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Customer load modeling is a fundamental component of many business practices in the
energy industry, particularly in the electricity distribution and retail sectors. The increas-
ing numbers of electric vehicles (EVs) and thereby the increase in EV charging loads con-
nected to the grids have significant implications for distribution system operators (DSOs)
as they may result in increased peak loads, major changes in load profiles, and a need to
invest in the infrastructure. It is also worth considering the potential opportunities that
dynamic EV charging loads can bring, for instance, for the demand-side management.

The main focus of this doctoral dissertation is to investigate and provide a broad but also
detailed overview of the load modeling of EV charging (spatial and temporal) mainly
from the distribution system operator’s (DSO’s) business perspective, but also to cover
the perspectives of the other players, such as the electricity retailer and the aggregator.

The main objective of the doctoral dissertation is to offer tools to support and improve the
DSO’s long-term strategic planning process in order to identify challenges or opportuni-
ties of the large-scale EV smart charging. Modeling tools and analysis of EV charging
loads also provide important information for other players in the field of energy systems
and energy markets. The main focus is on determining the stochastic nature of the charg-
ing loads to facilitate load formation and forecasting activities. Spatiotemporal modeling
techniques are also applicable for analyzing and managing electricity retailers’ or flexi-
bility aggregators’ customer portfolios and (load) profile risk.

As the main outcome, the doctoral dissertation shows the variety of EV charging appli-
cations and modeling practices. The novelty of the dissertation is in summarizing a wide
range of EV charging applications and laboratory experiments to quantify the impacts of
EVs on the power system and its various parties. A particular novelty lies in adding the
features of the cold environment to the load modeling of EVs, but also in showing that
spatial modeling benefits from using convolutional neural network (CNN) models. As the
main conclusion, it can be stated that EV charging will have a significant impact on the
power system, but the impact will depend on the development of smart charging applica-
tions.

Keywords: electric vehicle (EV) charging, distribution system operator (DSO), retail, ag-



gregator, controlled charging, asset management, load modeling
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1 Introduction

Customer load modeling is a fundamental component of many business practices in the
energy industry, particularly in the electricity distribution and retail sectors. The Finnish
distribution system operators (DSOs) manage an asset of e12 billion, which is under
constant development, while the electricity retailers are managing a customer portfolio of
3.5 million customers (Energiavirasto, 2023). Major changes in the load have an impact
on the whole energy system and especially on the DSO’s asset management, but also on
the retailers’ portfolio risk.

Over the past few decades, the development of electricity distribution has remained rel-
atively stable since the rapid electrification of rural areas in Finland, which began in the
1950s and was mostly completed a decade later. However, recent advances, such as the
emergence of centralized and distributed renewable production types, heat pumps, and
other smart appliances, have influenced the distribution system. In addition to other novel
loads and resources, the increasing adoption of electric vehicles (EVs) has brought new
challenges and opportunities to the DSOs. In particular, the charging loads of EVs have
unique characteristics that make them among the most dynamic load types that the dis-
tribution grids have ever encountered. There are other industrial appliances and some
household devices, such as sauna stoves, that are capable of rapid power transitions in
a short period of time, but EVs introduce more controllable dynamics, and more impor-
tantly, also dynamics in terms of location. EVs can be connected to the grid at various
locations, making load forecasting or the availability of demand response resources a
more challenging task. Therefore, it is crucial for the DSOs to investigate and understand
the load modeling of EV charging from a business perspective to effectively plan and de-
velop the grid infrastructure for the future. The same challenges of changing customer
loads are also present for other players in the energy market, such as energy retailers,
aggregators, and energy managers.

Historically, household electricity consumption profiles have been well-predictable and,
in addition, they have been taken into account in the DSOs’ strategic planning processes
and development of the grid infrastructure. However, over the past decade, the situation
has started to change rapidly as more and more EVs are connecting to the grid behind
the customer connection points in private and public locations. EVs have emerged as
one of the largest new loads that the distribution grids are facing. The nature of EV
charging loads, with their dynamic and variable characteristics, presents challenges, but
also opportunities for the DSOs. EV charging loads depend on various factors, such as
charging station types, constraints of the charging power level, EV properties, duration
of charging, the charging behavior of EV users, and use cases. Therefore, it is critical
for DSOs to accurately model and track these factors as EV charging loads become more
common. The latest novelty in EV charging is bidirectional power transfer, which enables
a wider range of applications and makes the modeling task even more challenging.

To effectively model and analyze EV charging loads, large datasets are often required.
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Data-driven analysis can provide valuable information on the behavior of EV users, the
demand for the charging infrastructure, and the impact of EV charging on the distribution
grid. Models based on wide and reliable datasets offer valuable insights into charging
patterns, energy consumption, and other relevant factors, from which DSOs can gain a
comprehensive and detailed understanding of the EV charging load characteristics. This
understanding can guide strategic planning decisions, development of the grid infrastruc-
ture, and resource allocation, among other more technical key aspects of DSO operations,
such as daily operating activities. Similarly, modeling results can be utilized to support
electricity retailers’ portfolio management or to improve aggregators’ estimation of the
flexibility resource availability.

The increasing numbers of EVs and thereby the increase in EV charging loads connected
to the grids have significant implications for DSOs as they may result in increased peak
loads, major changes in load profiles, and a need to invest in the infrastructure. It is worth
considering also the potential opportunities that dynamic EV charging loads can bring,
such as demand-side management. DSOs must strike a balance between addressing the
challenges posed by EV charging loads and leveraging the opportunities they present to
ensure reliable and efficient operation of the distribution grid.

The main focus of this doctoral dissertation is to investigate and provide a broad but also
detailed overview of the load modeling of EV charging (spatial and temporal) mainly from
the DSO’s business perspective, but also to cover the perspectives of the other players,
such as the electricity retailer and the aggregator. The dissertation identifies the main
factors to be tracked as EV charging loads are becoming more common. The analysis
relies on large datasets and a variety of different types of charging applications.

1.1 Main drivers of the change

The key driver is the increasing awareness of environmental values and the global cli-
mate. The emerging concern for the environment and climate change has led to global
environmental policies that drive toward carbon dioxide (CO2) emissions-free societies.
For example, the European Union (EU) has set a long-term strategic goal to achieve a
climate-neutral economy by 2050 (European Commission, 2019). Similar targets are also
set globally, and commitments such as the Paris Agreement (Paris Agreement 2015) have
been signed. There are several studies indicating that the human-caused climate change is
causing serious changes in living environments worldwide (Intergovernmental Panel on
Climate Change (IPCC), 2023), and therefore, action must be taken as soon as possible.
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1.1.1 Energy sector

As a result of the energy policy drivers, the proportion of renewable energy production
is expected to increase globally by 2 400 GW between 2022 and 2027 (International
Energy Agency, 2022). Figure 1.1 shows the rapid increase in the renewable electricity
production types.

Figure 1.1: Proportion of renewable electricity production globally in 2015–2027 (history
and forecast) (International Energy Agency, 2022).

The forecasts and targets are even higher, as stated, for instance, by the report of the
Intergovernmental Panel on Climate Change (IPCC) (2023). Major changes in production
structures pose challenges not only in the transmission grids but also in the electricity
distribution, as the main proportion of the increasing renewable electricity production is
small-scale distributed production. A large amount of solar photovoltaic (PV) production
introduced to the distribution grid is something that was not fully incorporated in grid
planning when the grids were deployed several decades ago. The traditional DSO task
has been to manage voltage drops, but recently there have been problems with increasing
voltage levels on the customer side, mainly caused by surplus distributed solar power
production. As distribution grids were never prepared for such a transformation of the
production structure, issues are emerging with increasing voltage levels, which are already
visible in continental European grids (Zakeri et al., 2021).

Unique mainly to the Nordic environment, DSOs are also facing a loss of customers in
sparsely populated areas (Haakana et al., 2022). The decreasing number of customers
combined with the long distances and tight requirements for the security of supply make
a unique challenge to tackle. While some areas are losing customers, there are other
areas that are gaining in popularity especially during summer and winter vacation peri-
ods. Modern vacation homes are well equipped and often connected to electricity grids.
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As private transportation is changing, new challenges are arising in areas that are losing
customers but also in areas gaining in popularity as vacation destinations.

The set of challenges is substantial for the whole power system and will have an impact
on the system in terms of production, transmission, distribution, and consumption. Res-
idential customers are facing major changes related to the changing primary energy of
transportation, as EVs are likely to be charged mainly at home(Ward et al., 2023; Au-
toalan Tiedotuskeskus, 2020). Residential customers will experience the integration of
solar PV in their close proximity, as a large proportion of the production capacity is in-
stalled in private residences. Many residences are renovated to enhance the efficiency of
the energy usage, the most typical example being installation of a heat pump to replace a
direct electric space heater or an oil burner.

DSOs are at the core of the system that provides electricity to more demanding cus-
tomers. Grid development and investment planning are urgent topics in many companies.
The Nordic environment can be seen to provide a head start for many companies, as the
grids are already dimensioned to withstand rather high heating loads in winter while also
delivering electricity to long distances in sparsely populated rural areas. But even more
importantly, it is crucial to make wise investment plans as the existing grid infrastructure
is already very expensive in comparison with countries where the average loads are lower
and the distances are shorter because of the more densely populated areas.

1.1.2 Transportation sector

Decarbonizing transportation is one of the main goals on the way to carbon-neutral so-
ciety and also to meet the European Union’s emissions reduction targets for 2050. The
transportation sector produces 28% of the total CO2 equivalent emissions of the energy
sector in Finland, even though the energy usage of the transportation sector is only 16%
of the total.

Fossil fuel sources that are today widely used in the transportation sector in developed
countries are about to disappear in the coming decades, while the demand for fossil fuels
in developing countries is still increasing. The political pressure to reduce CO2 emissions
puts more pressure on fuel taxation. The question often raised is: When does the fuel
cost too much? Traditional combustion engines have strong rivaling technologies, such as
electric motors and combustion engines capable of using biofuels or hydrogen cells. The
electric motors have major advantages over other technologies. First, the electric motor is
simple to manufacture, making it often durable and reliable. Second, an electric motor has
a superior efficiency compared with internal combustion engines (Ehsani et al., 2010). As
a result of the superior efficiency, the energy consumption is noticeably lower than with
the rivaling technologies. These competitive advantages make electric cars an attractive
option. The electrification of transportation started globally more than a decade ago and is
today reaching more than 2.3 million cars a year (International Energy Agency, 2023). In
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Figure 1.2: World greenhouse gas emissions in 2019 by sector, end use, and gases.
Adopted from the Climate Watch platform (Climate Watch Platform, 2022).

Finland, the transition to electric mobility is still modest, but the number of EVs doubles
each year. According to current forecasts, the national EV fleet will reach 740 000 cars
by 2030 (Vasara et al., 2022). The size of the fleet was 150 000 cars at the end of May
2023. Furthermore, it should be noted that the EV sales have outnumbered the sales of
petrol and diesel cars in several months (Traficom, 2023).

Figure 1.3: Registered vehicles in Finland and the proportion of EVs and PHEVs
(Teknologiateollisuus, 2023; Statistics Finland, 2023a; Traficom, 2023).

Pure EVs have rival technologies such as renewable liquid fuels that can be used in con-
ventional vehicles; biogas that can also be used in conversion vehicles; and technologies
such as electrolysis-based hydrogen production. The efficiency of the electric vehicle is
in a league of its own compared with other technologies, but EVs have a major drawback
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in terms of driving range. The present technology can provide vehicles with a driving
range from a hundred to several hundreds of kilometers, which may seem quite modest in
comparison with petrol cars, which have a typical range of up to a thousand kilometers.
Plug-in hybrid electric vehicles (PHEVs) play a key role in solving problems related to the
driving range, because they can operate short distances in the EV mode and then switch to
using an internal combustion engine when the battery is drained. Even though the typical
driving distance per person in Finland is only 45 km/d (Lehto, 2018), people still seem
to experience range anxiety (Guo et al., 2018). The typical trip lengths are also often
relatively short, as shown by an example of the Finnish driving statistics in Figure 1.4.
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Figure 1.4: Cumulative proportion of trip lengths driven by car in Finland (aggregated
data of the national travel survey) (Pastinen et al., 2006; Tikka et al., 2012).

In theory, if all cars could be replaced with electric cars, the yearly electricity usage would
increase by 10 TWh in Finland. According to the current production structure in Finland,
the production of the required 10 TWh of electricity would increase the CO2-eq emissions
by 0.55 Mt carbon dioxide equivalent (CO2-eq) assuming that the average emissions of
the production would be 55 g/CO2-eq per produced MW (Fingrid, 2022), but replac-
ing 3 million cars with electric ones would reduce the total emissions by approximately
5 Mt CO2-eq (Traficom, 2022a). If EVs were charged only with renewable energy, the
reduction in emissions would be even greater.

Although the distribution networks are facing also many other challenges, the EV charg-
ing is one of the major factors that influence the development of loads in the distribution
networks. Uncontrolled EV charging has a temporal nature aligned with the other house-
hold appliance loads. Often, the EV charging loads occur on the grid at the same time
when, for example, lights are on and other household appliances are used. The pattern
may break if charging is controlled to gain benefits in the form of cheaper charging or
to receive remuneration for acting on someone else’s behalf, for example, by joining in a
virtual power plant or other demand response activities. The charging applications may
have a variety of different targets and beneficiaries. The most typical target could be a
smart charging application that aims to provide the cheapest charging event for the home-
owner based on a time-of-use (TOU) electricity tariff. In cases where uncontrolled EV
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charging can be modeled mostly based on statistics (Rautiainen et al., 2012; Z. Liu et
al., 2014; LIU et al., 2015; Pareschi et al., 2020) that describe how people travel by car,
smart charging applications need more knowledge of the characteristics of the charging
application. Similarly, traditional heating loads or other household appliance loads have
been modeled primarily based on historical load data (Mutanen et al., 2011). Smart load
control changes the nature of load behavior, and the modeling must adapt to the new char-
acteristics (Tuunanen, 2015). The loads can be controlled to gain benefits locally, but
control signals can be produced regionally, nationally, or even globally. The frequency of
the transmission network or the prices of the electricity market are signals that are tempo-
rally synchronous over large geographical areas. If such signals are used to control large
volumes of resources in a single low-voltage (LV) network or a medium-voltage (MV)
feeder, the impacts on the peak load can be dramatic. EV charging poses a major risk to
distribution grids as the charging load is very dynamic, it can reach relatively high powers,
and it can be controlled relatively fast.

1.2 The main objectives of the work

The main objective of the doctoral dissertation is to offer tools to support and improve the
DSO’s long-term strategic planning process in order to identify challenges or opportuni-
ties of the large-scale EV smart charging. Modeling tools and analysis of EV charging
loads also provide important information for other players in the field of energy systems
and energy markets. The main focus is on determining the stochastic nature of the charg-
ing loads to facilitate load formation and forecasting activities. Spatiotemporal modeling
techniques are also applicable for analyzing and managing electricity retailers’ or flexi-
bility aggregators’ customer portfolios and (load) profile risk.

In this doctoral dissertation, smart charging may refer to charging with functions such as
peak shifting, valley filling, cost minimization, ancillary services, or functions related to
vehicle-to-grid applications. The EV charging load differs from traditional static loads by
its more uncertain dynamic nature if not actively controlled, and it can occur in different
parts of the grid and have different power demand depending on the charging spot. At the
same time, the load can have a dynamic behavior due to battery constraints (temperature
dependence, charging dynamics due to current rating). The active control changes the
load behavior in some applications like in the case of active energy resources, but in
many applications the behavior of the load is limited by many boundary conditions that
are present only for EV charging. The dissertation focuses on the following objectives to
provide in-depth understanding of the impact of EV charging on the businesses of DSOs
and other stakeholders in the energy sector in general:

• Identification of the key factors of EV charging that are relevant for the DSO’s
long-term planning and
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• Identification of the key parameters required for efficient modeling of the EV charg-
ing profile to support operation and planning activities of other energy system stake-
holders.

Load profile, peak load, and energy demand of EV charging

Spatial modelingTemporal modeling and grid impact
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Figure 1.5: Outline of the doctoral dissertation.

The primary outcome of the dissertation is broad understanding and a methodology to as-
sess EV charging loads and the load development. The results are applicable to DSO com-
panies, electricity retailers, aggregators, and also other stakeholders in the energy market
that evaluate customer loads. The practical use cases can be related to grid dimensioning,
from the customer end to upstream distribution networks. The in-depth understanding of
the characteristics of the load profile can be employed in portfolio management, as well as
in managing the profile risk of the customers. For aggregators, the load modeling method-
ology provides a good starting point to estimate the temporal and spatial availability of
the flexibility. The dissertation describes the main factors and indicators that are critical
to the DSO business and the strategic planning process. The dissertation does not aim to
provide one solution for the planning, but rather a methodology or a path to follow in the
planning process. The modeling cases and examples focus solely on private customers
and households, but the methodology is also applicable to load modeling of other types
of customers, such as housing cooperatives, workplace charging, and fleet charging. The
modeling relies on publicly available data sources for the sake of transparency and ease
of applying the methodology in practice.
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Figure 1.6: Planning process simplified (Willis, 2004; Lassila, 2009)

The main research questions of the dissertation focus on EV charging and the aspects that
impact the DSO business. The key objective is to show how various charging applications
impact the load profiles. Some of the applications can be seen as assets to manage the load
development, but others may have an opposite impact. In other words, other applications
contribute to the temporal peak shaving as others cause a dramatic increase in the peak
load. The main research questions that the dissertation seeks to answer can be summarized
as follows:

• What are the methods applicable to estimate and forecast EV charging loads?

• How can EV charging flexibility be added to load modeling?

• What are the key input variables for the load modeling of EV charging?

• What are the key indicators that DSOs should follow to efficiently prepare for the
massive transformation of private traffic?

• How does ambient temperature impact the load profiles?

• What are the value propositions of the vehicle-to-grid (V2G) business models?

1.3 Methods and research data

The doctoral dissertation shows various aspects of the load modeling of EV charging. The
research presented in the dissertation mainly applies quantitative methods to emphasize
the variety of objective measurements and statistics. The main statistics and measure-
ments are related to passenger traffic as well as the utilization rate and usage patterns of
cars, but also to mathematical or numerical analysis of data collected through polls, ques-
tionnaires, and surveys. The data are often further developed into a format that better suits
the purposes of mathematical analysis.
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The modeling presented in the dissertation is mainly carried out as stochastic time series
simulation or modeling. The principal stochastic time series modeling technique is Monte
Carlo simulation. The models representing individual events or samples are built applying
different sampling methods based on statistics and measured data.

The spatial analysis and modeling uses a machine learning technique, more specifically,
a convolutional neural network (CNN). The input data of the spatial analysis are Finnish
socioeconomic and vehicular data represented in a raster format.

The modeling and scenarios also benefit from the use case and business case definitions
and reviews. The definitions provided for the use cases are essential to understand which
stakeholders are involved and what their interactions are.

In addition, the analysis uses hourly resolution electricity consumption data, i.e., auto-
matic meter reading (AMR) data gathered from several DSOs in the course of the re-
search. The simulation results are often assessed against actual customer AMR data to
gain a more accurate real-world perspective to the matter.

The results are presented as time series, lookup tables, and lists of variables. The author’s
long history in the EV charging research has shown that the results are highly dependent
on the input data, which are constantly changing and evolving as the electric mobility is
gaining in popularity. Therefore, when interpreting the results, the main focus should be
on identifying the critical inputs that will affect the end results, such as the absolute peak
power or temporal features of the peak power in certain areas of interest. The numerical
results presented in this dissertation are valuable, but should be applied to further analysis
with caution, bearing in mind the current phase of the electrification of the traffic.

1.4 Scientific contribution

The main contribution of the present doctoral dissertation is the description of how EV
charging loads can be efficiently modeled for the long-term planning of the distribution
grid. The modeling methodology consists of modeling tools for assessing the temporal
stochastic properties of the EV charging loads but also estimation of the spatial distribu-
tion of the charging loads. The scientific contributions of the dissertation are summarized
as follows:

• The dissertation provides broad understanding of the complex modeling problems
related to the load modeling of EV charging.

• The dissertation describes a continuous process of how EV charging loads can be
included in the strategic planning processes of DSOs, and what the key factors
impacting the shape of the load curve are.



1.5 Outline of the dissertation 23

• The dissertation shows how real-world characteristics, such as the dependence on
ambient temperature, are included in the modeling process.

1.5 Outline of the dissertation

The structure of the doctoral dissertation is the following. After the introduction, the sec-
ond chapter focuses on the modeling of EV charging. First, the current status of research
on EV charging is presented by a review of the extensive literature on the topic. The liter-
ature gives the reader a good background of the load modeling of EV charging and of the
stochastic properties of the load type under investigation. It also covers the broad back-
ground data that are incorporated in the load modeling. The chapter also gives examples
of use case definitions.

The third chapter outlines the operating environment to place the studies presented in the
dissertation in context. The chapter discusses the planning of distribution grids in brief.

The fourth chapter shows the nature of the impact of EV charging loads on the different
stakeholders in the energy system and summarizes the impact of the different use cases
on energy systems.

The fifth chapter summarizes the results, discusses the scientific contributions of the work,
and concludes the dissertation.

1.6 Summary of the publications

This dissertation consists of nine publications, three of which are peer-reviewed articles
in high-level journals, and six of which are peer-reviewed conference papers published in
conference proceedings. The publications have been published between 2011 and 2023;
the author of this dissertation is the primary author in one journal article and in four
conference papers. A summary of each publication is given below:

Publication I demonstrates how the effects of the large-scale electrification of transporta-
tion on the distribution grid can be assessed and how the necessary reinforcements can be
defined. The publication evaluates the impact of electric vehicle charging on the distribu-
tion fees paid by the end customers. The publication demonstrates a stochastic modeling
approach to model the impact of electric vehicle charging.

Publication II shows how the effects of the large-scale electrification of transportation on
the distribution grid can be evaluated in the case of local peak shaving applications. The
publication assesses the potential savings gained by locally controlling the charging of
electric vehicles. The publication demonstrates a stochastic modeling approach to model
the impact of electric vehicle charging.
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Publication III describes a methodology to analyze the economic effects of electric cars
as an energy storage on the distribution system. The publication shows how electric ve-
hicles can be used as an energy storage and describes the methodology to estimate the
monetary value of such an application.

Publication IV proposes an approach and a methodology to estimate and analyze the
impact of electric vehicles on the electricity grid.

Publication V describes a plug-in hybrid vehicle test environment with intelligent charg-
ing with a vehicle-to-grid ability. In addition to describing the test bed functionalities,
the paper provides examples of real-life smart application testing with a test bed. The
paper discusses the TOU tariff-based charging strategy and summarizes the benefits and
concerns related to such a charging strategy.

Publication VI compares EV charging control architectures in the case of ancillary ser-
vices by using real-world measurements from pilot installations. As the main contri-
bution, the existing infrastructure is shown to not support the ancillary service type of
applications.

Publication VII investigates the feasibility of the convolutional neural network in the
spatial modeling of EV charging. A CNN-based model is proposed to estimate the spa-
tial distribution of the EVs. The main contribution of the publication is to show that
convolutional neural networks have advantages over more traditional spatial modeling
approaches.

Publication VIII demonstrates that the EV charging load curve is dependent on ambient
temperature. The publication uses laboratory measurements to illustrate that charging of
EVs at cold ambient temperatures dramatically increases grid loads.

Publication IX focuses on the study of potential V2G business cases. The main aim
of the publication is to provide an overview of EV charging applications and especially
bidirectional charging applications.

In addition, the author of this doctoral dissertation has published several peer-reviewed
publications that support the research on the topic of the dissertation, but are not included
in the work. In these publications, the author has modeled and written the majority of the
content in the articles. The most relevant publications are listed below.

Tikka, V., Romanenko, A., Alamäki, J., Mashlakov, A., Luoranen, M., Honkapuro,
S., and Partanen, J. (2020). Energy flexibility harvesting from data analytics—
integration of building energy resources into energy markets. In: CIRED - Open
Access Proceedings Journal. Vol. 2020. 1. Berlin, Germany: IET, pp. 746–749.
DOI: 10.1049/oap-cired.2021.0215

Tikka, V., Romanenko, A., Mashlakov, A., Annala, S., Honkapuro, S., and Parta-
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nen, J. (2019b). Novel Technical Solutions as an Enabler of the Small-Scale De-
mand Response Resources. In: CIRED 2019 Conference. Madrid, Spain: AIM.
DOI: 10.34890/943

Tikka, V., Mashlakov, A., Kulmala, A., Repo, S., Aro, M., Keski-Koukkari, A.,
Honkapuro, S., Järventausta, P., and Partanen, J. (2019a). Integrated business
platform of distributed energy resources – Case Finland. Energy Procedia 158,
pp. 6637–6644. ISSN: 18766102. DOI: 10.1016/j.egypro.2019.01.041

Tikka, V., Belonogova, N., Lana, A., Honkapuro, S., Lassila, J., and Partanen, J.
(2018b). Control Architecture Requirements of Multitasking Battery Resource Op-
eration. In: 2018 15th International Conference on the European Energy Market
(EEM). vol. 2018. Ljubljana, Slovakia: IEEE, pp. 1–5. ISBN: 978-1-5386-1488-4.
DOI: 10.1109/EEM.2018.8469855

Tikka, V., Makkonen, H., Lassila, J., and Partanen, J. (2014). Case study: Smart
charging plug-in hybrid vehicle test environment with vehicle-to-grid ability. In:
2014 16th European Conference on Power Electronics and Applications. Lappeen-
ranta, Finland: IEEE, pp. 1–10. ISBN: 978-1-4799-3015-9. DOI: 10.1109/EPE.
2014.6910765

Tikka, V., Lassila, J., Haakana, J., and Partanen, J. (2016). Electric vehicle smart
charging aims for CO2 emission reduction? In: 2016 IEEE PES Innovative Smart
Grid Technologies Conference Europe (ISGT-Europe). Ljubljana, Slovakia: IEEE,
pp. 1–6. ISBN: 978-1-5090-3358-4. DOI: 10.1109/ISGTEurope.2016.7856250

Furthermore, the author has been actively co-authoring in the following peer-reviewed
publications. As a co-author, he participated in writing and content production and pro-
vided comments on the manuscripts. The most relevant ones are listed below.

Haakana, J., Tikka, V., Tuunanen, J., Lassila, J., Belonogova, N., Partanen, J., Repo,
S., and Pylvänäinen, J. (2016). Analyzing the effects of the customer-side BESS
from the perspective of electricity distribution networks. In: 2016 IEEE PES In-
novative Smart Grid Technologies Conference Europe (ISGT-Europe). Ljubljana,
Slovakia: IEEE, pp. 1–6. ISBN: 978-1-5090-3358-4. DOI: 10.1109/ISGTEurope.
2016.7856338

Haapaniemi, J., Tikka, V., Haakana, J., Lassila, J., and Partanen, J. (2016). Au-
rinkosähkön mahdollisuudet maaseudulla. Maaseudun uusi aika (24), pp. 5–19

Lassila, J., Tikka, V., Haapaniemi, J., Child, M., Breyer, C., and Partanen, J. (2016).
Nationwide photovoltaic hosting capacity in the Finnish electricity distribution sys-
tem. In: European Photovoltaic Solar Energy Conference. Munich, Germany. DOI:
10.4229/EUPVSEC20162016-6AV.4.11
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Breyer, C., Tsupari, E., Tikka, V., and Vainikka, P. (2015). Power-to-Gas as an
Emerging Profitable Business Through Creating an Integrated Value Chain. Energy
Procedia 73, pp. 182–189. ISSN: 18766102. DOI: 10.1016/j.egypro.2015.07.668

Miettinen, J., Tikka, V., Lassila, J., Partanen, J., and Hodge, B. M. (2014). Minimiz-
ing wind power producer’s balancing costs using electrochemical energy storage.
In: The Nordic Conference on Electricity Distribution Management and Develop-
ment. Stockholm, Sweden, pp. 8–9

Makkonen, H., Tikka, V., Lassila, J., Partanen, J., and Silventoinen, P. (2014).
Demonstration of smart charging interface in Green Campus. In: 2014 16th Eu-
ropean Conference on Power Electronics and Applications. Lappeenranta, Finland:
IEEE, pp. 1–10. ISBN: 978-1-4799-3015-9. DOI: 10.1109/EPE.2014.6910776

Makkonen, H., Tikka, V., Lassila, J., Partanen, J., and Silventoinen, P. (2013).
Green campus - energy management system. In: 22nd International Conference
and Exhibition on Electricity Distribution (CIRED 2013). Vol. 2013. 615 CP. Insti-
tution of Engineering and Technology, pp. 1137–1137. ISBN: 978-1-84919-732-8.
DOI: 10.1049/cp.2013.1088

Makkonen, H., Tikka, V., Kaipia, T., Lassila, J., Partanen, J., and Silventoinen,
P. (2012). Implementation of smart grid environment in Green Campus project.
In: CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid.
Lisbon, Portugal: IET, pp. 240–240. ISBN: 978-1-84919-628-4. DOI: 10.1049/cp.
2012.0825

Moreover, the author has published and authored several research reports. The most rele-
vant ones are listed below.

Tikka, V., Lassila, J., and Laine, T. (2021b). Technical report: Measurements of
cold climate EV charging. LUT Scientific and Expertise Publications, Tutkimusra-
portit - Research Reports 130. Lappeenranta, Finland: LUT University

Tikka, V., Kalenius, J., Räisänen, O., and Lassila, J. (2021a). Loppuraportti:
Sähköautojen latauksen muodostama kuormitus- ja mitoitusteho erilaisissa
toimintaympäristöissä [In Finnish]. LUT Scientific and Expertise Publications,
Tutkimusraportit - Research Reports 131. Lappeenranta, Finland: LUT University

Tikka, V., Belonogova, N., Honkapuro, S., Lassila, J., Haakana, J., Lana, A., Roma-
nenko, A., Haapaniemi, J., Narayanan, A., Kaipia, T., et al. (2018a). Multi-objective
role of battery energy storages in an energy system. LUT Scientific and Expertise
Publications, Tutkimusraportit - Research Reports 75. Lappeenranta, Finland: LUT
University
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2 Electric vehicle charging

The Only Constant in Life Is Change. – Heraclitus

This chapter focuses on EVs and EV charging. It is often overlooked that electric mobility
has a long-standing history going far beyond the mobility that is nowadays mostly based
on liquid fuels. The history of electric mobility begins approximately in the early 19th
century, with the conception and development of various prototypes and concepts that laid
the foundation for the modern electric cars that we see today (Wakefield, 1998).

In addition to a history overview, the chapter focuses on the modeling of EV charging and
gives insights into how load modeling has been applied in the grid load analysis and the
distribution grid development. Furthermore, the chapter presents methods that are avail-
able to address modeling issues. A further focus of the chapter is on the presentation of
background data, as they play a key role in the load modeling of EV charging. Referring
to the famous citation “The only constant in life is change” by the Creek philosopher Her-
aclitus, also the EV charging is undergoing a never-ending change. The modeling input
variables keep changing and evolving as the number of cars increases and the technology
evolves. Thus, rather than locking the view or focusing on a single analysis, a case study,
or a set of results, it is much more important to understand the “mechanics” of the peak
load and load profile formation.

First, the chapter gives an idea of the history and current technology of EVs and standards
related to EV charging. Second, the modeling of EV charging is investigated and the
relevant literature is reviewed. Third, an insight into modeling data is given to provide
a good understanding of relevant data sources. Finally, the impact of the use case in
modeling is discussed.

2.1 History and technology overview

The first steps in electric transportation were made in the 19th century. In the 1820s and
1830s, mainly the inventors and academics Ányos Jedlik, Sibrandus Stratingh, Robert An-
derson, and Thomas Davenport created the first very robust electric vehicles (Guarnieri,
2012), powered by nonrechargeable or disposable batteries. These early attempts were
primarily aimed at proving the concept rather than introducing practical transportation
solutions. The development was continued by Robert Davidson, who developed the first
real-size electric locomotive dubbed “Galvani” in 1842 (Post, 1974) (Guarnieri, 2012).

In the mid-19th century, there were major advancements that sped up the development
of electric locomotives and cars. The most crucial development to facilitate the storage
of electrical energy was a feasible dynamo that would enable the generation of electric-
ity. The first generator that could be coupled with a steam engine was developed by
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Zénobe Gramme in 1869. Gramme merged many ground-breaking developments discov-
ered by the Danish engineer Sören Hjorth, the German entrepreneur and inventor Werner
Siemens, the Italian scientist Antonio Pacinotti, and the Slovak-Hungarian priest Ányos
Jedlik (Guarnieri, 2012). In 1859, the French physicist Gaston Planté released the first
lead-acid accumulator that could be charged (Guarnieri, 2012). The first accumulator
was developed further by the French chemist Camille Alphonse Faure in 1881 (Guarnieri,
2012).

The rechargeable battery enabled the faster development of EVs in the late 19th and early
20th centuries. In each continent during this time, electric cars gained in popularity for
urban transportation because of their quiet operation, ease of use, and lack of emissions
compared with internal combustion engine (ICE) vehicles. Companies like Detroit Elec-
tric and Baker Electric became well-known manufacturers of EVs, catering primarily to
wealthy individuals and women drivers who valued the convenience of electric cars. The
development continued and led to technological advancements that enabled longer ranges
and higher top speeds. In 1899, Belgian Camille Jenatzy drove the top speed record with
his car Jamais Contente (Never Satisfied) of 105.88 km/h. This was the first time a land
vehicle broke the speed of 100 km/h (Guarnieri, 2012), (Wakefield, 1998).

Despite their advantages, electric vehicles faced challenges from the growing popularity
of gasoline-powered cars, which benefited from the expanding road infrastructure and
the ability to cover longer distances. In the 1920s, EVs started to gradually disappear
(Guarnieri, 2012). Some use cases like golf carts and milk delivery vans in the UK re-
mained (Guarnieri, 2012). The discovery of vast oil reserves and improvements in gaso-
line engine technology led to the dominance of internal combustion engine vehicles.

The late twentieth century saw a renewed interest in electric vehicles owing to concerns
about air pollution and dependence on fossil fuels (Høyer, 2008). Carmakers exper-
imented with hybrid vehicles that combined internal combustion engines with electric
propulsion systems. The Toyota Prius, introduced in 1997, became a symbol of this hy-
brid movement (Høyer, 2008). Meanwhile, advances in battery technology began to pave
the way for practical all-electric vehicles.

The 21st century marked a significant turning point for electric vehicles. Technological
breakthroughs in battery chemistry and energy storage led to the development of elec-
tric cars with longer ranges and more affordable prices. The launch of vehicles like the
Tesla Model S and Nissan Leaf brought EVs into the mainstream, showcasing their per-
formance, sustainability, and widespread appeal (Dijk et al., 2013).

In the 2010s, electric mobility underwent significant development and transformation,
driven by advancements in technology, growing environmental concerns, and shifting
consumer preferences. Along came a significant increase in the variety of EV models
available on the market. Traditional automakers and newcomers alike began offering a
broader range of EV options, including battery electric vehicles (BEVs) or all-electric
vehicles, PHEVs, and other hybrid models. This expansion provided consumers with



2.1 History and technology overview 29

more choices, catering to different preferences and needs (Dijk et al., 2013).

One of the most crucial developments was the advancement in battery technology. Lithium-
ion batteries, which power many modern EVs, became more efficient, offering an in-
creased energy density and longer driving ranges (Dijk et al., 2013). These improvements
addressed one of the key concerns of potential EV buyers: range anxiety (Guo et al.,
2018). As a result, EVs became more practical for daily use and longer trips.

In the 2010s, Tesla played a significant role in driving the popularity of electric vehicles.
After the launch of the Tesla model S, electric cars started to gain traction in sales. Tesla’s
approach in design and technological decisions disrupted the traditional automotive in-
dustry. Electric mobility became associated with a high performance due to the instant
torque delivery of electric motors. This led to the emergence of electric sports cars and
supercars that rivaled their internal combustion engine counterparts in terms of acceler-
ation and top speed (Thomas et al., 2019). Other automakers soon started to announce
plans to electrify their offerings.

In addition, in the 2010s, many governments worldwide introduced incentives to promote
electric mobility. These incentives included tax credits, rebates, reduced registration fees,
and access to bus lanes with EVs. Additionally, stricter emissions regulations and fuel ef-
ficiency standards set by many governments encouraged automakers to invest in electric
vehicle technology to meet environmental targets (Asgarian et al., 2023). The major au-
tomakers announced their commitment to electrify their fleets. Some companies pledged
to produce a certain percentage of electric vehicles within a specific time frame (Mo-
tavalli, 2021). These commitments signaled a long-term shift toward electric mobility
within the automotive industry.

The growth of electric vehicle adoption in the 2010s led to a greater focus on the charg-
ing infrastructure. Governments, businesses, and utilities began to consider investing in
the construction of public charging networks to address the concerns of potential elec-
tric vehicle buyers about access to convenient and reliable charging options (Kumar et
al., 2021). The increasing concerns about climate change and environmental sustainabil-
ity motivated consumers to consider cleaner transportation alternatives including electric
vehicles, which have zero tailpipe emissions and which are becoming popular as a way
to reduce individual carbon footprints. Additionally, the decade saw the electrification
of public transport systems, with electric buses gaining traction in urban areas as cities
sought cleaner and quieter alternatives to traditional diesel buses (Flaris et al., 2023), thus
contributing to reducing air pollution and improving the quality of urban life.

In general, the 2010s were a major disruption for traditional mobility and a decade of
transformation for electric mobility (Dijk et al., 2013), marked by advances in technology,
changes in consumer perceptions, and increased support from governments and industry
stakeholders (Asgarian et al., 2023). The groundwork laid during this period set the stage
for an even more substantial growth and innovation in the electric vehicle sector in the
years to come.
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2.1.1 Modern electric vehicles and charging infrastructure

In recent decades, the automotive landscape has undergone a remarkable transformation,
spearheaded by the emergence of EVs. These vehicles, driven by the dynamic synergy
of technological innovation, environmental consciousness, and evolving consumer pref-
erences, have redefined the concept of personal mobility. Modern EVs can be categorized
by the type of their power train:

• Battery Electric Vehicles (BEVs): Exclusively powered by electricity, BEVs emit
zero tailpipe emissions. Prominent examples include, for example, Tesla cars or
Nissan Leaf. Nowadays, nearly all automobile manufacturers offer a BEV alterna-
tive.

• Plug-in Hybrid Electric Vehicles (PHEVs): Combining electricity and ICE, PHEVs
offer flexibility for short-range electric operation and extended gasoline-powered
trips (also diesel, ethanol, bio-petrol, bio-diesel, or synthetic liquid fuels).

• Hybrid Electric Vehicles (HEVs): Featuring a mixture of electric and internal com-
bustion propulsion, hybrid electric vehicles (HEVs) optimize fuel efficiency while
employing regenerative braking to recharge their modest batteries.

• Hydrogen Fuel Cell Electric Vehicles (FCEVs): Fueled by hydrogen gas, fuel cell
electric vehicles (FCEVs) employ fuel cells to produce electricity, emitting only
water vapor.

This doctoral dissertation focuses on cars that can be charged from the grid, as they are
the most relevant ones when considering the impact on the electricity infrastructure and
energy markets. FCEVs are also contributing greatly to the demand of electric energy, but
the energy is transferred to the vehicle as hydrogen, which is produced from renewable
energy sources. Electric cars have evolved significantly in the past decade, even if only
observed through registration statistics. The average battery capacity has increased con-
siderably in recent years. Early model EVs had battery capacities of 20 to 30 kWh, which
was mainly enough to provide a driving range for traffic in the city. Today, typical battery
sizes are notably larger, up to 100 kWh and above. Figure 2.1 shows the average battery
size of the cars requested in Finland over the past ten years.

The total battery storage capacity has risen considerably, but also individual cars have
double that capacity compared with the early stage EVs. The increased battery capacity
also means that high-power charging is now able to increase the charging power even fur-
ther without significantly changing the battery chemistry toward power-oriented battery
types.

Modern electric vehicles support standard charging interfaces (IEC, 2017), allowing inop-
erable charging sessions to take place at almost any location, whether it is home charging
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Figure 2.1: Average battery size of the BEVs registered in Finland in 2014–2023.

or a public charging place. The charging infrastructure has developed considerably over
the years, as shown in Figure 2.2. Public chargers are also rather well distributed across
the whole country; even the sparsely populated northern regions of the country have a
good coverage of chargers.

Figure 2.2: Number of public fast chargers (only CCS) in Finland in 2021–2023. The
statistics (Teknologiateollisuus, 2023) and spatial distribution of chargers (all public
charging points), (note that the map does not list all chargers in Sweden and Norway
(Latauskartta, 2023).
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Figure 2.3: New conceptual model to direct the planning of a national electric vehicle
charging network, proposed in the 2030 National Charging Network report (Ward et al.,
2023)

.

Public chargers are an essential part of the charging infrastructure, but home charging is
the fundamental root of the system. The National Renewable Energy Laboratory (Ward
et al., 2023) has used the tree analogy to illustrate the charging infrastructure, describing
the fundamental division between private and public charging (Figure 2.3). The number
of charging points for private charging is estimated to be 20 times compared with the
public charging infrastructure. This also leads to the conclusion that private charging
taking place in homes and businesses will be the core of the charging infrastructure.

2.1.2 Charging standards

Standard: “something established by authority, custom, or general consent as a model
or example; something set up and established by authority as a rule for the measure of
quantity, weight, extent, value, or quality” 1

To standardize: “to bring into conformity with a standard especially in order to assure
consistency and regularity” 2

In the United States, many EVs released in the late 1990s and early 2000s, such as the
GM EV1, Ford Ranger EV, and Chevrolet S-10 EV, preferred the use of (single-phase AC)

1Merriam-Webster, s.v. “standard,” https://www.merriam-webster.com, accessed December 13, 2023.
2Merriam-Webster, s.v. “standardize,” https://www.merriam-webster.com, accessed December 13,

2023.
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electric vehicle supply equipment (EVSE). These devices were equipped with an induc-
tive connector (Magne Charge) (Woody et al., 1997) or a conductive connector (usually
AVCON) (Avcon, 2000). GM, Nissan, and Toyota were in favor of the inductive system,
while DaimlerChrysler, Ford, and Honda supported the conductive system.

The number of cars started to increase in the 2010s, which quickly led to the development
of charging connectors for EV charging. The Society of Automotive Engineers (SAE)
and the European Automobile Manufacturers’ Association (ACEA) devised a plan to in-
corporate common DC wires into existing AC connector types, creating a single “global
envelope” that would be compatible with all DC charging stations (ACEA, 2011). The
proposal started the adoption of a combined charging system (CCS) (combo 1 in the
United States and combo 2 Europe), which is the standard today in most countries around
the world along with the Type 2 alternating current (AC) plug (Type 1 in the United States)
and CHAdeMO. The current key standards in EV charging that define the physical inter-
face but also the communication interfaces are the following:

• ISO/IEC 15118: The standard facilitates communication between EVs and EVSE.
Charging parameters are sent based on user needs and charging profiles from the
charging point operator (CPO). The latest update includes protocols for bidirec-
tional charging. The standard consists of seven separate documents: ISO 15118-1:
General information and use-case definition; ISO 15118-2: Network and appli-
cation protocol requirements; ISO 15118-3: Physical and data link layer require-
ments; ISO 15118-4: Network and application protocol conformance test; ISO
15118-5: Physical and data link layer conformance test; ISO 15118-8: Physical
layer and data link layer requirements for wireless communication; and ISO 15118-
20: 2nd generation network and application protocol requirements.

• IEC 62196: The standard defines the basic requirements for the conductive crack-
ling of EVs. This set of standards sets out the requirements and tests for plugs,
sockets, vehicle connectors, and vehicle inlets used for the conductive charging of
electric vehicles. The plugs, socket-outlets, vehicle connectors, and vehicle inlets
specified in this series of standards are used in the EV supply equipment according
to the IEC 61851 series or IEC 62752 and in electric vehicles according to ISO
17409 or ISO 18246. Furthermore, these plugs, socket-outlets, vehicle connectors,
and vehicle inlets provide additional contacts that support specific functions related
to the charging of electric vehicles, such as ensuring that power is not supplied un-
less a vehicle is connected and that the vehicle is immobilized while still connected.
Similar requirements are contained in SAE J1772, which is widely applied in the
US.

• IEC 61850: A group of standards defining communication protocols for intelligent
electronic devices at substations, and a foundational standard for smart grids.

• IEEE 2030.5: The standard enables utility management of distributed energy re-
sources, such as electric vehicles, through demand response, load control, and time-
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of-day pricing.

• Chinese GB/T: The competing GB/T charging standard is a set of GB/T standards,
primarily in the GB/T 20234 family, for AC and DC fast charging of electric vehi-
cles used in China. The standards were revised and updated most recently in 2015
by the Standardization Administration of China. GB/T 18487 provides general
requirements for conductive charging systems, having similar definitions to IEC
61851. GB/T 20234 provides physical requirements for connectors and interfaces,
corresponding to IEC 62196 and SAE J1772. GB/T 27930 specifies communication
requirements, corresponding to ISO 15118 and SAE J1772 (State Grid Corporation
of China, 2013).

In addition to the official standards, several systems and initiatives are maintained by
various associations and are widely adopted and partially included in the ISO, IEC, and
IEEE standards:

• CHAdeMO: A protocol developed in Japan by the CHAdeMO Association that ac-
companies its specific CHAdeMO plug, allowing physical bidirectional DC charg-
ing. The name is an abbreviation of "CHArge de MOve" (which the organization
translates as “charge for moving”) (CHAdeMO, 2010). CHAdeMO defines the
physical plug and communication requirements of fast direct current (DC) charg-
ing up to 500 kW. It is adopted in major part by the IEC and the EN (61851-23,
61851-24, 62196-3), and the IEEE (2030.1.1) (CHAdeMO, 2023).

• Open Charge Point Interface (OCPI): The protocol supports connections between
electric mobility service providers and CPOs, allowing EV users to access different
charging points and streamline payments across jurisdictional borders, thus helping
to support EV uptake through roaming. OCPI supports the most functionalities,
including smart charging, among different roaming protocols, and is commonly
used in the European Union. The EV Roaming Foundation states that the main aim
is: “To allow any EV driver to charge at any charging station in the EU: simplify,
standardize, and harmonize” (EV Roaming Foundation, 2023).

• OpenADR: The architecture is maintained by the OpneADR alliance. The main
aim of the OpenADR is to: “standardize, automate, and simplify Demand Response
(DR) and Distributed Energy Resources (DER) to enable utilities and aggregators
to cost-effectively manage growing energy demand & decentralized energy produc-
tion, and customers to control their energy future.” OpenADR has a wide adoption
across the globe (OpenADR, 2023).

• Open Charging Point Protocol (OCPP) and Open Smart Charging Protocol (OSCP):
The protocols are maintained by the Open Charge Alliance. Open Charging Point
Protocol (OCPP) is an application protocol that enables communication between
EV charging stations and a central management system, similar to how cell phones



2.1 History and technology overview 35

Figure 2.4: EV charging standards in simplified EV charging communication protocols
and architecture (Lopes et al., 2022).

communicate with cell phone networks. It is used to manage the charging of EVs.
Open Smart Charging Protocol (OSCP) communicates predictions of locally avail-
able capacity to the charging station operators. The current version contains use
cases with more generic terms to allow integration of solar photovoltaics (PVs),
batteries, and other devices, although the use of OSCP is still limited (Open Charge
Alliance—About Us, 2023).

Figure 2.4 shows the most relevant standard in a simplified EV charging architecture. The
interactions between the CPO, the EVSE, and the EV enable the basic charging function-
ality but also provide a basis for further smart applications. The CPO interacts with power
system parties and the electric mobility service provider (EMSP) to enable services like
roaming.

The standards provide a basis for the EV charging business that nowadays uses plugs de-
fined by IEC 62196-1. IEC 61851-1 extends the definition to the basic physical interface
between the car and the charger. The different charging modes define the capabilities and
features of each charging model:

• Mode 1: It is an AC charging method that is mainly used to charge light vehicles,
such as mopeds, with a low current. This mode is not applicable to EVs that are
mainly used for passenger cars. For safety reasons, the use of Mode 1 is not allowed
in certain countries, including the United States.

• Mode 2: An AC approach can be employed as a short-term or interim solution be-
fore more advanced techniques become more widespread. In Mode 2, the charging
“apparatus” is located in a charging cord. The charging apparatus provides basic
safety features, such as earthing continuity monitoring.
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Figure 2.5: Charging plug and charging modes (Schneider Electric, 2023).

• Mode 3: It is the recommended AC method for day-to-day charging and includes
important smart features, such as a communication connection between the EV
and the charging equipment, so that the charging power can be controlled during a
charging event. A Mode 3 plug called Type 2 is the de facto connector in Europe,
suggested to be used as the minimum required connector by the EU directive (EUR-
Lex - 32014L0094 - EN - EUR-Lex 2023).

• Mode 4: It is the only charging mode that uses an external charger with a DC output.
This mode can provide up to 350 kW of power, which is delivered directly to the
battery, bypassing the on-board charger. Because of the high power level, this mode
requires a higher level of communication and more stringent safety measures.

Figure 2.5 shows a summary of the charging plugs and charging modes. This dissertation
focuses mainly on applications that can be enabled by mode 3 chargers. The most unidi-
rectional charging applications can be implemented by controlling the onboard chargers
through the communication link defined in mode 3 charging. The applicable cases are
described in Publication I, Publication II, and Publication VI. The bidirectional cases are
based on the ISO 15118-20 extension that defines the bidirectional charging communi-
cation for AC or DC charging. Bidirectional use cases are considered in the pilot case
demonstration, which is described in Publication V. Publication IX investigates bidirec-
tional charging business cases in the distribution network flexibility services.

2.2 EV charging modeling

EV load modeling is used to predict the energy and temporal conditions of the charging
event when charging EVs at any given time. It is essential to model EV charging from
the viewpoint of the distribution grid to ensure reliable and effective integration of EVs
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into the existing electrical grid. Two main elements must be taken into account in this
modeling process: load profile modeling and peak load modeling. The modeling of the
load profile involves forecasting the electricity consumption patterns of EVs connected
to the distribution network over time. This not only helps utilities and grid operators
understand when and how much energy will be required for charging, but also provides
important information to other key players, such as the electricity retailer or engineering
agencies performing a planning task involving EV charging. Peak load modeling, on the
other hand, is used to anticipate the maximum amount of electricity that will be required
to charge EVs at any given moment.

This dissertation presents EV charging models that mainly use event-based simulation to
sample random charging events combined with Monte Carlo simulation to replicate the
driving patterns of passenger cars. Monte Carlo simulation is a method of using random
sampling and statistical analysis to model and analyze complex systems or processes. It
is similar to playing games of chance and is used in a variety of fields, such as finance,
engineering, physics, and operations research, to make predictions, assess risks, and solve
problems that cannot be solved analytically. The main steps of the modeling can be
summarized as follows:

• Simulation begins by describing a complex problem or system that is challenging
to analyze mathematically or through deterministic approaches. This could include
elements of uncertainty, variability, or a multitude of interconnected components.
This stage is often presented as a flowchart.

• Random sampling: Establishing the parameters and variables that have an effect on
the problem. Introducing randomness by generating random samples (frequently
following known probability distributions) for these parameters.

• Simulation: Execution of a large number of trials or iterations, each with differ-
ent sets of random values for the parameters. This produces a range of potential
scenarios or outcomes for the problem.

• Aggregation and Analysis: Gathering the results of all iterations to statistically
analyze the data to draw conclusions about the behavior of the system. This may
involve calculating averages, standard deviations, probabilities, or other pertinent
statistics.

• Results: Monte Carlo simulation provides a distribution of possible outcomes or a
range of values for the problem being studied. It allows one to estimate probabili-
ties, make predictions, assess risks, and gain insight into the behavior of the system
under different conditions.

There are successful examples of Monte Carlo models in EV load modeling (Ni et al.,
2020a) or (Ni et al., 2020b), but also in other fields of distribution system modeling,
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Figure 2.6: Example of the Monte Carlo method applied to EV load modeling (Tikka
et al., 2011) © 2011 IEEE.

such as analysis of distribution transformer aging (Affonso et al., 2018). This disser-
tation also benefits from Monte Carlo simulations in Publication I, Publication II, and
Publication VIII. Figure 2.6 shows an example of a Monte Carlo simulation applied in
Publication I. The model is highly flexible and can easily be extended with features, such
as smart charging control from different perspectives. Publication II shows an example of
how a similar model can be used to model smart charging that obeys a simple power limit
set by the grid interconnection point.

Stochastic models, such as Monte-Carlo-based simulation models, are based on estima-
tions of transition probabilities for the states of vehicles, which are then used to simulate
how EVs may be used randomly by individuals but still based on real-life statistics. The
EV charging load is dynamic by nature as it can have a variety of different power levels
and can appear in different locations on the grid. The temporal characteristics of the EV
charging load are often defined by behavioral factors, such as daily driving routines and
habits related to the charging event. Several studies show that there are close relationships
between the EV driver behavior and the charging event. For example, the modeling study
(Pagani et al., 2019) states that by building an agent-based model, the characteristics of
each individual event can be captured and spatially allocated. Many studies show broader
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modeling approaches where spatial features do not play a central role. The stochastic
modeling approach has been applied in a wide variety of studies (Hilshey et al., 2013;
Ashtari et al., 2012; Lojowska et al., 2012; Iversen et al., 2017; Moreira et al., 2011;
Wang et al., 2018; Ni et al., 2020b); also the author of this dissertation visited stochastic
EV charging modeling in case studies of Publication I and Publication II. Many studies
provide a good perspective on local grid impacts caused by uncontrolled and uncoordi-
nated charging of the EVs. Studies mainly agree that uncontrolled charging is going to
be a major burden for distribution grids (Ray et al., 2023; Gönül et al., 2021; Al-Hanahi
et al., 2021). Wider national studies applied to distribution grids also indicated a signif-
icant increase in peak loads on the grid (Moreira et al., 2011). Even though the impact
on the grid might seem major, one must bear in mind that the prevailing guidance and
methodology on grid dimensioning play a key role in defining what kind of additional
load the grid can handle. For example, studies conducted in Nordic countries show that
the impact of the EV charging flow on the grid remains modest, and (Z. Liu et al., 2014)
states that the average energy consumption of electric vehicles (EVs) while charging is
not particularly high. However, if the penetration level of EVs is high, the maximum load
of the charging process can be considerable, which is consistent with other studies. In the
case of dumb charging, the peak load of the charging coincides with the peak hours of
the original electric load, which can put an additional strain on the grid. Therefore, it is
important to recognize that the capacity of the grid to accept additional load is highly de-
pendent on the base load structure, the temporal features of the load, and the dimensioning
factors of the grid (planning guidance and safety margins). In the Nordic environment,
grid planning mainly follows the techno-economic principle (Lakervi et al., 1995). In
principle, all decisions made in planning aim at an optimal cost investment Ctotal, which
can be expressed as:

minCtotal = min

∫ T

0

Cinv(t) + Copex(t) + Closs(t) + Cint(t)dt (2.1)

≈ min
T∑

0

Cinv + Copex + Closs + Cint, (2.2)

where Cinv is the investment cost, Copex is the operational cost, Closs is the cost of net-
work losses, Cint is the interruption cost, and the interval [0,T ] is the observed investment
period. The above-mentioned equation is often expressed in an approximated format as
most of the cost components are valued and calculated as present values. Publication III
investigates and describes further the methodology of how EVs can be shown as a signif-
icant benefit for the distribution grids. When EV charging is modeled and the impacts on
the grid are analyzed, a broader look should always be taken at the matter instead of just
assuming that EV charging will be fully uncontrolled and uncoordinated.

Although the impact of uncontrolled charging on the grid is well known, there is still
a major knowledge gap related to cases where most of the EV charging is to be con-
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trolled smartly. The development of EV charging technology has been rapid over the past
decade. At the beginning of the EV revolution in 2010, there were no complete standards
for the European market to define how EVs should be charged. Moreover, estimations
and assumptions of the modeling parameters were on the naive side, for example, many
studies assumed that the EV battery sizes are only 20–30 kWh, whereas at present we
commonly have batteries that are in the range of 40–100 kWh (according to the registra-
tion statistics in Finland) (Traficom, 2023). Furthermore, it is also worth considering the
charging power and how the power ranges were defined in the early days of the EV rev-
olution. Many studies stated that fast charging was assumed in the modeling, translating
into a power range of some tens of kilowatts (Masoum et al., 2010; Alaoui et al., 2003).
Modern EVs and EV chargers are capable of handling powers up to 350 kW (IEC, 2017).

2.2.1 Deterministic model

The modeling can be performed by various methods, some of which are more suitable
for the task than others. The simplest method is deterministic load modeling. In the
deterministic load modeling of EVs, it is assumed that the parameters of EVs are already
known. This means that EVs are treated as stationary energy storages with predetermined
available periods. For example, the arrival and departure times of vehicles are already
known by the power grid operator, allowing them to schedule the EVs in a similar way
to energy storage systems. Additionally, the daily travel distance is another simplification
parameter, so it is assumed that the travel distance of the EVs is fixed. This makes it easy
to calculate the required energy for charging the EV. Other simplification assumptions
include starting charging at a fixed time, a fixed energy requirement for all EVs, a known
departure time, and the same battery capacity for all vehicles. Publication IV presents the
usage of deterministic load modeling while also providing valuable information on the
input parameters that can be used in the EV load modeling. The deterministic model is not
the most sophisticated approach for load modeling, but if there are no input data available
for more detailed models, it is the only feasible solution. At present, the input data for
the load modeling of EV charging are mostly freely and openly available (Räisänen et al.,
2020).

2.2.2 Markov chain

The mobility characteristics and available charging facilities of an EV largely determine
its charging behavior. However, it is challenging to forecast this behavior, but it can
be facilitated by using random techniques, such as state, stay time, and state transition
probability, to illustrate the anticipated behavior. The Markov process can be used to
illustrate the connection between the starting point, the destination, and the duration of
each EV charging event.
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The Markov chain can be used to model the temporal features of the EV charging, as
shown in (H. Liu et al., 2023), but also to the spatial allocation of the EV charging load
(Shepero et al., 2018). There are also studies that combine Monte Carlo simulation and
Markov chain (Iwafune et al., 2020).

2.2.3 Other modeling methods

There are many other methods to model the EV charging load, such as fuzzy logic model-
ing, artificial neural networks, probabilistic fitting, robust optimization, information gap
decision theory, or methods of recurrent time series analysis.

Fuzzy logic modeling is a mathematical method that is used to manage uncertainty and
inexactness in problem-solving and decision-making. Unlike the traditional binary logic,
which is based on definite true or false values (0 or 1), fuzzy logic allows levels of truth
or inclusion in a set. It is especially useful in cases where the data are unclear, obscure, or
subjective, making it a beneficial tool in various areas, such as control systems, artificial
intelligence, and decision support systems. Fuzzy logic could be applicable, for instance,
in an EV charging control system in simulation (Faddel et al., 2017).

An artificial neural network (ANN) (often also referred to as neural network) is a type
of computational model based on the structure and functioning of biological neural net-
works, such as the human brain. It is a fundamental element of machine learning and
artificial intelligence. ANNs are composed of interconnected nodes, known as artificial
neurons or perceptrons, which are arranged in layers. Generally, these layers include an
input layer, one or more hidden layers, and an output layer. Each connection between
neurons has a weight, and neurons use an activation function to process their weighted
inputs and generate an output. ANN-based models are very common nowadays in all
fields of modeling. In the context of EV load modeling there are a large number of stud-
ies that employ ANN models; for example, Zeynali et al. (2020) use an ANN to generate
household scenarios for a stochastic model. Again, Zhu et al. (2019) compare the ANN
with other more advanced machine learning models in the domain of load modeling of
EV charging. This dissertation shows an example of using a CNN in the spatial modeling
of EV charging in Publication VII. The CNN is a subgategory or specific type of ANN
typically used to detect a pattern from pictures or other picture-like content. The CNN
has been also used to classify geospatial datasets. The common reason for all types of
ANNs is that they require rather large amounts of training data in order to achieve any
model accuracy.

To further categorize EV load modeling, the models can be divided into two main classes.
First, we have temporal modeling-oriented models and second, spatial models. The tem-
poral models aim to model temporal features, such as timing and magnitude of the peak
load, often in contrast to other loads in the case area or facility. The models benefit from
having as much historical statistics and time series data as possible describing the behav-
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ior of the vehicle user. Spatial models, on the other hand, benefit from spatially distributed
data and statistics. If the spatial model aims to model or forecast also temporal features,
spatially determined time series data are required. The models can also be combined
to analyze the impact of the charging load on the georeferenced outputs. This is highly
beneficial for the distribution grid planning process.

2.3 Background data of EV charging modeling

It is clear that a variety of factors have to be taken into account int the evaluation of
electric vehicle charging. Electric cars are distinct from traditional loads, because their
energy consumption does not take place at the same location where the battery is charged
or connected to the grid. Additionally, the vehicle can be recharged at multiple locations
in the distribution network. The charging power of the vehicle is not always determined
by the charger of the vehicle; it can be restricted, for instance, by the power limit of the
charging device. Moreover, high-power direct current charging points can also be used
for vehicle charging.

It is essential to take into account potential factors that could impact the results of the
modeling in the short or long term when modeling these phenomena. Much research has
been conducted on the modeling of electric vehicle charging, providing useful information
on the effect of electric vehicles and a valuable background for identifying the relevant
input data sources. For example, (Rautiainen et al., 2016a; Sausen et al., 2019; LIU et
al., 2015) propose methods for modeling electric vehicle charging based on passenger
transportation surveys. Some studies also consider measured driving cycles of EVs (Yang
et al., 2017), but often this type of data gathering may raise privacy concerns and can
also be challenging to implement in practice. Thus, travel surveys have been identified as
the most prominent input data for the EV load modeling. Pareschi et al. (2020) evaluate
the accuracy of the EV load modeling, showing that travel surveys, if used as the basis
for modeling, are a very suitable input for the modeling of EV loads, and the forecasting
modeling can reach a high accuracy. The author of this dissertation has also presented
multiple examples where national travel survey data have been used as the main model
input. Publication I, Publication II, and Publication VIII are mainly based on interpreting
travel survey data. The data are also refined and validated with case area traffic measure-
ments. The main source of data for these modeling examples was mainly travel surveys,
but many other sources also contribute to accurate modeling. Nevertheless, it is reason-
able to include input data also from other sources in the modeling. In terms of essential
background information for the analysis, the following can be considered:

• Driving statistics:

– Distribution of trip lengths

– Distribution of arrival and departure times
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– Socioeconomic characteristics

• Technical constraints on vehicle charging:

– Rated power and other limitations of vehicle chargers

– Technical constraints of charging points and charging areas

– Charging efficiency and power losses

– Statistical data on the temperature-dependent energy content of charging events

• Vehicle energy usage:

– Statistics on vehicle energy usage

– Statistics on the temperature-dependent energy usage of vehicles

• Statistics on charging behavior:

– Timing of charging on residential properties

– Proportion of charging at other locations

• Environmental conditions:

– Purpose of the building or area

– Background load of the location (especially in the context of intelligent con-
trol)

– Charging use case (home charging, office charging, noncontrolled, controlled,
purpose of the controlling)

2.3.1 National travel surveys

A national travel survey (NTS) is a monitoring study that describes the travel habits of the
residents of Finland. Finnish NTSs aim to provide an overview of the Finnish mobility and
the factors influencing it, as well as to examine the demographic, regional, and temporal
variations in personal travel between population groups. The surveys have been conducted
approximately every six years in 1980, 1986, 1992, 1998–1999, 2004–2005, 2010–2011,
2016, and 2021 (Kallio et al., 2023; Liikennevirasto, 2018).

2.3.2 Other surveys and questionnaires

The supporting data can also be acquired by various surveys and questionnaires. The
most prominent survey types that can be used to model the charging loads of EVs are the
previously introduced NTSs and the surveys on the charging behavior of EV users. The
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EVs
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Figure 2.7: EV charging proportions by location (translated from Finnish and redrawn)
(Autoalan Tiedotuskeskus, 2020).

charging survey by Autoalan Tiedotuskeskus (2020) examined charging at home, at work,
and at various public charging points. In addition to the frequency of charging, it was also
examined whether the vehicle was powered from a dedicated charging station specifically
designed for the car or from a regular household outlet. Figure 2.7 shows the proportions
of locations where the EVs are charged. From the modeling perspective, surveys like
this are essential when modeling has to take into account not only the total energy but
also the peak power. If cars are often charged at other locations than those focused on
in the study, then the analysis ends up overestimating the charging demand. Modeling in
Publication VIII incorporates proportions of charging in the load profile, peak load, and
total energy estimations.

2.3.3 Spatial statistics

The spatial distribution of EV charging loads can be modeled to provide a basis for more
advanced load modeling and asset management of distribution grids, but also for retailers
to manage spatial load formation. This process involves understanding of the load forma-
tion and load development. Spatial modeling is used to estimate the distribution of loads
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connected to the grid in a given area, based on data like changes in socioeconomic factors,
area development plans, and surveys of the geographical target area. This information can
then be used to create area-specific load profiles or to estimate changes in existing load
curves. These load curves are then used for the load flow analysis of the grid in its current
state and to predict its future development, which can be used in grid development plans.
EV charging loads have unique characteristics, as they can be connected to the grid at
various locations. Publication VII investigates spatial modeling and how it can support
the design and operation of distribution networks. The proposed model provides a tool
to estimate the initial locations or home locations of EVs. If the home locations of loads
are known, they can be modeled based on the distributions of arrival and departure times
and trip lengths of the EVs, and the technical boundaries of the connection point and the
vehicle. Load profile modeling can be based on stochastic models, neural network mod-
els, agent-based models, or real measurement data from EV charging stations or the AMR
infrastructure. The input data for such a model can be nearly from any data source that
has been georeferenced to a known coordinate system. Figure 2.8 illustrates an example
of spatially distributed data that were used in the spatial modeling in Publication VII.

Figure 2.8: Example of spatially distributed data: Spatially distributed socioeconomic
data in Finland. The top-left subfigure shows the total number of cars registered per node,
the top-right subfigure the average age of the persons per node, the bottom-left subfigure
the annual median income of the households, and the bottom-right subfigure the number
of unemployed persons per raster node (Tikka et al., 2022) © 2022 Elsevier.
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2.3.4 National registers

A variety of registers that are administered by governmental agencies of organizations
are a valuable resource for modeling tasks in different fields of science. In particular, for
the EV load modeling, there are, for example, statistics of vehicle registrations by Trafi-
com (Traficom, 2022b), socioeconomic and, building data by Statistics Finland (Statistics
Finland, 2022), and weather statistics by the Finnish Meteorological Institute (Finnish
Meteorological Institute, 2023). In addition, building infrastructure statistics and other
geospatial data (Maanmittauslaitos, 2023), such as roads and other map features, may
improve the spatial modeling results in some cases. Publication VII shows an exam-
ple of employing temperature statistics to enhance load modeling based on measured
temperature-dependent behavior of the EVs. Publication VIII investigates the utilization
of geospatial socioeconomic data for spatial modeling of the EV distribution. In addi-
tion to previously mentioned data sources, there are many other data sources that could
enhance modeling of various smart charging schemes. Fingrid’s open data portal (Fin-
grid, 2023e) provides access to information about ancillary services, but also to data from
the energy market. When the modeling focuses on smart applications, such as frequency
containment reserves or price-signal-controlled charging, it is very beneficial to have his-
torical statistics of the signals that control smart applications.

2.3.5 Other resources to support modeling

In addition to well-maintained and official data sources, there are many other resources
that may benefit EV load modeling. For instance, the increase in the EV energy consump-
tion in cold environments is a well known phenomenon, but actual data or measurements
are difficult to find. There are studies that indicate that EVs consume more energy in cold
environments. A study implemented in laboratory reports that the energy consumption in-
creases considerably in a cold environment and notes that measurement data or statistics
available on the phenomenon are sparse (Zhou et al., 2023). Another study shows actual
field measurement data and concludes also that the increase in consumption is well notice-
able when the temperature drops below zero (Hao et al., 2020). In addition to scientific
research, various data are available from magazines and associations that have conducted
field experiments with a variety of cars. When using data that have been acquired through
a poorly documented process, one must always bear in mind its possible impacts on the
outcomes of the analysis. There are good examples of valuable data sources that could
be used to establish the temperature-dependent behavior of the charging model. The TM
magazine and the Norwegian Electric Vehicle Association provide a good coverage with
a variety of car brands and models tested in different temperatures. Figure 2.9 shows the
compilation of the consumption statistics.
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Figure 2.9: Estimates of car power consumption in different temperatures. The left-hand
image shows a field test conducted for a large mass of vehicles (Hao et al., 2020). The
right-hand figure shows data compiled from various sources (Tikka et al., 2023).

2.4 Use cases

Definition of the use case is among the most important aspects when modeling the EV
charging load, and it is even more important when considering smart charging applica-
tions. Smart charging applications are often complex and involve participation of multiple
parties to gain benefits. To successfully analyze the impacts of smart charging, it is a good
practice to start by defining the smart charging use case. Definition of the use case helps
in identifying the stakeholders or actors of the use case and clarifies interactions between
the actors.

The modeling results are highly dependent on how cars are charged, in other words, what
the charging use case is. The present dissertation focuses solely on home charging, but
even within the scope of home charging, the variety of use cases may be substantially
large. Publication I considered a simple home charging approach where charging is not
controlled. On the other hand, Publication II and Publication III addressed smart charging
with dynamic load control. The purpose of the study is also to recognize all the stake-
holders involved in the charging event. The following section gives an example of simple
prototype use case definitions.

2.4.1 Uncontrolled home charging

The most commonly known use case is uncontrolled home charging, which is also often
referred to as dumb charging. This was the typical approach as the EVs started to be-
come more common. The approach requires a minimal amount of technology and nearly
compares to any other electricity-consuming home appliance usage.

The primary actor of the use case is the EV owner, whose main goal is to drive the EV
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from point A to point B. To succeed in this goal, the driver aims to keep the state of charge
(SoC) of the EV battery as high as possible to enable flexible operation of the car. The car
driver mainly charges the car at home, which has an electricity connection point provided
by the DSO and an electricity tariff set by the electricity retailer. Thus, the driver may
end up paying for varying tariff structures because of the separate billing of the network
service fee and the consumed energy.

• Primary actor: the EV owner

• Primary goal: To keep the battery SoC as high as possible to enable flexible car use

• Other actors: the DSO and the electricity retailer

• Preconditions: the EV owner has access to the charging infrastructure

2.4.2 Dynamic load control

In addition to the previous use case, smart applications like dynamic load control require
technical abilities and a communication link to operate. The primary goals of the driver
remain the same as in the previous use cases, but the charging event is now dependent
on the dynamic load limit in the parking area or building. The EV driver aims to have
a full battery by the time in the morning when it is time to start the daily routines. The
technical capabilities are enabled by the technical aggregator, which can be an application
or a technical solution operating locally on the parking site.

• Primary actor: the EV owner

• Primary goal: To keep the battery SoC as high as possible to enable flexible car use

• Other actors: the DSO, the electricity retailer, and the technical aggregator (or ser-
vice provider)

• Preconditions: the EV owner has access to the charging infrastructure and sufficient
hardware and communication abilities in order to enable flexibility

2.4.3 Ancillary service smart charging

This more advanced use case of EV charging has a primary goal similar to the uncon-
trolled use case, but the objective is extended to gaining economic benefit by participating
in ancillary services supporting the electricity grid, such as frequency containment reserve
(FCR). Publication VI analyzes a possibility to use the EVs as an FCR. Flexible car usage
remains the primary goal, meaning that the car battery SoC has to stay high to maintain
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flexible car use, but some part of the capacity is reserved for ancillary services. Similar to
the first use case, the car connects to the grid through a home connection point, making
the DSO one of the use case actors. In this case, the electricity tariff is also provided by
the electricity retailer. The fourth actor of the use case is the aggregator that provides the
customer contract and the technical ability to produce ancillary services. The fifth actor
in the use case is the transmission system operator (TSO), which benefits from the service
provided by the car owner and the aggregator. This arrangement also changes the money
flow to bidirectional. The aggregator receives ancillary service remuneration from the
TSO and forwards it to the resource provider according to the contract.

• Primary actor: the EV owner

• Primary goal: To keep the battery SoC as high as possible to enable flexible car use

• Other actors: the DSO, the electricity retailer, the TSO, and the aggregator

• Preconditions: the EV owner has access to the charging infrastructure and sufficient
hardware and communication abilities in order to provide ancillary services

2.4.4 SPOT-price-based cost minimization

Similar to the previous use case, the SPOT tariff use case requires technical abilities and a
communication link to operate. The primary goals of the driver remain the same as in the
previous use cases, but the charging event now depends on the electricity price. The EV
driver aims to have the lowest possible charging cost and eliminate any noticeable impact
on the car use. The total cost depends on the electricity and service tariffs. The technical
capabilities are enabled by the technical aggregator, which may also be an electricity
retailer. The aggregator is often dependent on the electricity marketplace, which is the
platform for the formation of the electricity price. Publication V investigates SPOT-tariff-
based control schemes in the context of EV charging.

• Primary actor: the EV owner

• Primary goal: To charge the car at a lowest possible cost before morning to enable
flexible car use

• Other actors: the DSO, electricity retailer, and the technical aggregator

• Preconditions: the EV owner has access to the charging infrastructure and sufficient
hardware and communication abilities in order to enable flexibility
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2.4.5 TOU tariff contol

Similar to the previous use case, the TOU tariff use case requires technical abilities, but
the technical solution can be as simple as a timer that triggers charging as soon as, for
example, the night-time tariff begins. The primary goals of the driver remain the same as
in the previous use cases, but the charging event now depends on the tariff price and the
TOU schedule. The EV driver aims to have the lowest possible charging cost and remove
any noticeable impact on the car use. The technical capabilities could be enabled by the
DSO providing a control signal via an AMR meter. Such a control signal has a major
impact on the stochasticity of the charging loads.

• Primary actor: the EV owner

• Primary goal: To keep the battery SoC as high as possible to enable flexible car use

• Other actors: the DSO and the electricity retailer

• Preconditions: the EV owner has access to the charging infrastructure

2.4.6 Other bidirectional use cases

Bidirectional charging is part of a larger marketplace concept that allows EV users, pro-
sumers or homeowners, building managers, and distribution network operators, which
could be traditional DSOs or other types of operators, such as energy communities, to in-
teract and exchange EV charging flexibility. V2G use cases can have various objectives,
and modeling such a behavior requires careful definition of each use case. A broader
overview of the opportunities of V2G is given in Publication IX, which focuses on the
business models related to local flexibility services provided by EVs. Publication III
shows the economic benefits of bidirectional charging for distribution networks and ex-
plains the estimation of the economic potential of the V2G services. The study does not
consider any particular use case, but rather focuses on identifying how the economic dy-
namics of the mobile energy storage behaves when considering peak cutting applications.
The publication highlights that the implementation of EVs as distributed energy resources
(DERs) can help to reduce the additional charging peak loads caused by EV charging.
However, this type of arrangement is complex and will require considerable technologi-
cal advancement in EV control systems and seamless integration with the DSO.
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The operating environment is one of the largest external factors that affect the load mod-
eling of EVs as it lays the basis and the environment where EVs can be charged. The in-
fluence is noticeable especially if anything other than uncontrolled charging is observed.
For example, tariff structures, marker access, ancillary services, or data availability are the
factors that have a significant impact on the value proposition of different smart charging
applications. This chapter describes the Finnish operating environment in brief to provide
the context for the smart applications presented in this dissertation.

3.1 Production

Finnish electricity production is a mix of different types of production forms, such as
nuclear power, hydro power, combined heat and power (CHP), and wind power. In addi-
tion, solar PV is an emerging production type that is gaining traction on the market. The
total consumption of electric energy was 81 TWh in 2022, which is noticeably less than
in the previous year (Statistics Finland, 2023b). With a longer observation period, the
consumption does not show any clear trends on the historical data, as illustrated in Figure
3.1. Furthermore, the increasing proportion of wind power is clearly visible, increasing
steadily each year. In comparison with the year 2021, domestic electricity production
remained the same while the net electricity imports decreased by 30%. This was due to
the termination of Russian electricity and gas imports, as well as the rise in energy prices,
which had an effect on the purchase and use of electricity (AST, 2022). The high elec-
tricity costs in 2022 also caused a decrease in demand. Fossil-free electricity production
was at an all-time high, accounting for 75% of the total electricity production in 2022
(Statistics Finland, 2023b).

The wind power capacity has been on a steady increase for several years, gaining 2000 MW
of new installed capacity between 2022 and 2023. A prognosis of the wind power capacity
by the Finnish TSO Fingrid shows that the wind power capacity will exceed 10 000 MW
by 2026 (Fingrid, 2023c). Compared with the wind power capacity, the average elec-
tricity demand in Finland is 9200 MW (Statistics Finland, 2023b). Figure 3.2 shows an
estimation of the deployment and spatial distribution of the wind power capacity.

The increase in renewable capacity is not without its downsides, which must be addressed.
Solutions are versatile and multifaceted, including applications on the production, trans-
mission, distribution, and demand side. The efficient utilization of renewable production
requires seamless integration of the demand side into the infrastructure, so that the de-
mand can respond effectively to the fluctuating production (Järventausta et al., 2015).
The hydrogen-based solutions in industry and heavy transportation are also estimated
to substantially increase the demand for electricity. It should also be kept in mind that
carbon-free electricity is the key enabler for the hydrogen economy, and a large share of
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Figure 3.1: Supplies and total consumption of electricity, 1990–2022* (Statistics Finland,
2023b).

Figure 3.2: Finnish TSO’s estimation of the wind power capacity deployment in the com-
ing years (Fingrid, 2023c).

renewable capacity will be consumed in producing hydrogen (Sivill et al., 2022).

Electric mobility is among the key solutions on the demand side that can adopt and ab-
sorb a substantial share of the varying renewable production. The justification for this
statement is that EVs are typically driven only a few hours a day, which often allows
the battery to be harnessed to other tasks, such as peak shaving or other smart charging
applications. Bidirectional operation extends the capabilities of the vehicle battery even
further. The total storage capacity of the present European Commission (EC) fleet in
Finland is 3000 MWh (end of June 2023, includes only BEVs). The estimation is based
on aggregated statistics of the vehicle registration statistics (Traficom, 2022b) and brand-
and model-specific battery capacities gathered from manufacturers’ documentation and
advertisements.
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3.2 Transmission grid

The Finnish TSO Fingrid operates a transmission grid that is part of the Nordic transmis-
sion grid interconnected with Sweden, Norway, and Denmark. The grid is connected to
Estonia with a DC link (Fingrid, 2023b). The transmission grid operates at high voltages
of 100–400 kV with mostly a meshed network structure. The transmission grid delivers
electricity to the distribution grids operated by DSOs.

Fingrid is responsible for the technical performance and security of the Finnish power
system, as well as for tasks of national balance responsibility and national imbalance set-
tlement. This is done in a fair and equal manner toward all electricity market participants
(system responsibility) (Fingrid, 2023b).

In addition to the operation and development of the transmission grid, Fingrid’s responsi-
bility to maintain secure and reliable operation of the power system requires it to maintain
and develop marketplaces for the reserve and balancing power. The purpose of both mar-
kets is to keep the electricity system in equilibrium. Although they share this target,
the two markets are operated in different domains, the balancing power operating in the
hourly market domain and the reserves in the more technical domain mostly operated in
real time.

The balancing energy market is a market that operates in 15 min time frames. The aim of
the market is to keep the system in balance as closely as possible. The balancing energy
bids are given 45 min before the operating time window. The bids can be down- or up-
regulation bids. In the operating time frame, the bids are used in a cost order, starting
from the cheapest. Depending on the state of the power system, the operating time can be
down- or up-regulated (Fingrid, 2023d).

Figure 3.3: Reserve products on different time scales (Fingrid, 2023d).
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The reserve market contains several products, each of which makes a valuable contribu-
tion to the power system. The products are divided into different time frames, the fastest
fast frequency reserve (FRR) operating in almost real time, and supported by products
that respond quickly, i.e., the frequency containment reserve for normal operation (FCR-
N) and the frequency containment reserve for disturbance operation (FCR-D). The reserve
procurement process is divided into two separate markets: first, the annual market, which
has annual bids for resources that should participate in the market for the whole year,
and second, the hourly market that allows reserve producers to bid for certain hours only
(Fingrid, 2023d).

The automatic frequency restoration reserve (aFRR) is mainly reserved for major distur-
bances and operates within minutes from activation. Reserve capacity is acquired from
the annual and hourly markets. The hourly capacity quota is announced by the Fingrid
based on the state of the power system and the foretasted demand for the reserve. The au-
tomatic frequency restoration reserve (mFRR) is a reserve that implements the balancing
energy market. The reserve is activated by the Nordic TSOs based on demand (Fingrid,
2023d).

From the perspective of electric mobility, markets that allow bidding for specific hours
are highly interesting. The mobile resource can participate in markets only when it is
available. Often, the resources are bid to the market as an aggregated resource. This type
of approach creates additional flexibility from the viewpoint of an individual resource.

3.3 Distribution grid

The main function of electricity distribution is to provide electricity from the power dis-
tribution network to customers anywhere in the grid area with a good quality of supply.
The operating voltage varies between 0.4–100 kV. A typical MV grid is operated approx-
imately at 20 kV, but also other voltage levels exist. The distribution system was built
several decades ago, and it is today under constant renovation. The oldest parts of the
grid are still up to 50 years old. The distinguishing feature of the distribution grid is that
planning periods are typically long, up to 40 years. The distribution business is a highly
capital-intensive business. Finland, in most parts, is a sparsely populated country, mean-
ing that long distribution lines are required for a relatively small number of customers.
In Finland there are 77 DSOs in operation, and their total network asset is approximately
e12 billion (Energiavirasto, 2023).

In general, the distribution business can be divided into two parts: first, the operation
that involves mainly operating the grid on a daily basis as efficiently as possible, and sec-
ond, the planning that involves making long-term decisions under uncertainty. Strategic
analysis is the foundation for strategic decisions that support the long-term planning of
grids. Strategic analysis requires inputs of available technologies, technology costs, reli-
ability of different technologies, owners’ objectives, and economic parameters (Lassila,
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Figure 3.4: Information flows in the DSO’s long-term planning process (Lassila, 2009).

2009). The process focuses mainly on grid technology, but can greatly benefit from re-
liable load forecasts and scenarios that model potential new technologies impacting the
load behavior. The transmission capacity of the grid is the main parameter considered in
the planning process. In general, all meaningful indicators are relevant inputs to take into
account when performing network planning activities. Figure 3.4 identifies the relevant
information flows and target groups involved in the long-term planning process.

Grid planning is also driven by the requirements for the security of supply, according to
which customers in urban areas should not experience outages longer than 6 h. A similar
requirement is established for rural areas, but the recovery time from the outage should
be 36 h at the maximum. The law explicitly states that a storm or a severe weather event
is not a “force majeure” (Sähkömarkkinalaki [Electricity Market Act], in Finnish, 2023).

DSOs’ security of supply requirements combined with the sparsely populated country
makes the planning tasks very challenging. In addition to the difficult starting point, the
load behavior is changing dramatically in rural areas. The network faces changing load
profiles and increasing peak loads; as traditional heating systems are changed over to heat
pumps, loads are harnessed to demand response (Tuunanen, 2015). Moreover, electric
mobility is an additional load that is relatively high in many cases compared with the load
accumulated from other household appliances. Although loads change and new loads are
introduced, distributed production, especially solar PV, is increasing its popularity in rural
areas. High fluctuation in loads and production is likely to cause voltage quality problems
(Haapaniemi et al., 2022). When all factors and future scenarios are incorporated into the
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DSO’s strategic planning, it becomes a highly complex problem to manage.

3.4 Electricity market

The electricity market has been gradually opened to competition in the Nordic countries,
starting in Norway and continued by Sweden (in 1996), Finland (in 1998), and Denmark
(in 2000) (Lundgren, 2012). In the retail sale of electricity, electricity retailers sell elec-
tricity to end users. Finland has approximately 3.5 million electricity consumption points
(Energiavirasto, 2023), each with the option of freely choosing the electricity retailer.
Electricity production must also be open to free competition.

The competition in the retail business is open, but the physical transmission of electricity
takes place through a distribution grid that operates under a regulated monopoly. The
setting creates quite a unique operating environment, as the DSOs have very little control
over the load that is transmitted through their grids. The only restriction for the power flow
should be the customer’s main fuse. The DSOs are obligated to ensure that competition
between retailers is not restricted and that each customer can freely choose the retailer
(Sähkömarkkinalaki [Electricity Market Act], in Finnish, 2023).

The retailer purchases electricity from the SPOT market or by using bilateral contracts
and directly interacting with the supplier or the producer. The SPOT market is operated
by Nord Pool, an operator of the electricity market in Northern Europe that covers 16
countries, providing trading, clearing, settlement, and related services both day-ahead
and intraday (Nord Pool, 2023).

The electricity market consists of several integrated markets that are used to match the
load and generation in the long and short term. Long-term products are mainly financial
derivatives, such as futures, that allow hedging of the portfolio. In long-term market
transactions, the time frame is up to several years. The final day profile of the portfolio can
be refined as the time frame of the physical trade approaches. The market participant has
the opportunity to participate in the day-ahead and intraday markets prior to the physical
trade of electricity.

After the delivery, market clearing, where a possible imbalance in supply and consump-
tion is cleared, takes place (the process is called balance settlement). If an imbalance
exists, it is charged either an up- or down-regulation price, depending on the case. The
electricity market includes imbalance settlement services that confirm the amount of elec-
tricity that each market participant has consumed or generated, and who is responsible for
paying for each kilowatt-hour. The electricity market requires that electricity production
and consumption are kept in equilibrium at all times. Each of the balance responsible
party must plan its activities and make every effort to maintain this balance. However,
in reality, there will always be deviations from the plans as a result of the forecasting
involved. The balance error or deviation from the planned is called imbalance (ESett,
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Figure 3.5: Electricity retailer’s planning periods and market time frames (Valtonen,
2015).

2023).

In the electricity system, collaboration of all the parties involved is required. Electric
energy must travel through multiple grid operators before it reaches the consumer, and
there must always be someone to purchase it. Consequently, the electricity sales sector
cannot operate without communication with the other parties in the electricity markets or
in the power system.

Retailers are required to participate in data exchange, for instance, by providing details
about electricity deliveries and by acquiring customer data from a centralized data stor-
age. Primarily, data exchange takes place through Datahub, operated by the Finnish TSO
Fingrid (Fingrid, 2023a). Electricity retailers and distribution system operators are legally
required to use Datahub services when engaging in the electricity retail market (Sähkö-
markkinalaki [Electricity Market Act], in Finnish, 2023). Service providers that offer their
services to electricity consumers and market participants can also benefit from Datahub.

Figure 3.5 summarizes the retail market and illustrates the retailer’s planning periods prior
to market time frames.
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4 Considerations of EV charging impacts on the power
system

The trend toward sustainable transportation is gaining traction, and EVs are becoming
more widespread. This chapter focuses on the publications of this doctoral dissertation
and highlights their main results and observations. The chapter seeks to provide a com-
prehensive overview of the various aspects of EV charging and its effects on the power
system. These considerations are essential to gain a better understanding of the impacts
of EV charging on the power system.

4.1 Electricity distribution system

Typical household loads consist of many rather static loads, such as electric stoves, ovens,
toasters, and boilers. In the Nordic countries and especially in Finland, also electric sauna
stoves are a substantial load having a power from several kilowatts to more than ten kilo-
watts. A common factor for most of these electrical appliance loads is that they are highly
dependent on the user’s personal preferences. In other words, inhabitants’ behavioral
routines create load patterns produced by electric appliances.

Traditional grid dimensioning is based on type loads for each type of customer group. The
recommendation (Sähköenergialiitto ry SENER, 1992) describes the dimensioning prac-
tices for the type loads that have been widely used in distribution grid planning, but also
by retailers when forecasting the load profile and total demand of the customer portfolio.
The load profiles have been updated to meet the present electricity consumption behavior
(Mutanen et al., 2019), but the same principles for using the type curves remain.

In the definition of the type curve, customers are divided into groups based on their con-
sumption type, such as a detached house with electric space heating or an apartment house
with electric space heating. Formation of the type curve requires a substantial amount of
data to provide a good and feasible type curve that could be used for further analysis of
the power system. The mean and standard deviation curves can be formed as follows:

µP(t) =
W

8736
i2w,µ(t)ih,µ(t), (4.1)

σP(t) =
W

8736
i2w,σ(t)ih,σ(t), (4.2)

where µP is the mean power of the present type load customer, W is the customer’s an-
nual energy, i2w,µ is the normalized two-week index, and ih,µ is the normalized hour index.
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Similarly, σP is the standard deviation of the present type load customer, W is the cus-
tomer’s yearly energy, i2w,σ is the two-week index, ih,σ is the normalized hour index, and
t is the time index (hour of year). Thus, the maximum power of the customer can be
approximated by the probabilistic method as follows:

Pmax(t) = ncµp(t) + z
√
ncσp(t), (4.3)

where Pmax is the present estimated maximum load of the customer group, nc is the
number of customers in the group, and z is the confidence number defined as follows:

Φ(z) = P (Z ≤ z) = 1− α

2
, (4.4)

z = Φ−1(Φ(z)), (4.5)

where α is the confidence level, and Φ is the cumulative normal distribution. The method
is well proven and widely used to describe the mean value of load curves and the proba-
bilistic maximum value at the desired confidence level.

Modern smart appliances that are controlled with various signals create an additional
uncertainty element in the dimensioning of the grids. The smart EV charging is an in-
teresting example of this. The EV smart charging can be controlled with different kinds
of signals, such as network frequency, SPOT market price, or other market-derived sig-
nal. Common for all these signals is that there is no stochasticity in the response to these
signals. Rautiainen et al. (2016b) show that SPOT price-controlled charging is likely to
accumulate high peak powers on LV transformers and LV grids. This also leads to load
accumulation to a higher grid level, if not controlled or constrained in any way. Haa-
paniemi (2022), Lummi et al. (2016), and Rautiainen et al. (2017) study how this kind
of event could be controlled with power-based distribution tariff structures. Distribution
tariff structures are a passive approach to cope with the problem. Publication II studies
a case where the whole LV distribution network would be actively constrained with a
dynamic power limit. The study concludes that even with a 100% EV penetration level,
the maximum load of the LV network would not exceed the maximum power of the case
without any EVs in the area. Figure 4.1 shows an example graph of the simulations.

In their report, Tikka et al. (2021a) demonstrate a similar simulation model and control
strategy that has been applied at the apartment building level. The results clearly indicate
that the maximum powers at the apartment building level can be maintained within the
main fuse limits by employing dynamic load control. The model shown in the report is
based on the model specified in Publication I and Publication II, but the input data have
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Figure 4.1: Smart charging curves of BEVs with penetration levels of 25%, 50%, 75%,
and 100% (412 cars) (Tikka et al., 2012) © 2012 IEEE.

been updated with the latest statistics available. The simulation example shown in Figure
4.2 assumes a 100% EV penetration level, which means that in this particular example
there are on average 1.35 cars per apartment and a total of 15 apartments.

Figure 4.2: Continuity curve of the peak powers in the case of EV charging in parking
areas of apartment buildings (Tikka et al., 2021a).

The example shows that the building grid interconnections in the sample case were origi-
nally dimensioned to handle almost tenfold loads, and thus, adding EV charging loads to
these buildings is hardly a challenge. Dynamic load control cuts down the highest peak
hours allowing to maintain the load under the main fuse limit. However, in comparison
with the cases shown in Figure 4.1, where there are several hundreds of EVs, the load per
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unit or the load per EV is much lower than in the case where there are fewer cars. The
stochasticity of the EV charging plays a crucial role, even when smart charging applica-
tions are introduced. Nevertheless, it is critical to recognize how the charging of EVs is
taking place and what kind of smart charging application has been implemented.

A similar example of simulation results is shown in Figure 4.3, where the simulation is
performed in 550 individual row houses. The results show that before the introduction of
EVs, the maximum loads were below the maximum allowed current limit of the main fuse.
The uncontrolled charging causes nearly a half of the cases to exceed the allowed main
fuse limit, but the dynamic load control is able to reduce the number of cases exceeding
the main fuse limit to 60 cases out of the total of 550.

Figure 4.3: Continuity curve of the peak powers in the case of EV charging in parking
areas of an apartment buildings (Tikka et al., 2021a).

It is pointed out that the presented examples are estimations of 100% penetration levels,
which will not be reality in the near future. However, it is worth considering what the
impact on the distribution grid will be. As the future scenario covers a rather long period,
it would be useful to study more advanced approaches to manage loads on the distribution
grid and possible congestion situations. Publication IV reviews the opportunities for bidi-
rectional charging for local flexibility, in other words, how birectional EV charging could
be harnessed to support distribution grids. The potential of V2G to provide technical flex-
ibility is considerable, ranging from participation in electricity markets to provision of
balancing and system-level services for transmission and distribution network operators.
To ensure the success of V2G business models, it is essential to understand their value
proposition. Figure 4.4 illustrates the business models identified in the different domains
of the distribution system.

The business models are presented at a rather high level, but can be effectively used to
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Figure 4.4: Concept of a bidirectional charging marketplace with a wide range of potential
business models (Mendes et al., 2023) © 2023 IET.

identify value propositions and value chains. The value of a business model is highly de-
pendent on the current regulatory environment. When the regulatory environment fails to
enable the functionality of new business models, it also invalidates the value proposition.
The regulatory framework is constantly evolving and updated, and thus, it is important to
identify what business models might emerge in the future. The identified business models
and meaningful value propositions are also driving the change in the energy system and
can influence the regulatory framework.

Publication III reduces the abstraction level and investigates the value of energy storage as
an alternative to grid investments. The approach presented in the publication shows that
there is an opportunity to create added value with the EV battery when it is not actively
used for the primary use case of the car, i.e., driving. The present energy market or the
regulatory environment does not provide a great incentive for such an option. At present,
a DSO is not allowed to directly control customer loads (Sähkömarkkinalaki [Electricity
Market Act], in Finnish, 2023). In theory, DSOs could purchase resources from the mar-
ket, but such a flexibility market does not exist yet. There are EU-level activities in several
research projects that either review the potential flexibility markets (Fournely et al., 2022)
or provide demonstrations of such a flexibility and market transactions (Khomami et al.,
2020). Thus, it is worthwhile to study further how EVs can be harnessed to provide a
valuable flexibility resource for the distribution grids.

Publication III discusses the use of EVs as energy storages in distribution grids and de-
scribes the methodology to estimate the monetary value of the flexibility resource. The
modeling of the bidirectional charging relies on the same principles that apply to unidi-
rectional charging. The main methodology of the study can be summarized as shown in
Figure 4.5.

In Publication III, it is assumed that the optimization of network capacity is the primary
objective. It is also shown that the advantages of energy storage are heavily dependent on
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Figure 4.5: Main steps of the modeling of the economic benefits of V2G applications
from the DSO’s point of view (Lassila et al., 2012) © 2012 IEEE.

the shape of the base load in the network. The maximum operating time and the shape
of the load curve are closely related. If the peak of the load curve is sharp, the peak
operating time of the battery becomes shorter. If the load profile is more even without
a sharp peak, peak cutting applications with a battery energy storage are not feasible. If
the peak operating time is short, as is often the case in low-voltage networks, the benefit
of the storage can be considerable. From the grid’s perspective, the use of the energy
storage evens out the load curve, frees up network capacity, and improves the utilization
rate of the network capacity. Figure 4.6 illustrates how the required storage develops as
the peak cutting level increases. The further the peak load is pushed down, the more
storage capacity is required.

Figure 4.7 shows the dynamics of the economic feasibility of an energy storage. The best
result can be achieved if the storage is only used to reduce the sharpest peak loads or only
the highest peaks. The analogy applies also to bidirectional charging, as only a small
fraction of the EVs’ battery capacity is available for such activities. It must be taken into
account that the primary use of EVs is transportation, and that other applications should
not interfere too much with the primary application, i.e., driving the EV.

The temporal modeling can be further extended by adding a spatial dimension to the
model. Publication VII investigates the spatial distribution of EVs by processing and
analyzing socioecomonic data in the CNN model. The modeling shows promising results
of using the CNN model for this task. Similar spatial modeling has been typically carried
out using models based on self-organizing maps (Kohonen, 1990). In another study, Chen
et al. (2022) investigated a similar problem set by negative binomial regression models,
which include a “neighboring effect” similar to CNN models. The neighboring effect
refers to a modeling phenomenon where a neighboring spatial area might explain the
target variable in the observed spatial location. The CNN model aims to capture the
neighboring effect and thus improve the modeling accuracy. The main concern with the
CNN model is that it requires a large amount of learning data, like any other ANN model.

Figure 4.8 shows the flowchart of how spatial modeling can be included in the distribution
system planning process. The process in question is characterized by the utilization of a



4.2 Electricity retailer and aggregators 65

Figure 4.6: Dynamics of the energy storage applications in distribution grids against the
storage size (Lassila et al., 2012) © 2012 IEEE.

large amount of data, which is handled through stochastic processing, probabilistic tech-
niques, and time series analysis. With the increasing importance of EV charging loads, it
is advisable to explore which tools can be employed to make the network planning pro-
cess as effective as possible. The new spatial analysis tools are a most welcome addition
to the planning process, as they can reduce the uncertainty in spatial dimensions.

4.2 Electricity retailer and aggregators

The electricity retailer is an essential player in the energy system. The aim of the retail
business is to maintain the profit gain by selling electricity in a competitive market, which
means in practice that the retailer must have tools to maintain sales and purchase portfolios
as accurately as possible to make profit. The advancements in the customer’s end loads
make the task even more challenging. The loads are becoming seemingly unpredictable
if they are not analyzed carefully. As mentioned in the previous section, load forecasting
has previously been performed with relatively old methods, and the rapid transformation
of transportation has created a need to update methods.

Electricity retailers do not have the burden of maintaining the physical grid, but the eco-
nomic consequences can be still significant if electric mobility is not correctly included in
the analysis, and the forecast horizon of the retailer is from hours to years ahead. The rapid
change in electric mobility causes an increase in energy demand and significant changes
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Figure 4.7: Economic dynamics of the energy storage applications in distribution grids in
contrast to the storage size (Lassila et al., 2012) © 2012 IEEE.
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Figure 4.8: Simplified illustration of the drivers of the DSO network renovation and spa-
tial load forecasting (right) and simplified illustration of the CNN model (left) (Tikka et
al., 2022) © 2022 Elsevier.

in the load profile, which can be seen to impact the retailer’s profile risk. The high profile
risk introduces a higher uncertainty and is often likely to increase the retailer’s imbalance
costs. For instance, if cars are charged in an uncontrolled manner, the main peak is timed
to coincide with the typical household loads. An example of such an EV charging load
profile is shown in Figure 4.9.

In the example case, the simulated charging load profile closely corresponds to the house-
hold load. This supports the fact that if charging is uncontrolled, the charging starts at the
same time as other appliances are used. In the example, the charging load is simulated for
the area of 11 apartment buildings comprising a total of 412 apartments. The simulation
assumes a 25% penetration level, which means that there are 100 EVs worth of charging
demand.

The study was carried out in 2010, when the number of EVs was low, but the profile
and the energy demand are still valid today in the modeling standards. The author of the
dissertation has contributed to the modeling of EV charging for a decade, which has been



4.3 Impact of ambient temperature 67

Figure 4.9: Load profile of uncontrolled EV charging (Tikka et al., 2011) © 2011 IEEE.

a period of major transformation from the viewpoint of transportation. In the past ten
years, the availability of input data has increased considerably while also the selection of
EVs has increased from a few models from a few manufacturers to more than 100 models
from tens of manufacturers (Traficom, 2022b). While the number of cars has increased
significantly, the car technology has developed and also the knowledge of actual charging
curves has increased.

Section 4.3 discusses observations obtained by measuring EVs in a laboratory environ-
ment and further, how the observed features can be included in the modeling. These
external features, such as ambient temperature, are often neglected, but Simolin (2022)
points out that there are “nonidealities” that impact the charging load modeling. The au-
thor also mentions that these features impacting the charging curves have not been taken
into account in many studies. This doctoral dissertation shows how low ambient temper-
atures cause substantial changes in the load curve and the peak load. These changes are
also of significance from the retailer’s perspective and require the models to be updated
accordingly.

4.3 Impact of ambient temperature

The profiles are dynamic in nature, as multiple external signals can impact the way load
profiles are shaped. The most common external characteristic is ambient temperature,
which causes the energy demand of EVs to vary but also introduces major changes to the
load profile. Publication VIII studies the impact of ambient temperatures on the energy
demand of EV charging events and the shape of the load profile.

When the ambient temperature decreases below zero, EVs consume not only more energy
while driving, but also more energy during the charging event. The first and most obvi-
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ous reason for the change in the load profile is the increased energy demand as a result
of the increasing energy demand for driving. This feature changes slightly the stochastic
properties of how the peak load of multiple vehicles is formed; a higher energy demand
causes the loads to overlap more, and constitutes the basis for a slightly higher peak load.
The second reason for the load profile of different shape is the introduction of preheat-
ing or defrosting of cars prior to driving. This additional morning peak is not the most
relevant one when analyzing the impact of the distribution network, but considering the
management of the profile risk of the retailer customer portfolio, this highly temperature-
dependent peak becomes extremely important. Third, when the temperature is in the range
from -10°C to -20°C or even lower, the EV charging introduces yet another temperature-
dependent phenomenon that impacts the load profiles. In extreme subzero temperatures,
most cars use additional energy to heat up the battery to a temperature where it can be
safely charged; this introduces additional delays in charging events, but also requires con-
siderable amounts of additional energy. Figure 4.10 shows a comparison between the
simulated charging curves at ambient temperatures of +20°C and -20°C.

Figure 4.10: Uncontrolled EV charging load profile; a comparison of charging events at
+20°C and -20°C ambient temperatures. The right graph shows the charging load profile
simulated for the ambient temperature of +20°C, and the left graph when the temperature
parameter is changed to -20°C (Tikka et al., 2023) © 2023 IET.

The comparison shows that the probabilistic peak load is substantially larger at low tem-
peratures; this is mainly caused by the increase in energy demand, which increases the
charging time. The increased charging time changes the stochastic properties of the accu-
mulated charging event, i.e., more overlapping charging events. The mean value profile
can be used to estimate the total energy demand of the simulated group of charging events.

The total energy is also affected by the preheating cycle that takes place before driving.
This introduces a substantial power peak for the morning hours. Assuming that a similar
model would be modeled for office parking, the preheating cycle would appear right be-
fore the end of office hours. This observation emphasizes that when charging is modeled,
it is crucial to understand what the charging use case is and what the main objectives of
the car user are. For example, in the Nordic countries, preheating or defrosting is a feature
that must be included in the modeling.
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4.4 Smart charging to minimize the charging cost

In addition to temperature, it is highly likely that charging can be controlled. Different
control strategies change the behavior of the load considerably, which can be challenging
if not taken into account. Publication V shows a pilot demonstration of SPOT-tariff-
controlled charging. The actual smart charging strategy carried out on the test bed is
shown in the second graph from the top. In the uncontrolled charging scheme, it is as-
sumed that the car is charged immediately after plugging in with a nominal power of
3 kW. The paper shows that if the uncontrolled charging cost is compared with smart
charging that minimizes the charging cost, the total charging cost decreases to 50% of the
comparison cost. The absolute savings are not significant, but this creates the consumer
an incentive to control charging if the control can be enabled with ease and without a
significant additional investment cost. In the smart charging strategy, it is assumed that
the charging takes place when the Nord Pool Spot price is at the lowest and the charging
window is met. This example study shows energy savings per week, but it must be kept
in mind that the electricity SPOT prices are constantly changing, and absolute savings are
highly dependent on fluctuating SPOT prices.

Figure 4.11: Smart charging test executed in the demonstration setup. The charging events
in the top graph are simulated to provide a reference point (Tikka et al., 2014) © 2014
IEEE.

Smart charging does not necessarily benefit the grid. Applications that are controlled
by synchronized control signals, such as SPOT price or, for instance, grid frequency,
introduce a control logic that has no stochasticity besides the availability of the resources.
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If all the resources are given the same control signal, each resource available executes the
control at the same time. The issues have been recognized in various studies, and there
are means to tackle this kind of behavior. Several studies propose novel tariff structures
to manage high peak powers (Rautiainen et al., 2017; Lummi et al., 2016; Haapaniemi,
2022).

4.5 Local flexibility

Local flexibility, i.e., DSO congestion management is a highly interesting type of flex-
ibility that can be implemented with unidirectional charging, or it can gain additional
benefits if charging is bidirectional. Simple smart charging is often used to manage loads
at the building or parking area level. Publication II and Publication VIII consider simi-
lar dynamic load management, but the first study addresses the flexibility of a whole LV
transformer area. The second example, in turn, studies flexibility at the building level. In
both examples, the objective is to keep the power below a certain predefined level.

The main outcome of the studies is that dynamic load control greatly increases the hosting
capacity of a building or a parking area. The total energy demand is hardly any challenge
for the grids, but the timing of the uncontrolled charging load often is; thus, the dynamic
load control is highly beneficial, not only for the grid area where the charging takes place
but also for a wider grid area.

4.6 Transmission system

EVs are also a valuable resource for the electricity production and transmission. The
fundamental requirement for the electricity grid is that production and demand are al-
ways in perfect balance. The frequency of the power system is a direct and real-time
indicator of the balance between electricity production and consumption. When there is
more consumption than production, the frequency of the grid drops, and when there is
more production than consumption, the frequency increases. Basic physics dictates that
all generators and loads contribute to the frequency (by producing active power), which is
the same in all parts of the grid that are interconnected with AC links. FCR is the resource
that maintains and fine-tunes the frequency of the grid. FCRs are special in that they must
respond quickly and accurately to changes in frequency in order to prevent further devi-
ation and restore the power balance. The frequency of the grid is constantly changing as
production and consumption fluctuate, usually only within a range of +/- 0.05 Hz, and it is
kept close to its nominal value of 50 Hz by adjusting the production capacity or managing
the loads. The ultimate responsibility for maintaining the frequency of the system lies
with the TSO.

Publication VI studies how EVs can contribute to maintaining the frequency of the grid
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within the nominal range. This research demonstrates that EVs can be used as part of
FCR markets when combined with local control and, in certain cases, with a dedicated
demand response infrastructure (measuring devices, servers, services, and telecommuni-
cations). However, the use of the existing AMR infrastructure of the DSO causes delays
that currently prevent EV batteries from being used as a flexibility resource in the primary
reserve markets. But if the local control is applied, the tested EVs could qualify in the
FCR markets, either in FCR-N or FCR-D.

4.7 Summary and discussion

The variety of opportunities of EV charging and the possible range of applications are
extremely wide, and this doctoral dissertation analyzed only a few examples of possible
charging scenarios. There is a significant potential in EV charging as EVs are generally
untapped resources for most of the time (parked most of the day). The easy-to-access
smart charging is already available for EV drivers, and the charging can be optimized to
the cheapest hours by using a simple mobile application (Gridio, 2023). Furthermore,
there are smart chargers that can enable dynamic load control at the building level to keep
the charging load below the allowed current limit of the main fuse. The more advanced ap-
plications, such as local flexibility and bidirectional charging applications, are still mostly
found in academic studies and pilot experiments, although in some cases, commercial
pilots exist.

Applications or control strategies that do not match well together or their impact is not
positive for all the parties of the energy system are likely to emerge. The most obvious
case would be smart home charging, which benefits the EV user. The load control at
the customer end is usually implemented without knowledge of the retailer. Therefore,
the control might introduce an additional risk share to the retailer’s customer portfolio,
but usually, the dynamics of the customer demand response can be learned and modeled.
The setting becomes more challenging, if loads are controlled to manage congestion in
the distribution grid. From the retailer’s perspective, this type of demand response might
not seem something that can easily be modeled or included in the forecasting. To avoid
conflicts, there should be good and seamless integration between all parties in the power
system.

The electrification of mobility is still in an early stage in Finland. There were about
182 000 EVs and PHEVs in Finland at the end of June in 2023 (Traficom, 2023). Most
cars are still of the first or second generation EVs and possibly do not support all possible
charging applications. The current measures in the planning activities preparing for the
increasing numbers of EVs mainly aim to forecast how uncontrolled charging appears in
the grids and the retailer portfolio. As the number of EVs increases, the smart application
becomes more and more important for several reasons:
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• The large number of EVs is likely to cause a need for grid reinforcement if not
managed properly. The charging can be managed by implementing dynamic load
control already at the building or parking area level, as suggested for instance in
(Tikka et al., 2021a). In addition, it is important that the communication between
the parties of the energy system is enhanced even further.

• Smart applications, such as FCR applications or local flexibility, can be used to
support the grid and the power system. Applications are likely to become more
economically feasible as power systems face an increasing amount of fluctuating
renewable production while EVs also become more common. There are still regu-
latory questions to be solved to fully harness the potential.

• Bidirectional charging may stand out as a valuable resource if there are standard-
ization and original equipment manufacturers (OEMs) to support it. Prominent
business cases are found in charging places where cars are kept for longer periods
of time (e.g., transportation hubs, home charging, airports, hotels). Fast or ultra
fast chargers may not benefit from bidirectional charging as the primary target is to
spend as short a period of time as possible at the charger.

Table 4.1 summarizes the impact of various applications on the different parties of the
power system. Most of the smart applications result in positive impacts on the power
system, but some conflicts also exist.

Table 4.1: Impacts of different EV charging application to energy market parties.
Uncontrolled

charging, 
non-managed

Market signal
controlled 
charging:

SPOT-price-based
cost minimization

Local flexibility
for prosumer or 

parking area:
peak shaving, 
dynamic load 

control

Local flexibility
for DSO:

congestion
management,
peak shaving

Ancillary
services:
FCR-N,
FCR-D,
others

-++++++++Prosumer

N++++++CPO

N+++++++++Aggregator

++++---NRetailer

-----++++-DSO

-++++++TSO

--NN-Production

+ positive impact, N neutral impact, - negative impact

The applications have a significant impact on how each party of the energy system per-
ceives the impacts of EV charging. Some applications, such as power-intensive ancillary
services, benefit the TSO and the aggregator without interfering with the other partici-
pants’ business. Other applications that might be more energy-intensive, such as flexi-
bility services for the distribution grid, are likely to have a negative impact on the man-
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agement of the retailer’s portfolio, assuming that there is no good coordination between
the retailer, the aggregator, the DSO, and the TSO. Ancillary support services aimed for
the TSO are prone to create additional stress to the DSO’s grid. If not coordinated, this is
likely to create a conflict between the TSO’s and the DSO’s interests. The coordinated op-
eration has been studied and discussed in research initiatives (Attar et al., 2024; Givisiez
et al., 2020), but common practices are yet to be established. A similar conflict emerges if
consumers control their loads to minimize the charging cost (SPOT-price based). In this
case, the consumer benefits and the DSO faces the downsides of the smart charging as
peak loads are likely to increase. To conclude, the benefits are highly dependent on the
application and the use case. In addition, to harmonize and manage the impacts, it would
be beneficial to ensure smooth coordination between different energy market parties.
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5 Conclusion

As the main outcome, the doctoral dissertation shows the variety of EV charging appli-
cations and modeling practices. The novelty of the dissertation is in summarizing a wide
range of EV charging applications and laboratory experiments to quantify the impacts
of EVs on the power system and its various parties. A particular novelty lies in adding
the features of the cold environment to the load modeling of EVs, but also in showing
that spatial modeling benefits from using CNN models. As the main outcome, it can be
stated that EV charging will have a significant impact on the power system, but the impact
will depend on the development of smart charging applications. Uncontrolled charging
is, in many cases, likely to considerably increase the grid load and also cause specific
and highly regional overloading scenarios. In many cases, the load can be managed by
implementing a simple dynamic load control that reduces the peak loads. The statement
cannot be generalized too far as the grid environment varies case by case.

It is also likely that smart applications will include applications that may not benefit distri-
bution grids and cause more congestion problems. The SPOT-price-based control taking
place at the customer end is likely to cause such an issue. However, there are measures
that may tackle the issue. Novel tariff structures are one option to control the customer
end load development, but also EV charging can be used to provide local flexibility. Nev-
ertheless, the new control strategies still lack many conceptual definitions, architectural
refinements, and standardization before they are ready for the market.

Although new applications are not yet reality, the DSOs are recommended to investigate
a variety of use cases that smart charging applications might enable. A review of business
models is essential to identify the most prominent value propositions in the field. If the
value proposition is strong, it is worth studying further and including the approach in
future scenarios. The dissertation shows that value can be gained in several stages of the
system, making cases that enable value stacking more prominent.

In general, the most relevant factors in EV charging modeling to be monitored are:

• The number of EVs and their spatial distribution, which can be explained and esti-
mated based on the socioeconomic statistics supported by registration statistics.

• Major changes in the driving statistics. Modeling is highly sensitive to the driving
statistics and the charging behavior.

• Vehicle technology developments and especially developments in battery technol-
ogy. The major changes in the battery size can have a significant impact on the
charging behavior and thereby also on the properties of the load profile.

• Ambient temperature. Ambient temperature should always be included in the mod-
eling to achieve accurate estimates of the energy demand and the load profile.



76 5 Conclusion

• Use cases—How cars are charged. The most prominent impact on the load profile
is caused by changes in the customer use case. To make futureproof scenarios, it is
essential to analyze novel use cases that might appear feasible in the near future.

Regardless of the stakeholder in question, the same modeling principles apply. The load
profile is the same for all the players in the energy system. It is also noteworthy that most
charging schemes involve most of the stakeholders of the energy system, and in many
cases there is already some data flow present, at least AMR meter hourly series. As the
final conclusion, the modeling practices and indicators are the same for all stakeholders
in the energy system. If some of the above-mentioned indicators change, the impact is
always visible for all the stakeholders involved.

5.1 Scientific contribution

The doctoral dissertation outlines the relevant factors that have the most significant effect
in the load modeling of EV charging. Load modeling is at the core of several parties
operating in the field of electricity distribution and electricity markets. The models pre-
sented in this work can be used in the DSO asset management process, as well as in the
operational tasks in the daily operation of the distribution grids. A similar modeling ap-
proach provides a valuable tool to analyze the development of loads in the near future in
order to maintain the development of the transportation system. The dissertation high-
lights the most important factors and variables that have to be considered when operating
in the energy-system-related business, whether it is infrastructure-related or more market-
oriented operation. Identification of the impacting factors also serves as a good starting
point for constructing scenarios in business development.

The main contributions of the dissertation are:

• Identification of the most relevant factors of EV charging that impact the accumu-
lation of peak power in the electricity grid, the energy content, and the shape of the
load curve.

The factors vary depending on the output factors that are observed. The energy
content is highly dependent on the kilometers driven, but also on the charging pref-
erences, i.e., whether the car is charged daily or less often. The energy content also
depends on the ambient temperature, because the cold environment increases the
energy consumption when driving but also during charging because of the auxiliary
battery heating. Often, the energy content is also bounded by the capacity limits
of the battery (technical or defined by the user). The energy content also heavily
depends on the charging locations. Peak power is a result of multiple factors. The
most significant factor that affects the peak power is the distribution of the arrival
time. The shape of the arrival time distribution mainly defines the accumulation
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of the peak power. Further, the duration of the charging event impacts the peak
power as the overlap of the charging events is likely to increase. The charging time
is mostly dependent on energy and charging power, but also ambient temperature
may have an impact on the charging power and also on the total energy charged to
the battery of the EV. The final shape of the load curve is defined by the parameters
described earlier. The shape and temporal timing of the EV charging load curve is
also dependent on the preheating of the vehicles in the morning or when leaving
the workplace. The factors defined previously are all relevant to smart EV charging
applications, but the maximum power, energy content, and final shape of the load
curve are highly dependent on smart charging applications and use cases.

• Scientifically proven modeling methods to analyze EV smart charging (flexibility),
which has an impact on various players in the energy sector.

As discussed previously, the characteristics of the charging load curve depend on
several factors that are highly relevant when analyzing the impact of the charging
on the DSO, the retailer, or the aggregator. From the DSO’s perspective, the prob-
abilistic features of the load profile are the most critical parameters that should be
known well in order to be able to sufficiently prepare for the future electricity de-
mand. The retailer benefits from the same features, but for different reasons. The
retailer aims to model the next-day demand as closely as possible to manage the
balance of the sales portfolio. The aggregator is often more interested in the flex-
ibility that the EV charging can provide, and thus, the focus lies not only on the
demand curve, but also on the availability of resources.

• Showing that the CNN-based spatial modeling can be used to estimate the combi-
nation of temporal and spatial features of the EV smart charging.

The results of the model are adequate to support the network planning of the DSOs,
as the model is obviously able to demonstrate an increased likelihood of the oc-
currence of EVs. However, because of the scarcity of samples from the minority
class in the existing datasets, it is uncertain to what extent the model can be of
benefit to the network planning with the current dataset. When the model architec-
ture and parameters are refined, it is probable that the model performance can be
further enhanced. In conclusion, CNN has great potential for modeling spatial EV
distribution.

• Identification of potential business cases of V2X technologies for the power system.

EVs are becoming increasingly common, and it is essential to better understand
bidirectional charging strategies and the support services that they enable. The
study reviewed six different business models for bidirectional charging flexibility to
gain an insight into where the value proposition lies. The review helps in identifying
the most prominent business cases.
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5.2 Further research

This doctoral dissertation shows a novelty in smart charging application modeling, but
as previously stated, the transition of the transportation system to be based on electricity
is extremely rapid. Therefore, the research presented in this dissertation requires con-
stant upgrading to keep up with the change. The particular issue identified during the
dissertation process is that many smart applications are not enabled owing to the lack of
a proper communication infrastructure. Or, to be more precise, the physical communi-
cation link often exists, but the data exchange architecture and definitions do not support
the novel applications. The topic calls for more research, activities in standardization, and
commercial piloting.

Furthermore, the spatial modeling showed significant indications of its usefulness, but a
lot of work remains to be done. It is worth investigating in future studies how the CNN
model could be improved and whether additional input data could enhance its perfor-
mance. The dataset was limited to socioeconomic factors and vehicle registration statis-
tics, and thus, the further development of the model could benefit from information on
land use, road network, and other infrastructure. Furthermore, because the model showed
potential for use in spatial analysis, it could be employed also in many other cases. For
example, the customer loss in rural areas is often attributed to changing socioeconomic
factors and infrastructure, making it a suitable use case for the proposed model.
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Abstract—The number of electric vehicles (EVs) is rapidly 

increasing, and the upward trend seems to be continuing also in 

the future. The increasing number of electric vehicles causes a 

need to develop the charging infrastructure, and moreover, it is 

necessary to analyze the network effects of the simultaneous 

charging of numerous electric vehicles. A further interesting 

question is how all this affects the distribution fee paid by the 

electricity end-user. In this paper, the challenge is approached by 

an actual case example. The data used in the simulation are 

collected by measuring the traffic flow of the road leading to the 

case area. The aim of this paper is to demonstrate how the grid 

effects of large-scale electrification of transportation can be 

assessed and to define the needed reinforcements and effects on 

the distribution fee paid by the end customers. The data are 

processed by applying the Monte-Carlo method. The network 

effects and the change in the distribution fee are evaluated. The 

key result is that EV charging causes a substantial amount of 

additional load to the grid. Hence, the distribution fee may 

increase if the charging system is not intelligent. 

Index Terms-- Load modeling, electric vehicles, power 

distribution, smart grids 

I. INTRODUCTION 

HE European Union energy policy has created pressure to 

increase energy efficiency in all areas of energy 

consumption. About 20% of greenhouse gases in Europe are 

produced by transportation because of fossil fuels are widely 

used in vehicles. Even little improvements towards alternative 

energy sources would considerably decrease the total level of 

greenhouse gases produced. Electrification of transportation is 

one solution among others to improve the energy efficiency 

and move towards alternative energy sources in transportation. 

Therefore, it is essential to investigate how the electrification 

of transportation affects the electric grid, and whether EVs or 

plug-in hybrid electric vehicles (PHEVs) can support or even 

improve the grid somehow or whether there are only adverse 

effects on the horizon as electric vehicles gain popularity. 

The worst-case scenario would be that the electrification of 

transportation increases the power demand during high-power 

hours (power peaks) and causes a need to increase the grid 

capacity. On the other hand, the best case would be that a large 

The authors are with the Department of Electrical Engineering, 

Lappeenranta University of Technology, Lappeenranta, Finland, (e-mail: 

Ville.Tikka@lut.fi; Jukka.Lassila@lut.fi; Juha.Haakana@lut.fi; 

Jarmo.Partanen@lut.fi). 

number of EVs connected to the grid would be acting as a 

large distributed energy storage, which would even out high 

power peaks and smooth the load curve of individual feeders. 

An optimal solution would be a compromise that would serve 

both the needs of the Distribution System Operator (DSO) and 

the electricity end-user or the electric vehicle user. However, 

in this paper, the focus is on the grid-to-vehicle (G2V) 

perspective. 

In order to grasp the effects of large-scale electrification on 

the distribution grid, it is important to understand how 

distribution grids have traditionally been dimensioned, and 

what aspects have to be taken into account. Dimensioning of 

distribution grids is discussed for instance in [1] and [2], and 

the network effects of EVs are  in [3]–[6]. Load modeling of 

EV charging is discussed in [7]; yet many questions still 

remain open. This paper focuses on demonstrating tools to 

handle the grid load in order to be able to analyze the grid 

effects more precisely in further studies. 

If we add electric vehicles to a traditional distribution grid, 

the number of aspects affecting the dimensioning of the grid 

increases considerably. Electric vehicles are significantly 

different from traditional stationary loads that we have been 

used to see connected to the grid. A traditional load is typically 

stationary and fixed to one place, whereas an electric vehicle is 

almost independent of location and can be connected to the 

grid in different locations at different times. The power 

demand of EV charging can also vary depending on the 

mileage driven. 

In the Nordic countries, traditional heating loads have been 

predicted with reasonably good results by using a temperature 

forecast and type load curves. Electric vehicles are somewhat 

independent of the ambient temperature (the use of vehicles is 

assumed possible in all conditions) and further, load 

classification may be challenging. Load forecasting has to be 

made by other methods, such as traffic measurements or travel 

surveys. The accuracy of the load forecast is strongly 

dependent on the input data of the forecast model. Thus, it is 

emphasized that it is highly important to recognize the possible 

error factors and their effects on the forecast model. 

The main target of this paper is to show by a case example 

how the grid effects of large-scale electrification of 

transportation can be assessed. 
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The key points of the case study are: 

• Grid load effects of EV charging 

• Estimating the change in the distribution fee under

large-scale electrification of transportation 

• Application of traffic flow measurement data to grid

planning 

In this paper, the vehicle-to-grid (V2G) ability of EVs and 

charging management are left outside the scope of the study. In 

the paper, there is only one example of the network effects in a 

case where the charging load is partly controllable. The control 

scene used in the analysis of this paper is based on a 

simulation model and information available on the unused 

battery capacity of vehicles. 

II.  MEASUREMENT AND BACKGROUND DATA 

In this chapter, the case area, background data, and traffic 

measurements are illustrated. Also parameters used in the 

simulation are explained and introduced in brief. 

The case area shown in Fig. 1 is a small urban area in 

Southern Finland. There are 412 apartments in 11 apartment 

houses, 700 inhabitants, and 412 parking places (one parking 

place per apartment) with a wintertime preheating facility. The 

low-voltage grid in the area consists of two 20/0.4 kV low-

voltage substations with an annual peak power of about 200 

kW per substation; for both stations approximately 400 kW in 

total. In the wintertime, all 11 houses are heated by district 

heating, and thus, changes in the outside temperature have only 

a slight effect on the electricity consumption. The road to the 

area is a dead end (no through-traffic), which makes it an ideal 

target for traffic measurement. 

Fig. 1. Case area Pikisaari district of the City of Lappeenranta in Southern 

Finland.  

To demonstrate the application of the forecasting 

methodology, traffic was measured for a month. Fig. 2 shows 

the average daily distribution of cars arriving and leaving the 

area. Working hours can be easily spotted in the figure; there 

is a significant peak at 8 am when cars are leaving the area and 

at 17 pm when cars are arriving back in the area. 
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Fig. 2. Average workday traffic flow on the road leading to the case area.  

For a more accurate load forecast, the traffic survey period 

should be longer. In this example, the average is calculated for 

20 workdays. In addition, further travel surveys should be 

carried out to define the exact kilometers driven by cars. Yet 

another, more expensive option would be to equip cars with 

GPS trackers. That way, there would be exact data available 

on the driving lengths or trips, and furthermore, starting and 

ending times of single trips would be recorded. 

In this paper, the vehicle kilometers by car are estimated by 

using the Finnish National Travel Survey (NTS). The survey 

includes all transportation (cars, motorcycles, busses, biking, 

etc). The cars are assumed to be EVs or PHEVs with high-

capacity batteries. Charging losses are neglected; however, 

average consumption can be slightly overestimated in order to 

compensate charging losses. The average energy consumption 

of EVs (and PHEVs when driven with electricity) is assumed 

to be 0.2 kWh/km, which is the commonly used estimate in the 

Nordic countries. A lower consumption estimate can be used 

in southern countries, where interior heating is not required in 

vehicles. The properties of electric and hybrid vehicles are 

discussed in [8]. 

The average vehicle kilometers travelled by car in Finland 

is 52 km/day. The NTS survey made with a similar area profile 

as the current case area shows that about 30% of all trips (by 

bus, car, walk, etc.) are made by car. If the traffic measurement 

results shown in Fig. 3 are compared with the NTS data, it can 

be seen that with the population of 700 persons, there should 

be at least 200 persons traveling by car during a day. In Fig. 3, 

it can be seen that at noon there are at least 200 vehicles 

outside the case area. However, the measurement has certain 

deficiencies. For instance, it is not known how many cars there 

are actually on the move during the day (based on the traffic 

flow measurement), because cars cannot be identified by the 

measurement device. Nevertheless, the collected data are 

sufficient for demonstration purposes, and the total energy and 

charging overlapping can be estimated. The energy used 

during the day depends on the total vehicle kilometers 

travelled during the day. The average vehicle kilometers per 

day can be estimated by the NTS data. Charging overlapping 

can also be estimated by the average vehicle kilometers and 

the distribution of the times of arrival at home. 
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Fig. 3. Number of cars in the case area. The numbers are based on actual 

traffic flow measurement in the case area. 

 

The total number of trips per day in the case area is about 

2000 of which 30% are made by a car, based on an estimation 

made by using the NTS data. Instead of the NTS, actual 

measurement data from the case area show that the total 

number of vehicles in the area is about 900 per day. Of this 

number, about 100 trips are public transportation and other 

service traffic. For this reason, the total amount of traffic in the 

100% penetration level simulation is assumed to be 800 trips 

per day. The measurement was calibrated with a few hours of 

video surveillance. In the calibration, it was noticed that 

roughly 10% of all the traffic was other (busses, service traffic, 

taxis, etc.) than trips made by inhabitants of the case area. 

In the simulation, the NTS data are also used to define the 

trip length distributions for each hour. Because the data in the 

survey are national, they had to be filtered to match the case 

area (Southern Finland, urban areas, apartment houses). 

Therefore, the number of data points (trips) are decreased from 

the total of 11 000 in the NTS to 1 600 trips. The trip lengths 

are then added together to form a distribution of the total trip 

lengths for the trips driven through some other stopping point 

before finally arriving at home. In this operation, the number 

of data points is decreased to about 600. 

Trip lengths are mostly short, but there are also a few 

longer trips, as can be seen in Fig. 5. Weibull distribution is 

chosen to be used in the distribution fitting. As can be seen 

also in Fig. 4, the Weibull density function fits well with the 

initial data. 
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Fig. 4. Weibull probability density function (Scale parameter λ=1 and 

shape parameter k=0, 0.5, 1, 1.5). 

 

 Fig. 5 illustrates the Weibull parameters and a few example 

histograms of the trip length distribution. The maximum 

likelihood method is used in the Weibull parameter fitting.  
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Fig. 5. Weibull parameters for each hour and data sample histograms. 

 

Because of the lack of data points in a few early hours, the 

parameters are slightly manipulated. Even though the 

parameters are not all accurate, the simulations results are 

reasonably reliable because of the low significance of the early 

hours (from midnight to 6 am) in the simulation model. 

A.  Power flow 

The power flows at the low-voltage substations are also 

measured to give an insight into the ratio of the EV charging 

load to the base load in the area. In this case, the highest base 

load values occur in the afternoon and evening hours, as can 

be noticed in Fig. 6. 
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Fig. 6. Measured workday base load in the case area.  
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Thus, the inaccurate Weibull distribution parameters in the 

early hours play no critical role in this study. It will be a 

concern of the further studies how these few night hours can be 

assessed in a reliable way. 

Also the temporal distribution of power peaks is 

investigated for the base load and the charging load. Intelligent 

charging is also discussed with an example case. 

III.  ANALYSIS AND METHODOLOGY 

The methodology is introduced in brief, bearing in mind 

that the key target of the paper is to illustrate the application of 

the forecast methodology by a case example. The simulation is 

based on the Monte-Carlo method. Single vehicles trips are 

randomly selected based on the input data. The traffic 

measurement is distributed by normal distribution, and thus, 

when the departure time of vehicles is selected, the distribution 

type is taken into account. The selection cycle is repeated 

multiple times to define the statistical characteristics of the 

vehicle charging. The simplified methodology is presented in 

Fig. 7. However, only the key elements of the simulations are 

presented in this paper, and the error and sensitivity analyses 

are neglected. 

Fig. 7. Flow chart of the simulation process. 

We can roughly estimate the grid load by comparing the 

traffic measurement data with the load curve presented in Fig. 

6 and Fig. 8. There is significant similarity in the shapes of the 

load curve and the traffic flow curve in Fig. 2. First, if a 100% 

EV penetration level is assumed, in the afternoon there are 

about 100 vehicles arriving in the area per hour. At the same 

time, the load curve reaches its highest workday value as can 

be seen in Fig. 8. Secondly, if it is assumed that loading starts 

immediately when the vehicles arrive in the area, the charging 

load will be considerable. 
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Fig. 8. Power measurement data from the area (without charging load). 

The assumption is that the grid load will increase 

substantially during the base load peak hours. With the 

additional charging load estimations, the change in the 

distribution fee could be estimated. Also an estimation of 

intelligent charging could be provided by using the simulation 

model and the simulation results. 

Simulation assumptions: 

• Charging starts immediately when the vehicle arrives 

home 

• Charging power is constant 3.6 kW per car

• The energy consumption of the vehicle is 0.2 kWh/km 

• Charging can be done only at home

• The battery capacity of the vehicle is sufficient for most

(all) of the daily trips 

A.  Charging load simulation (dump charging) 

Simulation is made by applying different penetration levels;

25%, 50% 75%, and 100%. The lowest 25% penetration 

scenario may be realized in the near future, and therefore, it 

needs a closer look. With the low penetration level, the highest 

mean value of the EV charging load is 40 kW in the case of 

dump charging. In Fig. 9, the charging load curves with 

different penetration levels are presented. 
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The load varies from 0 to 510 kW, and the peak hour is at 

19 pm. The total energy charged during a day is 3.3 MWh in 

the case of the 100% penetration level. Based on the amount of 

energy, it can be said that with the fleet of 400 vehicles, the 

average daily kilometers driven are 41 km/day. Compared with 

the NTS average of 52 km/day/car, the result is reasonable. 

The main interest is in the hours from 16 pm to 23 pm, 

when the case area base load is at the highest level. In Fig. 2 

and Fig. 6, we can see that the steepest upward slope starts at 

16 pm, right before the base load starts to increase in the area. 

Based on this, it can be stated that the simulation model is well 

synchronized with the base load in the case area. 

Fig. 10 shows the sum base load and the EV charging load. 

As can be noticed, the load power peak increases substantially 

even with the low penetration levels. 
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Fig. 10. Workday base load and EV charging load (25% penetration level).  

With the 25% penetration level, the total peak load is 

470 kW, which is 120 kW (35%) more than the original base 

load peak in workdays. The base load daily energy is 

4.37 MWh/workday and the charging load energy with the 

25% penetration level is 1.40 MWh/workday. Thus, the total 

energy increases by about 30%. Because the electricity 

consumption in the case area is not very energy intensive, the 

increase in the energy is also relatively high. 

In this paper, the actual (physical) network effects are 

neglected to keep the focus on the grid loads. It is a question 

of further studies how the low-voltage grid can handle the 

charging loads presented in this paper. 

With the 100% penetration level, the total load peak is 

830 kW, which probably leads to a need to replan the whole 

low-voltage grid again, unless it is heavily overdimensioned. 

In practice, also some confidence levels of the base load and 

the EV charging loads must be considered when planning the 

reinforcements. The EV charging load confidence levels are 

discussed later in this paper.  

B.  Smart charging 

The major challenge is not to simulate the loads caused by 

the smart charging of EVs, but to define how much electricity 

end-users are willing to allow their loads to be controlled. A 

further question is what kinds of incentives could be used to 

make the end-users willing to let their loads to be controlled by 

the DSO or some other aggregator. Smart charging is 

discussed in more detail for instance in [9]–[12]. In this paper, 

smart charging refers to a control scheme the goal of which is 

to improve the overall efficiency of the distribution grid and to 

decrease power peaks caused by EV charging. 

In this particular case example, it is assumed that most of 

the EV charging loads can be delayed by a few hours in the 

evening time, without compromising the usability of the 

vehicles. The assumption is based on the NTS data, because 

the data show that most of the trips ending at home in the 

evening time are usually the last trips of the day. After the last 

trip, the vehicle stays at home all night and can be charged at 

any time during the night. 

Based on the presented assumptions, charging can be 

optimized to the night hours when the base load of the area is 

at lowest. 
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Fig. 11. Simple smart charging profile to be used for peak cutting purposes 

(25% penetration level). 

C.  Cost analysis 

The cost of an additional load can be assessed by marginal

cost, as discussed in [3]. The marginal cost represents the cost 

of the network replacement value and the highest load value of 

the year. In practice, it describes how much each peak load 

kilowatt hour costs for the distribution company. In the case 

grid, the suitable marginal cost is 300 €/kW. In the case of the 

25% penetration level, the additional peak load ∆P (mean 

value of the charging load at the peak hour) of 120 kW 

corresponds to a 36 k€ grid investment CReinforcement in the near 

future:  

PC ∆⋅= cost marginal AverageentReinforcem (1) 

It must be borne in mind that the grid may be 

overdimensioned, and there is no immediate need for the 

reinforcement. Thus, every case must be dealt with 

individually when considering the reinforcements. Moreover, 

it has to be kept in mind that every additional peak load 

kilowatt added to the grid always has a price, even when a 

reinforcement is not needed. 
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The load curve confidence level must also be examined 

when considering a grid reinforcement. In Fig. 12, the load 

value of the peak hour is illustrated with different confidence 

levels. 
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Fig. 12. Charging power at 6 pm with different confidence levels (25% 

penetration level). 

For example, if a 98% confidence level (2% possibility for 

underestimating the load level) is selected, the additional load 

would be 166 kW, which corresponds to a 50 k€ reinforcement 

cost. At the 95% confidence level, the additional load would 

be 147 kW and the reinforcement cost 44 k€. In the end, it is a 

question about risk management of the DSO, that is, what kind 

of a confidence level is used in the load estimations and load 

flow calculations. 

In the case of the controlled EV charging with the 25% 

penetration level, there is no significant power increase at the 

peak hours. The grid load curve is more leveled and the peak-

operating time is increased, and therefore, the distribution fee 

paid by the end-user may even be decreased. A rough estimate 

of the change in the distribution fee paid by the end-customer 

can be made based on the delivered energy and the peak 

power. 

The increase in the distribution fee can be evaluated by 

comparing the annual cost of the reinforcement 

CAnnualreinforcement with the annual energy transferred EAnnualtotal: 

 totalAnnual

entreinforcem Annualenergy deliveredper  lueNetwork va
E

C
= (2) 

The value of the grid in the case area (including the 

marginal cost of the medium-voltage level 300 €/kW and the 

primary substation level 100 €/kW) is assumed to be 350 k€ 

and the annual costs of reinforcements 20.4 k€/a (i = 5%, t = 

40 a). By (2), the network value per delivered energy is 

1.27 cent/kWh (dimensioned to a 500 kW peak power). 

In the case of dump charging with the 25% penetration 

level, the annual cost of reinforcements is 2.10 k€/a (i = 5%, t 

= 40 a, total investment 36 k€). Therefore, the annual cost is 

increased to 22.5 k€/a and the value per delivered energy is 

increased to 1.42 cent/kWh. Compared with the original value 

of 1.27 cent/kWh, the increase is 12%. Therefore, the 

distribution fee paid by the end-customer may need to be 

raised significantly even with low penetration levels. 

In the case of smart charging with the 25% penetration 

level, the delivered energy increases by 1.4 MWh/day and no 

reinforcement is needed. Therefore, the value per delivered 

energy is 0.97 cent/kWh by (2), which is 23% less than the 

original 1.27 cent/kWh. In this case, the distribution fee may 

be even lowered. In order to evaluate the distribution fee paid 

by the end-customers, a more extensive grid load analysis is 

needed, since the peak operating time is different in different 

areas. 

IV. CONCLUSION 

Electric vehicles and vehicle charging stations will be part 

of the future grids. Charging of the electric vehicles may cause 

substantial effects to the grid in some cases if the charging is 

not controlled. In the case area, the value of the transferred 

energy is increased up to 12% with the 25% electric vehicle 

penetration level and even above this with higher penetration 

levels. The peak power increases by 34% with the 25% 

penetration level in the case of dump charging. With the 100% 

penetration level, the grid peak load may even double if the 

charging is not controlled. 

With smart charging, the value of the transferred energy is 

decreased to 23%; consequently, it may even be possible to 

avoid an increase in the distribution fee paid by the end-

customers or even to decrease the fee with the 25% electric 

vehicle penetration level. 

Although the parameters and the simulations involve many 

assumptions and uncertainty, the results show that it is 

important to be able to manage or control electric vehicle 

charging in some way.  

Even though this study was made for a particular case 

example, the methodology presented in the paper can also be 

used in other studies. 

The main outcomes of this paper are: 

• According to the grid load simulations, large-scale

electrification of transportation and uncontrolled

charging may cause serious reinforcement needs to the

distribution grid. 

• Load power peaks increase substantially if electric

vehicle charging is not controlled, even with low 

penetration levels. 

• The distribution fee paid by the end-customer may need

to be increased significantly in the case of uncontrolled

charging. In the case of optimized smart charging, there

is an opportunity to lower the distribution fees. 

• The developed simulation model helps in defining the

charging effects of electric vehicles in a residential 

area. The simulation is based on actual traffic flow in 

the case area. 
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Abstract—The interest in electric vehicles (EVs) is rapidly 

increasing, and the upward trend seems to continue also in the 

future. As a result of the increasing energy consumption, the grid 

infrastructure has to be developed further, and moreover, it is 

necessary to analyze the network effects of the electric vehicle 

charging. In this paper, the challenge is approached by an actual 

case area in Finland and simulated EV traffic. The data used in 

the simulation are collected by measuring the traffic flow on the 

road leading to the case area. The objective of the paper is to 

demonstrate how the grid effects of large-scale electrification of 

transportation can be addressed, and what data are required to 

assess the additional charging load in a feasible manner. The data 

are processed by applying the Monte-Carlo method, and also a 

sensitivity analysis is performed. 

Index Terms-- Load modeling, electric vehicles, power 

distribution, smart grids, smart charging 

I. INTRODUCTION 

HE energy policy of the European Union has created a

pressure to increase energy efficiency in all sectors of 

energy consumption. About 20% of greenhouse gas emissions 

in Europe are produced by transportation, because fossil fuels 

are still widely used in vehicles. Electric vehicles (EVs) are 

probably among the most promising alternatives towards CO2 

free transportation. Even a small proportion of EVs in 

transportation would lead to a substantial decrease in 

emissions. Therefore, it is essential to investigate how the 

electrification of transportation affects the electric grid, and 

whether EVs or plug-in hybrid electric vehicles (PHEVs) can 

support the grid or whether there are only adverse effects on 

the horizon as electric vehicles gain in popularity. 

While electrical mobility is winning popularity, the 

electricity grid itself is also under major transformation. EVs 

will be part of future grids similarly as distributed generation, 

grid automation, and energy storages. The structure of the 

electricity retail market may also undergo changes as a result 

of the new business model is to be launched among EV 

charging services. 

To be able to analyze the grid impact of electric vehicle 

The authors are with the Department of Electrical Engineering, 

Lappeenranta University of Technology, Lappeenranta, Finland, (e-mail: 

Ville.Tikka@lut.fi; Jukka.Lassila@lut.fi; Henri.Makkonen@lut.fi; 

Jarmo.Partanen@lut.fi). 

charging, the issue needs to be addressed from all relevant 

directions. First of all, it has to be borne in mind that unlike 

traditional loads, an EV charging load may be positioned in 

different locations. Secondly, the charging need may also vary 

in a seemingly random way. Thirdly, the charging time is 

dependent on the moment at which the vehicle is plugged into 

the grid. Consequently, the various combinations of these 

factors may lead to very complex computations.  However, a 

similar approach can be taken to large volumes of EV charging 

loads as with traditional household loads:  a single event may 

be difficult to predict, but a large number of events seem to 

follow some kind of a pattern. Grid load estimation for grid 

development purposes and a confidence level approach are 

covered in [2]. Dimensioning and maintenance of the 

distribution grids are discussed in [1] and [2]. 

It is relatively easy to model an additional load caused by 

dump charging to the grid by assuming some random 

penetration levels. Although studies of this kind may provide 

worst-case scenarios, in practice there is a need for estimates 

of the actual number of EVs. In particular, if there are 

problems to be expected with the existing load already, an 

additional EV charging load will complicate matters even 

further. 

It is difficult to determine which penetration level should be 

used and for what time period. Moreover, it may be 

demanding to estimate how charging will or should be 

arranged. Will there be dumb charging spots only or will there 

be a combination of different charging methods? The network 

effects of EVs are discussed in [3]–[5]. Feasibility of the 

Vehicle to Grid (V2G) technology is analyzed in [6]. 

If we can show that EVs will not cause any additional peak 

loads to the grid at high penetration levels, the problems with 

the future schemes can be solved, at least to a certain extent. 

Naturally, there are many areas in Finland and the Nordic 

countries where an increase in the peak load cannot be covered 

without major investments to grid automation or cables. 

This paper provides a case example of how the EV 

charging demand can be modeled to answer the needs of the 

smart charging scheme. The EV charging demand will be 

demonstrated by modeling the use of personal vehicles in an 

actual urban case area, which was introduced in a previous 

study [3].  

A simple smart charging control algorithm is presented in 

the study to demonstrate the charging demand results for the 
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Ville Tikka, Student Member, IEEE, Jukka Lassila, Member, IEEE, Henri Makkonen, Jarmo Partanen, 

Member, IEEE 

T

2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin

978-1-4673-2597-4/12/$31.00 ©2012 IEEE



2

case area. The Monte Carlo Method (MCM) is taken as a 

stochastic approach because of the simplicity of the method. 

As the system does not involve any time-consuming 

calculations, a slow method such as MCM provides a feasible 

approach to the topic. 

The key points of the case study are: 

• Grid load effects of the EV smart charging 

• Data generation, acquisition, filtering and

optimization algorithms 

• Charging load demand and use of charging spots 

II.  THE CASE AREA AND BACKGROUND DATA 

In this chapter, the case area, background data, and traffic 

measurements are illustrated. In addition, parameters used in 

the simulation are explained and introduced in brief. 

A.  The case area 

The case study in this paper is based on an actual case area

in Southern Finland. The case area is illustrated in Fig. 1.  

Fig. 1. Case area: Pikisaari district of the city of Lappeenranta in Southern 

Finland.  

The area consists of 11 apartment houses with 412 

apartments. In the parking lots of the case area there are 412 

parking spaces. The parking spaces are usually occupied 

during the night hours, while during the daytime most of the 

parking spaces are empty. Every parking space is equipped 

with a winter preheating facility (engine block-heater pole), 

which can be used for slow EV charging in most cases when 

the EV penetration level in the area is low. 

The low-voltage grid in the area consists of two 20/0.4 kV 

low-voltage substations with an annual peak power of about 

200 kW per substation; for both stations approximately 400 

kW in total. In the wintertime, all 11 houses are heated by 

district heating, and thus, changes in the outside temperature 

have only a slight effect on the electricity consumption. The 

road to the area is a dead end (no through-traffic), which 

makes it an ideal target for traffic measurement.  

B.  Base load 

The power flows at the low-voltage substations are also

measured to give an insight into the ratio of the EV charging 

load to the base load in the area. In this case, the highest base 

load values occur in the afternoon and evening hours, as can 

be seen in Fig. 2. 

0 2 4 6 8 10 12 14 16 18 20 22 24
0

50

100

150

200

250

300

350

400

P
o

w
e

r 
( 

k
W

 )
Time ( h )

Workday base load max = 350 kW

Workday base load min = 110 kW

0 2 4 6 8 10 12 14 16 18 20 22 24
0

50

100

150

200

250

300

350

400

P
o

w
e
r 

( 
k

W
 )

Time ( h )

Workday base load max = 350 kW

Workday base load min = 110 kW

Fig. 2. Measured workday base load in the case area.  

In [3] it was noticed that the base load peak and the 

charging load may overlap substantially during the evening 

hours causing a notable peak load increase in the case of dump 

charging. The cost of the delivered energy will also increase if 

the EV charging is not controlled. It was also shown that an 

alternative charging scheme may significantly improve the 

situation. 

C.  National Travel Survey 

In this paper, the vehicle kilometers by car are estimated by 

using the Finnish National Travel Survey (NTS) by the Finnish 

Transport Agency. The survey includes all transportation 

(cars, motorcycles, busses, biking, etc). The cars are assumed 

to be EVs or PHEVs with high-capacity batteries. Charging 

losses are neglected; however, the average consumption can be 

slightly overestimated in order to compensate the charging 

losses. The National Travel Survey is discussed in more detail 

in [6]. 

D.  The traffic measurement 

To demonstrate the application of the forecasting 

methodology and smart EV charging, traffic was measured for 

a month. Fig. 3 shows the average daily distribution of cars 

arriving and leaving the area. Working hours can be easily 

spotted in the figure; there is a significant peak at 8 am when 

cars are leaving the area and at 17 pm when cars are arriving 

back in the area. 
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III.  SIMULATION ASSUMPTIONS 

In Finland, the cost of fossil fuels is rapidly increasing, and 

therefore, driving with internal combustion engine (ICE) 

vehicles becomes more expensive. Based on the National 

Travel Survey (NTS) [7], it can be estimated that the average 

driving distances per person by car are about 52 km/d and 

18980 km/a. In most cases, modern electric vehicles are 

already capable of covering the distances travelled per day. In 

fact, the typical trip length is less than 100 km for 93% of the 

car trips, as can be seen in Fig. 4. Many EVs already offer a 

driving range of well above 100 km; EVs are discussed in 

more detail for instance in [8]. 
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Fig. 4. Distribution of trip lengths driven by car in Finland [6].  

Nevertheless, EVs may not yet be a feasible alternative 

because of their high purchase price compared with similar 

ICE vehicles, even though the running cost is lower with EVs 

than with ICEs. In the near future, we also expect to see a 

reduction in the battery cost, and when the battery cost 

becomes lower, also the EV prices will probably come down. 

The sale of hybrid vehicles (HEV) has started well in Finland, 

and hence, we may also assume an increase in the sale of 

Plug-in Hybrid Vehicles (PHEV) in the next few years. Table 

1 provides an estimate of the PHEV and EV sales in Finland 

for the near future. 
TABLE 1 

PHEV AND BEB PENETRATION SCENARIOS BASED ON THE REPORT OF THE 

MINISTRY OF TRANSPORTATION AND COMMUNICATION IN FINLAND [9] 

Year 

Share of new 

cars 

Cumulative sales 

(number of cars) 

Share of the vehicle 

kilometers by car  

PHEV BEV PHEV BEV PHEV BEV 

 S
lo

w
 

sc
en

ar
io

 

2020 5% 2% 38 000 12 000 2% 0.5% 

2030 20% 10% 207 000 92 000 8% 4% 

M
ed

iu
m

 

sc
en

ar
io

 

2020 10% 3% 66 000 13 000 3% 0.6% 

2030 50% 20% 480 000 16 000 19% 7% 

F
a
st

 

sc
e
n

ar
io

 

2020 40% 6% 190 000 26 000 8% 1% 

2030 60% 40% 960 000 45 000 38% 19% 

As shown in Table 1, the sales of EVs and PHEVs in 

Finland are not the most optimistic. In this paper, simulations 

are performed with low penetration levels as Table 1 suggests, 

but also with a higher penetration level in order to demonstrate 

the optimization based on the NTS data.  

In the simulation, it is assumed that the PHEV has an 

average battery size of 6 kWh with a standard deviation of 

1 kWh. The battery size is randomized for each car based on 

the normal distribution. In the case of BEVs, the average 

battery size is assumed to be 25 kWh with a standard deviation 

of 2 kWh. Also in the case of BEVs, the battery size is 

randomized based on the normal distribution.  

The average energy consumption of EVs (and PHEVs when 

driven by electricity) is assumed to be 0.175 kWh/km, which is 

the estimate commonly used in the Nordic countries. The 

energy consumption of the cars is chosen to be based on the 

normal distribution with an average of 180 Wh/km and 

variance of 5 Wh/km. The majority of the randomized 

consumption values are in the range from 165 kW/km to 

195 Wh/km. A lower consumption estimate can be used in 

southern countries, where interior heating is not required in 

vehicles. The properties of electric and hybrid vehicles are 

discussed in [8]. 

If the driving distance is longer than the battery capacity 

allows, it is assumed that the car operated in that case is a 

PHEV. After the vehicle battery has been used up, the vehicle 

is assumed to be driven with an internal combustion engine 

(ICE). If there are several trips from and to home during a day, 

the vehicle is considered to be charged only after the last 

arrival at home.  For instance, if a car arrives at home at 6 pm 

and leaves at 7 pm to a grocery store, then returns at 8 pm and 

stays at the home for the rest of the evening, the battery is 

assumed to be charged after the last home arrival at 8 pm. The 

trips are added up and the charging need is determined. 

Driving in the EV mode (driving the PHEV by electricity) is 

always prioritized. A more detailed description about the data 

processing can be found in [3]. 

IV. SMART CHARGING SCHEME

An EV charging load was modeled in [3] and also studied 

in [10]. The same simulation model as in [3] is used to provide 

demand curves for EV and PHEV charging (time when 

charging has to or can be carried out and how much batteries 

need to be charged). 

Fig. 5 presents the number of EVs in the case area during 

the daytime. Such data can be used as input data for the 

optimized EV charging simulations. In this particular case, the 

number of vehicles in the area during the day is quite high, 

almost half of the parking capacity. The accuracy and 

deficiencies of the measurement are discussed in [3]. The 

primary objectives of this paper are to provide a case example, 

to test the smart charging scheme, and provide a parameter 

sensitivity analysis, and therefore, the accuracy of the 

simulation data is considered sufficient for the purpose. 
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Fig. 5. Number of cars in the case area. The figures are based on an actual 

traffic flow measurement in the case area. 

Another essential input for the simulation is the distances 

(kilometers) travelled by a car. For the time being, the only 

feasible way to access such information is to use the data 

provided by the NTS. The data are described in [7] and used in 

the EV charging load modeling in [3] and [10]. 

The optimization target in this case is to charge all vehicles 

when the grid load is at lowest. Other optimization schemes, 

such as a price-based approach are studied in [11]–[13]. Smart 

charging is discussed in [13]. 

The target of the optimization algorithm in this study is to 

charge the batteries in the cars as quickly as possible, 

simultaneously keeping the grid load as low as possible. In this 

case, the charging would start after the afternoon peak load 

hours. The number of EV charging would increase as the base 

grid load decreases. In practice, all of the cars would be 

charged before morning. 

The optimization algorithm requires information on how 

long the cars are available for charging in order to predefine 

the charging scheme for each car. Furthermore, the limits of 

the charging power have to be known, as well as the estimated 

charging need for each car. Based on this knowledge, the 

optimization can be carried out. In the following, the 

optimization algorithm used in the simulation is presented in a 

pseudo-code format: 

1.  Estimate the base load curve (empirical data)

2.  Estimate the number of cars driving into the area

3.  Estimate the number of cars driving out from the area

4.  Randomize one parking event and charging need

a. Arrival time

b. Departure time

c. Driven kilometers (charging need)

5.  Calculate optimal charging schedule for a car

a. Find base loads minimum in a charging 

window 

b. Add charging power to base load curve

6.  Repeat lines 4 and 5 until estimated number of parking 

events is full 

7. Repeat lines 4-6 and calculate mean after every loop

a. Evaluate change of the charging load mean 

value to break the looping 

The optimization algorithm can be also simplified to: 

min(P(t)charging + P(t)base load ) (1) 

where Pcharging is the total charging load, Pbase load is the base 

load, and t is the time index. Equation (1) must satisfy the 

following: 

Echarging = P(t)∫
charging

dt  (2) 

where Echarging is the total charging energy in the 

optimization time window defined by the number of cars in the 

area and charging need of the cars. 

The charging time is dependent on the power and charging 

need of the car. The higher the charging power is, the shorter 

the charging time is; or the more drained the battery is, the 

longer the charging time is. The charging time is limited by the 

parking time of the car, or actually, the time limit is set by the 

time at which the car is plugged into the charging socket. In 

the simulation, it is assumed that the cars are plugged in just 

after the last arrival at home. Therefore, the parking time 

equals the time the car is plugged in. Departure time at the 

morning is randomized based on the traffic measurement data. 

The charging window is decreased by 8 hours at the morning 

to ensure flexible use of the cars. 

The initial charging power is assumed to be 3.6 kW  

because of the infrastructure  already available in the case 

area. Each wintertime preheating facility is considered suitable 

as a charging spot, and in each electricity socket there is a 

circuit breaker of 16 A. In addition, a simulation with three-

phase 3x16 A (11 kW) charging is made for an option of an 

advanced charging infrastructure. 

The charging power is assumed to be constant during 

charging. In an actual application, the charging power may 

vary during the charging cycle. With the high-power charging, 

the charging cycle is also usually ended with a lower power in 

order to let the battery cells to balance the charge. 

V.  SENSITIVITY ANALYSIS 

This chapter focuses on the simulation results obtained with 

different parameters in order to identify the most important 

factors affecting the charging demand, and eventually, the grid 

load. Fig. 6 shows how the charging load differs in the case of 

PHEVs or BEVs only.   
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Fig. 6.  Sum of the base load and charging curves in the case of smart 

charging with PHEVs and BEVs. 

As can be seen in the figure, the change in the charging 

curve is substantial; there is a difference of almost 100 kW in 

the charging power. This can probably be explained by the 

average kilometers traveled by car in Finland. As stated above, 

the average kilometers traveled by car are 52 km/d, and if a 

PHEV consumes 0.180 kWh/km in average, the average total 

energy is 9.4 kWh, which is above the average battery capacity 

used in the simulation. The average battery capacity in the 

BEV is 25 kWh, which covers most of the daily kilometers. 

Fig. 7 shows the charging load with different penetration 

levels in the case of BEVs. 
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Fig. 7.   Smart charging curves of BEVs with penetration levels of 25%, 

50%, ,75% and 100% (412 cars). 

It can be seen that an increase in the penetration level 

increases the average load level during the night-time, but does 

not cause an additional peak load. It seems that the case grid 

can handle the full penetration level of BEVs in the case of the 

grid-optimized smart charging. The total energy charged is 

linearly dependent on the penetration level. In the case, the 

grid peak load does not depend on the penetration level 

because of the high base load peak.  

Fig. 8 presents a case where 25% of the total charging 

energy is assumed to be charged in the workplace. 
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Fig. 8.  Smart charging curve of BEVs in the case where 25% of the energy 

is charged in the workplace (penetration level 100%). 

Fig. 8 shows a similar result as in Fig. 7 with a penetration 

level of 75%. The result seems trivial, because the 

optimization algorithm faces no restrictions even with the 

100% penetration level in a case where all the charging is 

made at the home charging spot. If 25% of the energy is 

charged in some other place, the need for charging energy is 

75% of the total. 

Fig. 9shows the difference in the charging curve with 

different charging powers. 

Fig. 9.  Smart charging curve of BEVs with single-phase charging and with 

three-phase charging. 

The difference in the charging curve is small only few 

kilowatts. Fig. 10 Shows the Smart charging curve of PHEVs 

with single-phase charging and with three-phase charging. 
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Fig. 10.  Smart charging curve of PHEVs with single-phase charging and 

with three-phase charging. 

Also in the case of PHEVs, the optimized charging curve is 
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similar with 3.6 kW and 11 kW. The main reason why total 

charging power is in the same level both in 3.6 kW and 11 kW 

charging modes is that charging need is satisfied in the 

charging window also with lower power of 3.6 kWh. 

A.  Energy 

The amount of the total energy in daily charging is at 

highest in the case of BEV charging with 100% penetration 

level. The total charging need would be roughly 3.8 MWh/d, 

but because of the battery capacity and limited charging 

window total charging energy is 2.3 MWh/d, 60% of total. The 

accuracy of the initial traffic measurement can be questioned, 

but in this case the main goal to demonstrate the smart 

charging scheme, is achieved. Based on the simulation the 

40% of the energy limitation was caused by battery size and 

60% of the limitation caused by the charging window. 

In the case of PHEV smart charging the total charging 

energy is 1.2 MWh/d, 30% of the total charging need. Most of 

the charging limitation is caused because of the smaller 

batteries in the cars. 

The accuracy of traffic modeling will be enhanced in 

further studies in order to provide results that can be used in 

the strategic grid planning for future. 

VI.  ANALYSIS AND RESULTS 

The results of the simulation model can be interpreted in 

many ways.  It was shown in [3] how the grid load can be 

maintained under the highest peak simply by delaying the start 

of the charging event. In this simulation, the idea is brought 

one step further, and the charging load is not just delayed, but 

it is optimized to determine the moment of the lowest base 

load. 

With this optimization, the grid load can be kept as low as 

possible, while also the ramping of the load is much lower. 

Fig. 7 shows the charging load curve with different penetration 

levels. As also Fig. 9shows, even with the highest penetration 

levels, the charging load does not increase the base load peak 

at all. Such a grid load would provide an opportunity to reduce 

the transmission fee paid by the end-customer, because the 

cost of the distributed energy is lower. The more energy can be 

delivered, and the lower the peak power is, the cheaper the 

energy is to be delivered. In other words, the more invariable 

the power is, the more inexpensive the energy is to be 

delivered.  

A.  Cost analysis 

The cost of an additional load can be assessed by marginal 

cost, as discussed in [3]. In this case the value of delivered 

energy is decreased, because grid does not need 

reinforcements, but delivered energy is increased. The 

marginal cost represents the cost of the network replacement 

value and the highest load value of the year. In practice, it 

describes how much each peak load kilowatt hour costs for the 

distribution company. The existing grid has value which can 

be evaluated by the means of: 

PeakValue PC ⋅= cost marginal Average (3) 

where CValue is the annual cost of the grid, PPeak is assumed 

peak power (grid dimensioning power). The value of the grid 

in the case area (including the marginal cost of the medium-

voltage level 300 €/kW and the primary substation level 

100 €/kW) is assumed to be 350 k€ and the annual costs of 

grid 20.4 k€/a (i = 5%, t = 40 a). 

In the case of the smart BEV charging with the 100% 

penetration level, there is no noticeable power increase at the 

peak hours. The grid load curve is more leveled and the peak-

operating time is increased, and therefore, the distribution fee 

paid by the end-user may even be decreased. A rough estimate 

of the change in the distribution fee paid by the end-customer 

can be made based on the delivered energy and the peak 

power. 

The decrease in the distribution fee can be evaluated by 

comparing the annual cost of the reinforcement CValue with the 

annual energy transferred EAnnualtotal: 

 totalAnnual

entreinforcem Annualenergy deliveredper  lueNetwork va
E

C
= (4) 

By (4), the network value per delivered energy is 

1.27 cent/kWh (dimensioned to a 500 kW peak power). 

In the case of smart BEV charging with the 100% 

penetration level, the delivered energy increases by 

2.3 MWh/day and no reinforcement is needed. Therefore, the 

value per delivered energy is 0.84 cent/kWh by (4), which is 

34% less than the original 1.27 cent/kWh. In this case, the 

distribution fee may be even lowered. In order to evaluate the 

distribution fee paid by the end-customers, a more extensive 

grid load analysis is needed, since the peak operating time is 

different in different areas. 

VII.  CONCLUSION 

Is seems that electric vehicles and vehicle charging stations 

will be part of the future grids. In some cases, charging of the 

electric vehicles may cause substantial effects on the grid if the 

charging is not controlled. If the charging can be controlled, 

the grid load impact is minor. In the extreme scenario, the 

distribution fee may decrease.  

 In the case area, the value of transferred energy is 

increased up to 50% with the 100% electric vehicle 

penetration level, and even above this with higher penetration 

levels, but the peak power of the grid remains unchanged. In 

this particular case, the grid-optimized smart charging scheme 

seems to have proven its usefulness. 

The parameter sensitivity analysis did provide much useful 

information in this particular case. The deeper analysis will be 

presented in the further studies with a more challenging base 

load. 

With smart charging, the value of transferred energy is 

decreased to 34%; consequently, it may even be possible to 

avoid an increase in the distribution fee paid by the end-

customers or even to decrease the fee with the 100% electric 
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vehicle penetration level. 

Even though this study was made for a particular case 

example, the methodology presented in the paper can also be 

used in other studies. 

The main outcomes of this paper are: 

• According to the grid load simulations, large-scale

electrification of transportation with grid-optimized

smart charging will not cause pressure to reinforce the

grid.

• There is an opportunity to reduce the distribution fees if 

the grid-optimized smart charging is used. 

• The developed simulation model helps in defining the 

charging effects of electric vehicles in a residential 

area. The simulation is based on actual traffic flow in 

the case area. 

• The optimization algorithm will be applied also to the

further studies. 
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Jukka Lassila, Juha Haakana, Ville Tikka, and Jarmo Partanen, Member, IEEE

Abstract—The nature of transport and energy use is radically
changing along with the upward trend of electric vehicles. The
rapid technological development of electrical vehicles opens new
opportunities from the electricity distribution point of view. Effi-
ciency can be improved by implementing energy storages to the
grid and cutting the load peaks by feeding power on peak hours
from the energy storages to the grid. Electric vehicles with ve-
hicle-to-grid (V2G) properties provide an opportunity to meet this
challenge. In this paper, the challenge is approached from the eco-
nomic perspective of an electricity distribution company. The key
target of the paper is to determine whether there is economic po-
tential for energy storages in networks in general. To this end, a
generic model is introduced to analyze the feasibility of electric
vehicles as energy storages in distribution networks. The method-
ological framework presented in the paper provides an opportu-
nity for distribution system planners to estimate the preliminary
feasibility of energy storages. The focus is on the discharging (ve-
hicle to grid) perspective. The paper answers, for instance, the
question of how to define the feasible level of energy storages (bat-
teries) in the distribution system. In the paper, for background in-
formation, an extensive literature review is provided on electric ve-
hicles.

Index Terms—Economic effects, electric vehicles, electricity dis-
tribution business, energy storages.

I. INTRODUCTION

T HE PRESENT electricity distribution has reached its final
milestone. Aging infrastructure, challenges in supply reli-

ability, and the problems to use the network as an open market-
place are realities of today. It is no longer a question about rea-
sonable dimensioning of cables or choosing a feasible renova-
tion technology but it is a question about a revolutionary change
in the development and operation of the vital infrastructure; in
other words, the development of smart grids. The challenge of
the existing power systems has been the large daily variation in
the load levels; the power demand in the grid may vary tens or
even hundreds of percents during the day. When the network
dimensioning is based on the peak power, the overall efficiency
can be rather low from the capacity point of view. For instance
in the low-voltage networks, peak operating times vary from
1500 to 2500 h per year.
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30, 2011. Date of publication November 14, 2011; date of current version Feb-
ruary 23, 2012. Paper no. TSG-00112-2011.
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For the operators and owners of electricity distribution utili-
ties (companies), this revolution poses an incredible challenge,
but also at the same time, an opportunity to renovate the net-
work asset to the next level. There is a risk for the overlapping
of the present peak load and the peak caused by the charging
of electric vehicle (EV) batteries. This may lead to a substantial
increase in peak loads and thereby to reinforcement needs in the
networks. Finally, this may raise the distribution fee paid by the
electricity end-users.
This paper aims at developing a methodology by which key

issues related to the network economic effects of EVs and en-
ergy storages can be addressed. Even though the results are
based on information of actual distribution companies, the main
focus of the paper is on the methodological development work.
The target is to establish a generic model by which the feasi-
bility of EVs as energy storages can be determined. However,
the results are interesting and they show that there are economic
incentives for bidirectional energy storages, especially as the
battery technology is constantly developing. Even though the
paper presents some results by a case network, the objective is
not to give any exact values for a network analysis, but to present
the information and the method required in general. Thus, the
paper provides tools for a network analyzer to determine the
feasibility of energy storages in different cases. Although there
is a lot of uncertainty considering background information and
parameters used in the study, preliminary feasibility analyses
can be carried out using the best assumptions available. Later
on, when the EV penetration level is higher, the input data used
previously can be replaced with up-to-date information. Uncer-
tainty is strongly related to the penetration schedules, behavior
of EVs, effects of environmental conditions (for instance, cold
winters in the Nordic countries), and development of the effi-
ciency of the charging and discharging processes.
Definition of the network effects requires understanding of

the wide-scale use of electric vehicles (EVs) and the long-term
development of the distribution infrastructure. The theme of
EVs has been discussed from various aspects in several pub-
lications and forums (e.g., an overview of the EV technology is
given in [1]–[4], load leveling is addressed in [5] and [6], bat-
teries are discussed in [7] and [8], and charging interfaces (out-
lets) are studied in [9] and [10]). Each of these references pro-
vides understanding of EVs in a certain specific area. However,
the economic network effects of EVs [11]–[13] have mostly
been neglected. More typically, the research focuses on the de-
velopment of the electro-mechanical properties of EVs and de-
termining the technical effects of vehicle charging. For the time
being, there is no methodology to define the economic effects
of the wide-scale penetration of EVs from the perspective of

1949-3053/$26.00 © 2011 IEEE
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TABLE I
LITERATURE REVIEW ON EVS AND ELECTRICITY DISTRIBUTION. ( , ,

)

Fig. 1. Main steps in the methodology.

the power distribution system. This is the case especially in the
area of vehicle-to-grid operation. From the viewpoint of net-
work asset management, the economic consequences of elec-
trification of transport and the implementation of energy stor-
ages remain unclear. In Table I, a literature review considering
EVs and distribution networks is presented. It has to be borne
in mind that the publications presented in the table do not fully
cover the research area of EVs. Nevertheless, the literature sam-
ples show that although several scientific papers have been pub-
lished on EVs over the past few years, the economic effects of
EVs (the column Distribution business) on the electricity distri-
bution have mostly been neglected.

II. PROBLEM DESCRIPTION

The focus in the paper is on the methodology development for
the feasibility studies on the distribution network capacity. The
key is to find out whether there is overall economic justification
for energy storages in distribution systems. In other words, are
the benefits from the released distribution capacity higher than
the costs of the use of energy storages (batteries)? The main
steps of the developed methodology are presented in Fig. 1.

One important requirement for the usage of energy storages
(batteries) owned by customers is that their costs are com-
pensated to the customer. This can be done for instance by a
decreased electricity distribution fee or through some service
agreement (for instance, direct payments, subsidized leases, a
lifetime battery warranty of the vehicle battery pack [32]). In
the service agreement, the terms under which the energy storage
(EV) is available for the network operator are agreed upon.
To this end, this study provides knowledge for the distribution
network operators on the requirements that should be taken
into account in the service agreement.
Another requirement for the flexible and controllable use of

energy storages is a communication connection between the
EVs and the network operator. All market actors have an in-
creasing need for timely and accurate metering data, in order to
realize the new potentials of innovative energy products [33].
It is highly probable that EVs will be equipped with (real-time)
communication to enable intelligent charging and discharging
[34], [35].
By intelligent charging and discharging functions, the orig-

inal load curve can be smoothed. This releases network capacity,
and the network efficiency will be higher. Although the released
network capacity does not bring any direct financial benefit for
the network operator, with intelligent charging functions, the
peak increase and overlapping caused by EVs can be avoided.
Network reinforcement investments can be postponed, which
has a positive impact on the electricity distribution company.
Additional possible benefit of energy storages may come from
a decrease in network losses. Moreover, challenges related to
short interruptions and voltage quality experienced by the cus-
tomer can be avoided by energy storage systems. However, in
this paper, these perspectives are not taken into account.
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A. Required Information and Subtasks

Optimized use of distribution capacity can be described by
the cost function

(1)

where:

investment costs of the network;

operational costs of the network;

investment costs of the energy storage;

operational costs of the energy storage.

can be defined as a function of investment
costs and capacity (kWh) of the storage and allowed charging
cycles in the storage lifetime.
To be able to define the feasibility of EVs as energy storages

and the optimized use of distribution capacity, background in-
formation is required and several subtasks have to be solved.
Load curves play a significant role in the analyses. Together with
the battery characteristics, this information can be used to ana-
lyze possible peak cuts and the size of the energy storages re-
quired. As a result, the type of the batteries to be applied to the
V2G process can be defined; that is, whether the battery is of
power-optimized or energy-optimized type. For the determina-
tion of the EV charging profile, information on the penetration
of EVs and estimation of their load curves are needed. A paucity
of information required to define reliable charging profiles (load
curves) is one of the main challenges. This is due to the rel-
atively small number of EVs presently in use and the charging
measurements available. However, from amethodological point
of view, the lack of actual EV measurement data does not pre-
vent from developing a generic model by which the grid effects
can be analyzed. Later on, when the penetration level is higher
and EVs are used as primary cars, the input data used previously
can be replaced with actual charging data in the model.

III. METHODOLOGY FOR ANALYZING LOAD CURVES FOR
ENERGY STORAGES

There are incentives to consider energy storages as a means
to shave the peak and to smooth the load curves. The hourly
load varies greatly in the networks. This is illustrated in Fig. 2,
where the annual load measurement of a medium-voltage feeder
is presented. The question is: how much the peak power could
be decreased by utilizing a feasible amount of energy storages
on the network, and secondly, how would it affect the future
reinforcement needs in the network and distribution fee paid by
the end-customer?
In order to define the feasibility of energy storages, an anal-

ysis model has to be developed. The method to define the effects
of energy storages on the distribution networks is based on opti-
mization of the charging and discharging moments, taking into

Fig. 2. Annual load curve of the medium-voltage feeder and potential to de-
crease peak power by energy storages.

Fig. 3. Flow chart of the peak cutting process.

account the physical limits of storages and electricity consump-
tion in the area (the shape of the base load curve). The developed
model is demonstrated in Fig. 3, where the simplified flow chart
of the process is presented. In this study, MatLab software was
used. The process starts with manual filtering of the input data
(load measurements). The target of the filtering is to detect pos-
sible measurement errors in the data. The algorithm consists of
two loops; one inside another to define the optimal usage of the
energy storage. In the inner loop (indicated by a box in Fig. 3),
the load data are stepped through index by index by comparing
each load value with the cut level. The cut level defines the level
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Fig. 4. Load curve with peak cut and energy storing (200 kWh). In the second
charging alternative charging is delayed to low-load moments.

to which the supply power from the network is adjusted. If the
cut level is lower than the base load, the storage is discharged to
the grid. The amount of discharged energy depends on the dif-
ference of the cut level and the base load and the state of charge
in the storage. If the base load is lower than the cut level and the
storage is not fully charged, energy is taken from the grid to the
storage. If the storage is not fully used, the outer loop repeats the
inner loop by lowering the cut level until the storage capacity is
fully used. The process is similar but reverse to the discharging
process. The charging and discharging processes can be limited
by setting maximum values for the power. Power limitations
come for instance from the distribution or transformer capacity
and power electronics arrangements.
The inner loop is repeated until the storage capacity is fully

utilized or the utilization is limited by other restrictions such as
charging power. The shape of the base load curve has a strong
effect on the type of the algorithm ending signal. For instance,
if the peak operating time is short (high and short-run peaks),
the cut loop can be stopped by the maximum discharge power
level of the storage. If the peak is square shaped (high- and
long-lasting peaks), the stop signal can be caused by the storage
maximum capacity level.
There are several alternatives to adjust charging. One option

is to start charging of the storage immediately after the load peak
has been cut and the base load is getting lower. In the other
option, storage charging is delayed and adjusted to the lowest
load periods, for instance to night hours. In the first option, the
target is to guarantee that the storage is as full and available as
soon as possible when the next need for peak cutting occurs. In
the second option, the target is to shorten the times when the
demand for power from the grid is relatively high. This way,
network losses can be minimized. However, in the second op-
tion there is a higher risk because of unpredictable changes in
the load levels. For instance, the low-load period can be shorter
than estimated, and the storage is not ready when the next load
peak occurs. Fig. 4 provides an example of the peak cutting and
two main alternatives for charging.
In the optimization process, several technical restrictions

or limitations have to be taken into account. For instance, the
size of the energy storage (battery) and the maximum allowed
charging and discharging powers set limits for the use of the
storage. In (2)–(4), conditions for the charging and discharging
processes are presented. Equation (3) is based on the assump-
tion that charging is started immediately after peak cutting (

Fig. 5. Example: peak operating time of the storage (charging and discharging).
Operating times are gathered from the period of 5 days.

in Fig. 4). Losses are taken into account in the process in (4).
The issue is discussed in more detail in Section V.

(2)

(3)

(4)

The operation of the storage depends on the targets set for
peak cutting and restrictions for the charging hours. In Fig. 5,
an example of the peak operating times of an energy storage
are presented. The peak operating time depends on the load
curve and the technical limitations of the storage system. In the
figure, the maximum charging power (to the storage) is limited
to 50 kW and discharging power (to the network) to 100 kW.
These limitations are only illustrative and they may come from
the capacity of the supply in the storage system. Higher peak
powers require high capacity and expensive power electronics
arrangements.
When the optimization of the network capacity is the main

target, the benefit of the energy storages depends strongly on the
shape of the base load in the network. If the peak operating time
is short, as it is often in the low-voltage networks, the benefit
of the storage can be significant. From the grid point of view,
the use of energy storages smooths the load curve and releases
network capacity.
The size of the storage is a question that has to be solved by

analyzing the network effects by varying the storage sizes. In
Fig. 6, the energy taken from the storage is varied, and the effect
on the peak cut is presented. It can be seen that for instance in
the load curve of Fig. 4, the storage with a capacity of 25 kWh
would decrease the peak by 50 kW. If the size of the storage is
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Fig. 6. Example of effect of the energy needed for the peak cut. The example
is related to the load curve of Fig. 4.

TABLE II
COMPARISON OF STATIC ENERGY STORAGES AND ELECTRIC VEHICLES

increased, the next 50 kW peak cut will require about 200 kWh
of storage.
It can be also seen from the figure that if the case were based

on a centralized battery storage, the demand for discharging
power would be quite high compared with the size of the storage
(50 kW vs. 25 kWh). On the other hand, if it is a question about
distributed storages, that is, several EVs with V2G properties,
the discharging power per battery unit would be significantly
lower.
This shows that in the case environment, the benefit of the

storage is high already with a small size of the energy storage.
The economic feasibility of the energy storage is studied later
in this paper.

IV. METHODOLOGY FOR EVS AS ENERGY STORAGES

In the previous section, the principles of energy storages and
peak cutting were described. In addition to stationary and local
energy storages, there are incentives to consider EVs as mobile
energy storages to shave the peak and to smooth the load curves.
EVs as energy storages (V2G) have been discussed for instance
in [19] and [29], [30] and [36]. The most significant differences
of EVs compared with stationary energy storages are related to
the location, capacity, and discharging and charging powers of
the energy storage (Table II). An EV is a mobile load, and the
energy source and location of the EV may change in an unpre-
dictable way. EVs are dynamic loads and dynamic storages at
the same time; the type of connection (G2V or V2G), timing,
and geographical location are variable, unknown factors. This
is a challenge for the network analyzers.
Despite the present promising and upward trend of EVs, the

schedule of their penetration is still unknown. This has an ef-
fect on the scheduling of the network renovation projects. The

electrotechnical properties of vehicles are developing at a rapid
pace, even though EVs are not yet widely adopted in practice.
This makes it more difficult to estimate the feasible driving dis-
tances, charging rates, and charging speeds. Also the present
distribution infrastructure sets limitations on large-scale adop-
tion of EVs.
In order to be able to define the network effects, information

has to be gathered from numerous sources. The overall situa-
tion of transportation can be found for instance from nationwide
passenger transport statistics. They show how, when, and how
often traditional cars are used nowadays, what are the travel
distances driven, and in which way the environmental factors
such as house and workplace locations influence the car use.
Although the statistics describe the use of existing non-electric
transportation, the information can be used to some degree in
EV studies also. The accuracy of the analyses can be improved
by gathering street- or block-specific information on the number
of registered cars. This kind of information is usually provided
by local authorities.
Besides the driving habits and energy consumption of EVs,

charging opportunities in different locations (including slow
charging, fast charging, and battery replacement services) also
have an effect on the amount of power taken from the electric
grid (with respect to time) by a fleet of EVs. However, fast
charging and battery replacement are not considered in this
work.
The energy consumption (kWh/km) of an individual EV

depends on many factors. These include the efficiency of the
charging-discharging cycle (including the efficiencies of the
charger and the battery), the efficiency of the regenerative
braking system, the energy needed for heating and air-condi-
tioning, the drag coefficient, the rolling resistance, the mass of
the vehicle, and the driving cycle.
In our studies, the total load curves (the base load added with

the charging load) are generated by applying the analysis tool
developed by the research group. In the tool, the analyzer can
adjust the charging curves by weighting the number of EVs for
certain hours so that they reflect the situation in the case area.
The charging curves are obtained based on the feeder-specific
base load as presented in

(5)

is the base load of the feeder without EVs, is the
maximum charging power of the EVs, and is the number of
EVs. The base load is defined by traditional power calculations,
which are specified by actual power flow measurements. In this
case, the base load is fromwinter season, when the consumption
is at highest (electric heating of houses, saunas, etc.) in the case
network.
The methodology developed for the charging and discharging

processes is presented next. In Fig. 7, a charging curve for EVs
on an example day is presented. The figure shows a case where
charging is adjusted to low-load moments on the feeder. It is a
more or less theoretical perspective, but it provides an estimate
of the possible distribution of cars (between hours). The need
for energy for driving is and the increase in the load level
is , which depends on the base load as illustrated in the
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Fig. 7. Optimized charging on a feeder for a day. The lower curve represents
the existing peak load of the day, while the upper curve represents the load when
the charging power is taken into account.

Fig. 8. Additional energy needed to decrease the peak load.

figure. The case is calculated for a medium-voltage feeder with
250 EVs.
From the distribution company’s point of view, an interesting

question is whether it is possible to decrease the present peak
load of the network by using EVs as energy storages on the net-
work. This could be done by utilizing the free capacity available
in the EV batteries and the discharging energy that is not needed
for driving to be supplied to the network on peak hours.
The balance can be found by taking into account the base load

curve of the feeder, the energy needed for driving, and the ca-
pacity of batteries to store and discharge the additional energy.
A theoretical example is presented in Fig. 8.
The following definitions are included in the analysis:

Fig. 9. One-year load curve with EVs but without energy storages (the top-
most curve) and in the situation where EVs and energy storages are included (in
the middle). The bottom curve combined with the topmost curve illustrates the
powers without EVs and storages.

In Fig. 8, a theoretical case of charging and discharging for
a day was presented. To get a wider perspective of the benefits
of the energy storages, a longer period of base load data has to
be analyzed. From the viewpoint of the network capacity, the
focus is on peak load periods. In the Nordic countries, the peak
loads of the feeders occur in the winter period. The question is
now: are there such continuous peak hours and days in which
the energy available from EVs will not be enough to cut the
peak to the desired level? In Fig. 9, the results of energy storage
analyses for the whole year on the case feeder are presented.
The highest curve represents the situation with EVs but without
energy storages. In this case, charging of EVs is adjusted to
low-load moments by which a peak increase can be avoided.
Thus, the maximum peak remains the same as without EVs.
The curve in the middle depicts the load curve of the feeder
when EVs and energy storages have been taken into account.
The limit for the maximum theoretical cut in the peak power
for the case feeder comes from the available amount of supply
power of the EVs. In other words, even if there were higher
peaks and energy available in the car batteries to be discharged
to the network, the power supply restrictions from the vehicles
would limit the maximum discharging power. The lowest curve
combined with the topmost curve illustrates the powers without
EVs and storages.
When applying the day-specific analysis presented in Fig. 8

to the annual base load data (Fig. 2), the annual decrease in peak
levels can be determined. For the case feeder, the original peak
power (3.6 MW) decreases by 900 kW to 2.7 MW after im-
plementing V2G properties to the vehicles. This means that the
end condition (Fig. 3.) for peak cutting comes from the max-
imum discharging power, which is in this case 3.6 kW per EV,
and 900 kW in total for 250 EVs ( in Fig. 8.). It has to
be borne in mind that the peak cut value is more or less a the-
oretical one because not all the EVs are available at the same
time for V2G operation in practice. However, from the method-
ological perspective, it is nevertheless advisable to define the
maximum theoretical situation for this assumption. Moreover,
possible practical restrictions can be taken into account with a
better understanding of the technical properties and behavior of
EVs.
On the case feeder, at the moment without any EVs, the load

exceeds the new peak (2.7 MW) for 300 h. In other words, to be
able to limit this peak, energy storages have to be used and the
power has to be decreased at least for 300 h per year. The total
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Fig. 10. One-year duration curves of the medium voltage feeder based on load
curves presented in Fig. 9.

amount of energy needed to be discharged during the load peaks
is 65MWh/a (per annum). This is about 0.5% of the

total distributed energy on the feeder. The calculation does not
include charging and discharging losses, which are estimated to
be approx. 10%–20% of the total energy.
In Fig. 10, one-year duration curves based on load curves of

Fig. 9 are illustrated. It can be seen that the duration curve with
the optimal use of EVs and energy storages is lower than the
present situation (the curve without EVs and energy storages).
The results show that the peak loads could be significantly

decreased on the case feeder depending on the number and type
of EVs, charging and discharging arrangements, their driving
distances, and the shape of the base load curve. In this case, the
base load of the network was so spiky (i.e., short peak-operating
times) that the limitation for the peak cutting came from the
inadequate discharging capacity (kW), not from the actual size
of the energy storage (kWh).

V. ECONOMIC EFFECTS OF STORAGES

Depending on the EV penetration scenarios and EV charging
methods, the peak load may increase considerably on the distri-
bution network. This calls for additional investments in larger
cross sections of underground cables and overhead lines, and
more transformer capacity. On the other hand, utilization of en-
ergy storages may cut the peak loads and release network ca-
pacity for future loads.
The feasibility of the idea to utilize energy storages in elec-

tricity distribution has to be assessed from an economic per-
spective before wide-scale implementation. The economic fea-
sibility can be estimated by comparing the reduced reinforce-
ment needs and the value of batteries used in the charging and
discharging processes.

A. Average Marginal Cost and Reinforcement Needs

The amount of required or delayed investments can be esti-
mated by defining the transmission- or distribution-capacity-re-
lated average marginal cost of the network ( /kW). This reflects
the fact that the utility must have capacity available to serve the
customer, and encourages to reduce the electricity use during
peak periods (especially load shifting) [37], [38]. The average
marginal cost is based on the network replacement value and
the maximum load of the year, and it describes how much the
network capacity costs for the distribution company per each

peak load kilowatt. For instance, if the network replacement
value is 1 M and the distribution capacity of the network is
1 MW, the average marginal cost is 1 /W or 1000 /kW.
To be able to allocate costs more accurately in the distribution
system, the analysis is performed for each part of the network
(400 V low-voltage networks, 20 kVmedium-voltage networks,
and 110/20 kV primary substations). At the medium-voltage
and primary substation level, a statistical approach of an addi-
tional load can be taken because the load is well balanced. In
the low-voltage network, it is more likely that different loads
overlap each other. A typical peak operating time in the low-
voltage networks is 2000 h per year, in the medium-voltage net-
works 3500–4500 h per year, and at the primary substation level
4500–5000 h per year. In the low-voltage networks, it is difficult
to adjust an additional load to those time periods when the load
level is low. On the other hand, there are numerous reasons for
the present individual peak loads, such as saunas, electric space
heating, air conditioning, and car electric pre-heating systems,
which can be adjusted thereby avoiding the overlapping of peak
loads.
When information of the marginal cost is combined with the

capacity increase, an estimate of reinforcement needs can be
determined

(11)

B. Effect of the Peak on the Distribution Fee

From the electricity end-user perspective, it is interesting to
investigate howmuch an increase in the peak and capacity affect
the distribution fee (cent/kWh). The additional network invest-
ments will eventually be paid by the end-customers. This can
be determined when the annuity of reinforcement costs ( per
year) is compared with the annual delivered energy in the net-
work.

(12)

The methodology is demonstrated in Fig. 11, where the situa-
tion before and after utilization of EVs is presented. The replace-
ment value of the case network is 50 M and the annual deliv-
ered energy in the distribution company is 200 GWh. By (12),
the network value per delivered energy is 1.46 cent/kWh. The
network value with EVs is based on a scenario where all the tra-
ditional cars are replaced with electric ones. Depending on the
charging method and the level of intelligence in the charging,
a rough estimation of the investments required in a new trans-
former and the distribution capacity in the whole network would
be 0–20 M . When comparing the reinforcement needs and the
delivered energy, the network cost (distribution fee) would be
between 1.18 and 1.66 cent/kWh.
Even though these case-specific values are not important

from the methodological perspective, the fee range shows
that when the peak power of the network increases more than
the delivered energy, the distribution fee will increase. If the
additional charging load has only a slight effect on the peak
power, it is possible to cut the distribution fees.
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Fig. 11. Effects of EVs on the network value and distribution fee.

Fig. 12. Price of batteries (30 kWh) compared with their lifetime (number of
charging and recharging cycles).

C. Economy of Energy Storages

At the moment, the price of batteries compared with their life-
time (number of charging and recharging cycles) is quite high.
A simplified economic analysis shows that the battery tech-
nology has still to be developed further. If the price of a bat-
tery is 300–700 /kWh and the lifetime is 2000–4000 cycles,
the investment price per discharged energy is 10–40 cent/kWh
(Fig. 12). When the number of cycles is increased by the bat-
tery technology improvement, the investment price per stored
energy will be lower. The battery lifetime also depends strongly
on the depth of discharging. In this study, the battery lifetime is
based on an assumption that the cycle is 80% of the nominal
capacity of the battery.
Because of the present high price of batteries, there are in-

centives to use batteries rather as power sources than as energy
storages. Targets where the peak operating time is short provide
the most feasible circumstances for battery storage. This is often
the situation in low-voltage networks.
To sum up, energy storages are the more profitable, the less

charging-discharging cycles there are and the higher is the load
peak to be cut with the stored energy. The limit value for the
economic feasibility can be determined by

(13)

(14)

(15)

where:

Savings the saved network reinforcement costs;

the average marginal cost on the feeder per
year;

Fig. 13. The maximum economically feasible peak operating time of charging/
discharging when price of batteries compared with their lifetime (number of
cycles) varies between 0 and 50 cent/kWh.

Fig. 14. Economic limit for peak cut in the case feeder. Grid reinforcement is
24.1 /a multiplied by peak cut and battery cost is 0.2 /kWh multiplied by
stored energy. The example is related to the feeder of Fig. 9.

the battery price per discharged energy;

the peak operating time of charging power.

The maximum economically feasible peak operating time
of charging/discharging depends on the battery price per dis-
charged energy as presented in (15). In Fig. 13, the price per
discharged energy is varied between 0 and 50 cent/kWh. The
average marginal cost on the feeder is 300 /kW (24.1 /kW
per year if years and %).
In Fig. 14, the total amount of stored energy used in the stor-

ages vs. the achieved peak cut and the economic limit for the
peak cut are presented. In the break-even point, the costs of the
batteries are equal to the savings from the avoided/delayed net-
work reinforcement costs (14). The reinforcement costs depend
on the amount of peak cut and the marginal price of the network,
whereas the battery costs are based on the battery unit cost (price
of battery per stored energy) and the amount of stored energy.
It can be seen in Fig. 14 that the cost from batteries are equal

to the savings from network reinforcement costs when the stored
energy is 135 MWh and the peak cut is 1130 kW. If the target is
to cut the peak more than that, the energy that has to be charged/
discharged to the batteries will reduce the lifetime and economic
value of the batteries more than the value of savings obtainable
from the released network capacity.
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Fig. 15. Technical and economic limit for peak cut in the case feeder. Max-
imum technical limit (point 1) comes from the discharging power restrictions
and the economic limit (point 2) comes from (16). The example is related to the
annual load curve of the feeder of Fig. 9.

In the case of Fig. 9, the peak decrease is 900 kW. Here, the
technical limitation for the use of batteries comes from the max-
imum discharging power, which is 3.6 kW per EV, and 900 kW
in total for 250 EVs. With (11), the saved life-time reinforce-
ment costs are 270 000 . The annual value is 21 700 per year
(if years and %). The economic limit for charged
and discharged energy for 900 kW cutting is

(16)

For the case feeder, the total amount of energy needed to be
discharged during the load peaks is 65 MWh per
year when the peak cut is 900 kW. This is below the economic
limit calculated in (16). This means that from an economic point
of view, batteries could be used for the peak cutting more than
they are now used. In other words, savings coming from an
avoided/delayed network reinforcement are higher than the re-
duction in the lifetime and financial value of the batteries. As
presented in Fig. 15, the technical and economic limits depend
on A) the present load curve of the network (shape of the peaks),
B) the discharging capacity and C) the price of batteries and the
financial value of the network (marginal cost).
If the maximum discharging power were for instance 5 kW

per EV (1250 kW for 250 EVs) and the target for peak cutting
were the same 1250 kW, the savings from the network reinforce-
ment would be 375 000 (300 /kW 1250 kW) which is 30.1
k per year and it would be less than the reduction in the fi-
nancial value of the batteries. The peak cut of 1250 kW would
require charging and discharging energy of 194 MWh per year,
which would reduce the value of the batteries by 38.8 k per
year (194 MWh 0.2 /kWh).
In Fig. 16, savings are presented from the viewpoint of stored

energy. It can be seen that the maximum savings can be reached
with a relatively low amount of stored energy.

Fig. 16. Savings vs. needed battery capacity (charging/discharging).

The results show that the need for a peak cut arises rather from
the power than energy point of view (for instance Figs. 6, 15,
and 16). The economic feasibility is at best when the maximum
peak cut can be achieved with the minimum energy stored to
the battery. It has to be borne in mind that these results are only
demonstrative. The results are case-specific and they depend on
electricity consumption in the area (load curve), the value and
capacity of the network (marginal cost), and the properties of
the storage system.
The effects of storage losses can be taken into account by

considering the situation from the distribution company’s per-
spective. In (17) it is presented which way losses effects to the
price of operation of batteries.

(17)

where:

the amount of electricity stored to battery;

the price of electricity.

In the present situation, the price of losses does not play a
significant role in battery storage studies. This is because of the
relatively high price of batteries compared with the price of elec-
tricity. For instance, if the energy stored to the battery is 1MWh,
the price of battery per stored energy is 0.2 /kWh (Fig. 12), the
price of electricity is 10 cent/kWh and the efficiency 90%, we
get 23.2 per each stored MWh, of which the loss costs are
4.3%. However, when the price of batteries decreases substan-
tially, the significance of losses in the process will increase. This
has to be taken into account in the service agreement between
the customer and the network operator.
When the battery price is compared with the typical elec-

tricity market spot price, 3–7 cent/kWh in the Nordic markets,
the feasibility of the idea is highly questionable at least for the
time being. However, the situation will change as the battery
technology will be improved (for instance the lifetime) and the
price of batteries will decrease.
The methodology presented here can be used also in low-

voltage networks. In low-voltage networks, the peak operating
times are typically shorter, which creates stronger incentives to
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apply energy storages. However, random variation in the avail-
able energy storages (EVs) is larger in the low-voltage than in
the medium-voltage networks.

VI. CONCLUSIONS AND DISCUSSION

Energy storages will be part of the future smart grids. So far,
the prices of storage systems (e.g., battery systems) have been
so high that there has been no economic justification for energy
storages in distribution networks. However, the prices are de-
creasing and the technological properties of batteries are im-
proving. The role of energy storages will be significant in the
peak shaving and in smoothing of the load curves. The first re-
sults show that the need for a peak cut arises rather from the
power than energy point of view. The economic feasibility is at
best when the maximum peak cut can be achieved with the min-
imum energy stored to the battery.
Although the calculations and parameters involve many as-

sumptions and uncertainty, the study shows how important it is
to understand the correlation between the distribution network
value, network capacity, and energy storage systems. If the issue
can be reasonably taken into account in the system planning, it
will be possible to cut the distribution fees charged to the elec-
tricity end-users during the large-scale adoption of EVs. Corre-
spondingly, if the system planning requirements are neglected,
huge reinforcement investments will have to be made in the dis-
tribution infrastructure. This will significantly increase the dis-
tribution fees.
Although this study has been made in the Nordic environ-

ment, the methodology presented in this paper can be adopted in
any other circumstances. Only the calculation parameters have
to be reconsidered according to the environment in question.
The main outcomes of this paper are:
1. Description of the overall energy storing methodology in
distribution networks; what background information is re-
quired and how it is used to determine the need for electric
vehicle charging and discharging energy and to analyze the
associated economic effects.

2. The results verify the feasibility of the peak cutting func-
tion in a distribution system. There are economic incen-
tives to use EVs as energy storages. Peak loads could be
decreased significantly depending on the number and type
of EVs, charging and discharging arrangements, their daily
driving distances, and the shape of the base load curve.
However, information used in the analyses has to be fur-
ther specified.

3. The base load of the network can be so spiky (i.e., short
peak-operating times) that the limitation for the peak
cutting may come rather from the inadequate discharging
capacity (kW) than the actual size of the energy storage
(kWh).

4. The shape of the base load curve and the peak operating
time affects strongly to the feasibility of energy storages.
The feasibility of storages is the better the more seldom
storing is needed; in other words, storages are more prof-
itable the less charging-discharging cycles there are and the
higher is the load peak to be cut with the stored energy.

5. It is possible to cut the distribution fees charged to the elec-
tricity end-users during the large-scale adoption of EVs,
if the charging system is well planned and enough intelli-
gence is included in it.

6. The major challenges will be faced in those low-voltage
networks where load overlapping is more probable. How-
ever, there is a lot of experience of the transfer of loads
(air condition, sauna ovens, electric space heating, water
heaters, block heaters).

7. In the present situation, the price of losses does not play a
significant role in energy storage studies. This is because
of the relatively high price of batteries compared with the
price of electricity. However, when the price of batteries
decreases substantially, the significance of losses in the
process will increase. This has to be taken into account in
the service agreement between the customer and the net-
work operator.

The study has been written assuming that the customer owns
the energy storage (battery). However, if the network operator
owns the storage instead, several uncertainty factors related to
the operation of storages will disappear. Nevertheless, EVs have
to be equipped with intelligence even if they did not have a V2G
property built in them.
The use of EVs as distributed energy resources makes it

possible to decrease the above-presented estimated additional
charging peak loads. However, this kind of an arrangement
is very complicated and will require significant technological
development in EV control systems.
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Abstract: The nature of transport and energy use is radically changing along with the upward trend of electric vehicles (EVs).
This poses a challenge for the existing electricity distribution infrastructure. Key questions are: what efforts are required to
guarantee that the network infrastructure has sufficient capability to deliver energy and power to the customers, and how does
this development affect the network value and distribution fees? In this study, this challenge is approached from the
economic perspective of an electricity distribution company. In this study, a generic model to analyse the network effects of
EVs is presented. One significant result is that depending on the EV charging methods, the power demand (peak load) may
increase dramatically or remain almost at the present level. Correspondingly, the required network reinforcements and
distribution fees can be tens of percents lower than today or they can be higher, depending on how much intelligence is
integrated into the charging process.

1 Introduction

The question of the effects of electric vehicles (EVs) on electric
power networks is challenging in many ways. Although there
are already numerous analyses (e.g. an overview of the EV
technology is given in [1–4], load levelling is addressed
in [5, 6], batteries are discussed in [7, 8] and charging
interfaces (outlets) are studied in [9, 10]), the economic
network effects of EVs [11–13] have mostly been neglected.
From the electricity distribution business and electricity end-
user perspectives, there is a great interest in the development
of distribution fees. Does the revolution in transportation lead
to a pressure to increase investments and raise distribution
fees paid by the customers? Several analyses all over the
world show already that an incontrollable way of vehicle
charging leads to the overloading of the electricity
distribution system. As a result and solution, a controllable
smart charging alternative has been presented. However,
these studies lack a definition of the economic drawbacks
and benefits of different charging alternatives. This paper
aims to fill this gap. The target is on developing process
knowledge and setting up a methodological framework by
which key issues related to the network economic effects of
EVs can be addressed. The effects of different kinds of EV
charging profiles on the distribution system and distribution
fees paid by electricity end-users are defined. Even though
the results are based on information of actual distribution
companies, the main focus of the paper is on the
methodological development work. However, the results are
interesting and they show that there are economic incentives
for controlled charging through the distribution fee.

The preparation of forecasts for charging energy and power
is based on nationwide passenger transport statistics, local

traffic flow measurements, different penetration schedules,
estimation of the electricity consumption of EVs and
several charging profiles. The effect of charging profiles is
analysed by using data from an actual distribution company.
Determination of charging effects on the networks is based
on load flow calculations that apply charging profiles and
information of the required charging energies. Finally, the
economic effects of EVs on the distribution fees are defined
and discussed. The origins and accuracy of the background
data used in the economic analyses are case-specific.
However, from the procedural perspective, the main
structure of analyses follows the same principles. Hence,
the model presented in the paper is flexible and adaptive to
different electricity distribution business environments.

2 Problem description

The focus in the paper is on the methodology development for
the economic feasibility studies on the distribution network
capacity. The key is to find out whether there are incentives
for controllable charging and what the economic effects of
charging are on the distribution fees paid by the electricity
end-customers. Another question is whether we have to
make reinforcements to ensure the charging process at any
time or whether it is possible to adjust the charging load to
a moment when the overall load of the network is low,
thereby avoiding overlapping of the charging load and the
existing peak load.

The target is to establish a generic model by which the grid
effects on the distribution business can be detected at an EV
penetration level determined by the network analyser. Even
though this paper presents some results by a case network,
the objective is not to give any exact values for the network
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analysis, but to present the required information and the
method in general. Thus, this paper provides tools for an
analyser to determine the effects in different cases.

The main steps of the developed methodology are
presented in Fig. 1. In the first phase, information for the
analyses was collected from numerous different sources. In
the second phase, charging profiles were defined based on
the data collected earlier. The third phase dealt with the
technical network effects of EVs, and in the last phase, the
economic perspective on the network effects was analysed
and discussed.

As described in the previous section, there is a lack of
analyses on the economic drawbacks and benefits of EV
charging from the electricity distribution business and
end-customer perspective. This can also be seen from
Table 1, where a literature review considering EVs and
distribution networks is presented. It has to be borne in
mind that the publications presented in the table do not
fully cover the research area of EVs. Nevertheless, the
literature samples show that although several scientific
papers have been published on EVs over the past few years,
the economic effects of EVs on the distribution business
have mostly been neglected.

3 Background information

To analyse the network effects of EVs, comprehensive
information is required about the penetration and usage of
EVs as well as distribution network components and actual
load flows. In our case, the penetration levels are varied
from 25 to 100%. In this paper, the probability of different
scenarios has not been analysed. The network lifetimes are
usually long (40–50 years), which prepares the way for
high EV penetration levels in the network. Even though the
probability of the 100% penetration scenario is not realistic,
the analyses show the ultimate situation for the network
planner.

3.1 Transport statistics and traffic measurements

Nationwide passenger transport statistics can be used to
determine how, when and how often cars are nowadays
used, what are the travel distances driven, and in which way
the environment influences the car use. In Finland, the latest
National travel survey was carried out between 2004 and
2005; the survey was conducted for the Ministry of
Transport and Communications, the Finnish National Road

Administration and the Finnish Rail Administration [28].
According to the survey, in the geographical area where the
case network of this paper is located, the average driving
distance is 20 900 km/car per year, which makes �57 km/
car per day. This simplified average value approach is taken
in this study also. The accuracy of the analyses can be
improved by gathering street- or block-specific information
on the number of registered cars. This kind of information
is usually provided by local authorities. In this study, the
accuracy is improved by traffic flow measurements carried
out for a residential area. The main idea in the measurement
is to count the vehicles passing the control point close to
the residential area. Thus, it is possible to obtain more exact
information about the moment when the customers are
leaving and arriving home, in other words, the place where
the vehicles are charged. When the size of the residential
area is reasonable and the measurement point is close to the
area, the time required for the car to pass the measurement
point and arrive home is short enough to be able to estimate
the exact moment when the charging of the car will start.
The measurement period has to be long enough to be able
to define daily deviations in the traffic flows and later in the
charging curves. For instance, weekdays and weekends,
similarly as summer and wintertime differ from each other.
With a smaller time window, the traffic flow measurement
gives a more accurate distribution in the time axis, but at
the same time, each data point has a larger deviation if the
sample rate is too low. Public transportation, taxis, service
traffic and pass-by traffic have to be filtered out from the
case area data in order to provide reliable traffic flow
measurement results. Therefore it is essential to have an
appropriate measurement device with a capability to
identify different vehicle types and pedestrians or bikers.
With the best possible device, the results may be more
accurate, yet manual verification should not be neglected.
Fig. 2 shows an example result of the traffic measurement.

3.2 Properties of EVs

The energy consumption (kWh/km) of an individual EV
depends on many factors. These include the efficiency of
the charging–discharging cycle (including the efficiencies
of the charger and the battery), the efficiency of the
regenerative braking system, the energy needed for heating
and air-conditioning, the drag coefficient, the rolling
resistance, the total mass of the vehicle and the driving
cycle. A Nordic company has recently measured the energy

Fig. 1 Main steps of the methodology
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consumption of an EV in wintertime in Finland, and obtained
average values of 0.20–0.25 kWh/km. However, energy
consumption could be cut by technological improvements.
For instance, the energy required for heating could be
reduced by improving the thermal insulation of vehicles and
by developing heat pump systems for vehicle purpose.
Some car models soon coming to the market include solar
panels, which decrease the need for energy taken from the
grid. The weight of the cars could also be reduced by
advanced materials and structures.

Fast charging and battery replacement are not considered
in this work, and the maximum charging power is set to
3.6 kW/car. The limit comes from the present electric
pre-heating systems used for cars in the Nordic countries in
wintertime. The pre-heating system is based on one-phase
voltage (230 V) and 16 A limited current (by fuses).

Table 1 Literature review on EVs and electricity distribution
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Fig. 2 Results of the traffic flow measurement in a residential area
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3.3 Distribution network data

Definition of the network effects requires both technical and
economic data from the distribution company. The network
area to be analysed has to be large enough to ensure the
reliability of the analysis. On the other hand, the area to be
analysed has to be small enough so that the effects of
parameter variation can be detected fast and easily. It is also
of utmost importance to find such a network section that
adequately describes the operating environment and the
structure of the distribution system and thereby makes it
possible to bring the results to a more general, company level.
In this paper, the required data are demonstrated by the case
network where there are around 20 000 inhabitants, 10 800
electricity customers and 11 000 cars. The network key
figures are presented in Table 2. In this study, the focus has
been set on two medium-voltage (20 kV) feeders. Feeder 1
represents a densely populated area (a small city) and Feeder
2 represents a rural area. Both feeders describe well the
operating environment and structure of the distribution system.
The peak load occurs in the winter season because of the cold
weather and a high rate of electric heating. In the area, the
peak load in winter is 50 MW and the energy 200 GWh/a.

In this study, the focus is on the winter period because of
the more critical load flows compared with other seasons.
The peak load in winter can be five times as high as that of
a low-load moment in summertime. The load level varies
considerably not only by season, but also between
weekdays. Considering EV loads, the additional load
depends greatly on the number of vehicles during the day
and night in the area supplied by the feeder.

4 Charging profiles

One of the main challenges in the analysis of the grid effects
is a paucity of information required to define reliable charging
profiles (load curves). This is because of the relatively small
number of EVs presently in use and the charging
measurements available. However, from a methodological
point of view, the lack of actual EV measurement data does
not prevent from developing a generic model by which the
grid effects can be analysed. Later on, when the EV
penetration level is higher and EVs are used in households
as primary cars, the input data used previously can be
replaced with actual EV charging data in the model.

4.1 Charging curves based on intuitive behaviour
of citizens

In this study, EV charging is modelled both by the intuitive
behaviour of citizens and actual traffic flow measurements.
In the intuitive option, four different charging curves are
presented in Fig. 3. The curves are based on nation-wide
information (statistics) on the behaviour of citizens, for
instance, on how traditional cars are used in different areas
at different times of the day. Part of this information is
obtained from the travel survey discussed in the previous
section. The curves differ significantly from each other,
which makes it easy to demonstrate the grid effects in
different situations.

In ‘direct night-time charging’, it is assumed that almost all
the customers on the feeder start charging their cars at the
same time in the evening. In ‘split-level night-time
charging’, car charging loads are distributed between the
night hours. In ‘working-hour and time-off charging’,
customers concentrate their car charging on working hours
and time-off hours after coming back to home. In
‘optimised charging’, the focus is on low-load moments on
the feeder. It is a more or less theoretical perspective, but it
gives an overview of what is the possible distribution of car
charging (between hours). In each option, the charging
energy is the same. The total amount of energy is based on
the number of EVs on the feeder. The load on the medium-
voltage feeder depends significantly on the charging
arrangements; whether it is a simple direct charging system
or there is some intelligence included in the system.

4.2 Charging curves based on traffic flow
measurements

In this option, charging curves are curves produced based on
actual traffic flow measurements in the case area. The
measurements are carried out in a residential area as
described in the previous section. The traffic flow
measurement is used as a discrete probability distribution.
Cars cannot be identified in the measurement (only the
number of EVs and the time of passing), the driving
lengths (need for energy) have to be evaluated somehow.
To solve this, the length of the trip is randomised based on
the probability density derived from the national travel
survey. The simulation is repeated until a sufficient end

Table 2 Key figures of the network

Feeder 1 Feeder 2 Whole company

110/20 kV primary substations — — 4

20 kV feeders — — 22

inhabitants 4171 1037 19 470

end-customers 2278 444 11 000

workplaces 1577 84 5333

houses

detached houses 659 372 5992

terraced houses 266 0 525

apartment houses and others 888 0 1415

20/0.4 kV distribution substations 39 27 470

peak load 8 MW 2 MW 50 MW

annual energy 36 GWh 6 GWh 200 GWh

20 kV lines and cables 21 km 31 km 433 km

20 kV underground cabling rate 33% 6% 16%

Feeder 1 is located in a densely populated area and Feeder 2 in a rural area
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criterion is met. The example simulated load curve for the
residential area with a 100% EV penetration level is
presented in Fig. 4. The charging curve is based on the
traffic flow measurement in Fig. 2. The penetration levels
are varied later in Fig. 5.

5 Technical network effects

5.1 Background for power flow simulations

Power flow simulations have a long history in electricity
distribution systems. Power flow calculations were carried
out by applying network and customer information systems
(NIS and CIS) already in the 1970s [29, 30]. The link
between the NIS and the CIS has been intensively used
since the 1960s [31]. As the restrictions related to the large
number of customers (individual load points) and computer
processing power, the calculations were mainly based on
customer annual energy and load profiles of customer groups.

In these studies, the load flow analyses are mainly based on
commercial power flow software. The main challenge is to
define reasonable charging curves for the EVs. The groups
of EV users are not yet large enough to allow the definition
of EV charging profiles for power flow calculations.
To make the studies possible, the analyses are supplemented
by load profiles defined in the previous section. In
principle, the charging curves are obtained based on the
feeder-specific base load as presented in

P(t) = Pbase(t) + nEV(t)Psupply (1)

where Pbase is the base load of the feeder without EVs, Psupply

is the maximum charging power of the EVs and nEV is the
number of EVs. The base load is defined by traditional
power calculations, which are specified by actual power
flow measurements. In this study, the base load is from
winter season, when the consumption is at highest (electric
heating of houses, saunas etc.) in the case network.
The maximum charging power of the EV depends on the
charging arrangements; in this study, the charging type is
slow charging from a household-type socket-outlet (IEC
61851-1), where the maximum power is limited to one-
phase voltage (230 V) and 16 A current.

Deviation plays a key role in power flow analyses. This is
the case also with EV charging load analyses. The fewer
vehicles there are, the larger is the relative variation. The
sum of charging load can be considered as a probabilistic
maximum value at a certain time. In other words, a
confidence level should be determined based on the
simulated load curve values and the deviation. In these
studies, a 95% confidence level is used.

5.2 Network effects

Fig. 5 presents the load curves before (base load) and after the
implementation of the EV charging on Feeder 2 in each
charging alternative. The first four alternatives are defined
for the 100% penetration level of EVs. In the bottom figure
(in Fig. 5e), the charging curves are based on actual traffic
flow measurements with four different penetration scenarios

Fig. 4 Charging alternative of EVs based on actual traffic flow

Fig. 3 Four charging alternatives of EVs

In each alternative, the total charging energy is the same
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(25, 50, 75 and 100%). In the 100% scenario, all 750
traditional passenger cars are replaced by electric ones.

In a rural area (Fig. 5), the relative increase in the peak load in
‘direct night-time charging’ is about 250% compared with the
situation without EVs. The high growth can be explained by
the low-base load level in the rural area; electrification of
transportation increases the total consumption of electricity
relatively more in a rural area than in a densely populated area.
The rural area feeder alternatives ‘direct night-time charging’
and ‘split-level night-time charging’ are the most probable
options because of the high proportion of residential customers
and a low number of workplaces on the feeder (Table 2).

The traffic flow measurement based curves in Fig. 5 show
that the peak charging load is scheduled on evening hours

when residential customers are coming back from work.
Working-hour charging is rather minimal because of the
low number of workplaces in the rural area fed by the case
feeder. Compared with intuitive-behaviour-based charging
profiles, the load growth is lower being about 160% higher
than the peak power in the present situation without EVs.

Fig. 6 summarises the effects of EV charging on the peak
power in different charging alternatives and in different EV
penetration scenarios for a rural area feeder.

It can be seen from Fig. 6 that ‘direct night-time charging’
has clearly the highest effect on the peak power at
all penetration levels. ‘Split-level night-time charging,
working-hour charging and traffic flow measurement based’
charging have a rather similar effect on the peak power.

Fig. 5 Five charging models of EVs on a feeder in a rural area

In each figure, the lower curves represent the existing peak load (base load), whereas the upper curves represent the load when the charging power is taken into
account. The charging energy is equal in each alternative. In the bottom figure (Fig. 5e), four different EV implementation scenarios (25, 50, 75 and 100%) are
presented
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In the ‘optimised charging’, the peak load starts to increase
after the penetration level of EVs is more than 50%.

6 Economical network effects

Overall, the analyses of the effects of EVs have mostly
focused on the technical perspective as shown in Table 1.
In this paper, the methodology to analyse the economic
effects of EVs on the electricity distribution business is in a
key role. Next, the effects of EVs on the replacement value
(RV) and electricity distribution fee are defined.

6.1 Effects on the RV

The definition of wide-scale economic effects of EVs on the
distribution business requires simplification of the analyses.
Case-specific studies at the low-voltage and end-customer
level could provide accurate information for the network
planning process. However, resource- and time-consuming
studies of this kind would not serve the network
development in a reasonable way at the asset management
level.

To obtain the first estimations for the business planning, the
amount of required investments can be estimated by defining
the average additional investment cost of the network [32,
33]. It is based on the network RV and the maximum load
of the year, and it describes how much the network
capacity costs for the distribution company per each peak
load kilowatt. For instance, if the network value is 1 ME

and the distribution capacity of the network is 1 MW, the
average investment cost is 1 E/W or 1000 E/kW. For
instance, in the case network, the RV of the whole network
is 50 ME and the peak power 50 MW.

To be able to allocate costs more accurately to the
distribution system, the analysis is performed for each part
of the network (400 V low-voltage networks, 20 kV
medium-voltage networks and 110/20 kV primary
substations). In this case, the network value compared with
the peak load is 500 E/kW in the low-voltage networks,
450 E/kW in the medium-voltage networks and 50 E/kW at
the primary substation level (110/20 kV). These values
depend strongly on the network structure (e.g. urban area
against city area network). The accuracy and opportunity to
use voltage-level-specific cost information depends on the
network information system used in the distribution
company. At the medium-voltage and primary substation
level, a statistical approach of an additional load can be
taken because the load is usually well balanced. In the low-
voltage network, it is more likely that different loads

overlap each other. A typical peak operating time in the
low-voltage networks is 2000 h/year, in the medium-voltage
networks 3500–4500 h/year and at the primary substation
level 4500–5000 h/year. In the low-voltage networks, it is
difficult to adjust an additional load to those time periods
when the load level is low. On the other hand, there are
numerous reasons for the present individual peak loads,
such as saunas, electric space heating and car electric pre-
heating systems, which can be adjusted thereby avoiding
the overlapping of peak loads.

The idea of average additional investment cost in the
reinforcement cost definition on a medium-voltage feeder is
demonstrated in Fig. 7. In the scenario, the present peak
load increases by 1.8 MW (¼DP) from 1.2 to 3.0 MW
because of EVs. When the average additional investment
cost for the case area is 450 E/kW, the peak growth
requires new network capacity worth of 810 000 E. The
direct night-time charging curve from Fig. 5 is used in the
example.

The same principle of average additional investment cost
can be used also in the case where some network capacity is
released by the decreasing peak. Even though the decrease in
the peak does not bring direct return for the distribution
company, it leaves space for the normal load growth in the
network and that way, delays network capacity investments.
In general, the change in the RV of the network can be
defined by the average additional investment cost and the
change in the peak power (DP) as presented in

Change in RV = Average additional investment costDP

(2)

The presented principle is applied to all those scenarios that are
realistic or interesting for the case distribution company. Fig. 8
presents the effects of EV charging on the RV of the feeder
with different charging profiles in different penetration
scenarios. The example of the effects of direct night-time
charging presented in Fig. 7 is illustrated by a black dot in
Fig. 8.

As it is seen in Fig. 8, it is not insignificant which kinds of
scenarios and charging methods are chosen to be used in the
network analyses. Even though the results are case-specific,
there are clear incentives to avoid dumb charging and to
study opportunities to adopt intelligence to the control of
EV charging (optimised charging).

6.2 Effects on distribution fee

In addition to the effects on the network capacity, principles
to define the effects on the distribution fee have to be

Fig. 6 Effects of charging on the peak power on the feeder with
different charging profiles in different penetration scenarios

Fig. 7 Estimation of the reinforcement costs on a medium-voltage
feeder as a result of an increase in peak power
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determined. From the electricity end-user perspective, it is
interesting to investigate how much an increase in the peak
and capacity affects the distribution fee (cent/kWh).

The additional network investments will eventually be paid
by the end-customers. This can be determined when the
straight-line depreciation of the RV and lifetime of the
network (E per year) is compared with the annual delivered
energy in the network. In other words, the equation below
determines the proportion of the network asset value in the
distribution fee

Network value per delivered energy

= Straight line depreciation

Annual energy

(3)

In the case of EVs, it is not obvious whether the increasing
penetration of EVs will finally have a positive or negative
effect on the distribution fee. This depends on the relation
of the change in the delivered energy to the change in the
power peak. As (3) illustrates, lower reinforcement needs (a
minor change in the replacement value) and a growing
amount of delivered energy (a growing number of EVs)
may lead to lower network unit costs finally paid by the
end-customer. The methodology is demonstrated in Fig. 9,
where the situation before and after adoption of EVs is
presented with different charging types in different
penetration scenarios. The RV of the rural area feeder is
1.4 ME and the annual delivered energy on the feeder is
6 GWh/year. By (3), the network value per delivered

energy is 1.44 cent/kWh in the present situation. Depending
on the charging method and the level of intelligence in the
charging, a rough estimation of the additional investments
(2) required in a new transformer and the distribution
capacity in the feeder would be 0–0.6 ME. When
comparing the reinforcement needs and the delivered
energy, the network cost (distribution fee) would be
between 1.03 and 1.49 cent/kWh. This means that in the
optimum situation, the network-value-related distribution
fee could be about 28% lower after the full-scale
penetration of EVs and the implementation of the intelligent
control of charging.

Even though these case-specific values are not important
from the methodological perspective, the fee range shows
that when the peak power of the network increases more
than the delivered energy, the distribution fee will increase.
If the additional charging load has only a slight effect on
the peak power, it is possible to cut the distribution fees.

7 Conclusions and discussion

In this paper, a methodological study of the charging effects
of EVs on the network value and the distribution fees was
presented. In the technical part of the paper, the focus was
on the peak load growth in different charging profiles and
penetration levels in a medium-voltage network. In this
study, intuitive-behaviour-based charging profiles were
compared with profiles based on actual traffic flow
measurements. The results show that the type of the
charging profile and the penetration level have a strong
influence on the resulting peak power. In addition, different
base load profiles (for instance a densely populated area
against a rural area) lead to different resulting powers with
a certain charging type. These issues have to be taken into
account when the network effect analyses are made in
electricity distribution companies.

The second part of the study concentrated on the definition
of the economic effects of EVs in an electricity distribution
system. This research area has been mostly neglected, as
was discussed at the beginning of this paper. In this task,
the objective was to define both the effects on the RV of
the network and the effect on the electricity distribution fee
paid by the electricity end-customer. Based on the results
related to the case network, there is potential to cut the
distribution fees after the adoption of EVs. Depending on
the charging profile and penetration level of EVs, the prices
could be lowered by tens of percents. However, this
requires intelligent control of EV charging. From the end-
customer perspective, the most positive effect is reached
when the efficiency of the operation of the existing
electricity distribution capacity is improved, which provides
opportunities to reduce the distribution fees.

By the methodology and principles presented in the paper,
it should be possible to define both the technical and
economical network effects in any environment. The quality
of the results depends on the quality of the background
data; how well the number and behaviour of the future EVs
are known, what is the situation with the present
distribution network infrastructure and which economic
parameters best describe the distribution business. The
results are strongly dependent on the parameters, and
therefore sensitivity analyses in different phases of the
process need to be made. It has also to be borne in mind
that the method of the average additional investment cost
applies best to situations where the analyses are made for

Fig. 9 Effects of charging on the distribution fee with different
charging profiles in different penetration scenarios
∗in the annual value
p is 5% and the life-time
t is 35 a, ∗∗the charging energy 3.1 GWh comes from 750 cars, 20 900
km/car per year and 0.2 kWh/km per car

Fig. 8 Effects of EV charging on the RV of the feeder with different
charging profiles in different penetration scenarios

The price of additional network capacity (average additional investment cost)
is 450 E/kW
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an area that is wide enough; the smaller the case area is, the
more uncertainty is included in the analyses.

One of main targets of the paper was to define and
demonstrate the relationship between additional network
investments and the distribution fee paid by the electricity
end-user in the case where the network capacity changes
because of EVs. The results show that when the peak
power of the network increases more than the delivered
energy, the distribution fee will increase. If the additional
charging load has only a slight effect on the peak power, it
is possible to cut the distribution fees. This creates
economic incentives to the intelligent control of EVs.

Although this study has been made in the Nordic
environment, the methodology presented in this paper can
be adopted to any other circumstances. Only the calculation
parameters have to be reconsidered according to the
environment in question.

8 References

1 Ehsani, M., Gao, Y., Emadi, A.: ‘Modern electric, hybrid electric and
fuel cell vehicles’ (Taylor and Francis Group, Boca Raton, Florida,
USA, 2010, 2nd edn.), p. 534

2 Guzzella, L., Sciarretta, A.: ‘Vehicle propulsion systems’ (Springer-
Verlag Berlin Heidelberg, 2007)

3 Miller, J.M.: ‘Propulsion systems for hybrid vehicles’ (Institution of
Electrical Engineers, 2004), p. 455

4 Larminie, J., Lowry, J.: ‘Electric vehicle technology explained’ (John
Wiley, 2003), p. 296

5 Koyanagi, F., Uriu, Y.: ‘A strategy of load leveling by charging and
discharging time control of electric vehicles’, IEEE Trans. Power
Syst., 1998, 13, (3), pp. 1179–1184

6 Liu, L., Eisenreich, M., Balzer, G., Kessler, A.: ‘Evaluation of
absorption capacity of distribution grids for electric vehicle integration
in rural areas’. European Conf. SmartGrids and E-Mobility, Brussels,
2010, pp. 77–84

7 Pop, V., Regtien, P., Notten, P., Danilov, D., Bergveld, H.: ‘Battery
management systems’ (Springer Science, 2008)

8 Ota, Y., Taniguchi, H., Nakajima, T., Liyanage, K.M., Yokoyama, A.:
‘An autonomous distributed vehicle-to-grid control of grid-connected
electric vehicle’. Conf. on Industrial and Information Systems (ICIIS),
2009, pp. 414–418

9 HCAdeMO Association, Desirable characteristics of public quick
charger, 2010, Tokyo, Accessed 29 April 2010. Available at www.emc-
mec.ca/phev/Presentations_en/S12/PHEV09-S12-3_TakafumiAnegawa.pdf

10 Ponticel, P.: ‘SAE standard on EV charging connector approved’,
Automotive engineering online, Accessed 15 April 2010. Available at
www.sae.org/mags/AEI/7479

11 Lassila, J., Kaipia, T., Haakana, J., et al.: ‘Electric cars – challenge or
opportunity for the electricity distribution infrastructure?’. European
Conf. on Smart Grids and Mobility, Wurzburg, 2009

12 Kempton, W., Tomic, J.: ‘Vehicle-to-grid power implementation: from
stabilizing the grid to supporting large-scale renewable energy’,
J. Power Sources, 2005, 144, (1), pp. 280–294

13 Fernández, L., San Román, T., Cossent, R., Domingo, C.M., Frías, P.:
‘Assessment of the impact of plug-in electric vehicles on distribution
networks’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 206–213

14 Balcells, J., Garcia, J.: ‘Impact of plug-in electric vehicles on the supply
grid’. Vehicle Power and Propulsion Conf. (VPPC), 2010, pp. 1–4

15 Blumsack, S., Samaras, C., Hines, P.: ‘Long-term electric system
investments to support plug-in hybrid electric vehicles’. Power and
Energy Society General Meeting – Conversion and Delivery of
Electrical Energy in the 21st Century, 2008 IEEE, July 2008, pp. 1–6

16 Clement-Nyns, K., Haesen, E., Driesen, J.: ‘The impact of charging
plug-in hybrid electric vehicles on a residential distribution grid’,
IEEE Trans. Power Syst., 2010, 25, (1), pp. 371–380

17 Cvetkovic, I., Thackerm, T., Dong, D., et al.: ‘Future home
uninterruptible renewable energy system with vehicle-to-grid
technology’. Energy Conversion Congress and Exposition, 2009.
ECCE 2009. IEEE, September 2009, pp. 2675–2681

18 Dyke, K.J., Schofield, N., Barnes, M.: ‘The impact of transport
electrification on electrical networks’, IEEE Trans. Ind. Electron.,
2010, 57, (12), pp. 3917–3926

19 Kristoffersen, T.K., Capion, K., Meibom, P.: ‘Optimal charging of
electric drive vehicles in a market environment’, Appl. Energy, 2011,
88, (5), pp. 1940–1948

20 Mets, K., Verschueren, T., Haerick, W., Develder, C., De Turck, F.:
‘Optimizing smart energy control strategies for plug-in hybrid electric
vehicle charging’. Network Operations and Management Symp.
Workshops, 2010 IEEE/IFIP, April 2010, pp. 293–299

21 Moses, P.S., Deilami, S., Masoum, A.S., Masoum, M.A.S.: ‘Power
quality of smart grids with plug-in electric vehicles considering
battery charging profile’. Innovative Smart Grid Technologies Conf.
Europe, 2010 IEEE PES, October 2010, pp. 1–7

22 Pecas Lopes, J.A., Polenz, S.A., Moreira, C.L., Cherkaoui, R.:
‘Identification of control and management strategies for LV
unbalanced microgrids with plugged-in electric vehicles’, Electr.
Power Syst. Res., 2010, 80, (8), pp. 898–906

23 Pillai, J.R., Bak-Jensen, B.: ‘Impacts of electric vehicle loads on power
distribution systems’. Vehicle Power and Propulsion Conf. (VPPC),
2010 IEEE, September 2010, pp. 1–6

24 Qian, K., Zhou, C., Allan, M., Yuan, Y.: ‘Modeling of load demand due
to EV battery charging in distribution systems’, IEEE Trans. Power
Syst., 2011, 26, (2), pp. 802–810

25 Rahman, S., Shrestha, G.B.: ‘An investigation into the impact of electric
vehicle load on the electric utility distribution system’, IEEE Trans.
Power Deliv., 1993, 8, (2), pp. 591–597

26 Saber, A.Y., Venayagamoorthy, G.K.: ‘Plug-in vehicles and renewable
energy sources for cost and emission reductions’, IEEE Trans. Ind.
Electron., 2011, 58, (4), pp. 1229–1238

27 Sortomme, E., Hindi, M.M., MacPherson, S.D.J., Venkata, S.S.:
‘Coordinated charging of plug-in hybrid electric vehicles to minimize
distribution system losses’, IEEE Trans. Smart Grid, 2011, 2, (1),
pp. 198–205

28 The National Passenger Transport Survey 2004–2005. Finland. ISBN
951-803-682-9. Paino Dark Oy 2006. Available at www.hlt.fi/
HTL04_loppuraportti.pdf [In Finnish]

29 Adams, R., Laughton, M.: ‘Dynamic programming/network flow
procedure for distribution system planning’. Power Industry Computer
Applications Conf., 1973, pp. 348–354

30 Backlund, Y., Bubenko, J.A.: ‘Distribution system design using
computer graphics technique’. Power Industry Computer Applications
Conf., IEEE, 1979, pp. 382–388

31 Lakervi, E., Nurmi, M.: ‘Present status in applying mathematical
planning methods in AM/FM-GIS systems’. Proc. CIRED 97, 1997,
No. 438, IEE, 6, pp. 24/1–24/5

32 Bishop, A.: ‘Tariff development II: rate design’ (The Georgian National
Energy Regulatory Commission and The Vermont Public Service
Board, 2008), Accessed 29 June 2011. Available at www.
narucpartnerships.org

33 CER and NERA: ‘Marginal cost of electricity service study’, report, July
2004

IET Electr. Syst. Transp., pp. 1–8 9
doi: 10.1049/iet-est.2011.0015 & The Institution of Engineering and Technology 2012

www.ietdl.org





Publication V

Tikka, V., Makkonen, H., Lassila, J., and Partanen, J.
Case Study: Smart Charging Plug-In Hybrid Vehicle Test Environment with 

Vehicle-To-Grid Ability

Reprinted with permission from
2014 16th European Conference on Power Electronics and Applications 

Lappeenranta, Finland, 2014
© 2014, IEEE





Case Study: Smart Charging Plug-In Hybrid Vehicle Test Environment with 
Vehicle-To-Grid Ability 

Ville Tikka, Henri Makkonen, Jukka Lassila, Jarmo Partanen 
LAPEENRANTA UNIVERSITY OF TECHNOLOGY 

P.O.BOX  20, FI-53851 Lappeenranta 
Lappeenranta, Finland 

Tel.: +358 503 373 685.  
Fax: +358 5 411 7201. 

E-Mail: ville.tikka@lut.fi
URL: http://www.lut.fi

Acknowledgements 
This work was carried out in the Smart Grids and Energy Markets (SGEM) research program coordinated 
by CLEEN Ltd. and  the EVE – Electric Vehicle Systems program with funding from the Finnish Funding 
Agency for Technology and Innovation, Tekes. 

Keywords 
«Electric Vehicle», «Hybrid Electric Vehicle (HEV)», «Charging Infrastructure for EV’s», «Energy 
system management», «Smart Grid» 

Abstract 
The aim of the paper is to describe and introduce smart charging test environment and plug-in hybrid 
vehicle capable of smart charging and vehicle to grid functionality. Furthermore, the paper aims at 
demonstrating simple smart charging strategy in operation on smart charging test bed. The demonstration 
utilizes commercially available components and open source programming solutions. Charging strategy 
demonstration is a combination of actual hardware operations and stochastic sampling to synthetize 
driving cycles of the electric vehicle. Driving behavior synthetizing is based on national travel survey data 
to ensure reasonable driving behavior in testing of the smart charging strategy. The main outcome of the 
paper is the description of an actual smart charging test environment. The results also suggest that the 
charging strategy targeting to minimization of the charging costs may not be feasible for a single customer 
or single end user. However it must borne in mind that the electricity retailer (or market aggregator) may 
see some feasible incentives in smart charging strategies based on market price control. 

Introduction 
The number of electric vehicles (EV) is slowly increasing while also the green ideology seems to be 
gaining a stronger foothold in the political field in Finland. Based on the scenarios presented in [1], a 
substantial number of EVs will be on the road by 2020, in Finland. Moreover, the emissions targets of the 
European Union are driving towards less polluting society. In the field of transportation, EVs are among 
the most promising alternatives to strive towards CO2 free transportation. As the previous studies [2] and 
[3] suggest, the grid effects of the EV charging will have a substantial impact on grid loads, and therefore,
all alternative charging schemes have to be studied. The main concern is simultaneous charging of a large
number of EVs which may pose a considerable threat to the electricity distribution networks. Among the
most discussed charging strategies, the strategy aiming at lowest charging cost from socio-economic



perspective is the preferable choice. Such a strategy can be understood simply aiming at minimizing the 
cost of electricity or with more sophisticated manner, aiming at total cost minimization. The total cost 
minimization covers elements such as loss power cost, electricity cost, grid (capacity) cost and charging 
equipment cost. In the paper the aim is to describe and verify the functionality of the charging strategy 
aiming at the lowest electricity cost, because, the main aim of the paper is verify functionality of smart 
charging test bed, rather than demonstrate highly sophisticated charging strategies. 

Some special cases such as spot price controlled charging may result in undesirable effects to the grid, 
such as peak load growth. For instance, if a large group of electric vehicles are controlled based on the 
price signal, it could result into a case in which the majority of the charging loads become concentrated on 
the same hour. Furthermore some of the smart meter functions may enable even more flexible loads that 
may behave similar as EV charging load, in the near future. Thus, it is essential to investigate the effects
of such charging control algorithms. Furthermore, it is essential to develop pilot systems that can support 
testing of such control systems. Pilot systems also produce user experience data that can also be seen 
valuable as smart charging may and will need some input parameters from the user. For instance, typically 
the car is used only an hour per day. However, when usage occurs the car has to be ready for use. 
Therefore the car user should have the possibility to give the system an initial estimation of the usage time 
instances or requirement on the state-of-charge (SoC). Real-life demonstrations are needed to validate the 
theoretical charging strategies. 

Testing of the charging strategies on test bed neither solves, nor gives answers for all of the questions 
posed. For instance, controllable loads are capable of posing unpredictable load behavior in the 
distribution grids. At least load may seem to behave unpredictably if observed from other than market 
aggregators' perspective. For instance, if electricity retailer has control privilege of some of the loads, 
electricity distribution system operator (DSO) may see the load vary unpredictably or unnaturally. Issue 
becomes even more difficult if DSO is given control privileges of the load, as it ruins the electricity 
retailer’s balance between forecasted and realizing electricity demand, resulting in higher balance 
settlement cost.  

From the DSO’s perspective market price controlled charging may appear as a treat to the grid, because 
loads might overlap more than natural behavior would suggest.  For instance, grids are typically 
dimensioned based on some confidence level, so that the line sections are not selected to withstand 
theoretical maximum loads (sum of maximum loads of each individual customer). In a LV transformer 
circuit of 30 household customers, the dimensioning load may be only fifth of the theoretical load. It has 
to be borne in mind that the dimensioning power is not only technical dimensioning, but a techno-
economical compromise. In practice this, means that the grids are not that likely to be overloaded. Load 
over dimensioning criteria cause loss power to increase, and when loss power increases also loss power 
cost increases. Equation guiding the dimensioning of the grid is be presented as follows: 

(1) 

where, 
Cinvestm  = investment cost 
Closs = cost of losses 
Cintr = cost of interruptions 
Coper = cost of operation 
∆t = planning period. 

10 1 Introduction

1 Introduction

Strategic planning of the distribution grid is core business of the distribution system
operators. The present phase of the electricity transmission has been quite stable
since 50s when large-scale electrification of the Finnish rural areas started with a
fast pace. Present situation in distribution business may be changing due to com-
ing of the active component such as electric vehicle (EV) chargers and small-scale
distributed production units. The impact of high penetration level of renewable
distributed production is already starting to show, for instance in Germany. Dis-
tribution grids were newer prepared for such a transformation of the production
structure. In Norway electric cars has become more common due to government
subsidies and people willingness to invest in green technology, during the past few
years. Especially in Germany, change in operation environment has been quite rapid
and electricity distribution business has been struggling to keep with the pace (Sat-
tich 2013) .tarkista viitetarkista viite

Fossil fuel sources that are nowadays used widespread in traffic sector are about
to drain out in following decades. The increased demand in developing countries
is likely to cause fuel prices to rise. The question is: when fuel cost is too much?
Traditional combustion engines will have rival technologies such as electric motors,
combustion engines capable to use bio-fuels, hydrogen cells and etcetera. The ques-
tion posed is: when The electric motor has some advantages over other technolo-
gies. First of all electric motor is mechanically simple which makes it durable and
reliable. Secondly electric motor has supreme efficiency in comparison to internal
combustion engines. These competitive advantages make electric car a notewor-
thy option against rivaling technologies such as bio-fuel vehicles and gas-powered
vehicles.

Thus it seem likely that electrification of transportation in about to start in Finland in
following decades. What comes to electric grids due to altering demand structure,
decision in long-term planning of the distribution grids needs be made in time.
Distribution grid business in capita intensive in nature and component lifetimes
are measured in decades rather than years. For instance distribution line may have
lifetime of 40 years in normal conditions.

The distribution business planning in Finland has been relying on totals cost mini-
mization in grid development. The total cost is combination of different cost com-
ponents, such as cost of losses, cot of investments, cost of interruptions and cost of
operations. According to (Lakervi and Partanen 2008) objective could be written as
follows:

min

Z t1

t0

(Cinvestm(t) + Closs(t) + Cintr(t) + Coper(t))dt, (1.1)



According to the equation, grid development is dependent of the expected load behavior that should be 
known as well as possible. The typical planning period of the distribution grid is tens of years. Therefore 
the pilot projects are in crucial role in the strategic planning of the distribution grids.  

In the paper, the charging load is optimized based on the electricity price information and demonstrated 
with the real-life case on actual test setup. The electricity cost minimized charging does not solve 
problems of increasing grid load but could still be an option for the end customer. It is likely that 
electricity price controlled charging appears as a conflict of interest between distribution system operator 
and electricity retailer. This conflict of interest is discussed briefly in the case of smart charging of EVs. 
The conflict of interest in a demand response application is studied in [4]. Grid effects and modeling of 
EV charging is discussed in [6]-[11]. 

The key elements of the study are: 

• Demonstration of smart charging test bed in action
• Demonstration of electricity cost minimized charging
• Definition of data requirements for smart charging scheme considered
• Studying of the conflict of interests between the DSO and the electricity retailer

Simulation Setup 
Pilot demonstration aims at providing a platform for testing of the smart charging strategies. Furthermore, 
the vehicle to grid (V2G) functionality is considered as part of the smart charging properties.  In other 
words the test platform has capability of feeding electricity back to the grid.  Pilot demonstration is based 
on modified Toyota Prius Plug-in-Hybrid Vehicle (PHEV). The vehicle has been updated with an 
additional LiFePo battery pack the capacity of which is 4.6 kWh . The battery pack is connected to the 
hybrid drive battery with a 13 kW DC/DC converter which provides power for highway cruising. In 
addition, the vehicle is equipped with two 500 W inverters to achieve vehicle-to-grid functionality with 
maximum in-feed power of 1 kW. The nominal power of the on-board battery charger is 3 kW and it is 
controlled by the battery management system of the additional LiFePo battery pack. The battery charger is 
only used to charge the additional LiFePo battery, not hybrid system battery. 

The smart charging management is conducted with an industrial PC running Linux operating system. The 
physical control is handled by the relay control board connected to the on-board PC. The on-board PC has 
CAN bus interface for the car, and thus, it is capable to poll values from the information system of the 
vehicle. The on-board PC is also used to maintain the automatic driving diary as vehicle is driven. Charger 
management connects to a charging pole via power line carrier (PLC) modem. The charging pole has 
simple Linux based interface operating as a proxy between the pole and the vehicle. The charging pole 
routes communication requests directly to a Linux server running the energy management system (EMS). 
The EMS server maintains MySQL database where data of each event is stored. For instance, when car 
plugs in, the EMS server updates database item flag to active. Vehicle's driving history is stored on the 
server also. The communication from the car’s on-board PC to EMS server is operated via Ethernet by 
TCP/IP protocol. 

The main purpose of the smart charging pilot has been to develop test bed for the functionality testing 
rather than develop fine tuned product for the end user, and thus, the communication between units has 
been conducted by robust TCP/IP commands that could be send directly to the desired unit. For instance, 
the charging management could set the EV to discharge. It is possible to develop and run different smart 
charging schemes on the test setup.  



Fig.  1: Test setup, batteries, BMS, charger and inverters. 

The aim of the paper is to demonstrate the operation of the price signal controlled charging . Driven 
mileage and availability (duration the car is connected to the charging point) of the car is synthetized by 
sampling the departure time, arrival time and average daily mileage from the distributions acquired from 
the National Travel Survey (NTS) of Finland [5]. 

Required Data for the Smart Charging Interface 
The smart charging scheme needs data from several different sources to operate efficiently. Depending of 
the charging strategy, requirements on the data sources and time criticality vary. For instance, some of the 
grid support functions may need almost real-time data, while market price strategies can operate with 
delays ranging up to hours. In the paper, the electricity price optimized charging is considered, and 
therefore, the management of the charging necessitates hourly electricity tariff from the Nord Pool Spot. 

The working environment in the paper is Nordic area, and therefore, Nord Pool Spot is considered as a 
source of the price signal. The Nord Pool market consists of two physical electricity trades; day-ahead and 
intraday markets. The day-ahead market for the next day, and the bids must be submitted before 1 pm in 
Finnish time (+3h GMT) [12]. After the bids have been submitted the market is closed and day-ahead 
prices are published based on crossing point of supply and demand of the each hour. The intraday market 
begins after the day-ahead market is closed. The operation is similar to day-ahead market, but intraday 
market closes for each hour just before delivery.  The Nordic market is divided into the different price 
areas. For example, the area price in Finland may differ from the Nordic system price in the case of power 
flow congestions. 



Spot price for the next day is public information and can be obtained directly from the Nord Pool website 
with a scheduled script and stored on the EMS server’s database. In the simulation Finnish area price is 
used. 

Fig.  2: Example of SPOT price over a day and price distribution over a year 2013. 

The smart charging strategy needs also data concerning the vehicle to be charged. For instance, it is vital 
to know the duration of the charging and restrictions that user may have set. In the paper, one case deals 
with the case in which the user of the vehicle has option to set the time when the charging event should be 
finished. In that case, the user of the vehicle is considered to have standard daily working hours from 8.00 
am to 16.00 pm and the charging is set to be finished at 7.00 am. 

Vehicle also delivers nominal values of the charger to the EMS server so that the charging management is 
capable of estimating the required charging time for fully charged battery pack. Vehicle can also deliver 
SOC value and nominal charging power for more sophisticated optimization strategies such as demand 
management and grid support applications. In the case demonstrated, the nominal charger power is set to 
3 kW, even though the charging power may vary during the charging event. Typically the charging current 
of the LiFePo batteries may vary quite heavily as a function of temperature, to maintain the performance 
of the battery. In Nordic environment, heating of the battery may also be necessary before the charging 
begins. Therefore, LiFePo -cells cannot be charged on sub-zero temperatures. Vehicle also delivers other 
miscellaneous values for the EMS server. More specific description can be found in [13], where 
demonstration environment is presented in more detail. 

Smart charging algorithm 
In the paper the smart charging is considered as electricity price minimization. Optimization goal can be 
simplified as follows: 

(1) 

where 
t = time 
ce = cost of electricity 

The cost of the charging energy is minimized over time t1…t2. The t1 is defined by the arrival time or 
current time. The t2 is defined by the availability of the Nord Pool Spot price data or user defined “ready 
time” (set by the user/driver). For instance if cost optimization algorithm runs at noon, the Δt is limited to 
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12 hours ahead or to the user set time earlier. In the case optimization runs at 6 pm, the day-ahead SPOT 
market data should be available and minimization window could reach 24 + 6 h ahead (unless user has set 
earlier “ready time”). The actual charging management algorithm runs on MATLAB platform. 
Management algorithm runs inside infinite loop and refreshes values to be stored every minute. Charging 
strategy algorithm gathers all the necessary data from the EMS MySQL database by using Perl-functions. 
Charging control is conducted with robust TCP messages to EMS server. Message includes ID of the 
desired vehicle or other unit connected to the EMS and status to be set to the unit. Status can be set to idle, 
charging and discharging in the case of the PHEV test setup. The algorithm can be described by simplified 
block diagram format as Fig.  3 illustrates. 

Fig.  3:  Basic principle of the smart charging algorithm. 

The charging control diagram does not describe the whole test procedure, as there are some stochastic 
sampling involved as well. The driving behavior is modeled rather than actually conducted by driving the 
vehicle. The actual vehicle usage could have lead to behavior that does not present average vehicle user. 
The more suitable solution is to synthetize driving behavior by sampling random events from the 
distributions acquired from the National Travel Survey conducted in Finland. 
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The travel survey can provide distribution for departures from certain typical trips such as from homes to 
working places or grocery stores. The daily driving distribution can be acquired as a sum of all the trips 
during a day. The data consist of thousands events collected during years 2010 –2011. Fig.  4 illustrates 
cumulative distribution of trip lengths used in synthetizing driving cycles. 

Fig.  4: Cumulative distribution of trip lengths driven in Finland. 80% of daily trips are less than 20 km. 

Pilot system in the operation 
The system has been in operation for a week. The main purpose of the demonstration was to test algorithm 
and communication, in practice. The vehicle was not driven during the test period so that the battery could 
be discharged at any time by the V2G function. In addition, the vehicle was held in controlled 
environment to ensure safe operation of the charging system. The driving does not give any surplus value 
for the test. In addition, the synthetized driving cycles can be assumed to represent average driver better 
than researcher driving the car. The driven mileage was randomized based on the NTS data by extracting 
distributions of average behavior and then sampling event from the distribution. The average daily total 
mileage in Finland is around 50 km/d per car, but for persons driving a car average total mileage is about 
29 km/day/person. There are more than 4 million persons whom are considered in NTS study and about 2 
million cars in Finland, thus mileage for the car is higher than average mileage per person driving a car.  

The charging window was set to be randomly sampled, similarly as the mileage. Distributions were 
acquired from the NTS data and time of return was then randomly sampled. The “ready time” was set to 7 
am to ensure that the car is fully charged when departure should happen. 

Table  I: The charging assumption. 

The charging control algorithm was executed on MATLAB workstation that was operating as centralized 
control for the vehicles. The smart charging test was conducted over a week test period and data was 
collected during that time. Fig.  5 shows charging power over the week test period.  

0-1 1-3 3-5 5-10 10-20 20-30 30-40 40-50 50-60 60-8080-100 100-
0

20

40

60

80

100

Trip lenght [ km ]

Cu
m

ul
at

iv
e 

sh
ar

e 
[ %

 ]

Vehicle user type Average workign person (defined due to random sampling)
Charging place Home
Charging power 3 kW (nomimal)
Charging 'ready time' 7 am
Charing scheme Electricty cost minimization
Price signal Finnish area price (Nord Pool Spot)

Authorized licensed use limited to: Lappeenranta-Lahti University of Technology LUT. Downloaded on May 25,2023 at 12:04:33 UTC from IEEE Xplore.  Restrictions apply. 



Fig.  5: EV charging curve over test period of a week. 

In the first graph of the Figure 5 is shown simulated dumb charging strategy as a reference. The actual 
smart charging strategy conducted on the test bed is shown on second graph from top. It can be noticed 
that in the dumb charging scheme it is assumed that car is charged immediately after plugging in by 
nominal power of 3 kW. The total electricity cost in the case of the simulated dumb charging is 0.29 € per 
week. The actual smart charging scheme tested on the test setup resulted total electricity cost of 0.17 € per 
week. 

In the smart charging strategy it is assumed, that the charging takes place when the Nord Pool Spot price 
is at the lowest and charging window is met. If demand of the charging energy is higher that can be 
charged during an hour, the second charging event takes place when the Nord Pool Spot price is at the 
second lowest level, and charging window is met. The length of the charging event changes as the 
charging demand is different for each day. 

The total saving potential can be estimated based on the assumption that EV would have been charged 
right after arrival to the charging pole. The total saving of the test period is 0.11 €/week, equaling 6 €/a. It 
must be borne in mind that the saving potential is highly dependent on the electricity cost variation, and 
such a generalization of the annual saving potential should not be interpreted as the one and only truth, but 
more like guideline showing roughly what the saving potential could be. The more relevant result is the 
validation of the control strategy, which has been shown to operate over test period. Initial testing before 
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the week test period showed, that communication and error handling is of great importance in the smart 
charging applications. For instance, the communication system and applications must be capable of 
handling short disturbances in the communication network. The latency of the communication line was 
not in critical role in the case test, but should be investigated more carefully for the applications that are 
more time critical. 

Brief Discussion of the Conflict of Interests 
There exists a conflict of interest between the DSO and the electricity retailer. In the Nordic countries, the 
DSOs operate in a monopoly position under a national regulation model, but the electricity retail market is 
liberalized since 1995 in Finland. It is in the DSO’s interest to aim at the highest possible peak operating 
time, and thus, the grid should be exploited as effectively as possible, even though the reformed structure 
of the wholesale market has decreased the incentive to directly control loads [14]. On the other hand, 
electricity retailers probably have different goals depending on the product they are offering. For instance, 
balance settlement would create an incentive to control some of the loads to find a balance between the 
estimated and realized consumption or end users electricity cost minimization many cause high peak load 
to distribution grid. These goals are not usually in line with the DSO’s load control targets that are based 
on the grid load. 

The electricity retailer could have an incentive to control loads in the case of some unusual or unpredicted 
change in the consumption. The electricity retailers operate in a day-ahead market, and thus, the load has 
to be forecasted a day before the consumption takes place. The load forecast accuracy may be affected by 
several factors; for instance, adverse weather or an accident may cause traffic jams, and thus, people may 
arrive home later than expected. There has to be a balance between the consumption and the forecast to 
maximize the retailer’s profit; to this end, the load control of the EVs would provide an ideal opportunity 
to shift loads to meet the forecasted load as closely as possible. Or in case cost minimization load forecast 
problem might even vanish. If the base load is shifted several hours later, probably there are few EVs 
already in the area waiting to be charged. On the other hand, the electricity retailer might aim at a positive 
error if the power balance in the grid requires down-regulation. If excess power is bid into the regulation 
market, the profit may be higher than the matching consumption forecast would have delivered. The 
described control scheme could be seen as a demand response power resource. The paper focuses on 
investigating a control scheme that aims at the lowest spot price of electricity, but in future, the actual 
control might be dependent in several other factors also. The question of further studies is: what are 
products electricity retailer can offer for the end user? 

Results 
The main result of the paper is the description of the fully operating smart charging system in laboratory 
environment. The results also show that the smart charging strategy tested in the paper can be 
implemented with only a few data sources. Operation of the charging strategy aiming at lowest electricity 
is proven to be functional. However, feasibility of the charging strategy cannot be well justified. The 
overall saving in the charging cost over a week test period was 0.11 €. In comparison to system cost 
savings are nearly irrelevant and highly dependent on electricity price. 

Conclusion 
The paper describes charging strategy aiming at electricity cost minimization conducted on smart charging 
test bed. 
As a main result, the smart charging strategy is shown to be operating on actual test vehicle. Furthermore, 
the results suggest that savings earned by using the charging strategy aiming at lowest electricity price are 
negligible.  But if considered in larger scale, also the electricity retailer may have interest into controlling 
of the charging. For instance, demand response applications may emerge as new opportunities in field of 



smart charging. The system described in the paper could be operated based on the aggregator's commands, 
but also working on its own. To conclude, the paper delivered early stage description of the smart 
charging test bed and described simple smart charging strategy in operation. It is question of further 
studies, what kind of control strategies should be tested and what communication should exist between 
EVs (or energy storages, in general) and related data sources. The testing period emerged question of 
charging power estimation, because charging power is highly dependent on environment condition. In the 
case presented in the paper, tests were conducted in well-controlled environment. In practice ambient 
temperature may vary, and therefore, result decreased charging power due to restrictions posed by the 
LiFePo cells. It is question in the further studies: how charging power should be estimated and could 
heating be used to compensate ambient temperature changes? 
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Abstract
Electric vehicle (EV) charging and their batteries are recognized as a future solution for power system demand flexibility but 
also a potential source of problems for the network due to increasing power requirements in new locations. In either case the 
amount of EVs will grow and the amount of available energy storage with them. EV batteries can provide the necessary 
energy storage in distributed, variable power generation networks where wind and solar power are used in larger scale and 
increase grid’s ability to handle higher share of variable renewable energy (VRE) production. Operating EV batteries as 
controllable storages without major downsides has it challenges. In this study three different strategies of controlling EV 
charging power based on grid frequency are compared: 1. utilizing distribution system operator’s (DSO) existing metering 
infrastructure, 2. using centralized measurement with dedicated flexibility server, and 3. using local measurement and control.
In our testing, operating through the DSO infrastructure caused significant delays and prevents EV’s batteries to be offered on 
the primary reserve markets with given conditions. The dedicated systems built for EV charging power control offers faster 
response, more reliability and control. 

1. Introduction
In 2019, the total number of plug-in hybrids and full 
electric vehicles was over 7 million [1], and scenarios 
expect the number to grow somewhere between 150 and 
250 million by 2030. This will be one of the main drivers 
to increase lithium-ion battery production from 300 GWh 
to 2000 GWh per year [2]. The production ramp up in the 
past decade has already reduced the prices of batteries at 
an incredible speed dropping from 668 $/kWh to 137 
$/kWh during 2013-2020 which is on average 20% price 
decrease per year and the development is continuing, 
pushing battery prices below 100$/kWh [3]. This 
development makes battery energy storages (BESS)
suitable for new applications. Dedicated BESS systems 
and EV batteries together are creating new energy storage 
capacity for the power grid. How much energy storages 
now in the world? How much wind and solar? How much 
storage is needed for them?
At the same time variable renewable energy (VRE)
production is growing quickly and thus power system will 
require flexible consumption, energy storages or in best 
case both. In some cases, VRE might account for over half 
of the annual energy production, and more often there will 
be growing number of hours during the year where VRE 
portion is significant (see picture 1) [4]. This added to the 
EV charging that is projected to require up to 6-9% of 
peak electricity demand [5].
To avoid the foreseeable problem different flexibility 
options and energy storages have been proposed [maybe 
source]. The advancements in telecommunication and

remotely controlled systems can provide cost-effective 
way of tackling the future problems.
Finland’s power system has a well-developed Supervisory 
control and data acquisition (SCADA), automatic meter 
reading (AMR) and mobile telecommunication
infrastructure. These together provide a test platform
where different kinds of remote-control mechanisms can 
be examined within real, operational systems.

Picture 1: Variable renewable energy in power system in 
selected countries [4]

2. Demand response markets
Demand side flexibility and energy storages provide value 
for several actors in the power system: customers can limit 
their connection power, size of fuses or their energy bill, 
energy retailers can keep their hourly balances in check, 
distribution system operators (DSO) can avoid investment 
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costs and interruptions, and transmission system operators
(TSO) can maintain the power balance in the grid even in 
rapid, unexpected changes. This study concentrates on 
TSO frequency containment markets as it currently has the 
highest financial value. Finnish TSO, Fingrid, has open
frequency containment markets and large, unified markets 
under construction for Central Europe [6,7].

2.1. TSO frequency containment markets
Power system frequency indicates the balance between 
electricity consumption and production. When there is 
more consumption in the system than production, the grid 
frequency decreases. In the same way, if there is more 
production than consumption, the frequency increases. The 
frequency is essentially the same in all points of the grid 
and every generator and load contributes to the frequency.
What is special about frequency containment reserves, is 
that the first response to frequency changes must be fast 
and accurate in order to prevent further frequency 
deviation and restore the system power balance. The grid 
frequency is always changing as production and 
consumption vary and normally this deviation is small (+/-
0.05 Hz). The grid frequency is kept close to nominal by 
adjusting production capacity and the final responsible 
party is TSO for maintaining the system frequency. The 
different response times and classification of inertial, 
primary, secondary and tertiary control is found in picture 
2.

Picture 2: Power system reaction to changes in grid 
frequency [8]

Finnish and also European frequency reserve markets 
consist of three categories: 1. Fast Frequency reserves FFR
(e.g. 0.7-1.3s activation time), 2. Frequency Containment 
Reserves for Normal operation (FCR-N) that are meant to 
keep the frequency close to nominal value (activation in 
seconds), and 3. Frequency Containment Reserve for 
Disturbances (FCR-D), which is meant to be used to when 
frequency has deviated too far from nominal value and 
larger actions need to be taken (activation during 3-30 s). 
All of these Frequency Containment Reserves act 
automatically based on preset rules and contracts.
Automatic frequency reserves are activated on daily basis 
and the volumes for the markets are in the scale of

hundreds of megawatts per reserve type in the Nordics.
Picture 3 shows in graphical form the ramp up/down curve 
that is required from systems participating in automatic 
frequency containment market. Relay controlled loads can 
have stepwise sloping when it stays within required limits.
FCR-D has dead-band area between 49.9-50.1 Hz and
FCR-N deadband of +/- 0.01 Hz.

Picture 3: FCR-N frequency [9]

The value of yearly contract for the FCR markets is 
presented in table 1.

Table 1: frequency reserve yearly market [10]
FCR-N 
volume
(MW)

FCR-N 
price

(€/MW,h)

FCR-D 
volume
(MW)

FCR-D 
price

(€/MW,h)
2017 55 13,00 455,7 4,70
2018 72,6 14,00 435,0 2,80
2019 79 13,50 445,6 2,40
2020 87,1 13,20 458,3 1,90
2021 105,8 12,50 425,0 1,80

Also the hourly market for both exists and the average 
hourly market value of FCR-N during 2020 in Finland was 
20,83 €/MW,h and average volume was 34,6 MW. Thus 
providing +/- 1kW of flexibility for every hour of the year 
to the FCR-N market would yield ca. 180 € income for 
provider. EV controllable power could be much higher 
than 1 kW but on the other hand it wouldn’t be all the time 
available. This extra income is the motivator for EV 
charging control as it technically feasible to implement.

3. Methodology

3.1. Vehicles
Measurements were conducted with commercially
available equipment. To measure the charging power 
behaviour in real life, four different passenger EVs were 
tested in first two cases: Tesla Model S (3x16 A), Nissan 
Leaf (1x16A), Opel Ampera (1x16A), Mitsubishi 
Outlander (1x16A). All vehicle batteries were depleted to 
30-70% state of charge so that the batteries wouldn’t limit
the charging current. The temperature outside was about
+5°C and it was not limiting the charging current which
was tested before testing started. All vehicles had IEC
61851 compliant chargers. In the last test Volvo V60
plugin hybrid was used.
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3.2. Electric Vehicle Supply Equipment (EVSE)
The EVSE in use was Ensto ECV100, which has
IEC61851 compliant proprietary controller and RS-485 
interface for external load management signals.
Requirements for passenger EV chargers are defined in 
IEC 61851 (communication protocols) and ISO 62196-2 
(plugs and sockets) standard. IEC 61851 standard 
describes the analog sequence which is needed to initiate 
the charging process and the PWM modulation that 
enables the charger’s controller to give maximum current 
limit instructions to EV charger.  The IEC 61851 defines 
the following values for dynamic power regulation events 
during the charging: 

External system to EVSE PWM max duration: 10 s
EVSE PWM to vehicle on board charger current 
change: max 5 s
Termination of energy supply when pilot contact is 
opened: 100ms
Stop charger current draw: 3 s

The standard leaves quite much flexibility for EVSE and 
EV manufacturers to make their own decisions on the 
ramp up/down times, expect when pilot contact is lost 
which is a safety related feature. [11]. 

3.3. Test setups
Tests were conducted with three different setups: 1. DSO’s 
AMR infrastructure with GPRS modem connection, 2. 
Centralized frequency measurement and control with 
dedicated service, and 3. With fully local control.

Test 1 - Distribution System Operator infrastructure: First 
tests were run through the DSO provided SCADA and 
AMR infrastructure, where AMR meter remote 
controllable relay would be used as input to computer IO 
pin and transformed into RS-485 message for EVSE 
controller, which outputs required PWM signal.

Picture 4: DSO’s control infrastructure

Test 2 - Centralized measurement and control over 
internet:
Custom made electronics was created in order to consider,
how local frequency measurement could be done cost
effectively for a large number of devices. Electronics bill 
of materials cost for this was ca. 3 euros. Power system 
frequency was verified with a Fluke 83 multimeter that
provides 0.01 Hz frequency accuracy which would be 
sufficient for actual use also.
Test 3 - Local measurement and control: Third testing was 
using Siemens Sentron PAC 3200 frequency measurement
device and power limitation signal was fed directly to the 
charger controller which provided the PWM for EV.

3.4. Locally controlled vs remote system

The benefits of locally operating systems are that it is not 
dependent on remote data connections and response times 
are faster. The disadvantages are the cost of implementing 
frequency measurements on every device and creating the 
direct connection to EVSE controller instead of back office
service. These add up costs, but also provide speed and 
independence, which adds resilience to the system.

4. Results

4.1. Charging power control with DSO’s infrastructure
First test with DSO’s AMR infrastructure showed that 
GPRS network and SCADA systems create delays that are 
documented in tables 2 and 3. “DSO delay” means the 
duration, how long it took from the manual triggering on 
DSO control room to AMR relay state change, “Start of 
ramp” means when charging power has changed over 10% 
from existing value, and ”Power final” means when power 
is within 10% of the new, given setpoint (i.e. 6A or 
“max”).

Table 2: Decrease charging power
Ampera Leaf Outlander Tesla

DSO delay 10 s 6 s 12 s 13 s
Start of ramp 4 s 3 s 4 s 4 s
Final power 2 s 1 s 2 s 2 s
TOTAL 16 s 10 s 18 s 19 s

Table 3: Increase charging power
Ampera Leaf Outlander Tesla

DSO delay 7 s 10 s 13 s 11 s
Start of ramp 6 s 4 s 4 s 8 s
Final power 5 s 2 s 2 s 12 s*
TOTAL 18 s 16 s 19 s 31 s
* charger’s three phases were not in sync, see picture 12

Vehicle specific charging power curves are presented in 
pictures 5-12. Manual trigger signal is marked as “AMR”
text, and relay activation as “RELAY” text in the picture.

Picture 5: Opel Ampera down

Picture 6: Opel Ampera up
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Picture 7: Nissan Leaf down

Picture 8: Nissan Leaf up

Picture 9: Mitsubishi Outlander down

Picture 10: Mitsubishi Outlander up

Picture 11: Tesla Model S down

Picture 12: Tesla Model S up

4.2. Centralized frequency measurement, dedicated EV 
power control server

Second tests were done with frequency monitoring
hardware and micro-service built for EV load
management. Test setup with delays is shown in picture
13.

Picture 13: From frequency measurement to EV power 
control on dedicated platform

Compared to previous test, the DSO delay was replaced by
delay from dedicated flexibility system, and was cut from 
6-13s to ca. 2s. The delay from frequency measurement to
PWM control signal was varying between 0.3 and 3
seconds. This change alone, with the added controllability
and possibility to get feedback from EVSE meets the
criteria of primary frequency reserve markets.

4.3. Control with local measurement and local control
Last test was done with Volvo V60 plugin hybrid. 
Frequency limit was set to be 49.98 Hz for signal 
automation for testing purposes. The response pattern is 
show in picture 14.

Picture 14: Volvo V60 plug-in hybrid

Response from observed frequency deviation to start of 
ramp was only 1 second and final value was achieved in 3 
seconds on power down and 4 seconds in power up events.
Also it is noteworthy that in local setup the delays do not 
change based on internet traffic duration.
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5. CONCLUSION
The flexibility market is open for new service providers 
and market model offers quite easy access to reserve
markets. In present situation investments to EV batteries
and the charger infrastructure are made, independent of 
possible smart charging cash flows. Thus, the income from
demand response provides additional value to charging 
service users and providers. Demand response financial 
value is at its highest on the primary market, where power 
adjustment speed requirement is measured in seconds.
Electric vehicles battery response times were benchmarked 
against two Frequency Containment Reserves: FCR-N,
where reserves must be in use within 3 minutes and follow 
the change of frequency linearly or stepwise linearly, and 
FCR-D where reserves must activate within 5 seconds and 
provide full power in 30 seconds.
This study showed that EVs can be used as part of primary 
reserves (FCR markets) in power system when used with 
local control, and in some cases with dedicated demand 
response infrastructure (measurement, servers, services, 
telecom). Using existing AMR infrastructure from DSO 
created delays that currently do not allow providing EV 
batteries’ flexibility on primary reserve markets.
What is needed is a socket based, constantly open,
communication path if EV demand response is controlled 
by a central system. GSM network latencies vary greatly 
and the limited reliability of GSM connections must be 
taken into account when planning the system. Varying 
latencies do bring some benefits in the form of unintended 
randomization of up and down regulations, but the 
latencies must be well understood when designing the 
system for real use.

6. DISCUSSION
In the future we expect better network connections, e.g. 
5G, to help with real time control of demand response 
resources. Also the EVSE and EV manufacturers 
presumably will shave off seconds from the delays where 
it is easy. DSOs could be helping with providing easy 
access to customer’s equipment with their existing 
infrastructure, but that would require interfaces to give 
control of the customer devices to third parties. These 
interfaces don’t exist at the moment but are in
development.
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A B S T R A C T

From the perspective of electricity distribution networks and the energy system, the increasing numbers
of electric vehicles are among the most topical and challenging problems. The paper investigates a novel
approach of a convolutional neural network-based modeling method for estimating the spatial distribution
of electric vehicles. The proposed model extracts features from multilayer socioeconomic input raster data
that are sequenced in strides and outputs a spatial estimation of EV distribution. Spatial forecasting or area
forecasting is at the core of the distribution system operators’ planning and development process as it provides
a solid foundation for stochastic load modeling and load development analysis. Present models mostly focus on
stochastic load modeling, lacking the spatial forecasting aspect of EV distribution. The proposed model aims to
enhance EV load modeling by providing a more accurate spatial approach to the models. The study uses large
actual socioeconomic and vehicle registration data sets to tackle the modeling challenge. In comparison with
previous studies on similar topics, the present study benefits from more samples resulting from an increase in
the adoption of electric vehicles. The proposed model architecture performs adequately in predicting a spatial
electric vehicle distribution; the CNN model reached a weighted average precision score of 0.91. The proposed
methodology greatly enhances stochastic EV load modeling by providing a good spatial forecast of the initial
EV locations, and the results can be further aggregated to support the electricity distribution system planning
process. An energy-, material-, and cost-efficient electricity distribution system is the backbone of the modern
energy system.

1. Introduction

There is a growing global awareness of climate change, and tech-
nological advances to mitigate global warming are becoming widely
available. Climate change, the key driver of the changing operational
environment, has triggered energy policy actions such as the Paris
Agreement [1] and the EU net zero greenhouse gas emission target by
2050 [2]. From the perspective of electricity distribution networks, the
increasing numbers of EVs are among the most topical and challenging
problems. The effects of EVs on the power system and especially on the
electricity distribution are known to cause major renovation needs [3,
4]. In order to manage and optimize grid reinforcement investments,
it is essential to be aware of the spatial distribution of EVs. EVs are
also known to be able to provide substantial amounts of flexibility if
their market entry is made possible [5], but without accurate spatial
distribution estimates, this flexibility resource may not be utilized
in full. European EV sales have doubled for several years in a row.
Fig. 1 shows the rapid increase in Finnish EV sales over the past few
years. The spatial distribution of EVs is heavily centered on the capital

∗ Corresponding author.
E-mail address: ville.tikka@lut.fi (V. Tikka).

region and a few other larger cities in Finland. Furthermore, many
governments and public bodies have set their own targets for electric
traffic. For example, the Finnish target is 700 000 EVs on the road by
2030 [6] (the total number of cars registered in Finland was 2.7 million
at the end of 2020). According to the International Energy Agency
(IEA), approximately 3 million EVs were sold globally in 2020, and it is
estimated that there will be 145 million EVs on the road by 2030 [7].

1.1. Modeling challenge

As the number of EVs is growing, it will be increasingly important to
be able to accurately model distribution grids with EV charging loads
included. The charging load of an EV has numerous similarities with
loads presently connected to the grid, but the behavior of an EV load is
very different as the load can connect to the grid at different locations
and times. In order to properly model the effects of such loads on the
distribution grid, it is essential to be aware of the home location or
region of the EV. The planning process of a distribution system operator

https://doi.org/10.1016/j.apenergy.2022.120124
Received 22 June 2022; Received in revised form 21 September 2022; Accepted 6 October 2022
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Fig. 1. Spatial distribution of the registered EVs at the end of 2020 and annual EV sales (2016–2021).

Fig. 2. Simplified illustration of the DSO network renovation drivers and spatial load forecasting.
Source: Adapted from [8,9].

(DSO) relies strongly on several data resources from different entities.
Data mining and data processing are at the core of an efficient asset
management process in the current and future operational environ-
ments. Fig. 2 illustrates the main drivers of the DSO network planning
operation. A distinctive characteristic of the process is that it is fed with
a lot of data that are processed with stochastic processing methods,
other probabilistic methods, and time series analysis. As the role of EV
charging loads is growing, it is reasonable to investigate which tools
can be used to maintain the network planning process as efficient as
possible.

There are resources for estimating the current spatial distribution
of EVs, such as national statistics or surveys dedicated to specific
case areas. Approaches of this kind require access to data resources
that are often difficult to reach outside academic institutions, creating
barriers to making efficient estimations and models for distribution grid
development. In [10,11], it is suggested that the spatial distribution of
EVs or plug-in hybrid electric vehicles (PHEVs) can be estimated based
on socioeconomic raster data from public data, which can be available
as open or semiopen data (e.g., available for a charge, or the availability
is restricted only to educational institutions). The proposed methods
rely on self-organizing maps [12] employed in regression models. A
regression-model-based method results in fairly good outcomes in fore-
casting, but it disregards relations that the geographically neighboring
features may have. The presence of the ‘‘neighborhood effect’’ was
shown in a study using a spatio-temporal approach [13]. In practice,
regression models build regression factors node by node or based on
more sophisticated methods, such as clustering. An approach of this
kind is not capable of including features of nearby areas that may have
an impact on the area under observation. Regardless of the performance

of the models presented previously for instance in [10,11], and [13], it
is worthwhile to study the performance of the latest tools and methods
available to grasp the issue. Studies in other fields of science have
shown promising results on very similar problem sets that can be seen
to have an analogy to the modeling of the spatial distribution of EVs
based on multivariate input features. Geographical patterns or other
spatially distributed features can be used to build models that are capa-
ble of weighting properties beyond a single local observation point. For
instance, a study on species distribution modeling shows the benefits
of a CNN in spatial distribution modeling [14]. The CNN is a deep
learning technique, which is a subclass of the more general artificial
neural network (ANN). There are many resources and frameworks, such
as Keras [15], Tensorflow [16], or PyTorch, [17], which make the
use of deep learning tools easy and efficient. CNNs are typically used
to analyze visual imagery [18] or to build machine learning models
related to visually perceivable features [19].

1.2. Hypothesis

The main hypothesis of the study is that by training a neural
network by limited-access proprietary data, it could be later used to
forecast the spatial distribution of EVs using up-to-date open data
resources. Furthermore, a data resource offers more accurate spatial
granularity in comparison with open data sources. The study also
reveals the overall performance of the CNN model in such a problem
set. The novelty of the study lies in introducing a CNN-based modeling
method for estimating the spatial distribution of EVs. The study also
shows the benefits of maintaining a well-covered national socioeco-
nomic raster data set. Compared with previous studies in the same
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Fig. 3. Sample of spatially distributed socioeconomic data in southern Finland. The
colormap in the figure represents households’ median annual income.

geographical region in [10,11], the present study benefits from more
samples as a result of further developed EV adoption.

1.3. Focus and outcomes

The study focuses on Finland and uses an open data set maintained
by Statistics Finland [20] and proprietary access data from Trafi-
com [21] and Statistics Finland. The primary dataset used for training
the model includes geographical location information and properties
of vehicles registered in Finland. The data intended for forecasting
the spatial distribution of EVs in Finland include 109 socioeconomic
features of Finnish households and population in a raster data format.
Fig. 3 shows a sample of the spatially distributed data set in the capital
region of Finland. The feature map shows clearly the areas where
population is denser if only the sample number per node is drawn on
the map.

As the main outcome, the study shows that the CNN model can
be used to estimate and further forecast the spatial distribution of
EVs in a case where large amounts of training data are available.
The model performance with the present data set is acceptable, and
based on the results, it seems to benefit from the information about
the neighboring area. A direct comparison with other similar studies is
not straightforward because of the different practices related to result
outputs and model precision indicators. In addition, the studies [10,11]
made several years ago did not have access to sufficient data resources
as EV adoption was yet to begin, the novelty of the present study being
thus in the data set applied. As the main result, the study shows that
the CNN can extract spatial features from a large socioeconomic data
set. The study does not, however, provide many tools for estimating
the stochastic features of the spatially distributed output data as the
data lack samples in history. Moreover, it still remains unknown if the
model can be developed further to produce a better understanding of
the stochastic properties of spatially distributed output data. The study
focuses solely on spatial EV distribution forecasting, which provides a
good starting point for the further stochastic analysis of EV charging
loads. The outcomes of the study can be summarized as follows:

• The study demonstrates how the proposed CNN model can be
applied to spatial EV distribution estimation.

• The proposed CNN model employs large actual national data sets
for training and validation of the model.

• As the main outcome, the study shows that the proposed model
can be used to extract beneficial features from socioeconomic
raster data.

Fig. 4. Modeling process of incorporating the EV charging load in the strategic
planning and asset management.

2. Background and source data

Modeling of the spatial distribution provides a solid foundation for
more advanced EV charging load modeling and eventually, for the asset
management of distribution grids. To fully grasp the rationale behind
spatial modeling, one must understand the process of modeling load
development that supports further decision-making in the distribution
grids. Asset management is a complex process involving several inputs;
nevertheless, load formation and load development are the key aspects
in the process. Fig. 4 shows the simplified process flow of load modeling
and highlights the main focus of the study.

Spatial modeling often gives a first estimation of how grid-
connected loads are distributed in the case area. Estimations are typi-
cally based on multiple data streams, such as information on changes
in socioeconomic factors, area development plans, and surveys of the
geographical target area. The spatial information is used to develop
area-specific load profiles further or to estimate changes in existing
load curves. The load curve data are then used for the load flow
analysis of the grid in its present state and for a prognosis for its future
development, which can be exploited in grid development plans.

EV charging loads have unique characteristics, as they can connect
to the grid in various locations. The proposed model provides a tool
to estimate the initial locations or home locations of EVs. If the home
locations of loads are known, they can be modeled based on the
distributions of arrival and departure times and trip lengths of the EVs,
and the technical boundaries of the connection point and the vehicle.
Actual load profile modeling can be based, for instance, on simple
stochastic models [22,23], neural network models [24], or agent-based
models [25]. There are also various studies into EV charging modeling
based on real measurement data, or studies that apply, for example,
data provided by automatic meter reading (AMR) infrastructure [26]
or measurements from EV charging stations [27]; moreover, a travel
survey has been used as a basis for a modeling approach in [28].
The present study proposes a spatial modeling approach that could be
combined with load profile modeling to further enhance area-specific
estimations and forecasts related to EV charging.

2.1. Socioeconomic data

The study uses data sets describing the spatial distribution of popu-
lation and households’ socioeconomic features [20], as well as vehicle
registration data maintained by the Finnish Transport and Communica-
tion Agency Traficom [21]. The study is geographically constrained by
the national borders of Finland and uses an open data set maintained
and provided by Statistics Finland [20] and proprietary access data
from Traficom [21] and Statistics Finland. The study employs data
resources that are specific to Finland as in that case, the data avail-
ability for academia is very smooth. The proposed method is, however,
applicable to any other location as long as similar data resources are
available. It is also noteworthy that in densely populated areas, the data
might be even a better fit to train neural networks.

The raster data database is a large set of data describing the so-
cioeconomic features of the Finnish population and households. The
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Table 1
Socioeconomic data classes used in the study.

Data class Variables in the data class

General variables, metadata 7
Population structure 24
Education structure 7
Inhabitants’ disposable monetary income 7
Size and stage of life of a household 15
Households’ disposable monetary income 7
Building and dwelling 8
Workplace structure 26
Main type of activity 7

data are available in 250 × 250 m, 1 × 1 km, and 5 × 5 km formats.
For privacy reasons, the raster nodes including fewer than three or
ten data points (depending on the data group) are filtered out. Fin-
land is a sparsely populated country, averaging 18 people per square
kilometer [20], whereas elsewhere in Europe, for instance, the average
population density is 109 people per square kilometer [29]. Selecting
too small a raster size results in a major data loss, as data nodes in the
data set having fewer than ten occupants or five household registers
are omitted from the data set for privacy reasons. In the present study,
a 1 × 1 km data format was selected as it was considered reasonably
accurate without a major data loss. The socioeconomic data used in the
study can be divided into nine main classes as illustrated in Table 1.

The initial assumptions based on other studies suggest that the
strongest correlation between the vehicle type and the willingness to
invest in clean technology is evident in the variables describing the
wealth and age structure of an area. For instance, according to [11], it is
likely that a higher average income and a larger living space are among
the variables that contribute to higher hybrid electric vehicle (HEV)
adoption rates. This observation is supported also in other studies [30].
The input data set was analyzed by running a variance inflation factor
(VIF) test on the data. The analysis showed that 99 out of 101 variables
have a cross-correlation (VIF > 10).

The data set is organized in a raster format so that each node
contains the number of items per variable or statistical parameter, such
as the mean value or the median of the data points. The raster node
is identified by a node ID and (𝑥, 𝑦) axis values tied to the ETRS89-
TMFIN35 coordinate system. Fig. 5 shows an example of data points in
the data set.

Even though Finland is a sparsely populated country, the data set
still has enough data points to present an outline of Finland in the map
image. The data shown in the image also include data nodes that are
omitted to ensure the privacy of the individuals. In the data set, the
privacy-filtered items are labeled with a constant −1. In the modeling
phase, the privacy filtering data marker is replaced by zero to avoid
unwanted bias in the model.

2.2. Vehicle registration data

The vehicle registration data in Finland are available as open data
without spatial identification information. In this study, the data set
was generated by request by the Finnish Transport and Communication
Agency Traficom [21]. The data set consists of all the same variables
available in the open data from Traficom, but in addition, the data
are aggregated into a 1 × 1 km grid raster data set defined by the
ETRS89-TMFIN35 coordinate system. Fig. 6 shows a sample of the
vehicle registration data in Finland.

The vehicle registration data cover the whole country. From the
image, it is easy to observe the location of the main highway regions
and larger cities. By browsing data with different zoom levels, layers,
and combinations, it soon starts to seem obvious for the human eye
that the data hold a lot of spatial information that is linked to other
data layers. The sheer amount of data and information makes a further
analysis impossible without sophisticated data mining methods. It is
well known that CNNs have a superior performance in managing spatial
data connecting features of several spatial data layers.

2.3. Theoretical background of the model

CNNs are often used for complex images or spatial data analysis
because of the superior performance in spatial data handling. Variations
of CNNs are used widely in research in multiple disciplines of science;
for instance, machine vision applications employ CNN methods to rec-
ognize objects from raw images [31,32]. CNNs are also often applied in
image classification systems [33], medical image analysis [34], image
feature segmentation [35], data mining financial data series [36], and
species distribution studies [14].

The CNN model structure can be divided into a convolution layer,
a pooling layer, and a fully connected layer. Fig. 7 shows a simplified
illustration of the CNN model that can be considered a reference model
or a traditional model architecture. The model architecture often varies
based on the application; for instance, the model can be enhanced with
additional layers [37].

The model can also be considered to involve data engineering before
convolution is applied to the input data. In the convolution layer, filters
or kernels are applied to the input data, and the convolution layer may
sometimes be termed as filtering. In practice, the convolution operation
can reveal features such as edges, corners, or some other recognizable
forms from the spatial image input data. In general, convolution can be
defined as follows:

𝑔(𝑥, 𝑦) = 𝜔 × 𝑓 (𝑥, 𝑦) =
𝑎∑

𝑑𝑥=−𝑎

𝑏∑
𝑑𝑦=−𝑏

𝜔(𝑑𝑥, 𝑑𝑦)𝑓 (𝑥 − 𝑑𝑥, 𝑦 − 𝑑𝑦) (1)

where 𝑔(𝑥, 𝑦) is the filtered image, 𝑓 (𝑥, 𝑦) is the original image, and 𝜔
is the filter kernel. Every element of the filter kernel is considered by
−𝑎 ≤ 𝑑𝑥 ≤ 𝑎 and −𝑏 ≤ 𝑑𝑥 ≤ 𝑏. Then, the convoluted feature maps
are reduced in size in the pooling layer with nonlinear down-sampling,
which can be formulated for instance as:

𝑓 (𝑥, 𝑦)(𝑆) =
1

max
𝑎,𝑏=0

𝑆2𝑋+𝑎,2𝑌+𝑏, (2)

where 𝑆 corresponds to the filter applied to the feature matrix 𝑓 . The
above-mentioned pooling function is max pooling, which is the most
commonly used pooling method.

Finally, the pooling layers are flattened to a two-dimensional (2-D)
form by fully connected layers and put through the activation functions
to formulate a one-dimensional (1-D) output vector:

𝐱𝑙 = 𝑔(𝐰𝑙𝐱𝑙−1𝐛𝑙), (3)

where 𝐰1 and 𝐛𝑙 denote the weight matrix and the bias vector, respec-
tively.

3. Modeling

Similar to many other data mining studies, the validity of the input
data plays a key role in the modeling. The data resources used in the
present study are all validated by public organizations. For the model
sanity check, also an ablation analysis is performed. The selected CNN
model architecture presented in the study is very close to the standard
or traditional CNN model.

3.1. Data preprocessing and feature engineering

The vehicle registration data are a list of registered vehicles with
the vehicle properties presented as numerical and textual string values.
The data are categorized by the EUREF-FIN coordinate system so that
each data row has (𝑥, 𝑦) coordinates. The raw data are reclassified into
a raster data format, and thus, the data are presented as a matrix
𝐘 = (𝑦𝑛,𝑚) ∈ R636×1140.

The source data consist of information about the vehicle primary
energy source, which can be used to categorize vehicles into internal
combustion engine (ICE) vehicles, HEVs, PHEVs, and EVs. Each primary
energy class of the vehicle is identified respectively by a variable
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Fig. 5. Spatially distributed socioeconomic data in Finland. The top-left subfigure shows the total number of cars registered per node, the top-right subfigure the average age of
the persons per node, the bottom-left subfigure the annual median income of the households, and the bottom-right subfigure the number of unemployed persons per raster node.

Fig. 6. Vehicle registration data. On the left, a feature map of the registered cars per node. On the right, the number of registered EVs per node.

Fig. 7. Simplified illustration of a CNN.

𝑐energy ∈ {1...5}. Data rows are filtered to match only occasions with an
electric primary energy source 𝑐energy = 3. The data are then categorized

into a raster map 𝐘. Each node 𝑦(𝑖, 𝑗) of 𝐘 contains a sum of the EVs in
the raster map matrix node.

The socioeconomic data are denoted by a three-dimensional matrix
𝐗 = (𝑥𝑖𝑗𝑘) ∈ R636×1140×101. The matrix dimensions are matched with the
vehicle registration raster data matrix, and thus, each node in either
matrix corresponds with the same geographical location. The raster
map 𝐗 layers are defined as 𝑘 ∈ 1...101. Each layer of the raster
map 𝐗 may contain mean values of initial observations or statistics
𝑥(𝑚, 𝑛, 𝑗) ∈ R ∶ 𝑗 ∈ (1...99), median values �̃�(𝑚, 𝑛, 𝑗) ∈ R ∶ 𝑗 ∈ (1...99),
Boolean 𝑥(𝑚, 𝑛, 𝑗) ∈ (0|1) ∶ 𝑗 ∈ (1...99), or the sum of the observations
𝑥(𝑚, 𝑛, 𝑗) ∈ R ∶ 𝑗 ∈ (1...99).

3.2. Managing the class bias of the data set

The data have very few samples of positive EV occurrences because
of the very early stage of the adoption of EVs. The vehicle registration
raster data have 3537 nodes containing one or more EV registration
samples. The total number of nodes having vehicle registration items
is 98 393. When the data are classified for the model, zero occurrence
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nodes are heavily overrepresented in the classification, and thus, ac-
tions are taken to even out the class bias. The node containing EVs is
oversampled by 300% to increase the proportion of the EV occurrence
classes in the modeling. Oversampling often comes with the downside
of overfitting the model. In this particular case, however, the lack of
samples is a far larger issue than the downsides of oversampling, and
thus, it was decided to oversample the minority classes. Even though
the minority classes are oversampled, the training classes remain heav-
ily overbiased, and thus, it was decided to undersample 20% of the
nodes containing zero EV occurrences. The undersampling was per-
formed by randomly dropping 20% of the samples. The undersampling
is re-initialized each time the model is re-executed, as it gives tools to
evaluate if valuable information is lost in undersampling.

3.3. Serialization of the input data

The input data are serialized so that the model will get an input
shape of �̂�×25×25×𝑘, where 𝑘 is the number of selected input feature
layers and �̂� is the count of serialized input raster maps. The socioeco-
nomic input data are selected from the countrywide data by selecting
matrices 𝑥𝑚+(25+1)∕2,𝑛+(25+1)∕2,𝑗,𝑘 by the vehicle registration data nodes
𝑦𝑚,𝑛. The data nodes are organized as a sequence 𝑥train ∈ R�̂�,25,25,101

and 𝑦train ∈ R�̂�. The input then consists of socioeconomic data from
around each node that has at least one vehicle registration data event.
The target dataset 𝑦train is further classified into three classes describing
the number of EVs in the node:

𝑦classes(𝑣) =

⎧
⎪⎪⎨⎪⎪⎩

0 ∶ 𝑦train(𝑣) = 0,

1 ∶ 0 < 𝑦train(𝑣) ≤ 2,

2 ∶ 𝑦train(𝑣) > 2

(4)

3.4. Normalization of the serialized data

The input data are normalized to avoid any bias caused by abso-
lute values of the input data. The normalization is executed for the
serialized data by layers by applying MinMaxScaler. The data are also
checked for outliers to ensure the best possible input data for the model.
The scaled values can be formulated as:

𝑥scaled = 𝑥 − min 𝑥
max 𝑥 − min 𝑥

∗ (max 𝑥 − min 𝑥) + min 𝑥, (5)

where 𝑥 represents the matrix to be normalized, and 𝑥scaled denotes the
normalized output.

The input raster data consist of sea areas and parts of countries
sharing the same borderline with Finland, and therefore, the data
consist of a large proportion of null nodes, which are also transferred
into a serialized input format. During the normalization process, the
null matrices are also dropped from the data set.

3.5. Training and testing data

The serialized data set is divided into training and testing data sets.
To avoid sampling bias in the training, it was decided to randomly
select a set of data for testing and training. Then, the ratio between
the training and testing data is 20 ∶ 80. The data set randomization is
re-executed each time the model is retrained to double-check the sanity
of the model.

Randomization was performed by using Python’s pseudo-random
uniform distribution 0,1 random number generator. Randomization
was used to generate unique index numbers to carry out testing data set
selection of 17 808 frames from the whole serialized data set of 89 544
frames.

3.6. CNN model parameters

The CNN model is a sequential model available in Python Tensoflow
Keras API. The model can be built with several options. For the purpose,
it was decided to use a 2D convolution layer with 256 filters, 3 × 3
kernels, and rectilinear activation functions. In the second convolution
layer, the number of filters was reduced to 128 and to 64 for the
third convolution layer. Pooling was performed with 2D max pooling
after each convolution layer. In practice, this can be considered a layer
downsampling operation, which takes the maximum value over an
input window (of the size defined by pool size) for each channel of
the input. The window is shifted by strides along each dimension. 2D
convolution and pooling layers were applied before flattening the input
data. Finally, the input was passed to the softmax activation function
for the elementwise activation.

3.7. Ablation analysis

Ablation analysis was performed for the model to ensure the sanity
of the black-box-like model. The initial input data were considered to
include valuable knowledge and information for the model, and thus,
the model was tested with rotated input raster data to make sure that
the training result is not a coincidence. The model performance did not
change even though the input matrices were rotated. The model was
also fed with randomly permuted input matrices and a fully randomized
input with uniformly distributed random data. The model training was
not able to pick any useful data out of the permuted original data or
from the fully randomized input.

4. Results

The selected approach shows promising results for predicting the
spatial EV distribution. Even though the data are rather sparse and
there are some dense concentrations in the larger city areas, the model
is able to learn features from the input data. The CNN are known to
be sensitive to sparse input data sets. The model easily fails to validate
itself with the validation data if the validation split contains very few
meaningful samples. In the present study, the model was able to learn
features with a low number of iterations. After about ten epochs, the
model started to overfit the input data. Fig. 8 shows the model loss over
training iterations in the case of three output classes.

The performance of the chosen architecture was sufficient especially
in the high occurrence classes. Minority classes with one to two car
occurrences and more than two car occurrences suffer from a lower
accuracy and often mix detection between two minority classes.

The model performance can be estimated by the receiver operating
characteristic (ROC) curve. The curve describes the ratio of true and
false positive predictions. Figs. 9(a) and 9(b) show the ROC curves and
area under the ROC curve (AUC) scores of the two models. It can be
seen that the two-class model performs with a higher accuracy, but also
the three-class model shows a good performance on the ROC curve and
the AUC scores.

The ROC curve of the three-class model suggests that the model is
capable of fitting the first class very well; however, it is noteworthy that
the number of samples in the first class was significantly higher than
in the second and third classes. Similar observations can be made from
the model performance scores presented in Tables 2 and 3. In the three-
class model, the F1 score of the first class is relatively high, 0.94, but
in the second and third classes, the score is significantly lower. Table 2
shows the results in detail.

If only observing the whole model accuracy, the result may seem
misleadingly good. A closer look at the classification confusion matrix
and per class results reveal the true nature of the model performance
(see Fig. 10). The model is able to identify if the node contains EVs,
but the lack of data makes a more accurate analysis very challenging.
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Fig. 8. On the left, training and validation losses over the model iterations. On the right, training and validation accuracy over the model iterations.

Fig. 9. ROC curves of the two-class and three-class models. The figure legend indicates the AUC. The first class represents the case of zero EV occurrences.

Table 2
Model accuracy indices with the three-class output model.

Class Precision Recall F1 score Support

0 0.92 0.97 0.94 15 050
[1...2[ 0.63 0.41 0.50 2 400
[2... 0.80 0.054 0.65 458

Macro avg 0.78 0.64 0.70 17 908
Weighted avg 0.88 0.88 0.88 17 908
Samples avg 0.89 0.88 0.88 17 908

The results by class in Table 2 and the confusion matrix show that the
amount of EVs is difficult to predict.

Model variation of two input classes was also implemented. Re-
ducing the number of classes increased the number of samples and
made the model perform better. The lack of data is a major issue in
the study. The model clearly indicates that there are features that are
beneficial for the model and can be learned, but the lack of samples
in the validation data set makes the model training a challenging task.
Fig. 8 shows the model accuracy over the training epochs.

The two-class output model performed much better and achieved a
total accuracy score of 0.91, which is 0.03 higher compared with the
three-class model. Table 3 summarizes the model results. The model
class scores are also much higher, and it is clear that the model is able
to predict EV occurrences rather accurately.

The model performance was also tested with a partial data set from
the Finnish capital region. Fig. 11 shows an example of the prediction
results in the raw format. The illustration shows high occurrence prob-
abilities in the third class prediction in the more densely populated

Table 3
Model accuracy indices with the two-class output model.

Class Precision Recall F1 score Support

0 0.93 0.97 0.95 15 116
[1... 0.80 0.61 0.69 3 005

Macro avg 0.86 0.79 0.82 18 121
Weighted avg 0.91 0.91 0.91 18 121
Samples avg 0.91 0.91 0.91 18 121

areas. The real vehicle registration data support the model prediction.
The first and second prediction classes also show clear patterns well
aligned with the real data set.

The example illustration reveals a weakness of the model in detect-
ing single frame hot spots in EV occurrences. The graph of the real data
set shows many small areas with a high EV density, but the third class
prediction shows only slightly increased probabilities. The second class
prediction performs much better under visual inspection of the results.
It will be a question of further studies how the density-related hot spot
accuracy can be improved.

4.1. Computational cost

The computational cost of the model is relatively low even with
off-the-shelf hardware. The simulations were executed on hardware
with Intel® Core™ i7 9700K CPU, 32 GB DDR4 RAM of memory,
and NVIDIA® GeForce® RTX 3070 graphics card with 5888 NVIDIA®
CUDA® Cores and 8 GB GDDR6 VRAM of memory. The data pre-
processing is mainly a CPU- and memory-intensive task. The whole
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Fig. 10. Confusion matrix of the three-class output model.

reprocessing task takes less than half an hour, and it must be exe-
cuted only when the initial input data change. Compiling and training
the proposed model on the described hardware takes approximately
10 min, depending on the training stop criteria. The calculation cost
is not a very relevant factor in such an analysis, as area distributions
are typically used to feed other models used in the long-term planning
of electricity distribution systems. A typical planning horizon may be
several tens of years. Even though the actual planning process is more
or less a constant process, there is no need to retrain the model very
often. The input socioeconomic data can be updated yearly, or in the
case of case area development planning, socioeconomic forecasts are
made on demand.

5. Discussion

The study shows that it is possible to build a CNN model to estimate
the spatial distribution of EVs. The lack of positive samples makes the
model development and testing challenging, but regardless of the many
issues with the current model, there are multiple applications where
such a model could be beneficial. At the time of the study, however, the
data resources available were still limited. Nevertheless, the early stage
of the global and national EV adoption and statistical data gave a good
starting point for the study. There are several topics that remain to be
examined as soon as more data will be available. A similar modeling
approach could also be adopted to generate an up-to-date prognosis
of the spatial EV adoption rates as there seems to be a subtle correla-
tion between socioeconomic data and vehicle properties. In addition,
supporting data sources could be used to improve the model accuracy.
There are many spatial data sets, such as road maps in a vector
format, area characteristics describing area types, and many more.
The hypothesis is that infrastructure types correlate somehow with the
registration data. It is also likely that the model performance can be
tuned to vary the model architecture or parameters. In the present
study, the architecture and parameters were tuned by trial and error;
automated hyperparameter tuning would probably improve the model
performance. More sophisticated tuning methods incorporated with
larger training data sets could make such a model highly interesting
for many applications. The presented approach is novel in the field, and
so far, there are not many studies available on the estimation of spatial
distribution of EVs; thus, the paper is dedicated to introducing a CNN-
based method for spatial distribution estimation. A comparison with
other algorithms and methods would, indeed, bring added value, but as
the proposed methodology has still untapped potential, a comparison
with other algorithms would be unfair.

The model results provide a valuable input for the DSO network
planning process as the spatial distribution of the EVs allows a more
accurate load allocation to be conducted in the network simulation.
Accurate load allocation makes strategic decision-making more reliable
as the input drivers are based on well-founded analysis. Furthermore,
the analysis makes it possible to investigate a developing area where
socioeconomic factors are changing, or the area is expanding rapidly.
Spatial analysis tools are often used in network management tools and
software. Investigating software integration with the presented analysis
is also a highly interesting prospect as there is already growing interest
in software solutions where open data are utilized.

6. Conclusion

The scientific contribution of the paper lies in describing the appli-
cation of the CNN model in spatial EV distribution modeling. The model
is based on an exceptionally large actual countrywide data set covering
socioeconomic aspects and vehicle registration statistics. The study
investigated the applicability of the CNN in the spatial distribution
modeling of EVs. The model architecture followed a very basic CNN
architecture, and the CNN model parameters were tuned by trial and
error. Considering the early stage of the EV adoption and the limited
data resources, the model was able to pick up enough features out of
the learning data to successfully predict the spatial EV distribution.
The model was also validated with actual vehicle registration data. The
model achieved a weighted accuracy of 0.88 in the case of the three-
class output, whereas the class-specific accuracy scores were lower in
the minority classes. The model also suffered from the biased output
classes because of the limited number of positive data samples. The
model was also executed with two-class output classification to quan-
tify the performance in a simple EV occurrence prediction task. The
model performed better when the positive sample number was slightly
increased. The model results are sufficient to support DSO network
planning as the model is clearly capable of indicating an increased
EV occurrence probability. Because of the current data sets’ lack of
minority class samples, it is uncertain how much added value the model
can provide for the network planning with the present data set. By
fine-tuning the model architecture and parameters, it is likely that the
performance can be further improved. To conclude, the CNN shows a
high potential for the spatial EV distribution modeling.

It is a question of future studies how the model could be improved
and if additional input data could enhance the model performance.
In the present study, the model parameters were selected by trial
and error, and thus, the model performance could be improved by
hyperparameter optimization. The data set was also limited to so-
cioeconomic factors and vehicle registration statistics, and therefore,
further development of the model could benefit from information of the
land use, road network, and other infrastructure. In addition, it would
be important to test the model against other algorithms and models
that are considered standard approaches, like the regression analysis.
Moreover, as the model showed promising potential for applicability to
spatial analysis, there are many other cases where a similar approach
could be employed. Customer loss in rural areas is often explained by
changing socioeconomic factors and infrastructure, thereby making it
an interesting use case for the proposed model.
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Fig. 11. Three-class model prediction example from the Finnish capital region. The first three subfigures show the model prediction results as probabilities, and the fourth subfigure
illustrates real data for comparison. The real data are saturated to a maximum of three cars per node for illustrative reasons.
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ABSTRACT

This paper aims at providing further understanding of
electric vehicle (EV) charging in a cold environment by
providing an overview of laboratory tests conducted for
several EVs. The paper describes the laboratory test
process and the main findings of the laboratory mea-
surements. The measurement results and stochastic load
modeling show that the energy demand increases signif-
icantly over wintertime charging sessions. The increased
energy demand also increases peak loads in the distribu-
tion networks. In Nordic distribution grids, EV charging
peak loads often overlap baseload peaks, creating incen-
tives to manage charging in a smart way. The increased
energy content and additional preheating power cause a
need to rethink smart charging applications. As the main
outcome of the paper, the laboratory routine is described
with the measurement results of four EVs and one plug-
in hybrid electric vehicle (PHEV). As the main result, the
study shows that the temperature dependence is among the
key variables to be added to the stochastic EV charging
load modeling in cold environment areas.

INTRODUCTION

Electric mobility is taking an increasing role in the private
and public transportation. EU directives, national legisla-
tion, and energy policy are the key driving forces behind
the rapid change of the private transportation sector. An
attitude change can also be seen in the press releases
of many car manufacturers, indicating a greater focus on
full electric powertrains. While the public attitude toward
EVs is also changing, EV sales are rapidly increasing in
pace in the Nordic countries and all over the world. In
practice, this means that scenarios are about to become
reality, and distribution grids are already facing new loads.
Countries with cold climate conditions need to pay special
attention to the temperature dependence of EV charging
loads as it is likely to cause additional needs for distri-
bution grid reinforcement. The measurement results and
stochastic load modeling show that the energy demand
increases significantly over wintertime charging sessions.

The increased energy also increases peak loads in dis-
tribution networks. In Nordic distribution grids, charging
peak loads often overlap baseload peaks, creating incen-
tives to manage charging in a smart way. The increased
energy content and additional preheating power cause a
need to rethink smart charging applications. Cutting the
charging power too low is likely to compromise the charg-
ing event as charging energy per heating energy ratio leans
strongly on heating energy, and as a result, the charging
time window may run out.
The strategic planning of the electricity distribution is
a multivariable optimization problem, which involves
masses of variables describing various technical proper-
ties, economic aspects, and forecasts. Many of the vari-
ables related to EVs, such as kilometers driven per day
or arrival time, can be estimated based on national traffic
surveys or site-specific surveys. Vehicle stack or fleet prop-
erties can be queried from public or semipublic registers.
In the Nordic climate conditions, the energy consumption
and charging capabilities of vehicles in a cold climate play
a significant role in the electricity system planning. Thus, it
is important to study how a charging event changes when
the ambient temperature drops below zero. Some studies
[1, 2] have raised similar issues and partially answered
these questions. In addition, efforts have been made by
the press [3, 4] and associations in the field [5], but
more research and measurement of the real-life operating
conditions are needed.
This paper aims at providing further understanding of elec-
tric vehicle (EV) charging in a cold environment by giving
an overview of laboratory tests conducted for several EVs,
but also by showing how to apply results to stochastic load
modeling. The paper describes the laboratory test process
and the main findings of the laboratory measurements.
As the main outcome of the paper, a brief summary of
the laboratory routine is provided with the measurement
results of four EVs and one plug-in hybrid electric vehi-
cle (PHEV). All cars were tested at temperatures of 20°C,
0°C, -10°C, and -20°C, reflecting typical outdoor temper-
atures in the Nordic countries. The measurement report
describes the test setup, the measuring routine, and results
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Fig. 1: Cold environment vehicle testing laboratory with
the test subject car attached to a four-wheel dynamome-
ter

in detail [6], and the raw data are also publicly avail-
able [7]. The measurements were conducted in a large
temperature-controlled vehicle technology laboratory (Fig.
1), and the charging measurements were logged from a
three-phase power analyzer. In the worst-case scenario, the
charging energy demand may even double compared with
charging in standard conditions (+20°C). In the testing, all
the cars equipped with a battery heater showed an increas-
ing energy demand. The car without an auxiliary battery
heater was not able to charge fully when the tempera-
ture was decreased below -10°C. The results benefit EV
charging modeling and EV uptake scenario analysis of the
distribution grids in cold climate countries.

BACKGROUND INFORMATION

The main motivation for the further testing of electric vehi-
cle (EV) charging was to acquire more detailed knowledge
of how the charging power and energy can vary under dif-
ferent climate conditions, especially in the cold Nordic
climate. The hypothesis based on the public discussion
and basic physics is that EVs consume more energy when
operating in cold climate conditions. The increase in the
consumption can mainly be explained by the additional
heating energy required to maintain a comfortable cabin
temperature while driving. In reality, it is obvious that there
are multiple factors that impact the total energy demand.
Several scientific publications support the hypothesis, yet
not many focus on the effect that the increased demand
may cause on the distribution grid infrastructure.
The main interest of the measurements lies in low-
temperature charging events as they set the parameters
for the worst-case scenario in the Nordic climate condi-
tions. The worst-case scenarios cannot be overlooked when
designing and dimensioning the EV charging infrastruc-
ture. The rationale behind the time-consuming laboratory
testing is that there is clear evidence that lithium-ion-based
battery technologies face challenges in cold climate condi-
tions. Issues are related, for instance, to accelerated battery
degradation [8], cold climate fast charging capabilities [9],
or cold climate charging capabilities in general [10]. The
root cause for challenges in lithium-ion battery charging
at subambient (below 20°C ambient temperature) temper-
atures is often dendrite growth [11] that potentially causes
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Fig. 2: Full-day testing routine divided into four main
parts.

an internal short-circuit. Therefore, it is required to main-
tain a certain operating temperature during the charging
event. Active temperature control requires energy, which
is then shown as an additional demand on the distribu-
tion grid side. The cold climate charging power curve is
often very different compared with charging events exe-
cuted in close proximity of the battery manufacturer’s
recommended nominal operating temperature. Real-world
laboratory or field tests can be seen to bring high added
value, because modeling the car operation in varying con-
ditions is likely to require many simplifications and contain
a large number of very uncertain input variables, which
affects the modeling results. Moreover, charging tests can
be used to validate charging models to enhance the relia-
bility of the results and even further encourage engineers
to exploit the modeled results.

TEST SETUP AND ROUTINE

In the design process of the testing routine, the main chal-
lenges are related to the selection of the cars and setting
up a sufficient charging routine. The car selection can be
considered to have a major impact on the results, as car
manufacturers use distinct technologies for the powertrains
and batteries of the cars. Often, models that fall into the
premium full-size class are better equipped. A premium car
can, for instance, be equipped with better battery temper-
ature management to ensure a good charging experience
regardless of the ambient temperature. The current sales
figures in Finland were used as a guideline in the selec-
tion of the test cars; a detailed description is available in
the measurement report [6]. The main goal of the test rou-
tine was to mimic a typical or average car usage. Fig. 2
illustrates the four stages of the charging routine. First,
the car is cooled to the target temperature. The cooling
cycle continues over night to ensure that also the battery
has reached the target temperature. Secondly, in the morn-
ing, the discharge cycle begins with preheating of the car
cabin. The preheating mimics typical operation of cars in
winter conditions in the Nordic countries. The car is oper-
ated at the test bed according to the worldwide harmonized
light vehicle test procedure (WLTP) test cycle to mimic
the real-world driving as closely as possible. The opera-
tion continues until the battery state-of-charge (SoC) has
discharged to 70%. The fourth and last stage is the charg-
ing stage. After the driving stage, the car is immediately
plugged into the charger and charged to the full SoC.
The testing took place in the laboratory of Metropolia
University of Applied Sciences in Helsinki, Finland. The
test cycles were monitored and logged in data logs to be
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Fig. 3: Power curve of three phases at 20°C ambient
temperature in the car A charging test.

examined later. An Ensto EVF100W-BSAC [12] charging
pole was used to provide mode 3 charging support. The
charging power was measured by using a Carlo Gavazzi
EM340 [13] power analyzer. Data were then logged by
using the Modbus interface of the power analyzer by a
Modbus logger [14] and further uploaded to a long-term
storage [7].

LABORATORY MEASUREMENT RESULTS

The tests conducted in the laboratory revealed substantial
changes in the power and energy demand of the EVs. In
the following, highlights of the power curves recorded at
the testing event are provided, and changes in the total
charging energy demand are summarized. The testing of
the cars was highly time consuming, taking a full working
week per a car tested. The first test for each car was a refer-
ence test, where the car charging was tested at the ambient
temperature of 20°C. Fig. 3 shows that the total energy of
the charging event is 15.7 kWh. The charging begins with
the rated power and continues at the full power for a few
minutes before the battery cell voltages begin to limit the
charging current.
The second test at 0°C showed a similar power curve com-
pared with the +20°C testing case. All cars followed a
similar pattern between the first two tests. The reference
and 0°C curves varied slightly between the cars depend-
ing on how close to the actual full capacity the battery was
reaching at the 100% SoC observed by the user. The cars
with smaller safety tolerances showed a typical lithium-ion
charging curve, where the end of the charging period has
a concave-shaped end caused by the decreasing charging
current (to not exceed the maximum allowed cell voltage).
The third test at -10°C changes the setting dramatically
with the test conducted to car A (Fig. 4). The total energy
of the charging event stays almost the same as in the refer-
ence case. The charging event begins with the rated power
and quickly drops by about 1 kW per phase. The charging
continues at a steadily decreasing charging current until
the car reduces the third-phase power to zero and increases
the power of the two other phases. The total charging
time increased by about 35%, and the shape of the power
curve changed slightly. Furthermore, it is noteworthy that
in the last part of the charging event, the three-phase load
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Fig. 4: Power curve of the three phases at -10°C ambient
temperature in the car A charging test.
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Fig. 5: Power curve of the three phases at -20 °C ambient
temperature in the car A charging test.

is asymmetrical as the car has dropped the power of one
phase to zero.
The fourth test at -20°C shows major changes in the shape
of the charging load power curve and in the total energy.
The total energy increased by about 1 kWh, but the power
demand was very intermittent and the car switched mul-
tiple times between two-phase and three-phase charging.
The charging curve shows clearly that the car uses the
battery heating element to reach temperature levels where
charging can be continued. Fig. 5 demonstrates the inter-
mittence of the charging curve characteristics. The total
charging time was also prolonged significantly compared
with the reference test, by almost 80%.
Tables 1 and 2 summarize the total preheating and charg-
ing energies of each car under test. Absolute values are
car-specific and should not be compared, as the reference
charging energy varies according to the car under test.
The relative change in the charging energy varies between
a 100 % increase and a -36 % decrease. The cars that
showed a decreasing energy content were not equipped
with battery heaters, and thus, the total energy charged
to the battery was lower than it would have been in the
reference operating temperature. In low (below 0°C) tem-
peratures, it is possible that battery is not capable of storing
the full energy capacity (see car B in Table 1). The cars
that showed an increasing total energy in low-temperature
charging were equipped with battery heaters. Most of the
additional charging energy was due to battery heating.
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Table 1: Total charging energy of the tested cars.
∗Battery charging was terminated before reaching the
100% SOC. ∗∗Worst-case scenario, the car parked
overnight with a discharged battery. Preheating energy
not included.

Testing temperature

Car
20°C 0°C -10°C -20°C -20°C∗∗

kWh kWh kWh kWh kWh
Car A 15.7 15.6 15.7 16.7 23.6
Car B 20.3 17.8 18.3 15.3 15.6∗

Car C 13.0 12.4 12.6 12.6 15.0
Car D 23.3 23.0 25.5 24.3 27.5
Car F 10.3 10.2 10.0 9.7 7.6∗

Table 2: Total preheating energy of the tested cars.
Testing temperature

Car
0°C -10°C -20°C
kWh kWh kWh

Car A 5.5 7.9 12.3
Car B 0.7 3.1 3.1
Car C 1.6 2.9 2.4
Car D 1.4 0.5 2.5
Car F 0.3 0.5 0.4

In addition to charging tests, the cars were preheated before
driving, and the data were recorded. The total energy con-
tent of preheating is highly dependent on the ambient
conditions, technical boundaries, and most importantly,
also on the user preferences. Table 2 shows that the total
energy content of preheating can be compared with the
total charging energy content. The cars equipped with heat
pumps had a much lower energy impact.

NETWORK EFFECTS

The results of the cold climate charging tests were applied
to stochastic EV charging load modeling to reveal the
dependence of the peak load and the stochastic load curve
on the ambient temperature. The stochastic model used in
the analysis is described in more detail in [15]. To obtain
the overall effect of the ambient temperature in the mod-
eling, the relation of the car’s energy consumption to the
ambient temperature has to be incorporated in the model.
Fig. 6 shows how the consumption depends on the ambient
temperature. The data are gathered from various sources
and include tens of cars in different car sizes and type
classes [3–5]. When the temperature drops below 0°C, the
consumption starts to increase dramatically. It is pointed
out that the tests are not conducted scientifically, but can
still be used to build a good starting ground for the stochas-
tic model. It is also important to note that driving cycles,
the driver’s driving style, and other personal preferences
have a major impact on the EV’s energy consumption in
cold climate conditions.
The stochastic model is a relatively simple Monte Carlo
simulation, but the parameter tuning requires skill, experi-
ence, and fine-tuning. The model is fed with distributions
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Fig. 6: Car power consumption estimates in different
temperatures. Data compiled from various sources.[3–
5, 15]

of arrival time, departure time, number of trips, total kilo-
meters driven, vehicle consumption, battery size area effi-
ciency, and user preferences. In addition, there is a large
number of parameters that allow to adapt the model for var-
ious environmental conditions. Fig. 7 shows an example of
the model results in the case of an apartment house park-
ing area with a total of 20 charging spots equipped with 11
kW chargers. The effect of cold ambient temperature can
be seen as an increased peak load, but also as a secondary
consumption peak in the morning hours. The secondary
peak is caused solely by the preheating of the cars, and
it is typically very difficult to estimate accurately. The pri-
mary peak power increases by approximately 25%, which
is a substantial increase considering the grid planning. The
model captures the stochastic properties of the EV charg-
ing load, because even a low number of cars often results in
a peak power, which is a product of the charger power and
the number of cars. Fig. 8 illustrates the model properties
as a function of the number of cars. The model also pro-
vides a capability to estimate smart charging, which aims
at the lowest possible peak power by shifting individual
charging events to a later time. Dynamic charging coordi-
nation or peak shifting can be very beneficial especially
in cold climate conditions, where peak loads are likely
to increase when the ambient temperature drops below
zero. Based on the simulation, uncontrolled charging at
+20°C ambient temperature results in high peak loads as
does the dynamically controlled charging at -20°C ambient
temperature.

CONCLUSION

The study summarized testing of four EVs and one plug-
in hybrid electric vehicle (PHEV). The results show that
the subambient temperature has a substantial effect on
the EV charging power, energy, and total charging time.
The absolute magnitude of changes is highly dependent
on multiple variables, such as battery temperature, bat-
tery heating equipment, the car manufacturer’s preferences
for cold climate operation, battery chemistry, and proba-
bly also battery age. As the main result, it is shown that
EV charging has a significant temperature dependence. In
respect of grid planning, it is recognized that cold climate
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Fig. 7: Comparison of +20°C and -20°C ambient tem-
perature charging events. The upper graph shows the
charging load profile simulated for +20°C ambient tem-
perature and the lower graph the same result graph when
the temperature parameter is changed to -20°C.
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Fig. 8: EV charging peak power as a function of the
number of cars. In the legend, "smart" refers to dynamic
load control (peak shifting or valley filling). Peak pow-
ers are presented at a 99% confidence level.

not only increases the peak power of the EV charging but
also impacts the energy demand and the shape of the charg-
ing profile. When charging takes place at a below-zero
temperature, the load curve is introduced with a secondary
power peak, which is mainly caused by preheating of the
cars. The primary peak of the load curve increases by
25–30%. The energy demand in the winter season also
increases significantly, up to double.
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ABSTRACT
Electric vehicle sales across all transport modes have had
a steady growth over the last decade, and mass electric
mobility will soon become a reality. In Europe, this
represents an opportunity to introduce higher shares of
variable renewable energy into the generation mix.
However, a shift to mass electromobility needs to be
accompanied by extensive integration of advanced smart
electric vehicle charging, which could serve growing
mobility needs while supporting the power system through
a series of possible flexibility services. Such services need
yet to mature, and its synergistic business models to be
better understood in terms of value streams they will
deliver and to whom. This paper investigates a group of
such business models, particularly linking EV and/or
homeowners, building managers, and network operators.

INTRODUCTION
Global electric vehicle (EV) sales have grown steadily
over the last decade. Sales of electric cars doubled in 2021
to reach a new record of 6.6 million, and by the end of the
year, there were over 16 million EVs on the road, triple the
amount of 2018 [1]. A leader segment among these
increases has been passenger light duty vehicles (e-
PLDVs). In 2020 only, there has been a 41% increase in e-
PLDVs registrations, despite the COVID-19 pandemic,
multiple supply chain disruptions, and a resulting 16%
drop in overall car sales during that period [2]. In Europe,
mass EV deployment carries a game-changing
decarbonization potential, due to the opportunity to
introduce higher shares of variable renewable energy
(VRE) sources into the generation mix [3,2]. This is
aligned with ambitious European Union policies aimed at
reducing greenhouse gases (GHG) emissions in half by
2030, and at reaching climate neutrality by 2050 [4,5,6].
However, the forthcoming mass EV deployment is not
without challenges; if scaled up to mass-market levels, the
mainstream approaches to EV charging, dominated by
uncontrolled or time-of-use pricing-driven on/off control,
are likely to create an unsustainable upsurge in power
system peak demand [3,7,8,9]. Depending on context, this
could either be deemed technically unfeasible or lead to
prohibitive grid infrastructure upgrade requirements [3].
Thus, an effective shift to mass electromobility needs to be
accompanied by advanced, bidirectional, “smarter” EV
charging, characterized by vehicle-to-building (V2B),
vehicle-to-home (V2H), and vehicle-to-grid (V2G)
strategies, which could unlock unprecedented levels of
flexibility in future VRE-rich power systems [3]. As a
result, bidirectional charging is often colloquially termed
“vehicle-to-everything”, or simply “V2X”.

V2X flexibility services
It is estimated that by 2050, around 14 TWh of flexible EV
battery capacity would be available to provide grid-
supportive services [11]. If properly exploited, this
flexibility could minimize the need for costly grid
infrastructural upgrades. Yet, it remains paramount to
consolidate the market instruments and the business cases
that incentivize the synergistic cooperation between EV
users and the power system, while enabling stacking of
various grid services and their value streams [3]. The
technical flexibility service potential from V2X ranges
from higher-level participation in electricity markets to
balancing and system-level services to transmission and
distribution network operators. Because the development
of V2X business models needs to be supported by more
than one revenue stream, it is imperative that its value
proposition is clarified. This paper investigates a triangle
of commercial interactions between EV owners (or
prosumer-EV owners), building managers and network
operators. It reviews and individually depicts six families
of emerging V2X business models deemed to be dominant
based on project surveys and literature research

The V2X marketplace
Bidirectional charging is part of an overarching

marketplace concept where EV users and

prosumers/homeowners, building managers, and

distribution network operator entities (which could be

traditional DSOs or other types of operators, such as

energy communities) can interact and openly trade EV

charging flexibility under different contexts (Figure 1).

The marketplace incorporates various “scenarios” of EV

user participation in the market, namely:

A V2G scenario, where EVs connect directly to

network operators through public charging

stations (BM1, public charging case).

A V2B scenario, where EVs connect to building

parking lots and lend their battery capacity to the

building manager’s control (BM2, BM4, BM5).

A V2H scenario, where EVs are connected within

the distribution board of individual homes (BM1,

home charging case, and BM3).

ADVANCED SMART CHARGING BUSINESS
MODELS
The following section will depict the bidirectional

charging business models BM1-BM6, by visually

highlighting stakeholder roles and their interactions, and

clarifying the unlocked value streams in each case.
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Figure 1 – Overarching bidirectional charging flexibility marketplace concept and respective portfolio of possible business models.

Flexibility services offered by EV owners or
prosumers to network operators (BM1)
This business model covers possible commercial

arrangements based on which individual EV owners

contribute to providing some level of grid support services

to formal distribution system operators or other eligible

network operators managing specific branches of the

distribution grid. Such services could be aimed at

maintaining power quality parameters related to frequency

and voltage under specific limits, or at improving the

technical and economic operation of the grid by increasing
renewable energy integration (avoiding curtailment),

providing demand and supply balancing support, or

offering congestion relief. Due to the small scale of the EV

assets, this activity must take place through the

involvement of intermediary aggregator agents.

This business model could possibly materialize under two

distinct scenarios:

1) Home charging, through demand response

(Figure 2): In this scenario, flexible EV charging

is handled by a home energy management system
(HEMS) along other connected assets the EV

owner/electricity customer/prosumer may have at

its disposal. The HEMS also coordinates

customer participation in the balancing markets

through demand response events.

Figure 2 – Representation of financial and commodity flows in
flexible services provided by EV owners to network operators,
mapped in overarching marketplace as BM1 (home charging).

2) Station/public charging, directly through

charging point management activities (Figure 3):

In this scenario, the flexibility services to network

operators are intermediated by charging point

operators (CPOs), who can act as aggregators due

to their direct connection and control of large

portfolios of individual EV charging sessions.

CPOs can also outsource that activity to other

aggregator entities in the market.

Figure 3 – Representation of financial and commodity flows in
flexible services provided by EV owners to network operators,
mapped in overarching marketplace as BM1 (station charging).

The different circumstances of the above scenarios result

in that EV owners are positioned as direct flexibility

service providers when in public charging stations, but not

when connected at home. In home charging, the EVs are

one additional flexible asset controlled by the HEMS,

which manages demand response events on behalf of the

residential electricity customer – the flexibility service
provider in that case, being the EV role here an indirect

one. Regardless of who receives it, service compensation

from network operators is due in both models through the

aggregator/CPO intermediaries. However, aggregation

activities are also remunerated, and as a result EV

owners/electricity customers must give up part of their

revenue, as a condition for accessing these services. In

context of HEMS, EV assets can also be optimally

managed for capturing energy savings from V2H, which

could compete with the revenues from demand response.

Lastly, depending on the regulatory context in question,

various capital subsidies and/or tax credits may be
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available to new EV owners, which could help offset some

of the running costs and stack up with other value streams.

Flexibility services offered by EV owners to
building managers (BM2)
If rather than at home or along the public way EVs are
parked inside large commercial building facilities, they

become idle energy assets that can be made available for

performing V2B in context of energy management

contracts established between EV owners and building

managers (Figure 4). If efficiently managed with BEMS,

the collective battery capacity of parked EVs can offer

benefits to facility energy management, such as reduction

of time-of-use electricity and power costs through peak

shaving and energy arbitrage, in addition to intelligent and

safe charging through dynamic load balancing.

Figure 4 – Representation of financial and commodity flows in
flexible services provided by EV owners to building managers,
mapped in overarching marketplace as BM2.

This type of arrangements could pertain to short-term (e.g.,

supermarkets) or long-term charging (e.g., employee

parking in offices, passenger parking in airports…), which

will influence the constraints and contractual conditions of

the energy service. Through digital identifiers at the

connection point, an integrated BEMS could recognize the

EV unit and contracted service possibilities before

acquiring the available capacity, whereas

connection/disconnection times would be introduced
manually each time by the EV owner/driver. The BEMS

ensures that the EVs are ready to drive at the designated

exit times, by liaising with EV electricity suppliers. The

building manager will then provide EV owners with

compensation or charging credit for the service of

accessing their idle battery capacity for energy

management purposes. That compensation may suffer

some level of penalties in case the EV owner fails to

comply with the planned connection/disconnection times.

As with other EV owner-centric business models, certain

government subsidies and tax credits could help EV

owners in making financial sense of EV investments. As
to the building managers, they have the additional chance

of participating in demand response markets, whose

revenues can be appropriately balanced and/or stacked

with savings from V2B-leveraged energy management.

Prosumer tariff optimization leveraged by
residential smart charging (BM3)
When the EV is connected at home and is being controlled

by a HEMS alongside other distributed flexible assets,

such as heat pumps, electric boilers, and air conditioning

units, potentially together with some type of renewable

energy generation, it can support the optimization of
residential energy costs via V2H (Figure 5). Inevitably,

that ability will depend substantially on individual

working and driving habits and must be studied at a case

by case basis. For example, in a remote working situation,

the EV battery could be charged with solar PV during

peak-sun hours, virtually at no cost for the

EV/homeowner. In another possible case, a fully charged

EV battery could support home electricity demand during

expensive evening “shoulder hours” and be recharged

along the early morning hours, when electricity is cheap.

In other words, V2H does not necessarily require
renewable energy integration to deliver monetary value,

due to the price difference between the peak and off-peak

periods of time-of-use (TOU) electricity tariffs.

Furthermore, the coupling of V2H with stationary electric

storage can enhance flexibility even further, since EV

energy injected to the home’s distribution board can be

appropriately stored for later internal distribution, if the

HEMS optimization so dictates.

Figure 5 – Representation of financial and commodity flows in
prosumer tariff optimization leveraged by residential smart
charging, mapped in overarching marketplace as BM3.

Government subsidies and tax credits are often available

to strengthen the value proposition of pure-V2H business

models for EV owners. However, just like with the

commercial buildings, potential revenue streams from

involvement in balancing markets could also be accessible

and considered under a stacked value logic by the HEMS.

Building tariff optimization leveraged by parking
lot smart charging (BM4)
This business model mirrors the scenario of collective EV

charging in building parking lots from BM2, being

however established from the point of view of the building
manager and/or large electricity customer. Here, building

management facilitates EV charging services in the

building’s premises in exchange for provisional access to

idle battery capacity through a V2B setup (Figure 6). Such

large customers are often plagued by not only extensive

electricity consumption during peak tariff periods, but also

by high monthly power usage bills. The ability of a BEMS

to connect dynamically to each individual EV charging

session allows for balancing of charging needs and
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optimizing of the collective power draw at each instant,

which effectively results in peak shaving and helps reduce

overall demand charging costs.

Figure 6 – Representation of financial and commodity flows in
building tariff optimization leveraged by parking lot smart
charging, mapped in overarching marketplace as BM4.

In addition to this, the BEMS will operate the aggregated

mobile storage capacity of idled EVs a “virtual battery”,

optimally combining its use with the flexible use of other

distributed heat and power assets of the facility, such as

HVAC units, renewable energy, and stationary storage. In

conditions of time-of-use electricity pricing, this joint asset

optimization could be geared towards capturing as much
cheap and/or green electricity as possible and direct it for

consumption during price-peak periods, resulting in

substantial reductions of electricity costs for the building.

While performing these operations, the BEMS also needs

to ensure that the requirements of each individual EV

charging session (e.g., disconnection times and minimum

SOC at exit) are strictly complied with. According to

contracting rules between the building manager and the

EV owners, monetary compensation is due for the

temporary use of the idle mobile storage capacity (to cover

for proportional battery degradation and ensure a profit

margin for EV owners), which in absence of any service
revenues, and otherwise subsidies or incentives could

hinder the viability of this business model alone. As

mentioned earlier, to fully capture and maximize value,

building managers may have to consider combining V2B

energy management savings with revenues from

participation in the balancing markets (BM5).

Flexibility services offered by building/facility
managers to DSOs (BM5)
While BM4 envisions the case when a portfolio of building

distributed energy assets (notably including portfolios of

parked EVs) is managed for electricity tariff optimization

(i.e., for the purpose of minimizing energy costs) this
business model contemplates the case when the same

assets are managed  for electricity market participation

optimization (i.e., for the purpose of maximizing flexibility
service revenues). Large building customers can engage

with intermediary agents to allocate their load flexibility to

the grid balancing markets, known as explicit demand

response. In fact, due to still prevalent high minimum bids

required for participation in these types of markets across

various European countries, it is in principle easier to do

so for these customers than it is for smaller residential

prosumers (BM1). Yet, regardless of scale, aggregator

parties will play the part of capturing the individual loads

and operate with collective grid support services towards
distribution system operators or others (Figure 7).

Figure 7 – Representation of financial and commodity flows in
flexibility services offered by building/facility managers to DSOs,
mapped in overarching marketplace as BM5.

Similar to BM1, the aggregators will channel the payments

for technical grid support services from the DSOs to the

building managers, after aggregation service fees have

been appropriately factored in. Please note that just like in

the “home charging” scenario for BM1, the EV assets take

the role of mere enablers and have here an indirect
involvement in the flexibility services since both the

BEMS operations and the demand response are

technologically neutral. Yet, as explained before, building

managers have to follow their contractual obligations with

EV owners and take in the operational costs of monetary

compensations for use of idle EV battery capacity. Lastly,

this business model focuses on generation of service

revenues, but in a realistic situation where the building

manager may wish to capitalize on multiple value creation

opportunities, it could be combined with energy

management of the flexible assets, including the idle EVs,

for capturing tariff-related savings, as in BM4.

Distribution network management through
procurement of local V2X flexibility (BM6)
This business model is markedly different from other

business models studied in this paper in that it focuses

exclusively on the perspective of distribution network

operators accessing local flexibility to solve technical grid

constraints and/or energy balancing issues (Figure 8).

Figure 8 – Representation of financial and commodity flows in
distribution network management through procurement of local
V2X flexibility, mapped in overarching marketplace as BM6.

Traditionally, day-to-day problems in electric distribution

would be handled by using network management

infrastructure and through the coordination with external
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network operators, most notably the TSO. The emergence

of aggregator agents with the ability to gather flexible load

contributions from large amounts of dispersed assets and

deliver it to the distribution system operators changed this
paradigm, most notably  reducing their dependency from

external agents. As the previous models have shown,

regardless of charging scenario circumstances,

bidirectional charging flexibility is among the distributed

resources that operators can access and/or procure locally,

either directly or indirectly (via demand response), through

aggregation intermediaries (which could be independent

aggregators or CPOs). The procurement of localized

resources allows for a more cost-effective handling of grid

constraints and balancing challenges, which results in

savings benefits for distribution system operators.

BUSINESS MODEL COMBINATION AND
VALIE STACKING
While the analysis of possible bidirectional charging

flexibility business models is facilitated by their discrete

consideration and analysis, it is likely that in realistic

conditions and whenever possible they could be combined

and/or their value streams could be stacked (or both), in
order to best recover mobility or infrastructure

investments. None of the two options is possible for all the

business models studied in this paper. For example, it is

unlikely that BM6 could be combined with other

bidirectional charging-based models, even though this is

possible for other flexibility exploitation models available

to DSOs (e.g., linked to different sources of local

flexibility). As a rule-of-thumb, business models centered

on delivering value to the same stakeholder (e.g., EV

owner-centric models) could be combined. On the other

hand, value stacking requires that for the considered
business models, the charging scenarios are maintained.

Table 1 describes the different possible combinations and

value stacking possibilities among the six studied models.

Table 1 - Possible business model combinations and value stream
stacking possibilities among the studied business models.

EV owner-
centric

Building
manager-centric

Models’
combination

BM1 home and
station charging,
BM2, and BM3

BM4 and BM5

Value stream
stacking

BM1 home
charging and

BM3

BM4 and BM5

As Table 1 suggests, nothing prevents EV owners from

adopting different types of business models in different
contexts, in that way tapping different value creation

opportunities brought by bidirectional charging. Because

mobility is an individual and uncertain phenomenon with

many possible driving and charging patterns possible at

home, public charging stations, and inside buildings, this

combination is expected to take place in a realist context.

As to value stream stacking, it is fully dependent on the

charging scenario, and for that reason, for EV owners, only

the revenues from BM1 in home charging environment

and the home energy savings from BM3 could be stacked

for maximum capturing of bidirectional charging value.
Such stacking is only made possible through real-time

techno-economic optimization performed by the HEMS

and is not necessarily always concurrently triggered. For

building managers, the business model combination and

value stacking possibilities resemble those for EV owners.

In a building charging environment, BM4 and BM5 could

be combined and the value streams they deliver pertaining

to building energy savings and flexibility service revenues,

respectively, could also be stacked with the expert decision

support from BEMS optimization.

CONCLUSIONS
Mass electric mobility will soon become a reality and it is

paramount to deepen the knowledge of bidirectional

charging strategies and the grid support services they

enable. This paper reviewed six bidirectional charging
flexibility business models, studying also potential model

combinations and its value stream stacking opportunities.
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