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State of charge (SOC) estimation is important for marine battery uses. Running on empty
battery on a sea is not an ideal situation, neither is overcharging a battery. SOC is the ratio
between the current battery charge and the maximum battery capacity. The challenge of SOC
estimation is that it is not directly measurable.

This thesis maps SOC estimation techniques and lithium-ion battery (LiB) models used with
them as a literature review. Then a programmable logic controller (PLC) compatible estima-
tion method and model are chosen for implementation. Tests are ran on a LiB to parameterize
the selected model and to validate the selected SOC estimation technique so that the absolute
error of SOC stays within 20 percentage points.

Steady-state Kalman filter (SSKF) is chosen for implementation because of computational
limits. Extended Kalman filter (EKF) is also validated. LiB dynamics are modeled as au-
toregressive model with exogenous input (ARX). The model is augmented with Coulomb
counter and SOC as a function of open circuit voltage (OCV). Both the SSKF and EKF were
almost equally accurate, with the EKF being slightly more accurate. The SSKF did not work
properly when SOC was under 20 %.
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Akun varaustilan estimointi on tirkedd laivakdytossd. Akun tyhjeneminen merelld ei ole
ideaali tilanne, kuten ei mydskdédn akun ylilataus. Varaustila on akun timénhetkisen varauk-
sen ja tdyden akun kapasiteetin suhde. Varaustilan estimoinnin haasteena on se, ettei se ole
suoraan mitattavissa.

Téssd diplomity0ssa tutkitaan kirjallisuuskatsauksena erilaisia varaustilan estimointimenetelmii
janiiden kanssa kdytettdvid littumioniakkujen malleja. Sen jdlkeen valitaan implementoitavaksi
ohjelmoitavan logiikan kanssa yhteensopiva malli ja estimointimenetelma. Litiumioniakulla
suoritetaan testejd, joilla parametroidaan valittu malli sekd validoidaan estimointimenetelma.
Validoinnilla varmistetaan varaustilan estimaatin absoluuttisen virheen olevan alle 20 pro-
senttiyksikkoa.

Jatkuvuustila Kalman suodin valitaan implementoitavaksi laskennallisten rajoitteiden takia.

Sen lisdksi my0s laajennettu Kalman suodin validoidaan. Litiumioniakun dynamiikkaa mallinnetaan
autoregressiivisella mallilla, jossa on eksogeeninen tulo. Malliin lisdtdén Coulombi-laskuri

ja akun avoimen piirin jannite akun varaustilan funktiona. Molemmat Kalman suotimet ovat

lahes yhtd tarkkoja. Laajennettu on hieman tarkempi verrattuna jatkuvuustila Kalman suo-
timeen, joka ei toiminut endd kunnolla varaustilan ollessa alle 20 %:a.
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SYMBOLS AND ABBREVIATIONS

Roman characters

A system matrix [-]

a coefficient [-]

B input matrix [-]

b coefficient [-]

C measurement matrix, capaci-[-]
tor, C-rate

D feedthrough matrix [-]

e error [-]

il current [A]

j imaginary unit [-]

k timestep [-]

R resistor [-]

n nth [-]

t time [s, min, h]

w U voltage, input [V, -]

w Warburg element [-]

¥ state [-]

¥ output [-]

0 charge [C]

Greek characters



9, A

Dimensionless quantities

pp

change
coulombic efficiency
frequency

capacity

percentage point
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Subscripts

d dynamic

est estimate

i index

int internal

k timestep

max maximum
meas measurement
n nth

oc open circuit
ocv open circuit voltage
p parallel

S series, sample
t terminal
Superscripts

o degree

+ positive

’ real axis

imaginary axis

n nth

Abbreviations
Ah Ampere-hour

ARX auto-regressive model with exogenous input
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BEV battery electric vehicle

BMS battery management system

CC constant current

CDKF central difference Kalman filter
CKF cubature Kalman filter

CPE constant phase element

CV constant voltage

DFN Doyle-Fuller-Newman

ECM equivalent circuit model

EIS electrochemical impedance spectroscopy
EKF extended Kalman filter

EM electrochemical model

EMF electromotive force

EV electric vehicle

HEV hybrid electric vehicle

HPPC hybrid pulse power characterization
KF Kalman filter

LCO lithium cobalt oxide

LFP lithium iron phosphate

LiB lithium-ion battery

LMO lithium manganese oxide

LTO lithium titanate

MAE mean absolute error

MAPE mean absolute percentage error

NMC lithium nickel manganese cobalt
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OCYV open circuit voltage

PHEV plug-in hybrid electric vehicle

PLC programmable logic controller

PNGYV partnership for a new generation of vehicle
RMSE root-mean-square error

SEI solid electrolyte interface

SNR signal-to-noise ratio

SOC state of charge

SSKF steady-state Kalman filter

UKF unscented Kalman filter
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1 INTRODUCTION

In electric drives, knowing accurate state of charge (SOC) of a lithium-ion battery (LiB) is
crucial. For electric vehicle (EV) use, knowing the SOC is like knowing how much fuel
is left on a combustion engine car. SOC is defined as the ratio of current capacity to the
nominal capacity [1]. Running on empty battery in the middle of nowhere while driving EV
is not an ideal situation, neither is overcharging a battery. Or in a marine context, running
on a empty battery in the middle of a sea. The challenge of SOC estimation is that it is not
directly measurable, thus estimation is required. This thesis explores different kinds of SOC

estimation methods.

1.1 Background

LiBs have become the dominant battery technology in the 21st century. Their high specific
energy, energy density and specific power make them good for weight and volume restricted
applications. LiBs have a low self-discharge rate of 1 % — 5 % per month, depending on the
SOC and temperature, long cycle life of 500 — 10 000 cycles and a broad temperature range
of operation. These properties allow their use in a wide variety of applications. In addition,

LiBs do not have memory effect [2].

There are multiple Li-ion cell chemistries. These chemistries are usually categorized by the
cathode material. The first LiBs on the market were lithium cobalt oxide (LCO) batteries.
Nowadays there are other less costly materials such as lithium manganese oxide (LMO),
lithium nickel manganese cobalt (NMC) and lithium iron phosphate (LFP) [2]. The perfor-
mance and capacity of different types varies with LCO having the best but also being more
expensive. Usually carbon materials are used on the anode but there is an exception. Lithium
titanate (LTO) batteries have lithium titanate on the surface of the anode. LTO anode allows

for higher charging rates than carbon anode [1], [3].

Often with batteries, discharging and charging currents are represented by C-rate. C-rate
represents current relative to a battery’s full capacity. For example, a battery with 10 Ah
nominal capacity, a current of 1 C means that the current would be 10 A and with 0.1 C

would mean that the current is 1 A [1].

When discharging, lithium ions move from the anode (negative electrode) to the cathode

(positive electrode) and vice versa when charging, which is shown in Figure 1 [1].
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Figure 1: Lithium-ion battery lithium ion movement [1].

When discharging, the lithium ions move from the anode to the cathode through an elec-
trolyte, while electrons move though an external load. When charging, the lithium ions move

from the cathode to the anode through the electrolyte.

As LiBs age, their capacity decreases and impedance increases, limiting the power and energy
that is available. The production methods of a battery affect its lifetime before actual use.
LiBs degrade by cycling (charge and discharge cycles) and by themselves over time and
different LiB types age at different rate. External conditions affect a battery’s degradation

rate. These conditions include temperature, current and charge [4].

Too high and too low temperatures degrade a battery while storing and cycling. A high tem-
perature can lead to battery self heating and thermal runaway. A low temperature increases
a battery’s impedance [4]. Charging at below 0 °C causes rapid degradation in a LiB. Com-
mercially available cells can be typically charged at 0 °C — 45 °C and discharged at -40 °C —
65 °C [2].

A lower battery SOC benefits a battery’s life while a high SOC increases the battery degra-
dation rate. Too low SOC is also bad for a battery. Ideal SOC for battery storage is about 20
%. In a battery electric vehicle (BEV) use, the recommended SOC range is 20 % — 100 %



to maximize the battery life. For hybrid electric vehicle (HEV) and plug-in hybrid electric
vehicle (PHEV) it is recommended to cycle the battery in low SOC region, with 30 % — 50
% providing the best battery life [4].

When charging or discharging a battery, the lower the current, the longer the battery life.
Higher currents also heat the battery because of Ohmic heating [4]. If a LiB cell is under-
charged to below 2 V, it degrades. Overcharging also causes cell degradation and can be
dangerous. LiBs do not have a chemical mechanism to protect them from overcharge, thus
they need an electrical circuit to protect them from overcharge and overdischarge. It also

protects LiBs from being used in too high temperatures [2].

1.2 Objectives, limitations, methods and structure

The main objective of this thesis is to implement a SOC estimation method that has absolute
error of less than 20 percentage points (pp) and is implementable on programmable logic
controller (PLC). The secondary objective is to gather information about SOC estimation

and LiBs for the Danfoss’s marine team, which this document serves to fulfill.
The following limitations are set on this thesis:
* PLC realization of SOC estimator is excluded from this thesis.
* Emphasis is placed on more widely used LiB models and SOC estimation techniques.
* Measurement temperatures are not taken into account.
The following research questions need answering to fulfill the objectives:
* Which SOC estimation method is the best suited for PLC offline use?
* Which model is the best fit with the chosen estimation method, if any?

To answer these research questions, a literature review of SOC estimation methods is re-
quired. Chapter 2 contains the literature review of SOC estimation methods and LiB models
associated with them. Chapter 3 has implementation of the SOC estimator and LiB model
along with justifications for chosen the model and estimator. In chapter 4, tests are ran on a
LiB to acquire data to parameterize the model and to validate the SOC estimator. The model
is parameterized and the estimator results are analyzed in chapter 5. The final conclusions

are made in chapter 6.



2 BATTERY MODELING AND STATE OF CHARGE ESTI-
MATION

SOC estimation methods are divided into two categories, model based and direct estimation
methods. The direct methods do not require modeling of a battery but they have drawbacks
that may necessitate the use of model based estimation methods. There has been development
of new direct estimation methods or improving old ones e.g. Zhang et al. have improved the
Coulomb counting and Cai et al. have used ultrasound to directly measure SOC [5], [6]. The

SOC estimation methods can be divided into groups, presented in Figure 2.

SOC
estimation
techniques
Direct estimation Mo@el b‘?‘sed
estimation
Dynamic model Black-box model

Figure 2: SOC estimation techniques categorized.

The model based estimation methods can be divided into two groups. The first one uses bat-
tery models that describe dynamics like electrochemical model (EM) and equivalent circuit
model (ECM). In the other group are methods based on black-box models that use machine
learning techniques [1], [7]. To get the most efficient SOC estimation, a combination of
methods is usually recommended [8].

2.1 Direct estimation

The direct estimation methods are Ampere-hour (Ah) integration and open circuit voltage
(OCV)-SOC function. They are called direct estimation methods because they do not rely on
a model of a battery [9].



2.1.1 Coulomb counting

The Coulomb counting, also known as Ah integration, was invented in 1975 [10]. As a direct
estimation method it is a simple and widely used method to estimate SOC [9]. The Coulomb

counting is integrating current over time as is shown in Equation 2.1

173
SOCk:Qn /i(t)dt+SOCo 2.1)
mazx Jtg

where SOC) and SOC| are the SOC estimates at the time ¢;, and ¢, with ¢y being the initial
moment and t;, = to+k x At, At denotes the sampling interval. 7 is the Coulombic efficiency
for charging, i(t) is the current of the battery with positive for charging and negative for
discharging and @), 1s the maximum capacity. Usually nominal capacity is used for Q)4

However the battery temperature, current and age affect the maximum capacity, causing the

actual maximum capacity to differ from the nominal capacity [1], [7].

The Coulomb counting has drawbacks. A noisy measurement and temperature drift in the
sensor element cause increasing error in the estimate because of the accumulation of the
integral value. Using longer integration time or stronger current reduces the error caused by
the noise. The Coulomb counting works the best when a battery is regularly fully charged
and discharged at a rate of 1 C or higher, therefore it works better on a BEV than on a HEV
or a PHEV. The Coulombic efficiency also increases the error since we cannot use all of the
Coulombs that are charged into LiB. LiBs have a efficiency of 0.99 and over thus its effect
is small [11]. The initial SOC has to be known when starting Coulomb counting since when
integrating, we are estimating the accumulation in charge [7], [9]. We can use the previous
SOC value as the initial SOC if battery has been used before. Self-discharge is not an issue
since the rate for LiB is about 1 % per month. Because of these drawbacks the Coulomb
counting is not usually used by itself but in combination with other estimation methods to
re-calibrate the initial and maximum SOC [11]. Improvements to the Coulomb counting have

been proposed to increase its accuracy [5], [12]-[14].

2.1.2 OCV-SOC function

Another direct estimation method is the OCV-SOC function. Battery voltage measurement
was the first capacity estimation method invented in 1938, with OCV being discovered in
1975. The first OCV-SOC look-up table based method was proposed in 1984 [10]. The SOC
of a battery is known to have a monotonic relationship with the electromotive force (EMF) of
the battery [15]. By using this knowledge we can determine the SOC by measuring the OCV
since it is very close to the EMF of the battery [9]. To form a function of SOC, a discharge



curve provided by battery manufacturer can be used or batteries’ OCV-SOC relation can be

characterized empirically.

To characterize the OCV-SOC relationship, a battery is charged and discharged fully. Be-
cause LiBs have hysteresis, the battery needs to be characterized while charging and dis-
charging to average the measurements and cancel the hysteresis [15]. There are two ways
to characterize the OCV-SOC. The first one is charging and discharging a battery at a low
current and measuring the voltage [15]. The second one is by using higher currents but before
measuring the OCV the battery needs to relax i.e. reach a equilibrium state. The battery’s
voltage changes until the equilibrium state has been reached, thus the battery is charged and
discharged in pulses [9]. The pulse rate and wait time selection depends on the needed ac-
curacy from the model and time available for the measurements [16]. The relaxation time
depends on the temperature and the characterization should be done in constant temperature
[11]. The relaxation time can take up more than 13 hours for LFP, thus the whole character-

ization can take days depending on the selected pulse rate and battery chemistry [17].

One of the drawbacks of this method is caused by batteries’ internal impedance. The batter-
ies’ SOC cannot be estimated when battery is charging or discharging since measuring the
OCYV while current is going through the battery causes a voltage loss at the terminal. After
loading a battery, some time has to be waited for the battery to relax [11]. The second draw-
back is the hysteresis present in a LiB. Some LiB types e.g. LFP have so flat OCV-SOC
curve that even a small measurement error or hysteresis can cause a huge difference in the
SOC estimate. Temperature can also cause variance in the OCV-SOC because the capacity
is lowered in low temperatures, thus the characterization needs to be done in multiple tem-
peratures that span the battery use range [11]. Research done by Pattipati e al. claims that
the OCV-SOC can be temperature normalized to remain the same in all temperatures [15].

Usually the Coulomb counting and a OCV-SOC function are used in tandem with each other
since the Coulomb counting can be used while there is a current flowing through a battery
and the OCV-SOC when the battery is not loaded [9].

2.2 Data-driven estimation and black-box models

Black-box models are models that simulate batteries without knowing their internal electro-
chemical dynamics. Black-box models utilize data-driven estimation methods to estimate
SOC. According to Wang et al., the potential benefits of data-driven methods are adaptabil-
ity and flexibility to changing conditions and them working well with non-linear systems
[18]. Some popular methods that are in use for SOC estimation, such as neural networks,

support vector machine, support vector regression, fuzzy logic, Gaussian process regression
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and genetic algorithm [19], [20]. The different data-driven estimation methods are presented

in Figure 3.

Data-Driven SoC Estimation { Al

v  —

Classification,
b Recurrent Neural
Probabilistic and ‘Networks
Regression

Feed Forward
Neural Networks

Optimization
Based

.
-

Figure 3: Illustration of different data-driven methods categorized [19].

A data-driven SOC estimation method involves two steps. The data-driven algorithm is first
trained with data and then validated with before unseen data. Various types of data can be
used for training and testing e.g. EV drive cycle data [21]. Advancement of cloud computing
enables usage of a big data platform where multiple batteries can be monitored in real-time.
The benefit of a big data platform is the abundance of data that covers different kinds of
operating conditions instead of being limited into one device’s data [18]. Another benefit is
the available computational power. In addition to using real life data, Eleftheriadis ef al. used
data acquired from an electrochemical model, that is computationally too complex to be run

in real-time, to train a neural network [19].

According to Wang et al., a black-box model based SOC estimation method can be accurate
but it may be restricted because it lacks actual behaviors and relationships of battery dynamics
and does not consider other factors that affect the estimate like aging [18]. A study by Hossain
Lipu et al. says that the other challenges are related to data abundance and data variety with
data-driven methods. The accuracy of black-box models depends on the quality and amount
of the available data. Because of it, there needs to be a large amount of varied quality data.
This also causes the model to be sensitive to bad measurements, which can ruin the data. The
collection of vast amounts of quality data that has sufficient variety can be difficult and time
consuming, which can hinder the usage of black-box models in practical applications. In
addition, the parameter and model structure selection is a process of trial and error, slowing

the process even further [21].

2.3 Dynamic model based estimation

Compared with the black-box model based SOC estimation approaches, dynamic model

based estimation methods require a knowledge of LiBs’ internal dynamics. Modeling of

11



a LiB has few challenges. LiBs are time variant and non-linear with their impedance varying
as a function of current, temperature and age [22]. Dynamic models can be divided into two
categories, EMs and ECMs. The ECMs can be further divided into time-domain based and
frequency-domain based models. The difference between these two is that the time-domain
based models are identified from time-domain data and the frequency-domain based mod-
els are identified from a battery’s frequency response data, which is called electrochemical
impedance spectroscopy (EIS) [16]. The time-domain and frequency-domain models are not

used for SOC estimation only by themselves but are coupled with a state estimator [9], [11].

2.3.1 Electrochemical models

EMs describe the electrochemical processes inside a battery by using thermodynamics and
electrochemical kinetics [1]. The Doyle-Fuller-Newman (DFN) model is a first-principles
electrochemical model for lithium-ion cells. The model has a group of coupled partial differ-
ential equations that describe a LiB cell behavior [11]. In literature, the DFN is also known as
the pseudo two-dimensional model. Although the DFN model can fully describe the physical-
electrochemical reaction inside a battery, the model is computationally too heavy for a real-
time use and the partial differential equations might not even be convergent [23]. The DFN

model relies on parameters that are impractical to identify and measure during operation [11].

Simplifications for the DFN have been made e.g. the one-dimensional model and the single
particle model [1], [11]. From the simplified models, a state-space implementation of EM
[23] and a simplified model with compensation for the simplified model’s uncertainties [24]

have been tested in a laboratory for real-time use.

2.3.2 Time-domain based

The measurable terminal voltage U;,, changes with the current and temperature of a battery
because the battery’s impedance and OCV are functions of the current, temperature and bat-
tery’s age. The terminal voltage cannot be directly used to estimate SOC unless the battery
has reached the equilibrium state [11]. To get around this issue a ECM can be formed for the

battery to calculate the open circuit voltage from the measured terminal voltage and current

[7].

The simplest ECM is R;,; model that only contains one resistor in series with the voltage

source, Figure 4.

12



Uoc Ui

Figure 4: Ry, equivalent circuit. Ugc is the open-circuit voltage.

In reality, a simple resistor does not capture the dynamics of batteries like it is illustrated in
Figure 5 [11].

A\ 4
—

Figure 5: An illustration of actual battery voltage and R;,; model voltage [11].

A more accurate model can be constructed by using a RC circuit. The RC circuit, Figure 6,
can capture the dynamics of a battery. A arbitrary number of RC circuits can be added to
series to add more time constants and potentially improve the accuracy of the model with the
cost of adding complexity [11]. In literature the first-order RC circuit is often called Thevenin

equivalent circuit and the second order dual polarization model.

13
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Figure 6: Nth order RC circuit.

Studies by Hu et al., Lai et al. suggest that while the second-order RC is more accurate than
the first-order, it is not significantly more accurate to justify the increased complexity in pa-
rameter identification and computational cost [25], [26]. Case studies by Shen and Xiong
also suggest that the first-order RC is the best choice [1]. Study by Zhao et al. claims that
the second-order is better for its accuracy since the maximum difference in the error of SOC
estimate with the first and second-order RC circuits is about 4 % [27]. Having more than
two RC components can cause overfitting issues and make the model more susceptible to
measurement noise [25], [28]. According to Hu et al. LFP benefits from adding hystere-
sis to the model and increasing its accuracy, while both Hu et al., Lai et al. say that NMC
model’s accuracy suffers [25], [26]. Moreover, the first-order RC circuit is the most suitable

if identifying parameters online [1], [29].

In addition to the RC model, other ECMs have been proposed. One such is a more com-
plex model proposed by Biju and Fang that has equivalent circuits approximating chemical

reactions of electrochemical models [30].

Other model that comes across in literature is the partnership for a new generation of vehicle
(PNGYV) circuit, Figure 7.

Figure 7: PNGYV circuit.
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The difference between the RC and PNGV model is that the PNGV includes a series capacitor
in addition to a resistor. The PNGYV is less complex than the second-order RC circuit and
models low SOC (0 % - 20 %) better than the RC circuit [29].

In addition to continuous-time ECM models, there are discrete-time time-series models. A
auto-regressive model with exogenous input (ARX) can be used to model a LiB. The ARX is
presented in Figure 8. The benefit of the ARX model is that it is a discrete model since contin-
uous models need discretization to be used programmatically. According to the Yuan ef al.,
the second-order ARX model is the best compromise between accuracy and computational
efficiency [31], [32].

ARX

Figure 8: Arx model.

The time-domain based models’ parameters can be identified either online or offline. The
offline identification is based on selecting the desired model and fitting the parameters to
previously acquired battery voltage, current and temperature data that can be acquired e.g.
from the hybrid pulse power characterization (HPPC) [33]. In the HPPC a charge pulse is first
applied and then a discharge pulse. Fitting is often done using a least-squares method, genetic
or particle swarm optimization algorithm [1], [9]. There are also other methods such as the
pulse charge and the pulse discharge test where the batteries’ relaxation curve is measured and
time constants are approximated from the transient [16]. In addition to the HPPC, other types
of excitations for batteries have been introduced such as the Urban Dynamometer Driving
Schedule [34].

The online identification works by identifying a model in real-time as a vehicle is in use.
The online identification usually uses a modified least-squares algorithm e.g. the recursive
least-squares. While the offline identification provides a more accurate results, the online
identification can be also used supplementally to improve the model parameters while in use
since batteries are time variant [1]. The most suitable algorithm for the model parameter

identification depends on the battery type and the model type [29].
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2.3.3 Frequency-domain based

Frequency-domain models are based on batteries’ frequency response, the so called EIS,
which was first proposed in 1985 [10]. The frequency-domain ECMs are identified from a
LiB’s frequency response. A study by Xu ef al. suggests that a frequency-domain model is
more accurate than a time-domain RC model [35]. In addition to using the EIS to parame-
terize a ECM, it has also been tested for direct SOC estimation. It has been found that SOC
and a LiB’s impedance have a monotonic relationship but there is a practical limitation, the
SOC needs to be updated regularly and the battery needs to be in steady-state to measure the
frequency response [36]. Figure 9 illustrates a typical EIS measurement results in Nyquist

diagram [11].
1-2"(w)]

Ry | R, + CPE, Ry+CPE, | w

Figure 9: A typical EIS Nyquist plot for LiB [11].

The measured EIS can be interpreted as a equivalent circuit. The ECMs interpreted from the
EIS are called fractional order models. Fractional order models are equivalent circuits where
capacitors are replaced with constant phase elements (CPEs). In addition to the CPEs, War-
burg element is also added to the circuit [9]. Figure 10 is a fractional order circuit interpreted

from the Nyquist diagram presented in Figure 9.
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CPE, CPE, % %

Figure 10: Fractional order circuit. W component is the Warburg element [11].

Ry is the Ohmic resistance of a cell. R; + CPE; is caused by the effects of solid electrolyte
interface (SEI). R, + CPE, represents the double layer effects and charge transfer resistance
at the electrodes [37]. The parallel of a resistor and a CPE is called Zarc element [38]. CPE

is defined as shown in Equation 2.2

1
(jw)"é

Zope = n € [0,1] (2.2)

where 7 is the depression factor of the semi-circle in the Nyquist diagram and 6 is the gen-

eralized capacity. For n = 0 it is resistance only element, for n = 1 it is equal to capacitor,
Figure 11. If n = 0, the Zarc and RC circuit equations are equal [38].

A—2"(w)

Figure 11: Illustration of Zarc as n gets smaller. Highest n at solid line and smallest at dotted
line with dashed line in-between [11].

In addition to the Zarc element, fractional order models also include the Warburg element
[38]. The Warburg element is just CPE with n = 0.5 and has constant phase shift of 45°[11].
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The Warburg element emulates the diffusion processes in the electrode at low frequencies
[37].

The benefit of the Zarc elements is the ability to produce depressed semi-circles in the frequency-
domain, which are characteristic of a lithium-ion cell. The disadvantage of the Zarc and
Warburg elements is that there is no Laplace transform, thus approximations are required.
One way to approximate Zarcs is to use RC-elements. Increasing the order of RC circuits
increases the accuracy of the approximation but it also increases the computational load. To
approximate the Warburg element, one serial resistor and RC circuit works [38], [39]. Digital

filters can be also used to approximate the Zarc and Warburg elements [11].

The EIS measurement is done to a cell by using current excitation. Typically EIS measure-
ments are made at low currents. For systems with higher rates, the EIS currents should be
higher to obtain more relevant parameters for high current use [11]. If measuring battery
impedance in a pack then a battery’s cells should be balanced and temperature should be

equal among them [36].

The EIS is limited in its use for online applications due to the special current waveforms
required, thus the EIS is more useful for initial parameter identification with online methods

for parameter updates. There are multiple excitation signal types, Figure 12.

Sine
sweep
Single- { N\,
— frequency
Excitation methiocs i\?vlé?arpe
signals I
for —
system ztgp
identification [
| Broadband Multisines
methods
Pseudo-Random
Sequences
b LT

Figure 12: Different types of excitation signals [40].

Traditionally the response is excited with a sinusoidal sweep because of its accuracy but it is
both slow and complex, which makes it hard for online use. Cycle times up to hours are not
uncommon. Broadband excitation methods are used to counter the slowness of the sinusoidal
sweep but they come with their own drawbacks e.g. worse signal-to-noise ratio (SNR) [11],
[40].
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2.3.4 State estimators

State estimators like the Luenberger estimator, sliding mode observer, PI observer, H,,, filter
and Kalman filter are used with ECMs to estimate the SOC [1]. Feedback methods are the
only difference between the mentioned state estimator techniques and the structure of the
methods can be generalized into a form that is shown in Figure 13. From control theory view,
these different estimation methods can be considered as a control loop. While a controller
tries to reduce the error between the system input and output, a state estimator tries to reduce

the error between model’s output and real system’s output [41].

Current Measured voltage
—> Real battery >
+
Feedback method
Y
Measured current Simulated voltage
—> Battery model >

Figure 13: Typical state estimator SOC estimation loop [41].

The Luenberger estimator for SOC estimation takes the error of a battery model’s output
voltage and the battery’s terminal voltage and applies a gain that has to be tuned for the
estimator. The Luenberger is common for its simplicity and the ease of tuning but it is accurate
only for deterministic and linear systems. Compared to the Kalman filters (KFs), it has poorer
accuracy in SOC estimation since measurements cause stochastic noise and LiBs are non-
linear. Improvements to the Luenberger’s accuracy have been proposed such as a adaptive
Luenberger estimator [42], [43].

The PI observer applies integrator in addition to the gain into the voltage estimation error,
which makes it more robust to modeling errors. PI observer is akin to a PI controller, allowing
it to be tuned like one. It is easy to implement and it has been shown to be accurate for linear

and non-linear system state estimation [41].

In addition to the Luenberger estimator and PI observer, the sliding mode observer and H,

filter have also shown to be working in SOC estimation [44], [45].

The KF is a optimal state estimator [46]. The KFs were first introduced to SOC estimation
in 2000 [10]. It is the most used state estimator for SOC estimation [47]. The KF expects
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noise to be white, Gaussian and having zero mean. In most situations, the used model is an
approximation of the true battery dynamics and deviations in the model from a actual battery
are deterministic, therefore the errors are not strictly random in nature. It is also impossible
to say that the error components are always Gaussian. Despite these, the KFs have been
shown to be reliable in estimating SOC [11]. Though other observers are computationally
less expensive than KFs [9].

The KF updates the Kalman gain online based on the error covariance matrices [48]. The
steady-state Kalman filter (SSKF) uses the Riccati equation to solve the Kalman gain before-
hand, reducing the computational overhead while online [49]. On the downside it cannot be
used with online model parameter estimation because the Kalman gain depends on state ma-
trices in a state-space model, unless the Riccati equation is used again to compute the Kalman

gain using the updated state-space model [34], [50], [51].

A non-linear KF is used when estimating a battery SOC because the OCV-SOC relationship is
not linear. The non-linear KFs are extended Kalman filter (EKF), central difference Kalman
filter (CDKF), unscented Kalman filter (UKF) and cubature Kalman filter (CKF), Figure 14
[47]. A case study done by Shen and Xiong comparing the EKF and H, filter found out that
the EKF is slightly more accurate than the H, filter [1].

Kalman filters

Linear
Kalman filter

Non-linear
Kalman filters

Extended
Kalman filter

Sigma-point
Kalman filters

Cubature
Kalman filter

Unscented
Kalman filter

Central difference
Kalman filter

Figure 14: Kalman filter family tree [47].

The EKF requires computation of the Jacobian matrix, a matrix of partial derivatives. The
derivative of the SOC-OCYV relationship is required, as well as the derivative of model pa-

rameters in respect to the state-space model’s states. Computing this in real-time is com-
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putationally taxing but the partial derivatives can be formulated beforehand and be used as
look-up table to lessen the computational burden [11], [46]. In addition to being computation-
ally expensive, the EKF includes modeling error since the process linearizes the non-linear
functions [18]. According to a study done by Shrivastava ef al. the SOC estimation mean
absolute error (MAE) with the EKF is less than 4 % [47].

Another technique is the UKF, which avoids the calculation of the Jacobian. The UKF gets
sampling points that it uses for approximation, thus avoiding problems caused by the lin-
earization, being computationally more efficient and more accurate [9], [47]. With the UKF,
the SOC estimate MAE is less than 2 % [47]. Although it has these benefits over the EKF,
it has some drawbacks. If the initial state guess is far from the actual value, the estimation
accuracy decreases and divergence increases. The estimate might not even converge at all
[18]. It is also susceptible to measurement noise as it increases divergence, thus increasing
computation time [47]. The UKF is a so called sigma-point Kalman filter as the sampling

points are called sigma-points.

Another sigma-point Kalman filter is the CDKF. The CDKF works on the same principle
as the UKF but the weighing factor differs, as there is only one parameter to tune with the
CDKEF. The CDKEF is simpler to implement than the UKF because of the only one tuneable
parameter, and in theory it is also more accurate [50]. Computationally it is more complex
than the UKF with a higher order state matrix. In literature, the CDKF has been shown to be
accurate with MAE of less than 0.6 %, while both the UKF and the CDKF show increased
speed and accuracy over the EKF [47].

The CKF was introduced to address the convergence problems of the sigma-point KFs. It
shows higher accuracy with MAE of less than 0.5 %, better stability and is less complex
than the EKF and the UKF [18], [47]. On the downside it has longer convergence time than
the EKF. Improvement to the CKF has been proposed with the adaptive CKF that has lower
convergence time than the EKF and the UKF [47], [52].

2.3.5 Pack modeling

A single cell cannot meet the requirements of EV use, thus batteries come in packs where
there are multiple cells in series and parallel. Estimating the SOC for each cell takes comput-
ing resources. For a series of cells, two types of simplifications have been proposed. The first
one of these is a big cell approach where the whole pack is regarded as one big cell. Another
method is cell mean method where an extreme or average cell is selected and it is used to
describe the system. With either of these approaches, the typical SOC estimation methods
can be used. The downside is that cells cannot be balanced [7], [53], [54].
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Parallel cells are often considered to be acting like a single cell with an assumption that a
current is equally distributed among them [55]. The mean cell method has been used for
parallel cells [54], [56]. Each cell can be estimated individually with Kirchoff’s laws [55],
[57]. For the big cell model, characterization of LiB packs can be done on a whole pack
instead of having to individually characterize each cell [42], [58].
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3 IMPLEMENTATION OF SOC ESTIMATION

The best fit for our use case would be just the Coulomb counting because of its simplicity.
Because of its drawbacks, it cannot be used on its own. A SOC-OCYV function would be also

a good option but it cannot be used with LFP batteries or while the battery is under a load.

The EIS cannot be used on a ship to form a battery model because there could be more
than tens of meters of cable between the excitation source and the battery, which affects the
excitation signal. The inverter units used include inductance at the output, which affects
the excitation signal in addition to the cable, and the inverters themselves do not support

excitation required for the EIS.

Data-driven estimation methods are not suitable either because training them requires a large
amount of data that we do not have. EMs are computationally too heavy to be run while a

ship is running and require information that needs to be acquired in laboratory conditions.

The time-domain based models are the best fit because in addition to being able to do the tests
required for parameterizing one, they can be also used while under a load. The ARX model
is selected because it is directly a discrete model, thus it is straightforward to implement pro-
grammatically since a continuous-time ECM requires discretization for it to be implemented.
To parameterize the ARX model, data for the system identification is required. The HPPC
sequence is used to acquire data from which to parameterize the model. The least-squares
algorithm is used to parameterize the model. The ARX model also allows for a online pa-
rameter identification method to be implemented in the future to take into account the aging
of the battery. Using the ARX with the linear KF and the EKF is simple because the ARX
is linear, thus it requires no linearization. The second-order ARX model is used because it
offers good accuracy with smaller computing overhead than the higher order ARX models.
No hysteresis is included in the model because literature suggests that adding hysteresis to

NMC cell’s model decreases its accuracy.

In addition the model based SOC estimation requires the OCV-SOC relationship to be char-

acterized. The Coulomb counting is also implemented into the model.

Usually batteries in marine applications are not individual cells but packs, which needs to
be taken into account when modeling a battery system. In our use, the big cell approach is
natural choice since cell balancing is not an issue because the battery management system
(BMS) takes care of that. In addition, we do not always have access to the individual cell

data or ability to characterize the individual cells. But because we only have one cell for
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measurements at this time, the pack modeling does not need to be taken into account in the

implementation.

When estimating the SOC from the model, a state estimator is used. The SSKF is used
because of the limitations with PLC’s runtime environment. The runtime environment does
not support matrix operations by itself, thus implementing a other type of KF would also
require implementing a linear algebra library that supports e.g. Cholesky factorization and
inversing matrices, which is not in the scope of this thesis. The SSKF only requires matrix
multiplication and summing, which can be implemented with for-loops. The downside of
the SSKF is that the model cannot updated online unless the Kalman gain is computed again
using the new model parameters. In addition to the SSKF, the EKF is also implemented to
compare the error rate between a linear model and a non-linear model and as a future-proof

in case the marine team ever decides to move from PLCs to industrial PCs.

3.1 Estimator loop

The whole SOC estimation system is encapsulated in Figure 15.

i(k) Umeas(K)
» Battery

ud(k)

Battery
model

> SOC(k) Ueg(K)
N Integrator ——>» SOC-OCV
e(k)
Gain(k+1) Kalman
filter

Figure 15: Estimator loop.

The current and terminal voltage of the battery are measured and inserted into the estimator
loop. The current is then given to the battery model and the integrator. The integrator inte-
grates current over time and outputs a SOC estimate. The SOC estimate is then given to the
SOC-OCV function. The function outputs the OCV based on the the SOC estimate. The bat-
tery model outputs dynamic component of the voltage of the battery. The OCV and dynamic
voltage are summed with the output being terminal voltage estimate. The terminal voltage
estimate is then compared to the measured terminal voltage and the error is multiplied by the

Kalman gain that is then added to the state equation on the next iteration.
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The second-order ARX model in generic form without any added input delays is in Equation
3.1

y(k) + ary(k — 1) + asy(k — 2) = box (k) + biz(k — 1) (3.1)

where y(k) is the model’s output at time &, (k) is the input at time k, a; is the output param-
eter and b; is the input parameter. The ARX model is parameterized with MATLAB’s arx
function [59].

To estimate the SOC, the ARX model needs to be augmented with a SOC-OCV function and
current integrator for the Coulomb counting. Linear function, Equation 3.2, is fitted into the

data since the SSKF can only handle linear systems

uocv (SOC) = agey SOC(K) + boey (3.2)

where SOC' is the SOC estimate at time k, a,., is the slope and b,., is the intercept of the

linear equation.

The current integrator from Equation 2.1 in discrete form is in Equation 3.3

SOC(k) = C;TS i(k) + SOC(k — 1) (3.3)

where i(k) is the current at time k, 7 is the Coulombic efficiency when charging, 7’ is the

sample time when it is constant, and (),,,,.. 1s the maximum capacity.

The ARX model is transformed into state-space model. A generic discrete state-space model
is in Equation 3.4

x(k) = Ax(k — 1) + Bu(k)
Cx(k) + Du(k)

(3.4)

<

—~
Eay

~
Il

where A is the system matrix, B is the input matrix, C' is the measurement matrix, D is the
feedthrough matrix, (k) is the state vector at time (k) and u(k) is the input vector at time
(k). It is augmented with the current integrator and the SOC-OCV function. The augmented

state-space model is presented in Equation 3.5 when the ARX model order is two
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Uest = |1 0 OCV(SOC) Ud(k — 1)
SOC(k)

where u4(k) is the dynamic voltage at time k and . (k) is the estimated voltage at time k
and OCV (S0OC) is the SOC-OCV function. For the state-space model, the Kalman gain is
computed by MATLAB’s d1qr function [60]. The model’s equation with the Kalman gain
for the SSKF and the linear SOC-OCYV function is Equation 3.6

ua(k) —a; —ay Of | ug(k—1)

ugk—=1) =1 0 0f| ugk—2)
SOC(k) 0 0 1] [SOC(k-1)

bp b L

0 1 i(k) 1

R T I PP el (thmeas(k — 1) = et (k — 1))
’l/ J—
G O Ly
ua(k)
ue‘St(k) = [1 0 aocv} Ud(k — 1) + boc’u
\ SOC (k)

(3.6)

where .45 (k) is the measured terminal voltage of the battery at time & and L, is the Kalman

gain.

The EKF model is quite similar to the SSKF model with the difference being that the SOC-
OCYV function is not linear and the Kalman gain is time-variant. The EKF works by lineariz-
ing the non-linear function at the values of estimated states, which yields linear functions
placed at the estimates. In practice, a higher order polynomial for the SOC-OCYV relation-

ship is parameterized and it is then derivated. It is partially derivated in respect to every state
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of the state-space model. Almost every partial derivation yields zero expect for derivation
in respect to the SOC since the only variable in the function is the SOC. From the derivated
function the value of the derivative at every SOC can be computed. The value of the deriva-
tive is the slope of a linear function placed at that point. After that, the intercept for the linear
function is computed. The acquired linear equation is then used in the model for the SOC es-
timation. This process is repeated at every timestep. The partial derivative of the SOC-OCV
function can be calculated analytically beforehand reducing the computing overhead. The

modified model for the EKF is presented in Equation 3.7

ua(k) —ay —ay O] | ug(k—1)
ugk=1) = 1 0 0] | ualk—2)
SOC(k) 0 0 1| [SoCk-1)
b b L(k
0 1 z(k) 1( )
+ 0 0 (/{3 1) + LQ(k) (umeas(k - 1) - uesth — 1))
Z J—
g 0 Ly(k)
Ud(k’)
ueSt(k) - |:1 0 gg%] ud<k - ]-) + Yintercept
SOC(k)

(3.7)

where ‘gggg is the slope of the SOC-OCV function at SOC, Yintercept 15 the intercept of the

linearized function and L;(k) is Kalman gain at time k.

The EKF requires computation of the Kalman gain online, Equation 3.8

Pcov<k) - APco’U(k)AT + Q
L(k) = Peou(k)CT(CPupy(k)CT + R)™! (3-8)
Pcov(k + 1) - Pcm;(k) - L(k)CPcov(k>

where P.,, (k) is error covariance at time k, L(k) is the Kalman gain matrix at time k, () is the

process noise matrix, I is the measurement noise matrix. The P,,, value is initially guessed,

it then iterates and converges based on the system matrices and the noise covariances.
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4 MEASUREMENTS

The measurements are made on a KeepPower 18650 LiB that is a NMC cell, which has
3.5 Ah nominal capacity and 3.7 V nominal voltage, with a Neware battery testing system
model CT-4008T-5V12A-S1. All of the measurements are made in room temperature while
the building’s ventilation system keeps the temperature constant. The OCV and the HPPC
discharge tests are made on a different battery cell than the ferry load profile and the HPPC

charge tests.

The first measurement is the capacity. The measurement is presented in Figure 16.
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Figure 16: Capacity measurements.

The battery is first constant current (CC) charged to 4.2 V. Then it is constant voltage (CV)
charged with a 100 mA cut-off current. It is then left to rest at 100 % SOC for an hour before
it is discharged. The capacity is measured from one full discharge cycle at 1.5 A from 4.2 V
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to 3.0 V. After the charging, it is recharged back to full with the same method as on the first
charge. The measured capacity from the discharge is 3.1352 Ah. The measured capacity is

used for the SOC adjustments in later measurements and for the max capacity in estimation.

The next one is OCV measurement. It is done to acquire the SOC-OCYV function. The mea-

surement is presented in Figure 17.
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Figure 17: OCV measurements.

The battery is first CC-CV charged to 4.2 V with a 100 mA cut-off current. It is then left to
rest at 100 % SOC for an hour before the measurement. The OCV is measured at 150 mA
between 4.2 V and 3.0 V for both the discharging and charging. The discharge capacity is
used as maximum charge for both the charging and discharging.

The HPPC measurements are done for both the charging and discharging. The discharge
HPPC is used to parameterize the ARX model and the charge HPPC is for the estimator
testing. The discharge HPPC is is Figure 18.
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Figure 18: HPPC discharge measurements.

The battery is CC-CV charged to 4.2 V with 100 mA cut-off current and let to rest at 100 %
SOC for an hour before the measurement is done. The HPPC pulse sequence first contains
a 30 minute rest period at start, then 3 Ampere discharge for 72 seconds, 1080 second rest,
3 Ampere charge for 72 seconds and then 1080 second rest again. The HPPC measurements
are repeated at 100 %, 80 %, 65 %, 50 %, 35 % and 15 % SOC. The first measurement is
done at 100 % SOC. Then the SOC is adjusted to 80 % and the pulse sequence is repeated
for each SOC until it is 15 % SOC.

The charge HPPC test for the estimator validation is ran on the battery. The measurement is

in Figure 19.
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HPPC charge
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Figure 19: HPPC charge measurements.

The battery is first discharged to 3 V and it is then recharged to 15 % SOC where the HPPC
pulsing is done using the same intervals as in the HPPC discharge. The HPPC measurements
are repeated at 35 %, 50 %, 65 % and 80 % SOC.

Lastly, a ferry load profile is ran on the battery. The load profile is ran on the battery to acquire
battery data that replicates it being used in a real ferry use to validate the SOC estimation.
The load test is in Figure 20
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Ferry load profile
T T

Current
Voltage

[V.A]

Figure 20: Load profile measurements.

First, the current is ramped in three 20 minute steps to 1.50 A with the steps being 0.25 A —
0.75 A — 1.25 A. The battery cycler has limited ramping capability and the ramping has to
be done manually. Then, the constant current lasts for 2 hours where the battery is emptied.
And lastly, the current is ramped to 0 A in three 10 minute steps using same amplitudes as in
the upwards ramping. Afterwards it is CC-CV charged to full.
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S MODEL PARAMETERIZATION AND VALIDATION

The LiB model is parameterized and validated from the measurements. The battery cycler
the measurements were made on has a base sample time of 30 seconds but it sometimes takes
sporadic measurements and can include multiple measurements on the same timestep, thus
the measurement data is processed before it is used for the ARX model parameterization
and the estimator validation. First, multiple measurements on the sample step are removed
with the first measurement on the step being left. Second, the measurements are interpolated
into one second sample time. The processed measurements are the OCV, HPPC charge and
discharge and ferry load profile measurements. The comparison between the data before and

after processing is found in appendix A.

5.1 SOC-OCY function

The SOC-OCYV function is fitted onto the processed data of the OCV measurement. A linear
SOC-OCYV function is required for the SSKF, a non-linear function can be used for the EKF.
In order to fit a polynomial to the data, the OCV curve as a function of the SOC has to
be identified. The measured terminal voltages have voltage losses caused by the battery’s
impedance. The voltage losses are corrected by using the resistance of the battery. The
measured resistance was 40.3657 mS). The resistance was measured by using the EIS at 50
% SOC at a frequency of 398.089 Hz. There the reactance of the battery was close to zero,
the exact measured reactance being 119.3854 u€). The corrected charging, discharging and

average voltages are in Figure 21.
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42 Hysteresis comparison
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Figure 21: Voltages while charging and discharging at different SOC levels.

From the figure we can see that the hysteresis decreases as the SOC increases. The average
hysteresis is 0.0493 V with the Ohmic losses averaging at 0.0121 V. It needs to be noted that
the internal resistance of the battery is a function of the SOC, causing inaccuracy when the
SOC differs from the 50 %.

The SOC-OCV function is fitted to the averaged voltage data to take into account the hystere-
sis present in the LiB. In order to determine which polynomial order provides the best fit for
the non-linear SOC-OCV function, polynomial functions of degrees 1-12 are fitted into the
data using least-squares methodology. The polynomial coefficients are found in appendix B.
Root-mean-square error (RMSE) and mean absolute percentage error (MAPE) are compared

in Figure 22 and the values can be found in appendix C.
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Figure 22: RMSE and MAPE of SOC-OCYV fits for polynomial orders between 1-12.

The RMSE and MAPE decrease as the polynomial order increases. The RMSE and MAPE
curves have almost exactly the same shape expect for the first three polynomial orders, with
the MAPE being less steep than the RMSE. While the overall accuracy increases, the outliers
do not decrease at the same pace for the first three polynomials because the MAPE is less steep
than the RMSE. The ninth order polynomial is selected for the EKF because after it, a increase
in polynomial order does not decrease the errors significantly. And with the computing power
of a PLC, the computing overhead should be as low as possible. Visual comparison of the

measurement average and the first and ninth order polynomial functions are in Figure 23.
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Figure 23: Comparison of measurement average and fitted linear function and non-linear
function.

Visually the 9th order polynomial is quite close to the measurement, while the linear polyno-
mial is clearly not. The linear function is the closest to the measured curve in the 40 % — 85 %
SOC range. The discrepancy between the linear function and the measured curve increases
the uncertainty in the SSKF SOC estimate.

5.2 ARX parameterization

Before parameterizing the ARX model, the data needs to be detrended. The detrending is
done to remove linear trends and offsets e.g. the OCV so that only the dynamics are captured
into the ARX model. The sample pulses are the pulses done at 100 % SOC. The pulses and
detrend comparison is in the Figure 24.
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Figure 24: Trended and detrended current and voltage pulses.

Detrending the data removes the offset from the voltage measurement, leaving only the

pulses. Current is not affected. From the detrended data, a second-order ARX model is pa-

rameterized by using the arx function in MATLAB. ARX model coefficients are presented

in Table 1.

Table 1: ARX model parameters.

ay

—1.89091496455494

Q2

0.898094120905121

bo

—0.0103062170209651

by

0.0110950576985166

These parameters are then substituted into Equation 3.5 along with the SOC-OCV function

coefficients, sampletime 7, = 1 s and @,,,.. = 3.1352 Ah. The Coulombic efficiency 7 is

presumed to be 1. The HPPC discharge test current profile is then fed to the linear and the

non-linear model, with the linear model having the first-order and non-linear having ninth-
order function of SOC-OCV. The results are in Figure 25.
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Figure 25: Model voltage output and absolute error.

From the figure it is not unambiguously clear that which one more accurate since at times
one or other is more accurate. The linear model is clearly less accurate on pulses done at 100
%, 35 % and 15 % SOC. This is due to the linear SOC-OCV function differentiating from the
measured SOC-OCYV curve at those SOC levels. RMSE and MAPE for both the linear and

the non-linear model outputs are in Table 2.

Table 2: RMSE and MAPE of the linear and the non-linear model.

Linear model Non-linear model
RMSE | 0.414251223350806 V | 0.394213738348390 V
MAPE | 8.93386145670007 % | 8.50982963906825 %

The difference between the linear and the non-linear model in RMSE and MAPE is slight but

when using these metrics the non-linear model is more accurate.
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5.3 Kalman filter validation

Before the SSKF can be used, the Kalman gain for it needs to be computed. By using MAT-
LAB’s d1qr function, the Kalman gain matrix L is computed. The computed SSKF Kalman
gain using process noise covariance of 10 and measurement noise covariance of 0.1 is in
Table 3.

Table 3: Kalman gain for the SSKF.

Ly | 1.14452910853464
Ly | 0.489065397418263
L3 | 0.564076374611619

The Kalman gain is then substituted into Equation 3.6. The EKF requires initial guess for

P,,, from where it