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Within the domain of urban analytics, fundamental aspects defining a real estate property
include its construction year, number of floors, and building use. However, it is essen-
tial to acknowledge that obtaining accurate and up-to-date information regarding those
three attributes can be a challenging and costly endeavor due to diverse data sources, pri-
vacy concerns, or proprietary data ownership. This research addresses these challenges
by exploring an innovative approach leveraging street view image data to derive key at-
tributes of real estate properties. The inherent visual cues present in images can be an-
alyzed and processed using advanced computer vision techniques such as Convolutional
Neural Network (CNN) and Multilayer Perceptron (MLP), offering a cost-effective and
scalable solution for obtaining essential attributes that might be challenging to acquire
through traditional means. The scope of this research covers the entire machine learning
pipeline, from data acquisition and processing, model training and evaluation, to service
deployment. In the pursuit of an effective Minimum Viable Product (MVP), simiplic-
ity, computational efficiency, scalability, and modularity are crucial. Results suggest that
while determining floor count and building use based on visual cues from images emerges
as a visually intuitive task, estimating the construction year poses a more intricate chal-
lenge. These insights underscore the potential of image-based data and machine learning
in urban data acquisition.
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1 INTRODUCTION

1.1 Background and Motivation

In the realm of urban analytics, the pivotal factors characterizing a real estate property en-
compass its construction year [1], number of floors [2], and the nature of the property [3].
These elements serve as fundamental attributes for a wide array of applications, ranging
from comprehensive property profiling to the refinement of energy-to-value assessments
and modeling for sustainability actions.

Urban planing and real estate industry places significant reliance on data, yet the acces-
sibility of such critical property-related data is often constrained, despite its fundamental
role in the field [3]. Cadastral datasets, as one of the key registers of land administration,
for instance, frequently lack these crucial features, while curated datasets of real estate
details are not consistently publicly available, and the process of obtaining them can be
prohibitively costly. Additionally, using statistical approaches to make assumptions often
necessitates a substantial amount of sample data, and in many cases, the methodology can
introduce inherent biases.

In the light of these challenges, Street View Imagery (SVI) emerges as a potentially valu-
able resource in the field of urban analytics, together with the booming advancements in
machine learning and computing capabilities, offering an economical and efficient means
to extract and leverage these essential property features, and thereby unleashing an un-
precedented wealth of information that was previously underutilized [4]. This transfor-
mative synergy between SVI and cutting-edge technology not only addresses the data
scarcity challenge but also holds the potential to open up boundless opportunities for ur-
ban analytics research and revolutionize how real estate properties can be analyzed and
modeled, facilitating more comprehensive and sustainable urban planning and develop-
ment with a solid foundation for informed decision-making.

This study is conducted within the framework of SkenarioLabs, a sustainably focused real
estate analytics company, where it originated as an internal project led by the Data Engi-
neering team in an effort to enrich the organization’s data assets and automate building
detail extraction using a visual recognition approach. Aligned with SkenarioLabs’ over-
arching vision, this research contributes to both internal development and market compet-
itiveness, with the focal point being the realization of the company’s sale pitch features as
follows (as demonstrated by SkenarioLabs’ Head of Engineering):
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• “SkenarioLabs has the most data points describing each building in the industry.”

• “You can unlock the full potential of SkenarioLabs analytics and insights by deliv-
ering as little as the address of your building.”

In response to these ambitions and challenges, it is convinced that the study positions
Google Street View (GSV) imagery as a promising solution in urban analytics, partic-
ularly in tandem with data science to unlock an unprecedented wealth of underutilized
information.

1.2 Objectives and delimitations

This research endeavor stands out as a pioneering initiative, aiming to deliver a Minimum
Viable Product (MVP) for a scalable service with the capability to predict building details
from street view images and thereby concentrating on accomplishing one main objective:

How to automatically determine building features from a street view image?

The project scope encompasses feasibility consideration, the development of reusable
ETL (Extract, Transform, Load) data pipelines, machine learning model training, and de-
ployment as a service. These pipelines cover the entire spectrum of processes, ranging
from data acquisition and transformation to loading and model training. The ultimate de-
liverable of this project is a comprehensive, deployable machine learning pipeline offering
the ability and convenience to continuously update and use the trained models to make
predictions about building details from images. The scope of research can be formulated
into five sub-questions, as follows:

1. Feasibility study: How feasible is the project in terms of technical, financial, and
operational aspects, and what key factors contribute to its feasibility or present po-
tential challenges?

2. Data acquisition: What are the data sources for raw training data, and how can we
build ETL pipelines to facilitate data integration and consolidation workflows?

3. Model training: What methodologies and techniques are optimal for training ma-
chine learning models to predict building details from images?
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4. Technology stack: What encompassing tools, frameworks, and platforms can be
used to expedite the machine learning pipeline?

5. Result evaluation: How do the trained models contribute to data enrichment?

In pursuit of these ambitious objectives, the study delineates specific delimitations to
ensure clarity and focus.

• Feature focus: Year of construction, number of floors and building type are the
three key features

• Geographical restriction: United Kingdom and Belgium are the two country of
interest aligned with company’s localization efforts

• Computational efficiency requirement: The methodology is tailored to meet the
prerequisite that the Minimum Viable Product (MVP) should ideally exhibit com-
putational efficiency.

First and foremost, the scope of this research is intentionally confined to the extraction of
three key features—building year, number of floors, and property type—from the exterior
view of buildings. While acknowledging the breadth of potential features, this restriction
is vital to streamline the development process and establish a foundation for subsequent
research endeavors. Secondly, despite the fact that Europe is the current focused mar-
ket, as a pragmatic measure aligned with the Minimum Viable Product (MVP) paradigm,
the training scope is deliberately narrowed to street view images within the geographical
domains of the United Kingdom and Belgium. This strategic decision is rooted in the
company’s current efforts to localize and expand its market presence in these two coun-
tries. Despite the considerable size of both nations, the limited accessibility to real estate
data necessitates a focused approach in the initial stages of model development. By con-
centrating on the United Kingdom and Belgium, the study aims to tailor the model to the
specificities of these markets, laying the groundwork for potential scalability as the project
progresses. Furthermore, the study’s methodological choices are shaped by the imperative
to develop a lightweight MVP in terms of computational needs for predictions.

This pragmatic decision ensures that the research remains realistic and resource-conscious
while laying the groundwork for future scalability. These deliberate delimitations collec-
tively contribute to a focused, feasible, and strategically aligned research endeavor.
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1.3 Structure of the thesis

Chapter 2 delves into the existing body of literature, offering a comprehensive review of
prior studies on similar topics, establishing a contextual framework for the subsequent
discussions. This understanding informs the rationale behind the current study, identify
gaps and highlights its potential contributions. This is anticipated to unveil the positioning
of the current work within the broader academic landscape.

The intricacies of the methodology and a literature review of pertinent concepts and al-
gorithms which are crucial to the project’s implementation are proposed in the Chapter 3.
This provides a clear understanding of the conceptual framework justifying the selection
of specific methods guiding the study.

As forementioned, beyond a singular focus on machine learning model training, this re-
search delves into the comprehensive procedural landscape—from crafting an action plan
to identifying requisite data sources, acquiring, preparing the data for model training,
and conducting thorough evaluations, Chapter 4 reveals procedural aspects and presents
detailed descriptions of experiments alongside their results.

The subsequent Chapter 5 critically analyzes these results, leading to overall conclusions
and answers to the research questions. Contributions made by the study and avenues for
future research are explored.
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2 RELATED WORK

2.1 Year of construction estimation

Numerous research papers have contributed to advancing our understanding of the year of
construction of real estate properties, such as the age prediction of buildings in Vancou-
ver, Canada through morphological characteristics extracted from a Lidar dataset, which
represent 3D building shapes, as explored by Tooke et al., 2014 [5], or the 3D GIS model
using nine spatial attributes (e.g., building use, height, area, floorcount) by Biljecki and
Sindram, 2017 [6] for the Rotterdam area. Although there have been prior attempts to
forecast the building age, certain constraints persist. Primarily, the utilization of tabular
data features provided in the LiDAR and 3D GIS dataset in the earlier research poses
challenges due to limited accessibility and scalability. Apart from the small geographical
coverage of the study area, the prediction error remains high, ranging from 15.8 years
to 16.8 years [5], or 10 years for the best scenario to 26 years for the realistic scenarios
where there is missing data [6].

A recent study of a building age classification model for Amsterdam using deep Convolu-
tional Neural Network (CNN) trained on GSV images (Sun et al., 2021 [1]) underscored
the viability of utilizing street view imagery as a robust means of estimating building age.
The authors, however, addressed this challenge by reframing the problem from a regres-
sion to a classification task. They achieved this by categorizing the years of construction
into distinct periods aligned with the evolution of architecture and the historical develop-
ment of the city. Although the reported accuracy reached 81%, there remained uncertainty
regarding the margin of error in terms of the number of years.

Given the necessity for precise year-of-construction information rather than broader age
periods to facilitate subsequent analytics, this thesis work adopts a CNN-based regres-
sion approach. This decision is driven by the need for more granular data. The strategy
prioritizes scalability by utilizing the rich source of SVI, reduces the need for data pre-
processing, and ensures the streamlined integration of this methodology into larger-scale
analytics frameworks.
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2.2 Floor count estimation

In recent years, the field has witnessed a surge in studies focused on predicting floor
counts of buildings. Roy et al. (2022) [7] studied the floorcount inference as a regression
problem for residential buildings using different combinations of additional 25 geometric
features (e.g., height, roof area, volume, net internal area). Remarkably, their approach
achieved an impressive accuracy of 94.5% for buildings with five floors or fewer, yet
encountered a decreased accuracy of 52.3% for taller structures. However, the reliance
on a multitude of geometric attributes might pose challenges when obtaining such data
is not readily available. Notably, the study highlighted the crucial role of building height
as the foremost influential feature aiding in predicting the number of floors. Indeed, as
an alternative to deriving directly the number of floors, Bock et al. (2018) [8], and Kim
and Han (2018) [9] proposed a method to estimate the building heights from SVI in an
effort towards achieving 3D building models. The number of floors can be assumed from
the building heights by dividing them by the standard average height of a storey [7].
However, this assumption is deemed unreliable due to the intricate nature of architectural
styles, roof types, and height references.

Iannelli and Dell’Acqua (2017) [10] tackled this issue by directly extracting the count of
building floors instead of inferring intermediate products like building heights. However,
their approach involved treating this issue as a classification problem and delineating it
into five classes. These classes span from 0, indicating the absence of buildings in the
image, to 1, 2, and 3, representing buildings with one to three floors, respectively, and a
fourth class encompassing buildings with four floors or more, denoted as ’4+’. However,
in alignment with the research objectives, there’s a preference to encompass a broader
spectrum of options. Dobson (2023) [2] introduced a technique for a floor count determi-
nation from SVI using a facade parsing approach that is capable of covering a larger range
of floors. The solution simulates the visual process humans employ to count the number
of floors by identifying rows of windows and doors. Object detection, segmentation, and
annotation demand substantial human intervention and additional computer vision frame-
works to prepare the training data required for the estimation task. The approach yields
an MAE of under 1 storey for both manual and automatic facade parsing methodologies.

Reducing preprocessing needs is in line with the research objective to enhance the effec-
tiveness and scalability of the machine learning pipeline. Consequently, the methodology
employed in training the model for forecasting the construction year is similarly applied
to this particular task. With the benefit of a larger training dataset, the performance is
expected to be similar to or better than the aforementioned approaches.
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2.3 Building use prediction

The incorporation of visual data into predictive modeling has also revealed significant
progress in inferring the type of building, i.e., whether it is a commercial building or a
residential building, through their photographs. This includes various applications such as
predicting building use from multiple visual modalities (e.g., indoor and outdoor photos),
as evidenced in the study conducted by Stumpe et al., 2022 [3], and land use estimation
through remote sensing (e.g., aerial, satellite imagery, rooftop images) by Giri, 2012 [11].
Nevertheless, these methodologies introduce inherent challenges pertinent to this research
endeavor. Obtaining indoor property photographs at scale remains arduous, while satellite
imagery, though comprehensive at an area level or block level, lacks detailed building
facades beyond rooftop perspectives, complicating the explicit classification of building
types.

To overcome those challenges, street-view images offer a detailed perspective of build-
ing exteriors, enabling the extraction of building types. Prior literature has endeavored
to extract information from such images, showcasing diverse applications such as urban
land use estimation for three high-level categories (e.g., one- or two-family, multifamily
residential buildings, and non-residential buildings) by employing a combination of fea-
ture extraction methodologies followed by support vector machine algorithms (Li et al.,
2017 [12]), and building instance classification utilizing SVI and CNN in addition to re-
mote sensing images (Kang et al., 2018 [13]). The outcomes of these studies collectively
affirm that street-view imagery serves as a valuable and multifaceted data source across
various applications.

A study conducted by Zhou et al. (2016) [14] released a convolutional neural network-
based VGG16 model trained on a repository of ten million scene images from 434 classes.
The model developed in the aforementioned paper, trained on an extensive dataset encom-
passing diverse scenes and environments like urban, indoor, outdoor, and natural settings,
serves as a promising resource and a supporting tool to enhance the quality of the obtained
training imagery dataset. In fact, scraping Google Street View images often yields images
of subpar quality, marked by common issues such as cutoff buildings, obscured views due
to passing vehicles, censoring of sensitive areas, and various other visual impediments.
These challenges result in a dataset rife with images that might hinder the accurate anal-
ysis and prediction of building types. Therefore, by leveraging its capability of scene
recognition in the step of data preprocessing mentioned in Section 4.3.2, the pre-trained
model can aid in identifying and potentially removing outliers within the street view im-
age dataset. This utilization of a model trained across varied landscapes holds potential to



13

filter out bad images entering the training phase, thereby enhancing the robustness and re-
liability of the predictive framework employed in this research. The architectural structure
of the model is described in Section 4.5.2.
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3 PROPOSED METHODS

This is an era characterized by an unprecedented blossoming of possibilities, where ma-
chine intelligence takes center stage. This era is marked by a remarkable convergence of
technological advancements, data availability, and the ever-expanding realm of artificial
intelligence. The abundance of image data, the rapid growth of computing resources, and
the leaps in machine learning and computer vision have converged to create an environ-
ment where street view imagery becomes a rich source of insights and information. It is
an era where the conjoining of human perspective with computational intelligence can be
witnessed, as technological capabilities facilitate the extraction of intricate details from
the visual world. In an attempt to overcome the scarcity of structured data available, the
use of neural networks to extract building attributes from street view images is proposed.
The methodologies needed for the entire machine learning development cycle are taken
into consideration.

In the subsections that follow, the proposed methodologies that are employed in this re-
search are revealed. In addition, an overview of each topic is discussed as a literature
review to provide background information to justify the proposal and support the experi-
ments.

3.1 Street View Imagery (SVI)

In recent years, street view imagery has rapidly gained prominence as a pivotal data source
in the realm of geospatial data collection, urban analytics, and Geographic Information
Science (GIScience). SVI has made it possible to study visual attributes from a human’s
eye-level perspective.

A review of 600 papers has been conducted to shed light on the current state of affairs
regarding the utilization of street-level imagery in studies related to the built environment
[4]. Notably, as shown in Figure 1, the surge of interest in street-level imagery and its
growing importance in its significance can be attributed to the widespread availability of
large-scale imagery platforms, the advancement of computer vision and machine learning
technologies, and the ready accessibility of computational resources.
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Figure 1. The growing number of published papers related to SVI [4].

The proliferation of platforms that provide access to large-scale imagery has expanded
the volume and variety of image data available for analysis and processing. Google Street
View [15] and Mapillary [16] are two prominent sources of street view imagery, each
offering valuable resources for a variety of applications. Google Street View, one of the
pioneers in the field, provides comprehensive street-level imagery captured by specially
equipped vehicles that have covered vast geographical areas worldwide. It is known for
its integration with Google Maps and navigation services. Figure 2 illustrates the regions
where Google Street View images are available and impressively the service achieves a
nearly perfect coverage in Europe.
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Figure 2. The geographical coverage of Google Street View service (The regions highlighted in
blue on the map indicate the availability of Street View) [17].

On the other hand, Mapillary takes a crowdsourced approach, where individuals and or-
ganizations contribute street-level photos using smartphones and cameras, resulting in a
collaborative dataset with broader geographical coverage and more permissive licensing
terms. Together, these platforms offer a wealth of visual data that can be harnessed for
mapping, urban planning, research, and other innovative applications. The majority of
research in this domain relies heavily on data sourced from platforms like Google Street
View [4]. Regarding real estate, Google Street View boasts a wealth of building exte-
rior images, presenting an opportunity for innovative applications in the field of machine
learning to streamline labor-intensive manual annotation tasks.

Meanwhile, the rapid advancements in machine learning have ushered in a transforma-
tive era for the utilization of street-view imagery in the detection and characterization of
objects in the view. Machine learning techniques, particularly deep learning algorithms,
have made it possible to extract intricate details from images, enabling the automation of
tasks that were once labor-intensive and reliant on manual human effort [18]. Particularly
for geographical information enrichment, this technological evolution has unlocked the
potential for a more efficient and comprehensive analysis of building characteristics and
exploration of its far-reaching implications through the analysis of street-view images,
significantly expanding the horizons of urban planning, real estate assessment, and vari-
ous other domains that rely on understanding the built environment. Building recognition,
floor partitioning, scene understanding or facade detection [19] are among the applications
where computational intelligence potentially plays a crucial role.

Lastly, the increased availability of computing resources and high-speed internet, such as
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powerful processors and cloud computing infrastructure, has facilitated the efficient pro-
cessing and analysis of large volumes of image data. These factors combined have played
a significant role in driving the observed surge in activities related to image processing,
analysis, and understanding.

3.2 Evaluation metrics

Evaluation metrics is vital for validating learning progress and model performance. The
metrics that are used in experiments are introduced in this subsection.

Mean Absolute Error (MAE) is a metric commonly used to assess the accuracy of re-
gression models. It quantifies the average absolute difference between the predicted val-
ues and the actual values in a dataset [20]. The Mean Absolute Error (MAE) serves as
an evaluation metric for machine learning models due to several advantageous charac-
teristics. MAE measures the average magnitude of errors between predicted and actual
values without considering their direction. This makes MAE more robust to outliers or
extreme values in the dataset, as each error contributes linearly to the overall assessment
of the model’s performance. Additionally, MAE is easier to interpret since it represents
the average absolute difference between predicted and observed values. This simplicity
aids in conveying the model’s performance in a more intuitive manner, especially when
discussing errors in real-world units. The formula for calculating MAE is expressed as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (1)

Where:

• n represents the total number of samples in the dataset,

• yi denotes the actual values,

• ŷi represents the predicted values.

Accuracy has been a cornerstone in assessing classifier performance across various appli-
cations. Numerous studies, such as one by Hossin et al. (2015) [21], have emphasized ac-
curacy as a fundamental measure to gauge the correctness of predictions made by models.
Its simplicity and ease of interpretation make accuracy a widely used metric, representing
the ratio of correct predictions to the total predictions made by the model.
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Accuracy =
Number of Correct Predictions
Total Number of Predictions

× 100 (2)

This formula provides a straightforward way to assess the overall correctness of a classi-
fication model.

However, while accuracy provides a clear measure of overall correctness, it might not be
sufficient in scenarios with imbalanced class distributions, where a model could achieve
high accuracy by simply predicting the majority class. This limitation has led researchers,
as highlighted by He and Ma (2015), to explore supplementary evaluation metrics, such
as precision, recall, and F1 score, to provide a more nuanced understanding of model
performance, particularly in cases where class imbalances impact the interpretation of
accuracy [22].

Confusion matrix is a table used in classification to evaluate the performance of a model
and those supplementary metrics can be derived from the confusion matrix. It summarizes
the counts of true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) predictions made by the model. The matrix is defined as:

Actual Class
Positive Negative

Predicted Class Positive TP FP

Negative FN TN

Metrics Derived from the Confusion Matrix:

Accuracy =
TP + TN

TP + FP + FN + TN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)
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F1 Score =
2× Precision×Recall

Precision+Recall
(7)

Categorical Cross-Entropy (CCE) loss function is used in classification tasks where the
target variable is categorical. For a single training example with C classes, let yi be the
true label (ground truth) for class i and pi be the predicted probability assigned by the
model to class i. The CCE loss is calculated as follows:

CCE = −
C∑
i=1

yi · log(pi) (8)

This formula penalizes the model more when it confidently predicts the wrong class. The
logarithmic term log(pi) ensures that the loss increases significantly when the predicted
probability pi deviates from the true label yi. The negative sign is used to flip the maxi-
mization problem (maximizing the log likelihood) into a minimization problem.

In a scenario where there are multiple training examples, the average CCE loss over the
entire dataset is often computed as follows:

Average CCE = − 1

N

N∑
j=1

C∑
i=1

yij · log(pij) (9)

Here, N is the number of training examples, and yij and pij represent the true label and
predicted probability for class i of training example j, respectively.

3.3 Multilayer Perceptron Network (MLP)

In this research, Multi-layer Perceptron (MLP) is employed in experiments to effectively
train models on input in the form of tabular data such as the geographical coordinates of
properties.

The origins of MLP networks trace back to the early foundations of neural networks,
evolving from the perceptron model introduced by Rosenblatt in the late 1950s. It was
the extension of this single-layer perceptron to include multiple hidden layers, connected
through nonlinear activation functions, that gave rise to the MLP [23]. The pioneering
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work of Rumelhart, Hinton, and Williams in the 1980s laid the groundwork for training
deeper architectures, highlighting the potential of backpropagation algorithms to adjust
weights and optimize network performance [24].

The MLP’s architecture typically comprises an input layer, multiple hidden layers, and an
output layer, each consisting of interconnected nodes or neurons. This layered structure
allows for the learning of intricate representations of input data, enabling the network to
capture and process complex patterns. The nonlinear activation functions, such as sig-
moid, tanh, or ReLU function shown in Figs. 10, 11, 12, embedded within the neurons
introduce nonlinearity, enhancing the model’s capability to handle intricate relationships
within the data. The input layer of an MLP network receives the feature vectors, often
represented as a matrix where each row corresponds to a single input data point. Hidden
layers involve matrix multiplications of the input with the weights of the hidden layer
and applying activation functions. The output layer generates the final predictions. Its
structure varies based on the task (e.g., regression, classification). In classification, the
output layer often employs a softmax function for probability estimation across multiple
classes, each of which is represented by a neuron. Unlike classification tasks, in regres-
sion, the output layer typically involves one single neuron, and this neuron directly outputs
the predicted continuous value without any activation function or with a linear activation
function [25].

σ(x) =
1

1 + e−x
(10)

Where:

σ(x) is the sigmoid function, which squashes input values to the range [0, 1],

x represents the input to the function,

e is the base of the natural logarithm (Euler’s number).

tanh(x) =
ex − e−x

ex + e−x
(11)

Where:

tanh(x) is the hyperbolic tangent function, which maps input values to the range [-1,
1],
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x represents the input to the function,

e is the base of the natural logarithm (Euler’s number).

ReLU(x) = max(0, x) (12)

Where:

ReLU(x) is the Rectified Linear Unit function, which sets negative input values to zero
and keeps positive values unchanged,

x represents the input to the function.

The feedforward process encompasses the flow of information through the network’s lay-
ers, beginning with the input layer, where weighted sums of inputs are computed, fol-
lowed by the application of activation functions that introduce nonlinearity and produce
layer-wise outputs, ultimately leading to the generation of predictions at the output layer.
Conversely, backpropagation, an essential learning algorithm, facilitates parameter up-
dates by iteratively computing the gradients of a chosen loss function with respect to the
network’s weights and biases. The error between predicted and actual values is quantified
using a loss function (e.g., mean squared error for regression, cross-entropy for classifi-
cation). Through the chain rule, these gradients are propagated backward from the output
to the input layer, enabling the adjustment of weights and biases in the direction that
minimizes the prediction error [26].

The equation for the feedforward operation from the input to the first hidden layer in an
MLP is represented as:

h = σ(W1x+ b1) (13)

Where:

h represents the output of the first hidden layer,

σ denotes the activation function applied element-wise,

W1 stands for the weights between input and hidden layers,

b1 denotes the biases of the hidden layer,

x is the input vector.
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This equation computes the activation of the hidden layer by applying the activation func-
tion (σ) to the linear combination of input features (x), weighted by W1, and adding the
biases (b1).

In an MLP with multiple hidden layers, the transition from one hidden layer to another
involves similar calculations as the initial feedforward operation but uses the outputs of
the previous hidden layer as input to compute activations for the subsequent hidden layer.
The equation for the feedforward operation from one hidden layer (hi) to another hidden
layer (hi+1) in an MLP is represented as:

hi+1 = σ(Wi+1hi + bi+1) (14)

Where:

hi+1 represents the output of the subsequent hidden layer (hi+1),

σ denotes the activation function applied element-wise to the linear transforma-
tion,

Wi+1 represents the weights between the current hidden layer hi and the subsequent
hidden layer hi+1,

bi+1 denotes the biases of the subsequent hidden layer hi+1,

hi signifies the output of the current hidden layer hi.

The equation for the feedforward operation from the hidden to the output layer (ŷ) in an
MLP is represented as:

ŷ = σ(W2h+ b2) (15)

Where:

ŷ represents the predicted output,

σ denotes the activation function applied element-wise,

W2 stands for the weights between the hidden and output layers,

b2 denotes the biases of the output layer,

h represents the output of the last hidden layer.

The weight update rule used in the backpropagation algorithm employed for (θ) parameter
optimization and learning is represented as:
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θnew = θold − η · ∇θL (16)

Where:

θnew represents the updated parameter value,

θold denotes the previous parameter value,

η stands for the learning rate,

∇θL signifies the gradient of the loss function with respect to the parameter θ.

This rule adjusts the parameters (θ) iteratively by subtracting a scaled gradient of the loss
function (L) with respect to the parameter (∇θL) multiplied by the learning rate (η)). It
helps optimize the network by minimizing the loss function through gradient descent [27].

3.4 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a deep learning architecture tailored for analyz-
ing grid-patterned data like images. CNN is employed in the project for pattern recogni-
tion tasks from images. Unlike traditional neural networks as presented in Section 3.3,
CNNs leverage specific layers—convolutional and pooling layers—to automatically de-
tect hierarchical patterns within the input. These layers enable the network to learn local
patterns, detect features (like edges or textures) irrespective of their position in the image,
and progressively build complex representations from simpler ones. This characteristic
makes CNNs robust to variations in input, such as translation, rotation, and scaling in
images, enhancing their performance in tasks like image classification, object detection,
and segmentation [28].

The core operation in a CNN is the convolution operation. It involves sliding a small
matrix (called a kernel or filter) over the input data (such as an image), also termed a
tensor, and performing element-wise multiplication and summation. Each convolutional
layer consists of multiple filters. The convolutional layers apply a set of filters across
the entire input image or feature map to detect low-level features like edges and textures
and progressively combine them to form higher-level representations like object parts or
entire objects. The concept of shared weights means that each filter’s weights are the
same across the entire input. When the filter moves (convolves) over the input image,
it uses the same set of weights to extract features at different locations. This sharing of
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weights reduces the number of learnable parameters in the network significantly [29].
Mathematically, a simplified representation of the convolution operation is demonstated
below:

Mij =

fh−1∑
m=0

fw−1∑
n=0

(Ii+m,j+n ×Kmn) + b (17)

Where:

Mij represents the value at position (i, j) in the feature map,

Ii+m,j+n denotes the values in the input image at position (i+m, j + n),

Kmn stands for the values in the filter/kernel,

fh, fw denote the height and width of the filter, respectively,

b represents the bias term.

After each convolutional layer, there’s often a pooling layer (like max pooling shown
in Eq. 18 or average pooling shown in Eq. 19). Pooling reduces the spatial dimensions
(width and height) of each feature map obtained from the convolutional layer by aggregat-
ing and summarizing the most relevant information from neighboring regions by down-
sampling, reducing computational complexity, and controlling overfitting. Typically, an
activation function, such as one of those mentioned in Section 3.3, is applied element-
wise after each convolutional and pooling layer to introduce non-linearities, allowing the
network to learn complex relationships in the data [28].

Yij = max
m,n

(Xi×S+m,j×S+n) (18)

Where:

Yij denotes the output value at position (i, j),

Xi×S+m,j×S+n represents the input values within the pooling window,

S stands for the stride.

Yij =
1

F × F

F−1∑
m=0

F−1∑
n=0

Xi×S+m,j×S+n (19)
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Where:

Yij denotes the output value at position (i, j),

Xi×S+m,j×S+n represents the input values within the pooling window,

S stands for the stride.

The distinctive architecture of CNNs offers several advantages over traditional networks.
Firstly, CNNs embrace parameter sharing through convolutional layers, reducing the
number of learnable parameters and enhancing computational efficiency [29]. Tradi-
tional neural networks, also known as fully connected or densely connected networks,
process data by connecting each neuron in one layer to every neuron in the subsequent
layer. While effective for some tasks involving tabular data, these networks face chal-
lenges when dealing with grid-like data, such as images [30]. Indeed, with such archi-
tecture, a black-and-white image of a 100-by-100 grid of pixels requires a network of ten
thousand weights per node in the hidden layer to accommodate. In contrast, by leverag-
ing specialized layers as convolutional and pooling layers, the shared weights in CNNs
significantly reduce the number of parameters needed to be learned, thereby preventing
overfitting, enhancing generalization, and making them more computationally efficient
than fully connected networks, especially when dealing with high-dimensional data like
images. Moreover, these networks excel in spatial invariance, enabling them to detect
features irrespective of their precise location within the input, a crucial capability absent
in traditional networks. By focusing on local receptive fields and employing downsam-
pling through pooling layers, CNNs efficiently reduce the computational load compared
to fully connected networks [29]. This efficiency makes CNNs more scalable and practi-
cal for processing large-scale image data.

Image processing tasks can considerably benefit from the transfer learning technique,
where the CNN’s initial layers, responsible for detecting basic features like edges or tex-
tures, remain largely unchanged while higher-level feature extraction layers are retrained
on specific dataset. This approach accelerates the convergence of the model during train-
ing, enhances its generalization capability on limited data, and mitigates the computa-
tional expense associated with training from scratch, thereby optimizing both time and
resource utilization in achieving competitive performance on our targeted tasks. Lever-
aging these pre-existing representations mitigates the risk of overfitting on the limited
dataset, effectively harnessing the knowledge encoded within the pre-trained CNNs to en-
hance the model’s ability to generalize and make accurate predictions despite the scarcity
of task-specific data points available for training [31]. This approach serves as a strategic
workaround to maximize the model’s performance within the confines of a limited dataset
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while capitalizing on the pre-learned knowledge embedded in the pre-trained models.

To introduce another regularization technique, dropout is widely employed in neural net-
works to prevent overfitting and enhance generalization performance. During training,
dropout works by randomly deactivating a fraction of neurons (along with their connec-
tions) in a network’s hidden layers, effectively excluding them from the forward and back-
ward passes for that particular training iteration. This exclusion encourages the network to
avoid relying heavily on specific neurons or features, thereby improving its ability to gen-
eralize to unseen data. By randomly "dropping out" neurons, dropout introduces a form of
ensemble learning within a single model. Each training iteration operates on a slightly dif-
ferent architecture due to the exclusion of different neurons, leading the network to learn
more robust and diverse representations. This diversification of learned features reduces
the risk of overfitting as the network becomes less sensitive to noise or fluctuations in
the training data. Dropout typically involves specifying a dropout rate, which determines
the probability of neurons being dropped out during training. The optimal rate can vary
based on the specific dataset and model architecture. Importantly, dropout is exclusively
applied during training; during inference or prediction, all neurons are considered, but
their outputs are scaled to account for the dropout rate used during training [32]. Overall,
dropout is a powerful regularization technique that encourages neural networks to learn
more robust and generalized representations, contributing to improved performance on
unseen data and mitigating overfitting tendencies.

The wealth of literature underpins CNNs as the quintessential algorithm for image pro-
cessing tasks, making a compelling case for their adoption as the primary framework for
further exploration in this project.

3.5 Cloud Computing

The entire machine learning pipeline is hosted on the cloud with the help of needed sup-
porting functions such as computing power, storage, scheduling and orchestration. Ma-
chine Learning (ML) has evolved significantly in recent years, driving innovations across
various domains. The integration of cloud computing resources within ML pipelines has
gained substantial attention due to its potential to enhance scalability, efficiency, and ac-
cessibility. This section explores the existing literature pertaining to the utilization of
cloud computing in facilitating ML workflows.

Numerous studies highlight the advantages of leveraging cloud infrastructure for ML
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tasks. Lehrig et al. (2015) discussed the scalability and flexibility offered by cloud plat-
forms, enabling researchers and practitioners to scale computational resources dynami-
cally, process large datasets, accommodate diverse workloads, and execute complex ML
algorithms efficiently. The elasticity of cloud resources allows seamless provisioning of
computational power, enabling the handling of diverse ML models and experiments [33].
One significant benefit of cloud computing involves the provision of adaptable comput-
ing resources, which proves especially crucial for a multitude of deep learning workloads
characterized by diverse computational needs across different tasks and datasets. As ar-
ticulated by Chan et al. (2023), computational complexities in deep learning are one of
the fundamental challenges rendering the training of ML models on a single stand-alone
computer impractical due to the substantial demand for extensive memory storage. Cloud
infrastructure allows for dynamic adjustments in computing power, storage, memory, net-
working, virtual machines, containers, AI/ML services, and serverless computing.

Several researchers, including Islam (2021), emphasized the cost-efficiency of cloud-
based ML pipelines [34]. They discussed how cloud services’ pay-as-you-go models
enable cost optimization by dynamically allocating resources based on computational
needs, reducing idle times, and avoiding upfront infrastructure investments. Indeed, cloud
service providers offer assistance by meeting user requirements through a collective reser-
voir of cloud assets that can be allocated smoothly based on individual user requests or
scheduling methods, catering to specific needs [35]. Users can scale these resources up or
down based on their specific application needs, providing flexibility and cost-efficiency
in utilizing cloud services.

The integration of specific cloud services within ML development cycles has been a topic
of exploration. As the volume of available data continues to surge, the utilization of
machine learning pipelines for extensive learning endeavors presents an added layer of
complexity. Ensuring an appropriate design for the specific learning task becomes es-
sential, necessitating the effective organization of vast datasets. Moreover, managing the
provisioning of requisite computational power, storage capacity, and the coordination of
diverse infrastructure components across different locations becomes imperative due to
the prevalent distribution of large-scale data. Additionally, the timely updating of mod-
els further amplifies the challenge, demanding efficient synchronization and deployment
mechanisms within these distributed environments [36]. Carreira et al. (2019) analyzed
the integration of serverless computing and proposed a framework for complete ML work-
flows. They highlighted the advantages of serverless designs in lessening operational
burdens and facilitating smooth scalability for applications in real-time scenarios [37].
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Cloud service providers, such as Amazon Web Services (AWS), Microsoft Azure, Google
Cloud Platform (GCP), and IBM Cloud, offer diverse solutions for businesses seeking
scalable and flexible computing resources. Within the host organization, Amazon Web
Services (AWS) is the primary provider. Therefore, the cloud-based infrastructure layer
in this implementation is based on available services offered by AWS. AWS stands out
for its mature ecosystem with extensive service offerings, user interfaces, and global in-
frastructure.
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4 EXPERIMENTS

Experiments were conducted following the research proposal outlined in Section 3.

4.1 Study area

The study area for this research is strategically focused on Europe, with particular em-
phasis on the United Kingdom and Belgium, in alignment with the company’s ongoing
market expansion strategy. The choice of these regions is motivated by the current local-
ization plan and the company’s broader vision for European market penetration.

Furthermore, the decision is underscored by the specific challenges posed by the poor data
coverage of essential building specifications, including construction year, floor count, and
building use, in these two countries. The inadequacy of available open data sources and
the limitation of the company’s proprietary data pose significant hurdles for downstream
analytics and modeling endeavors, particularly in areas such as energy performance and
market valuation modeling. Additionally, the substantial size of these countries demands
a more targeted approach, as the existing volume of data falls short of supporting statisti-
cally robust assumptions on a nationwide scale.

Additionally, the research gains further relevance due to the limited prior work within the
chosen geographical boundaries, specifically the United Kingdom and Belgium. Working
with street view images of buildings at the country level is particularly apt, as archi-
tectural nuances serve as rich indicators of broader aspects of life, including prosperity,
culture, economy, and living lifestyle. Therefore, using a model built for a generic or
generalized area might introduce biases, as the distinctive characteristics inherent to the
studied regions are crucial for an accurate and unbiased representation of the local real
estate landscape. Given the undeniable diversity in architecture and street views across
different countries across the city development periods, constructing a model tailored to
the specific region of interest becomes imperative.

Thus, the study area is intricately tied to both the company’s strategic objectives and the
unique challenges presented by the data landscape in the pursuit of comprehensive and
accurate real estate analytics.
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4.2 Technology stack and tools

The core output of this project is an end-to-end machine learning pipeline encompassing
the entire process of data engineering, model training and prediction delivery. Empha-
sizing computational efficiency is vital to meet technical requirements, scalability, cost-
effectiveness, and competitive market positioning. Therefore, The chosen technical stack
aims to prioritize lightweight frameworks, minimizing human intervention and reliance
on local computational resources. Ensuring scalability and streamlined pipeline updates
are essential to mitigate significantly escalating costs, dependencies and manual adjust-
ment.

Python serves as the main programming language for the entire implementation due to
several key factors. Its adoption is driven by its simplicity, extensive libraries, and a robust
community of support. More importantly, Python serves as a common language within
the host company’s data teams, promoting enhanced communication, collaboration and
supervision.

Keras and TensorFlow are respectively high-level neural networks Application Program
Interface (API) and an open-source machine learning framework powering neural network
architecture. Keras simplifies the construction of neural networks, while TensorFlow of-
fers robust backend support for efficient computation. Leveraging the strengths of both
allows for streamlined image augmentation, model development, training, and evaluation.
The framework is popularly utilized in Python-based machine learning and deep learning
projects due to the ease of installation, compatibility, and extensive support within the
Python ecosystem [38]. Keras significantly simplifies the definition of neural network
architectures. Specifically, when merging or concatenating models in Keras, the Sequen-
tial API or functional API offers straightforward methods and functions to seamlessly
combine different neural network components.

VGG16-places365 is an open-source pre-trained convolutional neural network model
trained on Places365 dataset, made available by Zhou et al. [14], based on the VGG16
convolutional neural network architecture, primarily supporting various scene classifica-
tion exercises. This model, as introduced in Section 2.3, contributes mainly to the removal
of raw street view images which is not suitable for model training purposes. Examples of
rejected versus accepted images decided by the model are demonstrated in Section 4.3.2.

Google’s Street View Static API, as proposed in Section 3.1, is the primary tool to ex-
tract street view images for training data. The capacity to query by street address proves



31

particularly advantageous for this project, focusing on buildings and their attributes. The
metadata response yields crucial details like the capture date and geographic coordinates
corresponding to the image capture location [39]. The API’s provision for setting param-
eters like Field Of View (FOV), heading, size, and pitch grants users a significant level of
flexibility and customization of the captured images [40].

OpenAI’s API is the application programming interface developed by OpenAI to support
their large language models. These models, especially the GPT-4 model, have proved high
performance in natural language processing and text summarization [41]. In this project,
the API is employed to facilitate the parsing of building details from unstructured real
estate listing advertisements in the ground truth data collection phase.

Amazon Web Services (AWS) is utilized for cloud infrastructure and services. AWS pro-
vides a scalable and secure environment, allowing for efficient storage and scalable com-
putational power [42]. Specific AWS’s services employed are Amazon Simple Storage
Service (Amazon S3) for data storage, Amazon Elastic Compute Cloud (Amazon EC2)
for virtual computing instances, which host a large portion of the workflow from raw data
extraction, model training, and prediction generation. The cloud development platform
not only provides the necessary infrastructure for deploying the prediction service but also
offers the scalability and flexibility crucial for efficient and adaptable machine learning
service deployment.

Docker is employed for containerization, facilitating the seamless deployment and scala-
bility of the entire system. Containers encapsulate the application, its dependencies, and
configurations, ensuring consistency across different environments. Docker simplifies
deployment by creating a portable and reproducible environment for technical implemen-
tation. The modular design enables additionally its potential integration and utilization
across different application domains, underscoring its versatility and interoperability in
varied software environments [43].

This technology stack collectively empowers the project, combining the flexibility of
Python, the deep learning capabilities of Keras and TensorFlow, the specialized capability
for scene classification of VGG16-places365, the convenience and highly customization
offered through the API of the Google Street View service and the OpenAI large lan-
guage model for data collection, the scalability of AWS services, and the containerization
benefits of Docker. The integration of these components contributes to a robust and effi-
cient implementation, addressing the specific challenges in the implementation workflow
depicted in Section 4.3.
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4.3 Procedure

4.3.1 Data collection

Data collection involves gathering relevant data from various sources to obtain a compre-
hensive and holistic dataset to expedite subsequent stages. In the context of a supervised
learning task, the training dataset is expected to encompass all requisite predictor vari-
ables, labels, and resources, particularly images in this case. This stage includes, firstly,
the extraction of datasets where there are addresses and labels for model training tasks,
secondly the extraction of Google Street View images of those addresses and lastly the
geocoding process to convert addresses into geographic coordinates.

At the outset of this phase, special consideration is given to scenarios where initial datasets,
featuring addresses, location coordinates, and building specifications of interest, are read-
ily available. This strategic approach aims to maximize the utility of open-source data,
mitigating the need for resource-intensive, manual annotation processes. Beyond serv-
ing as addresses, the features within these datasets act as ground truths or labels for the
training dataset. Leveraging these addresses streamlines the scraping of street view im-
ages from Google, offering a cost-effective alternative to human-intensive tasks. This
integrated approach enhances the efficiency and resource utilization of the data collection
phase.

Web scraping: This phase starts with collecting data from various sources to build bench-
mark datasets. The collection of real estate data is primarily performed from listing pages
due to several reasons, even though the data is unstructured and implementing transfor-
mation requires time and human resources. Firstly, structured data, such as a cadastral
dataset, which would offer organized and readily available information, is either not pub-
licly accessible or lacks the specific features of interest. Additionally, the existing data
coverage is inadequate, particularly considering the substantial size of the country un-
der study. Consequently, these reliable listing pages, namely Loopnet [44] and Right-
move [45] for listings in the United Kingdom, and Zimmo [46] and Immoweb [47] for
listings in Belgium, emerge as invaluable sources of rich real estate building details. As a
result, a web scraping solution is essential to systematically extract, normalize, transform,
and load data from those listing pages into a usable format and then into the database.

Textual data parsing: Challenges arise when critical features are not structurally avail-
able but reside within the free-form text of property descriptions on those listings pages.
To address this, an automated solution was developed to parse pertinent data from the
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textual content. Fortunately, recent advancements in large language models have signif-
icantly alleviated the effort required for this parsing exercise. Leveraging these models
drastically reduces the complexity and manual labor involved in extracting relevant infor-
mation from unstructured textual data, enhancing the efficiency and accuracy of the data
collection process. Among multiple models ranging from open-sourced GPT4All [48] ob-
taining over 54,500 stars on Github and gpt4free [49] with over 48,700 stars to the "pay as
you go" OpenAI’s chatGPT API [50], the latter candidate stands out as the most effective
choice for text parsing tasks following exhaustive rounds of testing and fact-checking.

SVI grabbing: After having a benchmark data with addresses and needed building de-
tails, the subsequent phase involves procuring Google Street View images for those ad-
dresses. Utilizing Google’s Street View Static API [51] provides a convenient method
for executing these tasks, allowing customization of various parameters that influence the
characteristics of the images, including size, FOV, heading, and pitch. After exhaustive
rounds of experiments and visual validation, the following parameters yield the best re-
sults:

• Width = 224,

• Height = 224,

• Field of View = 90,

• Pitch = 10

These configurations are deliberately set to maintain a small 224-by-224 image size, re-
ducing computational burdens without compromising acceptable resolution. The ultimate
aim is to have the FOV tailored to capture the entire building primarily in a horizontal
view and, consequently, focus on avoiding any potential cutoffs within the image. Addi-
tionally, the pitch adjustment tilts the camera slightly upward, with the aim of capturing
all or as many building floors as possible vertically. It is important to note that this tilt is
slight to avoid creating distorted or unusual-looking images. This aspect holds particu-
lar significance in model training, especially concerning predicting the number of floors
within buildings.

Geocoding: Given the verification of geographic coordinates during the experiment phase,
the inclusion of latitude and longitude in our dataset proves to be instrumental for model
training. Therefore, it becomes imperative to enrich our dataset with latitude and longi-
tude for effective model training. To achieve this, we leverage the Google Maps Geocod-
ing API to obtain accurate geographic coordinates corresponding to the addresses in our
dataset. Geocoding using this API involves sending HTTP requests containing addresses



34

as parameters and retrieving the corresponding latitude and longitude coordinates from
the API’s JSON responses. There are no additional parameters to be configured to have it
work.

4.3.2 Data preprocessing

Data preprocessing stage encompasses several key components, starting with meticulous
image filtering to curate a repository of high-quality images conducive to accurate model
learning. Subsequently, the dataset undergoes meticulous data splitting, an essential step
that delineates subsets for training, validation, and testing purposes. Complementing this,
the augmentation of images amplifies the dataset’s diversity, resolve data imbalances, en-
hancing the model’s ability to generalize. Additionally, the encoding of categorical labels
forms a fundamental aspect, translating qualitative information into a format conducive
to machine learning algorithms. Together, these processes underpin the foundation of
reliable, comprehensive data preprocessing, laying the groundwork for robust model de-
velopment and evaluation.

Image filtering: Because of the unpredictable quality of street view images, a consider-
able portion of them cannot be directly employed for model training purposes. Examples
of images that are not sufficiently qualified for model training are presented in Figs. 3 and
4, as compared to those accepted images illustrated in Figs. 5 and 6. The primary purpose
of incorporating VGG16-places365, reviewed in Section 2.3, is to enhance the quality
of the dataset of the images retrieved from Google Street View. Given the challenges
associated with scraped images, such as censorship or obstructions like buses covering
buildings, the VGG16-places365 model emerges as a discerning tool assisting in identi-
fying and filtering out undesirable images, thereby ensuring a more accurate and relevant
dataset for analysis. In this assignment, the scraped images are fed to the model to get a
prediction about the scene in the individual image, and if the predicted label falls in the
acceptable list of labels, the image is kept for model training or discarded otherwise. This
approach yields an approximate 65% acceptance rate.
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(a) (b)

Figure 3. Filtered Street view images (1): (a) Redacted building; (b) No building.

(a) (b)

Figure 4. Filtered Street view images (2): (a) Tree occlusion; (b) Vehicle occlusion.
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(a) (b)

Figure 5. Accepted Street view images (1): (a) Apartment; (b) Commercial building.

(a) (b)

Figure 6. Accepted Street view images (2): (a) Detached house; (b) Semi-detached house.

Train/Test split: This step commences with the division of the dataset into two subsets:
a training set accounting for 80% and a test set accounting for 20% of the whole dataset.
Following this initial split, the training set undergoes further partitioning into a revised
training set (80%) and a validation set (20%). The training set serves as the foundation for
training the neural network model, allowing it to learn patterns and relationships within
the data. Simultaneously, the validation set acts as a benchmark during training, providing
a means to assess the model’s performance on unseen data. This iterative process involves
adjusting model parameters based on performance metrics derived from the validation set,
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fostering a more refined and generalized model. The test set remains untouched until the
final evaluation phase. Its purpose is to provide an unbiased assessment of the model’s
overall performance on completely unseen data.

Image augmentation: To enhance the model’s generalization capabilities, the data pre-
processing pipeline incorporates image augmentation techniques. Employing an image
generator during model training, this step introduces diversity into the dataset with the
generation of new images during each training epoch. The augmentation process en-
compasses a range of transformations, including rescaling, shifting, shearing, zooming,
flipping, and brightness adjustments. These meticulously crafted augmentation rules con-
tribute to a more robust and adaptable neural network model. Practically, image aug-
mentation is performed as a oversampling action to introduce additional samples of the
minority classes, providing the model with a more balanced representation of classes. The
techniques include:

• Width shift range = 0.1,

• Height shift range = 0.1,

• Shear range = 0.01,

• Zoom range = [0.9, 1.1],

• Horizontal flip = True,

• brightness range = [0.8, 1.2]

The transformations are randomly applied at a different rate with in the specified range
per technique to minority class or under-represented samples, and thereby artificially in-
creasing the number of training instances for those classes. This helps address imbalance
of data and ensures that the model receives sufficient exposure to less represented patterns
in the data.

Outlier detection: This technique is applied on the labels of the datasets using the in-
terquartile range (IQR) to identify data points that fall outside a certain threshold of 95%
and they are removed because of the number of samples is not significant. For example,
buildings uncommonly have over ten floors in the two countries, making the number of
samples for such classes inconsiderable.

Label encoding: An extra step is taken for classification task where categorical labels are
encoded into numerical format. The process involves mapping each distinct category to a
specific integer. The order of the integers is arbitrary and does not convey any ordinal rela-
tionship between the categories. This transformation is particularly useful when working
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with algorithms that require numerical input, such as the model architecture which is used
in this assignment. The encoding rule is stored in a json file and packed together with the
trained model configurations.

4.3.3 Model training and Fine-tuning

This phase constitutes a supervised learning assignment, employing a neural network
structure of the simple Multilayer Perceptron (MLP) for numerical inputs and Convo-
lutional Neural Network (CNN) for imagery input. Those two structures and working
principles have been reviewed in Sections 3.3 and 3.4 respectively.

Notably, specific configurations for each model are subject to variation, and the architec-
tural details further undergo refinement through an iterative fine-tuning process. The fine-
tuning step involves adjusting hyper-parameters such as learning rate, number of epochs,
activation functions, rules for early stopping, modifying layer architectures, and experi-
menting with regularization techniques to enhance generalization and mitigate overfitting.
The in-progress evaluation and fine-tuning step is an essential feedback loop, enabling the
model to adapt and optimize its performance based on real-world data patterns. The goal
is to achieve a well-balanced and robust model that demonstrates superior performance
across various datasets and effectively generalizes to unseen instances.

To enhance the model’s robustness and mitigate overfitting, dropout layers are incorpo-
rated during training. Dropout layers randomly deactivate a proportion of neurons dur-
ing each iteration, preventing excessive reliance on specific connections and promoting a
more generalized and resilient model.

The choice of the loss function is contingent upon the nature of the problem at hand. For
regression tasks, such as predicting the year of construction and the number of floors, the
mean absolute error is employed. Conversely, for classification tasks, specifically in pre-
dicting building use, categorical cross-entropy emerges as the appropriate loss function.
This nuanced selection aims to align the model’s learning process with the specific re-
quirements and objectives of the distinct prediction problems within the supervised learn-
ing framework.

As a result of this phase, the outcome includes the model architecture, learned weights and
biases, and configurations that the trained model has acquired during the training process.
Keras offers a way to store the model’s architecture, learned weights, and configuration
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in a convenient package in the hierarchical data format version 5 file format.

In terms of technical settings, cloud services such as AWS offer robust infrastructure
and managed services like Amazon S3 storage and Amazon EC2 instances, streamlin-
ing the deployment process and alleviating administrative overhead. The ability to store
trained models and datasets on S3 facilitates accessibility and version control, enabling
easy model updates or retraining.

4.3.4 Evaluation

In the evaluation phase, a critical assessment of the model’s performance is conducted
using the dedicated test set. The test set, distinct from the training and validation data,
serves as an independent benchmark to evaluate the model’s ability to generalize to unseen
instances. The metrics used in this phase are proposed and reviewed in Section 3.2.

In the context of regression tasks, such as predicting the year of construction and the num-
ber of floors, the evaluation involves metrics like mean absolute error, providing insights
into the model’s predictive accuracy and the extent of deviations in its estimations.

Moreover, the confusion matrix is employed for classification tasks in addition to accu-
racy, providing a granular view of the model’s performance across different classes. This
comprehensive evaluation not only verifies the model’s efficacy in making accurate pre-
dictions but also offers insights into potential areas for improvement.

The evaluation of the test set serves as a robust validation of the model’s generalization
capabilities and real-world applicability. Any observed discrepancies or areas for en-
hancement identified during this evaluation phase prompt further refinement to ensure the
model’s optimal performance in diverse scenarios beyond the training data.

4.3.5 Deployment

With the completion of the evaluation and the acceptance of the trained models, the focus
now shifts to the deployment of the model for real-world applications. Deployment sig-
nifies the seamless integration of the trained model into operational settings, allowing it
to make predictions based on new and unseen data. The deployment takes the form of a
standalone service hosted on an Amazon EC2 instance, synergistically coupled with Ama-
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zon S3 storage to accommodate the trained model, the training tabular datasets and the
associated images.

The deployed prediction service is intentionally designed with a simplistic architecture
to facilitate containerization. Once deployed to the Amazon EC2 instance, it operates
by receiving a path to an Amazon S3 location containing stored Street View image(s).
Upon processing this input, the service generates predictions and delivers the results back
to Amazon S3 in a CSV file format containing corresponding predicted labels for each
provided image. This streamlined approach ensures efficiency and ease of use in the
deployment process while facilitating straightforward utilization in practical applications.

Cloud computing, once again, offers several benefits in deploying machine learning ser-
vices like the designed prediction service. Primarily, it provides scalable, on-demand ac-
cess to computing resources, enabling the deployment of the prediction service on cloud
instances like Amazon EC2, ensuring flexibility in resource allocation based on workload
demands. This scalability is crucial, as it allows the service to adapt to varying prediction
tasks and accommodate increased computational needs when handling larger datasets or
higher prediction requests.

The containerized design of the prediction service is conducive to seamless deployment
to cloud infrastructure and integration into other applications or services. Indeed, this
design’s adaptability and compatibility with cloud computing architectures present a sig-
nificant advantage: it opens doors for API usage. By leveraging the inherent scalability
and flexible resource allocation of cloud platforms, this prediction service can be ex-
posed as an API endpoint, enabling easy access for external applications or services. This
API-centric approach not only enhances accessibility but also promotes interoperability,
allowing diverse systems to utilize the prediction service seamlessly. Additionally, the
modular and containerized structure of the service streamlines its integration into exist-
ing cloud ecosystems, facilitating swift deployment and utilization via APIs within varied
cloud-based environments.

4.4 Datasets

This section reveals the resulting datasets that were collected and pre-processed according
to the methodologies described in Sections 4.3.1 and 4.3.2. As a result, the datasets consist
of 136,554 RGB (red, green and blue) images of size 224 x 224 x 3, specifying the red,
green, and blue color components for each pixel. The dataset for Belgium contains 76,581
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images in total with different label distributions, as shown in Figs. 7, 8, and 9, and the
dataset for the United Kingdom contains 59,973 images with different label distributions
as shown in Figs. 10, 11, and 12.

Figure 7. Label distribution for year of construction in Belgium’s dataset
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Figure 8. Label distribution for number of floors in Belgium’s dataset

Figure 9. Label distribution for building use in Belgium’s dataset
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Figure 10. Label distribution for year of construction in United Kingdom’s dataset

Figure 11. Label distribution for number of floors in United Kingdom’s dataset
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Figure 12. Label distribution for building use in United Kingdom’s dataset

The main common issue with these two datasets is the imbalance of labels of which
the distribution is not uniform, meaning that one or more classes or distinct values have
significantly fewer samples compared to others. In such scenarios, models trained on
imbalanced datasets may exhibit bias toward the majority class and perform poorly in
predicting the minority class. Therefore, outlier detection and oversampling using image
augmenation are the two techniques adopted to mitigate this issue. Detailed description
of these two techniques have been mentioned in Section 4.3.2.

In summary on the dataset,

• The construction year range of the training datasets in Belgium and the United
Kingdom is 117 years from 1905 to 2022 and 122 years from 1900 to 2022 respec-
tively,

• The maximum floor count of the training datasets to be used in experiments is 9
floors for both countries,

• Residential building use dominates the commercial one in both countries. The label
distributions are largely imbalanced.
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4.5 Description of experiments

Although we are working with distinct datasets that correspond to the United Kingdom
and Belgium, addressing three distinct prediction problems in each country, the method-
ology and experimental approach remain consistent for similar prediction tasks. This
implies that, for instance, the model training process for predicting the year of construc-
tion or floor count in both the United Kingdom and Belgium shares similarities in terms
of methodology, network architecture and other base configurations which are suitable for
image regression problems. Similarily, model training for predicting the building use for
both countries involves indifferent learning process for image classification.

4.5.1 Base configurations

A standardized set of base configurations, also known as hyper-parameters, provides a
consistent starting point for experimentation, facilitating fair and comparable evaluations
across various models and tasks undertaken in this research endeavor.

For model training, the configurations, which are initially set and iteratively fine-tuned,
are as follows:

• Learning rate = 0.0001,

• Number of epochs = 300,

• Monitoring metric for classification = Validation accuracy,

• Monitoring metric for regression = Validation loss,

• Patience = 20

The initial base model configurations serve as foundational parameters standardized across
all experiments conducted in this study. These configurations entail a fixed learning rate
set at 0.0001 to regulate the magnitude of parameter updates during training. The train-
ing process is generously allowed to span a maximum of 300 epochs, ensuring an ample
number of iterations to converge towards optimal model performance, while no models
require as many epoch to complete the training.

Monitoring metrics are specified differently based on the task. For classification tasks,
the primary metric for monitoring model performance is validation accuracy, while for
regression tasks, validation loss is employed as the key metric. The loss functions are
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measured on the validation set to continuously monitor model performance on unseen
samples. In our exploration of diverse tasks encompassing both classification and re-
gression, the choice of appropriate loss functions stands pivotal in optimizing model per-
formance. Extensive experimentation was conducted, considering various loss functions
and regularization methods, to discern the most effective options. For the regression task
dedicated to the prediction of continuous values, such as the year of construction and the
number of building floors, alternative metrics such as Mean Absolute Error (MAE), Mean
Squared Error (MSE), Mean Absolute Percentage Error (MAPE) were considered during
the experimental process. In the context of multi-class classification tasks like predict-
ing the building use, distinct loss function such as categorical categorical crossentropy
emerges to be useful for model evaluation.

Additionally, since regularization techniques are essential components in mitigating over-
fitting and enhancing the generalization capability of models, two methods are considered
useful for this study. In the model hyper-parameter setting, an early stopping mechanism
is implemented with a patience value of 20 epochs, allowing the model to cease training
if there is no improvement observed in the specified monitoring metric for a consecu-
tive 20 epochs, thereby preventing over-fitting and enhancing generalization capability.
The second methodology is to employ a dropout layer in the network architecture to ran-
domly deactivate a fraction of neurons during each training iteration, thereby preventing
the network from becoming overly dependent on specific neurons or features. Further
explanation on the working principle of dropout can be found in Section 3.4.

In the model training phase, the decision to leverage pre-trained Convolutional Neural
Networks (CNNs) over training from scratch stemmed from several strategic considera-
tions. In addition to prioritizing pre-trained CNNs due to their ability to capture generic
visual features and expedite model convergence, the decision was further influenced by
the constraints imposed by the limited dataset at our disposal. The dataset available for our
specific task is relatively constrained in size, which can impede the effective training of
deep learning models from scratch. Several pre-trained models, such as VGG16, ResNet,
and specialized variants like VGG16 trained on the Places365 dataset, were considered as
potential candidates to leverage their learned features for the prediction tasks. These pre-
trained models are renowned for their deep architectures and prior training on large-scale
datasets, enabling them to capture rich hierarchical features from images, making them
valuable starting points for transfer learning in our image-related tasks.

In the data aspects, the inclusion of geographical coordinates alongside street view im-
ages is explored to assess their impact on predictive performance. The objective is to
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evaluate whether augmenting the model with geographical coordinates provided supple-
mentary predictive value or introduced unnecessary complexity to the machine learning
pipeline in general and to the model’s learning process. To mention a few reasons behind
the added complexity, the data does not come with a full offer of coordinates in the first
place, and enriching those involves additional scraping and geocoding exercises. Besides,
incorporating the numeric features requires an additional branch in the neural network
to accommodate them. The investigation facilitates an empirical analysis of the poten-
tial synergy between visual information from street view images and locational context
encoded within geographical coordinates.

4.5.2 Experiments

Each experiment involves deliberate adjustments to the models, aimed at understanding
their sensitivity to these alterations. This scrutiny seeks to ascertain the significance of
these changes on the models’ performance and how they impact the overall outcomes.

These experiments serve a dual purpose. Firstly, they help pinpoint the crucial modifi-
cations that genuinely enhance the models’ performance. Secondly, they aim to extract
practical insights that inform decisions on model selection, feature selection, model set-
tings, and structures relevant to image prediction tasks.

In the pursuit of enhancing the predictive capabilities of image-based models, the neces-
sity for conducting multiple experiments becomes evident. Traditional machine learn-
ing techniques often rely on feature correlation studies and redundancy analysis prior to
model training to optimize model performance. However, the application of these con-
ventional methodologies to image data proves to be intricate and less straightforward.
Unlike tabular data, images lack easily interpretable features, making it challenging to
employ traditional feature engineering techniques. To address this complexity, two series
of experiments were conducted wherein distinct models were trained using solely image
data (demonstrated in Experiment 1) and an augmented model incorporating additional
tabular information from the geographical coordinates (demonstrated in Experiment 2).

Despite these foundational changes, the approach to sensitivity testing for configuration
alterations remains notably consistent. Each adjustment is carefully assessed, aiming to
discern the impact on model performance, regardless of whether it relates to the image-
exclusive setup or the integration of multi-modal inputs. The goal persists: to gauge
the models’ responsiveness to modifications, unveiling the most influential changes that
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significantly shape their performance and functionality.

As was pointed out in the setup section 4.5.1, an optimal set of hyper-parameters and
other configurations need to be achieved with an intensive iterative process of fine-tuning.
Paramount considerations encompass the determination of the network’s architectural
structure, kernel size, pooling layers, activation function, and optimization algorithm.
In addition to these aspects, the exploration of pre-trained models stands as a crucial
criterion in this experimental phase. The choice of a pre-trained model introduces the
prospect of leveraging pre-learned features from extensive datasets, potentially enhanc-
ing the model’s ability to discern complex patterns in the given image data. The selection
of a suitable loss function aligns with the specificity of the prediction task, and hyper-
parameter tuning encompasses critical factors such as learning rate and batch size. This
meticulous configuration aims to discern the intrinsic predictive capabilities of the CNN
when exclusively fed with image inputs, setting the stage for subsequent experiments that
integrate additional tabular data to discern potential enhancements in model performance.

As clearly defined by the scope of this research, three key building features come under
focused examination: year of construction, floor count, and building use. These features
are discretely addressed as distinct tasks within the model training process.

This section covers the setup of each series of experiments, with some examples of the
network structure. The specific network structure of each fine-tuned model and a sum-
mary of model performance per experiment are revealed in the Results section 4.6.

Experiment 1: Only image input

The first set of experimental rounds centers around the exclusive utilization of image-
based data in training the predictive model, with a focus on employing a Convolutional
Neural Network (CNN) as the chosen architectural framework.

An example of a network architecture that was tested during the experiment of model
training for the year of construction is depicted in Figs. 13. Figure 14 is how Keras
displays the training network structure with additional information about the number of
parameters to be trained. In this network, the chosen pre-trained model is VGG16, as
demonstrated in Figure 15. It is possible to decide whether to retrain the parameters of the
pre-trained model. The input layer of the network is primarily determined by the format
of the input images. As aforementioned in Section 4.4, the datasets contain RGB images
of size 224 x 224. Technically, they are represented as 224-by-224-by-3 data arrays, thus
the shape of the input layer. The flatten layer is used to transform multi-dimensional data
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arrays into single-dimensional arrays that are then fed into the following fully connected
layers. The subsequent layers can be tuned during experiments with different numbers of
neurons. The last layer is the one that yields the result of prediction, thus having as many
neurons as the number of labels. Since this is a network tested for an image regression
problem, the last layer has only one neuron to yield the prediction. Totally, as shown
in Figure 14, the network contains 167,827,265 parameters, with 14,714,688 parameters
transferred-learned from the pre-trained model without retraining.

Figure 13. Example of a CNN model for experiment 1
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Figure 14. Example of a CNN model architecture for experiment 1 (Keras terminal display)
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Figure 15. VGG16 model architecture (pre-trained)

The dataset is initially divided into training, validation, and test sets, allocating propor-
tions of 60%, 20%, and 20%, respectively. There are three pre-trained models that were
examined: VGG16, ResNet50 and InceptionV3. The other part of the network structure is
highly customizable with different depths and number of neurons per layer. Acknowledg-
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ing the type of task allows selection of suitable loss function and evaluation metrics. For
predicting year of construction and floor count, MAE and Mean Squared Error (MSE)
were taken into consideration for loss function and MAE for evaluation metrics in the
fine-tuning process. For predicting building use, since it is a image classification prob-
lem, it requires an additional transformation step to perform label encoding. For this task,
Categorical Cross Entropy (CCE) is selected as the loss function and the performance is
evaluated with accuracy and confusion matrix.

During the experiment, three different network structures have been fine-tuned to explore
the impact of the architecture on the performance of model. Different network structures
have varying complexities, regulization techniques, capacities to capture features, and
generalization abilities.

Experiment 2: Image and Tabular inputs

For further exploration for the trickier task of predicting year of construction in which vi-
sual information of the building might be insufficient to convey patterns, both images and
geographical coordinates are put into this round of experiments. This approach aims to
evaluate the potential value that supplementary tabular data may contribute to the overall
predictive power of the model, acknowledging the unique challenges posed by image-
based datasets and the need for tailored strategies to harness their full potential in pre-
dictive modeling. The specifics of the experiments, such as data splitting, pre-trained
model selection and hyper-parameter options, are largely identical to Experiment 1. The
implementation of multi-branch network is the biggest difference.

The second set of experiments reveals a significant evolution occurring with the net-
work’s capability to accommodate both image inputs on the Convolutional Neural Net-
work (CNN) branch and tabular inputs on the Multi-layer Perceptron (MLP) branch. The
network architecture is depicted in the Figures 16 and 17. The left branch is responsible
for convolutional operations, thus having similar functions as performed by the networks
examined in the experiment 1. The right branch is especially designed to accept two
features which are the latitude and longitude as inputs. This branch follows the opera-
tional logic of an MLP model with multiple fully connected layers. The two branches are
concatenated into one. Additional layers can be added prior to the output layer.
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Figure 16. Example of a multi-branch CNN and MLP model architecture for experiment 2
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Figure 17. Example of multi-branch CNN and MLP model architecture for experiment 2 (Keras
terminal display)

By introducing the capability for the network to assimilate both image and tabular data,
this experimental phase explicitly targets the efficacy and added value brought forth by
the inclusion of tabular information. It sets out to discern whether the incorporation of
these tabular inputs genuinely enhances the predictive power and overall performance of
the model.

The integration of tabular inputs introduces a cascade of implications that extend beyond
the immediate model modification. Preceding steps, such as data collection and prepro-
cessing, and feature engineering, now face the challenge of accommodating and harmo-
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nizing disparate data types, demanding an evolved approach to data preparation. Fur-
thermore, this augmentation ripples through subsequent stages, impacting model training
and validation, evaluation, and deployment. Each of these stages must adapt to handle
the fusion of image and tabular data effectively. It becomes imperative to reassess model
evaluation metrics, validation strategies, and deployment protocols to account for this
amalgamation accurately.

4.6 Results

Hyper-parameter optimization was one of the most intensive process throughout the project
to search for the best combination of configurations involving the network structure and
pre-trained model, loss functions and activation functions, learning rate and patience, etc.
At the beginning of each experiment, the allowed number of epochs is set generously to
300, but they are not expected to be reached due to early stopping technique with pa-
tience settings. With the optimal learning rate of 0.0005 and patience of 20, all models
needed less than 100 epochs to converge. Both MSE and MAE were examined as the loss
function during model development for regression problems, MAE served as a more apt
loss function for the specific problems at hand. By prioritizing a loss function that treats
all errors equally and is less influenced by outliers, the resulting Convolutional Neural
Network (CNN) models exhibit enhanced generalization capabilities. CCE is the selected
loss function for image classification problem. Even though VGG16 is fairly large, it has
proven to be the best choice of pre-trained model for these use cases. The rest of the
network varies case by case.

In summary, the common model configurations are as follows:

• Learning rate = 0.0005,

• Patience = 20,

• Number of epochs = less than 100,

• Monitoring metric for classification = Validation accuracy,

• Monitoring metric for regression = Validation loss,

• Loss function for classification = CCE,

• Loss function for regression = MAE,

• Pre-trained model = VGG16,

• Network structure varies per task,

• Average training time per model = 3 hours,
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• Average prediction speed = 10000 images / 120 seconds.

The image regression problem predicting the year of construction underwent both exper-
iments, and the ones trained in experiment 2 yielded a better generalization capability
towards unseen data. Figures 18 and 19 display the histograms of residuals between true
test values and predicted values for Belgium’s and the United Kingdom’s best models.
The MAE for Belgium’s model is 22 years and for the United Kingdom’s model is 25
years. The fairly symmetric bell-shaped histograms of residuals likely resemble normal
distributions that slightly skew to the positive tail. The wide bells indicate higher vari-
ability, suggesting that the models’ predictions exhibit a broader range of errors.

Figure 18. Belgium test set’s prediction result residual plot for year of construction
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Figure 19. United Kingdom test set’s prediction result residual plot for year of construction

Experiment 1 with networks having CNN architecture suited the image regression prob-
lem for predicting the number of floors without the need of any additional locational data.
Prediction residuals of models are plot in the Figures 20 and 21. The shape of the plots
indicates a normal distribution with mean close to zero and small standard deviation. The
MAEs for Belgium’s model and the United Kingdom’s model are 0.79 floors and 0.81
floors respectively.
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Figure 20. Belgium test set’s prediction result residual plot for number of floors

Figure 21. United Kingdom test set’s prediction result residual plot for number of floors
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The best image classifiers of both countries for building use has been generated in the
experiment 1 with CNN architecture. The performance metrics obtained for the Bel-
gium model predicting building use (depicted in Figure 22 and Table 1) provide valuable
insights into its effectiveness across different classes. The overall accuracy of 87.21% in-
dicates a commendable level of correctness in predictions. Examining individual classes,
the model demonstrates robust accuracy for "apartment" and "house" classifications at
90.99% and 87.99%, respectively, while achieving a slightly lower accuracy of 68.99%
for "commercial building" predictions. Precision metrics reveal the model’s ability to
minimize false positives, with particularly high precision observed in the House class at
94.66%. However, precision for "commercial building" predictions is relatively lower,
standing at 61.59%. The recall metrics underscore the model’s effectiveness in captur-
ing relevant instances, with higher recall observed for "apartment" and "house" classes
compared to "commercial building". The F1 scores provide a balanced measure of pre-
cision and recall, showcasing the model’s overall ability to strike a harmonious trade-off
between these key metrics. These results offer a nuanced understanding of the model’s
performance, emphasizing its strengths in certain classes while highlighting areas for po-
tential refinement, particularly in the accurate prediction of "commercial building" use.

Figure 22. Belgium test set’s confusion matrix of prediction results for building use
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Table 1. Performance Metrics for the model predicting building use

Metric Overall apartment house commercial building

Overall Accuracy 0.8721 - - -
Accuracy per class - 0.91 0.88 0.69
Precision per class - 0.88 0.95 0.62
Recall per class - 0.91 0.88 0.69
F1 per class - 0.89 0.91 0.65

The Figure 23 and the Table 2 reveals the performance of the best building use classifier
trained on United Kingdom’s dataset. The overall accuracy, standing at 89.95%, reflects
the model’s proficiency in correctly classifying instances across all classes. Examining
individual class performance unveils notable achievements, with "house" class achiev-
ing an impressive accuracy of 95%, while Classes "apartment" and "commercial build-
ing" demonstrate solid accuracies of 91.99% and 64.99%, respectively, indicating areas
where the model faces greater challenges. In these instances, the model may encounter
inherent complexities, such as class imbalances, subtle distinctions between instances, or
limited training samples. It becomes evident that the model’s predictive performance is
not uniformly distributed across all classes, emphasizing the importance of scrutinizing
individual class metrics. Precision metrics highlight the model’s ability to minimize false
positives, showcasing values of 85%, 96%, and 78% for Classes "apartment", "house",
and "commercial building", respectively. Moreover, recall metrics underscore the model’s
effectiveness in capturing relevant instances, with corresponding values mirroring the ac-
curacy trends. The harmonic mean of precision and recall, the F1 score, reinforces the
balanced performance across classes, with values of 88.25%, 95.58%, and 70.73%. These
metrics collectively depict a model that not only achieves high accuracy but also demon-
strates a balanced trade-off between precision and recall, crucial for reliable predictions
across diverse classes.
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Figure 23. United Kingdom test set’s confusion matrix of prediction results for building use

Table 2. Performance Metrics for United Kingdom’s model predicting building use

Metric Overall apartment house commercial building

Overall Accuracy 0.8995 - - -
Accuracy per class - 0.92 0.95 0.65
Precision per class - 0.85 0.96 0.78
Recall per class - 0.92 0.95 0.65
F1 per class - 0.88 0.96 0.71

The analysis of misclassifications reveals an interesting trend within the model’s predic-
tions, notably in distinguishing between "apartment" and "commercial building" classes.
The model exhibits a tendency to mislabel instances from one of these classes as belong-
ing to the other. Specifically, "apartment" and "commercial building" categories appear
more prone to being confused with each other than with the "house" class. This pat-
tern suggests that the model encounters challenges in discerning the subtle distinctions
between these two classes, potentially due to shared architectural or structural features.



62

The following table summarizes best performance of the chosen models for each predict-
ing task trained on two datasets, one for Belgium and the other for United Kingdom.

Table 3. Best Model Performance Summary Table

Metric - Prediction task Belgium United Kingdom

MAE - Year of Construction 22 years 25 years
MAE - Floor count 0.79 floors 0.81 floors
Accuracy - Building use 87% 89%

The best model for predicting year of construction comes out of the experiment 2, while
the models from experiment 1 show the best results for the other two predicting tasks.

The MAE of 22 years for Belgium and 25 years for the United Kingdom should be in-
terpreted in the context of the overall range of 117 years and 122 years (as mentioned
reported in Section 4.4) respectively. While there is a possibility that results from related
work (reviewed in Section 2.1) might yield slightly better predictions, it’s important to
note that these studies might cover more localized areas or require additional building
attributes. Additionally, some related approaches might involve more complex method-
ologies, including intensive image processing techniques. The model, with its relatively
simple yet effective performance, strikes a balance between accuracy and computational
efficiency, making it a practical solution for predicting construction years over a broad
range in a real-world context.

With an MAE of 0.79 floors for Belgium and 0.81 floors for the United Kingdom, the
model’s performance is quite precise, particularly when considering the scale of the floor
range (9 floors). The small absolute error suggests that the model is effective in predicting
the number of floors, with a level of accuracy that is a small fraction of the total floor
range. Notably, this model slightly outperforms the ones from similar studies in Section
2.2, showcasing its superior accuracy with fewer errors and a straightforward solution.

The accuracy of 87% for Belgium and 89% for the United Kingdom in building use clas-
sification is noteworthy, especially when considering the complexity of built environment.
The model demonstrates a strong capability in categorizing buildings, and the accuracy
figures reflect a high level of effectiveness.
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5 DISCUSSION AND CONCLUSION

In this section, findings are summarized to answer the defined research questions and
expand on the scope of future improvement.

5.1 Current study

The project’s feasibility is primarily determined by technical, financial, and operational
factors. Technically, the delivered pipeline succeeds in handling diverse data sources, au-
tomating data engineering tasks, ensuring model scalability, and mitigating biases with
well-considered settings. Financially, the cost of data acquisition, computational re-
sources, and model development is, at all times, taken into consideration for every deci-
sion made, from selecting data sources to open-source frameworks and tools to affordable
cloud services without overhead and fixed hardware investments. Setting up automated
data retrieval pipelines that scrape, standardize, and consolidate diverse datasets to ensure
they align with model input requirements helps overcome operational challenges involv-
ing data integration complexities and algorithmic adaptability. Ultimate operational suc-
cess can also be determined by the establishment of the prediction pipeline as a service
that facilitates downstream analytics processes.

Raw training data is sourced from leading real estate listing platforms and street view
APIs. Building Extract, Transform, Load (ETL) pipelines facilitates data integration by
consolidating heterogeneous data formats, cleaning and standardizing information, and
synchronizing multiple data sources. Employing large language models in text parsing has
proven to be economically useful to extract unstructured data without the help of human
intervention in annotation. Image extraction is performed with the help of the Google
Street View API. The Google Geocoding API is used to derive geographical coordinates
from addresses. Integration solutions involve scalable cloud-based storage and efficient
data management frameworks to handle large volumes of heterogeneous data. Overall,
the data acquisition and processing are efficient, and the resulting dataset is sufficient for
model training and validation. The ETL pipeline is designed to be fully automated to
extract new data and consolidate it in the data lake for future model updates.

Optimal methodologies involve transfer learning using pre-trained Convolutional Neural
Networks (CNNs) to extract features from images and Multilayer Perceptron (MLP) to
learn from tabular data. Techniques selected for fine-tuning, augmentation, and regular-
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ization are considered significantly useful in this study to enhance model performance
and the learning process.

The selected tools and frameworks perform well in supporting the development and de-
ployment of the solution in a scalable, efficient, and automated way. The technology
stack utilizes common tools to facilitate seamless communication and collaboration in
the future.

Trained models contribute significantly to data enrichment by predicting building details
from images. With this solution, we have an additional approach to using a visual ap-
proach to make assumptions about the real estate data. The solution can help fill the gap
of missing data in the database owned by the company.

To reflect on the selected model performance, predicting the construction year from street
view images presents a more intricate challenge compared to discerning simpler features
like the number of floors or building type. Unlike features such as building type or floor
count, which might exhibit more distinct visual attributes, construction year estimation
relies on subtler indicators like architectural styles, material aging, and historical context,
making it inherently more complex and reliant on intricate visual analysis. Additionally,
the variability and ambiguity in architectural elements over time further compound the
complexity of accurately deducing the construction year from visual data.

In the first experiment, the structural settings offer simplicity and versatility because only
street view images are expected by the models. Therefore, the model is less dependent
on external data, making it applicable to a broader range of scenarios. However, it might
struggle with nuanced tasks that require additional context beyond the visual information.
Therefore, the models trained with this solution are selected for tasks that predict floor
count and building use.

On the other hand, the second experiment, incorporating geographical coordinates, en-
hances the model’s capability to handle complex relationships. This is advantageous for
tasks that derive the year of construction from the visual representation of a building.
Yet, a downside is increased dependency on location details, limiting its applicability to
cases where geographical information is crucial. It may also introduce potential biases
based on specific regions. Indeed, it is crucial to recognize that while the structure of a
building might not necessarily correlate with a specific region, the year of construction
carries significant regional implications. Development plans, which can span entire re-
gions or specific zones, may influence the construction of numerous buildings within the
same geographical area. Consequently, incorporating geographical inputs as predictors
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acknowledges the regional dynamics that impact multiple buildings, allowing the model
to capture broader patterns and trends and facilitating the determination of construction
age bands.

5.2 Future work

A potential avenue for future work involves the consolidation of individual models into a
unified architecture, integrating a custom Convolutional Neural Network (CNN) designed
to accommodate a single image input while simultaneously producing three distinct out-
puts. This envisioned model could significantly enhance the efficiency and coherence
of the overall system, promoting streamlined predictions across multiple tasks. One chal-
lenge to address in this pursuit is managing the increased model size and potential compu-
tational consumption resulting from the unified architecture. Striking a balance between
model complexity and computational efficiency will be essential to ensuring practical ap-
plicability and feasibility in real-world settings.

Another promising approach is to apply grid search in hyper-parameter optimization to
expand the pool of configuration combinations to be examined for more optimal models.
This study follows a limited timeline to utilize the amount of data extracted at the time
to deliver an MVP that works at an acceptable level of accuracy. There are rooms for
additional data extraction, and more models can be trained for re-evaluating when time
resources are not a limited factor.

Moreover, a further study could assess the benefits of different data cleaning solution for
image-based data such as object detection to detect building from the image, image in-
painting to reconstruct the occluded part of images, noise removal to remove unnecessary
objects, etc. Due to the limited scope and the expectation for simplicity of the MVP, these
options have not received enough attention in the current study.

5.3 Conclusion

This study set out to assess the ability to utilize machine intelligence in data engineering
for the task of data acquisition to make reliable assumptions on missing data. In this
investigation, the aim was to develop a solution to derive building details from street view
images. With the potential to predict high-level real estate attributes from the visual data,
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enriching missing data no longer depends on a curated dataset available from a third party
or a statistical approach based on limited benchmarking data.

A machine learning pipeline is delivered as an MVP. The pipeline covers a comprehensive
series of jobs from data engineering, data science and deployment operations. The entire
procedure can be deployed and hosted completely on the cloud with scalable computing
power and storage. The trained models can be fed into a downstream standalone program
for predictions. The convenience of the service comes from the simple requirement of
addresses to be supplied, image capturing, geocoding and processing can be performed
automatically to generate predictions.

The findings reveal that predicting floor count and building use from images is a visually
intuitive task, showcasing the effectiveness of the proposed methodology. However, the
estimation of construction year, being a more intricate challenge, highlights the nuanced
complexities involved in temporal attribute prediction from visual data.

Overall, the insights gained from this research not only extend our understanding of ur-
ban analytics but also pave the way for future advancements in the field. The successful
integration of image-based data acquisition into the urban analytics framework offers a
valuable and cost-effective solution, with the potential to enhance the accuracy and ef-
ficiency of property attribute predictions. The knowledge generated from this research
not only enriches the academic discourse but also has practical implications for urban
planning, real estate assessment, and sustainability modeling.
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