 N/◦
kh the initial stiffness of the hysteretic

part
25.989 N/◦

ρ the shape constant of the hysteresis
curve

3.286e-05 1/◦

n the shape constant of the hysteresis
curve

0.855 -

σ the shape constant of the hysteresis
curve

1411.64 -

λ1 the fractional order 1.479 -
λ2 the fractional order 0.98 -
a the friction constant at the load end 0.384 -

Table 3.3: Parameter identification results of the single joint system using the BW model
in Equations (3.12) and (3.13) using the LS method.

Notation Definition Value Unit
Ba the output torque coefficient of

PMSM motor
1.4e-4 N ·m/◦/sec

ku the post-yield stiffness 0.0038 N/◦
kh the initial stiffness of the hysteretic

part
22.34 N/◦

D the shape constant of the hysteresis
curve

80.00 1/◦

n the shape constant of the hysteresis
curve

0.9988 -

A the shape constant of the hysteresis
curve

0.1341 -

β the shape constant of the hysteresis
curve

50.00 -

γ the shape constant of the hysteresis
curve

3.00 -

a the friction constant at the load end 0.3466 -



70

Table 3.4: Parameter identification results of the single joint system in Equation (3.8)
using the LS method.

Notation Definition Value Unit
Ja the moment of inertia of joint

module system
0.00165 kg.m2

Ba the output torque coefficient of
PMSM motor

1.4e-4 N ·m/◦/sec

fc the constant Coulomb friction -0.2384 N
fv0 the constant used to describe the

viscous friction
-1.544 -

β the constant used to describe the
viscous friction

21.15 -

a the friction constant at the load end -1.833 -
fs the friction constant at the load end -311.83 -
θ̇v the friction constant at the load end -4.9215 -

Table 3.5: Parameter identification results of the single joint system using the FOBW
model in Equation (3.12) and Equation (3.14) using MCMC method.

Notation Definition Value Unit
Ba the output torque coefficient of

PMSM motor
1.4e-4 N ·m/◦/sec

ku the post-yield stiffness 0.0498 N/◦
kh the initial stiffness of the hysteretic

part
-22.660 N/◦

ρ the shape constant of the hysteresis
curve

3.133e-05 1/◦

n the shape constant of the hysteresis
curve

0.858 -

σ the shape constant of the hysteresis
curve

1411.64 -

λ1 the fractional order 1.4787 -
λ2 the fractional order 0.9832 -
a the friction constant at the load end 0.3502 -

Table 3.6: The error between the simulated output torque value and the real output torque
value of the three formulas.

The fitting
degrees of
MCMC and
the least
square

The FOBW
model in
Equation (3.12)
and
Equation (3.14)
using the
LS method

The FOBW
model in
Equation (3.12)
and
Equation (3.14)
using the
MCMC
method

The CBW
models in
Equation (3.12)
and
Equation (3.13)
using the
LS method

The
model in
Equation (3.8)
using the
LS method

1. RMES 1.6198 1.2621 1.5883 4.4780
2.Fitness(R-
Squared)

88.24% 91.3 % 83.42% 73.8%



71

Figure 3.11: Identification results of the BW models in Equation (3.13). In the upper
picture, the red one is the actual model hysteresis value, the blue one is the simulated
hysteresis loop output, and the lower picture is the error value. The payload is 7.5 N ·m.

Figure 3.12: Identification results of the BW models in eqs. Equation (3.12). The red
in the upper picture is the real value of the model torque output and the blue simulation
value, and the lower picture is the error value of the model torque output. The load,
respectively, is 0 N ·m, 2.5 N ·m, 3.75 N ·m, 5 N ·m, 6.25 N ·m, 7.5 N ·m.
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Figure 3.13: Identification results of the proposed FOBW models in Equation (3.14) using
the LS method. In the upper picture, the red image is the actual model hysteresis value,
the blue image is the simulated hysteresis loop output, and the lower picture is the error
value. The payload is 7.5 N ·m.

Figure 3.14: Identification results of the proposed FOBW models in Equation (3.12) using
the LS method. The red picture is the actual model output torque value in the upper image
and the blue simulation value, and the lower picture is the error value of the model output
torque. The load, respectively, is 0 N ·m, 2.5 N ·m, 3.75 N ·m, 5 N ·m, 6.25 N ·m, 7.5
N ·m.

Figure 3.15: Identification results of the traditional mechanical modeling in
Equation (3.8). The red in the upper picture is the real value of the model torque output
and the blue simulation value, and the lower picture is the error value of the model torque
output. The load, respectively, is 0 N ·m, 2.5 N ·m, 3.75 N ·m, 5 N ·m, 6.25 N ·m, 7.5
N ·m.
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Figure 3.16: Identification results of the proposed FOBW models in Equation (3.14) using
the MCMC method. In the upper picture, the red image is the identification results, the
blue image is the output of the simulated hysteresis loop, and the lower image is the error
value. The payload is 7.5 N ·m.

Figure 3.17: Identification results of the proposed FOBW models in eqs. Equation (3.12)
using MCMC method. The red in the upper picture is the real value of the model torque
output and the blue simulation value, and the lower picture is the error value of the model
torque output. The load, respectively, is 0 N ·m, 2.5 N ·m, 3.75 N ·m, 5 N ·m, 6.25 N ·m,
7.5 N ·m.

In Figure 3.11 and Figure 3.13, the speed is gradually reduced from 30◦/s to 10◦/s, so
the hysteresis curve is also gradually reduced. By comparing Figure 3.11 and
Figure 3.13, it is evident that Figure 3.13 has a superior simulation effect for hysteresis,
which is attributable to the adoption of the new FOBW model suggested in this research.
In Table 3.6 displays the RMES error of the data. We reduced the RMES from 4.48 to
1.26 while increasing the fitness from 73% to 91%. The accuracy has increased
significantly. XRMSE in Equation (3.19) is the root mean squard error. R2 in
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Equation (3.20) is the coefficient of determination (R-squared). R-squared is also called
fitness, which eliminates the influence of dimensions. The closer the model is to 100%,
the more accurate the model is.

XRMSE =

√
∑

N
i=1 (yi− fi)

2

N
(3.19)

R2 = (1− SSres

SStot
)×100% (3.20)

Where yi is is the observed value, fi is the predicted value, ȳ is the average value. SSres =

∑
N
i=1 (yi− fi)

2 is the residual sum of squares, SStot = ∑
N
i=1 (yi− ȳ)2 is the total square

value.

We reidentify Equation (3.12) and Equation (3.14) using the MCMC technique to
increase the FOBW model’s accuracy even more. In Table 3.5 the results of the
identification parameters are shown. Refer to Section 2.1 for details of the precise
procedure and pseudocode of the MCMC method. RMES is 1.26 and the fitness is 0.91,
which is more accurate than the LS technique.

In general, Figure 3.11 to Figure 3.17 tend to suggest that the use of the FOBW model
can predict hysteresis curves at different speeds and loads, thus increasing the range of
hysteresis problems that can be studied. In addition, the MCMC algorithm improves the
accuracy of the model identification.

3.3.3 Experimental results of parameter identification using SGHMC

Figure 3.18 illustrates the identification results of the proposed FOBW models using the
SGHMC (Stochastic Gradient Hamiltonian Monte Carlo) method. The upper picture
shows the comparison between the identification results (red) and the simulated
hysteresis loop output (blue). The lower picture represents the error values between the
identification results and the simulated output. The payload for this experiment is 7.5
N ·m.

Figure 3.19 presents the identification results of the proposed FOBW models using the
SGHMC method. The upper picture compares the real value (red) and the simulated
value (blue) of the model torque output. The lower picture shows the error value of the
torque output of the model. The experiments were carried out with different loads ranging
from 0 N ·m to 7.5 N ·m.

The Table 3.7 displays the parameter identification results of the single joint system using
the FOBW (Fractional Order Bouc-Wen) model. The table lists the notation, definition,
value, and unit of each identified parameter.



75

Figure 3.18: Identification results of the proposed FOBW models in Equation (3.14) using
the SGHMC method. In the upper picture, the red image is the identification results, the
blue image is the output of the simulated hysteresis loop, and the lower image is the error
value. The payload is 7.5 N ·m.

Figure 3.19: Identification results of the proposed FOBW models in Equation (3.12) using
SGHMC method. The red in the upper picture is the real value of the model torque output
and the blue simulation value, and the lower picture is the error value of the model torque
output. The load, respectively, is 0 N ·m, 2.5 N ·m, 3.75 N ·m, 5 N ·m, 6.25 N ·m, 7.5
N ·m.

3.3.4 Comparison of average autocorrelation values: SGHMC versus MCMC
experimental findings

The Figure 3.20 and Figure 3.21 illustrate the autocorrelation values of the samples
obtained from the SGHMC and MCMC algorithms, respectively. These autocorrelation
values provide insights into the correlation structure of the obtained samples.

The Table 3.8 compares the mean autocorrelation values for the MCMC and SGHMC
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Table 3.7: Parameter identification results of the single joint system using the FOBW
model in Equation (3.12) and Equation (3.14) using SGHMC method.

Notation Definition Value Unit
Ba the output torque coefficient of

PMSM motor
1.4e-4 N ·m/◦/sec

ku the post-yield stiffness -0.0334 N/◦
kh the initial stiffness of the hysteretic

part
-48.6570 N/◦

ρ the shape constant of the hysteresis
curve

2e-05 1/◦

n the shape constant of the hysteresis
curve

0.8307 -

σ the shape constant of the hysteresis
curve

1566.61 -

λ1 the fractional order 1.7348 -
λ2 the fractional order 0.9075 -
a the friction constant at the load end 0.3606 -

Figure 3.20: The autocorrelation values of the samples obtained from SGHMC algorithm
in Equation (3.14).

methods. The table presents the autocorrelation values for each parameter obtained from
both methods. Corresponding parameters of 1 to 5: λ1, ρ , λ2, n, σ .

By examining the density plot of the parameter during the sampling process, we can
observe the shape of the distribution.

The Figure 3.22 displays the posterior distribution, and we can observe that the shape
closely resembles that of the inverse gamma distribution, which aligns with the conjugate
relationship between the prior and likelihood distributions. This similarity suggests that
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Figure 3.21: The autocorrelation values of the samples obtained from MCMC algorithm
in Equation (3.14).

Table 3.8: Mean autocorrelation values for MCMC and SGHMC method.

No. MCMC SGHMC

1 3×10−4 2.813×10−4

2 3×10−4 1×10−3

3 1.5×10−3 1×10−3

4 9×10−4 −2.1×10−3

5 4×10−4 −2.486×10−5

Figure 3.22: The density plot of the posterior distribution for the parameter of SGHMC
algorithm of the samples obtained from the Equation (3.14).

the parameter has converged to a stable state, as indicated by the posterior distribution.
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The convergence of the posterior distribution with an inverse gamma shape provides
strong evidence that the SGHMC algorithm has achieved convergence.

This convergence indicates that the algorithm has effectively estimated the parameter’s
values and captured the underlying uncertainty. With the conjugate relationship between
the prior and likelihood distributions, the SGHMC algorithm has successfully used the
information from the data and the prior knowledge encoded in the inverse gamma prior to
obtain reliable inference and analysis results.

Table 3.9: The error between the simulated output torque value and the real output torque
value of the three formulas.

The fitting degrees of
MCMC and the least
square

The FOBW model
in Equation (3.12)
and
Equation (3.14)
using the SGHMC
method

The FOBW model
in Equation (3.12)
and
Equation (3.14)
using the MCMC
method

1. RMES 2.3681 1.2621
2.Fitness(R-Squared) 90.62% 91.3 %

The Table 3.9 provides the comparison of errors between the simulated output torque
values and the real output torque values obtained from different methods. The table
includes two columns, the first one for the FOBW model identification using the
SGHMC method, and the other using the MCMC (Markov Chain Monte Carlo) method.
Present the root mean square error (RMSE) and the fitness (R-squared) values.

From Table 3.8, which compares the mean autocorrelation values for the MCMC and
SGHMC methods, we can observe the following.

The MCMC method shows autocorrelation values ranging from 3× 10−4 to 1.5× 10−3

for different parameters. In comparison, the SGHMC method exhibits autocorrelation
values ranging from 2.813× 10−4 to −2.1× 10−3. On the basis of these values, we can
conclude that the autocorrelation in the SGHMC method is generally lower than that in
the MCMC method. This suggests that the SGHMC algorithm has a faster convergence
speed as it explores the parameter space more efficiently.

Moving on to Table Table 3.9, which presents the comparison of errors between simulated
and real output torque values, we find the following:

The RMSE for the identification of the FOBW model using the SGHMC method is
2.3681. On the other hand, the RMSE for the FOBW model identification using the
MCMC method is 1.2621. Additionally, the fitness values (R-squared) for the SGHMC
and MCMC methods are 90.62% and 91.3%, respectively.

Based on these results, we can infer that the accuracy of the two methods is relatively
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comparable, since the RMSE values are similar. However, the MCMC method exhibits
slightly higher fitness, indicating slightly better accuracy in capturing the real output
torque values.

In terms of convergence speed, the SGHMC method demonstrates faster convergence
compared to the MCMC method. Lower autocorrelation values in the SGHMC method
suggest more efficient exploration of the parameter space and quicker convergence to the
desired posterior distribution.

Overall, the analysis of the provided data indicates that while the accuracy between the
two methods is relatively similar, the SGHMC method shows a clear advantage in terms
of convergence speed.

3.4 Discussion of results and findings

In this section, we discuss the results of the use of MCMC and Monte Carlo methods to
identify friction and hysteresis in lightweight arms. The significance of this study lies
in its potential to revolutionize the understanding of frictional dynamics and hysteresis
phenomena, a cornerstone in ensuring optimal operation of lightweight arms.

Results for friction identification (Qi, Huapeng, Cheng, et al., 2022) : The application of
the MCMC method to the identification of friction in harmonic drive joints produced
encouraging results. When one digs deeper into MCMC, its statistical rigor provides a
reliable framework that ensures confidence in the results. Using the Generalized
Maxwell Slip (GMS) model and a Bayesian inference formulation, the MCMC
algorithm efficiently sampled the posterior distribution of friction parameters.
Furthermore, the choice of the GMS model, with its ability to represent complex
frictional phenomena, is perfectly aligned with the research objectives. The parameter
estimates obtained accurately characterized the non-linear and time-varying nature of
friction, which yields important information on the friction behavior of lightweight arms.

Fitness R2 and RMSE were used to evaluate the performance of the model. The
predictions of the model matched closely with the experimental data, validating the
efficacy of the MCMC method for the identification of friction.

Results of hysteresis identification: For hysteresis identification, the Monte Carlo-based
method employing MCMC and SGHMC techniques demonstrated outstanding
performance. The value proposition of Monte Carlo techniques is their adaptability and
robustness, making them particularly suitable for the identification of hysteresis, a
well-known phenomenon due to its complexity. The algorithms effectively sampled the
parameter space and estimated optimal parameter values to minimize differences
between model predictions and experimental data.
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R2 and RMSE were again used as evaluation criteria to determine the precision of
hysteresis identification. High R2 and low RMSE values indicated a strong correlation
between the predictions of the model and the experimental data, demonstrating the
dependability of the SGHMC method to identify hysteresis.

Comparative evaluation: Both MCMC-based and Monte Carlo-based methods are
effective for parameter identification in lightweight arms with harmonic gear reducers,
according to a comparison of the two approaches. To delve further, the MCMC method,
with its strong theoretical foundation, is unparalleled in capturing frictional properties,
making it the method of choice for friction studies. The SGHMC method, with its
adaptability, demonstrated superior performance in addressing hysteresis effects.

In general, the findings demonstrate the importance of Bayesian inference and Monte
Carlo-based methods for accurately identifying friction and hysteresis parameters. It
provides a robust framework for parameter estimation by acting as a bridge between raw
data and important findings, thereby underscoring the importance of Bayesian inference.
Combining experimental data with intelligent inference techniques facilitates the
comprehension and optimization of the dynamic behavior of lightweight arms with
harmonic gear reducers.
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4 Exploring inference methods for parameter
identification in the CFETR CMOR robot arm

4.1 Parameter identification in the CMOR
Effective optimization of the performance of the CMOR robot arm is significantly
dependent on the identification of parameters. The study referred to in (Qi, Huapeng,
Yuntao, et al., 2023) dives deep into the intricacies of robotic arm dynamics. At the heart
of any robot arm’s efficiency is the understanding and precise identification of its
parameters. Without this understanding, the movement might be erratic or inefficient. By
focusing on heavy duty manipulators, the study covers machines that do a lot of heavy
lifting in industry.

One of the main highlights of the research is the introduction of the SGHMC method. But
why is this all important? Consider the application mentioned in the study, the CFETR
superconducting Tokamak fusion device, to comprehend the significance. Fusion energy,
often labeled the energy of the future, relies on extremely complex machinery to replicate
the conditions inside the Sun. Any minor mistake may risk the entire procedure. The
CMOR robot arm, which functions within this device, performs a crucial function.

The findings of (Qi, Huapeng, Yuntao, et al., 2023) are not just theoretical. They have a
very real impact. By introducing a powerful algorithm to estimate the precise parameters
of the robot arm, the study ensures that the CMOR robot arm operates at its best. This is
crucial not only for the efficiency of the fusion device, but also for the safety of everyone
involved.

In short, robotic arms, especially those used in critical applications such as fusion
energy, are marvels of engineering. But to ensure that they operate as intended, a deep
understanding of their parameters is essential. The (Qi, Huapeng, Yuntao, et al., 2023)
study provides this understanding. By advancing knowledge and fine-tuning the
operations of the CMOR robot arm, it will ensure that the dream of harnessing fusion
energy becomes a reality.

4.1.1 Introduction to the CMOR robot arm of the CFETR

According to (Qi, Huapeng, Yuntao, et al., 2023), the mechanical arm of CMOR is not
just an accessory, but a vital part of the CFETR superconducting Tokamak fusion device.
Fusion devices like the Tokamak are complex pieces of engineering that aim to harness
energy in the same way the sun does.

Among these essential components is the CMOR robot arm. Consider a machine that
must operate in extreme heat and pressure, making human intervention impossible.
Here, the CMOR robot arm enters play. Its construction is designed to withstand the
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severe conditions of the fusion device. It is constructed from specialized materials that
can withstand extreme heat and radiation.

In terms of movement, the CMOR robot arm has multiple degrees of freedom. This means
that it can move in various directions, making it versatile and adaptable. Its flexibility
ensures that it can reach different parts of the fusion device, perform repairs, or move
materials as required.

Its applications within the fusion device are numerous. Beyond maintenance, the robot
arm also helps with the installation of new components, monitors conditions inside the
fusion chamber, and even assists with data collection. These data are invaluable as they
help scientists better understand the fusion process and make improvements where
necessary. This section aims to shine a light on this remarkable piece of engineering and
to highlight its importance in the world of advanced energy research.

The CMOR mechanical system has been introduced in Section 1.2.2, as shown in
Figure 4.1. In (Qi, Huapeng, Yuntao, et al., 2023), experimental methods were used to
validate and evaluate the performance of parameter identification approaches for the
CMOR robot arm.

Figure 4.1: The configuration of the CMOR system include its overall structure.

The primary emphasis of (Qi, Huapeng, Yuntao, et al., 2023) was the use of the SGHMC
method for the purpose of parameter identification in the CMOR robot arm.
Observations of the behavior of the robot arm while it operates provided the data used
for parameter estimation. The experimental procedures involved data collection,
preprocessing, and validation. To acquire data, it was necessary to document the
movements and behaviors of the robot arm under various conditions. The data were
cleaned and organized prior to parameter identification in order to ensure suitability. To
validate the identified parameters, the experimental results were compared with the
simulated outputs of the identified models, and statistical measures such as the root mean
square error (RMSE) were used to evaluate the precision of the parameter estimates. The
experimental methods were essential to demonstrate the effectiveness and reliability of
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parameter identification approaches.

4.1.2 Challenges in parameter identification for the CMOR robot arm

The main challenges comprise the identification of parameters in the CMOR robot arm,
including friction and hysteresis effects, and the analysis of the complexities and
uncertainties involved in parameter identification for the CMOR robot arm.

Identifying the parameters of the CMOR robot arm faces difficulties, as highlighted in (Qi,
Huapeng, Yuntao, et al., 2023). This paper refines the estimation process by introducing
the SGHMC method to deal with noisy data and wide-ranging parameter spaces.

1. Nonlinear dynamics: The CMOR robot arm operates in a complex and nonlinear
environment, where nonlinearities are introduced by interactions with plasma,
magnetic fields, and other Tokamak components. This complexity makes it
difficult to develop mathematical models that accurately depict the behavior of the
arm.

2. Hysteresis effects: (Qi, Huapeng, Yuntao, et al., 2023) discuss the effects of
hysteresis, which refers to the phenomenon in which the output of the robot arm
depends not only on its current inputs, but also on its historical inputs. It is
difficult to identify and quantify hysteresis parameters due to their dynamic and
time-dependent nature.

3. High-dimensional parameter space: The CMOR robot arm may have a large
number of parameters that must be accurately estimated. This high-dimensional
parameter space presents computational difficulties, as conventional parameter
identification techniques may become computationally intensive and
time-consuming.

4. The measurements acquired from the robot arm’s sensors are frequently subject to
noise and uncertainties. Unaddressed, dealing with noisy data during the parameter
identification procedure can result in inaccurate estimations.

5. Differences between the mathematical models used for parameter identification and
the actual behavior of the CMOR robot arm can result in estimation errors. To
enhance the precision of parameter identification, it is essential to account for these
model-experiment mismatches.

Alternatively, (Qi, Huapeng, Yuntao, et al., 2023) introduces the SGHMC method, which
addresses noisy data and high-dimensional parameter spaces, providing a powerful
instrument for parameter estimation in the CMOR robot arm.
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Figure 4.2: The fourth joint of the CMOR robot arm serves as the experimental platform
for single-joint testing.

Successfully overcoming these obstacles will result in more accurate and reliable
parameter identification for the CMOR robot arm, thereby improving its performance
and contributing to the successful operation of the CFETR superconducting Tokamak
fusion device.

4.2 Data collection and experimental setup

The CMOR robotic arm test platform consists of several key components that work
together to achieve its functionalities as shown in Figure 4.2. These components include:

Base and mounting: The CMOR robot arm is securely mounted on a stable base within the
Tokamak device. This ensures that the arm remains firmly anchored during its operations.

Linkages and joints: The robot arm is constructed using multiple interconnected links,
allowing for smooth and flexible movements. These links are equipped with joints that
provide rotational degrees of freedom, allowing the arm to move in various directions.

End effector: The end of the robot arm is equipped with a specialized end effector or tool
that can be customized based on specific tasks. The end effector may include grippers,
sensors, or other devices necessary to interact with Tokamak components.

Actuators: Actuators serve as the driving force for robot joint movements. These can be
electric, hydraulic, or pneumatic actuators, depending on the requirements of the
application.

Sensors and feedback systems: The CMOR robot arm is equipped with a variety of
sensors that provide real-time feedback on its position, orientation, and interaction
forces. This feedback is crucial for accurate and safe operations within the fusion device.
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Control system: The control system of the CMOR robot arm is highly sophisticated and
capable of executing complex motion trajectories with precision. Integrates advanced
algorithms and software to optimize joint movements and ensure efficient completion of
tasks.

The significance of the CMOR robot arm lies in its ability to perform critical tasks
within the Tokamak fusion device. These tasks include the manipulation of
plasma-facing materials, diagnostic systems, and other components.

The structure of the CMOR robot joint, combined with its precise control capabilities,
enables it to adapt to different tasks and respond to dynamic changes within the
Tokamak environment. This adaptability and reliability make it an indispensable tool for
researchers and engineers working towards the successful operation of the CFETR
superconducting Tokamak fusion device.

4.2.1 Dynamic modeling of robots using Lagrange’s method

The dynamic model of a robot manipulator is crucial to understanding its behavior and
accurately controlling its motion. It involves parameters such as joint angles, velocities,
accelerations, as well as inertial, friction, and gravity effects. Dynamic modeling often
relies on two commonly used approaches: the classical Lagrange method and the CBW
model.

The classical Lagrange method is a widely used technique for dynamic modeling of
robotic systems. It involves formulating the robot’s equations of motion using
Lagrangian mechanics. The dynamics equation governing a single joint mechanism can
be expressed as follows:

M(q)q̈+C(q, q̇)q̇+g(q) = τ + J(q)T Fext (4.1)

In Equation (4.1), the terms represent the following:

q: Joint angle vector. q̇: Joint velocity vector. q̈: Joint acceleration vector. M(q): Mass
matrix. C(q, q̇): Coriolis and centrifugal forces. g(q): Gravitational forces. τ: Joint
torque vector. J(q)T : Jacobian transpose matrix. Fext: Vector of external forces.

The equation captures the dynamic behavior of the manipulator, aiming to estimate the
unknown parameters for each link in the robot, specifically the inertial and friction
parameters. The robot dynamics model in (4.2) can be written in the linear form of its
moment of inertia parameters without considering friction and presuming that all
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connecting rods are rigid bodies (regardless of the flexibility of the connecting rods).

Y (q, q̇, q̈)P = τ (4.2)

where P is the complete set of inertial parameters (standard parameters), which includes
the unknown parameters of the robot model that need to be estimated or identified. These
parameters can include the inertial parameters of the robot links (such as mass, center
of mass, and inertia tensor components), friction parameters, and other parameters that
affect the robot’s dynamics. Y (q, q̇, q̈) represents the dynamic matrix that describes the
relationship between joint positions q, joint velocities q̇, and joint accelerations q̈. It
captures the dynamic behavior of the system and is typically derived from the robot’s
equations of motion.

τ represents the joint torque vector, which represents the torques or forces applied to the
robot joints. These torques can be generated by various factors, such as external loads,
actuator dynamics, and control inputs. By solving this equation, we can estimate the
unknown parameters of the robot model based on measured joint torques and kinematic
information.

Pi = [Iixx, Iixy, Iixz, Iiyy, Iiyz, Iizz,mirx,miry,mirz,mi]
T (4.3)

In Equation (4.3), the vector Pi represents the parameters associated with the i-th link of
a robot manipulator. The meaning of each parameter is explained below:

Iixx is the moment of inertia of the i-th link around the x-axis. Iixy is the product of inertia
of the i-th link between the x and y axes. Iixz is the product of inertia of the i-th link
between the x and z axes. Iiyy is the moment of inertia of the i-th link around the y-axis.
Iiyz is the product of inertia of the i-th link between the y and z axes. Iizz is the moment
of inertia of the i-th link around the z-axis. rx is the distance from the center of mass of
the i-th link to the x-axis. ry is the distance from the center of mass of the i-th link to the
y-axis. rz is the distance from the center of mass of the i-th link to the z-axis. mi is the
total mass of the i-th link.

The Coulomb and viscous friction models are:

τ f = [ fv, fc]

[
q̇

sgn(q̇)

]
(4.4)

In Equation (4.4), the vector τ f represents the friction torque applied to the robot joints.
Let us explain the meaning of each parameter:
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fv is the viscous friction coefficient. It represents the damping effect in the motion of
the joint, where the magnitude of the friction torque is proportional to the velocity of the
joint q̇. fc is the Coulomb friction coefficient. It represents static friction in joint motion,
where the friction torque remains constant until a threshold velocity is reached. The
sign function sgn(q̇) is used to determine the direction of the Coulomb friction torque.
This friction torque affects the dynamics of the manipulator and must be considered for
accurate modeling and control of the robot’s motion.

Consider the torque effect of friction at the joints. As a result, the following (4.5) exist:

τ = Y ′p′

= [q̈,0,0,0,0,0,gsin(q),gcos(q),0,0, q̇,sgn(q̇)]·
[Ixx, Ixy, Ixz, Iyy, Iyz, Izz,mrx,mry,mrz,m, fv, fc]

T
(4.5)

In Equation (4.5), the vector τ represents the total torque exerted on the robot joints. The
meaning of each parameter is explained below:

q̈ is the joint acceleration vector. g is the acceleration due to gravity. q is the joint angle
vector. It represents the current positions of the robot joints. Ixx, Ixy, Ixz, Iyy, Iyz, Izz are the
elements of the inertia matrix. These parameters represent the moments of inertia of the
robot links around different axes. m is the mass of the link. rx, ry, rz are the center of mass
position of the link. These parameters represent the distances between the joint axis and
the center of mass of the links along different axes. fv is the viscous friction coefficient.
It represents the damping effect on joint motion. fc is the Coulomb friction coefficient.
It represents static friction or stiction in the joint motion. The equation computes the
total torque τ experienced by the robot joints. This torque accounts for the effect of joint
acceleration, gravity, inertia, mass distribution, and friction in the robot’s dynamics.

4.2.2 Introduction to the classic Bouc-Wen model

For modeling flexible joints, the classic Bouc-Wen model (CBW) is commonly used. The
CBW model is used to describe the effects of hysteresis on the joint and represents the
relationship between the input position u(t) and the output joint torsion as follows:

∆θ(t) = q− θ(t)
N

= z(t)+ x(t) (4.6)

where ∆θ(t) is the joint torsion (positional deviation), q is the position of the input joint,
θ(t) is the position of the output joint, N is the joint reduction ratio, z(t) is the joint torsion
between the motor side and the load side, and x(t) is the hysteresis variable representing
positional deviation.
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Using the CBW model, the joint torque can be represented as a function of joint position
and speed:

T (t) = D× u̇(t)+Γ(u(t), t) (4.7)

Where D is the internal damping coefficient, T (t) is the joint torque. The following are
the definitions of a Bouc-Wen-like hysteresis model:

Γ(u(t), t) = wk|u(t)|+(1−w)k|x(t)| (4.8)

where u(t) is the input position for the one-joint system, u̇(t) is the velocity. Γ(u(t), t)
represents the output torque of hysteresis, composed of an elastic term wk|u(t)| and a
purely hysteretic term (1−w)k|x(t)| with parameters k and w. x is a hysteresis variable
that is the solution of (4.9).

A plastic torque response (w=0) and a completely elastic torque response (w=1) are
weighted differently. Stiffness is denoted by k.

The hysteresis output torque Γ(u(t), t) is composed of two components: an elastic term
wk|u(t)| and a purely hysteretic term (1− w)k|x(t)|, where the parameters k and w
represent stiffness and weight, respectively. The hysteresis variable x(t) is governed by
the following equation:

ẋ(t) = α u̇(t)−β |u̇(t)|x(t)|n−1x(t)− γ u̇(t)|x(t)|n (4.9)

The friction term f can be expressed as follows:

f = fc× u̇(t)+ fv× sgn(u̇(t))+C (4.10)

where f is the friction torque, fc is the Coulomb friction coefficient, fv is the viscous
friction coefficient, and C is the constant term. The CBW model allows for accurate
modeling of the hysteresis effects and friction in flexible robot joints, providing a more
comprehensive representation of the joint’s behavior.

The classical Bouc-Wen (CBW) model (Ikhouane and Rodellar, 2007) is developed to
describe the hysteresis effect in (4.9) and the output torque in (4.11), we define the
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constants ku = wk, kh = (1−w)k.

T (t) = D× u̇(t)+ ku×u(t)+ kh× x(t)
+ fc× u̇(t)+ fv× sgn(u̇(t))+C

(4.11)

4.3 Results and discussion
The researchers conducted experiments to evaluate the performance of the SGHMC
algorithm. This assessment focused on the identification of parameters for a heavy-duty
manipulator. We used real-world data and compared the SGHMC method with the
traditional LS method using the RMSE as an evaluation metric.

The findings demonstrated that the SGHMC algorithm exhibited superior accuracy and
computational efficiency compared to the LS method. It provided more precise estimates
of the model parameters, including inertial and friction parameters, thus improving the
accuracy and reliability of the dynamic model.

Posterior parameter distributions of (4.5)

Table 4.1: The results of the Least Square method and SGHMC method in (4.5).

Parameter Description Unit Least
Square

SGHMC 95%
Credible
Interval

1 Ixx kg ·m2 6685.166 6681.266 [6599.640,
6753.321]

2 mrx kg ·m 20.779 20.780 [19.302,
22.305]

3 mry kg ·m -34.543 -34.523 [-38.549,
-30.420]

4 fv N · s/m 8683.272 8682.911 [8663.980,
8702.206]

5 fc N 2352.660 2352.936 [2332.964,
2372.455]

In Table 4.1 parameters 1 to 5 represent the following variables: Ixx (Moment of inertia
around the X-axis), mrx (Product of mass and distance along the X-axis), mry (Product of
mass and distance along the Y-axis), fv (Viscous friction coefficient), and fc (Coulomb
friction coefficient).

The RMSE between the predicted output torque values using the estimated values of the
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SGHMC method and the true output torque values is 2227.144.

The RMSE between the predicted output torque values using the estimated values of the
LS method and the true output torque values is 2227.144.

Figure 4.11 displays the comparison between the true output torque values and the
predicted output torque values obtained using the SGHMC method for (4.5). The graph
illustrates that the SGHMC predictions closely align with the true values, indicating the
method’s effectiveness in accurately estimating the output torque. In Figure 4.12, the
corner plot shows the posterior distributions of the parameters in Equation (4.5) obtained
by the SGHMC method. The plot provides valuable insights into the uncertainties and
correlations between the parameters, aiding in a comprehensive understanding of the
system’s dynamics.

Table 4.1 presents the results of the least squares (LS) method and the SGHMC method
for Equation (4.5). The table highlights the estimated values for the parameters, along
with their respective 95% credible intervals. It can be observed that the SGHMC method
yields parameter estimates that are close to those obtained from the LS method.

Posterior parameter distributions of SGHMC in (4.11)

Table 4.2: The results of the Least square method and SGHMC method in (4.11).

Parameter Description Unit Least
square

SGHMC 95%
Credible
interval

1 ku - -761.529 -689.076 [-1501.594,
16.680]

2 kh - 16909.986 16987.952 [16027.840,
17666.666]

3 fv Nm/(m/s) 9069.448 9305.415 [8137.896,
10057.360]

4 D+ fc Nm/(m/s) 492.014 375.168 [-711.280,
1582.123]

5 C Nm -492.237 -412.486 [-1520.071,
631.033]

The parameters 1 to 5 in Table 4.2 are: ku (proportional gain for input u(t)), kh
(proportional gain for input x(t)), fv (viscous friction coefficient), D + fc (sum of
Coulomb friction coefficient and inertia) and C (contant term) in (4.11).

The RMSE between the predicted output torque values using the estimated values of the
SGHMC method and the true output torque values is 1705.926.
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The RMSE between the predicted output torque values using the estimated values of the
LS method and the true output torque values is 1845.883.

Figure 4.13 and Figure 4.14, along with Table 4.1, show the results of the LS and
SGHMC methods applied to identify the parameters in (4.11). Figure 4.13 illustrates the
comparison between the true output torque values and the predicted output torque values
obtained using both the SGHMC method and the least squares (LS) method for (4.11).
The graph shows that the SGHMC method achieves a closer fit to the true values
compared to the LS method, indicating its superior performance in accurately estimating
the output torque.

In Figure 4.14, the plot presents the posterior distributions of the parameters in Equation
(4.11) obtained by the SGHMC method. This visualization provides valuable
information about the uncertainties associated with the parameter estimates and
facilitates a comprehensive understanding of their distributions.

Table 4.2 presents the results of the LS method and the SGHMC method for (4.11). The
table shows the estimated values for the parameters, along with their respective 95%
credible intervals. The effectiveness of the SGHMC method can be observed from the
table. The provided RMSE values of 1705.926 and 1845.883 indicate the respective
accuracies of the SGHMC and LS methods in predicting the output torque.

Efficiency comparison of MCMC and SGHMC method: mean autocorrelation and
Rhat
The provided Figure 4.3 shows the comparison between the true output torque and the

Table 4.3: The results of MCMC Method in (4.11).

Parameter Description Unit MCMC 95%
Credible
Interval

1 ku - -714.487 [-766.713, -
666.645]

2 kh - 16921.728 [16876.993,
16953.551]

3 fv Nm/(m/s) 9051.270 [9023.947,
9079.557]

4 D+ fc Nm/(m/s) 475.074 [436.007,
511.528]

5 C Nm -587.327 [-642.374, -
503.742]

predicted output torque obtained using the MCMC method in (4.11). The Table 4.3
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Figure 4.3: This image plots the true output torque and the MCMC method predicted
output torque in (4.11).

presents the results of the MCMC method, including the estimated parameter values and
their corresponding 95% credible intervals. The root mean squared error (RMSE)
between the predicted output torque values (based on the estimated parameter values)
and the true output torque values is 1741.990.

The figure visually demonstrates the agreement between the predicted and true output
torques, indicating that the MCMC method captures the underlying patterns reasonably
well. The relatively small RMSE value suggests that the MCMC method provides
accurate predictions with a reasonable level of precision.

In general, based on visual comparison, parameter estimates, interval estimates, and
RMSE, the MCMC method shows promising performance in predicting the output
torque. We calculate the autocorrelation of the samples obtained from both algorithms

Table 4.4: Mean autocorrelation values for MCMC and SGHMC method.

No. 1 2 3 4 5

MCMC 0.7 ×
10−3

−0.8×
10−3

3.4 ×
10−3

−0.2×
10−3

1.9 ×
10−3

SGHMC −0.599×
10−3

0.679×
10−4

−0.93×
10−5

0.293×
10−3

−0.747×
10−4

and compare them. Lower autocorrelation indicates higher efficiency, since it implies



93

Figure 4.4: The autocorrelation values of the samples obtained from SGHMC algorithm
in (4.11). For definitions and values of the parameters depicted in this figure, refer to
Table 4.2.

Figure 4.5: The autocorrelation values of the samples obtained from MCMC algorithm
in (4.11). For definitions and values of the parameters depicted in this figure, refer to
Table 4.2.

that subsequent samples are less dependent on each other. The autocorrelation function
is presented in the third chapter of this article (Foreman-Mackey et al., 2013).

Based on the average autocorrelation values and in the provided Creffig32 and Figure 4.5,
it can be observed that the SGHMC algorithm has values relatively smaller compared to
the MCMC algorithm. Values range from -0.5994e-03 to 0.2927e-03 for SGHMC, while
MCMC has values ranging from -0.0008 to 0.0034.

This suggests that the SGHMC algorithm exhibits faster convergence and better mixing
properties compared to the MCMC algorithm. The lower autocorrelation values indicate
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that the samples generated by SGHMC are less correlated and reach stationarity more
quickly. This can lead to more efficient exploration of the parameter space and faster
convergence to the target distribution. In summary, based on average autocorrelation
values, the SGHMC algorithm demonstrates faster convergence compared to the MCMC
algorithm. The smaller autocorrelation values indicate a faster exploration of the
parameter space in SGHMC.

Figure 4.6: The RHat values of SGHMC algorithm of the samples obtained from the
(4.11). For definitions and values of the parameters depicted in this figure, refer to
Table 4.2.

Figure 4.7: The RHat values of MCMC algorithm of the samples obtained from the (4.11).
For definitions and values of the parameters depicted in this figure, refer to Table 4.2.

The Gelman-Rubin convergence statistic (RHat) (Vats and Knudson, 2021) is commonly
used to assess the convergence of Monte Carlo chains. It provides a measure of how
well multiple chains agree with each other and whether they have reached convergence to
the desired distribution. In general, RHat values below 1.1 indicate that the chains have
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Table 4.5: RHat average values for MCMC and SGHMC

Parameter 1 2 3 4 5

MCMC 0.9982 0.9982 0.9984 0.9983 0.9984

SGHMC 0.9983 0.9981 0.9982 0.9981 0.9983

converged. Therefore, RHat values less than 1.1 are typically considered indicative of
satisfactory convergence to the desired distribution.

Compare the number of iterations required for both algorithms to converge to a
reasonable estimate of the target distribution. In Figure 4.6, Figure 4.7, and Table 4.5,
the number of iterations for both algorithms is set to 10000. We calculate the Rhat value
every 200 points. By observing the convergence behavior, we can assess which
algorithm converges faster. According to the results of the calculation, the RHat values
of the MCMC and SGHMC algorithms are close to 1, indicating that they have a good
convergence in parameter estimation.

However, from the results, the RHat value of the SGHMC algorithm is relatively slightly
lower, indicating that it may be slightly better than the MCMC algorithm in terms of
convergence speed. This may be because the SGHMC algorithm introduces randomness
when updating the parameters and utilizes stochastic gradient estimation to speed up the
convergence process. On the contrary, the MCMC algorithm uses Metropolis-Hastings
sampling and its update process is relatively conservative.

Overall, the SGHMC algorithm may achieve better convergence in a shorter number of
iterations, while the MCMC algorithm may require more iterations to achieve similar
results.

Posterior parameter distributions of SGHMC in (4.9)

Table 4.6: The results of the least square method and SGHMC method in (4.9).

Parameter Description Least
square

SGHMC 95% Credible
interval

1 α 0.003 0.040 [-0.028,
0.121]

2 β 0.002 0.012 [-0.047,
0.072]

3 γ -0.042 -0.011 [-0.160,
0.149]

Parameters 1 to 3 in Table 4.6 represent the following variables: α (the shape constant
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Figure 4.8: True hysteresis values, the SGHMC method, and Least square method
predicted hysteresis values in (4.9).

of the hysteresis curve), β (the shape constant of the hysteresis curve), and γ (the shape
constant of the hysteresis curve) in equation (4.9). They are coefficient factors that affect
the behavior of the equation, so they do not have specific units of measurement.

Determine n = 1 first and then proceed with the calculation, as a slight change in the value
of n will result in a significant change in the results of hysteresis. Sensitivity analysis will
be conducted in the next section.

The RMSE between the predicted hysteresis values using the estimated values of the
SGHMC method and the true hysteresis values is 0.234. The RMSE between the predicted
hysteresis values using the estimated values of the LS method and the true hysteresis
values is 0.545.

Lastly, Figure 4.8, Figure 4.9, and Figure 4.10, along with Table 4.6, exhibit the results of
LS and SGHMC methods for the identification of parameters in Equation (4.9).

Figure 4.8 showcases the comparison between the true hysteresis values and the predicted
hysteresis values obtained using the SGHMC method and the least squares (LS) method
for Equation (4.9). It can be observed that the SGHMC method provides a closer match
to the true values compared to the LS method, indicating its superior performance in
accurately estimating the hysteresis behavior of the system.

In Figure 4.9, the corner plot of the posterior distributions for Equation (4.9) is
displayed. This plot provides a comprehensive visualization of the uncertainties
associated with the estimated parameters. When examining the intersections of the
histograms, valuable insights can be gained regarding the correlations and probability
distributions of the parameters. Figure 4.10 presents the posterior distributions for
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Figure 4.9: This image plots the corner plot of the posterior distributions in (4.9). For
definitions and values of the parameters depicted in this figure, refer to Table 4.6.

Figure 4.10: This image plots the posterior distributions in (4.9). For definitions and
values of the parameters depicted in this figure, refer to Table 4.6.

Equation (4.9). This plot provides a detailed representation of the probability density
functions for each parameter.

Table 4.6 summarizes the results obtained from the LS method and the SGHMC method
for Equation (4.9). The table shows the estimated values for the parameters, along with
their respective 95% credible intervals. It can be observed that the SGHMC method
yields parameter estimates that differ from those obtained by the LS method. The RMSE
values represent the prediction accuracy of the SGHMC and LS methods when
estimating hysteresis values, respectively. The SGHMC method exceeds the LS method
in capturing the hysteresis behavior of the system, which is shown by a lower RMSE
value.

Furthermore, the researchers performed sensitivity analysis to identify key parameters



98

Figure 4.11: The observed actual output torque values and the output torque values
predicted by the SGHMC method in (4.5).

Figure 4.12: The corner plot of the posterior distributions (4.5) is illustrated in the
provided image. For definitions and values of the parameters depicted in this figure, refer
to Table 4.1.
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Figure 4.13: The given plot presents a comparison of the true output torque values with the
predicted output torque values obtained using the SGHMC method and the least square
method in (4.11).

Figure 4.14: The provided image visualizes the posterior distributions in (4.11). For
definitions and values of the parameters depicted in this figure, refer to Table 4.2.

.
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that significantly influenced the manipulator’s output torque. Using first-order and total-
effect sensitivity indices, this study investigated the impact of various parameters on the
output torque. Please refer to (Qi, Huapeng, Yuntao, et al., 2023) for specific parameters.

Discussion of results and findings
After comparing the RMSE values of the predicted output torque obtained using both
methods for two different equations (Equation (4.5) and Equation (4.7)), the superiority
of the SGHMC method over the LS method in Equation (4.7) was evident. The SGHMC
method achieved an approximate 8.16% reduction in RMSE in Equation (4.7), indicating
its superior predictive performance in modeling the hysteresis effect.

Figure 4.11, Figure 4.12, Figure 4.13, Figure 4.14, and Figure 4.9 displayed the results
of parameter identification using both methods for different equations. In Figure 4.11
and Figure 4.13, the SGHMC algorithm has been shown to be a powerful tool to achieve
accurate parameter estimation, showing closer alignment with true values compared to
the LS method. The corner plots in Figure 4.12, Figure 4.14, and Figure 4.9 provided
information on parameter uncertainties and correlations. Using the SGHMC algorithm,
a comprehensive understanding of the system’s dynamics and hysteresis behavior was
obtained.

This discovery has a great impact on the development of heavy-duty robotic arms.
SGHMC outperforms LS for parameter estimation. Through sensitivity analysis, key
parameters that affect system behavior are identified, aiding the design of reliable robotic
joints. This research improves the methods of estimating robotic arm parameters,
demonstrating the potential of the SGHMC algorithm.

Despite the encouraging results, the study acknowledges certain limitations. To acquire a
more complete understanding of the manipulator’s performance under real-world
conditions, future research should also consider external factors such as temperature and
disturbances.

In the field of robotics, parameter identification is a cornerstone of enhancing
performance, accuracy, and reliability. This is demonstrated by the work described in
(Qi, Huapeng, Yuntao, et al., 2023). The authors have paved the way for a deeper
understanding of the complexities involved in robotic arms, with a special emphasis on
the CMOR robot arm and its implications for heavy-duty manipulators.

The adoption of the SGHMC method in parameter identification is illustrated in (Qi,
Huapeng, Yuntao, et al., 2023). The deviation from conventional MCMC methods is
justified by the obvious benefits that SGHMC provides. In a world where computational
speed and precision are of the highest priority, SGHMC’s faster convergence and
decreased computational time make it an indispensable instrument, especially for robotic
systems.
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Furthermore, the emphasis on the Bouc-Wen model and the subsequent validation of the
effectiveness of the SGHMC algorithm provide an academic foundation for future
research endeavors. Our findings impact the design and optimization of robotic systems,
leading to improved performance and reliability in real-world usage.
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5 Conclusions and future directions
This chapter evaluates techniques for robot parameter identification, highlighting
MCMC and SGHMC for their exceptional performance and practical benefits. We intend
to provide a concise comparative analysis suited to various robotic scenarios. In Sections
5.2 and 5.3, the limitations, applications, and prospective research directions of these
methods are elaborated.

5.1 Key findings from the comparative study of inference methods
In this section, we provide a brief summary of our comparative study of inference
methods for heavy-duty and lightweight robotic arms. We emphasize the advantages and
disadvantages of each method and discuss its applicability to various robotic systems.

Key findings in (Qi, Huapeng, Cheng, et al., 2022):

Friction is an essential but frequently neglected factor in robotic mechanics. The
complexity of this physical phenomenon can determine the efficacy, control, and even
longevity of robotic operations. Recognizing this, our investigation journey, as detailed
in (Qi, Huapeng, Cheng, et al., 2022), strived to shed light on the nuances of friction
estimation, particularly for harmonic drive joints.

Our exploration delved deep into the MCMC methodology, juxtaposing it with traditional
methods to discern its efficacy. This rigorous comparison bore several critical insights:

1. In addition to its accuracy, the MCMC method demonstrated remarkable resistance
to background disturbances. In scenarios where external factors such as different
velocities, changes in ambient temperature, or load conditions are prevalent, the
MCMC approach maintained its precision. This robustness, especially in the face
of friction noise interference, is a method designed for the rigors of real-world
applications.

2. Furthermore, while precision in prediction is crucial, the ability to gauge the
inherent uncertainty of those predictions is equally important. This dual capacity
of the MCMC method – to not only predict but also quantify the associated
uncertainty – provides researchers and practitioners with a holistic tool that aids
both theoretical studies and practical implementations.

3. We also outline a comprehensive framework that uses the MCMC method to
identify friction in harmonic drive joints.

To summarize, the findings of (Qi, Huapeng, Cheng, et al., 2022) accentuate the pivotal
role of sophisticated friction modeling in robotic joints. The MCMC method emerges not
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only as an alternative, but also as a superior model in this field, creating the groundwork
for robotics that are more reliable.

Key findings in Section 3.3:

The complex phenomenon of hysteresis within robotic arms requires a deep
understanding, particularly when aiming to optimize their functioning in real-world
environments. As described in Section 3.3, our academic investigation deeply explored
the domain of these dynamics, finding a wealth of information on the behavior of robotic
arms under a variety of operational conditions. Here are some further reflections and
elaborations on our central findings:

1. Although the least-squares method laid the foundational groundwork for our
research, its true prowess was manifested in its compatibility with the MCMC and
SGHMC algorithms. By supplying initial values, the method not only facilitated a
seamless transition to more sophisticated algorithms but also bolstered the overall
reliability of our analytical framework.

2. The decision to employ the fractional-order Bouc-Wen model stemmed from the
realization that conventional models often fell short of capturing the torque and
responses exhibited by robotic arms. This model, with its intricate incorporation of
a fractional-order derivative, acts as a beacon in comprehending and, more
importantly, replicating the nonlinear dynamics inherent in these systems. It
should be noted that the SGHMC method, given its rapid convergence rate
compared to MCMC, establishes itself as an indispensable tool in the repertoire of
any researcher in this domain.

3. The interaction between the FOBW model and the SGHMC method demonstrated
their combined efficacy. The resulting insights not only fortified the theoretical
underpinnings of robotic arm dynamics, but also paved the way for practical
advancements. Specifically, the enhanced accuracy in torque prediction and
control is a testament to the applicability of our findings in real-world scenarios.

In conclusion, Section 3.3 shows the advances in understanding hysteresis dynamics in
lightweight robotic arms. Beyond technical insights, this work emphasizes the need for
ongoing innovation and methodological refinement in the rapidly advancing field of
robotics.

Key findings in (Qi, Huapeng, Yuntao, et al., 2023):

In our study, as detailed in (Qi, Huapeng, Yuntao, et al., 2023), we explored inference
methods for parameter identification in heavy-duty and lightweight robotic arms. Here is
a condensed summary of our findings:
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The SGHMC method stands out for parameter identification in heavy-duty manipulators.
It surpasses conventional least squares (LS) methods in terms of accuracy and
computational efficiency. It succeeds in anticipating output torque and modeling
hysteresis behavior, making it an indispensable instrument for modeling dynamic
systems.

Although we reviewed other inference methods suitable for heavy-duty and lightweight
robotic arms, none rivalled the performance of SGHMC for heavy-duty applications.
Although these methods show potential in specific contexts, they warrant further
exploration and validation.

The study highlights the importance of tailoring the chosen inference method to the
specific robotic system. While SGHMC is designed for heavy-duty manipulators and
handles large datasets efficiently, lightweight robotic arms might benefit from alternative
methods.

In essence, (Qi, Huapeng, Yuntao, et al., 2023) makes a significant contribution by
showcasing SGHMC’s efficiency in parameter identification for heavy-duty robots. Still,
the choice of inference method should always consider the specific characteristics of the
system.

5.2 Limitations and implications of inference methods

This section discusses the limitations of the various inference methods analyzed in this
study. We discuss the potential obstacles and uncertainties that may arise during
parameter identification and provide recommendations to address these problems.

Limitations in (Qi, Huapeng, Cheng, et al., 2022):

Although the MCMC method is effective in identifying friction for harmonic drive joints,
it faces the following obstacles:

1. Monte Carlo sampling requires a large number of samples, which increases the
computational complexity of the method. For an efficient approximation,
particularly in complex robotic systems, it is essential to improve sampling
techniques.

2. The method is sensitive to data disturbances. Noise may affect parameter estimates
and diminish the reliability of the model.

3. The accuracy of the MCMC method is dependent upon the selection of appropriate
prior distributions. When people make bad choices, the results can be unfair.
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Despite these obstacles, the MCMC remains a valuable instrument for identifying friction
in harmonic drive joints.

Limitations in Section 3.3:

The SGHMC methods evaluated for identifying hysteresis in lightweight robotic arms,
though effective, have certain limitations:

1. Obtaining quality data from real-world robotics can be challenging. Better data
acquisition is crucial to improving the accuracy of hysteresis models.

2. Robotic arm hysteresis is inherently complex. Traditional linear methods may fail
to capture this complexity, necessitating advanced nonlinear regression techniques.
However, even these might not fully represent the hysteresis behavior.

3. The choice of models is vital for an accurate representation of hysteresis. The
selected model can significantly influence the accuracy and applicability of the
results, so it is imperative to consider the characteristics and data of the system.

In summary, while the methods studied show potential for hysteresis identification in
lightweight robotic arms, they come with inherent challenges.

Limitations in (Qi, Huapeng, Yuntao, et al., 2023):

The study of inference methods for the identification of the heavy-duty manipulator
parameter showed both positive results and highlighted challenges. We address these
limitations and offer potential solutions:

1. Choosing the right model for the dynamics of the system is crucial. The inference
methods analyzed require varied model structures, making selection complicated.
A deep understanding of the system and relevant data can guide this decision.

2. Data quality and quantity play a crucial role in parameter identification. Precise
experimental data is challenging to obtain, often leading to uncertainty in
estimation.

3. Certain methods, such as SGHMC, require hyperparameter tuning for peak
performance.

In summary, while methods such as SGHMC offer potential in parameter identification,
challenges such as model selection, data accuracy, and hyperparameter tuning remain.

After examining the limitations of various inference methods, we found that it is essential
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to implement solutions.

1. For computational complexity problems, an algorithm structure that can be
optimized, such as a modular design or hierarchical structure, may help improve
computational efficiency and make the algorithm more adaptable to complex
industrial environments.

2. Secondly, for the issue of data sensitivity, future research should not only focus
on the quality of the data, but also require in-depth preprocessing of the data. By
employing advanced data processing, filtering techniques, and outlier detection,
we can reduce the impact of noise and other anomalous data, thus improving the
reliability of the model.

3. Furthermore, choosing an appropriate prior distribution is a critical step for many
inference methods. Future research could consider the use of data-based methods
to estimate the most appropriate distribution. This method can not only increase
the robustness of the model, but also improve its generalization ability, so that the
model can perform well in various scenarios.

In summary, to maximize the performance of inference methods, we need to understand
their potential limitations and adopt effective strategies for addressing them.

5.3 Proposed Strategies for Advancing Robotic Manipulators in
Industrial Applications

In this section, we outline future research strategies aimed at improving robotic
performance in industrial settings, especially addressing the limitations mentioned in
Section 5.2. By integrating recent technological advancements, we suggest focusing on
improved inference techniques, experimental methods, and control algorithms to
optimize robotic operations.

Proposed strategies and outlook in (Qi, Huapeng, Cheng, et al., 2022):

In the ever-changing field of robotics, it is necessary to strategically align our research
directions with the evolving technological trends and obstacles. A number of practical
options for future development emerge from (Qi, Huapeng, Cheng, et al., 2022):

1. Expanding test scenarios: While primary research has been conducted in a
laboratory setting, a thorough validation of the MCMC method requires it to
undergo a variety of stress tests. These could range from high-speed operations to
environments with variable temperature and pressure conditions, thereby assessing
the method’s resilience.



108

2. Incorporation of AI and machine learning: Integrating AI-driven predictive models
with the MCMC method can be useful as we enter an era dominated by artificial
intelligence. These integrations could facilitate friction adjustments in real time,
thus preventing operational failures.

3. Customization based on robotic application: While general applicability is desired,
specific customization for autonomy systems, based on their operational domain
and functional requirements, could increase efficiency. Such specialized
modifications can address the specific frictional challenges encountered by various
robots.

Ultimately, advances in sensor technology and data collection can further enhance the
precision of the method for industrial robotic manipulators.

Proposed strategies and outlook in Section 3.3:

For the identification of hysteresis in harmonic drive joints, future research should
prioritize the following:

1. Combining with other optimization algorithms or deep learning to improve the
accuracy of identification.

2. Expanding the experimental data to involve a variety of conditions, thereby
enhancing the general applicability of the model.

3. In-depth analysis and validation of the SGHMC method for broader applications.

These advances will strengthen the role of SGHMC in improving robotic control and
precision.

Proposed strategies and outlook in (Qi, Huapeng, Yuntao, et al., 2023):

Given the substantial significance and possible effects of our research findings, it is crucial
to adopt a rigorous and systematic approach when implementing and advancing these
ideas. Expanding upon the methods discussed above, we offer the following viewpoints.

1. Broadening applications: The efficacy of SGHMC in the context of heavy-duty
manipulators requires a comprehensive evaluation of its adaptability across a
diverse range of robotic designs. This involves performing comprehensive
evaluations on a variety of systems, including mobile robots and industrial
assembly line robots. Conducting comprehensive trials of this nature would
provide a comprehensive perspective on the strengths and potential areas for
improvement of SGHMC.
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2. Infrastructure and computation: As SGHMC scales to handle more complex
robotic systems, the underlying computational infrastructure needs to be enhanced.
This might require investment in high-performance computing clusters and the
development of specialized software to ensure efficient and accurate parameter
estimation.

The investigation of techniques for the identification of robot parameters was
emphasized throughout this study, with a particular focus on the potential and
applicability of the MCMC and SGHMC methods. Both approaches demonstrated
outstanding abilities in resolving the complex challenges posed by heavy-duty and
light-weight robotic systems. The importance of accurately modeling and
comprehending properties such as friction and hysteresis in robotic joints was
emphasized, and the effectiveness of the MCMC method in high-noise situations was
demonstrated. Similarly, the SGHMC method, with its proficiency in parameter
identification for heavy-duty manipulators, emerged as the winner in terms of precision
and computational efficiency.

The focus of the research is on refining the application of these inference methods,
integrating them with advanced control strategies, improving sensor technologies, and
developing additional optimization algorithms. With the rapid evolution of industrial
robotics and its increasing participation in complex operations, this body of work lays
the foundations for enhancing robotic performance in industrial settings, highlighting the
need for continuous innovation and improvement in parameter identification techniques.



110



111

References
Astrom, K. J. and Canudas-De-Wit, C. (2008). Revisiting the LuGre Friction Model

STICK-SLIP MOTION AND RATE DEPENDENCE. In: Ieee Control Systems
Magazine 28.(6), pp. 101–114. DOI: 10.1109/mcs.2008.929425.

B’Elanger, P. R. and Taghirad, H. D. (2002). An Experimental Study on Modelling and
Identification of Harmonic Drive Systems. In: Proceedings of 35th IEEE Conference
on Decision and Control.

Al-Bender, Farid, Lampaert, V., and Swevers (2005). The generalized Maxwell-Slip
model: A novel model for friction simulation and compensation. In: IEEE
Transactions on Automatic Control 50.(11), pp. 1883–1887.

Boschert, Stefan and Rosen, Roland (2016). Digital twin—the simulation aspect. In:
Mechatronic futures: Challenges and solutions for mechatronic systems and their
designers, pp. 59–74. ISSN: 3319321544.

Brooks, Steve P., Gelman, Andrew, Jones, Galin L., and Meng, Xiao-Li (2011). Handbook
of Markov Chain Monte Carlo. In.

Cai, Jingnan, Dong, Wei, and Nagamune, Ryozo (2023). A survey of Bouc-Wen
hysteretic models applied to piezo-actuated mechanical systems: Modeling,
identification, and control. In: Journal of Intelligent Material Systems and Structures,
p. 1045389X231157361. ISSN: 1045-389X.

Chen, Tianqi, Fox, Emily, and Guestrin, Carlos (2014). Stochastic gradient hamiltonian
monte carlo. In: International conference on machine learning. PMLR,
pp. 1683–1691.

Chia-Pei, Wang, Kaan, Erkorkmaz, John, McPhee, and Serafettin, Engin (2020).
In-process digital twin estimation for high-performance machine tools with coupled
multibody dynamics. In: CIRP Annals 69.(1), pp. 321–324. ISSN: 0007-8506.

Chitta, Sachin, Marder-Eppstein, Eitan, Meeussen, Wim, Pradeep, Vijay,
Tsouroukdissian, Adolfo Rodríguez, Bohren, Jonathan, Coleman, David,
Magyar, Bence, Raiola, Gennaro, and Lüdtke, Mathias (2017). ros control: A generic
and simple control framework for ROS. In: The journal of open source software
2.(20), pp. 456–456.

Chunxia, Li, Linlin, Li, Guoying, Gu, and Limin, Zhu (Aug. 2016). Modeling of
rate-dependent hysteresis in piezoelectric actuators using a Hammerstein-like
structure with a modified Bouc-Wen model. In: Intelligent Robotics and
Applications: 9th International Conference, ICIRA 2016, Tokyo, Japan, Proceedings,
Part I 9. Springer, pp. 672–684. ISBN: 3319435051.

De León, Carlos Leopoldo Carreón-Díaz, Vergara-Limón, Sergio, Vargas-Treviño, María
Aurora D, López-Gómez, Jesús, Gonzalez-Calleros, Juan Manuel, González-Arriaga,
Daniel Marcelo, and Vargas-Treviño, Marciano (2022). Parameter identification of a
robot arm manipulator based on a convolutional neural network. In: IEEE Access 10,
pp. 55002–55019. ISSN: 2169-3536.

Dewit, C. C., Noel, P., Aubin, A., and Brogliato, B. (1991). ADAPTIVE FRICTION
COMPENSATION IN ROBOT MANIPULATORS LOW VELOCITIES. In:



112

International Journal of Robotics Research 10.(3), pp. 189–199. DOI:
10.1177/027836499101000301.

Dhaouadi, R. (2003). A New Dynamic Model of Hysteresis. In: Ieee T Ind Electron 50,
p. 1165. DOI: 10.1109/tie.2003.819661.

Do, T. N., Tjahjowidodo, T., Lau, M. W. S., and Phee, S. J. (2014). An investigation of
friction-based tendon sheath model appropriate for control purposes. In: Mechanical
Systems and Signal Processing 42.(1-2), pp. 97–114. DOI: 10.1016/j.ymssp.2013.08.
014.

Ema, B, Osr, A, Db, A, and Xz, B (2020). Comprehensive modeling and identification of
nonlinear joint dynamics for collaborative industrial robot manipulators. In: Control
Engineering Practice 101.

Ema, B, Osr, A, Db, A, and Xz, B (2021). Adaptive feedforward control of a collaborative
industrial robot manipulator using a novel extension of the Generalized Maxwell-Slip
friction model. In: Mechanism Machine Theory 155.

Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J. (2013). emcee: The
MCMC Hammer. In: Publications of the Astronomical Society of the Pacific
125.(925), pp. 306–312. DOI: 10.1086/670067.

Friel, N. and Wyse, J. (2012). Estimating the evidence – a review. In: Statistica
Neerlandica 66.(3), pp. 288–308.

Gandhi, P. S., Ghorbel, F. H., and Dabney, J. (2002). Modeling, identification, and
compensation of friction in harmonic drives. In: IEEE.

Gargiulo, Laurent, Bayetti, Pascal, Bruno, Vincent, Hatchressian, Jean-Claude,
Hernandez, Caroline, Houry, Michael, Keller, Delphine, Martins, Jean-Pierre,
Measson, Yvan, and Perrot, Yann (2009). Operation of an ITER relevant inspection
robot on Tore Supra tokamak. In: Fusion Engineering and Design 84.(2-6),
pp. 220–223. ISSN: 0920-3796.

Gautier, Maxime and Poignet, Ph (2001). Extended Kalman filtering and weighted least
squares dynamic identification of robot. In: Control Engineering Practice 9.(12),
pp. 1361–1372. ISSN: 0967-0661.

Grieves, Michael and Vickers, John (2017). Digital twin: Mitigating unpredictable,
undesirable emergent behavior in complex systems. In: Transdisciplinary
perspectives on complex systems: New findings and approaches, pp. 85–113. ISSN:
3319387545.

Han, Bangcheng, Ma, Jijun, and Li, Haitao (2016). Research on nonlinear friction
compensation of harmonic drive in gimbal servo-system of DGCMG. In:
International Journal of Control, Automation and Systems 14.(3), pp. 779–786.

Hao, Lei, Pagani, Roberto, Beschi, Manuel, and Legnani, Giovanni (2021). Dynamic and
Friction Parameters of an Industrial Robot: Identification, Comparison and
Repetitiveness Analysis. In: Robotics 10.(1), p. 49. ISSN: 2218-6581. URL:
https://www.mdpi.com/2218-6581/10/1/49.

Ikhouane, Fayçal and Rodellar, José (2007). Systems with hysteresis: analysis,
identification and control using the Bouc-Wen model. John Wiley Sons. ISBN:
0470513195.



113

Jan, Swevers, Al-Bender, F., Ganseman, C. G., and Prajogo, T. (2000). An integrated
friction model structure with improved presliding behavior for accurate friction
compensation. In: Ieee Transactions on Automatic Control 45.(4), pp. 675–686. DOI:
10.1109/9.847103.

Jatta, F., Legnani, G., and Visioli, A. (2006). Friction compensation in hybrid
force/velocity control of industrial manipulators. In: Ieee Transactions on Industrial
Electronics 53.(2), pp. 604–613. DOI: 10.1109/tie.2006.870682.

Jiasheng, Liu, Kun, Lu, Pan, Hongtao, Cheng, Yong, and Yao, Zhixin (2020).
Vision-based tile recognition algorithms for robot grasping task in EAST. In: Fusion
Engineering and Design 152, p. 111422.

Kalan, Satyam, Chauhan, Sanket, Coelho, Rafael F, Orvieto, Marcelo A,
Camacho, Ignacio R, Palmer, Kenneth J, and Patel, Vipul R (2010). History of
robotic surgery. In: Journal of Robotic Surgery 4, pp. 141–147. ISSN: 1863-2483.

Kennedy, C. W. and Desai, J. P. (2003). Estimation and modeling of the harmonic drive
transmission in the Mitsubishi PA-10 robot arm. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems.

Kennedy, C. W. and Desai, J. P. (2005). Modeling and control of the Mitsubishi PA-10
robot arm harmonic drive system. In: Ieee-Asme Transactions on Mechatronics 10.(3),
pp. 263–274. DOI: 10.1109/tmech.2005.848290.

Kesner, S. B. and Howe, R. D. (2011). Position Control of Motion Compensation Cardiac
Catheters. In: Ieee Transactions on Robotics 27.(6), pp. 1045–1055. DOI: 10.1109/tro.
2011.2160467.

Kim, Dong-Hyun and Oh, Jun-Ho (2019). Hysteresis Modeling for Torque Control of an
Elastomer Series Elastic Actuator. In: IEEE/ASME Transactions on Mechatronics 24,
pp. 1316–1324.

Kingma, Diederik P and Ba, Jimmy (2014). Adam: A method for stochastic optimization.
In: arXiv preprint arXiv:1412.6980.

Kircanski, N. M. and Goldenberg, A. A. (1997). An experimental study of nonlinear
stiffness, hysteresis, and friction effects in robot joints with harmonic drives and
torque sensors. In: International Journal of Robotics Research 16.(2), pp. 214–239.
DOI: 10.1177/027836499701600207.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E (2012). Imagenet
classification with deep convolutional neural networks. In: Advances in neural
information processing systems 25.

Kun, Wang, Qi, Wang, Huapeng, Wu, and Kun, Jiang (2018). A Geometric Algorithm for
Redundant Inverse Kinematics with Obstacle Avoidance in a Known Environment. In:
Int. Rev. Mech. Eng. 12.(8).

Kun, Wang, Qi, Wang, Yong, Cheng, Huapeng, Wu, Yuntao, Song, and Bruno, Vincent
(2019). Optimization of the geometric parameters of the EAST articulated
maintenance arm (EAMA) with a collision-free workspace determination in EAST.
In: Fusion Engineering and Design 139, pp. 155–162. ISSN: 0920-3796.



114

Lampaert, V., Swevers, J., and Al-Bender, F. (2002). Modification of the Leuven
integrated friction model structure. In: IEEE Transactions on Automatic Control
47.(4), pp. 683–687.

Liang, F., Liu, C., and Carroll, R. J. (2010). Advanced Markov Chain Monte Carlo
Methods (Learning from Past Samples) || Index. In: pp. 353–357.

Llorens-Bonilla, Baldin and Asada, H. Harry (2014). A robot on the shoulder:
Coordinated human-wearable robot control using Coloured Petri Nets and Partial
Least Squares predictions. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA), pp. 119–125.

Llorente, F., Martino, L., Delgado, D., and Lopez-Santiago, J. (2020). Marginal likelihood
computation for model selection and hypothesis testing: an extensive review. In: arXiv
e-prints.

Luca, A. D. and Mattone, R. (2005). Sensorless Robot Collision Detection and Hybrid
Force/Motion Control. In: Robotics and Automation, 2005. ICRA 2005. Proceedings
of the 2005 IEEE International Conference on.

Marchand, Robert C, Sodhi, Nipun, Anis, Hiba K, Ehiorobo, Joseph, Newman, Jared M,
Taylor, Kelly, Condrey, Caitlin, Hepinstall, Matthew S, and Mont, Michael A (2019).
One-year patient outcomes for robotic-arm-assisted versus manual total knee
arthroplasty. In: The journal of knee surgery 32.(11), pp. 1063–1068. ISSN:
1538-8506.

Martino, Luca (2018). A review of multiple try MCMC algorithms for signal processing.
In: Digit. Signal Process. 75, pp. 134–152.

Marton, Lrinc and Lantos, Bla (2007). Modeling, Identification, and Compensation of
Stick-Slip Friction. In: IEEE Transactions on Industrial Electronics 54, pp. 511–521.

Metzner, Maximilian, Leurer, Sebastian, Handwerker, Andreas, Karlidag, Engin,
Blank, Andreas, Hefner, Florian, and Franke, Jörg (2021). High-precision assembly
of electronic devices with lightweight robots through sensor-guided insertion. In:
Procedia CIRP 97, pp. 337–341. ISSN: 2212-8271.

Morel, G. and Dubowsky, S. (1996). The precise control of manipulators with joint
friction: a base force torque sensor method. In: IEEE International Conference on
Robotics and Automation.

Mukhopadhyay, Rajarshi, Chaki, Ritartha, Sutradhar, Ashoke, and
Chattopadhyay, Paramita (2019). Model learning for robotic manipulators using
recurrent neural networks. In: TENCON 2019-2019 IEEE Region 10 Conference
(TENCON). IEEE, pp. 2251–2256. ISBN: 1728118956.

Neal, Radford M (2012). Bayesian learning for neural networks. Vol. 118. Springer
Science Business Media. ISBN: 1461207452.

Nguyen, Hoai-Nhan, Zhou, Jian, and Kang, Hee-Jun (2015). A calibration method for
enhancing robot accuracy through integration of an extended Kalman filter algorithm
and an artificial neural network. In: Neurocomputing 151, pp. 996–1005. ISSN: 0925-
2312.



115

Ni, Fenglei, Li, Tian, Liu, Yiwei, Liu, Hong, Li, Yang, Zhao, Liangliang, and
Chen, Zhaopeng (2018). Dynamic modeling and controller design for SEA joints. In:
Assembly Automation.

Pan, Hongtao, He, Kaihui, Cheng, Yong, Song, Yuntao, Yang, Yang, Villedieu, Eric, Shi,
Shanshuang, and Yang, Songzhu (2017). Conceptual design of EAST multi-purpose
maintenance deployer system. In: Fusion Engineering and Design 118, pp. 25–33.
ISSN: 0920-3796.

Qahmash, Ayman, Al-Darraji, Izzat, Khadidos, Adil O, Tsaramirsis, Georgios,
Khadidos, Alaa O, and Alghamdi, Mohammed (2023). On-Board Digital Twin Based
on Impedance and Model Predictive Control for Aerial Robot Grasping. In: Journal
of Sensors 2023. ISSN: 1687-725X.

Qi, Wang, Huapeng, Wu, Cheng, Yong, Pan, Hongtao, Yang, Yang, and Qin, Guodong
(2022). Friction-identification of harmonic drive joints based on the MCMC method.
In: IEEE Access 10, pp. 125893–125907. DOI: 10.1109/ACCESS.2022.3226036.

Qi, Wang, Huapeng, Wu, Yuntao, Song, Heikki, Handroos, Yong, Cheng, and
Guodong, Qin (2023). Parameter identification of heavy-duty manipulator using
stochastic gradient Hamilton Monte Carlo method. In: IEEE Access 11,
pp. 78561–78583. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2023.3298570.

Qian, Xuesen., Dai, Ruwei., and He, Shan. (2007). Engineering control theory (New
Century Edition). Shanghai Jiaotong University Press.

Qiang, Zhang, Ling, Zhou, and Zengfu, Wang (2017). Design and implementation of
wormlike creeping mobile robot for EAST remote maintenance system. In: Fusion
Engineering and Design 118, pp. 81–97. ISSN: 0920-3796.

Qin, Guodong (2022). Research on key technologies of snake arm maintainers in extreme
environments. In: ISSN: 9523359096.

Qin, Guodong, Cheng, Yong, Pan, Hongtao, Zhao, Wenlong, Shi, Shanshuang,
Ji, Aihong, and Wu, Huapeng (2022). Systematic design of snake arm maintainer in
nuclear industry. In: Fusion Engineering and Design 176, p. 113049. ISSN:
0920-3796.

Qin, Guodong, Ji, Aihong, Cheng, Yong, Zhao, Wenlong, Pan, Hongtao,
Shi, Shanshuang, and Song, Yuntao (2021). Position error compensation of the
multi-purpose overload robot in nuclear power plants. In: Nuclear Engineering and
Technology 53.(8), pp. 2708–2715. ISSN: 1738-5733.

Radivojevi, Tijana and Akhmatskaya, Elena (2019). Modified Hamiltonian Monte Carlo
for Bayesian inference. In: Statistics and Computing (10).

Ramadhan, Ardityo Dimas, Usman, Koredianto, and Pratiwi, Nor Kumalasari Caecar
(2021). Comparative analysis of various optimizers on residual network architecture
for facial expression identification. In: Proceedings of the 2nd International
Conference on Electronics, Biomedical Engineering, and Health Informatics:
ICEBEHI 2021, 3–4 November, Surabaya, Indonesia. Springer, pp. 279–288.

Ravenzwaaij, D. van, Cassey, P., and Brown, S. D. (2018). A simple introduction to
Markov Chain Monte-Carlo sampling. In: Psychonomic Bulletin and Review 25.(1),
pp. 143–154. DOI: 10.3758/s13423-016-1015-8.



116

Rens van de Schoot Sonja D Winter, Oisin Ryan (2017). A systematic review of
Bayesian articles in psychology: The last 25 years. In: Psychological Methods 22.(2),
pp. 217–239.

Ruderman, M., Hoffmann, F., and Bertram, T. (2009). Modeling and Identification of
Elastic Robot Joints With Hysteresis and Backlash. In: Ieee Transactions on Industrial
Electronics 56.(10), pp. 3840–3847. DOI: 10.1109/tie.2009.2015752.

Sarkis, J. and Dhavale, D. G. (2015). Supplier selection for sustainable operations: A
triple-bottom-line approach using a Bayesian framework. In: International Journal of
Production Economics 166, pp. 177–191.

Sato, R. (2012). Mathematical Model of a CNC Rotary Table Driven by a Worm Gear. In:
International Journal of Intelligent Mechatronics and Robotics 2.(4), pp. 27–40.

Shengzheng, Kang, Wu, Hongtao, Li, Yao, Xiaolong, Yang, and Jiafeng, Yao (2021). A
fractional-order normalized Bouc–Wen model for piezoelectric hysteresis
nonlinearity. In: IEEE/ASME Transactions on Mechatronics 27.(1), pp. 126–136.
ISSN: 1083-4435.

Shi, Shanshuang, Song, Yuntao, Cheng, Yong, Villedieu, Eric, Bruno, Vincent,
Feng, Hansheng, Wu, Huapeng, Wang, Peng, Hao, Zhiwei, and Li, Yang (2016).
Conceptual design main progress of EAST Articulated Maintenance Arm (EAMA)
system. In: Fusion Engineering and Design 104.(Mar.), pp. 40–45.

Shoujun, Wang, Xingmao, Shao, Yang, Liusong, and Nan, Liu (2020). Deep learning
aided dynamic parameter identification of 6-DOF robot manipulators. In: IEEE Access
8, pp. 138102–138116. ISSN: 2169-3536.

Sim, Okkee, Oh, Jaesung, Lee, Kang Kyu, and Oh, Jun-Ho (2018). Collision Detection
and Safe Reaction Algorithm for Non-backdrivable Manipulator with Single
Force/Torque Sensor. In: Journal of Intelligent and Robotic Systems 91, pp. 403–412.

Simoni, L., Beschi, M., Legnani, G., and Visioli, A. (2015). FRICTION MODELING
WITH TEMPERATURE EFFECTS FOR INDUSTRIAL ROBOT
MANIPULATORS. In: 2015 Ieee/Rsj International Conference on Intelligent Robots
and Systems, pp. 3524–3529.

Simoni, Luca, Beschi, Manuel, Legnani, Giovanni, and Visioli, Antonio (2017).
Modelling the temperature in joint friction of industrial manipulators. In: Robotica,
pp. 1–22.

Song, Yanshu, Huang, Hailin, Liu, Fei, Xi, Fengfeng, Zhou, Dawei, and Li, Bing (2020).
Torque Estimation for Robotic Joint With Harmonic Reducer Based on Deformation
Calibration. In: IEEE Sensors Journal 20, pp. 991–1002.

Song, Yuntao, Wu, S., Li, Jiangang, Wan, Bao Nian, Wan, Yuan Xi, Fu, Peng,
Ye, Min You, Zheng, Jin Xing, Lu, Kun, and Gao, Xianggao (2014). Concept design
of CFETR tokamak machine. In: IEEE Transactions on Plasma Science 42.(3),
pp. 503–509. ISSN: 0093-3813.

Suh, Jung-Il, Joonwook, Lee, and Dong-Eun, Lee (2020). Development and Application
of Motor-Equipped Reaction Torque Sensor with Adjustable Measurement Range and
Sensitivity. In: Applied Sciences.



117

Sun, Yongjun, Yiwei, Liu, Tian, Zou, Jin, Ming-He, and Liu, Hong (2015). Design and
optimization of a novel six-axis force/torque sensor for space robot. In: Measurement
65, pp. 135–148.

Taghirad, H. D. and Belanger, P. R. (1998). Modeling and parameter identification of
harmonic drive systems. In: Journal of Dynamic Systems Measurement and Control-
Transactions of the Asme 120.(4), pp. 439–444. DOI: 10.1115/1.2801484.

Tao, Z., Yongping, S., Cheng, Yong, Zeng, Yishan, Zhang, Xin, and Liang, Sheng
(2023). The design and implementation of distributed architecture in the CMOR
motion control system. In: Fusion Engineering and Design 186, p. 113357. ISSN:
0920-3796.

Team, Tore Supra (2002). Tore Supra experience on actively cooled high heat flux
components. In: Fusion engineering and design 61.(3), pp. 71–80.

Thrane, E. and Talbot, C. (2019). An introduction to Bayesian inference in gravitational-
wave astronomy: Parameter estimation, model selection, and hierarchical models. In:
Publications of the Astronomical Society of Australia 36.

Ticker, Ronald L, Cepollina, Frank, and Reed, Benjamin B (2015). NASA’s in-space
robotic servicing. In: AIAA Space 2015 Conference and Exposition, p. 4644.

Traversaro, Silvio, Prete, Andrea Del, Ivaldi, Serena, and Nori, Francesco (2015).
Inertial parameters identification and joint torques estimation with proximal
force/torque sensing. In: 2015 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2105–2110.

Tri, V. M., Tjahjowidodo, T., Ramon, H., and Van Brussel, H. (2011). A New Approach
to Modeling Hysteresis in a Pneumatic Artificial Muscle Using The Maxwell-Slip
Model. In: Ieee-Asme Transactions on Mechatronics 16.(1), pp. 177–186. DOI: 10 .
1109/tmech.2009.2038373.

Trumper, David L. and Yoon, Jun Young (2014). Friction modeling, identification, and
compensation based on friction hysteresis and Dahl resonance. In: Mechatronics: The
Science of Intelligent Machines.

Tuttle, T. D. and Seering, W. (1993). Modeling a harmonic drive gear transmission. In:
IEEE International Conference on Robotics and Automation.

Vasilev, Momchil, MacLeod, Charles N, Loukas, Charalampos, Javadi, Yashar,
Vithanage, Randika KW, Lines, David, Mohseni, Ehsan, Pierce, Stephen Gareth, and
Gachagan, Anthony (2021). Sensor-enabled multi-robot system for automated
welding and in-process ultrasonic NDE. In: Sensors 21.(15), p. 5077. ISSN:
1424-8220.

Vats, Dootika and Knudson, Christina (2021). Revisiting the gelman–rubin diagnostic. In:
Statistical Science 36.(4), pp. 518–529. ISSN: 0883-4237.
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