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We live in the Information Age, specific historical moment in which making well-informed
decisions is often decisive for the survival of projects and investments. In the past decade,
consistent efforts have been dedicated to studies concerning the use of AI for handling
the boundless quantity of data that is created each day. Nevertheless, studying mathemat-
ical models and techniques suitable for calibrating them using consciously designed data
synthesis techniques is preferable whenever possible, as the interpretation of the outcome
is often much better founded. The present work explores the estimation techniques for
challenging situations involving the chaotic and Stochastic Differential Equation (SDE)
systems used in finance and meteorology, where the standards present in the literature
struggle. In general, SDEs are a specific model type designed to describe scenarios in
which the underlying dynamics of the studied events are known only partially, and the
uncertain part is given solely as a distribution of possibilities. The multiple flavours of
SDEs differ mainly by how the stochasticity, or randomness, is added to the model. When
the system consists of a deterministic drift and a linearly added diffusion component with
a fixed distribution at every time point of the system, we speak of linear SDEs. There
are solutions in the literature involving filtering approaches et al. to estimate the model
parameters of such models from data. It is different in those cases where the diffusion part
includes ‘jumps’ from multimodal distributions. A third option is that the stochasticity is
added either in front of each component of the system equation or to the parameters of
the drift part, addressing the uncertainties both in the physics and in the model. More-
over, differently from purely deterministic systems, SDEs also have the additional issue
of potentially fitting ‘by chance’ the values given in a reference dataset, thereby leading
to a potentially ‘good looking’ solution that could mislead a not-careful-enough user to
rely on a wrong model when trying to predict future outcomes of a system.
In this work, we present an emerging type of Bayesian inference based on Gaussian like-
lihoods that utilise squeezed data representations to address these challenges. We include
an extensive series of test cases ranging from the most basic to more complex types of
SDE systems to test the reliability of the approach as well as to give hints on how to tune
the rather few method parameters.
Keywords: Stochastic differential equations, Bayesian inference, synthetic likelihood,
goodness of fit, financial models
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1 Introduction
The decision-making process is a challenging task in numerous domains, such as physics,
finance, meteorology, and many others.
Employing predictive models to assist in the decision-making process is a beneficial ap-
proach, but it is crucial to consider the potential errors that may arise due to small data
availability or not very informative data. Stochastic models are usually employed to esti-
mate and/or predict the probability of possible outcomes where a randomness component
or uncertainty is embedded.
Given a set of data, and an underlying model, we search for the set of model parame-
ter values that optimally agree with the data. Standard procedures, such as the maximum
likelihood (ML) or the maximum a posteriori (MAP) estimator, are well established in sit-
uations where the model is deterministic and the statistics of data are known. In this work,
we study situations where model calibration is more challenging, either due to stochastic
or otherwise unpredictable dynamics, or due to a high dimension of the unknown param-
eter vector.
The present work focuses on estimation methods for general types of Stochastic differen-
tial equations systems widely used in fields, such as finance and meteorology.
Numerical weather prediction (NWP) models involve simulating atmospheric circula-
tion using Navier-Stokes equations. However, meteorologists have found that traditional
NWP models can sometimes be inaccurate due to underdispersion. To address this issue,
stochasticity has been embedded in NWP models. It has been discovered that perturbing
the initial values of ensembles of simulations is insufficient in capturing the true spread
or uncertainty of weather predictions, hence parameters have also been perturbed.
Stochastic systems consist of SDEs where stochasticity is added to a deterministic evolu-
tion model as follows:
dx = f(x, t;�)dt+Lw(t), (1.1)
where f(�;�) is the deterministic drift function with x 2 Rn; L is the diffusion term
which may be constant or depend on x, t or �; and w(t) is a n-dimensional zero-mean
white Gaussian process.
In certain cases, such as linear SDE systems, the transition density is available, and the
likelihood cost function for parameter calibration can be analytically evaluated or nu-
merically approximated. In a nonlinear SDE, the drift function is nonlinear, and the
diffusion term is state-dependent which makes the transition density unknown. The like-
lihood function becomes intractable or too expensive to compute. To overcome such
problems, various approximated-likelihood based methods have been introduced, e.g.,
the simulated maximum likelihood estimation Pedersen (1995) and Hermite expansions
Aı¨t-Sahalia (2008).
An observation operator that connects the states and measurements provides a natural
setting for various filtering approaches. Supposing that the measurements are available
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densely enough: Kalman or extended Kalman filter, non-linear Gaussian filtering, or en-
semble Kalman filters can be applied, see Sa¨rkka¨ and Solin (2019). In case the drift
function has a suitable structure, conditional Gaussian distributions can be used together
with filtering methods to estimate the parameters of stochastic systems even for chaotic
drifts, see Hakkarainen et al. (2012). Ja¨rvinen et al. (2011); Laine et al. (2011); She-
myakin and Haario (2018) present a related approach which is available for dense enough
measurements and a drift function depending linearly on the unknown parameters. In
Hakkarainen et al. (2012), the filter likelihood approach was also tested for deterministic
chaotic systems. Issues arise in the sense that the filter likelihood requires its own tuning
parameters to be set that may bias the model parameter estimation, see Hakkarainen et al.
(2013a).
The scope of the research conducted in this thesis is to develop estimation methods for
situations where standard methods struggle. This includes general stochastic differen-
tial equation (SDE) systems, where the randomness can be included in the model both
in a linear and nonlinear manner. Moreover, additional ‘jumps’ can occur at random
time intervals with random amplitudes. We extend the study to systems that contain both
stochastic and chaotic dynamics. Another common challenge is parameter sampling in
high dimensions. For such a situation, a ‘grey box’ model together with a hierarchical
Bayesian inference is applied.
To analyse stochastic systems, we develop an approach that employs the concept of syn-
thetic likelihood, first introduced by Wood (2010) and then extended to Bayesian frame-
work by Price et al. (2018). Bayesian Synthetic Likelihood (BSL) methods aim to ap-
proximate the posterior distribution of model parameters by using likelihoods that are
‘synthetic’ in the sense that the likelihood of a summary statistics is recreated separately
for each proposed model parameter vector, by simulated data produced by the respective
parameter values. To ensure reliable results, the simulation is repeated a given number of
n times. This approach is suitable in case of a complex model for which the likelihood is
analytically difficult or impossible to compute.
The BSL approach relies on the strong assumption of multivariate normality of the statis-
tics of the summary statistic s. In principle, this is ensured by the central limit theorem
(CLT) . However, it is tough to ensure that normality also holds when the dimension in-
creases. Several studies have been conducted to weaken the normality assumption on
which the synthetic likelihood relies. For example, in Wood (2010), the author suggests
a transformation of s to better achieve multivariate normality, but this does not solve the
problem in case of high dimensional summary statistics. Fasiolo et al. (2018) relax this
assumption by proposing a more flexible density estimator called the Extended Empiri-
cal Saddlepoint approximation. An et al. (2020) develop a semi-parametric approach to
approximate the summary statistic likelihood involving the kernel density estimates for
the marginal distributions and combining them with a Gaussian copula. Thomas et al.
(2022) frame the problem of estimating the posterior as a problem of estimating the ratio
between the data generating distribution and the marginal distribution, and solve it by lo-
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gistic regression.
The normality approximation of the summary statistics is verified if the central limit the-
orem holds. This may require an increase of the BSL iteration number n to ensure the
convergence. On the other hand, the larger n is, the more time consuming the compu-
tation of the BSL likelihood will be, especially in case of high dimensional summary
statistics. An accurate estimation of the covariance matrix of the summary statistic may
lead to less model simulation being needed and may speed up the computation, especially
in high-dimensional problems. Frazier et al. (2019) use adjusted inference methods for
the covariance matrix, considering forms as a diagonal matrix or a factor model for the
covariance matrix of the summary statistics.
Here, we propose a different approach, based on an application of the Donsker’s theo-
rem. On an intuitive level, the theorem extends the CLT by stating that in addition of the
average, and the cumulative distribution function (CDF) of data tends towards a normal
distribution, a gaussian vector with the dimension given by the number of bins used to
compute the CDF. In the basic form, for i.i.d. data, the theorem also gives a formula for
the covariance of the CDF vector, which extensively reduces the computational cost of
the approach by allowing lower values of n to be used. In cases of non i.i.d. data, the
covariance matrix can be computed numerically, at the cost of a higher number of the
BSL iterations. The normality is yet guaranteed if the data is only weakly correlated, see
Neumeyer (2004).
The BSL approach with the Donsker covariance matrix is employed here to the task of
parameter estimation. We start by verifying our approach by considering the very basic
cases of i.i.d data coming from Gaussian distributions. The approach is then extended
to cases of parameter estimations for stochastic systems widely used in finance. First,
linear stochastic models are tested using the Ornstein-Uhlenbeck as an example. Here,
the studies confirm the importance of combining several summary statistics in a unique
feature vector to properly capture the dynamics and to get the posterior distribution of
all the parameters well estimated. Next, we move to jump diffusion models such as the
Merton model, where jumps occur at a certain time and they are unpredictable by filtering
methods considering previous measurement to predict the next point. The main observa-
tion here is the ability, given the observed data, to estimate the posterior distribution of
the underlying jump diffusion model parameters, including the Poisson parameter which
is responsible for the jump frequencies.
As the last SDE example, we analyse the complex case of parameter estimation of the
Heston model, widely used to make predictions of the future stock price and volatility
at a certain maturity time, for an underlying asset. Our approach requires the data to
be bounded. As this is not true for the stock price, the returns are used instead. Indeed
several features are again combined in the overall feature vector. A special discussion is
devoted to bias: The volatility is not observed, and it turns out that more reliable results
are obtained by using a proxy volatility model instead of the standard Heston volatility.
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A standard way of formulating stochastic differential equation systems is to additively
extend the drift of a deterministic system with a random diffusion part. However, an in-
creasing trend in applications, such as meteorology, is to perturb deterministic models in
multiplicative and highly nonlinear ways that escape the standard framework.
The stochasticity included in weather prediction models by adding a randomised multi-
plier to the time derivative of the model (so-called stochastic physics or Stochastically Per-
turbed Parametrization Tendencies, SPPT ) as well as by randomising the model param-
eters (Stochastically Perturbed Parameterisations, SPP )). Such a combination of chaotic
dynamics and stochastic perturbations leads to highly nonlinear stochastic systems that
escape the standard SDE formulations. There is no obvious way to write the equation
as a stochastic integral with respect to a Brownian motion. The variational framework
introduced by Holm (2015) presents a step towards a theoretical understanding of such
systems, and a way to preserve the physical invariants of the flow. However, in oper-
ational NWP calculations, various SPPT approaches are already well established, and
together with the more recent SPP methods are an active field of research, see Leutbecher
et al. (2016) and Ollinaho et al. (2016).
We have studied such a system starting from the Correlation Integral Likelihood (CIL)
approach introduced by Haario et al. (2015a) to study chaotic models. For a large set of
data, or repetitions of a given experimental setting, it is assumed to be available. From
the observations, it is then possible to estimate a likelihood for a summary statistic for a
subset of the data. This is done offline prior to starting the parameter estimation. When
using the likelihood for inference, simulations are only needed for the respective subset
amount of data. This can lead to substantial savings of computing time.
Finally, we consider a different type of prediction problem: How to predict the properties
of a given object when data from an ensemble of roughly similar objects is available. The
practical example comes from marine engineering. A hierarchical Bayesian approach is
used for this purpose. This involves fitting a single model over multiple vessels, assuming
that vessels with similar characteristics have parameters that are likely similar to each
other. This approach has two main benefits: We can gather information about parameters
that are not well-informed by the data specific to a particular vessel by using data from
similar ships. In addition, by using a hierarchical model, we can accurately predict the
behaviour of a vessel with no prior data solely based on its characteristics. We introduce
a simple yet effective model based on cruise ship data. The model is data-driven, but it
does employ the most rudimentary laws of physics that describe the power consumption
of vessels. Therefore, this may be called a ‘grey-box’ approach. Our approach involves
utilising the powerful Stan statistics modelling tool and gathering real-world data from 64
ships via a commercial platform. The developed model is compared to a more traditional
data-free method. Significant improvements in accuracy are obtained if compared to those
by a resistance calculation-based method.
19
2 Statistical Inference and MCMC methods
To accurately estimate the behaviour of observed data, we rely on probability distribu-
tions. Once we have identified a distribution that best represents the uncertainty of data,
we must determine the parameter value that most closely matches the model to the data
y. The parameter vector θ may include components both from the underlying model, and
the probability distribution of the noise. The probability density function of p(yjθ) re-
flects the likelihood of observing our data y, given the parameter θ (in this work, we only
consider cases with continuous density functions with the respective probabilities given
by integrals). However, we usually lack the knowledge of θ while having access to the
observed data y. This is where the likelihood function comes into play, as it helps us
determine the most likely parameter values θ against the observed data y.
Definition 2.1 (Likelihood function). Consider a sample y = (y1, . . . , yn) of data with
a joint probability density function p(y, θ) with the parameter vector θ. The likelihood
function L(θ; y) has the same functional form as the joint probability density but is viewed
as a function of θ with a fixed y:
L(θ; y) = p(θjy).
The likelihood function measures how reliable it is to use θ to approximate the behaviour
of y. Low L(θ; y) values mean that θ is unlikely representative; small L(θ; y) values
indicate that θ can be a good representative parameter for y. Often it is easier to work
with log-likelihood function which is defined as
l(θ; y) = logL(θ; y)
where L(θ; y) > 0.
To estimate the best value of θ that represents the data y, it is common to use the likelihood
function L(θ; y) and find the parameter that has, intuitively, the highest probability. This
approach is a reasonable and widely used method for data analysis.
Maximum Likelihood estimation (MLE) Given an observed sample y of data and the
likelihood function L(θ; y), the maximum likelihood estimate θˆ is the parameter value
that maximises L(θ; y).
When the data is accurately represented by the model and the likelihood can be easily cal-
culated, the Maximum Likelihood Estimation (MLE) is a reliable and efficient technique
for estimating the most likely parameter values for θ. However, it is only a point esti-
mate, and the likelihood function may not have a clear, unimodal maximum. Moreover,
difficulties arise when the likelihood function is difficult to derive, too complex to com-
pute analytically or when numerical approximations of the likelihood are too expensive
to evaluate.
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Various numerical optimisation methods can be employed to approximate the maximum
point estimates. The issue is that, in practice, it is difficult to guarantee that the global
maximum has been found. The chance that the process has simply converged to a local
maximum exists. In some cases, no convergence to an optimum can exist, as is the case
when handling a flat likelihood surface.
A solution to these issues is to abandon the search for a single ‘best’ optimal parame-
ter, and instead search for the set of all parameters which, within the uncertainty of the
measurements, agree with the data. This is the essence of the Bayesian approach.
2.1 Bayesian Inference
Bayesian inference refers to the statistical approach where solutions to estimation prob-
lems are defined as probability distributions. They give the boundaries of credible inter-
vals in the parameter space and the quantify of the uncertainties of model simulations.
The variable θ is treated as a random variable.
The Bayesian approach assumes that an initial guess about the distribution of θ is available
with the prior distribution pi(θ). Given the observations y, the prior is updated using
Bayes’ theorem.
Theorem 2.1 (Bayes’ Theorem). The Bayes’ formula links the prior pi(θ) and posterior
distribution pi(θjy) by the expression
pi(θjy) = L(yjθ)pi(θ)
f(y)
(2.1)
where f(y) =
R +∞
−∞ L(yjθ)pi(θ)dθ is a constant that normalises the total mass of the
posterior to be one. If the normalising constant is ignored, the posterior distribution is
proportional to the likelihood and the prior, which can be expressed as
pi(θjy) / L(yjθ)pi(θ).
In Bayesian analysis, the posterior distribution plays a crucial role in determining statis-
tical properties of the solution. While the probabilities can be expressed as integrals in
principle, in many cases they are too difficult or impossible to evaluate, especially for
high dimensional parameter vectors.
2.1.1 MCMC algorithms
In principle, it is possible to draw a random sample from the posterior pi(θjy) and employ a
direct Monte Carlo integration to estimate the expected values or the probability density of
θ. However, this is far inefficient, and much more practical methods have been developed,
starting from Metropolis et al. (1953). Markov chain Monte Carlo (MCMC) methods
aim to generate a sequence of parameter values that will ultimately result in the desired
probability distribution. The sequence of random elements produced by MCMC gradually
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approaches the target posterior distribution. As a result, the average of the Markov chain
also converges to the expected values.
Metropolis-Hastings (M-H) Algorithm The most classical MCMC method is the
Metropolis-Hastings algorithm. It avoids the problem of sampling from the unknown
target distribution by sampling from a proposal distribution instead, and then accepting
or rejecting the proposed candidate.
Denote the density of the proposal distribution by q(θ, φ). Suppose that the (non-normalised)
likelihood function pi(θ) can be evaluated for any θ. The probability α(θ, φ) of accepting
the step from θ to φ is given by
α(θ, φ) = min
(
1,
pi(φ)q(φ, θ)
pi(θ)q(θ, φ)
)
. (2.2)
The M-H algorithms produce a sequence of parameter values, usually called the chain. If
a move by the above probability is rejected, the respective parameter value θ is repeated
in the chain. It can be shown that the M-H algorithm indeed asymptotically converges to
the true posterior distribution, see Hastings (1970).
The M-H algorithm can be summarised as follows: The proposal is often selected to be
Algorithm 1 Metropolis-Hastings algorithm
1. Set an initial value θ0 and a proposal distribution q(�, θ).
2. At each i, i = 1, 2, 3, ... choose a new candidate θˆ from the proposal distribution
q(�, θi).
3. Evaluate the probability α(θi−1, θˆ) using equation (2.2).
4. Sample a random value u � U(0, 1)
If u < α(θi−1, θˆ)
then θˆ is accepted
θi = θˆ;
else if u � α(θi−1, θˆ)
then θˆ is rejected
θi = θi−1.
end
end
symmetric.
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Therefore, from q(θ, φ) = q(φ, θ), and the acceptance probability simplifies to:
α(θ, φ) = min
(
1,
pi(φ)
pi(θ)
)
. (2.3)
When choosing the proposal distribution, like the standard multinormal N(0, C) with
covariance C, it is crucial to consider how this will impact the convergence of the chain
to the desired distribution. If the step size given by C is excessively large, the proposed
values may be too far from the posterior, thereby leading to a low acceptance rate. On the
other hand, if C is overly small, the new candidate will be too close to θi−1, and the chain
will progress slowly, requiring many iterations to attain convergence. For more details,
see Brooks et al. (2011).
Adaptive Metropolis (AM) . Haario (Haario et al. (2001)) implemented an adaptive
Metropolis algorithm that updates the proposal distribution while sampling, considering
the previously sampled points. The proposal distribution is Gaussian distribution cen-
tred at the current point, θi, and its covariance matrix is computed from the empirical
covariance matrix of the previous chain values as follows:
Ci = sdCov(θ0, . . . , θi � 1) + ϵId, (2.4)
with a scaling factor sd and a regularisation parameter ϵ > 0, to ensure the non-singularity
of the proposal covariance matrix.
By defining a burn-in period n0 as the non-adaptation period, we keep the proposal co-
variance fixed for the first n0 steps, and then compute the proposal covariance matrix
adaptively by the above formula. However, adjusting the covariance at every step is not
needed. Instead, adaptation should only occur at specific time intervals, and especially
longer non-adaptation intervals are beneficial for high dimensional sampling. The AM
pseudoalgorithm differs from the MCMC algorithm only by the added adaptation step,
that uses the multinormal proposal distribution.
Delayed Rejection Adaptive Metropolis (DRAM) . The DRAM method, which was
first introduced in Haario et al. (2006), involves generating a new candidate, θˆ, from a
Gaussian proposal distribution, q, and then evaluating it based on the MCMC algorithm.
DRAM goes beyond AM by adding a second stage in the event of rejection. If rejected,
a new candidate, θˆ(2), is sampled from a different proposal distribution with smaller step
sizes, resulting in a candidate closer to the current point, and thus higher chances to be
accepted. Multiple stages can be employed if there are multiple rejections, and the co-
variance matrix at each stage is still a scaled version of the initial covariance. The scaling
factor can be freely chosen.
Noisy AM. There are several MC techniques that aim to enhance the convergence to-
wards the desired distribution function. Several factors can affect the rate of convergence,
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such as the complexity of the likelihood, which may require approximations, or the com-
plexity of the model, which may make evaluating the likelihood computationally chal-
lenging. Consider a scenario wherein the chain becomes stuck in a local minimum (in
the case of negative log-likelihood). It seems that the chain has reached the maximum
likelihood point, but it is not the desired global minimum. It is noteworthy noting that this
might not be the lowest point overall. Once the chain hits such a point, it enters a ‘local’
convergence state and stays put, as most other potential candidates are discarded.
This problem is especially typical in cases – which we will meet in the applications in-
deed – where the likelihood function is stochastic. Then, the chain may get stuck as it
gets a ‘good’ likelihood value, but only randomly. To overcome that situation, we have
implemented a Noisy Adaptive Metropolis algorithm which consists of re-evaluating the
likelihood after a given number of rejections n0. At this point, the chain typically is
pushed away from that ‘local minimum’ and the new candidate is accepted/rejected based
on the noisy likelihood.
The procedure can be summarised as shown in algorithm 2.
Algorithm 2 Noisy AM
1. Set an initial value θ0 and the initial proposal covariance C0. Fix a maximum num-
ber of rejections allowed, m
2. After the burn-in period i > i0, sample a random value from a Gaussian proposal
N(θi, Ci)
3. Evaluate the probability α(θi−1, θˆ) using equation (2.2).
4. Sample a random value u � U(0, 1)
If u < α(θi−1, θˆ)
then θˆ is accepted
θi = θˆ;
else if u � α(θi−1, θˆ)
then θˆ is rejected
θi = θi−1.
back to step 2
if number of rejections > m
then evaluate the likelihood at the current candidate θˆ;
if θˆ is accepted θi = θˆ
else if θn = θi−1
end
The noisy AM is efficient in saving computational time, especially in the case of Bayesian
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synthetic likelihood where at every step the likelihood is evaluated several times.
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3.1 Donsker theorem
According to the central limit theorem (CLT), the average of a large number of random
variables with finite expected values and finite variance converges in the distribution to
the normal random variable. In probability theory, Donsker’s theorem is a functional ex-
tension of the central limit theorem. Indeed, in the papers Donsker (1951, 1952), Monroe
D. Donsker formulated two theorems. In this work, we build on the theorem in Donsker
(1952), which states that the cumulative distribution function (CDF) of i.i.d scalar samples
converges, in a finite setting, towards a Gaussian vector.
The weak law of large numbers asserts that if you repeat an experiment independently
a large number of times and then average the result, you should obtain a value close
to the theoretical expected value. In more detail, given a sequence of independent and
identically distributed (i.i.d.) random variables X1, X2, . . . , Xn with common mean µ =
E(Xi) and common finite variance σ2 = E(Xi � µ)2, the sample mean X¯ = X1+···+Xnn
converge in probability to the expected value µ: for any ϵ > 0, limn→∞P(jX¯n � µj >
ϵ) = 0.
Theorem 3.1 ( Central limit theorem.). Given a sequence of independent and identically
distributed (i.i.d.) random variables X1, X2, . . . , Xn with common mean µ and finite
variance σ2, the sample mean X¯ = X1+···+Xn
n
converges in distribution as
X¯n � µ
σ/
p
n
! N(0, 1) , n �!1.
Let Fn be the empirical distribution function of the sequence of i.i.d. random variables
X1, X2, X3, . . . with distribution function F. Define the centred and scaled version of Fn
by
Gn(x) =
p
n(Fn(x)� F (x))
Theorem 3.2 ( Donsker, Skorokhod, Kolmogorov). The sequence of Gn(x) converges in
distribution to a Gaussian process G with zero mean and covariance given by
cov[G(s), G(t)] = E[G(s)G(t)] = minfF (s), F (t)g � F (s)F (t).
We will use the theorem in an approximative form for finite data. Assuming i.i.d scalar
data with sample size N , estimate the empirical distribution function (eCDF) F by the
data at the selected bin values xi, i = 1, 2, ...,M . The eCDF becomes a M -dimensional
Gaussian vector, with mean F and covariance given by Cij = (min(Fi, Fj)� FiFj)/N .
Note the approximative character of the approach in a finite setting. As eCDF vectors
are strictly limited in the interval (0, 1), the normality cannot hold close to the tails. In
numerical applications, standard scalar normality tests can be used to verify the normality
at the bin values used, and the M -dimensional χ2 test can be used for the Gaussianity of
the eCDF vectors.
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The basic form of the Donsker theorem applies as such to i.i.d scalar situations. If data
is not i.i.d, the covariance formula cannot be used, but the covariance matrix can be esti-
mated by data or by simulated eCDF vectors. In case the data is inherently higher dimen-
sional, a scalar-valued mapping is first used to enable the construction of eCDF vectors,
see Kazarnikov and Haario (2020); Springer et al. (2019); Haario et al. (2015b) for earlier
examples. The Gaussianity still holds, assuming that conditions on weakly dependent
data hold Borovkova et al. (2001).
3.2 Synthetic likelihood with the Donsker formula
We apply the Donsker’s formula for the covariance within the Bayesian Synthetic Like-
lihood method, a widely used technique for determining the posterior distribution of pa-
rameters in simulation-based models. Synthetic Likelihood methods assume that data
summary statistics are approximately Gaussian, allowing for the construction of a Gaus-
sian likelihood with an estimated mean and covariance matrix. This involves selecting a
set of summary statistics s 2 S that are believed to contain most of the data’s information
and assuming that they follow a normal distribution. Supposing that the summary statis-
tics used consists of averages, the central limit theorem ensures an asymptotically normal
synthetic likelihood, see Wood (2010); Price et al. (2018); Frazier et al. (2019); Frazier
and Drovandi (2021); Fasiolo et al. (2018); Drovandi and Frazier (2022) for more details.
Given a stochastic model depending on a set of parameter θ and observed data y =
(y1, . . . , yN) coming from the selected model, our interest is in estimating the unnor-
malized posterior distribution of the model parameter defined as
p(θjy) � p(yjθ)p(θ). (3.1)
For cases where the likelihood is intractable, synthetic likelihood methods employ a func-
tion S : RN ! Rd, which maps the observed data y into a summary statistics vector
sy = S(y) of data y. The posterior distribution becomes of the form
p(θjsy) � p(syjθ)p(θ). (3.2)
with p(θjsy) coming close in distribution to p(θjy). The issue is that, in many situations,
if the likelihood of the data is intractable, then the same is true for the likelihood of the
summary statistics. The idea behind SL in Wood (2010) and BSL in Price et al. (2018) is
to use an auxiliary likelihood based on a multivariate normal approximation. Under the
assumption that summary statistics is Gaussian, the estimated synthetic likelihood is of
the form
N (sy;µn(θ),Σn(θ))
with
µn(θ) =
1
n
nX
i=1
siy Σn(θ) =
1
n� 1
nX
i=1
(siy � µn(θ))(siy � µn(θ))T ;
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denoting the mean and the covariance of the Gaussian likelihood, respectively. In general,
µ and Σ are unknown, and they can be estimated by a number n of repeated simulations
of data from the selected model, each of the size N .
Price et al. (2018) use an MCMC algorithm to sample from p(θjsy) a new candidate
for θ given a prior distribution p(θ) on the parameter θ. Per every new candidate θˆ, n
i.i.d samples y(θˆ) are simulated from the model and sny summary statistics are obtained
to compute µn(θˆ) and Σn(θˆ). Fitting the auxiliary likelihood with the new mean and
covariance, the candidate is accepted or rejected based on an accept-reject method.
The BSL approach is based on the strong assumption that summary statistics are Gaussian
due to the central limit theorem. Normality becomes more complex to ensure when the
dimension increases. Moreover, it requires a large number of BSL iterations to ensure
the convergence and this makes the methods computationally expensive. Several studies
have been conducted to weak the normality assumption on which the synthetic likelihood
relies. For example, in Wood (2010), the author suggests a transformation of s to better
achieve multivariate normality, but this does not solve the problem in case of high di-
mensional summary statistics. Fasiolo et al. (2018) relaxes this assumption by proposing
a more flexible density estimator called the Extended Empirical Saddlepoint approxima-
tion. An et al. (2020) developed a semi-parametric approach to approximate the summary
statistics likelihood involving the kernel density estimates for the marginal distributions
and combining them with a gaussian copula. Thomas et al. (2022) frames the problem of
estimating the posterior as a problem of estimating the ratio between the data generating
distribution and the marginal distribution, and solving it by logistic regression.
Frazier et al. (2019) considers a diagonal matrix or factor model forms for the covariance
matrix of the summary statistics to speed up the process. Priddle et al. (2022) introduce
the whitening BSL (wBSL) method that uses approximate whitening transformations to
decorrelate the summary statistics at each algorithm iteration. There, the author proved
that the number of BSL iterations required per summary statistics reduced by more than
an order of magnitude.
In this context, we propose a natural way of accurately computing the covariance matrix
for the summary statistics in case of i.i.d. data. It employs the use of Donsker’s theorem
for the covariance matrix. In case of the Donsker covariance matrix, the covariance com-
putation is, in principle, independent from the number of the BSL iteration which can be
reduced to n = 1. This approach is limited to i.i.d. summary statistics. In case of not i.i.d.
summary statistics, the covariance matrix can be computed numerically and the number
of BSL iteration increases with the complexity of the model and based on the variability
(stochasticity) of the system.
We propose a BSL approach where summary statistics consist of empirical CDFs on a
fixed bin values selected by the quantile function. Given a set of data, we map them into
their empirical CDF, storing most of the information related to the underlying distribu-
tion of the given data. A uniformly linearly spaced bin value selection is suitable in most
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cases, including for skewed data. On the other hand, in case of data with long tails or sharp
peaks, uniformly spaced bins are not optimal. It considers every point equally ‘important’.
For this reason, we introduce the quantile function (or inverse cumulative distribution
function) for the selection of the bin values at which we map the data. We propose to se-
lect the bins on the y-axis of the ecdf and compute a new cfd on the selected bins, instead
of the uniformly distributed points. The results show that the use of the quantile function
in case of such data improves the accuracy of the target posterior.
The BSL approach is used here to estimate the parameter values of the underlying distri-
bution/model of an observed set of data. The basics steps are summarised in algorithm 3
below.
Algorithm 3 Bayesian Synthetic Likelihood with eCDF summary statistics
Initialisation:
1. Given a set of data y = (y1, . . . , yN);
2. Compute the summary statistics (eCDF) sy at nb selected bin values taken on the
y-axis of the eCDF of y;
Sampling the parameter posterior
1. Sample a new parameter candidate θˆ from Θ;
2. Simulate n samples fyigi=1:n, of size N each and compute the eCDF vector for
each sample at the fixed nb bins;
3. Compute the mean µ = (µi), i = 1, 2, ..., nb, of the n eCDF vectors, and the covari-
ance matrix C,
4. Evaluate the negative log likelihood value
(µ� sy)TC−1(µ� sy) + log(det(C))
5. Accept or reject θˆ;
6. Continue from point 1.
3.3 Gaussian subset likelihood (GSL)
For large data sets, it may be beneficial – or even necessary due to storage and CPU
reasons – to make statistical inference only for subsets of the whole data. If we have
enough data – that can be seasonal, monthly, yearly, etc. – we can, instead of treating
them all together as a long time series, study the data as a set of multiple time series. This
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allows, for instance, you to study the behaviour of a given season or periodic behaviour
and the possible deviations from it.
Opposite to the synthetic likelihood approach, we now create a fixed likelihood, offline
by the data. We divide the data into nepo subsets. In what follows, the subsets are called
epochs. Each epoch contains N data points. The eCDF vector of length nb is computed
for each epoch. The mean and covariance of the set of eCDF vectors is computed by the
resulting matrix. This fixed likelihood is then used for sampling.
We may also borrow the use of n repeated simulations from BSL. In that case, the like-
lihood must be computed in the same way: We randomly select n epochs, compute the
eCDF of each, and take the mean. This is repeated m times to have m eCDF vectors.
The mean and covariance are used to create a fixed likelihood from the data. In sampling
the parameter chain we simulate n new trajectories of size N each, and evaluate the fixed
likelihood using their mean eCDF.
Algorithm 4 Gaussian Subset Likelihood by eCDF
Initialisation:
1. Given a big data set y = (y1, . . . , yntot);
2. Subsample the data set into nepo samples of size N ;
3. Compute the eCDF at nb selected bin values for each epoch. Compute the mean µ
and covariance C.
Sampling the parameter posterior
1. Sample a new parameter candidate θˆ by noisy adaptive MCMC;
2. Simulate a subset of size N and compute the eCDF vector µθ at the fixed nb bins
(alternatively, simulate n subsets and compute the mean of their eCDF vectors)
3. Evaluate the negative log likelihood value
(µ� µθ)TC−1(µ� µθ)
4. Accept or reject θˆ;
5.
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In the next section, we discuss and present the results about the sensitivity of the approach
with respect to the parameters of the method, such as the number of BSL iterations n and
the selection and number of bins nb. In this context, we combine the BSL approach with
a noisy MCMC algorithm to reduce the number of BSL iterations required, speed up the
calculations and reduce the computational time.
3.4 Numerical verification results
3.4.1 BSL with Donsker covariance for Gaussian Distributed data
Our approach is intended for ‘intractable’ situations, where the model evaluations are
noisy in ways that do not allow the use of standard methods. However, to clarify sev-
eral aspects of the method, we demonstrate the performance of it using the most basic
statistical distributions first. The approach is first tested here for the case of Gaussian
distributed data, in order to verify that correct parameter posteriors are achieved. All esti-
mation methods depend, to some extent at least, on the method–specific ‘tuning’ factors.
Thus, we also study here the possible sensitivity of our results with respect to the settings
of the approach.
Likelihoods with theoretically known CDF values. We estimate the parameters of
the normal distribution N(0, 1) using the BSL method. To start, we use the values of
the well-known CDF function, the Φ function, instead of sampled data. The CDFs are
then deterministic functions of the distribution parameters, so no estimates from repeated
simulations are required (i.e. n = 1) and no noise enters the likelihood evaluations: The
parameter estimation boils down to standard curve fitting. In this idealised situation, the
only remaining ‘tuning’ factor is the impact of bin selection.
The values of Φ evaluated at the givenM bin values serve as the data sy. For any proposed
parameter value θ = (µ, σ) the respective CDF function gives the M -dimensional mean
vector of the likelihood, with the covariance matrix computed as in the pseudo code above,
using an assumed numberN of data points. The posterior distribution of θ is sampled with
standard MCMC methods. The result is compared to the true distribution, the mean and
standard deviation of repeated samples of length N , as obtained by direct draws from the
N(0, 1) distribution.
The results are shown below for the sample sizes N = 50 and N = 5000. The bin values
xi for the CDF vectors yi = CDF (xi), i = 1, 2, ...,M are created by using the quantile
function. That is, M uniformly distributed values yi are taken on the y axes, and the bin
values in the x axes are then computed by the inverse CDF function. The number of bins
are M = 10 for N = 50 and M = 30 for N = 5000, taken so that the bins are inside
the interval [�3, 3]. The results remain essentially unchanged if any values M > 10 or
M > 30 are used in the respective cases. Indeed, in this idealised situation, by using the
fixed likelihood with exactly known CDF functions, we can use even more bin values M
than the size of data N is.
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The histograms in figure 3.1 show that the results are rather accurate in case of the rel-
atively large data size N = 5000. The result for a small amount of data, with N = 50,
again matches the ‘exact’ distribution of the µ parameter, but a clear bias is shown for the
distribution of σ.
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Figure 3.1: Comparison of the distributions of the mean and std, obtained by BSL sam-
pling by the Donsker likelihood (red) and by samples directly from N(0, 1) (blue), for
sample sizes N = 50 and N = 5000.
However, we can also test the GSL version, Algorithm 4 with a fixed the likelihood, using
the CDF vector given by Φ as the mean, and computing the covariance by the Donsker
formula. The bias shown above will then disappear, as shown in figure 3.2 that presents
the results for otherwise exactly the same settings as those used in figure 3.1
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Figure 3.2: Comparison of the distributions of the mean and std, obtained by sampling a
fixed Donsker likelihood (red) and by samples directly from N(0, 1) (blue), for sample
sizes N = 50 and N = 5000.
The bin values can naturally be selected in different ways. The most obvious way might
be to take uniformly distributed values in a selected range, such as [�3, 3] above. Indeed,
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in the present examples, the results stay essentially unchanged. However, the selection by
the quantile function has certain advantages, that will be more obvious in cases of complex
distributions, such as with long tails or sharp peaks. The condition number of the ensuing
covariance matrix remains lower than with a uniform selection, which allows us to take
a higher number M of bin values. Ensure to also remember that the Donsker covariance
formula is valid asymptotically for large sample size N , so especially for relatively small
N the tails must be avoided. This is ‘automatically’ taken care of by the use of the inverse
CDF for bin selection, as the CDF functions typically are flat on the tails.
Likelihoods by eCDF vectors from noisy data. Next, we perform the same simula-
tions but in a situation closer to real applications, where the eCDF vectors are created by
numerical estimates from samples of noisy data. The same sizes of the data sets are used
as above, so N = 50 and N = 5000 values are drawn from N(0, 1). For data, a fixed
eCDF vector is constructed from the respective samples, now using a fixed number of
bins M = 10, selected again non-uniformly using the quantile function. This data vector
is employed for sampling the parameters of N(µ, σ2). For each proposal of µ, σ, the BSL
likelihood is constructed by estimating the expected value of the respective eCDf vector
from n BSL simulations. The covariance of the likelihood is computed by the Donsker
formula, and finally the likelihood is evaluated against the data. Figure 3.3 gives a few
examples of the typical results.
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Figure 3.3: Comparison of the distributions of the mean and std, obtained by noisy
normally distributed data using Donsker likelihood (red) and by samples directly from
N(0, 1) (blue), for sample sizes N = 50 and N = 5000.
We note that the width of the distributions roughly coincides with the theoretical ones in
figure 3.1 and figure 3.2, but due to the noisy data, the distributions ‘jump’ around the
true values. In more extensive tests, the true values were always observed to be inside the
estimated distributions. The number n of BSL simulations was kept at n = 20 for both
cases N = 50, N = 5000. Lower values down to n = 1 can be used, but at the cost of
low acceptance rates that are due to more stochastic likelihood values.
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The same as in using the theoretical CDF functions, we also tested the way of comput-
ing a fixed likelihood offline, estimating the mean and the covariance using the Donsker
covariance formula from the given N data points. The results were essentially the same
as those obtained with the BSL way. We may thus note that the uncertainty due to noisy
data dominates over the smaller bias of the BSL approach observed in the theoretical case,
which is shown in figure 3.1. This was further verified with repeated test runs. Here, the
same number of n = 20 repeated simulations were used for creating the fixed likelihood
and sampling the candidate parameters. Computational times may be saved using smaller
amounts of repetitions for sampling, but again at the cost of more stochasticity and thus
less accurate results.
Sensitivity with respect to the amount of BSL iterations. We perform an analysis on
the sensitivity of the approach with respect to the number n of BSL iterations. Figure 3.4
shows several examples sampled with four different data sets. The posteriors ‘jump’
accordingly, but the number of BSL iterations have a very small impact on the parameter
posteriors. However, it does affect the acceptance rate. As expected, there is a lower
bound below wherein the acceptance becomes too small. In this case, the tested lower
limit was around n = 15. With increasing n the numerical estimates of the mean and
covariance of the likelihood become less variable, which increases the acceptance rate,
but at the cost of computation times. The results in Figure 3.4 also demonstrate that the
sampled posteriors do not essentially change once n is large enough.
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
(a) n=50 (b) n=100 (c) n=1000
Figure 3.4: Several experiments on the Gaussian distribution with varying data sets. The
sample size is fixed for N = 50, the BSL iterations vary from n = 50 to n = 1000 for
each fixed data set, as indicated by the respective colour.
Fully numerical covariance estimation. The above examples deal with i.i.d. data. We
will also demonstrate the use of Gaussianity of eCDF vectors in cases where the data is
not i.i.d. The Donsker formula for the covariance estimation is then no longer available,
and both the mean and covariance of the likelihood have to be estimated directly by data.
Here, we exhibit the two possible ways of computing the BSL likelihood by the eCDFs
vectors, again using the N(0, 1) distribution as the example: The mean and covariance
computed from the eCDF vectors of n simulated repetitions by the Donsker theorem and
the numerical estimation of the covariance matrix directly by a set of eCDF vectors.
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Figure 3.5: (a) The parameter posterior distributions by N(0,1) data, with the covariance
of the likelihood computed by the mean of the eCDF vectors using the Donsker formula
(red), the covariance computed from the eCDF vectors (black), compared to direct sim-
ulation results (blue). (b) The respective 2D posterior samples. The number of repeated
simulations is n = 40 for the Donsker covariance and n = 200 simulations for fully nu-
merical covariance estimates. A fixed data sample of size N = 5000 is employed for both
cases.
Figure 3.5 shows the results of the comparison. With a high enough number n no differ-
ence of posteriors is expected to emerge. However, when the Donsker covariance formula
is available, a considerably lower value of n is enough to achieve the same level of esti-
mation accuracy.
Selection of the number of bins. The method is based on the empirical cdf of the
observed data. The number of selected bins nb is a method parameter that needs some
tuning.
The conducted experiments show that the posterior is not too sensitive with respect to nb
as long as it is within a reasonable interval. On the other hand, excessively large values
make the histogram/CDF noisy and reduce the acceptance rate. In cases where covariance
is computed numerically, we cannot have n BSL iteration less than nb, which means that
the minimum allowed n is n = nb+1; otherwise, the covariance matrix estimate becomes
singular. If, for instance, nb = 10, as in the above–mentioned examples , the minimum
value n = 11 works, but the covariance is so crude that almost all candidates are rejected
and the acceptance rate greduces. The situation is different for the Donsker case. Here we
can even have just one BSL simulation per every new candidate and still get technically
working runs. However, the acceptance rate will increase with n, and a value like n = 10
may be considered as a typical saturation value with respect to n in the present examples.
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4 Uncertainty in stochastic models: from theory to appli-
cation
In fields such as biology, physics, weather prediction and finance, phenomena are usually
represented by differential equations, which summarise a relation between a function and
its derivatives. Differential equations are deterministic. Given an initial value, the solution
is uniquely determined for all the subsequent times and the behaviour of the underlying
phenomena is predictable. Deterministic methods are limited to cases where no random
fluctuations happen. Fields such as finance and weather prediction need probabilistic
methods like stochastic differential equations, that allow randomness in the model.
4.1 Stochastic differential equations and basic concepts
We introduce here the notations and basic concepts that will be used later. For more de-
tailed discussions on the theory of SDE systems see, for instance, see Sa¨rkka¨ and Solin
(2019) or Capasso and Bakstein (2005).
Time-varying phenomena can be modelled as a stochastic differential equation of the
form:
dX
dt
= f(X, t) + L(X, t)w(t), (4.1)
where f(x, t) is a drift function that determines the dynamics of the system, the function
L(x, t) is the diffusion part which determines the level of noise of the system and w(t) is
the noise, commonly modelled by a zero mean Gaussian process.
Differently from deterministic ordinary differential equations, where the solution is uniquely
determined by imposing the initial values and fixing the model parameters, stochastic
differential equations produce several solutions of the system, due to the noise process.
Examples of the trajectories can be numerically approximated, and the probability distri-
bution of the solutions could be considered as the ‘unique’ solution of the system. In most
cases, however, it is difficult to determine such a probability distribution.
Theoretically, the problem in the equation (4.1) is that the white noise is not differen-
tiable, and for ordinary differential equations, discontinuous functions such as w(t) are
not allowed. The solution to this problem is to turn the equation into the integral form:
x(t)� x(t0) =
Z t
t0
f(x(s), s)ds+
Z t
t0
L(x(s), s)w(s)ds. (4.2)
In equation (4.2), only the first integral on the right-side is a standard integral in the
Riemann sense. The second, instead, cannot be defined in the classical sense as Lebesgue
or Riemann style because w(t) is not bounded and it can assume randomly small and large
values at every finite time interval.
The Gaussian white noise w(t) can be heuristically defined as the derivative of a Wiener
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process W (t). The paths produced by a Wiener process are continuous with probability
1, but the probability that the trajectory is differentiable at any time t 2 [0, T ] is 0; that is
why the integral does not converge in the classic sense. The Wiener process is defined as
follows:
Definition 4.1 (Wiener process). W = fWt, t � 0g on [0, T ] is a process with stationary
independent increments such that for any 0 � s < t � T the increment Wt �Ws is a
Gaussian random variable with mean zero and variance equal to t� s; i.e.
1. E[Wt �Ws] = 0,
2. Cov(Ws,Wt) = min(s, t).
3. W0 = 0 with probability 1.
With the Wiener process notation, the second integral on the right side of 4.2 assumes the
form
R t
t0
L(x(s), s)dWs.
Let a process x(t) be defined as the solution of the equation (4.1). The corresponding
probability density is p(x, t) then solves the partial differential equation
∂p(x, t)
∂t
= �
X
i
∂
∂xi
�
fi(x, t)p(x, t)
�
+
1
2
X
i,j
∂2
∂xi∂xj
��
L(x, t)QLT (x, t)
�
i,j
p(x, t)
�
(4.3)
which is called the Fokker-Plunk-Kolmogorov equation.
The transition probability distribution function gives the probability distribution of the
value of the process x at a particular time t, conditioned on a known value of the process
at some earlier time.
Definition 4.2 (Transition probability distribution.). Let X be a continuous time random
process taking a continuous set of values. The transition density function P (y, tjx, s) with
s � t is the distribution function of X(t) conditioned on the event X(s) = x. Thus,
P (y, tjx, s) = PrfX(t) � yjX(s) = xg
where 0 � s � t � 1.
The variables (x, s) which refer to the state at the earlier time are called backward vari-
ables, whereas those which refer to the later time are called forward variables. Writing
the FPK equation using the adjoint operator
A∗(�) = �
X
i
∂
∂xi
�
fi(x, t)(�)
�
+
1
2
X
i,j
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The transition probability density p(x(t)jx(s)) with s � t, is the solution to the equa-
tion (4.3) with the initial condition p(x(t)jx(s)) = δ(x(t)jx(s))
∂p(x, tjy, s)
∂t
= A∗p(x, tjy, s) (4.4)
with p(x, sjy, s) = δ(x � t). For more details on SDE, see Sa¨rkka¨ and Solin (2019);
Capasso and Bakstein (2005)
Numerical approximation of the solution of SDE The Euler – Maruyama method
(also called the Euler method) is a standard method to approximate the numerical solu-
tion of stochastic differential equations. It is an extension of the Euler method for ordinary
differential equations to stochastic differential equations. Consider the stochastic differ-
ential equation as in equation (4.1) with the initial condition X0 = x0, and suppose that
we wish to solve this SDE on some intervals of time [0, T]. Then, the Euler–Maruyama
approximation to the true solution X is the Markov chain Y defined as follows:
• partition [0, T ] in N subintervals of width ∆t as 0 = τ0 < τ1 < � � � < τN = T and
∆t = T/N ;
• setting Y0 = x0; with Yn+1 = Yn + a(Yn, τn)∆t + b(Yn, τn)∆Wn where ∆Wn =
Wτn+1 �Wτn
The random variables ∆Wn are independent and identically distributed normal random
variables with an expected value zero and variance ∆t.
4.2 Parameter estimation for stochastic models
Given a set of observed data, we are called to estimate the parameter values of the under-
lying model that best fit the data. Here, we introduce some of the most commonly used
approaches focusing mainly on likelihood based methods.
Let us consider an SDE as in equation (4.1) with a finite number of observed data x =
(x1, . . . , xN) at discrete time points. We search for the parameter values of the SDE that
fit x. More specifically, we want to find a parameter set θ such that the SDE evaluated at
θ produce samples which are close in ‘statistics’ to the observed data. Statistics can be
the mean, standard deviation, momentum, mode or other properties.
A classical way of performing parameter estimation is to search for the θ that maximise
the likelihood as described in section 2. However, in case of SDE systems, this is more
problematic.
As we know from section 4.1, solution of SDE systems are characterised by the transition
densities which also are solutions to the Fokker-Plank-Kolmogorov equation. Moreover,
the likelihood of the observed values, given the parameter, can be written as:
p(x(t1), . . . , x(tN)jθ) =
N−1Y
k=0
p(x(tk+1)jx(tk), θ), (4.5)
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with p(x(tk+1)jx(tk), θ) the transition densities of the SDE.
However, the issue is how the likelihood function, which plays the central role in the field
of parameter estimation for SDE, can be evaluated. In case of linear SDEs, the transition
density is available, and then we can explicitly evaluate the likelihood. Difficulties arise in
case of non-linear SDEs where the transition density is difficult to compute or unknown
and the likelihood is intractable or impossible to evaluate. In that case, approximated-
likelihood methods can be considered, to numerically approximate the likelihood or the
transition density. A discrete time SDE is obtained with transition density evaluated by a
discretisation methods such as stochastic Euler-Maruyama, stochastic Runge-Kutta, lin-
earizaion, or Itoˆ-Taylor expansions. Another possible way is to approximate the transition
density with a Gaussian approximation or Hermite expansion.
Once we have the likelihood available, there are several methods that we can choose to
perform the estimation of the parameter θ. For example, in case of an ML estimate, the
maximum (or minimum of the negative log-likelihood) estimate may be obtained analyt-
ically or, more usually, numerically with the help of an optimiser. Given an initial guess
and prior information on p(θ), MCMC generate samples that converge to the target pos-
terior distribution. The mean of such posterior distribution can be considered as the best
parameter estimates and the posterior covariance gives information about the uncertainty
in the estimates.
Likelihood via Filtering A widespread way to carry out parameter estimation for stochas-
tic models is to use filtering methods to construct the likelihood (see, e.g. Durbin and
Koopman (2012); Laine et al. (2014); Sa¨rkka¨ and Solin (2019) or Mbalawata et al. (2013),
for the recent variant. The Kalman filter approach is based on constructing the likelihood
for the prediction residual and the corresponding error covariance matrix at each filtering
time step.
The linear Kalman filter is a system of state and measurements:
xk = Mkxk−1 + �k, (4.6)
yk = Hkxk + "k, (4.7)
where xk is the state and yk is the measurement vector. The matrixes Mk and Hk give the
linear state-space model and the observation operator, respectively. The error terms �k and
"k are typically assumed zero mean and Gaussian, �k � N(0,Qk) and "k � N(0,Rk).
This dynamical system is solved using Kalman filter formulas (see, e.g., Sa¨rkka¨ and Solin
(2019)).
For a set of observation y1:K and a parameter vector �, the marginal filter likelihood reads
as
p(y1:K j�) = exp
 
�1
2
KX
k=1
�
rTk (C
r
k)
−1rk + log jCrkj
�!
, (4.8)
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where j � j denotes the determinant of a matrix.
The prediction residual and its error covariance matrix are given by the formulas
rk = yk �Hkxpriork , (4.9)
Crk = HkC
prior
k H
T
k +Rk, (4.10)
where xpriork is the estimate computed from the previous state x
prior
k = Mkx
est
k−1, and
Cpriork = MkC
est
k−1M
T
k + Qk is the respective error covariance matrix. The normalising
factor jCrkj depends on the parameters via the prediction model.
The method is commonly used for linear time series or linear SDE systems, where the
noise model can be estimated or is already known. Even if the model in equation (4.6) is
nonlinear, you can still use the Extended Kalman Filter (EKF) form, based on a linearisa-
tion approximation. The EKF approach is also often used for filtering deterministic sys-
tems. In this case, the model error term is assumed and viewed as a measure of bias. The
covariances Q and R represent the trust we have in the model and data, respectively. Pre-
vious research in climate science, Hakkarainen et al. (2012), employed this approach for
closure parameter estimation. Another option is to use the ensemble filtering, as demon-
strated in Solonen and Ja¨rvinen (2013), to fine-tune the ensemble prediction system pa-
rameters. However, this approach resulted in a highly stochastic cost function, which
makes it difficult to apply parameter optimisation algorithms. In addition, the tuning pa-
rameters of the filter may bias the model parameter estimation, as noted in Hakkarainen
et al. (2013b). Recently, some criticisms have been raised in Rougier (2013) regarding
the use of filtering for parameter estimation in real-world applications other than finance.
In Haario et al. (2015b), a method is presented for deterministic chaotic systems. While
computationally demanding, it overcomes the challenges mentioned earlier and can be
applied to a wider range of stochastic systems beyond those described by additive noise
in equation (4.6).
4.3 Numerical results: SDE
The Bayesian Synthetic Likelihood approach introduced in section 3.2 is applied here to
the cases of the Ornstein Uhlenbeck model and a Jump Diffusion model.
4.3.1 Ornstein Uhlenbeck
The one-dimensional Ornstein-Uhlenbeck system models the mean-reverting tendency
of a process, for instance in a situation where the market price is less or more than the
average past price computed from the historical data, or from other available information.
The model can be written as:
dXt = θ(µ�Xt)dt+ σdWt, (4.11)
where (Wt)t≥0 a Wiener process and µ, θ, and σ are real-valued constants. The drift term
(�)dt pulls the process Xt towards the asymptotic mean µ while the noise term σdWt
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generates perturbations away from µ. The θ parameter gives the ‘speed’ of the mean
reversion. This kind of model is integrable in a closed-form
X(t) = µ+ e−θt(X(0)� µ) + σ
Z t
0
e−θ(t−s)dW (s), (4.12)
with expected value given by E(X(t)) = µ + (X(0) − µ)e−θt and variance V ar(X(t)) = σ2/2θ(e−θt),
see again Sa¨rkka¨ and Solin (2019) for further details. Consequently, the transition density
and the likelihood are analytically available.
For simplicity, we use a zero mean case fixing µ = 0 and estimate only the parameters
(θ, σ). For the verification of our results, we compare them with the those discussed in
Sa¨rkka¨ and Solin (2019), where the analytical form of the likelihood is employed.
Figure 4.1: An example Ornstein-Uhlenbeck trajectory in the time interval [0, 10], for
(θ, σ) = [0.5, 1], computed by the Euler-Maruyama integration with time step ∆t = 0.01.
A successful use of the BSL method for OU requires two features extracted from the
computed time series: The solutions Xi themselves, and the differences ∆Xi = Xi+1 �
X i.
To clarify the role of the selected features, we employ each feature separately. Using
only the feature vector constructed with the eCDF of the state values Xi, i = 1, 2, ..., N
produces a distribution which is narrow with respect to the parameter θ but wide (though
limited) with respect to σ, see Figure 4.2. Using only the time differences Xi+1�X i, i =
1, 2, ..., N we get a posterior that is more accurate with respect to σ but wide in the direc-
tion of the θ parameter. Using both features, concatenating the two eCDF vectors into one
vector, gives the posterior in Figure 4.2 (right) that roughly coincides with the intersection
set in the left figure.
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Figure 4.2: Ornstein-Uhlenbeck posteriors with data in the time interval [0, 10], time
step ∆t = 0.01, using BSL with n = 100 simulations (Left): Only the state X used
(blue) resp. only the differences of consecutive points ∆X used (red) (Right) Ornstein-
Uhlenbeck posterior when the combination of both (X,∆X) is used (yellow).
The normality of the eCDF vectors also holds in non i.i.d. cases, assuming that the data is
only weakly correlated. Here, the observations are dense in time and clearly not i.i.d., but
the normality can be verified by the χ2 test and component-wise scalar normality tests.
To verify the result, we compare it to those obtained by the well-known Kalman filter like-
lihood (KF) , and to the method using kernel density estimation (KDE) . The comparison
with Kalman filter is performed using the Example 11.5 from the textbook Sa¨rkka¨ and
Solin (2019). The KF data and posterior come from Sa¨rkka¨ and Solin (2019). For the
same fixed data set, we perform both the KF and the BSL estimation for data values yt in
the interval t 2 [0, 10] with integration time step 0.1, N = 100 data points and n = 100
BSL simulations. The example in Figure 4.3 shows how the BSL posteriors agree with the
samples by KF. Note that the BSL approach has higher costs in terms of CPU times: BSL
here uses n = 100 simulations for each likelihood evaluation, whereas the KF requires
only one. The KDE approach aims to directly estimate the transition probability kernel of
the SDE system. In comparison to the BSL method, the computational complexity is even
higher. In order to achieve proper MCMC convergence, we used 1000 SDE realisations
with KDE. The problem is further exacerbated in the Merton and Heston cases below. For
the Merton and Heston models, we use 200 realisations with the BSL MCMC sampling.
The KDE approach required 15000 realisations for proper MCMC sampling.
The posterior distributions for the KF, BSL and KDE methods are given in Figure 4.3.
The result shows how KF and BSL agree, while a wider range for the parameter θ is
obtained with KDE.
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Figure 4.3: Ornstein-Uhlenbeck posterior for the reference parameters (θ, σ) = [0.5; 1]
obtained by (Left): Using KF (blue) resp. BSL (red). (Right): Using KDE (blue) resp.
BSL (red). N = 100 data points on the interval [0, 10], with integration time step ∆t =
0.1.
To study the robustness of the approach with respect to the “tuning” parameters, number
of bins nx and BSL simulations n, a number of test runs were performed. The values
were varied in a large range, 6 � nx � 20 and 100 � n � 3000. For each selection,
the MCMC sampling of the parameter posteriors was repeated 20 times, each using new
data sets simulated by the Ornstein-Uhlenbeck model, using the same settings as for pro-
ducing Figure 4.3. The overall conclusion was that the results obtained by BSL and KF
essentially coincide.
Note that the KF and other filtering methods need sufficiently dense observations, as
they are all based on the prediction/correction steps. In contrast, the eCDF vector based
estimation works equally well with arbitrarily sparse (but pairwise, as the differences
Xi+1 � X i are needed) observations. Next, we study a case where this property – no
prediction required – is needed even with dense data.
4.3.2 Merton model
The Merton model (Merton (1976)) is an Ornstein-Uhlenbeck process where a ‘jump’
component is included as a Poisson process, given as
dXt = �θXtdt+ σdWt + dq. (4.13)
Here, (θ, σ) the are same as in the basic Ornstein-Uhlenbeck model, the added q(t) de-
notes an independent Poisson process for jumps, with a Poisson parameter λ determining
the frequency of jumps. The size of the jumps is given by Zt � N(µ, ϵ). Figure 4 shows
an example, where the inter arrival times of the jumps are given by the Poisson parameter
λdt with dt denoting the discrete time steps.
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Figure 4.4: Jump Diffusion signal: data points yt in the interval t 2 [0, 10]with integration
step dt = 0.01. The reference parameters are (θ, σ, λ) = [10; 0.08; 10], and (µ, ϵ) =
[0.01, 0.1] for the jump size.
We apply the BSL and KDE algorithms for this system. Prediction-correction based fil-
tering methods are out of the question, as the random jumps prevent predictions. Using
the Euler-Maryama integration again for equation (4.13), we simulate N = 1000 points
for data. Figure 4.4 presents the type of data we are aiming at: Data set with enough
jumps, wherein most of them are clearly distinguishable. The number of BSL iterations n
must now be increased due to the increased stochasticity of the process, so n = 500 BSL
iterations is used. Lower n values technically work as well, but increase the stochasticity
of the likelihood, and so decrease the acceptance rates of sampling. Figure 4.5 shows
the parameter posteriors. The combined feature vector is constructed in the same way as
in the previous OU case, by the state and difference time series. We observe that all the
parameters are well identified.
The KDE approach can be used here, but it requires an additional construction: We run
two simultaneous models, one without any jumps and second with the Poisson jumps. A
maximum likelihood estimate is used at every time step to decide if a jump occurs or not.
Thus, we do not directly get an estimate for the parameter λ. However, λ can be estimated
afterwards: The information regarding when a jump occurred is saved to obtain the inter
arrival times. However, in Figure 4.5b, the KDE method so constructed yields unreliable
estimates, as the posterior does not contain the true value for σ.
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(a) Posterior distribution. (b) Parameter posteriors of the Merton model for
KDE (blue) and BSL (red).
Figure 4.5: (A) Parameter posteriors of the Merton model for the reference parameters
(θ, σ) = [10; 0.08] and (λ, µ, ϵ) = [10, 0.01, 0.1], obtained using BSL with data size
N = 1000 and n = 100 simulations. (B) Comparison with KDE.
4.3.3 Heston
Here, we employ our method for a task from the field of insurance risk management. The
Heston stochastic volatility SDE models the price options under the risk-neutral measure
Heston (1993). Under risk-neutral conditions, any traded asset must grow on average at
a risk-free rate. However, this risk-neutral measure is artificial, assuming that pricing is
just taking the expectation of the payoff and discounting at the risk-free rate. However,
real risk management needs real probabilities, e.g., of losing more than a given value of
stocks over a defined time interval. The physical measure gives the actual probability of
events. The Heston model under this assumption is commonly used in practice for risk
management and to estimate future returns or volatility by the available time series data.
Therefore we study here the Heston model for stock price S under the physical measure.
It is well known that the volatility is not observable. Only an approximation of it can be
computed. A proxy volatility is often assumed to be a good representative of it. In this
framework, we estimate the posterior distribution for the parameter of the Heston model
(conditional on the given data) and its goodness in fitting the available data. The results
highlight the difficulties of the Heston system fitting the data due to the unavailability of
the volatility. The implied volatility may be used as an approximation of the ‘true’ volatil-
ity, but then the observed volatility (i.e. the one directly computed by the Heston model)
will produce a biased posterior distribution. Here, we propose a modified version of the
Heston volatility by replacing it with the Black-Scholes implied volatility that may be
considered a better estimate of the future variability for the asset underlying the options
contract. Tests show the goodness of fitting the data with this modification.
The use of eCDF vectors implies that we have to make the data stationary, which is com-
monly done by using returns rather than prices. The corresponding system of Heston
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SDEs reads as
dSt/St = (r + ηvt)dt+
p
vt(
p
1� ρ2dW 1t + ρdW 2t ) (4.14)
dvt = kp(θp � vs)dt+ ϵpvtdW 2t (4.15)
where S denotes the stock price process and v the volatility process. W 1 and W 2 are
independent Wiener processes. The model parameters are the following:
• r risk-free rate of return
• θp long run average price variance
• kp rate of mean reversion to θp
• ϵ volatility of volatility
• correlation parameter ρ between the Wiener processes.
Figure 4.6: Example Heston trajectories with daily observations in the time interval
[0, 500] with reference parameters [θ, k, ϵ, ρ, λ1] = [0.1, 3, 0.25,�0.8, 4], computed by
the QE-scheme. (Left): Stock price. (Right): Instantaneous volatility.
See figure 4.6 for an example of the model trajectory with parameters [θ, k, ϵ, ρ, λ1] =
[0.1, 3, 0.25,�0.8, 4]. We must have the volatility v to be strictly positive, and thus impose
the Feller condition 2kpθp > ϵ2. The expected return includes an additional premium in
excess of the risk-free rate. This equity premium is the compensation for a diffusive risk
given by η = λ1
p
1� ρ2+λ2ρ. As more detailed discussions in this issue go beyond the
present scope, we set λ2 = 0 for simplicity.
In practice, the prices S can only be observed directly. Therefore, a proxy for the un-
observed volatility process is required. Several constructions have been suggested, such
as the realised volatility measures, Andersen et al. (2001) Barndorff�Nielsen and Shep-
hard (2001), integrated volatility proxies and Black-Scholes implied volatility proxies
Ait-Sahalia and Kimmel (2007) Ledoit et al. (2002). Here, we first use synthetic data
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and suppose that the time series for both S and v are available as data. Next, we take a
step closer to the situation in real practice, and only use S as data, and create the ‘ob-
servations’ for the volatility by a proxy, the Black-Scholes implied volatility. In order to
simulate both the stock price and volatility data, we employ the Quadratic-Exponential
(QE) scheme by Andersen, see Andersen (2008).
We take the state components and their time differences as the scalars whose empirical
cumulative density functions give the feature vectors for the likelihood. The volatility
evolves by the equation equation (4.15). The values of volatility remain bounded so that
they and their time differences δv := vt+1�vt can be directly used to estimate the param-
eters in equation (4.15). In addition, it is natural to add a few feature vectors. The noise
processes are linked by a correlation parameter ρ, so the correlation coefficient between
the simulated stock price and volatility is used as a feature. The estimation accuracy can
be further increased by additional features extracted from the data. The mean and std of
the volatility (available either as directly simulated, or estimated by a proxy in case of real
data) can be used as extra features to enhance the estimation. For this, the available data is
divided in d subsets and the mean standard deviation of each of the subsets is calculated.
Using the d repetitions, we can then compute the mean and std of both (the mean and std),
to arrive at a 4�dimensional vector. The final feature vector is then the combination of
all the vectors thus constructed:
• empirical CDF of ∆S/S;
• empirical CDF of v;
• empirical CDF of δv;
• correlation coefficient of ∆S/S with δv.
• the mean and the standard deviation of the mean and std of the volatility.
First, suppose that the volatility process is observed. We use the BSL method (with n =
200 simulations) and the KDE method. The results of MCMC sampling are illustrated
in Figure 4.7. The true values lie inside the posteriors, with slightly smaller estimation
uncertainty for the BSL method. However, the parameter ρ is quite on the tail of the KDE
posterior.
Next, the more realistic setting with only a proxy volatility is observed, the Black-Scholes
implied volatility. Note that the data now is different from the previous example now so
that the sampled parameter posteriors are naturally different as well. Figure 4.8c shows
how the proxy volatility systematically underestimates the true Heston volatility process.
Figure 4.8b shows this in a quantitative way via the goodness of fit test, see Algorithm 4.
It suggests that we should not use the basic form Heston model to ‘real’ stock price data,
as here given by the Black-Scholes implied volatility proxy. Figure 4.8b illustrates what
happens if this is done: The goodness of fit test for the maximum of the posterior (MAP)
indicates no warning, but the posterior is biased for the parameters κ and ϵ. Thus, if we
are interested in these parameters in the standard Heston model (4.14), (4.15), we should
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(a) Posterior distribution. (b) Parameter posteriors of the Heston model
with observed volatility for KDE (blue) and BSL
(red).
Figure 4.7: Parameter posteriors of the Heston model with observed volatility for the
reference parameters [θ, k, ϵ, ρ, λ1] = [0.1, 3, 0.25,�0.8, 4], obtained using BSL with data
size N = 500 daily observations and n = 200 simulations. (A) Posterior distribution
obtained with BSL (red)(B) Comparison of the posterior distributions obtained by using
the BSL (red) and KDE (blue) methods.
replace the true volatility (4.15) in the BSL simulation with a proxy that comes closer to
the true underlying volatility.
As a conclusion, the volatility proxy data, as given by the Black-Scholes implied volatil-
ity of an at-the-money option, could lead to a bias if fitted by the standard Heston model.
The BSL estimation using the “corrected” Heston model with the volatility proxy does
not suffer from this bias. This underlines the importance of testing against synthetic test
data in order to validate estimation models, particularly as it is common in practice to use
the standard Heston model to fit the proxy data.
Our results generally agree with those presented in Ait-Sahalia and Kimmel (2007). This
article also presents results for 5000 observations. We repeated the example using the
BSL method as well, again with similar estimation accuracy as in Ait-Sahalia and Kimmel
(2007). We skip these results here and note that a comparison to the KDE approach was
not possible, which was due to the high computational needs of KDE.
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(a) Posterior distribution. (b) Goodness of fit test for the reference parame-
ter and for the posterior distribution MAP.
(c) Comparison between volatility and proxy for
a trajectory obtained with the same parameter
values.
Figure 4.8: (A) Parameter posterior of the Heston model with observed proxy volatil-
ity for the reference parameters [θ, kp, ϵ, ρ, λ1] = [0.1, 3, 0.25,�0.8, 4], obtained using
BSL with data size N = 500 daily observations and n = 200 simulations. (B) Good-
ness of fit obtained with the Heston model for the reference parameters [θ, kp, ϵ, ρ, λ1] =
[0.1, 3, 0.25,�0.8, 4] (yellow) and parameters given by the posterior distribution MAP
(red). (C) Comparison between the instantaneous volatility and the volatility proxy for a
trajectory obtained with the same parameter values.
4.3 Numerical results: SDE 49
(a) Posterior distribution. (b) Goodness of fit test for the posterior distribu-
tion MAP.
Figure 4.9: (A) Parameter posterior of the “corrected” Heston model with observed proxy
volatility for the reference parameters [θ, kp, ϵ, ρ, λ1] = [0.1, 3, 0.25,�0.8, 4], obtained
using BSL with data size N = 500 daily observations and n = 200 simulations. (B)
Goodness of fit obtained with the “corrected” Heston model for parameters given by the
posterior distribution MAP.
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5 Stochastic and chaotic systems
When using Bayesian Synthetic Likelihood, stochastic model parameter values are typi-
cally estimated using a ‘small’ amount of data. An opposite situation is discussed in PIII,
where a ‘large’ amount of data is available, and thus the GSL approach is employed. In
the Correlation Integral Likelihood (CIL) studies in PIII, the likelihood is fixed and only
created once, offline, from data. Furthemore, the BSL cases studied so far use scalar data
for which the eCDF summary statistics can be directly computed, while the method de-
scribed in PIII involves computing distances to generate scalar-valued data for the eCDF
feature vectors (FV) . The CIL approach is mainly intended to parameter calibration of
higher dimensional systems with high CPU demands, where the restriction of simulations
to subsets of data is needed. Examples include weather and climate models, which are
both chaotic and stochastic. In this section, we present test case results for such scenarios.
The recent approach in climate modelling involves adjusting the physics of numerical
models to incorporate uncertainty in the model physics and model parameters. This is
done by introducing stochasticity in a complex, non-linear manner, resulting in a model
with the structure
dx = f(x, t; θ, w)dt. (5.1)
Here, the stochasticity w enters the system in an implicit and non-linear way. Analysing
a set of data that changes over a period of time T = t1, . . . , tτ , CIL computes distances
between pairs of measurements to create a statistics by the eCDF vectors. The process is
repeated multiple times through subsampling. However, in case of a stochastic system,
simply having a distance map of the state is not enough to accurately identify the diffusion
parameter. To solve this issue, which is the same as in the previous SDE cases, a second
feature vector is needed to capture diffusion information. We use again the approximate
time derivatives (represented as s˙), defined as the numerical derivatives between two con-
secutive measurements. We then calculate the statistic of s˙ in the same manner as for the
state. This approach was discussed in PIII, where more details of the construction of the
CIL likelihood are given.
The procedure is applied to the task of estimating the parameters of stochastic and chaotic
system. In PIII, we first test the ability of the approach to estimate the model parameter
posterior distribution of the stochastic Lorenz system, where the error is additive of the
form equation (4.1), but the gap between observations is larger than the predictable time
interval. In that context, we show that the feature augmentation is a must in order to
identify the diffusion parameter in addition to the model parameters. Then, we apply the
method to the case where the stochasticity is included in the model equations in non-
linear ways, in principle the same way as in Palmer et al. (2009); Ollinaho et al. (2017);
Leutbecher et al. (2017). In particular, we study the stochastic version of the Lorenz
system where the stochastic physics (SPPT) is introduced by multiplicative factors 1+c1ϵ
for the drift term. Moreover, in the stochastic parametrisation (SPP), the model parameters
α, β, γ are replaced by perturbed terms as α + cαϵ, β + cβϵ and γ + cγϵ, where ϵ denotes
the noise. In all the examples, we set the magnitudes c1, cα, cβ, cγ so that the maximum
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relative error is around 6% and the perturbation ϵ is modelled using the AR(1) model
ϵt+1 = φϵt + ηξt same as in Ollinaho et al. (2017). The parameter values used in the
experiments are φ = 0.4, η = 1 and ξt � N(0, 1).
Finally, all the stochastic elements are combined to obtain the fully stochastic chaotic
Lorenz system as in equation (5.2)8<:
dXt = (1 + c1ϵt) (β + cβϵt) (Y �X) dt+ σdWxt
dYt = (1 + c1ϵt) (X ((γ + cγϵt)� Z)� Y ) dt+ σdWyt
dZt = (1 + c1ϵt) (XY � (α + cαϵt)Z) dt+ σdWzt,
(5.2)
with σ = 1.5 and Wx,Wy,Wz denoting three independent Wiener processes.
We create the synthetic data with a denser grid than the one used in the sampling, in
order to avoid ‘inverse crimes’. The integration of equation (5.2) was performed using
the Euler-Maryama scheme. The observed data is set to be sparse over time so that the
gap between observations is beyond predictability: too large for any filtering approach
to predict (Xt+∆t, Yt+∆t, Zt+∆t) given (Xt, Yt, Zt). The data set has been divided in 60
subsets sˆk,k = 1, 2, ..., 60 with 1000 observations each, sampled at steps ∆t in the time
interval [0, T ] with T = 5000. Note that the size of σ has been chosen so that its impact
is substantial but not dominant with respect to the system dynamic.
In figure 5.1, the deterministic case is compared with the noisy situation.
Figure 5.1: Comparison between samples from the stochastic and the deterministic
Lorenz attractors.
Given the samples (X, Y, Z), we compute the pairwise distances of all possible couples
(sˆk, sˆl), 1 � l, k � 60. By this scalar data, a set of eCDF vectors is created. The sample
vectors are put through a χ2 test for a numerical confirmation of Gaussianity. The MAP
is found through an optimiser, which is used as the starting point an adaptive MCMC
algorithm, sampling a chain length of $40000$. The posterior distribution of the parame-
ters is obtained, as displayed in figure 5.2. The results suggest that even under increased
uncertainty, the method remains stable. Figure 5.2 emphasises the significance of expand-
ing the feature vector to accurately recover the posterior distribution of sigma. Relying
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solely on the state feature vector does not provide a complete determination. Specifically,
sigma is bounded above while the lower bound approaches zero. This is because when the
sigma is too large, the overall size of the attractor surpasses its natural variability, as re-
vealed by the likelihood. However, smaller sigma values allow for an additional variation
in the other parameters, which can offset the lack of stochasticity. Incorporating a sec-
ond feature vector pinpoints the σ parameter and enhances the precision of the posterior
distribution of the remaining parameters, as illustrated in orange.
Summarizing the results, the method has successfully identified the model parameters
in all of the described scenarios. As anticipated, the relative errors grew alongside the
increasing amount of stochasticity. Notably, there was a more significant expansion in
the size of the posterior distribution when transitioning from deterministic to stochastic
physics or stochastic parameterization cases, as to moving from those to the joint stochas-
tic physics and stochastic parameterization case. It is noteworthy that, in the absence
of the additive diffusion part, utilising only the state values fsigi=1,...,τ is adequate, but
incorporating derivative approximations results in an improvement in accuracy.
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Figure 5.2: 2-D marginal parameter posterior distributions of the Lorenz system including
stochastic physics, stochastic parametrisation and additive noise.
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6 Bayesian inference for marine vessels
The shipping industry plays a significant role in the emissions of CO2. Recently, attention
has been paid to reducing emissions and making vessels more cost efficient by optimis-
ing the various aspects of vessel operations, such as route and speed profile. Predictive
models of fuel consumption are crucial for this optimisation. To accurately gauge the
emissions, mathematical models are useful tools to forecast fuel consumption. In PIV,
we propose a hierarchical Bayesian model that leverages a single model for multiple ships
on the assumption that similar ships have similar parameters. This methodology allows us
to use data from comparable ships to inform parameters and anticipate a ship’s behaviour
based on its individual characteristics.
The purpose of this study is to develop an innovative approach to extrapolating data from
a specific set of ships to predict trends across a larger population of vessels. We discuss
a hierarchical Bayesian model that incorporates vessel-specific parameters and coeffi-
cients, as well as a ”hyper-model” that connects the coefficient values between ships.
Our approach is based on the idea that resistance coefficients between ships with similar
characteristics will be alike.
Our approach stands out from traditional resistance calculations, as the consumption
model parameter is informed by the data, allowing for more accurate predictions. We
can also produce reliable and robust estimates of the resistance coefficients for a ship
with limited data by including information about similar ships. For instance, including
the hyper-model can be of significant help when we only have a small amount of noon-
report consumption data, which may lead to non-physical resistance coefficient estimates.
Finally, the ‘hyper-model’ can be used to forecast the consumption of a ship for which we
have no data, based only on its characteristics. This makes it possible to estimate global
emissions and optimise ship operations, such as route and speed, on a large scale without
requiring expensive on-board data collection platforms.
We present a prototype of the hierarchical model and demonstrate how the regularisation
effect of the hierarchical model makes the results more stable and robust compared to
independent vessel-specific models. Due to simplicity and data availability, we restrict
ourselves to cruise ships and propulsion power modelling. More work is required to
increase the sophistication of the model formulations, to generalise to other ship types
and to include service power models and engine models to turn power consumption into
fuel consumption.
6.1 Model Setup: Simplified hierarchical Grey Box model
A ship-specific propulsion power model is defined as follows:
Pi = f(xi, θi) + εi, i = 1, ..., N, (6.1)
where i is the index for a single ship, Pi the observed propulsion power, xi the observed
model variables such as vessel speed, wind speed and angle, etc., and θi the unknown
56 6 Bayesian inference for marine vessels
parameters (e.g. various resistance coefficients). The error term εi is a model error, which
approximately measures the uncertainty of the model compared to the observed propul-
sion power.
Figure 6.1: Illustration of the hierarchical model. Based on ship-specific power consump-
tion data and various model inputs (black dots), the goal is to learn both ship-specific
parameter values (blue error-bars) and hyper-parameters that link the between-ship pa-
rameters together. The data are synthetic.
To estimate parameter values for each ship, standard methods use data (xi, Pi) separately.
However, we take it a step further by introducing an additional layer of modelling. This
allows us to estimate parameter values for ships with an unknown level of accuracy by
considering their unique characteristics, see 6.1.
Ship-specific parameter model is formulated as:
θi = g(ci, λ) + η
where, ci represents the ship’s characteristics, λ is a vector of unknown hyper-parameters,
and η describes the accuracy of the hyper-model g in predicting parameter values. Ship
characteristics could include the vessel’s size (such as weight), dimensions (width and
length), year of construction, or other metadata that provides information about θi.
Our goal is to determine the ship-specific coefficients (θi) and hyper-parameters (λ) by
all the available observed data (P1:N ). To do this, we first obtain the Bayesian posterior
distribution of the parameters based on the measured data, which is p(θ1:N , λjP1:N). Then,
we aim to gain knowledge about the error terms (ε and η) by setting the form of the
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error distributions (e.g. zero mean Gaussians) and incorporating the error distribution
parameters (e.g. Gaussians’ variances) in the parameter group estimated from the data.
Once the target posterior distribution is computed, we have a model where the ship-
specific coefficients are informed by their own data and data from comparable vessels.
The full Bayesian analysis of the parameters also allows us to forecast the behaviour of a
ship that was not part of the training dataset and provides an estimation on how confident
we are in the projected behaviour. This feature is absent from traditional resistance calcu-
lations.
Vessel-specific model includes only two factors: hydrodynamic resistances (such as fric-
tion and wave-making) and aerodynamic resistance. The propulsion power for the ship
(i) is calculated as Pi = RT,iVi, where RT,i is the total resistance and is estimated as the
sum of hydrodynamic and aerodynamic resistances:
RT,i = RH,i +RA,i. (6.2)
The hydrodynamic resistance model used in this study is relatively straightforward; we
assume that the resistance increases proportionally to the square of the vessel speed:
RH,i = aiV
2
i , where ai is the hydrodynamic resistance coefficient, which is assumed
to be an unknown constant. In reality, the hydrodynamic resistance coefficient fluctuates
as a function of vessel speed and draft. However, for illustrative purposes, this approxi-
mation is sufficient, particularly for the cruise ships examined in this research, where the
draft variations are negligible.
Assuming that wind resistance is proportional to the square of the relative wind speed,
and projecting the wind resistance force vector onto the ship’s heading, we get RA,i =
bi cos(αi)U
2
R,i, where αi is the relative wind angle, UR,i is the relative wind velocity and bi
is the unknown wind resistance coefficient. This estimation is not very precise, it assumes
that the area where the wind comes into contact with the vessel’s hull is consistently the
same. There are more advanced wind formulas available, which are discussed in Blender-
mann (1996); Schneekluth and Bertram (1998), but for the purpose of demonstration, we
assume this formula valid.
For each ship i, the model equation is:
Pi = aiV
3
i + bi cos(αi)U
2
R,iVi + εi. (6.3)
The aim is to determine the coefficients ai and bi using the collected data. It might be
challenging to do this for each ship separately if the data is not informative enough about
the coefficients. To address this, we use a hyper-model that combines the coefficients of
different ships into one model.
The hyper-model predicts the resistance coefficients based on the characteristics of the
ship, denoted as ci. In this case, we use the total weight of the ship wi, known as gross
tonnage (GT) , as the input for the hyper-model. Both coefficients are modelled as linear
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functions of GT:
ai = λ1 + λ2wi + ηa
bi = λ3 + λ4wi + ηb,
(6.4)
where ηa and ηb are Gaussian error terms.
It is important to note that this model is not very physical. In more realistic scenarios, the
hydrodynamic and aerodynamic resistance can be modeled using the dimensions of the
vessel. However, for the sake of simplicity, we have used GT as the input variable since
it is readily available for all ships. We have chosen a linear model based on empirical
observations, where individual coefficients seem to scale linearly with vessel mass. The
ability to use non-physical parameterisations is a strength of the data-based approach,
allowing us to insert any parameterisation and establish relationships between unknown
coefficients and ship characteristics using data.
To estimate the ship-specific resistance coefficients and hyper-model parameters λi, we
need to estimate the vessel-specific model and hyper-model errors, εi, ηa, and ηb, from the
data. We assume normal distributions: εi � N(0, σi), ηa � N(0, σa), and ηb � N(0, σb).
We also estimate the variances (σi, σa, σb) in addition to the resistance coefficients and
hyper-model slopes and intercepts. For Bayesian statistical analysis, we specify prior un-
certainties for all model parameters, using uniform priors for the resistance coefficients
and uniform priors with positive constraints for the variance parameters. If data is less in-
formative or there are fewer groups (ships), we may need to further constrain the variance
parameter. For details on setting priors for variance parameters in hierarchical models,
refer to Gelman (2006).
The ship-specific models are simple and linear in parameters, but fitting the full hierar-
chical model is challenging, with a few hundred estimated parameters for over 50 ships.
Efficient numerical methods are required to explore this high-dimensional posterior dis-
tribution. In recent years, tools like PyMC3 and the probabilistic programming language
Stan have been developed for defining and fitting hierarchical Bayesian models. Here,
we use Stan, which implements a carefully tuned Markov Chain Monte Carlo (MCMC)
sampler capable of exploring high-dimensional distributions. Model implementation with
synthetic data is available online. See the experimental section for more information.
6.2 Results
This study highlights the effectiveness of hierarchical modelling in accurately estimating
ship-specific parameters and generating uncertainty statistics for model predictions. Our
approach is particularly useful in cases where ship-specific data is limited, allowing us to
identify individual ship parameters with greater precision.
We conducted a simulation with only ‘noon-report’ style data available. This means that
we only had access to consumption readings over time intervals (e.g. 24 hours), as well
as momentary vessel speed and weather data with higher resolution. As a result, aggre-
gated data provided less information about the parameters than momentary data, making
it challenging to calibrate ship models. We utilised real data from the Eniram platform to
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calibrate grey box models, where the results are anonymised to protect privacy.
Figure 6.2: Illustration of the hierarchical model. Vessel size index is defined so that the
smallest ship has a value of 1.
The Hierarchical Ship modelling process involves the use of approximately 100 daily av-
eraged data. The hydrodynamic and aerodynamic coefficients for each ship, both with and
without the hierarchy, can be found in figure 6.2. The results indicate that the hydrody-
namic coefficients are accurately identified by the vessel-specific data, and the hierarchy
has a minimal impact. However, the wind resistance coefficients present a different sit-
uation. Due to insufficient information in the noisy data, it is challenging to calibrate
coefficients, thereby leading to unrealistic values and high uncertainty when fitting ships
independently. By pooling estimates closer to the linear prior, we can obtain more sensi-
ble results. This approach is expected to apply the same way to other resistance factors
that may not be well-established by the vessel-specific data, such as the shallow water
resistance effect.
Bayesian approach treats model parameters as random variables, resulting in a distribution
of the possible parameter values instead of point estimates. This allows for an assessment
of the estimation results and predictions made by the model, and the uncertainty in distri-
butions can be approximately quantified. Here, we show the uncertainty distribution for
six selected ships using the prior-based models. Uncertainty in the linear hyper-model
parameters may be explained by incomplete and/or noisy data. On the other hand, linear
model itself has errors, wherein magnitude is also estimated in the hierarchical model.
Therefore, we can provide a range of values where the true speed-power curve is likely
to be, given a gross tonnage. This is illustrated in figure 6.3, and the obtained statistics
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appear consistent. The calculated envelope indicates a likely range for the ‘true’ speed-
power curve. For simplicity, the wind effects were not considered.
Figure 6.3: Confidence envelopes (50% and 95%) for the speed-power curves (without
wind effect) predicted based in vessel’s gross tonnage. The red curve comes from the ship-
specific parameters and roughtly represents where the true speed-power curve roughly is.
We have conducted a comparison of four models in this study. Firstly, we have compared
the hierarchical Bayesian grey box approach and the STEAM2 white box model, then
STEAM2 to two data-based models. One of these data-based models predicts the resis-
tance coefficients using the vessel’s gross tonnage, while the other uses the vessel-specific
resistance coefficients obtained from the hierarchical model fit. It is important to note that
the latter data-based model may not be available if vessel consumption data is unavailable.
However, we have presented the results for reference, see PIV.
To visualise the model residuals as a function of vessel speed, we have used the LOWESS
method Cleveland (1979) to fit a smooth residual vs speed through water (STW) curve
to the data, as shown in figure 6.4. By plotting the smoothed curves for all ships in one
figure, we can observe the general trend without overwhelming the viewer with excessive
data. From the figure, we can observe that the STEAM2 model underestimates power,
and there is a common overestimation of power with high speeds. In comparison, the
data-based models perform better and exhibit less speed-dependent bias.
It is possible that the STEAM model may not accurately factor in all resistance compo-
nents such as wind, waves, squat and hull roughness. This is due to the model taking
into account an average hull condition over the data period used in the calibration of
ship-specific fits, and an average hull condition over the ships during the hyper-model
calibration. As a result, resistance factors that are indirectly included are accounted for
by data-based models. However, additional research is required to determine the impact
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of these factors on smaller vessels. The aim of comparing the models is to showcase the
effectiveness of the hierarchical modelling concept when there is enough data for calibra-
tion.
Figure 6.4: Residuals as a function of vessel speed. Top left: illustration of the LOWESS
curve fitting to the data. Other plots: LOWESS smoothed residual vs stw curves for
different models over all ships (line colour indicates a ship).
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7 Conclusion
We present a novel approach for estimating the parameters in systems of stochastic dif-
ferential equations (SDEs) from time series data. This method combines the Bayesian
Synthetic Likelihood (BSL) method with cumulative distribution functions to produce
a Gaussian stochastic feature vector that enables standard statistical techniques such as
MCMC sampling. The BSL method has demonstrated encouraging outcomes, even with
limited observational data sets, and agrees with analytical results for parameter posteriors
when they are theoretically known. In addition, the BSL method is independent of any
particular model, thereby making it ideal for studying parameter estimation issues such
as those with rough volatility models.
We have presented a new technique for estimating parameters in physical models that in-
volve highly nonlinear stochastic perturbations that are similar to those used in weather
forecasting. The method is specifically designed to handle irregular observation times and
significant gaps between data points. In the test example, we employed a set of stochas-
tic variations of the Lorenz system, with perturbations corresponding to the stochastic
physics and parameterisation schemes used in numerical weather prediction models. The
results are promising, showing that the method was effective in estimating the posterior
distributions of model parameters in all cases tested. The same as with basic SDE mod-
els, an approximation of the dynamic behaviour of a system is included by numerical
approximations of the time derivatives of the state. The next step in this direction would
be to address high-dimensional SDE systems, e.g. NWP models, which demand signifi-
cant computational resources for system integration and distance computation. There are
several tools available to tackle these challenges, e.g. parallel ensemble computations and
efficient parallel MCMC schemes.
In the context of noisy data and data-driven models, we implement a Hierarchical Bayesian
modelling approach for marine vessels, focusing on cruise vessels and propulsion power
prediction. By implementing a two-parameter propulsion power model and a linear hyper-
model, we are able to link parameters between ships based on vessel gross tonnage. The
results have demonstrated that our approach is significantly more accurate than traditional
physics-based resistance calculation-based methods. While computing these models in
one go can be costly, we suggest utilising a sequential approach instead. Furthermore, we
recommend utilising all available data types in the estimation process to efficiently gather
information from data-rich vessels.
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Appendix A: Probability and Distributions
Let us start by introducing concepts from probability and statistics that can help the reader
understand the conducted studies.
Uncertainty is the expression of the statistical dispersion of values attributed to a mea-
sured quantity. It reflects incomplete knowledge or a lack of precision in measurements,
e.g. stock market fluctuations. Probability and statistics provide an estimation of the un-
certainty of such phenomena making inferences on the observed data.
We now report some useful definitions taken from the literature; for more details, check
Young (2021).
Definition 7.1 (Random variable or vector). A random variable X is a set of measurable
function from some sample space Ω into some space X . A p-dimensional random vector,
is a vector of random variable X = [X1, . . . , Xp].
A continuous random variable differs from a discrete random variable; it takes an un-
countable infinite number of possible values. Given a continuous random variable X , the
probability that X assume a certain value x is 0. Hence, in case of continuous variable, it
is more appropriate to look at the probability that the variable X can take a value in the
interval (a, b).
Definition 7.2 (Probability density function (pdf).). The probability density function of a
continuous random variable X , is a function f(x) integrable everywhere, with:
1. fX(x) � 0 8x 2 R;
2.
R∞
−∞ fX(x)dx = 1;
3. for a set A the probability that X belongs to A is P (X 2 A) = R
A
fX(x)dx.
Definition 7.3 (Cumulative distribution function(CDF).). Given a random variable X , the
cumulative distribution function of a random variable X is a non-decreasing continuous
function FX : R! [0, 1] defined as
FX(x) =
Z x
−∞
fX(s)ds
Definition 7.4 (Quantile function (or inverse CDF).). Given a random variable X with
cumulative distribution functionFX :! R, the quantile function Q(p) returns the value x
such that
FX(x) = p
.
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Definition 7.5 (Gaussian distribution.). Let X be a continuous random variable, X fol-
lows a Gaussian distribution X � N (µ, σ2), if its probability density function is given
by
p(x) =
1p
2piσ
exp
h
� (x� µ)
2
2σ2
i
, x 2 R,
with σ2 > 0, then X follows the Gaussian distribution with the mean µ and standard
deviation σ.
Given a random vector X = [X1, . . . , Xp]T ; X follows the multivariate Gaussian distri-
bution, with the notation X � N (µ,V), if its pdf is given by
p(x) =
1
(2pi)p/2jVj1/2 exp
"
� 1
2
(x� µ)TV−1(x� µ)
#
, x 2 Rp
where µ = [µ1, . . . , µp]T is the mean vector of X and V is the covariance matrix of X
(under the assumption that V is positive definite matrix).
If X is normally distributed with mean µ and variance σ2 > 0, then
V =
 
X � µ
σ
!2
,
is distributed as a chi-square random variable with 1 degree of freedom.
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Abstract A new approach was recently introduced for the task of estimation of
parameters of chaotic dynamical systems. Here we apply the method for stochastic
differential equation (SDE) systems. It turns out that the basic version of the ap-
proach does not identify such systems. However, a modification is presented that
enables efficient parameter estimation of SDE models. We test the approach with
basic SDE examples, compare the results to those obtained by usual state-space
filtering methods, and apply it to more complex cases where the more traditional
methods are no more available.
1 Introduction
The difficulty of estimating parameters of chaotic dynamical models is related to
the fact that a fixed model parameter does not correspond to a unique model in-
tegration, but to a set of quite different solutions as obtained by setting slightly
different initial values, selecting numerical solvers used to integrate the system, or
tolerances specified for a given solver. But while all such trajectories are different,
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they approximate the same underlying attractor and should be considered in this
sense equivalent. In [3] we introduced a distance concept for chaotic systems based
on this insight. Modifying one of the fractal dimension definitions, the correlation
dimension, we calculate samples from the phase space of the system and map these
points onto a stochastic vector. The vector turns out to be Gaussian, providing a nat-
ural likelihood concept that quantifies the chaotic variability of points of a chaotic
system within a given setting of observations.
Stochastic differential equation (SDE) systems behave partly in a similar way:
each integration of a given system with fixed model parameters produces a different
realization. This calls for methods that can quantify the variability of the realiza-
tions. On the other hand, the stochastic nature of a SDE system is clearly different
from the chaotic variability of a deterministic chaotic system. Consequently, the
phase space behavior of each type of systems is different as well. The aim of this
work is to study to which extent the parameter estimation approach originally de-
veloped for chaotic systems can be applied to SDE models.
The rest of the paper is organized as follows. In the Background section we
recall the correlation integral likelihood concept and outline the results obtained
for chaotic systems.In Numerical experiments we exhibit the performance of the
method for the Ornstein-Uhlenbeck model and extensions of it, together with com-
parisons to more standard, Kalman filter based methods.
2 Background
The standard way of estimating parameters of dynamical systems is based on the
residuals between the data and the model responses, both given at the time points
of the measurements. Supposing the statistics of the measurement error is known,
a well defined likelihood function can be written. The maximum likelihood point
is typically considered as the best point estimator, and it coincides with the usual
least squares fit in the case of Gaussian noise. The full posterior distribution of
parameters can be sampled by Markov chain Monte Carlo (MCMC) methods. The
approach has become routine for the parameter estimation of deterministic models
in Bayesian inference.
The estimation of the parameters of stochastic models is not so straightforward.
A given model parameter does not correspond to a fixed solution, but a whole range
of possible realizations. Several methods have been proposed to overcome this dif-
ficulty. State-based approaches estimate the joint distribution of the state vector and
the parameters. The likelihood for the parameter is obtained as a marginal distribu-
tion, effectively by ’integrating out’ the state space. This approach is routine in the
context of linear time series modeling, and implemented by the likelihood obtained
by application of the Kalman filter formulas, see [2, 7, 11].
Here we study a different way of characterizing the stochastic variability of the
state space. Supposing that a sufficient amount of data is available, we create a
mapping from it onto a feature vector. The mapping is based on averaging, and
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the vector turns out to be asymptotically Gaussian. From real data, the mean and
covariance of this Gaussian distribution can be empirically estimated. Thus we have
a likelihood available, both for maximum likelihood parameter estimation and for
MCMC sampling of the parameter posterior. The idea is the same as that earlier
used for estimating parameters of chaotic models in [3] , but certain modifications
are needed for SDE systems. We discuss the basic setting of the approach below, as
well as the reasons behind the modifications needed.
2.1 Likelihood via Filtering
A standard way of estimating the parameters with stochastic models is to use filter-
ing methods for constructing the likelihood (see, e.g., [2, 7, 11] for basic references
and implementation, or [8] for recent variant). By using the Kalman filter, the idea
is to build the marginal filter likelihood from the prediction residual rk and its error
covariance matrix Crk at each filtering time step k.
The basic linear Kalman filter is written as a pair
xk = Mkxk−1+ξ k, (1)
yk = Hkxk+ ε k, (2)
where xk is the state and yk is the measurement vector. MatrixMk is the linear state-
space model, and matrix Hk is the observation operator that maps from the state
space to the observation space. The error terms ξ k and ε k are typically assumed
zero mean and Gaussian: ξ k ∼ N(0,Qk) and ε k ∼ N(0,Rk). This dynamical system
is solved using Kalman filter formulas (see, e.g., [11]).
Given a set of observation y1:K and the parameter vector θ , the marginal filter
likelihood is written as
p(y1:K |θ ) = exp
(
−1
2
K
∑
k=1
[
rTk (C
r
k)
−1rk+ log |Crk|
])
, (3)
where | · | denotes the matrix determinant. Here the prediction residual and its error
covariance matrix are calculated by the formulas
rk = yk−Hkxpriork , (4)
Crk = HkC
prior
k H
T
k +Rk, (5)
where xpriork is the prior estimate computed from the previous state x
prior
k =Mkx
est
k−1,
andCpriork =MkC
est
k−1M
T
k +Qk is the respective error covariance matrix. Note that the
normalizing “constant” |Crk| has to be included, since it depends on the parameters
via the prediction model.
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This approach is well established in the framework of linear time series or linear
SDE systems, where the additive model noise is known or may be estimated, as one
of the unknowns in the vector θ . In case the drift part of the system (1) is nonlinear,
one still may use the approach in the extended Kalman filter (EKF) form, based on
the approximation by linearization. Often the EKF approach is also applied to filter-
ing of deterministic systems. In that setting the model error term is rather postulated
and interpreted as a measure of bias. The covariances Q and R represent then our
trust on the model and data, respectively, previous work [5], motivated by closure
parameter estimation in climate research, is an example of this approach. A related
option is to employ ensemble filtering. In [12] this approach was employed in order
to tune the ensemble prediction system parameters. It was observed, however, that
the method resulted in a highly stochastic cost function that prevented a successful
application of parameter optimization algorithms. Moreover, the tuning parameters
of the filter itself may bias the model parameter estimation, see [6]. Recently, some
additional criticism toward using the filtering for estimating the parameters in real-
world applications (other than finance) has been presented see [10].
Next, we present the method developed in [3] for deterministic chaotic systems.
While computationally more demanding, it is free of the pitfalls listed above, and
can be applied to stochastic systems more general than the class of additive noise
given by (1).
2.2 Correlation Integral Likelihood.
In this section we briefly summarize the correlation integral likelihood method used
for creating a likelihood for complex patterns [3].
Let us use the notation s= s(θ ,x) for a state vector s that depends on parameters
θ and other inputs x such as, e.g., the initial values of a dynamical system. We
consider two different trajectories, s = s(θ ,x) and s˜ = s
(
θ˜ , x˜
)
, evaluated at N ∈
N time points ti, i = 1 : N, with explicit dependency on the respective initial and
parameter values. For R ∈ R, the modified correlation sum is defined as
C(R,N,θ ,x, θ˜ , x˜) =
1
N2∑i, j
#
(∥∥si− s˜ j∥∥< R). (6)
In the case θ˜ = θ and x˜ = x the formula reduces to the well known definition
of correlation sum, the Correlation Integral is then defined as the limit C(R) =
limN→∞C(R,N), and the Correlation Dimension ν as the limit
ν = lim
R→0
logC(R)/ log(R).
In numerical practice, the limit R→ 0 is approximated by the small scale values
of the ratio above, by the log-log plot obtained by computing logC(R) at various
values of logR.
Correlation integral likelihood for stochastic differential equations 5
However, we do not focus on the small-scale limit as in the above definition,
but rather use the expression (6) at all relevant scales R to characterize the dis-
tance between two trajectories. For this purpose, a finite set of decreasing radii
R = (Rk) , k = 1, ...,M, is chosen. The radii values Rk are selected so as to involve
both small and large scale properties of the trajectory samples. Typically, the radii
are chosen as Rk = b−kR0, with R0 =maxi, j
∥∥si− s˜ j∥∥ or somewhat larger to ensure
that all the values are inside the largest radius. The values of M and b should be
chosen in a way that RM is small enough. For more details see [3].
Consider now the case with given data si, which corresponds to the case of a fixed
but unknown model parameter vector, θ˜ = θ = θ 0. We select two subsets s and s˜ of
size N from the data (see more details below). If we fix the radii values R= (Rk),k=
1, ...,M the expression (6) defines a M dimensional vector with components yk =
C(Rk,θ 0,x). A training set of these vectors is created by repeatedly selecting the
subsets s and s˜. The statistics of this vector can then be estimated in a straightforward
way.
Indeed, the expression (6) is an average of distances, so by the Central Limit
Theorem it might be expected to get Gaussian. More exactly, each expression y =
(yk) gives the empirical cumulative distribution function of the respective set of
distances. The basic form of the Donsker’s theorem tells that empirical distribution
functions asymptotically tend to a Brownian bridge. In a more general setting, close
to what we employ here, the Gaussianity was established by Borovkova et.al. [1].
At a pseudo code level the procedure can be summarized as follow:
• Using the measured data, create a training set of the vectors y for fixed radii
values (Rk) by sampling data at measurement times (ti).
• Create the empirical statistical distribution of the training set y as a Gaussian
likelihood, by computing the mean µ and the covariance Σ of the training set
vectors.
• Find the maximum likelihood model parameter θ 0 of the distribution
Pθ0(θ ,x)∼ exp−
1
2
(µ− y(θ ,x))TΣ−1(µ− y(θ ,x))
• Sample the likelihood to find those model parameters θ for which the vector
y=C(θ 0;x;θ ; x˜) belongs to the distribution N(µ ,Σ).
The first step will be discussed more in detail in the examples below. Note that in
[3] we assumed a parameter value θ 0 given and created the training data by model
simulations, while here we start with given data, create the training set from subsets
of data, and proceed to estimate a maximum likelihood parameter value θ 0.
Remark. In all the cases the prior distribution is assumed to be flat uniform.
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3 Numerical experiments
The main objective of this section is to modify the Correlation integral likeli-
hood (CIL) method for identifying SDE system parameters. The new version of
the method is compared with the filter likelihood results. After this validation the
approach is applied to a more complex case.
3.1 Ornstein-Uhlenbeck with modification for dynamics.
We start with a basic SDE example, the Ornstein-Uhlenbeck (OU) process model.
We use it as a benchmark to verify that the CIL method is able to produce results
comparable to standard filter likelihood methods in a setting where these classical
methods perform perfectly well. The OU process equation is given by
dXt =−θXtdt+σdWt . (7)
In the numerical simulations, we use θ = 10 and σ = 1.5 as the ’true’ values. For
simplicity, the mean value of the process is set to zero (but all the results and conclu-
sions are valid for a non-zero mean as well). We create a data signal of 3000 points
on the time interval [0,30], with initial value X = 0.
Figure 1 exhibits the signal used as data, obtained by integration of (7) using
the Euler-Maryama method, with a time step dt = 0.01 and using a fixed Gaus-
sian N(0,σ2) as the diffusion part. The figure presents three different realizations.
Note that essentially the same results as those given below were obtained by any
realizations used.
Let us first apply the CIL method in the basic form. To create the sample sets si
we randomly select 1500 of the data points of the signal in Fig. 1 and use the rest
of the points as s j to get the set of distances needed in (6). This process is repeated
around 2000 times to get a representative set of the feature vectors y. The likelihood
is then obtained by computing the mean and covariance of the training vectors y,
and the Normality of the vectors can be verified by the usual χ2 test.
Next, we find the distribution of the model parameters θ ,σ that follows this
distribution by creating a MCMC chain of length 20000 using adaptive Metropolis
[4]. The result in Fig. 2 shows, however, that the model parameters are not identified
by this likelihood. This situation is different from those reported in [3], and several
unpublished cases, for chaotic systems, where the same likelihood construction is
able to identify the model parameters.
We conclude that too much information is lost in the mapping from data to the
feature vectors y. Indeed, this is not surprising in view of the fact that only the dis-
tances between randomized data points is considered, while the order or differences
between consecutive points is lost. A trivial example is given by any vector or ran-
dom points: sorting it in increasing order gives a definitely different signal, but with
just the same set of points and distances between them.
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Fig. 1: Ornstein-Uhlenbeck signal used for the experiments.
Intuitively, the mean reverting dynamics is lost here, so some additional modifi-
cation of the method is needed. The large posterior in Fig. 2 exhibits only what it is
programmed to do: signals whose distance distributions remain close, which in this
case does not characterize the signals. The feature vector can be modified in various
ways. Here we present the impact of extending it in the obvious way: we include
the differences between consecutive points. We create the feature vectors separately
for the signal and for the differences. The final feature vector is created by con-
catenating the curves, and the Gaussianity of the combined vector can be tested by
the χ2 test. Figure 2 illustrates the posterior obtained using three different levels of
information: only the data signal, only difference between consecutive points, and
both together. We see how the first two are not enough, while the posterior of the
extended case, practically the intersection of the two other posteriors, significantly
improves the identification.
Next, we compare the Correlation Integral Likelihood results with that obtained
by filter likelihood estimation based on Kalman filtering. We use the same data
signal as above, using all the points Xk,k = 1, ...,3000 as exact measurements (no
noise added) of the state vectors, and create MCMC samples of the likelihood given
by the expression (3). The comparison presented in Fig. 3. As expected, the filtering
method is more accurate with this amount of data (we use every Euler-Maryama
integration step as data for filtering), but the results by CIL are comparable.
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Fig. 2: The use of both state and difference information leads to a posterior (yel-
low) that is located around the intersection of the posterior generated by the state
information only (blue) and the one generated using the difference only (orange).
Remarks. In the above examples we have used the known value of θ 0 as the
starting point for the MCMC sampling. However, as the likelihood is created by the
data signal, we can equally well use it as the cost function to estimate θ 0 first. We
omit here the details of this step.
Note that there is a difference in computational times of the two methods, in this
particular case they are approximately 20min for CIL and around 6min for KF. The
difference is basically due to the additional computation of the distances needed for
CIL.
Note that using a larger time step between data points would decrease the accu-
racy of the KF estimate. However, it does not impact the CIL estimate, as it is based
on independent samples Xi in random order, not on predicting Xi+1 by Xi.
Finally, we note that the use of the present modification, including the system
’dynamics’ by signal differences, is not limited to the OU example. Rather, it can
be used generally to improve the model parameter identification of both SDE and
deterministic chaotic systems. However, a more detailed discussion is outside the
scope of this work.
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Fig. 3: Illustration of the results obtained by comparing CIL with the Filter likeli-
hood method in parameter estimation for a zero mean Ornstein-Uhlenbeck.
3.2 Stochastic Chaos
Here we study the CIL approach for chaotic dynamics, extended with stochastic per-
turbations. Now the stochasticity is no more of the additive form (1) but is contained
in the model equations in a nonlinear way. The specific forms of of the perturba-
tions discussed here come from meteorology. In the so called Ensemble Prediction
Systems (EPS) an ensemble of weather predictions, with carefully perturbed initial
values, is launched together with the main prediction. The motive is to create prob-
abilistic estimates for the uncertainty of the prediction. However, it is difficult to
create a spread of the ensemble predictions that would match the observed uncer-
tainty; the spread of the model simulations tends to bee too narrow. To increase the
spread the so called stochastic physics is employed: the right hand side of the model
differential equation is multiplied by a random factor (close to one) at every inte-
gration step. More recently, so called stochastic parametrization is used in addition:
certain model parameters are randomized likewise at every integration step of the
system. For more details of these methods see [9].
As a case study for the parameter estimation with stochastic physic and stochas-
tic parametrization a classical chaotic attractor, the Rossler system, is chosen. We
give the Rossler system in the form where the stochastic physics is introduced by
the multiplicative factors 1+ ckε , and the model parameters α,β ,γ are likewise re-
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placed by perturbed terms α + ckε , etc., k = 1 : 6, ε ∼ N(0,1). The system reads
as
 X˙ = (1+ c1ε1)(−Y −Z)Y˙ = (1+ c2ε2)(X+(α+ c3ε3)Y )Z˙ = (1+ c4ε4)((β + c5ε5)+Z (X− (γ+ c6ε6))) (8)
with ’true’ parameters α = β = 0.2 and γ = 5.7. The magnitudes ck were chosen so
that the maximum relative error would not exceed 40% in any of the cases.
Figure 4 shows the time evolutions of one of the components, the values of X
for different combinations of added stochasticity. Each plot consists of 80 runs with
slightly perturbed initial values. We see that the interval of predictable behavior
shrinks to almost one half of that of deterministic chaos when both types of pertur-
bations are added.
The task of parameter estimation is now to try to find the distribution of the mean
value of each of the perturbed parameters. The construction of the likelihood is per-
formed via the standard procedure: from a long enough data signal (here, produced
by simulating (8) ) we sample subsets to calculate the distances, and repeat this for
a number of times to be able to empirically determine the statistics of the feature
vectors. Again, the Gaussianity of the statistics can be verified. Both a maximum
likelihood parameter estimate, and the subsequent MCMC sampling for the poste-
rior can then be performed.
For the examples we create the data by simulating (8) over a total time interval
[0,120000] and select data points at frequency shown in Fig. 4 with the green circles.
To get one feature vector y we select two disjoint sets of 2000 consecutive data
points. To create the statistics for y we repeat this procedure for around 1800 times.
The number of radius values used was 10.
The results of the runs for different setting of the perturbations are given in Fig. 5.
We can conclude that the approach performs as expected: the more stochasticity in
the model, the wider are the parameter posteriors. However, in all cases we get
bounded posteriors, and the algorithm performs without any technical issues.
4 Conclusions
In this work we have applied the recently developed Correlation Integral Likelihood
method to estimate parameters of stochastic differential equation systems. Certain
modifications are needed to get satisfactory results, comparable to those achieved
by standard filter likelihood methods for basic SDE systems. But the main focus is
on situations where the standard methods are not available, such as the stochastic
physics and parametrizations employed in meteorology for uncertainty quantifica-
tion. Several extensions of the approach are left for future work.
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Fig. 4: The X component of the Rossler model with four different options for
stochasticity.
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We present a Bayesian synthetic likelihood method to estimate both the
parameters and their uncertainty in systems of stochastic di�erential equations.
Together with novel summary statistics the method provides a generic and
model-agnostic estimation procedure and is shown to performwell even for small
observational data sets and biased observations of latent processes. Moreover,
a strategy for assessing the goodness of the model fit to the observational
data is provided. The combination of the aforementioned features di�erentiates
our approach from other well-established estimation methods. We would like
to stress the fact that the algorithm is pleasingly parallel and thus well suited
for implementation on modern computing hardware. We test and compare
the method to maximum likelihood, filtering and transition density estimation
methods on a number of practically relevant examples frommathematical finance.
Additionally, we analyze how to treat the lack-of-fit in situations where the model
is biased due to the necessity of using proxies in place of unobserved volatility.
KEYWORDS
synthetic likelihood, SDE systems, parameter estimation, MCMC sampling, goodness of
fit, financial models, stochastic volatility
1. Introduction
Parameter estimation in systems of stochastic differential equations (SDEs) is a crucial
task in many practical applications and the ability to quantifying the uncertainty of the
parameter estimates is a key feature of modern estimationmethods. Inmathematical finance,
stochastic volatility models are used to describe both the movements of the underlying
assets as well as the corresponding latent volatility process. During the last two decades,
volatility has become an asset class of its own (see, e.g., [1]), and modeling it using
carefully calibrated SDE models is an active research area both in academia and practice.
As volatility is not directly observable, one has to rely on volatility proxies in order to
calibrate these models under the physical measure which is necessary, e.g., in insurance
risk management under the Solvency II framework: For the calculation of available capital,
market consistent evaluation of both assets and liabilities given both risk-neutral and real-
world stress scenarios is required (cf. [2]). This work is motivated by the necessity of feasible
parameter estimation given stock price time series and volatility proxy observation data. For
the well-known Heston system of SDEs, both filtering approaches and maximum likelihood
estimators have been traditionally used to estimate parameters (see, e.g.,[3–8]). However,
the volatility process can not be observed directly and these approaches can be quite
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sensitive to noise and modeling errors due to the use of volatility
proxies. Moreover, filtering approaches require some manual fine
tuning and maximum likelihood methods provide merely point
estimates without quantifying the inherent uncertainty. On top of
that, the computation of the likelihood function is model specific.
Therefore a generic model-agnostic estimation procedure with the
ability to quantify estimation uncertainty would be desirable. In
this work, we introduce such a method which performs well even
for comparably small observational data sets and biased indirect
observations of the volatility process via proxies. Moreover, we
provide a strategy to assess the goodness of the model fit to the data.
In order to demonstrate the feasibility of our method, we consider
test cases from mathematical finance. We would, however, like to
stress once more that the proposed method is generic and may
therefore be employed in various fields of application.
SDE systems are commonly written as a sum of a stochastic part
and a deterministic evolution model
dx = f (x, t; θ)dt + L(x, t; θ)w(t), (1)
where x ∈ Rn, f is a drift function, w is an n-dimensional
zero-mean white Gaussian process, θ is an unknown parameter
vector and the diffusion term L may depend on x, t and θ .
A standard method to estimate the parameter vector θ is to
approximate the maximum likelihood or the maximum a
posteriori (MAP) estimator, conditional on given observational
data. Such approaches are well-established in the case of
linear SDEs where the transition density p
[
x(tk)|x(tk−1), θ
]
,
as a closed-form solution of the Fokker-Planck equation, is
available so that the likelihood can be evaluated analytically.
This is of course an ideal situation, since in many practically
relevant applications the drift function f (·) is non-linear and
the diffusion term L depends on the state variables. In that case,
the transition density is in general not available in analytical
form. To solve such problems, many methods have been
implemented. The approach developed in [9] aims to solve
the Fokker-Planck equation by an ensemble of simulations
that is used to approximate the transition density. likelihood
approximation techniques include the simulated maximum
likelihood estimation [10] and Hermite expansions [11]. Also
filtering approaches have been employed for the estimation of
the parameters of such systems, e.g., Kalman or extended Kalman
filters, non-linear Gaussian filtering, or ensemble Kalman filters,
see for example [12].
In [13], we introduced a distance based approach called
correlation integral likelihood (CIL), first proposed by [14], which
enables the estimation of both the parameters and their uncertainty,
also in the case of non-uniform or sparse data. The focus of this
work was on computationally demandingmodels:We assumed that
a sufficiently long time series of data was available, thus allowing the
creation of a likelihood for a subset of observations, by subsampling
all the available data. The likelihood was computed off-line, and
the parameter sampling performed for a subset size data only,
thus saving CPU time. In the present work, we study a different
way of characterizing the stochastic variability of the state space
assuming an in a certain sense complementary setting: Supposing
that a sufficient amount of data for a subsampling approach is not
available, and that computational limitations do not prevent the
use of multiple simulations, we follow the basic idea of synthetic
likelihood (SL) by [15], later developed under the title Bayesian
synthetic likelihood (BSL) in [16]. In contrast to these works, we
employ the idea of [13] using the empirical cumulative distribution
function (eCDF) vectors of data as themain way of constructing the
statistics. Here the eCDF vectors are based on scalar data directly
provided by the SDE systems, unlike the data used in [13]. The
likelihood is given by the mean and covariance of the eCDF vectors,
which can be empirically estimated. Indeed, the distribution is
approximately Gaussian by the Donsker theorem in the case of
i.i.d. data, and by more general two sample U-statistic theory in
the case of weakly correlated data (see [17]). While the feature
vectors may require case-dependent constructions, the approach
is otherwise generic. It only requires numerical simulations of the
model under consideration, without any further in-depth analysis
of the model.
The rest of the paper is structured as follows. Section 2
introduces the BSL method and discusses the details of the
implementation with the eCDF as the main summary statistic.
Applications of the approach can be found in Section 3. We
first apply the method to a toy example, the Ornstein-Uhlenbeck
system, where comparisons with analytical solutions and existing
filtering methods are also provided. Then, we study the Merton
model, where the presence of random jumps renders prediction
difficult for filtering methods. Finally, we perform parameter
estimation for the Heston model, a common workhorse to model
and forecast volatility in the financial industry which is known to
reproduce many of the stylized facts observed in real markets. We
study parameter estimation for both the case of directly observed
volatility and the case of volatility which is indirectly observed
via a proxy and we compare our results to an ensemble method
introduce in [9].
2. Methods
2.1. Bayesian synthetic likelihood for SDE
The theoretical background of our approach is based on
a generalization of the central limit theorem. Instead of the
standard mean values we estimate the empirical cumulative
distribution function (eCDF) of data. According to the classical
Donsker theorem (see [18]), the cumulative distribution function
of independent and identically distributed scalar valued data
converges toward a Brownian bridge:
Theorem (Donsker, Skorokhod, Kolmogorov). Let Fn be the
empirical distribution function of a sequence of independent and
identically distributed random variables X1,X2,X3, . . .Xn which
have the distribution function F. Define the centered and scaled
version of Fn by
Gn(x) =
√
n(Fn(x)− F(x)).
The sequence of Gn(x), as random elements of the Skorokhod
space D, converges in distribution to a Brownian bridge G with zero
mean and covariance given by cov(G(s),G(t)) = E[G(s)G(t)] =
min(F(s), F(t))− F(s)F(t).
Frontiers in AppliedMathematics and Statistics 02 frontiersin.org
Maraia et al. 10.3389/fams.2023.1187878
The theorem guarantees asymptotic normality of the empirical
distribution function. For further details see [18] or, for more
recent presentations, e.g., [19]. In case of a finite-dimensional data
the empirical cumulative distribution function is calculated by
binning the data. The resulting vector tends to a multi-dimensional
Gaussian distribution, with the dimension equal to the number of
bins. The examples studied here do not, however, have independent
and identically distributed data. Nevertheless, theorems in the
U-statistics literature [17, 20] generalize the Donsker theorem
for weakly correlated data. In numerical examples the mean
and the covariance matrix that define the Gaussian distribution
can be estimated by repeatedly computed eCDF vectors. In our
examples, we carefully verify the Gaussianity using the χ2 test
for the set of eCDF vectors, and performing standard normality
tests for individual components of the vector. In the present
work this likelihood construction is combined with the synthetic
likelihood approach.
The synthetic likelihood, or Bayesian synthetic likelihood
(BSL), approach aims to approximate the posterior distribution
of a set of parameters using simulation-based model fitting.
Synthetic likelihood methods are based on the assumption that
summary statistics are approximately Gaussian. This allows the
construction of a likelihood by estimating the mean and covariance
matrix. Similarly to all the likelihood-free methods, this approach is
suitable in situations where the likelihood is analytically intractable.
The method selects a summary statistic s, which is assumed to
store most of the information contained in the observed data y,
and is assumed to follow a normal distribution. Depending on the
summary statistics, the Gaussianity may be ensured by the central
limit theorem, the synthetic likelihood is then asymptotically
normal; see [15, 16] for more details.
Given a stochastic model depending on a parameter vector θ
and observed data y = (y1, . . . , yN), one aims to estimate the
posterior distribution of the model parameters by the Bayes’ rule
p(θ |y) ∼ p(y|θ)p(θ). (2)
In cases where the likelihood is intractable, one constructs a
function S :RN → Rd, which maps the observed data y into a
summary statistic vector sy = S(y) corresponding to the data y.
The posterior distribution has the form
p(θ |sy) ∼ p(sy|θ)p(θ), (3)
where p(θ |sy) should be close to p(θ |y) in distribution. The main
issue with this idea is that in many situations where the likelihood
on the data is intractable, the same is true for the likelihood on
the summary statistic. The idea behind BSL [16] is to use an
auxiliary likelihood based on a multivariate normal approximation.
Under the assumption that the summary statistic is Gaussian, the
estimated synthetic likelihood is of the form N(sy;µn(θ),6n(θ))
where µn(θ) and6n(θ) are the respective mean and the covariance
estimates. In general, the true mean and covariance µ and 6 are
unknown and therefore they are estimated by simulating the model
n times using the given parameter θ , each time producing a data
sample of sizeN. Based on this synthetic data, the sample mean and
sample covariance matrix of the corresponding summary statistic
can be calculated. This step can then be embedded in an MCMC
algorithm [16]. For each proposed θ , the estimates for µn(θ) and
6n(θ) are computed, and the proposed candidate is accepted or
rejected based on how well sy fits the constructed likelihood.
The central limit theorem which guarantees asymptotic
normality of the synthetic likelihood relies on the strong
assumption of multivariate normality of the distribution of the
summary statistics. This assumption may not hold in practice,
especially when the dimension of the statistics increases. The
normality of the summary statistics is naturally guaranteed if the
summary is given as a sum of the simulated model values with
bounded variance. This may, however, require a high value for
the number of repetitions n to ensure empirical normality. Several
studies have been carried out to weaken the normality assumption
on which the BSL method relies. For example, in [15] the author
suggests a transformation of s to achieve multivariate normality,
but this may not solve the problem in case of high dimensional
summary statistics. The normality assumption is relaxed in [21]
by proposing a more flexible density estimator called the extended
empirical saddlepoint approximation. The authors of [22] develop
a semi-parametric approach to approximate the summary statistics
likelihood involving the kernel density estimates for the marginal
distributions and a combination of themwith a Gaussian copula. In
[23], the problem of estimating the parameter posterior is framed
as a problem of estimating the ratio between the data generating
distribution and the marginal distribution.
In the present work, we avoid such issues by employing the
likelihood function based on the eCDF vectors. The Gaussianity
is then asymptotically guaranteed by the Donsker theorem—not
just an assumption. In our numerical examples we verify the
Gaussianity by normality tests, the χ2 test for the eCDF vectors,
and standard scalar-valued tests for the individual components
of the vectors. The so-called ABC methods provide another
well-known simulation-based approach for intractable likelihoods,
or likelihood-free situations. Our approach differs from them,
as we actually do have a well-defined likelihood, that is even
normally distributed.
In a nutshell the BSL algorithm proceeds as follows: We
simulate the model n times for the proposed parameter value,
calculate the eCDF vector of the selected (scalar valued) simulation
results, concatenate the vectors (if more than one eCDF is
computed) and calculate the mean and covariance of the emerging
set of vectors. The synthetic likelihood is thus constructed, and the
accept/reject step can be performed as a part of a standard MCMC
sampling algorithm.
The basic steps used to find the posterior distribution of
the parameters by MCMC sampling are summarized in the
Algorithm 1 below. As the likelihood is stochastic, no numerically
exact maximum of the likelihood function can exist, but we assume
that a robust estimate for the model parameter vector is available,
from which to efficiently start the MCMC sampling. In our test
cases this is simply the reference value of the model parameter
vector used to create the synthetic data, otherwise an optimization
step is first performed tomatch themodel to the data. For simplicity
we shall call this optimized value the MAP point estimate in the
following. However, when fitting a model to real data a bias can be
expected, and a test for goodness of fit (or lack of fit) is needed. See
the Algorithm 2 and the discussion below for more details about
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Initialization
Given N observed scalar data points yN = (y1, . . . , yN), map the
data into the summary statistic vector s(yN), select the bin values
xi, i = 1, 2, ..., nx according to the scale of the data values. Select the
number n of the BSL simulation repetitions. Find the parameter θˆ
that minimizes the model-data difference from which to start the
chain.
MCMC steps
Step 1. For a proposed candidate θˆ , simulate n samples
y1N , y
2
N , . . . , y
n
N
Step 2. Compute the nx dimensional eCDF vector s(y
i
N) for each y
i
N ,
i = 1, . . . , n
Step 3. Collect the vectors in a matrix S and compute the mean and
the covariance
µ = mean(S) 6 = Cov(S)
Step 4. Compute the negative log likelihood:
log
(
p(θ |s(yN)
) = +1
2
(
s(yN)− µ
)T
6−1
(
s(yN)− µ
)
+1
2
log(det(6))
Step 5. Accept / reject the candidate θˆ using an MCMC algorithm
Algorithm1. MCMCsamplingof a Bayesian Synthetic likelihoodwith eCDF
summary statistics.
how we perform this test. Before launching the MCMC sampling,
we verify the Gaussianity of the synthetic likelihood at the initial
point of the MCMC sampling.
Note that as the likelihood is re-created at every sampling
iteration, the log(det(6)) term needs to be included. When using
eCDFs for summary statistics, one has to select the bin values at
which the cumulative sums are evaluated. Too dense bin values
produce noisy histograms and CDFs, resulting in close to singular
covariance matrices and low acceptance rates in MCMC sampling
in our situation. On the other hand, too few values tend to loose
information of the data. Earlier experiences [13, 14, 24] have shown
that the sampled parameter posteriors are not sensitive with respect
to the specific selection of the number nx of the bins, as long as
the above extremes are avoided. Unless otherwise stated, all the
examples of this paper are computed using nx = 10.
Remark: For the sake of readability, Algorithm is formulated
assuming only one eCDF vector is used as the summary statistics.
More typically we employ several feature vectors. In such a case,
the above steps are repeated separately for each feature vector
and the resulting eCDF vectors are concatenated to get the final
vector. The concatenated vector of Gaussian vectors is Gaussian
again, and the mean and covariance of that vector provides the
likelihood function. The normality of the combined feature vector
is numerically verified in the same way as described earlier.
Initialization Phase
Given N observed scalar data points yN = (y1, . . . , yN), map data
into the summary statistic vector s(yN), select the bin values xi,
i = 1, 2, ..., nx according to the scale of the data values. Select
the number n of the BSL simulation repetitions. Fix the level of
significance α and compute the value χ2α of the χ
2 distribution
with degrees of freedom given by the total number of bins. For
confidence level of 99% select α = 0.01
GOF test
Step 1. For a given parameter θˆ compute Step 1-3 of Algorithm 1
Step 2. Compute the un-normalized negative log likelihood:
NLL
(
p(θˆ |s(yN)
)
= (s(yN)− µ
)T
6−1
(
s(yN)− µ
)
Step 3. Repeat the previous two points for a sufficient number of
times to obtain a robust estimate of the NLL
(
p(θˆ |s(yN)
)
variability
and compare these values to χ2α
Remark
Values mostly smaller than χ2α will indicate good "fit" between the
data and the model with the given parameter θˆ .
Algorithm 2. Goodness of fit test.
2.2. Assessing the goodness of the model
fits
Above, we assume that a robust estimate of the region of the
parameter space at which to start sampling efficiently is available.
In case of synthetic data sets there exists, by construction, a region
of the parameter space for which the model can quantitatively
and qualitatively re-produce the statistics of the reference data.
However, when fitting a model to real data a bias can be expected,
and a test for goodness of fit (or lack of fit) is needed. Standard
criteria, based on residual sums of the fit, are not available in the
stochastic setting discussed here. We discuss here how to employ
ingredients used to perform the Gaussianity tests employed in the
initialization phase of Algorithm for a goodness of fit (GOF) test.
Given a set of parameters, this will tell us how appropriate a model
is in representing the underlying dynamics that produced the data.
Note that for any fixed set of parameters (as in this GOF tests)
the likelihood’s mean and covariance are fixed as well and the
1
2 log[det(6)] term is not used for the negative log likelihood (NLL)
calculation. The procedure is a version of the classical χ2 tests used
as a standard tool since [25], only the construction and evaluations
of the likelihood function are done in a different way.
In a nutshell the goodness of fit test proceeds as follows:
This procedure can help in several crucial aspects. It can be
helpful in understanding whether the model is or is not appropriate
to represent the underlying dynamics that generated the data,
and indicate possible needs for further model selection. Moreover,
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before starting the MCMC sampling, it can be used to see if the
optimizer has already found an appropriate region of the parameter
space. If this is not the case, it shows how far from the data the
model is at the initial parameter value. The latter case may be due
to a genuine lack of fit, or it may indicate that the optimizer has got
stuck in a local minimum. In Section 4, examples of lack of fit are
given when using a proxy for the volatility process.We demonstrate
how this may result in biased estimates, and show how to avoid it
(see Figure 8).
2.3. Kalman filter and kernel density
estimation methods
We will compare our results with those obtained by the
basic Kalman filter (KF) approach, see for instance [26]. In a
more demanding situation, where KF runs into difficulties, we
employ a more advanced ensemble approach as an alternative
to produce kernel density estimates that approximate the SDE
transition probabilities.
Given an infinite number of simulations for SDEs, one could
theoretically construct SDE model transition densities to obtain
the solution to Fokker-Planck equations. In practice, we are
limited to a finite number of simulations which we can use to
approximate the transition densities p(yn+1 | yn). We can use a
kernel density estimator to approximate the transition densities in
order to numerically evaluate the likelihood function
N−1∏
n=1
p(yn+1 |
yn). An ensemble of simulations is computed for each pair of
consecutive data points (yn, yn+1), starting at the data point yn.
Given more accurate model parameter estimates, the simulated
trajectories should follow the data more closely. This results in
higher likelihood values for more correct parameters values.
The simulations are then used to construct a transition density
which is evaluated at the next data point yn+1, yielding an estimate
for the transition likelihood for the given parameters. Such an
approach has been used for maximum likelihood estimation of
SDE parameters [9]. We follow the authors in using a Gaussian
kernel as the kernel. For more details on the density estimation
procedure, see [9]. Instead of maximum likelihood estimation as
used by [9], we use the kernel density estimates to compute the
likelihood of the SDE model parameters. This enables the use of
an MCMC method to estimate the posterior distribution of the
SDE model parameters. The BSL and the kernel density estimation
(KDE) share the similarity in their approach, that they both rely on
ensembles of simulations to construct a likelihood estimate for the
SDE parameters. The information provided by the simulations is
used in different ways, which results in a considerable difference in
the required number of simulations. We discuss this in more detail
in Section 4.
2.4. Noisy Markov chain Monte Carlo
sampling
As discussed above, we employ empirically Gaussian
likelihoods for parameter sampling and standard MCMC
sampling algorithms may be used. However, the likelihood values
are stochastic by construction, and need to be re-evaluated at
each MCMC step during the BSL likelihood sampling. Depending
on the data and number of BSL simulations n, the acceptance
rate may get low. In such a case, the acceptance rate can be
dramatically improved by using higher values for n, in the range
1, 000 < n < 3, 000. Essentially the same parameter posteriors
were obtained for high and low values of n by increasing the
chain length of sampling for low n. But this comes at the cost of
higher CPU demands. The possibility of low acceptance rate for
low n values is due to uncertainty in the estimates of the mean
and covariance of the BSL likelihood. Increased n values stabilize
those estimates, thus leading to higher acceptance rates. A remedy
is to use noisy MCMC sampling [27, 28]. A high rejection rate
of a stochastic likelihood function typically is due to the fact that
the negative log likelihood can get exceedingly low values simply
due to the stochasticity. The idea behind the noisy sampling is to
re-evaluate the likelihood function at the same parameter value
where the sampling has been stuck. In our examples, we perform
the re-evaluation if 200 consecutive rejections have taken place.
This allows us to achieve reliable posterior estimates with lower
values of n.
3. Test cases
The approach introduced in Section 2 is applied here to several
SDE models with increasing difficulty of parameter estimation. We
start with the well–known Ornstein-Uhlenbeck model that allows
for comparison to standard estimation methods. Next, the Merton
model is discussed as a situation where these standard methods
actually fail. Finally, we study a test case for the widely-used Heston
stochastic volatility model.
3.1. Ornstein-Uhlenbeck model
The standard one-dimensional Ornstein-Uhlenbeck model for
a mean reverting process is
dXt = −θXtdt + σdWt , (4)
where θ is the rate of mean reversion and σ the diffusion coefficient
for the Wiener process Wt . As the reference values for the model
parameters we will use (θ , σ ) = [0.5, 1]. The Euler-Maruyama
algorithm with a time step 1t is used for numerical integration to
compute the values Xi, i = 1, 2, ...,N. For simplicity, we take data at
every integration time step. This setting is used in order to allow for
a direct comparison with estimates obtained via a standard filtering
method. Filtering methods are based on prediction / correction
steps, and so the observation time step cannot be much larger than
the integration time step to enable the prediction. Figure 1 exhibits
an example trajectory.
3.2. Merton model
A more complex example, when it comes to parameter
estimation, is the Merton model [29]. It is the Ornstein-Uhlenbeck
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FIGURE 1
An example Ornstein-Uhlenbeck trajectory with (θ , σ ) = [0.5, 1] in
the time interval [0, 10], computed by the Euler-Maruyama
integration with time step 1t = 0.01.
FIGURE 2
An example Merton trajectory with (θ , σ , λ) = [10;0.08;10], and
(µ, ǫ) = [0.01, 0.1] in the time interval [0, 10], computed by the
Euler-Maruyama integration with time step 1t = 0.01. The expected
time of arrival times of the jumps is given by λ1t.
process where a “jump” component is added via a Poisson process.
The model equation can be written as
dXt = −θXtdt + σdWt + dq; (5)
where (θ , σ ) are the same parameters as in the Ornstein-Uhlenbeck
system, and q(t) denotes an independent Poisson process for jumps,
with the frequency of the jumps given by a Poisson parameter
λ. Moreover, the size for each jump is randomly sampled from
Zt ∼ N(µ, ǫ). Figure 2 exhibits an example trajectory.
3.3. Heston model
Finally, we demonstrate the feasibility of our method by
applying it to a task from the field of insurance risk management.
The Heston stochastic volatility model has originally been
introduced to price options under the risk-neutral measure [30].
Under the corresponding risk-neutral dynamics, any traded asset,
such as, e.g., a non-dividend-paying stock must grow on average at
the risk-free rate. While this risk-neutral measure is useful for the
valuation of derivatives, it is also artificial, chosen in such a way
that pricing corresponds to taking the risk-neutral expectation of
the payoff and discounting at the risk-free rate. Risk management,
in contrast, requires actual probabilities, e.g., of losing more than
5% of the value of a portfolio of stocks over a given time horizon.
The physical measure gives the actual probability of occurrence
of events and the Heston model under this measure is commonly
used in risk management practice to predict future returns or
volatility from historical time series, for instance in Solvency Capital
Requirement calculations (see, e.g., [2]). Therefore, we concentrate
here on the Heston model for modeling a stock price S under the
physical measure, see Figure 3. As is common practice in parameter
estimation, we have to stationarize the data which is done by using
returns rather than prices. The corresponding system of Heston
SDEs reads
dSt/St = (r + ηvt)dt +
√
vt(
√
1− ρ2dW1t + ρdW2t ), (6)
dvt = k(θ − vt)dt + ǫ
√
vtdW
2
t , (7)
where S denotes the stock price process and v the unobservable
instantaneous volatility process. W1 and W2 are independent
Wiener processes. Furthermore we have the following
model parameters:
• r risk-free rate of return
• θ long run average price variance
• k rate of mean reversion to θp
• ǫ volatility of volatility
• ρ correlation parameter between the Wiener processes.
We require the Cox-Ingersoll-Ross process of the volatility v to
be strictly positive, therefore we impose the Feller condition 2kθ >
ǫ2. Under the physical measure, the expected return includes an
additional premium in excess of the risk-free rate. This so-called
equity premium η is the compensation for the diffusive risk and
can be estimated from the stock price time series alone. Note that
η could be further partitioned into the compensation for market
risk per unit of dW1 and volatility risk per unit of dW2, i.e., η =
λ1
√
1− ρ2 + λ2ρ. However, this partition can not be inferred
without including another class of observations, namely option
prices observed in the market and therefore we set λ2 = 0. While
both λ1 and λ2 could in principle be estimated by including option
price time series, this comes at a massive computational cost (cf.
[8]), and is therefore left for future research.
In practice, only the time series of the prices S can be observed
directly so that in order to estimate the corresponding parameters
of theHestonmodel, a proxy for the unobserved volatility process is
required. A number of possible constructions for proxies have been
suggested such as realized volatility measures [31, 32], integrated
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FIGURE 3
Example Heston trajectories with daily observations in the time interval [0, 500] with reference parameters [θ , k, ǫ, ρ, λ1] = [0.1, 3, 0.25,−0.8, 4],
computed by the QE-scheme. (Left) Instantaneous volatility. (Right) Stock price.
volatility proxies and Black-Scholes implied volatility proxies [6]
and more recently, the VIX index published by the Chicago
Board Options Exchange (CBOE), see [33], has been used as a
proxy for the S&P 500 index volatility (see, e.g., [2, 7, 8, 34]).
In our experiments we study the Heston system, first supposing
that time series for both S and v have been observed directly—
reproducing an experimental setup from [6, 7]. Next, we employ
the same data but use only the time series for the stock price S,
and create the observational data for the volatility by a proxy,
namely, the Black-Scholes implied volatility of an at-the-money
option with expiry in one month from the observation time. In
both cases, parameter estimation relies on the assumption that
the underlying system for the given data is the Heston model.
Last, in order to correct for the bias introduced by using the
proxy, we propose a model with Heston stock price dynamics and
volatility evolving according to the proxy dynamics for use in the
estimation algorithm.
It is well-known that the square root function in (6) increases
the bias for the standard Euler-Maruyama and Milstein scheme (cf.
[35]). In order to simulate both, stock price and volatility data,
we therefore employ the QE scheme by Andersen (see [36]). We
consider a test setup from [6, 7], to be precise, we use sample
lengths of 500 transitions at daily sampling intervals 1 = 1/252.
We generate a sample path using the QE scheme using thirty
sub-intervals per sampling interval 1 where twenty nine out of
every thirty observations are discarded which yields observations
at the desired daily frequency. The simulation is initialized with
the stock at 100 and the instantaneous volatility v0 initialized at
its long run mean. The parameter values for the generation of
the data are [θ , k, ǫ, ρ, λ1] = [0.1, 3, 0.25,−0.8, 4] and the risk-
free rate is fixed at 3.0%. Figure 8C exhibits example trajectories
for both the stock price and volatility process. Note, however, that
we can not compare our results directly to the those obtained
in [6, 9], as these maximum likelihood methods do not allow
for uncertainty quantification out of the box, in fact the bias
and standard deviation reported there correspond to repeated
maximum likelihood computations with different data via a Monte
Carlo method, while in the present work we use merely one fixed
data set. However, the posterior distributions presented in the
next section roughly agree with the variability of the individual
parameter uncertainties reported in [6].
Remark: We would like to emphasize here, that our test
setting assuming the comparably small number of merely 500 daily
observations reflects the requirements of real-world applications.
On the one hand, stock price time series with significantly more
than 500 daily observations will most probably cover different
market regimens so that fitting these with only one set of Heston
parameters is in general not feasible. On the other hand, using
intraday data to increase the number of observations is also not
recommendable as the Heston model does not take into account
market micro-structure effects (see, e.g., [37]).
4. Numerical results and discussion
In this section we use the three test models discussed in the
previous Section to compare the numerical results obtained by
our method to those given by the other methods presented in
Section 2, as well as with earlier results presented in literature.
Additionally, we assess the goodness of fit for the models to the
given observational data.
4.1. Ornstein-Uhlenbeck
In order to use the BSL method with the eCDF summary
statistics, two features are extracted from the computed time series:
The solutions Xi, and the time differences 1Xi = Xi+1 − Xi.
The latter is necessary identify the diffusion parameter σ reliably,
see also [13]. Separate eCDFs are computed for both features,
which then are combined to build the final feature vector. To
further clarify the role of the selected features, Figure 4, shows
the impact of employing each feature separately. Using only the
feature vector constructed with the eCDF of the state values
Xi, i = 1, 2, ...,N, produces a posterior distribution which is
narrow with respect to the mean reverting parameter θ but wide
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FIGURE 4
Ornstein-Uhlenbeck posteriors with data in the time interval [0, 10], time step 1t = 0.01, using BSL with n = 100 simulations. (Left) Only the state X
used (blue), respectively, only the di�erences of consecutive points 1X used (red). (Right) Ornstein-Uhlenbeck posterior when the combination of
both (X,1X) is used (yellow).
FIGURE 5
Ornstein-Uhlenbeck posterior for the reference parameters (θ , σ ) = [0.5;1] obtained by (Right) using KF (blue), respectively BSL (red). (Left) Using
KDE (blue), respectively BSL (red). N = 100 data points on the interval [0, 10], with integration time step 1t = 0.1.
(though limited) in the direction of σ . On the other hand, using
only the time differences Xi+1 − Xi, i = 1, 2, ...,N produces a
posterior distribution that is more accurate with respect to σ but
wide in the direction of the θ parameter. The intersection of the
two posterior regions yields a “small“ set of sampled points. Indeed,
using both features, concatenating the respective vectors into one
vector, gives the posterior in Figure 4 that roughly coincides with
the intersection set.
As stated in Section 2 (and see [13]), the normality of the eCDF
vectors holds also in non i.i.d. cases, assuming the data is weakly
correlated. In our present situation the observations are taken dense
in time and clearly are not i.i.d. But the normality can be verified by
the χ2 test and component-wise scalar normality tests.
In case of the Ornstein-Uhlenbeck model, we can compare the
result obtained by with the BSL approach against the estimation
results obtained by the well-known Kalman filter likelihood (KF).
The comparison with Kalman filter is performed using the Example
11.5 from the textbook [26]. The KF data and posterior come
from [26] and for the same fixed data set we perform both the
KF and the BSL estimation for data values yt in the interval t ∈
[0, 10] with integration time step 0.1, N = 100 data points and
n = 100 BSL simulations. The sampled parameter posteriors
naturally move depending on the simulated data created for the
MCMC sampling experiment. The example in Figure 5 presents
a typical case, showing how the BSL posteriors generally agree
with the samples by KF. The result comes, however, at higher
costs in terms of CPU times: BSL here uses n = 100 simulations
for each likelihood evaluation, whereas the KF requires only one.
Concerning the comparison to the KDE method we would like
to emphasize that the computational complexity of that method
exceeds that of the BSL method. We observed that significantly
higher numbers of SDE realizations were required for the KDE
approach. In order to achieve proper MCMC convergence, we used
1,000 SDE realizations to construct the likelihood estimates. This
in clear contrast to the 100 realizations we use for one step of the
MCMC sampling with BSL. The problem is further exacerbated
in the Merton and Heston cases. For the Merton and Heston
models, we use 200 realizations with the BSL MCMC sampling.
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The KDE approach required 15,000 realizations for proper
MCMC sampling.
The two-dimensional posterior distribution obtained with the
KDE approach is illustrated in Figure 2. For the kernel density
results, we used an MCMC chain with 106 samples. In this case the
result shows clearly a wider range of possible values for the speed of
mean reversion parameter θ .
To further verify the robustness of the approach with respect
to the “tuning” parameters, the selection of the bin parameter nx
and the BSL simulations n, an extensive series of test runs was
performed. Both values were varied in a wide range, 6 ≤ nx ≤ 20
and 100 ≤ n ≤ 3000. For each selection, the MCMC sampling
of the parameter posterior was repeated 20 times, each time using
different data sets simulated by the Ornstein-Uhlenbeck model
with the same settings as those used for producing Figure 5. In each
case the outcome was compared with the result obtained by KF.
The overall conclusion was that the parameter posteriors obtained
by BSL and KF essentially coincide.
Note that the BSL estimation works equally well with arbitrarily
sparse (but pairwise, to get the differences Xi+1 −Xi) observations,
while the KF and other filtering methods need sufficiently close
data points to produce meaningful predictions, as they are all based
on the prediction/correction steps. In the next example we discuss
a case where this property—no prediction required—becomes
more crucial.
4.2. Merton
Next, we use the BSL algorithm with eCDF statistics for a
jump-diffusion system. Using the Euler-Maruyama integration for
Equation (5), we simulateN = 1, 000 data points; for the parameter
estimation we use n = 500 BSL simulations. In this case, it is natural
that the estimation may fail if the frequency of the jumps is too low
compared to the integration time interval—trivially so if no jumps
happen to occur in the measurement data set. Also, if the jumps
are too small and dense the Poisson jumps dq will be confounded
with the Ornstein-Uhlenbeck diffusion process. Figure 2 presents
the type of data we are aiming at: A set with sufficiently many
jumps, most of them clearly distinguishable, thus enabling the
parameter estimation. The number of BSL simulations n must
now be increased compared to the previous test case and higher n
values produce more stable estimates for the mean and covariance
of the likelihood function. Lower n values technically work as
well, but lead to more stochastic likelihood value evaluations, and
thus lower acceptance rates in the MCMC sampling. Figure 6A
shows the BSL parameter posteriors for all the five parameters
to be estimated. The two feature vectors are constructed in the
same way as in the previous test case, using the state values and
the differences of consecutive state values. We can observe that
all parameters are well identified, whereas the presence of jumps
render the prediction difficult for filtering methods. One way to
estimate posterior distributions for the Merton parameters with
the kernel density approach is to use two simultaneous models,
one without Poisson jumps occurring and a second with a Poisson
jump occurring. We used the maximum likelihood estimate to
select between these two processes whether a jump occurred
at the current increment. The kernel density estimates for the
processes were used to compute themaximum likelihood estimates.
Note that, this approach does not directly provide an estimate
for the Poisson rate parameter λ. However, λ can be estimated
via bookkeeping: During the simulation of each MCMC sample,
we can save the information whether a jump occurred and the
differences between these locations can be used to estimate the
Poisson parameter. For the Merton kernel density results, we used
an MCMC chain with 5 × 104 samples. Figure 6B shows that the
KDE method constructed this way is yields somewhat unreliable
results as the reference value for σ does not even lie inside the
posterior and is therefore outperformed by the BSL method.
Remark: Note that in this work, we focus on explaining the novel
BSL method and therefore keep the underlying financial models
as simple as possible. Nevertheless, it should be emphasized that
this method is model-agnostic and works equally well for more
sophisticated models that include jumps such as the long memory
Fractional Barndorff-Nielsen and Shephard model (cf. [38]).
4.3. Heston
As in the previous examples, we take the state components
and their time differences as the scalar quantities whose empirical
cumulative density functions give the feature vectors for the
likelihood. As our approach requires boundedness of these
quantities, we consider the returns (1St/St), with1St = St+1 − St
rather than the state values St . The volatility evolves according
to the CIR Equation (7) and therefore remains bounded (which
is also the case for the volatility proxy introduced below), so
both volatilities and their time differences 1v : = vt+1 − vt can
be used to define features. Based on the structure of the model,
it is beneficial to add additional feature vectors: As the Wiener
processes W1 and W2 in Equations (6) and (7) are connected
by the correlation parameter ρ, it is a natural choice to compute
the correlation coefficient between the simulated stock price and
volatility. The estimation accuracy can be further increased by
adding more features extracted from the data, e.g., the mean and
standard deviation of the volatility can be used to further stabilize
the estimation. For this purpose, we divide the available data
into d subsets y(1), . . . , y(d) and compute the mean and standard
deviation for each of the subsets. An additional feature vector is
then constructed for the statistics of this subset data. For example,
given N = 500 observed data points, we can cut the data to
obtain d = 25 subsets of 20 successive data points each, and
compute the corresponding means and standard deviations. For
these 25 means and standard deviations, we can again compute the
mean and standard deviation of both to arrive at a 4−dimensional
vector. The final feature vector is a concatenation of all the feature
vectors created.
To sum up, given the stock price St and the volatility vt , the
feature vector used for estimating the parameter values of the
Heston model is the concatenation of the following:
• empirical CDF of1S/S
• empirical CDF of v
• empirical CDF of1v
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FIGURE 6
(A) Parameter posteriors of the Merton model for the reference parameters (θ , σ ) = [10;0.08] and (λ,µ, ǫ) = [10, 0.01, 0.1], obtained using BSL with
data size N = 1, 000 and n = 100 simulations. (B) Comparison with KDE. Parameter posteriors of the Merton model for KDE (blue) and BSL (red).
• correlation coefficient of1S/S with1v
• themean and the standard deviation of themean and standard
deviation of the volatility.
For every newly sampled parameter, a set of n samples, each
consisting of N points, is simulated. The likelihood is computed at
every step by estimating the mean and the covariance matrix of the
feature vector as described in Section 2 and evaluated against the
given data.
First, we assume that the latent volatility process is observable
and we apply both the BSL method with n = 200 simulations and
a KDE method using an MCMC chain with 5 × 103 samples to
the observational data. The results are illustrated in Figure 7. Most
of the reference values lie within the posteriors for both methods
with slightly smaller estimation uncertainty for the BSL method.
However, the parameter ρ lies just on the tail of the KDE posterior.
Next, we consider the more realistic setting where we can
only observe a proxy volatility, namely the Black-Scholes implied
volatility of an at-the-money option with expiry in 1 month
from the observation time. Note that the example data used for
the following computation differs from the data used for the
previous example and as mentioned earlier, the sampled parameter
posteriors naturally move depending on the simulated data created
for the MCMC sampling experiment. Figure 8C illustrates the fact
that the proxy volatility systematically underestimates the true
Heston volatility process. Figure 8B shows the same issue but in
a quantitative way via the goodness of fit test, see Algorithm 2. It
suggests that we should not fit the Heston model to stock price data
simulated according to (6) and volatility data given by the Black-
Scholes implied volatility proxy. Figure 8B illustrates what happens
if we do so nevertheless: The goodness of fit test for the maximum
of the posterior (MAP) indicates a good fit, however, this fit is
severely biased regarding the parameters κ and ǫ. Thus, if we are
interested in these parameters in the standard Heston model (6),
(7), we should replace the true volatility (7) in the BSL simulation
with the Black-Scholes implied volatility proxy, thus correcting for
the unavoidable observation bias.
As expected, based on the goodness of fit test, the model
provides a reasonably good fit to the observed data. The posterior
distribution and the goodness of fit test for the estimation using
this “corrected” Heston model are illustrated in Figures 9A, B,
respectively. Summarizing, we have seen via the goodness of fit
test for the MAP estimate, that the observed stock price data
and volatility proxy data given by the Black-Scholes implied
volatility of an at-the-money option could in principle be fit by the
standard Heston model. However, both the posterior distribution
and another goodness of fit test for the reference parameter values
reveal that the corresponding parameter estimates will be heavily
biased. Our BSL estimation using the “corrected” Heston model
with the volatility proxy instead of the true volatility (7) does not
suffer from this bias. This underlines the importance of testing
against synthetic test data in order to validate estimation models,
particularly given the fact that it seems to be a usual practice to use
the standardHestonmodel in practical parameter estimation where
only proxy data is available.
We note that [6] also shows results for 5, 000 observations. This
case was repeated using the BSL method as well, again with similar
estimation accuracies as those reported in [6]. We skip these results
here, also since a comparison to the KDE approach turned out to
be out of reach, due to the computational complexity of KDE.
5. Conclusions
In this work we have introduced the BSL method for the task
of estimating parameters in systems of SDEs from time series data.
In principle, a correct way of producing the parameter estimates
is via integrating the Fokker-Plank equation and approximate
solutions of this equation can be obtained by kernel density
estimation methods. However, the parameter posteriors created
that way can be unreliable, e.g., for jump diffusion models,
and the required ensemble size easily leads to exceedingly high
CPU demands. Our approach is based on a characterization
of the variability of the data points by cumulative distribution
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FIGURE 7
Parameter posteriors of the Heston model with observed volatility for the reference parameters [θ , k, ǫ, ρ, λ1] = [0.1, 3, 0.25,−0.8, 4], obtained using
BSL with data size N = 500 daily observations and n = 200 simulations. (A) Posterior distribution obtained with BSL (red). (B) Comparison of the
posterior distributions obtained respectively by using the BSL (red) and KDE (blue) methods.
FIGURE 8
(A) Parameter posterior of the Heston model with observed proxy volatility for the reference parameters [θ , kp, ǫ, ρ, λ1] = [0.1, 3, 0.25,−0.8, 4],
obtained using BSL with data size N = 500 daily observations and n = 200 simulations. (B) Goodness of fit obtained with the Heston model for the
reference parameters [θ , kp, ǫ, ρ, λ1] = [0.1, 3, 0.25,−0.8, 4] (yellow) and parameters given by the posterior distribution MAP (red). (C) Comparison
between the instantaneous volatility and the volatility proxy for a trajectory obtained with the same parameter values.
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FIGURE 9
(A) Parameter posterior of the “corrected” Heston model with observed proxy volatility for the reference parameters
[θ , kp, ǫ, ρ, λ1] = [0.1, 3, 0.25,−0.8, 4], obtained using BSL with data size N = 500 daily observations and n = 200 simulations. (B) Goodness of fit
obtained with the “corrected” Heston model for parameters given by the posterior distribution MAP.
functions. The stochastic feature vector created in this way
is Gaussian which allows for the use of standard statistical
methods such as MCMC sampling. This estimator has been
shown to perform well even for small observational data sets.
In cases of theoretically known parameter posteriors such as
in the Ornstein-Uhlenbeck model, our results coincide with the
analytical ones. For the practically relevant Heston stochastic
volatility model, we have provided novel insights on how to
construct a robust estimator including uncertainty quantification
given proxy volatility data. These findings yield a promising avenue
for future research using the BSL approach coupled with the
empirical distribution as statistics. We mention the VIX index
calculated by the Chicago Board Options Exchange (CBOE) as
a volatility proxy. Moreover, the BLS method is model-agnostic
so that, e.g., studying the parameter estimation problem for
rough volatility models could also be an interesting topic for
future research.
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A standard way of formulating stochastic differential equation systems is to additively extend the drift of a deterministic
system with a random diffusion part, but an increasing trend in applications, such as meteorology, is to perturb
deterministic models in multiplicative and highly nonlinear ways, that escape the standard framework. This work aims
to present a Bayesian method that enables estimating the parameters of such systems. The approach is well suited for
situations were the observation times are irregular with large gaps between, so that the use of usual prediction-based
filtering methods is excluded. The key idea is to construct a likelihood that is based on feature vectors that characterize
the variability of the system. We illustrate the capability of the method in different scenarios that are both chaotic and
stochastic using the classical Lorenz system as the demonstration example.
KEY WORDS: stochastic differential equation, chaotic dynamics, parameter estimation, MCMC methods,
synthetic likelihood
1. INTRODUCTION
Stochastic differential equations (SDEs) are widely used in several fields such as finance, biology, and telecommuni-
cation. The motivation of the present work is to develop estimation methods for general types of SDE systems that
are currently developed in, e.g., meteorology. Numerical weather prediction (NWP) is based on simulations of the
atmospheric circulation models, basically Navier-Stokes equations, describing the chaotic motion of atmosphere. A
recent trend in meteorology is to add stochasticity in the NWP models in order to avoid the problem of underdisper-
sion: it turns out that perturbing only the initial values of ensembles of simulations does not properly capture the true
spread or uncertainty of weather predictions.
SDE systems are generally written in the form where a stochastic part is added to a deterministic evolution model,
dx = f(x, t;θ)dt+Lw(t), (1)
where x ∈ Rn, w(t) is a n-dimensional zero-mean white Gaussian process, θ is the unknown parameter vector which
needs to be estimated, and the diffusion termLmay be constant or depend on x, t, or θ. A standard way of estimation
is to search for the maximum likelihood (ML) or the maximum a posteriori (MAP) estimator, that maximizes the
posterior distribution, conditional to given measurement data. These approaches are well established in the case of
linear SDEs where the transition density p(x(tk)|x(tk−1,θ)), as a solution of the Fokker-Planck equation, is available
so that the likelihood can be numerically evaluated.
Difficulties arise in the case of a nonlinear drift function f(·) and when the diffusion term L(x, t;θ) depends
on the state variables. Then the Fokker-Planck equation does not have any obvious solution, the transition density is
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unknown, and the likelihood becomes intractable. To overcome such problems various approximated-likelihood based
methods have been introduced, e.g., the simulated maximum likelihood estimation [1] and Hermite expansions [2].
Equation (1), together with an observation operator that connects the states and measurements, also gives a natural
setting for various filtering approaches if measurements are available densely enough: Kalman or extended Kalman
filter, nonlinear Gaussian filtering, or ensemble Kalman filters; see [3]. Both state-augmentation and filter likelihood
methods can be employed for parameter estimation in this setting. In case the drift function has a suitable structure,
conditional Gaussian distributions can be used together with filtering methods to estimate the parameters of systems
of the form of Eq. (1) even for chaotic drifts; see [4]. Smelyanskiy et al. [5] present a related approach available
for dense enough measurements and a drift function depending linearly on the unknown parameters. In [6] the filter
likelihood approach was tested also for deterministic chaotic systems. Issues arise in the sense that the filter likelihood
requires its own tuning parameters to be set, which may bias the model parameter estimation; see [7].
However, the stochasticity included in weather prediction models is not of the form of Eq. (1). The random per-
turbations are added both to the time evolution steps of the simulations (so-called stochastic physics or stochastically
perturbed parametrization tendencies, SPPT) and to account for the uncertainties in the model parameters (stochas-
tically perturbed parametrizations, SPP). Such a combination of chaotic dynamics and stochastic perturbations w,
embedded in the model in a highly nonlinear and nonadditive manner, leads to systems of the form
dx = f(x, t;θ, w)dt. (2)
Such systems escape the standard SDE formulations, as there is no obvious way to write the equation as a
stochastic integral with respect to a Brownian motion. The variational framework introduced by [8] presents a step
towards theoretical understanding of such systems, and a way to preserve the physical invariants of the flow. But
in operational NWP calculations various SPPT approaches are already well established, and together with the more
recent SPP methods are an active field of research; see [9,10].
The aim of this work is to introduce an approach that enables a statistically sound way to estimate general systems
of the form of Eq. (2), even in situations with sparsely sampled data, intractable for the known approaches discussed
above. The approach is related to the concept of synthetic likelihood, first introduced by [11]. See [12,13] for more
recent discussions of the asymptotic properties of the Bayesian synthetic likelihood (BSL), as well as methods to
decrease the computational overheads. The approach presented here differs from the synthetic likelihood method in
two main aspects. We create the likelihood from data only once by subsampling, while the likelihood is repeatedly
created by simulations in BSL. We aim at numerically heavy models, where the use of BSL would be computationally
too demanding. Instead, we suppose that a long enough time series of data is available, that allows the creation of
a likelihood for a subset of observations, by subsampling all the available data. Moreover, the summary statistic
employed here is especially constructed to characterize the geometry of attractors of chaotic systems building on
concepts widely used in the literature of mathematical physics [14,15], different from those used in [11–13]. More
details of the comparison to BSL are given in the next section.
The rest of the paper is organized as follows. Section 2 introduces the correlation integral likelihood (CIL) method
for estimating the parameters of chaotic systems, and presents an extension that is needed in order to estimate all the
model parameters in the stochastic setting. In Section 3 the method is applied to different versions of a stochastic
chaotic system with sparsely sampled data. Summarizing conclusions are then discussed in Sections 4 and 5.
2. CORRELATION INTEGRAL LIKELIHOOD
Let S = {si}i=1,...,τ be a set of noisy measurements of the state s of a chaotic dynamical system, evaluated at times
t1, ..., tτ. For simplicity we assume that all the components of the system are observed, but this is by no means neces-
sary. Several summary statistics can be created for such data that yield a Gaussian likelihood. For instance, supposing
that the states remain bounded, their average tends to a normal distribution with increasing number of observations
by the central limit theorem. However, such “naive” summaries typically average out too much information as well,
and leave the model parameters unidentified; see [16] for an earlier effort of this kind. Therefore the challenge is to
construct likelihoods that have a well-known (Gaussian) distribution, but remain sensitive with respect to the model
parameters at the same time.
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The correlation integral is a concept from the literature of mathematical physics [14,15], introduced to char-
acterize the fractal properties of chaotic dynamical systems. In [17] a modification of the correlation integral was
introduced to characterize the distance between different point clouds in the state space of a dynamical system. The
likelihood so constructed turns out to be quite sensitive even to small differences in the geometry of the underlying
attractor, as estimated by the point cloud data given by model simulations. Here we extend the applications of the
approach in several ways: we study stochastic chaotic systems of the type discussed in the Introduction, and consider
their parameter estimation based on long enough, noisy time series. Also, it turns out that an extension to the method
is needed in order to estimate all the parameters in the stochastic setting.
The statistic is constructed by three basic steps: computing distances between pairs of point clouds of measure-
ments, computing the empirical cumulative distribution function (Ecdf) of the distances, and repeating these steps by
subsampling. The whole available data set S = {si}i=1,...,τ is used to create (and evaluate) the likelihood, but the
aim is to define the likelihood for a subset of length N < τ only.
The larger training set S provides the option for the subsampling. Let the available measurements be split into n
disjoint sets of point clouds, each of lengthN . Given any couple (sk, sl), 1 ≤ l, k ≤ n, of disjoint sets, the correlation
integral sum C(R,N, sk, sl) is defined by counting all the distances that are less than a given radius R > 0:
C(R,N, sk, sl) =
1
N 2
∑
i,j≤N
1[0,R]
(∥∥ski − slj∥∥2), 1 ≤ k 6= l ≤ n, (3)
where 1[0,R] stands for the characteristic function of the interval [0, R].
The division in the n disjoint sets can be done in different ways. One option is uniformly random subsampling,
but our focus is on models of physical processes such as NWP (numerical weather prediction), where a natural subset
consists of consecutive observations over an epoch (month, season, or year). As our aim is to create a likelihood for
one such time interval, the subsampling is done by dividing the total time interval in the respective epochs.
In the physics literature Eq. (3) is used to define the fractal dimension of a trajectory at the limit R → 0 (with
k = l, i 6= j). However, we are not interested in the intrinsic characteristics of a single point cloud, but in the
deviations between different point clouds and thus we evaluate (3) for k 6= l. As for parameter identification, it is not
known beforehand at what spatial scales the variations of the model parameters impact the simulation results, so we
use the expression at all relevant scales R. For a prescribed set of radii R = Rm, m = 0, ...,M , Eq. (3) defines a
discretization of the Ecdf of the distances (
∥∥ski − slj∥∥2), i, j ≤ N between the pairs of point clouds (sk, sl). Let us
denote by Yk,l the vector with components
Y k,lm = C(Rm, N, s
k, sl), m = 0, ...,M. (4)
We assume that the state vectors si remain bounded, so that there exists a radius R0 that contains all the distance
values. However, for numerical purposes we set R0 = min(sk,sl)1≤k 6=l≤n(maxi,j
∥∥ski − slj∥∥) for the largest radius to
be used. This is done since we must have enough variability at every bin used in order to compute the covariance,
so the extreme tail values are discarded. For the selection of the rest of the bin values we follow the usual way in
the mathematical physics literature and choose Rm = b−mR0, m = 0, ...,M . The number of bins M for the Ecdf’s
naturally has to match the amount of data available. The smallest radius RM is selected so that each couple of subsets
(sk, sl) has points closer then RM , i.e., RM = max(sk,sl)1≤k 6=l≤n(mini,j
∥∥ski − slj∥∥). The value of b is obtained by
solving RM = b−MR0.
The discretized Ecdf of the distances is asymptotically Gaussian. Indeed, for the analogous expression, but with
distances replaced by i.i.d. samples from a scalar-valued distribution, the normality is given by the classical Donsker’s
theorem.
In our setting, the samples are not i.i.d., but the normality is covered by results in the literature of U-statistics,
especially the two-sample U-statistics in [18]. We discuss this in more detail below.
Numerically, the mean µ and the covariance Σ can be calculated by the n(n − 1)/2 vectors of the set{
Yk,l
}
1≤k 6=l≤n. In parameter estimation and Monte Carlo sampling, the likelihood is evaluated for a new parameter
candidate θ. The distances between the corresponding trajectory s∗(θ) and a uniformly randomly sampled sk from
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the training set, k = 1, 2, ..., n are computed at the points t1, ..., tN to get the Ecdf vectors Y∗(θ) = Yk,∗(θ) =
C(R0:M , N, s
k, s∗(θ)). The log-likelihood is given by
log(p(θ|S)) = −1
2
(Y∗(θ)− µ)TΣ−1(Y∗(θ)− µ). (5)
Numerically, the Gaussianity can be checked by comparing the histograms of the negative log-likelihood values
against the χ2 distribution; see Fig. 1 for an example.
The expression (5) is stochastic, due to the uniform random choice of k and since every new integration is
performed by randomized initial values, but an optimizer suitable for stochastic cost functions [19] can be used to
find a MAP estimate of θ. The posterior distribution of the model parameters θ can then be found by MCMC (Markov
chain Monte Carlo) sampling methods. The key idea there is to sample parameter values from an auxiliary proposal
distribution, and achieve converge towards the correct posterior by an accept/reject procedure; see [20] for the basic
concepts of MCMC methods. As the density is not analytically available here, the MCMC sampling is interpreted
as pseudomarginal sampling [21], that only assumes the existence of an unbiased estimator of the density. In our
case numerical evaluations of Eq. (5) provide an approximate parameter posterior corresponding to the approximate
likelihood obtained by taking the expectation of the exponential of Eq. (5). An adaptive MCMC method [22] was
employed to obtain the posterior distribution, with the initial proposal covariance given by the last ensembles of
parameter values found by the evolutionary optimizer; see [19]. Flat prior distributions were used for all parameters:
positivity constraints and a large upper bound. The prior bounds were not reached by the sampler in any case, however.
Note also that instead of a uniform random choice of k we can use several samples sk to decrease the variance.
However, the benefit remains limited due to lack of independence of the construction, since the distances from sk are
computed with respect to a fixed proposed s∗(θ).
The above construction can be compared to the Bayesian synthetic likelihood (BSL) approach. The basic idea
of the BSL approach is to select a summary statistic, and create a likelihood separately for each new model param-
eter value by repeated synthetic simulations. So in BSL one performs multiple simulations—in our case integration
of the model over the considered time epoch—“online,” for each likelihood evaluation, while we create the likeli-
hood “offline” from data. Both approaches have their pros and cons: BSL works with limited amount of data, while
our method needs enough—typically much more—data to allow the subsampling. On the other hand, our approach
consumes much less CPU time, only one simulation over one epoch of time for each likelihood evaluation. This is
beneficial in the target problems in geophysics where lots of data can be available, but where the CPU time of model
evaluations is the bottleneck.
Let us conclude this section by discussing in more detail the theoretical background of Gaussianity in the spe-
cific non-i.i.d. situation considered here. Basic results in U-statistics (see, e.g., [23] and references therein) yield
Gaussianity of the quantity
√
N
 2
N(N − 1)
∑
1≤i<j≤N
f(Xi, Xj)−A
,
in the limit N → ∞ (assuming nondegeneracy). Here X1, . . . , XN are i.i.d. or i.d. weakly dependent random vari-
ables (or vectors) and f , say, a bounded function, and A := E f(X1, X2). Note that the expression only has N
independent samples, so the convergence rate N−1/2 is as expected. This result transfers in a standard manner to
the functional Gaussian statistics of the the cumulative distribution function. Another variant of this is where one
considers instead two-sample U-statistics, where one has a similar statement for
√
N
 1
N 2
∑
1≤i,j≤N
f(Xi, Yj)−A
,
where X1, . . . , XN is an i.i.d set of variables, and Y1, . . . , YN is another i.i.d. set of variables, possibly with different
distribution and independent from the Xj’s; see [18]. In [23] the results for one-sample U-statistics were proven
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FIG. 1: Correlation integral feature vectors and the normality test for the extended state vector sˆ = (s, s˙) of the stochastic Lorenz
system. (a) The feature vectors for the Lorenz63 in the log-log scale, for all combinations of k and l. (b) Normality check, the χ2
density function vs. the histograms of the respective negative log-likelihood (NLL) values; see Eq. (5).
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assuming only asymptotic independence for the variables Xk. Similar results may naturally be proven for two-sample
U-statistics.
Our situation corresponds to the case of two-sample U-statistics. In our case Xi = ski , Yj = slj for any fixed
k 6= l, with 1 ≤ k, l ≤ n. The function f is vector valued, with components
f(X,Y,m) = 1[0,Rm](‖X − Y ‖2), m = 0, ...,M.
Recall that the mean µ and the covariance Σ of f are calculated by the n(n − 1)/2 vectors of the set{
Yk,l
}
1≤k 6=l≤n. Again, the convergence is covered by U-statistics, yielding the convergence rate of order n
−1/2
.
2.1 Feature Extension
The above procedure essentially reduces the calculations to the phase space only, so any information of the dynamics
is lost. While this is not fatal in the case of deterministic chaotic systems [17], it turns out that the identification
of some of the SDE system parameters (the diffusion part, especially) remains poor. This calls for an extension of
the approach with a second feature vector able to capture the time-dependent information. Obvious candidates are
samples of the approximative time derivatives s˙ of the stochastic process. From data, they may be approximated if
measurements are available pairwise at short time intervals δ. Note, however, that the time gap between the obser-
vation pairs can be arbitrarily large again. By the SDE model the derivatives are computed as part of the numerical
solution of the system, e.g., with δ used as the time step of integration. To get the new Ecdf feature vector we again
apply the formula, Eq. (4), only now using the values of s˙ and a second set of constants M , R0, and RM separately
selected, by the same recipe as before.
Let us denote by sˆ the extended state sˆ = (s, s˙) and by Y˙ the second feature vector. The final 2M -dimensional
statistic Yˆ is obtained by concatenating the vectorsY and Y˙ together. The resulting likelihood is Gaussian, the mean
and the covariance of the combined vector Yˆ = (Y, Y˙) can be estimated by the training data as before, and the
normality can be numerically verified by using the χ2 test again. The procedure is given in Algorithm 1. We note that
in all the example cases we use uninformative flat priors.
Algorithm 1: Correlation integral likelihood for parameter estimation of stochastic chaotic systems
Given the data sets {si}i=1,...,τ, {s˙i}i=1,...,τ and the size N of the subset of interest, fix the constants M , R0,
RM separately for both features;
Step 1. For all the possible couples (sˆk, sˆl), 1 ≤ l 6= k ≤ n, compute the M -dimensional feature vectors,
separately for the state and the derivatives by Eqs. (3) and (4) with n = τ/N ;
Step 2. Concatenate the vectors Y and Y˙ to obtain the family of n(n− 1)/2 final feature vectors:
Yˆ =
[
C(R0:M , N, s
k, sl) C(R0:M , N, s˙
k, s˙l) 1 ≤ k 6= l ≤ n];
Step 3. Compute the mean µ and covariance Σ of the set of vectors Yˆ, and numerically verify normality by
the χ2 test;
Step 4. Use an optimizer to find the MAP of the distribution
log
(
p(θ|ˆsk)) = −1
2
(
Yˆk,∗(θ)− µ
)T
Σ−1
(
Yˆk,∗(θ)− µ
)
,
where sˆ∗(θ) is a new sample obtained by integrating the model with θ as parameter and sˆk is any of
the training subsets, 1 ≤ k ≤ n;
Step 5. Sample the likelihood using an MCMC algorithm to find the posterior for the model parameters θ.
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3. NUMERICAL EXPERIMENTS
The procedure described above is here applied to the task of estimating the parameters of a stochastic chaotic sys-
tem. We first show the ability of the approach to estimate the model parameter posterior distribution of the stochastic
Lorenz system, where the error is of the additive form of Eq. (1), but the gap between observations is larger than the
predictable time interval. In this framework we show that the feature augmentation is a must in order to identify the
diffusion parameter in addition to the model parameters. After that we apply the method to a stochastic version of
Lorenz where the noise is multiplicative and the model parameters are additionally perturbed. Finally, all the stochas-
tic elements are combined by including the additive diffusion part again. In each case, we study how the parameter
posterior is increasing with increasing stochasticity, and which feature vectors are needed to identify the parameters.
In all the examples we create the synthetic data with a denser grid than that used in the parameter estimation, in order
to avoid “inverse crimes.” The integration of the SDE systems, Eq. (1), were performed using the Euler-Maruyama
scheme.
Here, as always in estimation, the parameter posterior distributions are conditional on data: A larger data set
{si}i=1,...,τ allows larger values of N to be used in Eq. (4), which leads to more accurate estimates of the Ecdf’s.
Similarly, a larger training set of the feature vectors Y leads to more reliable empirical estimates of the mean and
covariance of the likelihood. In the examples below we have used N = 1000, which leads to 106 distance values
for each Ecdf, and around 60 subsets from {si}i=1,...,τ, which yields 60 × 59/2 feature vectors from the pairs of
(sk, sl), 1 ≤ l, k ≤ 60, enough for the estimates of the mean and covariance of the likelihood. More details are given
in the examples.
3.1 Stochastic Lorenz
In this section we focus on parameter estimation of the stochastic Lorenz system where all the state variables are
contaminated by noise. We start with the basic additive case,
dXt = β(Yt −Xt)dt+ σdWxt
dYt = (Xt(γ− Zt)− Yt)dt+ σdWyt
dZt = (XtYt − αZt)dt+ σdWzt
, (6)
with model parameters β = 10, γ = 28, α = 8/3, σ = 1.5, and Wx,Wy,Wz , three independent Wiener processes.
The observed data are sparse over time so that the gap ∆t = 5 is beyond predictability: too large for any filtering
approach to predict (Xt+∆t, Yt+∆t, Zt+∆t) given (Xt, Yt, Zt). The data set {si}i=1,...,τ contains 60 trajectories s
with 1000 observations each, sampled at steps ∆t in the time interval [0, T ] with T = 5000. Note that the size of σ
has been chosen so that its impact is substantial but not dominant with respect to the system dynamic. In Fig. 2 the
deterministic case is compared with our situation; see also [4] for various cases of Eq. (6).
Given the samples of (X,Y, Z), we compute the pairwise distances of all possible couples (sk, sl), 1 ≤ l, k ≤ 60
as in Eq. (4). Fixing M = 10 we arrive at R0 = 2.4 and b = 1.74, using the minimum and maximum values of
distances as described above, so we can create the empirical cumulative distribution functions of the distances in the
log-log scale to get a representative set of the feature vectors Y. By computing the mean and the covariance of Y,
we have the likelihood available. The sample vectors Y fulfil the χ2 test of normality, as can be numerically verified;
see Fig. 1 as a typical example.
Having a Gaussian likelihood constructed we can perform a standard optimization to find the maximum like-
lihood point, and proceed to sample the posterior of the model parameters. The adaptive Metropolis algorithm
(AM) [24] with a chain of length 40,000 is used for this purpose.
As shown in Fig. 3 (see the case of posterior with one feature vector), the model parameters α,β,γ are well iden-
tified and the mean and standard deviation are reported in Table 1. However, the σ parameter is not fully determined.
In particular, an upper bound for σ is obtained, while the lower bound tends to zero. Intuitively, the reason is that with
σ too large; the total size of the attractor exceeds the variability given by the training set, a situation which is revealed
by the likelihood. This is not the case for smaller values of σ, where an extra variation in the other parameters can
Volume 11, Issue 2, 2021
56 Maraia et al.
-20         -15         -10     -5         0             5      10         15
-20
 -10
      0
     10
      20
      30
60
50
40
30
20
10
FIG. 2: Comparison between samples from the stochastic and the deterministic Lorenz attractor
2.4 2.6 2.8 3
10
12
2.4 2.6 2.8 3
26
28
30
2.4 2.6 2.8 3
0
1
2
8 10 12
26
28
30
8 101 2
0
1
2
26 28 30
0
1
2
POSTERIOR DISTRIB. WITH 1 FEATURE VECTOR
POSTERIOR DISTRIB. WITH 2 FEATURE VECTORS
FIG. 3: 2D marginal parameter posterior distributions of the stochastic Lorenz system, Eq. (6), when only the state is employed
and when the extended state sˆ is introduced
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TABLE 1: Table reports the mean and standard deviation obtained from a
40,000 long chain for both cases: when only the state vector is used and
when also its time derivatives is considered
Stochastic Lorenz 1FV 2FV
mean std mean std
α 2.6740 0.1158 2.6771 0.0998
β 10.4109 0.8571 10.1700 0.4358
γ 27.9637 0.5403 28.04 0.4059
σ 1.0608 0.3815 1.4656 0.1034
balance the lack of additive stochasticity, so the method does not fully recover the variance parameter σ in the basic
form used so far. Therefore a feature extension is needed.
Let us assume that we have the same data set described above, but the measurements taken as pairs with a small
time interval δ = 10−3 in between. We apply the feature extension as described in Section 2, which yields the method
parameter values Rder,0 = 1.75 and b = 1.72 for s˙ with M = 10.
Given the extended state sˆ = (s, s˙) we compute the feature vectors Y and Y˙, for all the possible couples so
as to characterize the variability of the underlying attractor, Fig. 1(a). The Gaussianity of the final feature vector
Yˆ, generated by concatenating Y and Y˙, holds as shown in Fig. 1(b). The likelihood is constructed as before by
computing the mean and the covariance of Yˆ.
The AM algorithm with a chain of length 40,000 is again used to sample the parameters’ posterior distribution.
As shown in Fig. 3, the augmentation with a second feature vector identifies the σ parameter but also increases the
accuracy of the posterior distribution of the other parameters (orange).
Remark 1. Here we selected a large integration time interval T = 5000 to highlight the ability of the approach to deal
with sparse measurements, beyond the predictable time interval. This is by no means necessary; however, posterior
distributions are conditional on the used data.
Remark 2. We do assume that the measurements are taken from an (perturbed) attractor, such as the example in Fig. 2
exhibits. In our examples the initial values are randomized, and an initial part of the integration is omitted to ensure
that the samples are on the attractor. Note that no knowledge of the initial conditions is thus needed, as long as they
are inside the same domain of attraction. This is advantageous especially in higher-dimensional systems where only
a part of the components of the system typically is measured.
Remark 3. In all the numerical experiments presented in this work we scaled the measurements in the interval [−1, 1],
so as to take into account the relative distance between sampled points. Even if this is not compulsory, it becomes
relevant when the magnitude of the values of the considered states are on different scales.
3.2 Stochastically Perturbed Lorenz
So far, the CIL method has been applied to cases where the stochasticity is of the usual additive form. Here we test
the ability of the method in the case where the stochasticity is included in the model equation in nonlinear ways. In
particular, we study examples corresponding to stochastic physics and stochastic parametrization; see [9,10,25].
The stochastic physics (SPPT) is introduced by multiplicative factors 1 + c1² for the drift term, while in stocha-
stic parametrization (SPP) the model parameters α,β,γ are replaced by perturbed terms α + cα², etc. The system
reads as 
X˙ = (1 + c1²)(β+ cβ²)(Y −X)
Y˙ = (1 + c1²)(X((γ+ cγ²)− Z)− Y )
Z˙ = (1 + c1²)(XY − (α+ cα²)Z)
, (7)
with fixed “true” parameters α = 8/3, β = 10, and γ = 28. In our example, the magnitudes c1, cα, cβ, cγ were
chosen so that the maximum relative error is around 6%. In all the above expressions the perturbation ² is modeled
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using the AR(1) model ²t+1 = φ²t + ηξt, same as in [10]. The parameter values used in the experiments are
φ = 0.4, η = 1, and ξt ∼ N(0, 1) which are independent from one another.
For the experiment we create again a data set {si}i=1,...,τ of 60 model simulations in the time interval [0, T ]
with T = 5000. For each simulations, the data points are selected at frequency ∆t = 5, so as to exceed again the
predictable interval. Given sˆ = (s, s˙), the process is repeated for all the possible couples (sˆk, sˆl), 1 ≤ l, k ≤ 60
to get a family of feature vectors Yˆ that characterize the internal variability of the underlying attractor. We repeat
the experiment in three different scenarios: stochastic physics, stochastic parametrization, and stochastic physics and
parametrization. The number of radii used in all the scenarios is M = 10 and the method parameters are R0 =
[2.39, 2.58, 2.49], Rder,0 = [1.80, 2.25, 1.74], respectively, for the stochastic physics and parameterization, stochastic
parameterization and stochastic physics only; while b ∼ 1.82 is approximately the same in all the cases (note the small
variability of these values if compared to those in Section 3.1, due to the repeated stochastic and chaotic simulations).
In Fig. 4 and Table 2 we collect results from the following experiments: (a) stochastic physics and parameteriza-
tion; (b) stochastic physics; (c) stochastic parametrization; and (d) deterministic setup without any stochastic compo-
nents. The results show that the method successfully identifies the model parameters in all the described scenarios. As
expected, the relative errors grow as the amount of stochasticity increases. There is also a more substantial increment
of the size of the posterior distribution from the deterministic to the stochastic physic or stochastic parametrization
cases than from these to the joint stochastic physics and stochastic parametrization.
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FIG. 4: Parameter posterior distributions for the Lorenz model, Eq. (7), under different nonlinear stochastic scenarios
TABLE 2: Table reports the mean and std of 40,000 long chain
Lorenz with stochastic physics
and parameterization
DET. ST. PHY ST. PAR ST. PHY & PAR
mean std mean std mean std mean std
α 2.6672 0.0260 2.6630 0.1053 2.6598 0.0658 2.6538 0.1072
β 10.0231 0.1736 10.2132 0.5636 10.0435 0.2834 10.1542 0.6145
γ 27.9943 0.1620 27.9343 0.3746 27.9378 0.2927 27.8902 0.4069
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Note that here, in the absence of the additive diffusion part, it is enough to use the state values {si}i=1,...,τ only,
while the additional information introduced by the derivative approximations leads to increased accuracy again.
Finally, we consider the stochastic chaotic Lorenz attractor as in Eq. (7) but on top of stochastic physics and
stochastic parametrization there is an extra additive noise. The system becomes
dXt = (1 + c1²)(β+ cβ²)(Y −X)dt+ σdWxt
dYt = (1 + c1²)(X((γ+ cγ²)− Z)− Y )dt+ σdWyt
dZt = (1 + c1²)(XY − (α+ cα²)Z)dt+ σdWzt
.
The data set is the same used above with σ = 1.5 and Wx,Wy,Wz , three independent Wiener processes.
Fixing M = 10 and setting R0 = 2.4, Rder,0 = 1.75 the maximum distances between all the elements of
{si}i=1,...,τ and {s˙i}i=1,...,τ respectively, we obtain b ∼ 1.73. Using the AM algorithm with a chain length 40,000
we obtain the parameters’ posterior distribution shown in Fig. 5. The results summarized in Table 3 confirm the
stability of the method with respect to the increase of uncertainty and the need of a feature extension to identify the σ
posterior distribution.
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FIG. 5: 2D marginal parameter posterior distributions of the Lorenz system including stochastic physics, stochastic parametriza-
tion, and additive noise
TABLE 3: Mean and standard deviation of 40,000 long chain in the
case when only the state vector is used and for the case where also
the time derivative is considered
Stochastic all Lorenz 1FV 2FV
mean std mean std
α 2.6812 0.1465 2.6796 0.1261
β 10.5475 0.9658 10.2478 0.5278
γ 27.9780 0.6531 27.9262 0.4764
σ 0.9299 0.4676 1.4583 0.1360
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Figure 5 exhibits an increase in the parameters’ uncertainty if compared to Fig. 4, as a consequence of the extra
additive diffusion term σ = 1.5.
4. DISCUSSION
The focus of this paper is on estimating systems that are both stochastic and chaotic, mainly arising from weather
and climate model applications. We note, however, that our method can also be used in cases for which several
well-known methods already exist. An example for a linear SDE was discussed in [26]. There, the basic Ornstein-
Uhlenbeck model was used as a test case to compare the parameter posterior distribution obtained by CIL with the
results given by a filter likelihood approach, with an ensemble Kalman filter used for the data assimilation. The
posteriors were similar with both methods.
We have studied cases with larger errors ck and σ, smaller amount of data (smaller T and N ), and several other
well-known chaotic systems, such as the Rossler attractor. The results remain qualitatively similar, and confirm the
stability of the approach with respect to different models, types, and magnitude of stochastic perturbations.
Finally, we would also like to point out certain limitations of the CIL approach: (a) by construction, the CIL
method requires the calculation of the maximal radius R0 of the distances of the observations. Thus, an underlying
assumption is that the solutions of the system remain in a bounded set; (b) as the approach is based on empirical
approximations of the variability of the feature vectors, it requires a large enough data storage {si}i=1,...,τ for proper
results. While resampling methods may be used to create pairs of subsamples even from limited size {si}i=1,...,τ, the
CIL approach still applies to “big data” situations rather than to very limited data sets.
5. CONCLUSION
Stochastic perturbations can be introduced to physical models in highly nonlinear ways. An important example is
forecasting of weather, where so-called stochastic physics and stochastic parametrizations are employed to improve
the skill and spread of probabilistic forecasts, but such systems do not fit the usual formulation of SDE systems, and
an uncertainty quantification of the model parameters can be particularly challenging. The purpose of this work is to
present a method for parameter estimation in situations where, to the best of our knowledge, no previous approach is
applicable. In particular, the method allows irregular observation times, with possibly large gaps in between.
We present an approach based on quantifying the variability of feature vectors that aim to characterize the studied
phenomena, rather than constructing any specific trajectory close to the data as done in methods based on filtering.
We characterize the variability by cumulative distribution functions of the distances of data points. The stochastic
feature vector created in this way is Gaussian, which allows the use of standard statistical methods such as MCMC
sampling.
We test the reliability of this approach on a set of stochastic variations of the classical Lorenz system. We employ
perturbations that correspond to the stochastic physics and stochastic parametrization schemes used in the stochastic
versions of the numerical weather prediction models. The method successfully estimates the posterior distributions
of the model parameters in all cases considered, only gradually increasing the size of the parameter posteriors with
increasing stochastic sources. However, the estimation of an additive diffusion parameter requires approximative time
derivatives of the state, as given by pairwise close-by measurements. Such additional dynamic information increases
the overall accuracy of the parameter identification as well.
A natural next step is to consider high-dimensional SDE systems, such as the NWP models. These systems re-
quire high computational effort, both for the integration of the system and the distance computation. However, various
tools to overcome such difficulties exist: parallel ensemble computations and efficient parallel MCMC schemes, as
well as surrogate methods for approximations of the parameter posteriors (see [27]) where the key idea is to reduce
the required number of full model evaluations.
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A B S T R A C T
Mathematical models for ships’ consumption are in a central role in assessing the CO2 emissions of marinetraffic. Moreover, such models are needed when optimizing the ways the vessels are operated (e.g. routing).Nowadays, many ships are equipped with data collection systems, enabling data-based calibration of themodels. Typically this calibration is done independently for each ship. In this paper, we demonstrate ahierarchical Bayesian approach, where we fit a single model over many vessels, with the assumption thatthe parameters of vessels of similar characteristics are likely close to each other. The benefits of such anapproach are two-fold; (1) we can borrow information about parameters that are not well informed by thevessel-specific data using data from similar ships, and (2) we can use the hierarchical model to predict thebehavior of a vessel from which we have no data, based only on its characteristics. In this paper, we discuss thebasic concept and present a simple version of the model using cruise vessels. We apply the Stan modeling toolfor the fitting and use real data from 64 ships collected via the commercial Eniram platform. The predictionaccuracy of the model is compared to an existing data-free method. We demonstrate that the accuracy of suchan approach can improve upon the classical resistance calculation-based methods.
1. Introduction
Marine vessels are a large contributor to global CO2 emissions.1Lately, emphasis has been put on optimizing various aspects of vesseloperations, such as route and speed profile selection, which helpsin reducing the emissions and make shipping more cost efficient. Tobe able to run such optimization, predictive models of vessels’ fuelconsumption are needed.Moreover, vessel consumption models can be used to assess theglobal emissions of shipping. One such bottom-up approach, where aconsumption model is built for essentially every major ship in theworld, is described in Jalkanen et al. (2009, 2012) and Johansson et al.
∗ Corresponding author.E-mail addresses: antti.solonen@gmail.com (A. Solonen), ramona.maraia@lut.fi (R. Maraia), sebastian.springer@oulu.fi (S. Springer), heikki.haario@lut.fi(H. Haario), marko.laine@fmi.fi (M. Laine), olle.raty@fmi.fi (O. Räty), jukka-pekka.jalkanen@fmi.fi (J.-P. Jalkanen), matti.antola@wartsila.com (M. Antola).1 Global annual CO2 emissions due to shipping were estimated to be 938 million tonnes in 2012 (Smith et al., 2015) and 831 million tonnes in 2015 (Johanssonet al., 2017). A single large ship can burn 40000 tons of fuel and produce 120000 tons of CO2 per year.2 for instance IHS Markit https://ihsmarkit.com/3 AIS (Automatic Identification System) is a system through which vessels report their location and speed. The International Maritime Organization (IMO)requires that AIS is used in all ships with gross tonnage larger than 300.4 Part of Wärtsilä, see https://www.wartsila.com/eniram
(2017). The approach utilizes existing methods for ship resistance cal-culations, where various resistance coefficients are estimated based ondifferent ship characteristics that can be obtained from commercial shipdatabases.2 Obtained models are simulated using vessels’ AIS data.3Another model-based approach for assessing emissions is describedin Smith (2012). Both of these approaches utilize white box modeling,which means that vessel consumption data are not used in training themodels. Including such data into the modeling (a grey box approach)will improve the accuracy of the models. Moreover, the white boxmodeling usually neglects some major resistance factors such as wind,waves, shallow water resistance and hull fouling, which can influencethe vessels’ total resistance and contribute significantly to consumption.
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Nowadays vessel-specific operational data related to vessel’s con-sumption are becoming increasingly available. With such data, accuratemodels can be calibrated for each vessel. See, e.g., the work in Coradduet al. (2015, 2017) for comparison between the white, grey and blackbox modeling approaches, and a comprehensive pipeline for buildingdata-based vessel consumption models. Combining data and physicsin the modeling enables detailed optimization of vessel operations,monitoring the vessel’s propulsion performance and other detailed ship-specific analytics. Various companies offer such solutions, includingEniram Ltd, a Wärtsilä Company, the collaboration partner in thisstudy.4 Due to the reasons listed above the grey box approach has beenselected for propulsion power modeling at Eniram.However, collecting detailed high fidelity data is costly, which callsfor methods to build models also for ships for which we have limitedor no data available. For instance, high-fidelity data based on high-frequency logging onboard a ship might be available only for a smallamount of ships, but there might be, e.g., noon-report type of con-sumption data available for a larger number of ships, where the crewhas reported total consumption numbers over certain time intervals(e.g. 24 h). Such data is being collected in increasing amounts due toEU MRV and IMO DCS regulations that require consumption reportingfor vessels with gross tonnage (GT) higher than 5000. Calibratingconsumption models with noon-report data is challenging and callsfor statistical methods to include all available information into theresistance coefficient estimation. See Antola et al. (2017b) for somediscussion on dealing with such scarce data.The goal of this paper is to illustrate an approach where we can usethe data collected from a group of ships, and generalize the informationto a larger population of vessels. We use real data collected from 64cruise ships via the Eniram platform, anonymized due to data owner-ship questions. Our approach is to build a hierarchical Bayesian modelthat encompasses all the vessel-specific parameters and coefficients, butalso includes a ‘‘hyper-model’’ that links the coefficient values betweenships together. The approach is based on the idea that the resistancecoefficients between two ships of similar characteristics (e.g. type anddimension) are likely close to each other. Both the vessel specificcoefficients and the hyper-model parameters defining between-ship re-lationships are learned from the available data. The novelty comparedto the existing resistance calculations is that the consumption modelparameter values are informed by the data, and can thus give moreaccurate predictions than the classical methods. Moreover, estimatingthe resistance coefficients for a ship that has only limited data availablecan be made more robust and stable by including information aboutother similar ships. For instance, using only a small amount of noon-report consumption data can lead to nonphysical resistance coefficientestimates, but including the hyper-model can help significantly, asdemonstrated later in this paper. Finally, the ‘‘hyper-model’’ can beused to predict the consumption of a ship from which we have no data,based only on its characteristics, which enables applications such as theglobal emission estimation discussed above and optimization of shipsoperations (e.g. route, speed) at scale, without involving expensive datacollection platforms on-board.To the best of our knowledge, using such hierarchical modelingsetup in the context of marine vessel consumption modeling has notbeen discussed before. One straightforward existing approach for bor-rowing information between ships is to apply models built for a ves-sel to its sister vessels, see, e.g., Bazari (2007) and Bialystocki andKonovessis (2016) for discussion. Our approach generalizes this idea.With hierarchical modeling it is possible to learn from the data how theship coefficients link together via various ship characteristics. Thus, onecan ‘‘interpolate’’ between existing ship models and does not need tohave an exact sister vessel model available.We present a prototype of the hierarchical model and show thateven such simple data driven approach can compete in predictionaccuracy with the classical resistance calculations. We demonstratehow the regularization effect of the hierarchical model makes the
results more stable and robust compared to independent vessel-specificmodels. Due to simplicity and data availability, we restrict ourselves tocruise ships and propulsion power modeling. Here, the goal is to presentthe hierarchical modeling concept with simple examples; more work isrequired to increase the sophistication of the model formulations, togeneralize to other ship types (with, e.g., large draft variations) andto include service power models and engine models to turn powerconsumption into fuel consumption. Moreover, to assess the CO2 emis-sions of ships, one needs to have models for mapping fuel consumptioninto emissions, see Jalkanen et al. (2009, 2012) and Johansson et al.(2017) for discussion on these topics. Although we focus here onlyon propulsion power modeling, similar hierarchical modeling ideas arelikely applicable to service power and engine modeling as well.The paper is organized as follows. Section 2 describes the gen-eral setup and the applied models. Section 3 describes the numericalexamples and results. Section 4 concludes the paper.
2. Methods: the modeling setup
This section gives an overview of the two approaches used tomodel propulsion power consumption 𝑃 , which is the target variablein this paper. We first briefly present an existing White Box modelingapproach developed in Jalkanen et al. (2012) that will be used in thenumerical comparisons in Section 3. We then introduce the data-driven,hierarchical Grey Box model and the rationale behind it.Note that the hierarchical modeling approach targets the case wherewe have no consumption data available for a ship, only a (possiblylimited) set of vessel characteristics. That is, our aim is not to build themost sophisticated grey box model based on high-fidelity vessel-specificdata, but to demonstrate the hierarchical concept using very simplegrey box models that consider only frictional and wind resistance. Forbuilding grey box models using high-fidelity data, we refer the readerto Coraddu et al. (2015, 2017), and to the work of some commercialplayers in the field, see Solonen (2016), Haranen et al. (2016) andAntola et al. (2017). Extending the hierarchical modeling concept tomore sophisticated vessel models that take more resistance effects intoaccount is left for future work.
2.1. White box approach: STEAM2
As a comparison to the hierarchical model presented in the nextSection, we use the STEAM2 model developed in Jalkanen et al. (2012),which builds on earlier work, such as the widely used Hollenbachresistance calculations, see, e.g., Schneekluth and Bertram (1998) andHollenbach (1998). The purpose of STEAM2 is to build a white boxmodel for basically every major ship in the world using only publiclyavailable ship characteristics, with the goal of assessing the emis-sions from shipping. To our knowledge, STEAM2, together with thesimpler modeling approach described in Smith (2012), is one of theonly systems capable of doing such bottom-up global simulations ofconsumption and emissions.In STEAM2, the propulsion power consumption is calculated simplyvia 𝑃 = 𝑅𝑇 𝑉 , where 𝑉 is vessel speed through water and 𝑅𝑇 is the totalresistance. In this approach, the total resistance is approximated by
𝑅𝑇 = 𝑅𝐹 + 𝑅𝑅, (1)where 𝑅𝐹 is the frictional resistance between the water and the vessel’swet surface, and 𝑅𝑅 is the ‘‘residual resistance’’ that accounts for otherhydrodynamic resistance components such as wave making (the powerneeded for forming the wave pattern that the vessel generates).The frictional resistance is calculated as
𝑅𝐹 = 𝐶𝐹
𝜌
2
𝑆𝑉 2, (2)
where 𝑆 is vessel’s wet surface area, 𝜌 is water density and 𝐶𝐹 is thefrictional resistance coefficient. Here, we follow the widely used ITTC
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approach,5 where 𝐶𝐹 = 0.075∕(log10(𝑅𝑛) − 2) and 𝑅𝑛 is the Reynoldsnumber, calculated here as 𝑅𝑛 = 𝑉 𝐿𝑤𝑙∕𝜈, where 𝐿𝑤𝑙 is the waterlinelength of the vessel and 𝜈 is the kinematic viscosity.The waterline length 𝐿𝑤𝑙 is typically available from various com-mercial ship databases such as IHS Markit, but the wet surface area 𝑆 istypically unknown. In the Hollenbach calculations, 𝑆 is estimated usinga rather complicated formula that involves various ship dimensions.The formula was obtained in Hollenbach (1998) via regression analysisapplied to model tank test results for 433 ships. The formula and theregression coefficients are reported, for instance, in Schneekluth andBertram (1998) and are not reproduced here for brevity.The residual resistance is calculated as
𝑅𝑅 = 𝐶𝑅
𝜌
2
(𝐵 ⋅ 𝑇
10
)
𝑉 2, (3)
where 𝐵 is vessel breadth, 𝑇 vessel draft and 𝐶𝑅 the residual resistancecoefficient. The residual resistance coefficient 𝐶𝑅 is obtained via theHollenbach method using a similar approach than for wet surfacearea; the formula and the best-fit regression coefficients are reportedin Schneekluth and Bertram (1998) and are not reproduced here.Note that in our simple data-based model described in Section 2.2,we clump everything in front of 𝑉 2 into one constant parameter. Wethus ignore the fact that the frictional resistance reduces a bit as afunction of vessel speed. However, this effect is small compared to theoverall accuracy of the models, and our goal is to show that a simpleparameterization can give prediction accuracy comparable to morecomplex white box formulations. Moreover, the data-based approachallows us to fine tune the coefficients for each vessel instead of usingfixed formulas and coefficients.In addition to the Hollenbach resistance formulas behind STEAM2,there are other white box resistance calculation approaches that couldbe used to generate ship models based on vessel characteristics. Forinstance, the Holtrop–Mennen method is a similar, widely used ap-proach. See Birk (2019) for discussion and comparison between themethods. It would be interesting to compare the hierarchical methodto Holtrop–Mennen as well, but it requires a more extensive set of shipcharacteristics that often is not easily available.Note that many resistance components are ignored in STEAM2(and in many other white box methods like the mentioned Holtrop–Mennen), such as the aerodynamic resistance that we include in thedata-based model. Other ignored resistance effects include, for instance,wave breaking resistance (resistance caused by the waves that thevessel needs to propel through), shallow water resistance (additionalresistance caused by sailing in shallow waters, also known as squatting,see Schneekluth and Bertram, 1998 for more details) and hull rough-ness and biofouling. These effects could be included in the resistancecalculations, but then we would need to come up with values forthe corresponding resistance coefficients, which can be complex andrequire many simplifying assumptions and new vessel characteristics(at present, the STEAM2 model is being developed to this direction).This is in contrast with grey box models – and thus also the hierarchicalgrey box approach described in the following Section – where it ispossible to learn the required coefficients from data and these extraeffects could be added in a rather straightforward manner.
2.2. Simplified hierarchical grey box model
Here we present a simple prototype for the hierarchical Bayesianpropulsion power model, which is the main novelty of this paper. Letus assume that we have a ship-specific propulsion power model like
𝑃𝑖 = 𝑓 (𝑥𝑖, 𝜃𝑖) + 𝜀, 𝑖 = 1,… , 𝑁, (4)where 𝑖 is the ship index, 𝑃𝑖 is the observed propulsion power, 𝑥𝑖are the observed model inputs (vessel speed, wind speed and angle,
5 https://ittc.info/
etc.), and 𝜃𝑖 are the unknown parameters that we want to estimate(e.g. various resistance coefficients). The error term 𝜀𝑖 denotes thediscrepancy between modeled and observed propulsion power.The traditional approach would be to estimate the parameters foreach ship independently, using the data (𝑥𝑖, 𝑃𝑖) for each ship. Here,instead, we add another layer of modeling; we assume that the pa-rameter values can be predicted with some (unknown) accuracy usingvarious ship characteristics. Thus, we write a model for the ship-specificparameters as
𝜃𝑖 = 𝑔(𝑐𝑖, 𝜆) + 𝜂, (5)where 𝑐𝑖 denotes the characteristics, 𝜆 is a vector of unknown hyper-parameters and 𝜂 describes how accurate this hyper-model 𝑔 is inpredicting the parameter values. The ship characteristics could berelated, for instance, to vessel’s size (e.g. weight), dimensions (widthand length), construction year, or any other vessel metadata that carriessome information about 𝜃𝑖. The general setup is illustrated in Fig. 1.The goal is now to learn both the ship-specific coefficients 𝜃𝑖 and thehyper-parameters 𝜆 using all the observed data 𝑃1∶𝑁 . In Bayesian terms,this amounts to finding the posterior distribution of the parametersgiven the measured data, 𝑝(𝜃1∶𝑁 , 𝜆|𝑃1∶𝑁 ). In addition, we would liketo learn about the error terms 𝜀 and 𝜂, which can be done by fixingthe form of the error distributions (e.g. zero mean Gaussians) andincluding the parameters of the error distributions (e.g. variances ofthe Gaussians) to the group of parameters that are estimated from thedata.Finally, when we have learned the posterior distribution for all theparameters, we have a model where the ship-specific coefficients areinformed by both their own data and data from similar ships. FullBayesian analysis of the parameters also lets us predict the behaviorof a vessel that is not included in the training data, and give an ideaabout how certain we are about the predicted behavior. This feature ismissing from the classical resistance calculations.We demonstrate the hierarchical modeling idea with a simple exam-ple. Our vessel-specific model includes only two terms; one describinghydrodynamic resistances (e.g. friction and wave making) and one foraerodynamic resistance. Propulsion power for the ship 𝑖 is calculatedvia 𝑃𝑖 = 𝑅𝑇 ,𝑖𝑉𝑖, where 𝑅𝑇 ,𝑖 is the total resistance, which is here ap-proximated as the sum of hydrodynamic and aerodynamic resistances:
𝑅𝑇 ,𝑖 = 𝑅𝐻,𝑖 + 𝑅𝐴,𝑖. (6)The hydrodynamic resistance model used here is quite crude; wesimply state that the resistance increases proportionally to vessel speedsquared: 𝑅𝐻,𝑖 = 𝑎𝑖𝑉 2𝑖 , where 𝑎𝑖 is the hydrodynamic resistance coef-ficient, which is assumed to be an unknown constant. In reality, thehydrodynamic resistance coefficient is not constant though; it variesas a function of, e.g., vessel speed and draft (viscous resistance is afunction of the Reynolds number, and the wave-making resistance is afunction of the Froude number). However, for demonstration purposesthis approximation is adequate, especially for cruise ships consideredin this study for which the draft variations are minimal.For wind, we use the simple approximation that the wind resistanceis proportional to relative wind speed squared. When we project thewind resistance force vector to the heading of the ship, we get 𝑅𝐴,𝑖 =
𝑏𝑖 cos(𝛼𝑖)𝑈2𝑅,𝑖, where 𝛼𝑖 is the relative wind angle, 𝑈𝑅,𝑖 is the relativewind velocity and 𝑏𝑖 is the unknown wind resistance coefficient. Notethat this approximation is rather crude; it assumes, for instance, thatthe contact area between the wind and the vessel hull is constant. Somemore sophisticated wind formulas, such as those described in Blender-mann (1996) and Schneekluth and Bertram (1998), could be taken intouse, but this simple formula is sufficient for demonstration purposes.With these approximations, our simplified propulsion power modelfor ship 𝑖 reads as
𝑃𝑖 = 𝑎𝑖𝑉 3𝑖 + 𝑏𝑖 cos(𝛼𝑖)𝑈
2
𝑅,𝑖𝑉𝑖 + 𝜀𝑖. (7)
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Fig. 1. Illustration of the hierarchical model. Based on ship-specific power consumption data and various model inputs (black dots) the goal is to learn both ship-specific parametervalues (blue error-bars) and hyper-parameters that link the between-ship parameters together. The ships in the figure are imaginary; the graph is generated with the syntheticdemo code available in https://github.com/solbes/stanship. The vessel size in the bottom figure indicates the gross tonnage of the vessel scaled by 100000.
Now, the goal is to estimate coefficients 𝑎𝑖 and 𝑏𝑖 from measureddata. This could be done individually for each ship, but that could beproblematic if the data is not very informative about the coefficients.That is why we include the hyper-model to tie the coefficients betweenships together in one model.The task of the hyper-model is to predict the values of the resistancecoefficients based on some ship characteristics 𝑐𝑖. Here, we use theships total weight 𝑤𝑖 (gross tonnage, GT) as the hyper-model input,and model both coefficients as linear functions of GT:
𝑎𝑖 = 𝜆1 + 𝜆2𝑤𝑖 + 𝜂𝑎
𝑏𝑖 = 𝜆3 + 𝜆4𝑤𝑖 + 𝜂𝑏,
(8)
where 𝜂𝑎 and 𝜂𝑏 are Gaussian error terms.This is obviously not a very physical model. In more realistic set-tings, one could model the hydrodynamic and aerodynamic resistanceusing the vessel’s dimensions, for instance. Here we pick GT as the inputvariable since it is easily available for all ships. A better indicator ofvessel’s mass might be its deadweight, or one could utilize the ship’sblock coefficient in some way, but here we use just GT based oneasy data availability. The linear model choice comes from empiricalobservations; individual coefficients seem to roughly scale linearly as afunction of vessel’s GT. Note also that the ability to use such nonphysi-cal parameterizations can be considered as a strength of the data-basedapproach; we can essentially insert any parameterization and try touse data to figure out the relationships between unknown coefficientsand ship characteristics. Building a more sophisticated hyper-modelbased on more characteristics is left as a topic of future study; themain goal here is to illustrate the concept with a simplified example.Moreover, since the parameterization of the hyper-model is based onlyon gross-tonnage, we do not expect the model to extrapolate accuratelybeyond the ship sizes used in the model calibration. A more physicalhyper-model parameterization would help here.
The remaining task is to estimate all of the ship-specific resistancecoefficients in one model together with the hyper-model parameters 𝜆𝑖.Moreover, as the vessel-specific model and hyper-model errors, 𝜀𝑖, 𝜂𝑎and 𝜂𝑏 are unknown, we will estimate them from the data, as well. Wewill assume that the errors are normally distributed and zero mean:
𝜀𝑖 ∼ 𝑁(0, 𝜎𝑖), 𝜂𝑎 ∼ 𝑁(0, 𝜎𝑎) and 𝜂𝑏 ∼ 𝑁(0, 𝜎𝑏). In addition to theresistance coefficients and hyper-model slopes and intercepts, we alsoestimate the variances (𝜎𝑖, 𝜎𝑎, 𝜎𝑏). For Bayesian statistical analysis weneed to specify prior uncertainties for all the model parameters. We useuniform priors for the resistance coefficients, and uniform priors withpositivity constraints for the variance parameters. With less informativedata or a smaller number of groups (ships), one might need to constrainthe variance parameter more. See Gelman (2006) about setting priorsfor variance parameters in hierarchical models.6The equations for the ship-specific models are simple and linear inparameters, but fitting the full hierarchical model is far from trivial.With 50+ ships the number of estimated parameters becomes ratherhigh – a few hundred – and exploring this high-dimensional posteriordistribution calls for efficient numerical methods. In recent years,flexible and openly available tools for defining and fitting such hierar-chical Bayesian models have been developed, including, for instance,PyMC3 and the probabilistic programming language Stan (Salvatieret al., 2016; Carpenter et al., 2017). Here, the model fitting is carriedout with the latter one, which implements a carefully tuned MarkovChain Monte Carlo (MCMC) sampler that is capable of exploring high-dimensional distributions. Model implementation with synthetic data(real data cannot be distributed) is available online.7 The reader isreferred to the experimental section for more details.
6 See also https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations about priors7 https://github.com/solbes/stanship
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3. Results and discussion
In this Section we present three numerical examples. The firstillustrates how the hierarchical modeling regularizes the ship-specificparameter estimation. The second example compares the data-basedmodel to the white box approach of Section 2.1. The last exampledemonstrates the ability to obtain uncertainty statistics for the modelpredictions.
3.1. Description of the dataset
We use real data in the experiments obtained from the Eniramplatform to calibrate the grey box models. Propulsion power measure-ments are obtained from the vessels’ automation systems. For vesselspeed, we use speed over ground obtained from the vessel (a GPS-based measurement) augmented with ocean current forecasts to getan estimate of speed through water. For wind angle and wind speed,we use values from a weather forecast provider. Results and data areanonymized.The original dataset contained very high-frequency data (time stepwas in the order of seconds). However, this is an overkill for thetype of modeling we discuss in this paper, so the data was initiallydown-sampled to contain one value every 30 min. For some of theexperiments below, we further averaged the data to daily resolutionin order to emulate noon-report data.Before calibrating the models, some data preprocessing was applied.First of all, a legging algorithm was used to take only data when theship is in steady operation at sea (not at port or doing maneuveringnear the port). The details of this algorithm are proprietary information.Moreover, we filtered out points when the depth of the ocean accordingto the GEBGO-2014 database was very low, in order to remove someextreme squatting (shallow water resistance) periods. Moreover, somevalues that were deemed erroneous (e.g. negative speed or power,unphysically high wind readings, etc.) were removed.In the demo code package published in https://github.com/solbes/stanship, we generate a synthetic dataset that resembles the originaldataset. However, in the experiments described below, the real datasetwas applied.
3.2. Regularizing effect of hierarchy
Here, we demonstrate how the hierarchical modeling can help toidentify the parameters of individual ships, in the case where theship-specific data are not informative about the unknowns. We makethe following experiment. Instead of modeling the momentary powerconsumption, we attempt to emulate a setting where we only have‘‘noon-report’’ type of data available; that is, we have total consumptionreadings over given time intervals (e.g. 24 h) and momentary vesselspeed and weather data with higher resolution. We choose this settingfor demonstration purposes, since such aggregated data has obviouslymuch less information about the parameters than the momentary data,and using noon-report data to calibrate ship models is thus challenging.We model the total consumption over a given time interval byintegrating both sides of the ship-specific power models. For ship 𝑖 anda single 24 h period the model now reads as
∫24ℎ 𝑃𝑖(𝑡)𝑑𝑡 = 𝑎𝑖 ∫24ℎ 𝑉𝑖(𝑡)
3𝑑𝑡 + 𝑏𝑖 ∫24ℎ cos(𝛼𝑖(𝑡))𝑈𝑅,𝑖(𝑡)
2𝑉𝑖(𝑡)𝑑𝑡 + 𝑒𝑖, (9)
and thus the model remains linear with respect to the parameters.The training data for the ship-specific models are now the daily totalconsumption and integrated model input terms. In the experiment here,we replace the integrals by 24 h averages; in this way we do not needto worry if a few data points are missing from some 24 h intervals.Note that in practice the noon-reported consumption is not nec-essarily reported at even 24 h intervals. In real applications there isalso added complexity related to handling maneuvering periods (when
consumption can be unpredictable), missing data and other consumersin addition to propulsion (service power), for instance.We use around 100 daily averages in the model fitting for eachship. The results for the hydrodynamic and aerodynamic coefficientsfor each ship with and without the hierarchy are given in Fig. 2. Wesee that the hydrodynamic coefficients are well identified with the ship-specific data alone, and the hierarchy does not have much of an effect.However, for the wind resistance coefficients the situation is different.There is not enough information in the noisy data to calibrate thecoefficients, and thus fitting ships independently yields some unrealisticvalues (e.g. close to zero) and the uncertainty is large. Adding thehierarchy pools the estimates closer to the linear prior and yieldsmore reasonable looking estimates. We expect similar results for otherresistance factors that might not be well-informed by the vessel-specificdata, such as the shallow water resistance effect.
3.3. Comparing the models
In this Section the goal is to compare the presented hierarchicalBayesian grey box approach to the STEAM2 white box model discussedin Section 2.1. We compare STEAM2 to two data-based models; onewhere the resistance coefficients are predicted using the prior model(vessel’s gross tonnage), and one that uses the vessel-specific resistancecoefficients obtained from the hierarchical model fit. Note that thelatter would obviously not be available in cases where vessel consump-tion data is unavailable, but the results are presented here anyway forreference.We begin by illustrating a few typical cases in Fig. 3 by plottingthe speed-power curves obtained with the different models on top ofthe measured data.8 In some cases, STEAM2 seems to underestimatethe power consumption, e.g. panels (a.1) and (a.2) in Fig. 3. The prior-based model obviously has bias in several cases, but the residuals aretypically smaller than for STEAM2. In some other cases STEAM2 seemsto under-estimate the power with small speeds but over-estimate it withhigh speeds, see plots labeled with (b) in the Figure. Also in these casesthe prior-based model works better in general. There are also caseswhere the STEAM2 model performs better or equally well than theprior-based model, see plots labeled with (c) and (d), respectively. Inall cases the ship-specific fits give the best results, which is no surprise.
To give a more comprehensive view on the performance of thedifferent models, selected residual quantiles are illustrated for all theships and all the models in Fig. 4. One can clearly observe the under-estimation of power in STEAM2, whereas the prior-based model resid-uals are more zero-centered. Thus, the hierarchical approach wherethe resistance coefficients of a very simple propulsion power modelare predicted based only on the vessel’s gross tonnage can give moreaccurate results than a white box approach. Note, however, that theseresults hold only for cruise vessels whose size is close to the range ofship sizes included in the estimation.To conclude the model comparison, we illustrate in Fig. 5 how themodel residuals behave as a function of vessel speed for the differentmodels. To do this, we fit a smooth residual vs. speed through water(STW) curve to the data using the LOWESS method (Cleveland, 1979)(see the top left plot in the Figure for an illustration), and then plotthe smoothed curves for all the ships in one figure. From the Figurewe can again observe the under-estimation of power in STEAM2, andalso the common over-estimation of power with high speeds. Also, inline with Fig. 4, the data-based models perform better and have lessspeed-dependent bias.
8 The data-based methods also include wind as an input. Here, we simulatespeed-power curves with the median of the wind effect cos(𝛼𝑖)𝑈 2𝑅,𝑖 calculatedfrom the data
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Fig. 2. Illustration of the hierarchical model. Vessel size index is defined so that the smallest ship has value 1. This scaling is done in order to anonymize the results.
One possible factor behind the under-estimation of power in theSTEAM model is that it ignores many resistance components such aswind, waves, squat and hull roughness. Work is currently underwayto include many of these effects to STEAM. The data-based approachdoes not explicitly include most of these either (only wind), but sincethe models are fitted to the data, they calibrate to some averagecontribution of these excluded resistances. For instance, the frictionalresistance coefficients in the ship-specific fits calibrate to some averagehull condition over the data period included in the model fitting, andthe hyper-model calibrates to some average hull condition over theships. Moreover, wind and waves are correlated, so the wind coefficientprobably ends up capturing some of the wave breaking resistance, too.In this sense, the data-based models do take these extra resistancefactors into account in some way, and thus the comparison to STEAMis not completely fair. While the data-based models perform well here,within the set of cruise-ship examples, more research is needed forextrapolation to smaller vessels, where the implicitly included resis-tance factors may impact differently. The purpose of this comparison isthus not to claim that the data-based methods outperform the classicalwhite box resistance calculations, but to demonstrate that the hierar-chical modeling concept provides a viable option when enough data isavailable.
3.4. Obtaining statistics for predictions
One benefit of the Bayesian approach is that it is statistical. Modelparameters are treated as random variables, and the solution is adistribution of possible parameter values instead of point estimates.Also, this enables assessing how reliable are the estimation results andpredictions made with the model. In practice, the Bayesian analysis iscarried out with the Stan tool, which runs Markov Chain Monte Carlo(MCMC) analysis on the model parameters. The result is a set of samplesfrom the distribution of the parameter values, and uncertainties of themodel predictions can be obtained in a straightforward manner bysimulating the models with the parameter samples.
We demonstrate this feature by calculating the uncertainty dis-tributions of the speed-power curves for six selected ships using theprior-based models. Due to incomplete and noisy data, there is un-certainty in the linear hyper-model parameters. Moreover, the linearmodel itself has errors, the magnitude of which is also estimated inthe hierarchical model. Thus, with a given gross tonnage, we can givea range of values where the true speed-power curve likely is. This isillustrated in Fig. 6. The obtained statistics seem consistent. The ‘‘true’’speed-power curve seems to fall within the calculated envelope. Windeffect was ignored here for simplicity.
4. Conclusion and future work
The purpose of this paper was to illustrate a hierarchical Bayesianmodeling approach for marine vessels. As a prototype case, we selectedcruise vessels and propulsion power prediction. For demonstrationpurposes, we used a simple two-parameter propulsion power model anda linear hyper-model based on vessel’s gross tonnage to link togetherthe parameters between ships. We demonstrated that the accuracy ofsuch an approach can improve upon classical white box resistancecalculation-based methods.Calibrating these models in one go becomes computationally ratherexpensive when the amount of ships and data per ship increases. Inpractical implementations one likely needs to take another approach.One idea is to fit the models sequentially. First obtain the vessel-specific parameter estimates using the current hyper-model as the prior,and then update the hyper-parameters based on the most recent ship-specific estimates. This would give a scalable approximation to the fullhierarchical model fitting.Here we had only one ‘‘data type’’ in the estimations (either simu-lated noon-report data or high-frequency data). In real life, one wouldlike to combine all data (both the high-fidelity and the noon re-port data) in the estimation. This would enable efficient borrowing ofinformation from data rich vessels.
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Fig. 3. Left: comparison of data and speed-power curves obtained with different models. For the data-based methods, the simulation uses the median wind effect calculated fromthe data. Right: residual densities obtained by kernel density estimation. Residuals are calculated as differences between the measured data and model predictions.
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Fig. 4. Residual median (solid line) and 95% confidence region (filled area) for the different models. The bottom right figure compares the medians of the different models. Thex-axes indicate the number of the ship in the study.
Fig. 5. Residuals as a function of vessel speed. Residuals are obtained as differences between the measured data and model predictions. Top left: illustration of the LOWESS curvefitting to the data for one ship. Other plots: LOWESS smoothed residual vs. stw curves for different models over all ships (line color indicates a ship).
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Fig. 6. Confidence envelopes (50% and 95%) for the speed-power curves (without wind effect) predicted based in vessel’s gross tonnage. The envelopes are calculated via predictionscalculated from the obtained MCMC parameter samples. The red curve comes from the ship-specific parameters and represents where the true speed-power curve roughly is. Thedifferent figures illustrate the results for six specific chosen vessels; the other ships behave in a similar manner.
We feel that the results can be improved further by introducingmore sophisticated propulsion power models and better hyper-modelsthat include more ship characteristics into the estimation. In addition,we estimated only propulsion power; to get a complete picture of thevessel’s fuel consumption (and thus emissions), we would need modelsfor non-propulsion related power consumption (service power) andengine models to map power into fuel flow. An obvious topic to beanalyzed in more detail is the impact of fouling effects. The mainmotivation of this paper was methodological, and these topics, and alsogeneralization to other ship types, are thus left for future work.
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