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During the past few years, both the stock and the cryptocurrency markets have faced sig-
nificant market stress due to unforeseen events such as the energy crisis, uncertainties in
monetary policies, the US banking crisis, and the burst of the speculative cryptocurrency
bubble. These developments have increased market risk, especially associated with cryp-
tocurrencies, which can cause fluctuations that challenge the accuracy of risk models. This
thesis introduces different size estimation windows to forecast the market risk of prominent
cryptocurrencies with VaR and ES. The accuracy of the model is evaluated using different
backtest methods, including POF, CC, CCI, and UC tests. The results suggest that ES remains
a robust risk measure, even when faced with increased market stress, particularly when the
HS method and the Student’s t GARCH(1,1) model are used. The study did not uncover
any obstacles to using VaR models in the context of cryptocurrencies. Additionally, while
different-sized estimation windows did not lead to significant variations in risk estimates, a
250-day estimation window generally appeared to be the most stable among various estima-
tion methods when applied to different cryptocurrencies.
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Viime vuosina sekä osake- että kryptovaluuttamarkkinat ovat joutuneet kohtaamaanmerkittä-
vää markkinapainetta, joka on johtunut odottamattomista tapahtumista, kuten, rahapolitiikan
epävarmuudesta, Yhdysvaltain pankkikriisistä ja spekulatiivisen kryptovaluuttakuplan puh-
keamisesta. Nämä tapahtumat ovat lisänneet erityisesti kryptovaluuttoihin liittyvää mark-
kinariskiä, joka voi aiheuttaa riskimallien tarkkuutta haastavia hinnan heilahteluja. Tässä
tutkielmassa esitellään erikokoisia estimointi-ikkunoita, joiden avulla voidaan ennustaa tun-
nettujen kryptovaluuttojen markkinariskiä VaR:n ja ES:n avulla. Mallien tarkkuutta arvioi-
daan käyttämällä erilaisia toteumatestausmenetelmiä, kuten POF-, CC-, CCI- ja UC-testejä.
Tulokset viittaavat siihen, että ES on edelleen vankka riskimittari, vaikka markkinastres-
si lisääntyisi, erityisesti kun käytetään HS-menetelmää ja Studentin t GARCH(1,1)-mallia.
Tutkimuksessa ei myöskään havaittu esteitä VaR-mallien käytölle kryptovaluuttojen yhtey-
dessä. Lisäksi vaikka erikokoiset estimointi-ikkunat eivät johtaneet merkittäviin eroihin ris-
kiestimaateissa, 250 päivän estimointi-ikkuna vaikutti yleisesti ottaen vakaimmalta eri esti-
mointimenetelmillä, kun sitä sovellettiin eri kryptovaluutoihin.
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Symbols and abbreviations

Roman characters

D Predictive distribution

F Real distribution

n Sample size

p Probability

P Price

R Logarithmic return

t Time

T Student’s t-distribution

U Unknown distribution

v Count of violations

S Scoring function

X Asset outcome

WE Estimation window

WT Testing window
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Greek characters

α Significance level

β Coefficient of lagged condi-

tional variance

γ Coefficient of the lagged

squared residuals

Γ Gamma function

ϵ Error term

η Violation indicator

κ Constant

µ Mean

ν Degrees of freedom

ρ Risk measure

σ2 Variance

σ Volatility

σt Conditional volatility

ϕ Density function

Φ Normal cumulative distribu-

tion
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BLCA Bitcoin-like crypto asset
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HS Historical Simulation

MiCA Markets in Crypto-Asset Regulation

NS Normalized Shortfall

POF Proportion of Failure

VaR Value-at-Risk

VCV Variance-Covariance

VR Violation Rate

vi



Table of Contents

Abstract ii

Symbols and abbreviations iv

1 Introduction 1

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research objectives and questions . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contribution to existing literature . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theoretical framework 8

2.1 Cryptocurrencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 A simplified classification of cryptocurrencies . . . . . . . . . . . 9

2.1.2 Cryptocurrencies as an asset class . . . . . . . . . . . . . . . . . . 12

2.1.3 Market condition of cryptocurrencies . . . . . . . . . . . . . . . . 16

2.2 Risk and risk management . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Defining risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Market risk management . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 History of VaR and ES . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Regulation of market risk management . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Basel I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Basel II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Basel III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4 Current state of cryptocurrency regulation . . . . . . . . . . . . . . 26

2.4 Risk measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Value-at-Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Coherent risk measure . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Expected Shortfall . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.4 Elicitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.5 Summary of risk measure characteristics . . . . . . . . . . . . . . 36

2.5 Risk measure estimation windows . . . . . . . . . . . . . . . . . . . . . . 37

vii



2.6 Overview of VaR and ES backtesting . . . . . . . . . . . . . . . . . . . . . 38

3 Data and methodology 42

3.1 Data and descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Parametric methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Gaussian Variance-Covariance . . . . . . . . . . . . . . . . . . . . 49

3.3.2 GARCH(1,1) applications . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Non-parametric methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Historical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Backtesting procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Kupiec’s proportion of failure test . . . . . . . . . . . . . . . . . . 54

3.5.2 Christoffersen’s tests . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.3 Acerbi’s and Szekelys’ unconditional test . . . . . . . . . . . . . . 57

4 Results 59

5 Summary and conclusion 66

5.1 Limitations and future directions . . . . . . . . . . . . . . . . . . . . . . . 68

References 69

Appendices

A Appendix: VaR estimates using the Gaussian Variance-Covariance model

B Appendix: VaR estimates using the Gaussian GARCH(1,1) model

C Appendix: VaR estimates using the Student’s t GARCH(1,1) model

D Appendix: VaR estimates using the Historical Simulation model

E Appendix: ES estimates using the Gaussian Variance-Covariance model

F Appendix: ES estimates using the Gaussian GARCH(1,1) model

G Appendix: ES estimates using the Student’s t GARCH(1,1) model

H Appendix: ES estimates using the Historical Simulation model

viii



List of Figures

1 Profit-Loss Distribution and VaR . . . . . . . . . . . . . . . . . . . . . . . 29

2 Profit-Loss Distribution, VaR and ES . . . . . . . . . . . . . . . . . . . . . 33

3 Estimation and Testing Windows . . . . . . . . . . . . . . . . . . . . . . . 37

4 Returns of S&P500, BTC and ETH . . . . . . . . . . . . . . . . . . . . . . 43

5 Logarithmic returns of S&P500, BTC and ETH . . . . . . . . . . . . . . . 44

6 Distribution fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 ES estimates using HS and different estimation windows (BTC) . . . . . . 64

8 ES estimates using Student’s t GARCH(1,1) and different estimation win-

dows (ETH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

List of Tables

1 Subadditivity: Individual positions . . . . . . . . . . . . . . . . . . . . . . 31

2 Subadditivity: Combined positions . . . . . . . . . . . . . . . . . . . . . . 32

3 Commonly used scoring functions (Gneiting, 2011) . . . . . . . . . . . . . 35

4 Summary of the properties of VaR and ES risk measures . . . . . . . . . . 37

5 Violation Ratios (Daníelsson, 2011) . . . . . . . . . . . . . . . . . . . . . 41

6 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Statistical hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Estimation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9 Comparison of risk models with 50-day estimation window . . . . . . . . . 60

10 Comparison of risk models with 100-day estimation window . . . . . . . . 61

11 Comparison of risk models with 150-day estimation window . . . . . . . . 61

12 Comparison of risk models with 200-day estimation window . . . . . . . . 62

13 Comparison of risk models with 250-day estimation window . . . . . . . . 63

ix



1 Introduction

“You’re worse off relying on misleading information than not having any information at all.

If you give a pilot an altimeter that is sometimes defective, he will crash the plane. Give him

nothing, and hewill look out the window.” Said Taleb (1996), a statistician and risk specialist,

while being interviewed about risk management and Value-at-Risk (VaR). As deficiencies

within the VaR measure came to light, Artzner et al. (1999) proposed a more sophisticated

alternative, Expected Shortfall (ES), aimed at addressing the unideal properties of VaR.

The challenge in risk management involves constructing models that consider infrequent but

impactful events across market, credit, operational, and insurance risks (McNeil, 1999). The

2008 global financial crisis diminished trust in the conventional monetary system, leading to

the emergence of digital currencies or cryptocurrencies (Dyhrberg, 2016). Cryptocurrencies,

characterized by rapid growth and high volatility, attract significant attention from various

stakeholders (Obeng 2021; Bruzgė et al. 2023; Trucíos and Taylor 2023). Beyond their intrin-

sic value, their prices are influenced by external factors such as market news and speculation

(Osterrieder et al., 2016).

Recent years have witnessed significant market stress in both the stock and cryptocurrency

markets due to unforeseen events, including uncertainty in monetary policies, the US banking

crisis, and the burst of the speculative cryptocurrency bubble (Likitratcharoen et al., 2023).

Notable episodes of market turmoil include the collapse of TerraUSD (UST) inMay 2022 and

the collapse of the FTX crypto platform in November 2022 (Cornelli et al., 2023). Financial

turmoil and extreme observations can adversely affect the forecast performance of volatility

models (Boudt et al. 2013; Hotta and Trucı́os 2018), and also cause market risk measures to

lose accuracy and potentially underestimate risk (Kourouma et al.; 2011; Mavani 2020).

Although traditional markets are regulated and risk measures are standard in financial insti-

tutions, as mandated by the Basel II and Basel III accords, cryptocurrency markets currently

lack regulation, and the formal use of risk measures is not obligatory (Trucíos & Taylor,

2023). However, significant regulatory developments are on the horizon in the management

of cryptocurrency market risk. At the end of 2022, the The Basel Committee on Banking Su-

pervision (BCBS) released minimum capital requirements for cryptocurrencies, set to take
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effect at the beginning of 2025 (BCBS, 2022). Furthermore, the European Union for crypto

assets has established the new regulation Markets in Crypto-Asset Regulation (MiCA) to

assess the risk of the cryptocurrency market, with the implementation date contingent on

the approval of the European Commission, the European Parliament, and the Council of the

European Union (ESMA, 2023).

Despite the widespread use of VaR and ES for traditional financial assets, limited research

on the applicability of VaR to cryptocurrencies can only be found in a few studies (see, e.g.,

Obeng 2021; Likitratchoaroen et al. 2021). Given the market turmoil experienced by cryp-

tocurrencies in recent years, studies providing information on the performance of VaR and ES

during increased market stress are almost non-existent (Likitratcharoen et al. 2023; Trucíos

and Taylor 2023). Furthermore, the chosen estimation windows significantly impact risk esti-

mates (Buczyński & Chlebus, 2022). The BCBS has mandated a 250-day estimation window

to build risk models (BCBS, 2019b), yet no explicit justification has been given for this spe-

cific time frame. Additionally, there is a lack of knowledge regarding the impact of the size

of the estimation window, even in the case of traditional assets (see, e.g., Righi and Ceretta

2015; Berens et al. 2018; Buczyński and Chlebus 2019), and this knowledge gap is even

more present in the realm of cryptocurrencies.

1.1 Background and motivation

The increase in the market value of cryptocurrencies has also led to a tremendous surge in

the number of new currencies. Between 2017 and 2023, the number of cryptocurrencies has

increased by more than 3000% (Statista, 2023). This growing demand for cryptocurrencies

has also spurred a growing interest in academic research focused on cryptocurrencies and

discussions regarding legislative aspects. This is evident in publications such as those of

Masciandaro (2018) and Castrén et al. (2022). The primary focus of the business revolves

around topics such as its impact on banking, profitability, blockchain technology, the emer-

gence of financial bubbles, and potential associations with illicit activities (Azarenkova et

al., 2018). However, limited research has evaluated the efficacy of widely employed risk

measures such as VaR and ES in managing market risk for cryptocurrencies. Given their ex-

tensive use in traditional financial assets and their acceptance by regulatory authorities, these

risk measures have the potential to offer valuable information in the field of cryptocurrency

risk management.
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Likitratcharoen et al. (2018) studied the performance of VaR in the cryptocurrency market.

VaR was estimated using non-parametric Historical Simulation (HS) and parametric method

Variance-Covariance (VCV) under the assumption of normality and concluded that HS re-

sulted more accurate risk estimates. (Liu et al., 2020) advanced approaches by implementing

the conditional volatility model Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) as part of the measurement of the market risk of Bitcoin. Jiménez et al. (2020b)

further researched the applicability of ES to Bitcoin by implementing conditional volatility

models, and the study showed promising results in the performance of ES using different

volatility models for Bitcoin. Because most studies have focused only on Bitcoin because

it is the largest by market capitalization, Obeng (2021) advanced the usage of GARCH VaR

models with different distributional assumptions from other cryptocurrencies and concluded

that the EGARCH models performed best. Although these studies have offered valuable in-

formation on the applications of VaR and ES, they do not consider the impact of estimation

windows on risk estimates.

During the last few years, unexpected events such as the COVID-19 pandemic, the energy

crisis, and conflicts have adversely affected the stock markets (Açikgöz & Günay, 2020). It

is particularly noteworthy that the cryptocurrency market has seen increased volatility, pre-

senting superior returns compared to traditional assets (Lahmiri & Bekiros, 2020). Corbet

et al. (2020) researched does Bitcoin provide diversification advantages during the COVID-

19 pandemic. The findings suggested that instead of providing hedges or safe haven features

in times of intense market pressure, crypto assets such as Bitcoin appeared to amplify con-

tagion. A similar finding was also made by Conlon and McGee (2020). Al Mamun et al.

(2020) researched how geopolitical risk and the influence of uncertainty in global economic

policy impact both the volatility and the risk premiums of Bitcoin. The findings indicated

that these factors significantly affect Bitcoin volatility and risk premiums, particularly during

tense market situations.

Mavani (2020)’s research findings indicate that while VaR models are adept at capturing the

market risk of traditional assets under normal market conditions, they are inadequate to ad-

dress market risk during financial crises. However, Likitratchoaroen et al. (2021) further

examined VaR models during the COVID-19 pandemic on the Bitcoin market. The findings

revealed that these models accurately captured the potential adverse losses of BTC, espe-

cially at a 99% VaR confidence level, even in the face of the influence of the pandemic on
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both the stock markets and the cryptocurrency market. Trucíos and Taylor (2023) studied

the precision of the VaR and ES models during turbulent market conditions by implementing

different volatility modeling techniques. They found that surprisingly combined models like

CaViaR did not perform as well as individual models, either globally or over time. Liki-

tratcharoen et al. (2023) examined the efficiency of VaR models for cryptocurrency markets

during uncertainty in monetary policies and the Russia-Ukraine war and found that the non-

parametric VaR model is the most suitable for predicting extreme losses in cryptocurrency

markets under stress. Bruzgė et al. (2023) conducted an extensive study of the fluctuations

and risk assessments associated with the volatility of cryptocurrency. The findings indicate

a pattern of clustering of volatility observed in Bitcoin, Ethereum, and Ripple. Furthermore,

the VaR and ES estimates revealed that cryptocurrencies pose a higher risk as investments

compared to technology stocks during stressed market conditions.

According to the BCBS (2019b), the construction of a risk model like VaR or ES requires a

minimum of 250 days of historical data to build a market risk model for traditional assets.

However, the current regulatory framework for cryptocurrencies is not yet in place, which is

why no requirements for estimation windows have been set. Righi and Ceretta (2015) con-

ducted research on determining an ideal estimation period for the VaR and ES risk models in

the traditional stock market. They used Monte Carlo simulation as the method of estimation,

examining various window sizes ranging from 250 to 2000 days. Their investigation revealed

that models using estimation windows of 250 or 500 days exhibited the best performance.

This outcome contradicted the conventional belief that longer time windows would produce

more accurate risk estimates compared to shorter ones.

Berens et al. (2018) investigated the impact of varying the sizes of the estimation window on

industry-standard market risk models. They tested various estimation window tactics across

a range of basic parametric, semi-parametric, and non-parametric VaR and ESmodels. Using

DAX daily return data for risk estimation, they illustrated substantial performance disparities

arising from the choice of the estimation window strategy. Their findings suggest that fore-

cast combinations emerge as the preferred strategy for estimation windows. Buczyński and

Chlebus (2019) examined various VaR methodologies in different sample sizes, employing

VaR models with window durations ranging from 50 to 2000, to assess whether there exists

a threshold beyond which increasing the sample size does not significantly improve quality.

The analysis incorporated parametric, non-parametric, and semi-parametric estimation tech-
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niques. Their suggestion put forth that a minimum of 900 or 1000 observations should be

employed in conjunction with the aforementioned estimation methodologies. Considering

that previous studies have primarily focused on conventional assets and their outcomes have

been oriented towards longer time frames, this research seeks to broaden the examination

of estimation windows to the context of cryptocurrencies. The goal is to provide additional

information on the applicability of using shorter estimation windows in this domain.

1.2 Research objectives and questions

The cryptocurrency market has undergone profound transformations in recent years, marked

by the emergence of numerous new cryptocurrencies, the use of diverse technologies, and

multiple crises that have exerted immense pressure on the market (Likitratcharoen et al.,

2023). The exponential growth of cryptocurrencies and the rapidly changing market land-

scape have triggered discussions among institutions about the necessity for various forms of

legislation (see, e.g., BCBS 2019a; EBA 2019; ESMA 2019; BaFin 2023).

VaR and ES have undergone a detailed examination by academics and regulators in the con-

text of traditional financial instruments (see, e.g., Dowd and Blake 2006; Jorion 2007; Yamai,

Yoshiba, et al. 2002; Acerbi and Szekely 2014). On the contrary, the existing literature that

examines the applicability of VaR and ES in the cryptocurrency market, especially during

periods of increased volatility, is notably limited. This scarcity underscores the rationale for

the first research question.

I. “Can Value-at-Risk and Expected Shortfall accurately capture the potential adverse losses

of prominent cryptocurrencies during increased market stress?”

In this context, the accuracy of a risk measure is related to its ability to estimate the risk in

close proximity to the realized value. Simply put, the risk estimate should not be an overesti-

mation or an underestimation of the actual risk level. This study evaluates the accuracy of the

risk measure using various methods, the most straightforward being Violation Rate (VR) and

Normalized Shortfall (NS), which, according to Daníelsson (2011), are directly analogous.

These backtest methods are assigned a value of 1 when the risk estimate precisely captures

the realized risk. A value below 1 indicates an overestimation of risk, while a higher value

signifies an underestimation of risk. Additionally, the study uses statistical backtest methods
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to assess the precision of the measures, and detailed methodologies and hypotheses for these

measures are expounded in the methodology section.

The different sizes of the estimation windows affect the quality of the VaR and ES models

(Buczyński & Chlebus, 2020). However, only a few studies investigate the influence of the

duration of the estimation window on the VaR and ES risk estimates, and the few existing

studies focus predominantly on traditional financial assets. Furthermore, existing research

has mainly focused on the 250-day estimation windows, which yield somewhat conflict-

ing results. Given that shorter estimation windows facilitate quicker adaptation to the swift

changes in volatility witnessed in the cryptocurrency market, this study aims to specifically

investigate the impacts of shorter estimation windows on the accuracy of risk estimates.

II. “What is the impact of the size of the estimation window on the applicability of VaR and

ES risk estimates in times of heightened market stress?”

1.3 Contribution to existing literature

According to the best knowledge of the author, this study is one of the first to examine the

accuracy of VaR and ES risk measures in measuring the market risk of cryptocurrencies un-

der increased market stress, and at least the very first study that also examines the impact

of estimation windows on these previously mentioned risk measures. Likitratcharoen et al.

(2023) studied VaR as a market risk measure for cryptocurrencies during periods of increased

market risk, but the study did not use the ES measure. On the other hand, Trucíos and Taylor

(2023) extensively studied the market risk of cryptocurrencies, employing various estima-

tion methods and both risk measures. However, the time frame used in their study did not

specifically focus on the period of increased volatility.

The second contribution of this research is to assess how the size of the estimation window

affects the calculated risk estimates between different estimation methods. As mentioned

earlier, there has not been much research on this issue, which makes the choice of estimation

window size ambiguous. Since shorter estimation windows have not been studied and those

can adapt more quickly to large changes in volatility, this study aims to investigate how the

estimation window for traditional assets, set by BCBS, performs against shorter estimation

windows.
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1.4 Structure of the thesis

The remainder of this thesis is organized as follows. Section 2 provides a concise overview of

the historical background, classification, and current market landscape of cryptocurrencies.

Furthermore, the chapter explores the regulatory framework that governs market risk mea-

sures, namely the VaR and ESmodels, delves into the current state of the regulatory landscape

of the cryptocurrency market, outlines the risk measures applied in this thesis, their specific

characteristics, and offers a summary of the process involved in the backtesting of these risk

measures. In Section 3 the utilized data and its characteristics are introduced. Additionally,

the methodologies used to measure market risk and the methodologies used to backtest risk

measures are presented. In Section 4, the results are reported. Section 5 provides a summary,

conclusions, limitations, and future directions of the study.
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2 Theoretical framework

This chapter briefly outlines the historical background of cryptocurrencies and examines their

characteristics compared to traditional financial assets. This is followed by the definition of

risk used in this thesis and the rationale behind the need to quantify market risk, taking into

account the attributes of different asset classes and relevant regulations. Subsequently, it

introduces the risk measures used in the thesis, elucidating their characteristics, limitations,

and the techniques used for backtesting.

2.1 Cryptocurrencies

On 31 October 2008, just under two months after the Lehman Brothers bankruptcy filing,

Satoshi Nakamoto (2009) introduced an entirely new payment system, based on digital sig-

natures and a peer-to-peer network, which allows online payments to be sent from one party

to another without the involvement of financial institutions or any other third party. The ra-

tionale behind the proposal was to achieve cost efficiency and expedite transactions, which

was made feasible by relying on cryptographic proof rather than placing trust in financial in-

stitutions. This payment system is nowwidely recognized as the world’s first cryptocurrency,

Bitcoin.

Cryptocurrency is a type of digital currency that operates independently without the supervi-

sion of any third party or central bank. Typically, cryptocurrencies use encryption techniques

for security and are decentralized, relying on blockchain technology, a distributed ledger sys-

tem, to record transactions and verify the integrity of the network. Instead of relying on a sin-

gle company, cryptocurrency transactions are confirmed and performed by a community of

participants, providing increased security and eliminating the need for intermediaries. (Balaji

et al., 2023)

The emergence and popularity of Bitcoin has also spurred the growth of alternative cryptocur-

rencies, often referred to as “Altcoins”, which aim to ameliorate the inherent constraints of

Bitcoin, encompassing issues related to transaction speed, practicality, and utility. Never-

theless, it is noteworthy that Bitcoin retains its preeminent status as the world’s largest cryp-

tocurrency by market capitalization, with Ethereum (ETH), Tether (USDT), Binance (BNB),
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Ripple (XRP), and numerous others following suit in the rankings. These digital currencies

are widely considered potential contenders for the role of future currencies. (Berentsen &

Schär, 2018).

However, some studies, for example, Bianchi (2020) and Doumenis et al. (2021), suggest

that cryptocurrencies are considered more appropriately as speculative investments or assets

for hedging, rather than as a medium of exchange. Although there is significant potential for

cryptocurrency to integrate more seamlessly into global financial and payment networks, its

market remains highly volatile, with numerous cryptocurrency transactions being regarded

as speculative ventures. Daily price fluctuations of cryptocurrencies can be up to ten times

greater than those of traditional money markets (“Volatility in the Cryptocurrency Market”,

2019).

In addition to their notable volatility, cryptocurrencies face various additional obstacles that

impede their incorporation into the financial ecosystem. These include cybersecurity risks,

vulnerabilities to possible hacking, and susceptibility to market manipulation. Due to these

challenges related to cryptocurrencies, various legislators have refrained from acknowledg-

ing them as financial assets (IMF 2019; IFRS 2019b), and in some cases, countries such as

China have even prohibited their use (Griffith & Clancey-Shang, 2023).

2.1.1 A simplified classification of cryptocurrencies

The growing pace of digital assets and the extensive debate on classification methods in

the crypto community, where even current classifications are constantly changing, make it

difficult to identify different concepts (Glas, 2022). This is why a simple classification of

the different digital assets is provided, to make the thesis easier to follow and understand.

Loosely defined, a digital asset is an intangible asset generated, exchanged, and held in digital

form. In the context of blockchain technology, digital assets include cryptocurrencies and

cryptographic tokens. For a more comprehensive discussion of the categorization of digital

assets (see, e.g., Nakavachara et al. 2019; Pele et al. 2020; Castrén et al. 2022).

According to IMF (2019, p. 4), cryptocurrencies can be described as “digital representations

of value, made feasible through advances in cryptography andDistributed Ledger Technology

(DLT)”. IMF (2019) classifies cryptocurrencies into twomain categories: Bitcoin-like crypto

assets (BLCAs) and digital tokens. BLCAs represent digital assets built on distributed ledger
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technology, with their main purpose being to function as a medium of exchange (e.g., Bitcoin

and Ethereum, as used in this thesis). On the other hand, tokens exist within a platform

constructed on an established blockchain, as exemplified by the numerous ERC-20 tokens

within the Ethereum ecosystem.1

Bitcoin-like crypto assets (BLCAs)

Bitcoin (BTC) constitutes a decentralized digital currency originally expounded in a 2008

white paper attributed to an individual or collective entity operating under the pseudonym

Satoshi Nakamoto. Bitcoin operates as a peer-to-peer exchange medium, where transactions

occur directly among autonomous participants within its network, obviating the need for

any intermediaries to authorize or facilitate these exchanges. Although this decentralization

confers immunity to governmental manipulation or intervention, it concomitantly foregoes

a central governing body to ensure the seamless functioning of the Bitcoin ecosystem or to

underwrite the value of a Bitcoin unit. Bitcoins are generated digitally through a computa-

tional process known as “mining”. Mining is a process that involves validating transactions

on the Bitcoin network and adding them to the public ledger known as the blockchain. To be

eligible to add a piece of information (block) to the blockchain, a miner must solve complex

mathematical problems. These distinctive attributes distinguish Bitcoin from fiat currencies,

the latter being underpinned by the complete faith and credit of their respective governments.

The fundamental concept of Bitcoin revolves around the deployment of cryptographic tech-

niques for the governance of money creation and transfer, eschewing the reliance on central

authorities. (CoinMarketCap, 2023b)

Ethereum (ETH) constitutes a decentralized open-source blockchain framework character-

ized by its native cryptocurrency, Ether (ETH). The genesis of Ethereum can be traced back

to 2013, when Buterin (2013) articulated its principles in a white paper. ETH serves as both

a digital currency and a foundational infrastructure for a multitude of other digital assets,

as well as the facilitation of decentralized smart contracts. Ethereum has played a pioneer-

ing role in the introduction of the concept of a blockchain-based smart contract platform, by

which smart contracts are autonomous computer programs designed to automatically execute
1ERC-20 serves as the prescribed protocol for generating interchangeable tokens on the Ethereum

blockchain.
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the necessary actions to fulfill agreements between multiple online parties. 2 (CoinMarket-

Cap, 2023d).

Tether (USDT), which began its operations in 2014, is a blockchain-based platform specif-

ically designed to allow the use of fiat currencies in the digital form. The Tether is poised

to challenge the traditional financial system by offering a contemporary paradigm for the

handling of monetary transactions. A key innovation brought forth by Tether is its provi-

sion of a means for customers to engage in transactions involving conventional currencies on

the blockchain, thus circumventing the typical challenges of volatility and complexity that

accompany digital currencies. USDT distinguishes itself by being guaranteed by Tether to

maintain a fixed value in alignment with the US dollar. According to Tether’s assertion, when

creating new USDT tokens, they allocate an equivalent sum of USD to their reserves, thereby

substantiating the complete backing of USDT with cash and cash equivalents. (CoinMarket-

Cap, 2023g)

Binance (BNB) was established in July 2017 and is widely recognized as the world’s lead-

ing cryptocurrency exchange, distinguished by its daily trading volume. Binance is reso-

lutely committed to elevating cryptocurrency exchanges to a prominent position within the

realm of international financial activities. The nomenclature “Binance” is emblematic of the

platform’s desire to symbolize a new paradigm in the global financial landscape, denoting

“Binary Finance” or simply “Binance”. (CoinMarketCap, 2023a)

Ripple (XRP) was introduced in 2021 by a company called OpenCoin, led by technology

entrepreneur Chris Larsen. Much like Bitcoin, Ripple operates as a hybrid, serving as both

a digital currency and a payment system. Ripple constitutes the underlying currency unit,

having a mathematical foundation similar to that of Bitcoin. Ripple stands as a prominent

contender for the role of the successor to Bitcoin and employs a consensus algorithm that

relies on the use of subnets within the broader network, which are collectively trusted for its

operation. (CoinMarketCap, 2023f)

Digital tokens

A token is a digital entity that grants access to and enables participation in the broader cryp-

tocurrency ecosystem. Tokens belong to the category of cryptocurrencies as a subset (Coin-
2In many contexts, Ethereum can also be classified as a utility token, which again shows the complexity of

classification methods.
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MarketCap, 2023h). According to IMF (2019), digital tokens can be categorized into four

distinct types according to their fundamental economic functions, which are the following.

a) Payment tokens: those designed to function as universal BLCAs and serve as units of

account, stores of value, and mediums of exchange across platforms, without being limited

to a particular platform (e.g., Litecoin).

b) Utility tokens: those created with the aim of granting holders future access to services

through a DLT-based application. Instances of such applications include those for file stor-

age, social messaging, and trading (e.g., ERC-20 and Filecoin).

c) Asset tokens: those that indicate obligations or ownership stakes in the issuing entity.

They produce interest for the holder or pledge a portion of the company’s future earnings,

respectively.

d) Hybrid tokens: those that are part utility and part asset or payment token.

2.1.2 Cryptocurrencies as an asset class

Cryptocurrencies or crypto assets are novel and innovative assets that can be loosely de-

scribed as highly volatile and uncorrelated with traditional financial assets such as stocks,

bonds and currencies (Baur & Dimpfl, 2018). Due to their unconventional nature in finan-

cial markets, they are usually not classified as financial assets by academics and investors.

However, there has been an ongoing discussion among lawmakers and economists regarding

the classification of cryptocurrencies, with some debating whether they should be consid-

ered currencies or speculative investment instruments (see, e.g., Glaser et al. 2014; Dyhrberg

2016). One point of view argues that cryptocurrencies function as a medium of exchange

within a decentralized network, while another point of view points out that their notably

volatile returns seem to align with the functions of conventional assets (“Volatility in the

Cryptocurrency Market”, 2019). Classifying cryptocurrencies poses a challenge due to the

continuous emergence of new ones and evolving technologies, potentially impacting exist-

ing categorizations. However, delving into this subject remains pertinent, as defining cryp-

tocurrencies as financial assets could likely lead to varying regulatory frameworks, such as

mandatory market risk management, making the discussion on this matter relevant.

12



Before we can discuss whether cryptocurrencies should be considered as currencies, financial

instruments, or financial assets, we must first define these concepts. For a currency to be rec-

ognized as such, according to how Central Banks treat traditional currency, it should ideally

serve three fundamental roles: acting as a unit of account, a store of value, and a medium of

exchange. Generally, cryptocurrencies with significant market capitalization have the poten-

tial to fulfill all these criteria, while most other cryptocurrencies find it challenging to meet

even one of them.

Unit of account the primary purpose of the currency is to serve as a unit of account, enabling

the measurement of value in various units and simplifying comparisons. Digital currencies

are composed of consistent, distinguishable, and measurable units of account. As long as

these units can be easily traded, this function is fulfilled, as their value can be determined and

compared. Consequently, high-cap cryptocurrencies effectively operate as efficient units of

account. (Kim et al., 2018)

Store of value involves maintaining the capacity to preserve purchasing power in the future,

making it more, less or equally valuable for subsequent transactions. This requires a certain

degree of predictability in the future value of the asset, a challenge faced by cryptocurrencies

due to their high volatility. Both precious metals like gold and digital coins have the abil-

ity to store value, operate independently of fiat currencies, and serve as safe havens during

economic crises. However, it is important to note that only gold consistently retains these

attributes over the long term. Daily trading fluctuations of specific digital assets, including

Bitcoin (BTC), Ethereum (ETH), and Litecoin (LTC), have frequently exceeded the annual

inflation rates of countries experiencing economic downturns, such as Mexico and South

Africa. This implies that holding the Mexican peso might be less risky than holding top

cryptocurrencies due to their considerable volatility and the potential for security breaches.

Therefore, the certainty that cryptocurrencies serve as a secure store of value remains uncer-

tain until the market stabilizes. (Kim et al., 2018)

Mediumof exchange demands that a currency bewidely recognized and easily exchangeable

for all available goods and services, serving as an intermediary to overcome the limitations

of barter transactions. Currently, most cryptocurrencies do not fulfill this requirement, as

they are not easily accessible for everyday transactions. Nevertheless, BTC, LTC, ETH, and

the United States Dollar Tether (USDT) facilitate access to other crypto assets and act as

intermediaries between fiat money and cryptocurrencies. Generally, cryptocurrencies can be
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recognized as a medium of exchange for crypto assets, but this role is still evolving and is

predominantly observed among the most prominent crypto-based coins, rather than being

prevalent throughout the entire class. (Kim et al., 2018)

According to IFRS (2007) IAS 32 ”Financial Instruments: Presentation” a financial asset is

one that is:

· Cash

· A financial instrument representing ownership in another entity.

· A contractual entitlement to obtain cash or an alternative financial asset from another entity

· A contractual entitlement to swap financial assets or financial liabilities with another entity

based on specific conditions

· A specific agreement that is either certain or potentially settled using the company’s own

shares

Despite the fact that we have previously stated that some cryptocurrencies could be consid-

ered a medium of exchange, IFRS (2019a) highlighted that the ownership of cryptocurrencies

is not classified as a financial asset. This determination arises from the fact that cryptocur-

rency does not represent cash or an equity instrument in another entity. IMF (2019) revisited

the definition of cash outlined in IAS 32. They noted that this definition suggests that cash is

anticipated to serve as a medium of exchange (i.e., used for transactions involving goods or

services) and as the monetary unit for pricing goods or services to the extent that it forms the

fundamental basis for measuring and recognizing all transactions in financial statements. On

the basis of this interpretation, the Committee reached the conclusion that cryptocurrencies

do not qualify as cash.

There is also an ongoing debate among academics on how cryptocurrencies should be clas-

sified, and many academics also have differing opinions. However, it is widely recognized

that cryptocurrencies show a distinct behavior compared to traditional asset classes, including

currencies (Baur and Dimpfl 2018; Auwera et al. 2020). Cryptocurrencies, in fact, exhibit

not only greater volatility and risk compared to traditional asset classes, but also demon-

strate more pronounced extreme outcomes. The question of whether cryptocurrencies can be

categorized as financial assets continues to be a topic of ongoing debate.
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According to Glaser et al. (2014), most cryptocurrency users perceive these digital assets

as speculative assets rather than as a medium of exchange. Investing in cryptocurrencies is

not considered safe; instead, it constitutes a bet on the underlying blockchain technology or

project. In some respects, this aligns cryptocurrency investments with investing in high-tech

companies (Bianchi, 2020). Furthermore, the authors, for example, Brown (2019) andHaykir

and Yagli (2022) assert that cryptocurrencies are clearly a speculative bubble; the predomi-

nant perspective in contemporary research leans toward the notion that cryptocurrencies are

progressively developing into a distinct and unique asset category.

For example, Dyhrberg (2016) studied the similarities between Bitcoin, gold and the US

dollar. Instead of categorizing Bitcoin as a currency or an asset class, it was categorized

as a conceptually placed hybrid between a mere medium of exchange and a mere store of

value. Gold and cryptocurrencies share common characteristics, as they have limited supply,

exhibit significant price fluctuations, and serve as alternative investments for those who have

doubts about fiat currencies and monetary policies (Bianchi, 2020). Glas (2022) conducted

an extensive study comparing traditional assets with cryptocurrencies. He highlighted that

while significant digital assets such as Bitcoin may be viewed as a legitimate asset category,

they should be regarded more as an independent asset class. This distinction arises from

the absence of specific regulations that would typically characterize a “serious” asset class,

which crypto assets currently lack. Furthermore, persistent concerns about hacking, fraud,

and illicit activities remain significant challenges within this asset category, which require

effective resolution before it earns the designation of a “serious” asset class.

Thus, cryptocurrencies can be classified in nearly as many manners as there are classifiers

and classification systems. However, this does not diminish the importance of assessing the

current situation. Establishing a standardized classification approach for cryptocurrencies

would not only delineate their categorization but would also determinemethods for managing

and quantifying the market risk associated with them. However, recent regulatory changes

such as MiCA hint at the potential of cryptocurrencies to be recognized and treated as some

form of asset. With the introduction of the BCBS (2022) framework, expected to be enforced

in 2025 for cryptocurrencies, an adapted version of ES, subject to stress testing, is expected

to be employed.
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2.1.3 Market condition of cryptocurrencies

The market value of cryptocurrencies and digital assets has increased exponentially in recent

years. In April 2023, the total market capitalization of cryptocurrencies reached 1.230 trillion

dollars, while in April 2014, the total market value of virtual currencies stood at 29 billion

dollars (CoinMarketCap, 2023e). The increase in the market value of cryptocurrencies has

also led to a tremendous surge in the number of new currencies. In January 2017, there were

636 “alive” cryptocurrencies, while in January 2023 there were more than 20,000 different

cryptocurrencies, of which 8,856 were considered “alive” (Statista, 2023).

In particular, the continued interest of investors in finding new alternative investment avenues

beyond traditional options can be seen as a significant factor in this growth. Furthermore, the

rise of technological and financial innovations has led to the emergence of new investment

opportunities in addition to cryptocurrencies within the crypto sphere, including stablecoins

such as Tether (USDT), utility tokens such as Filecoin, and Decentralized Finance (DeFi)

tokens such as Terra (LUNA) (Scharfman, 2022).

In 2017, the cryptocurrency market faced a significant increase, marking a notable departure

from the previous four years. The total market capitalization of all cryptocurrencies reached

approximately $600 billion in 2017, subsequently plummeting to $130.66 billion in 2018,

and then experiencing a modest upturn to $192.49 billion at the end of 2019. The years

2020, 2021 and 2022 were characterized by a period of extreme volatility. Despite the global

economic devastation caused by the COVID-19 pandemic, 2020 marked the beginning of a

substantial bull run in the cryptocurrency market. In May 2021, the market capitalization

of cryptocurrencies reached its zenith at approximately $2.4 trillion, only to decline to $1.26

trillion in mid-July. However, the market capitalization of cryptocurrencies resuspended, cul-

minating in an all-time high of $2.8 trillion at the end of 2021. At the beginning of 2022, the

crypto market entered yet another bear run, and by June 2022 the total market capitalization

of cryptocurrencies fell below $900 billion. (CoinMarketCap, 2023e)

Cryptocurrency price changes in the past few years have been affected by similar factors

that impact stock market prices. However, the crypto market has faced unique events that

have intensified its volatility and price changes. For instance, China’s ban of crypto-related

activities in 2021 resulted in a sharp drop in cryptocurrency market capitalization, lingering

at their lowest point post the ban announcement. This restriction significantly increased the
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momentary volatility of cryptocurrencies, as shown in the findings of Griffith and Clancey-

Shang (2023).

The precipitous decrease observed in 2022 can be attributed to the demise of Terra and its rip-

ple effect on the cryptocurrency market. Terra had held the rank of the third most substantial

cryptocurrency ecosystem in 2022, trailing only Bitcoin and Ethereum, before it experienced

a dramatic downfall within a mere three days inMay 2022, Terra suffered a substantial down-

fall, completely erasing its market capitalization due to a 50 billion devaluation. The focal

point of this decline revolved around the operational run of Anchor, a blockchain-based lend-

ing and borrowing protocol that had extended attractive promises of elevated returns to its

stablecoin investors who use TerraUSD (UST). During the past year, the combined market

size of cryptocurrencies has predominantly hovered around the trillion dollar threshold. (Liu

et al., 2023)

At the time of writing, in October 2023, Bitcoin and Ethereum collectively control a substan-

tial majority of the overall cryptocurrency market, accounting for 68.7% of the total market

share. In particular, Bitcoin continues to maintain its leading position as the largest cryptocur-

rency, with amarket value representing 51.42% of the total. Following Bitcoin and Ethereum,

the next three largest cryptocurrencies are USDT (7.41%), BNB (2.86%) and XRP (2.45%),

while the remaining cryptocurrencies collectively constitute the remaining share, which ap-

proximately amounts to 18.6% (CoinMarketCap, 2023e). In light of the prevailing market

dynamics and to maintain the focus of this study, our analysis is exclusively focused on Bit-

coin and Ethereum.

2.2 Risk and risk management

In order to examine risk management and risk measure, it is necessary first to define what

risk is and what it encompasses and excludes. The definition of risk is not trivial. If we

define risk as the potential occurrence of anticipated or unforeseen events, we must consider

the nature of these events. Even if these events could be identified in such a way that the

information obtained from them could be used, it should also be possible to quantify their

probability. An individual who chooses to invest in cryptocurrency could face substantial

economic risk without the accompanying physical hazards. On the contrary, someone en-

gaged in bull-running incurs physical risk, but without the prospect of financial gain. This
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thesis explores the economic risks that cryptocurrency investors may encounter and aims to

clarify the concept of financial risk in this context.

2.2.1 Defining risk

The financial literature often refers to risk but lacks a widely accepted concrete definition for

it. This absence is not coincidental, as risk is a concept that is difficult to precisely define

due to its unintuitive nature. It relies on the ideas of exposure and uncertainty, both of which

cannot be precisely operationalized. As a result, creating an operational definition of risk is

impossible; at most, we can attempt to operationally define our perception of risk. However,

defining perceived risk in operational terms is intricate because it encompasses various as-

pects. To simplify this effort, some elements of perceived risk can be operationally defined.

(Holton, 2004) Risk measures such as VaR and ES serve this purpose in practice.

As discussed previously, defining and distinguishing risk in precise terms can be complex.

However, a fundamental concept in finance is that seeking rewards often involves accepting

risks. It is crucial to acknowledge that not all risks yield the same potential rewards. Some

risks are chosen because their benefits outweigh the costs involved. Since both risk and

reward pertain to future outcomes, the goal is to take profitable risks where the expectation of

gain offsets the anticipation of loss (Engle, 2004). This thesis concentrates on examining the

market risk disparity between cryptocurrencies and conventional investments. Therefore, our

attention is directed towards events such as market price fluctuations that can cause financial

losses. For this purpose, within this study, we utilize asymmetric risk measures, VaR and ES,

which specifically target potential losses within the distribution of returns.

Financial risk can be divided into four main types: market risk, credit risk, liquidity risk, and

operational risk. These risks are not unambiguous due to their diversity; for example, hedge

funds can assess two distinct categories of market risk: the initial category refers to the risk

inherent within the underlying positions that comprise the hedge fund portfolio, while the

second category encompasses the risk attributable both to the investment strategy used and

the risk mitigation measures employed by the hedge fund manager (Duc & Schorderet, 2008,

p. 99).

Furthermore, it can be difficult to differentiate between risks because they can arise from

identical factors. For example, both market risk and credit risk are influenced by the same
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economic variables, and the distinction between these two types of risk becomes even less

clear when dealing with cryptocurrencies compared to traditional financial instruments. This

complexity arises from the fact that cryptocurrencies are affected not only by conventional

factors, but also by elements that do not necessarily impact traditional assets. What dif-

ferentiates cryptocurrencies in terms of market risk is the absence of financial oversight,

making coin prices susceptible to manipulations, pump-and-dump schemes, and other fraud-

ulent activities. However, credit risk, defined as the situation in which profits and losses

on the value of an abandoned and considered “dead” cryptocurrency position, differs from

traditional credit risk because these seemingly defunct coins can undergo multiple revivals.

(Fantazzini & Zimin, 2020)

2.2.2 Market risk management

In traditional finance, market risk refers to financial losses incurred due to sudden market

movements or volatility in market prices. In a cryptocurrency context, market risk refers to

the profits and losses associatedwith the value of the position or portfolio of ’alive’ cryptocur-

rency, resulting from fluctuations in market prices on central and decentralized exchanges.

Fundamentally, the distinctions between credit risk and market risk in the context of cryp-

tocurrencies are primarily related to quantity and timing, rather than being qualitative in na-

ture. In essence, if financial losses and technical issues can be addressed using existing fi-

nancial and technical capabilities, it constitutes a market event. However, if financial losses

become excessive and technical challenges prove insurmountable, it leads to a credit event,

ultimately resulting in the demise of the cryptocurrency. Market risk emerges as a result of

changes in market factors, which can include asset prices, interest rates, foreign exchange

rates, or, in our context, the prices of cryptocurrencies. (Fantazzini & Zimin, 2020)

Commonly, market risk can be categorized into two distinct types: idiosyncratic or non-

systematic risk, which refers to risks that can be spread out through diversification, and sys-

tematic risk, which pertains to risks that impact the entire economy and cannot be mitigated

through diversification. Market risk is inherent in all securities within a particular category.

For example, all stocks are consistently exposed to the same market risk. This risk is not

reducible through diversification. On the contrary, the risk of the bond market arises from

interest rate fluctuations, while stock prices are influenced by a wide range of factors that
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include company performance, economic conditions, and significant political events of na-

tional importance (Szylar, 2013).

The significance of market risk is increasing within the realm of banking management. As

indicated by Penza and Bansal (2001), this increase can be attributed to four key factors:

1. The process of securitization, which has led to the replacement of conventional asset forms

with financial assets traded on a secondary market, which consequently have an ascertain-

able market price. Securitization has facilitated the adoption of marking-to-market methods,

enabling the prompt monitoring of profits and losses associated with a collection of traded

instruments.

2. The increasing complexity of financial instruments, particularly derivatives, frequently

transacted by banks, has emphasized the need to replace conventional risk assessment meth-

ods with a comprehensive risk measure. This measure is envisioned as the stronghold of a

unified and consistent framework for financial risk management.

3. The increased volatility observed in interest rates, foreign exchange rates, and stock prices

over the past two to two and a half decades, particularly following the dismantling of the gold

exchange standard in 1973, has been amplified by the globalization of financial markets. This

increased volatility is, to some extent, attributable to the financial crises that plagued certain

financial institutions in the late 1980s.

4. The increased trading activity of the banks and the resulting volatility of income.

Traditional risk management approaches encompass at least two perspectives: one from

within the organization (internal viewpoint) and the other dictated by regulatory requirements

(regulatory viewpoint). The internal perspective encompasses the view of risk management

as a fundamental aspect of the overall business operations of banking and financial institu-

tions. In this perspective, risk management is considered crucial, regardless of regulatory

requirements, similar to how manufacturing companies supervise their production and dis-

tribution processes. On the other hand, regulations have a specific objective; preventing the

failure of one bank from triggering a widespread banking crisis. When an individual bank

encounters difficulties, it affects its depositors; however, if multiple banks face challenges

simultaneously, it poses a significant threat to the entire economy. (Penza & Bansal, 2001)
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Managing risk is a formidable task due to the continuous operation of financial markets and

the growing emphasis on intricate financial instruments, making it challenging to evaluate

their risks. While it is possible to pinpoint portfolio exposures with a degree of certainty, the

actual losses that may result from these exposures remain uncertain. The information used

to gauge potential losses relies on historical prices and rates, rather than those anticipated

in the future. Mitigating risk is made more complicated by the opportunity cost in finan-

cial markets between risk and expected return, since generally higher returns require greater

risk taking. An essential concern within contemporary risk management revolves around

the measurement of risk. For example, regulatory authorities assess the risk exposure of fi-

nancial institutions to determine the requisite capital reserves that must be maintained as a

buffer against unforeseen financial setbacks. Similarly, exchange-affiliated clearinghouses

are tasked with establishing margin prerequisites for investors participating in trading activ-

ities on their respective platforms. (McNeil et al., 2005)

Traditional financial markets are subject to regulatory oversight and mandate the use of risk

measures as stipulated by the Basel II and Basel III accords. On the contrary, the current reg-

ulatory environment for cryptocurrencies is ambiguous, but there is no formal obligation to

adopt risk measures. However, the examination of risk measures within cryptocurrency mar-

kets is of significant relevance to a range of stakeholders, including investors, hedge funds,

market makers, and traders. This relevance stems from their utility in optimizing order limits,

formulating effective option pricing strategies, and designing robust trading systems. Fur-

thermore, considering risk assessment methodologies for cryptocurrencies is of paramount

importance in the design of prospective regulatory frameworks (Trucíos & Taylor, 2023).

2.2.3 History of VaR and ES

The concept of volatility was found around 1860 and has been used since in various indus-

tries. Volatility is still the main measure of financial risk (Daníelsson, 2011). Many well-

known academics such as Markowitz (1952) and Tobin (1958) also linked risk to volatility

in the value of the portfolio. Before VaR was established, volatility was only a risk measure

(Daníelsson, 2011).

As the transition from the 1970s to the 1980s occurred, the volatility of financial markets

increased. Companies were becoming more leveraged and there was a growing demand for

new risk measures. The resources necessary to implement VaR were becoming accessible,
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but mainly viewed as a theoretical concept within portfolio theory. Companies were looking

for a means to evaluate market risk in various asset types, although they had not fully grasped

how VaR could address this requirement. In the United States, regulators were laying the

groundwork to facilitate its adoption. (Holton, 2002)

In the late 1980s, JP Morgan developed a comprehensive VaR, system, also known as Risk-

Metrics, for their entire firm (Guldimann, 1995). This system considered several hundred

risk factors and relied on a covariance matrix that was updated quarterly based on historical

data. On a daily basis, different trading units would communicate their position changes in

relation to each risk factor by email. These changes were then aggregated to represent the

overall value of the portfolio as a linear combination of these risk factors. Using this infor-

mation, they calculated the standard deviation of the portfolio value. They used various VaR

models, including a one-day 95% VaR in USD, which was calculated under the assumption

that the portfolio value followed a normal distribution. (Guldimann, 2000)

By 1993, many financial institutions were using their unique VaR methodologies to assess

market risk, distribute capital, or maintain close eye onmarket risk thresholds. Thesemethod-

ologies came in various forms, but were most frequently influenced by the framework of

Markowitz (1952). Over time, the value of these internal VaR measures gained recognition

and BCBS officially approved their adoption by banks for regulatory capital calculations.

At the turn of the 2000s Artzner et al. (1999) introduced ideal properties of risk measure

and criticized VaR about now having these properties. In the same context, he proposed

an alternative risk measure for VaR which is commonly known as ES. However, after this

proposal, several years passed before the widespread adoption of ES. This delay was due to

the ongoing debate surrounding the mathematical properties of the measure, suggesting that

it could not be backtested. A significant example of this is the publication of Gneiting (2011)

that highlights the shortcomings of ES in terms of elicitability.

However, in 2012, BCBS published a discussion paper that outlines the plans for ES to replace

VaR because, due to its mathematical properties, it would be more capable of measuring risk,

especially during periods of high market stress (BCBS, 2012). Due to the ongoing discussion

on ES, BCBS chose to delay its implementation, preserving VaR as the predominant risk

measure (BCBS, 2013). In 2014, (Acerbi & Szekely, 2014) proved in their publication that

ES can be subjected to backtesting, despite the lack of elicitability. Since then, both risk
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measures have become central to risk management, to the extent that regulatory bodies such

as BCBS havemandated their application in the financial sector (BCBS 1996; BCBS; 2019b).

The regulatory perspective of these risk measures is discussed in more detail in the following

sections.

2.3 Regulation of market risk management

In essence, each market participant has the power to determine how to allocate its assets, and,

as such, each player is responsible for its own actions. Therefore, the question is whether

banking regulation is necessary at all. However, banking regulation is widely seen as neces-

sary, even indispensable, for the stability of financial markets. The purpose of regulation is

to ensure that banks are sufficiently solvent in times of crisis to avoid a large-scale financial

crisis. For the ordinary commercial bank, the main regulatory issues are mainly externalities

and deposit insurance. This section outlines the laws governing the VaR and ES riskmeasures

used to assess market risk, along with an examination of the existing regulatory framework

on cryptocurrencies.

2.3.1 Basel I

In 1988, the G10, which consists of the ten most industrialized nations, entered into an agree-

ment aimed at regulating banks. Today, numerous additional countries have become signa-

tories to this agreement. Although member nations have the authority to enact stricter regu-

lations for their banks, they are required to adhere to the fundamental principles outlined in

the agreement. This pact requires that banks in member countries maintain a minimum level

of capital reserves to hedge a range of risks. The original agreement focused only on credit

risk. The agreement required each bank to allocate a capital reserve (Cooke ratio) of 8% of

the value of the securities that represent the credit risk in the bank’s portfolio. The purpose

of this ratio was to provide a financial safety net for the bank. The specific weight assigned

to the various financial securities was rather arbitrary when the regulation was first applied.

(BCBS, 1988)

The original Basel I Accord faced significant criticism for its omission of market risk and

its overly cautious approach to credit risk, as it failed to account for the potential benefits

of risk diversification and offset of positions through “netting”, which involves matching

the maturities of long and short positions. In 1995, the practice of netting for credit risk,
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including derivative-related positions, was authorized. In 1996, the first revision of Basel I

was introduced to incorporate market risk and allow the use of internal market risk models.

This framework is based on the proper allocation of positions between the trading book and

the non-trading (or banking) book. Within this regulatory context, financial institutions were

mandated to assess market risk, in addition to credit risk, using the VaR measure. (BCBS,

1996)

2.3.2 Basel II

A significant assessment of operational risk and credit risk occurred in 2004 with the imple-

mentation of Basel II measures, enforced in 2006 by BCBS. However, the 2007 financial

crisis hampered its widespread implementation in many countries. During this period, the

contentious nature of VaR and its lack of coherency fueled extensive discussions, leading

to the suggestion of ES as an alternative risk measure to replace VaR. (BCBS, 2006). How-

ever, BCBS opted not to substitute VaR as a risk measure due to uncertainties surrounding the

backtesting of the ES measure, due to its lack of elicitability. However, Basel II implemented

more stringent criteria concerning VaR usage, evident in the mandate for banks to provide

justifications for any omitted pricing elements in VaR risk estimations (BCBS, 2009).

Basel II is based on three mutually reinforcing pillars.

Pillar I includes minimum capital requirements for credit, market, and operational risk,

which are based on financial models rather than accounting rules.

Pillar II comprises a comprehensive evaluation conducted by both the supervisor and the

regulator to verify capital sufficiency, thus transferring accountability to the regulator, who

is tasked with overseeing the bank’s performance and promptly identifying any deficiencies.

However, the primary focus is on the proactive measures taken by the supervisor. The second

pillar also encompasses risks that are not addressed in the first pillar, including but not limited

to interest rate risk.

Pillar III emphasizes on fostering market discipline among banks and strives to promote

greater transparency in the information they provide. Pilar III also includes specific disclo-

sure mandates.
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In response to significant financial losses suffered by banks during the global financial cri-

sis, the BCBS introduced the Basel 2.5 framework in 2009. 2009 The primary contributor

to excessive leverage and risk-taking was identified as the trading book. Recognizing that

existing regulations did not adequately address certain key risks, the Committee introduced

an incremental capital risk charge to complement the VaR-based trading book framework.

Additionally, stressed VaR calculations became mandatory, as losses in the trading books

of numerous banks far exceeded the minimum capital requirements set by the previous reg-

ulation. The implementation of Basel 2.5 in banks coincided with regulators developing a

more comprehensive strategy in response to the lessons learned from the 2007 financial crisis

(BCBS, 2009).

2.3.3 Basel III

Basel III brings in additional capital demands aimed at safeguarding banks and enhancing

their oversight of liquidity risks. This agreement requires banks to improve risk manage-

ment, strengthening regulatory oversight. Risk managers within banks will need to maintain

a greater degree of autonomy compared to CEOs. The agreement also emphasizes increased

transparency and the reinforcement of long-term capital reserves. Meanwhile, speculations

surfaced about VaR being substituted by a subadditive ES. However, this transition did not

materialize when Basel III was released in 2010 (revised in 2011). (BCBS, 2011)

In 2016 (revised in 2019), the BCBS published a minimum capital requirement for market

risk. The proposed changes to market risk requirements included several key adjustments.

These changes involved transitioning from the use of VaR to ES as the primary risk measure,

extending the liquidity horizon beyond the existing 10-day limit for illiquid trades, and im-

plementing a revised standardized approach that would become mandatory, even for banks

currently employing the internal model approach. The rationale for the use of the ESmeasure

lies in its ability to account for tail risk prudently, which will help ensure capital adequacy

under stressed market conditions. Since ES represents the expected tail loss beyond VaR,

these modifications have the potential to increase market risk capital requirements, although

regulators tend to reduce the confidence level from 99% to 97.5% for the internal model-

based approach. However, the introduction of longer liquidity horizons, exceeding the 10-

day threshold, is poised to definitively raise the market risk capital demands for portfolios

containing illiquid assets. (BCBS, 2019b)
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2.3.4 Current state of cryptocurrency regulation

Governments around the world strive to understand and regulate emerging currencies, but es-

tablishing effective regulations poses significant challenges. Cryptocurrencies operate across

a global network and are mined intermittently to avoid governmental oversight, making it

difficult for any nation to establish unilateral rules. Collaboration among multiple nations

is essential to construct a robust legal framework that prevents arbitrage opportunities. Fur-

thermore, unlike traditional currencies controlled by central banks or governments, cryp-

tocurrencies are managed by decentralized networks, adding to the complexity of regulation.

Adapting existing regulations to encompass cryptocurrencies presents difficulties due to their

multifaceted nature. Cryptocurrencies exhibit characteristics that span three main categories:

they can be viewed as securities, commodities, or currencies. This complexity complicates

efforts to fit them neatly within pre-existing regulatory frameworks. (Auwera et al., 2020,

pp. 44–46) This stands as the primary rationale behind our previous conversation on how

cryptocurrencies are or should be considered and treated as assets (recall 2.1.2).

Developing a unilateral regulatory structure for cryptocurrencies presents challenges due to

varying perspectives on legislation in different countries. For example, China enforces a

complete prohibition on cryptocurrencies, banning all related activities, including mining,

trading, and initial coin offerings (Griffith & Clancey-Shang, 2023). On the contrary, Ger-

many adopts a different regulatory position, where the country’s regulatory body, BaFin,

categorizes Bitcoins as units of account according to German law, thus identifying them as

financial instruments (Klöhn & Parhofer, 2018).

BCBS has expressed the view that the rapid development of cryptocurrency assets and asso-

ciated products and services could introduce greater risks to banks, raising concerns about the

stability of the financial system. Consequently, BCBS (2019a) released its initial discussion

paper, seeking feedback from relevant stakeholders, in order to formulate a framework for

the “prudent treatment of banks’ exposure to crypto assets”. Subsequently, two consultation

papers were issued outlining preliminary and revised proposals on this matter.

The BCBS introduced a minimum capital requirement for banks’ direct involvement with

cryptoassets toward the close of 2022. Although the standard is not currently legally en-

forceable, it requires transposition into EU law by January 1, 2025. Additionally, the report

touched onmarket riskmanagement with respect to cryptocurrencies. When assessingmarket
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risk capital requirements for Group 1 cryptoassets using the internal model approach (IMA),

banks will be required to calculate an overall stressed expected shortfall (SES) as a capital

measure. (BCBS, 2022)

The MiCA establishes consistent market rules throughout the European Union for crypto as-

sets. It addresses crypto assets that are not currently under the purview of existing financial

services regulation. Important aspects concerning the issuance and trading of crypto assets,

including asset reference tokens and e-money tokens, encompass transparency, disclosure,

authorization, and transaction supervision. This new legal framework is designed to en-

hance the integrity of the market and financial stability. It achieves this by regulating public

offerings of crypto assets and ensuring that consumers are better informed about the risks

associated with these assets. The regulation includes a significant number of Level 2 and

Level 3 measures that need to be developed within a 12- to 18-month timeframe, depending

on the mandate, before the new rules come into effect. The date of implementation of these

measures is contingent on approval by the European Commission, the European Parliament,

and the Council of the European Union.

2.4 Risk measures

Risk measures play an essential role in risk management and are particularly important when

it comes to managing potential losses in the financial or insurance sector. The risk measure

captures the riskiness of an investment in a single figure that allows the risks of different

investments to be compared, even if they depend on differentmarket variables. Riskmeasures

are used, for example, to estimate the amount of capital required to cover risks and to compare

and limit the riskiness of different investment portfolios (Rockafellar & Uryasev, 2002).

The well-known mean-variance framework introduced by Markowitz (1952) integrates both

the mean and the standard deviation (or variance) into a single value, effectively encom-

passing both the central tendency and the spread of the probability distribution. The mean-

variance framework is considered a symmetric risk measure, whichmeans that it does not dis-

tinguish between positive deviations that represent portfolio profits and negative deviations

that indicate portfolio losses (Alexander et al., 2009). The contemporary financial landscape

is considerably more complex than in the late 1950s. Over time, several major markets have

undergone deregulation, leading to the emergence of new investment possibilities, especially

in the growing economies of Asia and South America. Currently, investment banks manage
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large trading portfolios that include a multitude of positions in various products. The use of

derivative instruments for both speculative and risk mitigation purposes has seen a substantial

increase. All of these advances pose novel challenges for investors, traders, and especially

risk managers (Hubbert, 2012).

Contemporary risk analysis frequently places emphasis on tail risk, operating under the as-

sumption that extreme events occur infrequently. In this context, quantiles represent a valu-

able tool for assessing these infrequent events. This orientation has led to several asymmetric

risk measures, with prominent examples such as VaR and ES that focus specifically on quan-

tiles within the return distribution (Liu & Wang, 2021). This thesis focuses on asymmetric

risk measures, specifically VaR and ES, which differentiate between profits and losses, ac-

centuating the downside risk and the potential magnitude of losses.

2.4.1 Value-at-Risk

VaR constitutes a singular and succinct statistical measure used to assess potential losses

within a portfolio. It is primarily designed to gauge the losses of standard market fluctuations.

Instances where losses exceed the VaR threshold occur infrequently and are dependent on a

predefined low probability (Linsmeier & Pearson, 2000).

According to Hull (2018a) VaR, is a function characterized by two key parameters, namely

the holding period and the confidence level. The holding period denotes the time over which

losses may occur, and thus the time risk is forecast over this period of interest. The confidence

level denotes the probability that the losses exceed the chosen VaR level. In instances where

n days serve as the designated time horizon and (1−α) represents the confidence level, VaR

can be described as the magnitude of the loss corresponding to the αth quantile within profit-

loss distribution observed in the portfolio value during the period n days. Figure 1 illustrates

VaR 95% (α = 0.05) under the assumption that profits and losses are normally distributed.

Artzner et al. (1999) define VaR at the confidence level of (1− α) as follows.

V aRα(X) = inf{x |P [X ≤ x] > α}, (2.1)
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where X is a random variable that denotes asset outcome, inf {x |A} is the lower limit of x

given event A, and inf{x |P [X ≤ x] > α}, indicates the αth quantile of profit-loss distribu-

tion (Artzner et al., 1999).

VaR 95%

0

ProfitLoss

Figure 1: Profit-Loss Distribution and VaR

Although widely used, VaR as a risk measure faces several limitations that impact its accu-

racy. First, it assumes a constant portfolio composition within the specified time frame. This

holds well for short periods but becomes less reliable over extended periods due to poten-

tial changes in portfolio positions, rendering the originally calculated VaR outdated (Röman,

2017). Second, VaR relies on the assumption of a normal distribution, which does not always

hold in the financial and cryptocurrency markets. Anomalies such as thick tails, high peaks,

and skewness, observed in various studies (e.g., Wong and Vlaar 2003; Koutmos 2018; Liu

and Tsyvinski 2021), deviate from the theoretical normal distribution, commonly witnessed

empirically (Wolke, 2017, p. 64). Third, VaR does not cover losses beyond a preset thresh-

old. Lastly, Artzner et al. (1999) argue that VaR lacks coherence as a risk measure because it

overlooks the advantages stemming from diversification. The concept of coherence and its

constituents as a risk measure are extensively debated in the following section.

2.4.2 Coherent risk measure

According to Artzner et al. (1999), a risk measure must be coherent to be validly used to

measure risk. A risk measure that adheres to the four axioms of translation invariance, sub-

additivity, positive homogeneity, and monotonicity is called a coherent risk measure. VaR

as a risk measure is not considered a coherent measure because it does not meet the axiom of
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subadditivity (Roccioletti, 2016, p. 275). This shortcoming is considered significant, as cases

where subadditivity is not taken into account properly can produce severe consequences from

a risk management perspective. The lack of subadditivity refers to a situation where diversi-

fication of a portfolio does not reduce its riskiness. In the interim, it can lead to a situation

where the financial institution makes suboptimal investment decisions.

We can illustrate a coherent risk measure in a following way. Suppose that X and Y denotes

two different assets and ρ is a risk measure which maps observations of an asset, like X, onto

a risk measurement. Further define constant κ. Then ρ is coherent risk measure if it satisfies

the following four axioms (Steland, 2012):

AXIOM I. Monotonicity. A risk measure ρ is monotone when:

ρ(Y ) ≥ ρ(X) if X ≤ Y. (2.2)

The rationale behind this is that if a portfolio consistently underperforms compared to another

portfolio, it should be considered riskier and require a greater amount of capital (Hull, 2018b,

p. 275).

AXIOM II. Subadditivity. A risk measure ρ is subbadditive, if:

ρ(X + Y ) ≤ ρ(X) + ρ(Y ). (2.3)

If a bank is composed of two units, it should have to reserve less buffer capital compared to

the sum of buffer capital required for each unit treated as individual entities, that is, diversi-

fication should be encouraged (Hult, 2012, p. 162).

AXIOM III. Positive homogeneity. A risk measure ρ is positively homogeneous if:

κ < 0, and ρ(κX) = κρ(X). (2.4)

Assuming that the portfolio is not too large, if the size of the portfolio doubles we can assume

that it also requires twice the amount of capital. This is because as the size of a portfolio

grows, its liquidity decreases, and a larger amount of capital may be necessary to maintain

the appropriate proportions (Hull, 2018b, p. 275).
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AXIOM IV. Translation invariance. A risk measure ρ is translation invariant, if:

ρ(X + κ) = ρ(X)− κ. (2.5)

Adding the amount of capital κ to a portfolio should result in a decrease in the risk measure

of the portfolio ρ by κ (Hull, 2018b, p. 275).

To demonstrate the non-subadditivity of VaR, consider this straightforward illustration. Con-

sider a portfolio comprising two uncorrelated zero-coupon bonds, namely Bond X and Bond

Y, each having a 4% probability of default. These bonds have a face value of $1000 and

have only a chance to zero payout and in the event of default, their value reduces to $0.

When examining VaR at the 95% confidence level, the VaR for both positions is zero (Table

1).3

Table 1: Subadditivity: Individual positions

Bond X Bond Y

Loss Probability Cumulative Loss Probability Cumulative

$1000 4% 4% $1000 4% 4%

$0 96% 100% $0 96% 100%

VaR 95% = $0 VaR 95% = $0

When the positions are combined, the chance of zero return decreases below 95%, so VaR of

the combined portfolio is higher than the sum of the individual positions. This suggests that

VaR is not subadditive, as diversification should reduce risk (Table 2).
3Please note that losses are presented as a positive number.
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Table 2: Subadditivity: Combined positions

Combined

Loss Probability Cumulative

$2000 0.16% 0.16%

$1000 7.68% 7.84%

$0 92.16% 100%

VaR 95% = $1000

According to Daníelsson (2011) VaR is subadditive in the special case of normally distributed

returns, but as we know, that is an unusual property of financial returns which is shown in

various studies (see, e.g.,). Furthermore, if the assets in a portfolio have continuous payout

functions, the VaR behaves subadditively. In contrast, when assets exhibit discontinuous

payout functions near the critical VaR level, it tends to create problems with subadditivity.

In practice, reality often falls somewhere between these two extremes, making it a more

nuanced concept. However, in situations involving extensive and diversified portfolios, it

could be argued that reality tends to align more closely with the continuous scenario (Miller,

2019). Given the lack of coherency of VaR as a risk measure, another risk measure, ES,

has emerged as a more coherent alternative. ES satisfies all four properties of the axioms

proposed by Artzner et al. (1999) for coherency.

2.4.3 Expected Shortfall

Artzner et al. (1999) initially suggested employing ES (also known as “conditional VaR”,

“mean excess loss”, “beyond VaR” or “tail VaR”) as a coherent risk measure to address the

shortcomings of VaR. ES represents the average expected loss since the loss exceeds the

threshold of VaR (Figure 2). Therefore, by its very definition, ES takes into account losses

beyond the VaR level. Furthermore, it has been shown that ES exhibits more favorable math-

ematical properties compared to VaR. ES is subadditive, which ensures its coherency as a risk

measure. (Sarykalin et al., 2008). Yamai, Yoshiba, et al. (2002) define ESα(X) as follows:
4

4E[–X|B] represents the conditional expectation of the random variable –X given the occurrence of event
B. Typically, the profit-loss X tends to be negative when the loss exceeds VaR. Using –X in the definition
ensures that ES is expressed as a positive number. (Yamai, Yoshiba, et al., 2002)
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ESα(X) = E[−X | −X ≥ VaRα(X)], (2.6)

whereX is a random variable that denotes asset outcome. V aRα is the VaR at the (1− α)%

confidence level or interchangeably αth quantile (Yamai, Yoshiba, et al., 2002).

The visual representation in Figure 2 illustrates the difference between VaR and ES when

considering a confidence level of 95% and assuming a normal distribution. In this context,

VaR represents the α quantile within the distribution of profits and losses. On the contrary,

ES functions as a conditional expectation, illustrating the average magnitude of losses that

exceed a specified VaR threshold at a given confidence level. The vertical centerline in the

figure represents the mean of the distribution, which is 0 in the case of a normal distribution.

The VaR and ES threshold are derived from the value of α = 0.05, from which we obtain a

critical value, i.e., the z-value. In the case of the VaR depicted on the chart, this z-value is

approximately 1.65.

ProfitLoss

VaR 95%

ES 95%

Figure 2: Profit-Loss Distribution, VaR and ES

Given that ES is derived from VaR, it acquires the inherent characteristics associated with

VaR, including properties such as translation invariance, monotonicity, and positive homo-

geneity. Furthermore, it can be shown that ES also conforms to the principle of subadditivity,

establishing itself as a coherent risk measure (Artzner et al., 1999). This particular advantage

means that ES, in contrast to VaR, can encompass the diversification effect when evaluating

the level of risk associated with a portfolio composed of various assets, each characterized

by its unique risk attributes. However, ES has its share of drawbacks. First, ES is prone

to errors associated with tail losses, as the magnitude of the expected value depends on all
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tail losses, and there is considerable uncertainty in the estimation of the tail distributions of

these losses (see, e.g., Kondor 2014; Lönnbark 2013). Second, ES lacks a consistent scoring

function (elicitability), making it impossible to reliably compare the estimated values with

the actual ones that have a scoring function (Gneiting, 2011). This topic is covered in more

detail in the following section.

2.4.4 Elicitability

Different estimation methods give different estimates of the magnitude of the risk, even if the

same risk measure is used. When comparing estimates calculated with the same risk mea-

sure, it is useful if the goodness of the estimate can be judged against a pre-selected rule. A

common way to examine the goodness of the calculated estimate is to compare the estimated

value with the observed value. Gneiting (2011) discusses the making and evaluation of point

forecast estimates in his publication. A natural way to assess the goodness of a computed es-

timate is to compare the estimated value to the observed value. Elicitability is a fundamental

attribute of a risk measure in theoretical discourse due to its ability to facilitate the validation

and comparative analysis of various risk measures derived from historical data. Risk mea-

sures that permit such validation and comparative evaluation are appropriately characterized

as elicitable (Patton et al., 2019).

Next, a scoring function is defined according to Gneiting (2011). Consider the interval I as

the possible spectrum of outcomes, where I equals the set of real numbersR for a real-valued

quantity or I equals the open interval [0,∞] for a strictly positive quantity. Then, let x ∈ I

be point forecasts and y ∈ I , I ⊂ R observed values. The function S: I × I ⇒ [0,∞] is then

a scoring function that describes the magnitude of the prediction error x when the value y is

observed. For example, we can think of the function S(x, y) that provides the magnitude of

the average error by examining the average goodness of the estimate based on n observations

as a mean:

S̄ =
1

n

n∑
i=1

S(xi, yi), (2.7)

Based on the scoring function, we can choose the optimal point Various scoring functions

suitable for different situations have been discussed, for instance, in Gneiting (2011) publi-

cation. Table 3 provides examples of commonly used scoring functions.
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Table 3: Commonly used scoring functions (Gneiting, 2011)

S(x, y) = (x− y)2 squared error (SE)

S(x, y) = |x− y| absolute error (AE)

S(x, y) = |(x− y)/y| absolute percentage error (APE)

S(x, y) = |(x− y)/x| relative error (RE)

Next, a consistent scoring function is defined acording to Gneiting (2011) publication. Es-

timators and predictions are often statistical functionals, meaning they are mappings from

the set of probability distributions P to Euclidean space. Risk measures are also statistical

functionals. When the future value Y of the estimable variable is associated with an unknown

distribution U , for a certain set of distributions P , a scoring function S(x, y) defined for a

risk measure ρ: P ⇒ R is consistent if, for all U ∈ P , p̂ ∈ ρ(U), and x ∈ I , the following

holds:

EU [S(p̂, Y ] ≤ EU [S(x, Y )] (2.8)

The scoring function is strictly consistent if the equality holds only when x ∈ p̂(U).

If there exists a consistent scoring function for the functional, then for the optimal point

forecast x̂ of the functional, the following holds:

x̂ = argmin
x

EU [S(x, Y )]. (2.9)

When the scoring function is strictly consistent, it ensures that the optimal estimate is unam-

biguous. Therefore, in cases where there exists a consistent scoring function for a given func-

tional, it becomes a valuable tool for comparing estimates derived from different methodolo-

gies. This attribute proves particularly beneficial when faced with multiple statistical models

for estimation, allowing a rigorous comparison to select the most appropriate one. (Gneiting,

2011)

The presence of a truly consistent scoring function for a functional in a range of probability

distributions in the setP is termed “elicitable”. Gneiting (2011) demonstrates that elicitability

is a mathematical property satisfied by VaR but not ES, which implies that backtesting of ES
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is more complicated than backtesting of VaR. Acerbi and Szekely (2014) later proved that ES

is backtestable and that elictability is not a mandatory property for absolute model selection.

The feature makes the comparison easier, but does not prevent the implementation testing

of models. The VaR risk measure is consistently scoring, and its strictly consistent scoring

function can be defined as follows:

S(x, y) = (1{x ≥ y} − α)(g(x)− g(y)), (2.10)

where g is an increasing function and 1 denotes the indicator function (Gneiting, 2011).

2.4.5 Summary of risk measure characteristics

ES is a more comprehensive measure of risk than VaR, as it clarifies the potential magni-

tude of losses in adverse scenarios. On the contrary, the measure VaR has been criticized

for its limited ability to identify losses above its defined threshold, leading to an incomplete

description of the true extent of potential losses, especially when it does not take into ac-

count the possibility of significantly larger losses. Furthermore, the non-subadditive nature

of VaR highlights its inconsistency, since the combined risk of the positions may in some

cases exceed the sum of the risks of the individual positions.

ES, in contrast, is a subadditive and coherent risk measure that offers a more robust frame-

work for risk assessment. However, ES is not a nonproblematic risk measure; it lacks consis-

tent scorable attributes, which implies the absence of a scoring function for consistent com-

parisons between the estimated and actual values of ES. Furthermore, its sensitivity to errors

in tail losses, stemming from its dependence on cumulative tail losses, poses a challenge

considering the inherent uncertainty associated with tail loss distribution estimates (Jiménez

et al., 2020b).

36



Table 4: Summary of the properties of VaR and ES risk measures

Property VaR ES

Translation invariance Yes Yes

Subadditivity No Yes

Positive homogeneity Yes Yes

Monotonicity Yes Yes

Coherency No Yes

Elicitability Yes No

Backtestability Yes Yes

2.5 Risk measure estimation windows

The estimation window denotes a defined time frame used to calculate statistical factors or

inputs within risk models. Its importance lies in shaping the accuracy and dependability

of forecasts or estimates within risk modeling. A carefully selected estimation window has

the potential to increase the foresight capabilities of risk models by encompassing pertinent

market conditions, thus improving the accuracy of future risk assessments (Berens et al.,

2018). The estimation window is illustrated in Figure 3 according to Daníelsson (2011). The

total sample n is divided into an estimation window of sizeWE and a testing window of size

WT = n−WE .

Estimation Window Testing Window
VaRt+1 VaRn−WE+1

t = 1 t = WE t = n

Figure 3: Estimation and Testing Windows

The characteristics of the asset under evaluation, including its market liquidity, volatility,

and dynamics, significantly influence the optimal estimation window duration. Selecting

the right estimation window involves a trade-off: too few observations create high volatility

in the training sample, while too many introduce biases not present during the modeling

period. Therefore, determining the ideal training window size is not straightforward. Assets

exhibiting higher volatility may require shorter windows for accurate estimates, while illiquid
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or less volatile assets might benefit from longer windows to capture unusual patterns. (Righi

& Ceretta, 2015)

Understanding how the estimation window affects the accuracy of the risk estimation is es-

sential. According to the BCBS (2019b), the construction of a risk model requires a minimum

of 250 days of historical data to construct a market risk model for traditional assets. How-

ever, the current regulatory framework for cryptocurrencies is not yet in place, which is why

there is no minimum requirement for the length of estimation window. In traditional financial

studies, the norm is to assume an extended estimation window, often spanning 1000 to 2000

observations or more (Danielsson 2002; Buczyński and Chlebus 2019; Patton et al. 2019).

However, assessing market risk in cryptocurrencies does not allow such extended windows

due to their relatively recent emergence compared to traditional assets. In particular, in pe-

riods of high volatility, an even shorter estimation window becomes necessary to evaluate

quick changes in risk levels. Despite numerous studies that introduce and compare estima-

tion methods, there is a relative oversight in understanding the significance of the information

from the estimation window. This is evident in the limited number of comprehensive studies

on this topic, which contributes to the lack of empirical consensus (Righi and Ceretta 2015;

Buczyński and Chlebus 2020). Since the study of cryptocurrencies does not allow the use of

long estimation windows and shorter estimation windows that adapt more quickly to large

changes in volatility, this study aims to investigate how the estimation window set by BCBS

performs against shorter estimation windows.

2.6 Overview of VaR and ES backtesting

Risk mitigation comprises two fundamental components: the estimation of the loss distribu-

tion and the calculation of the risk magnitude based on this distribution using a selected risk

measure. The specific risk measure chosen to gauge the magnitude of the risk, along with the

method used to estimate the loss distribution, collectively constitutes the risk model (Hult,

2012). The preceding chapter dived into the theoretical characteristics of risk measures that

should be considered when determining the most suitable risk measures for risk estimation.

In addition to selecting the risk measure, it is imperative to choose an appropriate method

to conduct the risk estimation. Different methods can produce notably disparate risk assess-

ments, even when employing the same risk measure. As a result, the estimated risk values

are subject to empirical validation and validation against real-world data.
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Backtesting involves statistically testing the estimates of risk measures by comparing them

with actual losses from a previous period. If an internal model computes the recurrent capital

charge, regulatory requirements require regular backtesting of the risk measure estimation

model. Failure of performance tests that indicate inconsistencies between risk estimates and

observed losses can lead to the prohibition of using the internal model. Furthermore, the

internal model risk estimates are adjusted by coefficients that affect the size of the capital

requirement based on the results of the performance test (Daníelsson, 2011).

When estimatingVaR, we establish a specific confidence level that defines the position (quan-

tile) within the profit-loss distribution that we are examining. Backtesting VaR is rather

straightforward, the simplest way to evaluate the accuracy of VaR, by using α we calculate

the expected amount of observations which should fall to the left quantile of this particu-

lar quantile in profit-loss distribution. Thus, if we want to estimate VaR with a 99% level

of confidence, we will analyze the first quantile, represented by α = 0.01. For instance,

given a dataset comprising 1000 observations, we would expect approximately 0.01 * 1000

= 10 observations (also called violations), falling beyond the VaR threshold. To calculate the

difference between expected and observed violations, we can calculate VR as follows:

LetXt denote asset outcome, ηt denote whether a violation occurs at time t, let v1 denote the

count of violations and v0 count of non-violation.

VaR is said to be violated at time t when ηt = 1, where:

ηt =

1, if Xt ≤ −VaRt

0, if Xt > −VaRt

The amounts of violations and non-violations are counted as follows:

v1 =

WT∑
WE+1

ηt, (2.11)

v0 = WT − v1. (2.12)

From where we can calculate VR:
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V R =
v1

αWT

. (2.13)

VR greater than one means VaR underestimates the risk, while VR smaller than mean VaR

overestimates the risk.

The testing of ES accuracy is considerably more complicated compared to VaR due to the

infinite potential outcomes for each day. Additionally, a significant distinction in the models’

performance testing lies in the fact that most evaluations of ES performance necessitate data

regarding the daily return distribution, or at the very least information about the distribution’s

tail. As a result, backtests for ES inherently rely on approximations and are highly susceptible

to inaccuracies in the predicted VaR. (Daníelsson, 2011)

This is because while VaR examines a single quantile, ES evaluates an expectation. In simpler

terms, we can pinpoint when VaR is violated, but detecting such violations for ES is challeng-

ing. However, there is a straightforward approach to the test of ES, similar to the violation

ratios used in the evaluation of VaR. When VaR is violated on a specific day, according to

Daníelsson (2011) NS is calculated as follows:

NSt =
Xt

ESt

, (2.14)

where ESt is the empirical ES on day t.

From the definition of ES, the expected Xt given that VaR is violated is as follows:

E[Xt|Xt < −V aRt]

ESt

= 1 (2.15)

Therefore, the average NS, NS should be one:

H0 : NS = 1 (2.16)

Daníelsson (2011) defines a useful rule of thumb for evaluating the accuracy of VaR and ES

using VR and NS as follows:
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Table 5: Violation Ratios (Daníelsson, 2011)

VR(NS) [0.8, 1.2] Good

VR(NS) [0.5, 0.8] or VR(NS)[1.2, 1.5] Acceptable

VR(NS) [0.3, 0.5] or VR(NS)[1.5, 2] Bad

VR(NS) < 0.3 or VR(NS) > 2 Useless

Note: In presenting the results of the study, a similar scale and color

coding is used to evaluate the accuracy of VaR and ES.

Chapter 4.5 introduces additional backtestingmethods in addition to VR andNS. Thesemeth-

ods possess unique characteristics compared to those previously discussed in this chapter.

Consequently, their calculation and focus vary slightly from these basic ones, offering fur-

ther insight into the performance of VaR and ES risk measures.
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3 Data and methodology

In this chapter, the used data are presented and the properties of time series are explored using

various statistics and tests. The parametric and non-parametric methods utilized to estimate

the VaR and ES models are then presented. Furthermore, the time windows used and their

relation to the calculation of risk estimates are outlined. Finally, different backtest methods

are presented to assess the accuracy of the VaR and ES risk measures.

3.1 Data and descriptive statistics

This research incorporates the price data for Bitcoin and Ethereum along with S&P 500 data,

serving as a reference. Cryptocurrency data are obtained from https://coinmarketcap.com/,

while S&P 500 index data is obtained from https://finance.yahoo.com/. All analyzes are per-

formed using MATLAB software (The MathWorks Inc., 2023), and VaR and ES models,

including their backtesting, were implemented using the Risk Management Toolbox (Math-

Works, 2023).

Bitcoin and Ethereum collectively control a substantial majority of the overall cryptocurrency

market, accounting for 68. 7% of the total market share (CoinMarketCap, 2023c), which is

why they are chosen for this study. Respectively S&P500 is the world largest index bymarket

capitalization. The study analyzes information spanning from the beginning of 2021 until

the end of November 2023. Consequently, cryptocurrency data include 1,060 observations,

whereas the S&P 500 comprises 730 observations within the same time frame, reflecting

daily trading of cryptocurrencies.

To maintain the most accurate representation of its volatility, the missing values for the

S&P500 are not filled in using moving averages. The chosen time frame is specifically se-

lected to explore how market risk measures operate during periods of increased volatility,

thus omitting the use of moving averages for the S&P500 to ensure a realistic comparison.

Figure 4 shows the performance of both the S&P 500 and cryptocurrencies throughout the

evaluation period. In particular, market volatility, particularly for cryptocurrencies, is evi-

dent from early 2021 until July 2022. An observable trend across all assets is a substantial
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price decline that occurs within a few months, followed by a subsequent price increase that

began around the end of June or July 2022.
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Figure 4: Returns of S&P500, BTC and ETH

Daily logarithmic returns are calculated using Equation (3.1). As illustrated in Figure 5, the

volatility of cryptocurrencies is significantly elevated when compared to the S&P500. Con-

sequently, we can readily observe indications of volatility clustering with both BTC and ETH.

Instances of pronounced volatility are succeeded by abrupt fluctuations in returns, whereas

periods lacking such spikes generally exhibit more subdued movements. Since the volatility

of the S&P 500 being significantly lower, it is noticeably more challenging to draw equally

clear conclusions solely from the figure. However, it can be observed that volatility reaches

its peak between 2022 and 2023.
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Rt = log

(
Pt

Pt−1

)
, (3.1)

where Rt denotes the daily logarithmic return of an asset on day t, Pt denotes the closing

price of an asset on day t and Pt−1 denotes the closing price of an asset on day t− 1.
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Figure 5: Logarithmic returns of S&P500, BTC and ETH

Table 6 provides the descriptive statistics of the calculated logarithmic returns. Skewness

and kurtosis are calculated using Equations (3.2) and (3.3). Bitcoin has the lowest mean

and median, while Ethereum has the highest mean and median leaving S&P500’s mean and

median of S&P500 between both cryptocurrencies. The means and medians are quite similar

for all, i.e. close to zero, but there are significant differences in the minimum and maximum
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values, indicating the existence of outliers. In the case of cryptocurrencies display more

extreme outcomes compared to S&P500. Therefore, it is unsurprising that cryptocurrencies

exhibit a higher variance and standard deviation compared to S&P500.

Skewness(X) =
1

(n− 1)s3

n∑
t=1

(xt − µ̂)3. (3.2)

Kurtosis(X) =
1

(n− 1)s4

n∑
t=1

(xt − µ̂)4. (3.3)

Table 6: Descriptive statistics

Statistic BTC ETH S&P500

Mean 0.0129 0.0700 0.0283

Std. Dev. 3.3919 4.3858 1.1201

Variance 11.5047 19.2353 1.2547

Min -17.2520 -30.5201 -4.4199

Q1 -1.3805 -1.8383 -0.6151

Median -0.0269 0.0675 0.0277

Q3 1.5727 2.2809 0.7043

Max 17.6026 21.9406 5.3953

Skewness -0.1962 -0.5449 -0.1922

Kurtosis 6.4725 7.8347 4.5802

The skewness and kurtosis of the normal distribution are constants that are

equal to 0 and 3, respectively.

All assets, especially BTC and ETC, exhibit high kurtosis, meaning that return distributions

are much more leptokurtic than in a normal distribution. Negative skewness indicates that

the left tail of the distribution is longer than is assumed in the normal distribution. These

results are not in line with the study of Auwera et al. (2020) in which the logarithmic returns

of both cryptocurrencies and traditional assets were examined. The study found that the log-

arithmic returns of cryptocurrencies show positive skewness, a characteristic not commonly

observed in traditional capital markets. Because the statistics indicated that time series are
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not normally distributed, Student’s t-distribution is fitted to the data by using the parameters

(mean, standard deviation, and degrees of freedom) obtained from the data. The fitted Stu-

dent’s t-distributions are illustrated in Figure 6, ν denotes the degree of freedom of Student’s

t-distribution.
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Figure 6: Distribution fitting

As depicted in Figure 6, each time series has different shaped distributions. Additionally, if

we consider the Student’s t-distribution, which is expected to have a similar fit to the nor-

mal distribution, it would have approximately ν = 30. The degrees of freedom parameter

plays a crucial role in shaping the Student’s t-distribution, offering control over characteris-

tics such as tail thickness. Specifically, an increase in degrees of freedom results in a more

peaked distribution with thinner tails, whereas a decrease leads to a less peaked distribution

with thicker tails. Therefore, it is not surprising that cryptocurrencies, characterized by more
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extreme outcomes, require lower degrees of freedom in comparison to the S&P 500 when

fitting their distributions.

The results of various statistical tests applied to the time series used and their statistical sig-

nificances are summarized in Table 7. Considering the high skewness of all assets, revealed

in the descriptive statistics, it is expected that all the series would deviate from normality, as

indicated by the rejection of the null hypothesis of normality in the Jacque-Bera (J.B) test.

Both the J.B test and descriptive statistics lead to the conclusion that all distributions exhibit

thick tails. This implies that estimation methods that assume normality may not be the most

suitable for VaR and ES estimation.

The Ljung-Box Q-test (LB) for residual autocorrelation suggests that there is a lack of sub-

stantial evidence to dismiss the null hypothesis, which asserts the absence of residual auto-

correlation for up to 20 lags. This suggests that the autocorrelations observed at these lags

do not reach statistical significance, and consequently, there is insufficient support to affirm

the existence of notable autocorrelation within the residuals. However, a repeated LB test

(LB-2) over 20 lags for the squared returns reveals significant ARCH effects in the residuals

of the returns.

Table 7: Statistical hypothesis testing

Statistic BTC ETH S&P500

J.B 538.9*** 1083.8*** 80.6***

LB 17.7 30.8 20.6

LB-2 81.5*** 202.2*** 242.6***

Engle 8.7** 17.7*** 7.3**

KPSS .12 .13 .09

(*) p < .05 (**) p < .01 (***) p < .001.

Respectively, the Engle test for residual heteroskedasticity rejects the null hypothesis of no

conditional heteroskedasticity for all the assets in concern. Thus, we can conclude that there

are significant ARCH effects in the return series, which makes it appropriate for GARCH

modeling. Additionally, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test fails to reject

the trend-stationary null hypothesis, meaning that all the return series showed the ability to
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achieve stationarity. This is to be expected, as the use of logarithmic returns implies that a

logarithmic transformation took place, which stabilizes the variance of the time series.

3.2 Procedure

After the statistical tests are performed, the next phase involves constructing a model and

providing a comprehensive overview of the estimation procedure. This research evaluates

the losses of individual assets using VaR and ES risk measures, employing four distinct es-

timation methods (Gaussian VCV, Gaussian GARCH (1,1), Student’s t GARCH (1,1) and

HS). Furthermore, by using these methods, five different estimation windows are applied to

each model: WE = [50, 100, 150, 200, 250]. The fixed-size estimation window is composed

of observations from 2021. The actual length of the estimation window is kept the same for

easier numerical comparability. However, it is crucial to highlight that when dealing with

S&P 500 returns, a 250-day estimation window encompasses nearly all yearly observations,

while this is not the case with cryptocurrencies due to their continuous daily trading.

The testing window WT begins at observation 252 for the S&P500 and at observation 365

for the cryptocurrencies, corresponding to the initial available observations in 2022. Conse-

quently, the first estimates of VaR and ES are calculated at WT + 1 and the last estimates

at n − WE + 1. It is standard practice to compute the VaR and ES estimates for a single

day ahead (Daníelsson, 2011). The testing phase incorporates the rolling-window method to

assess model stability and performance over time. This method involves shifting the window

forward one observation at a time, with the process repeated until the end of the dataset is

reached (Table 8). The confidence levels in the models adhere to the BCBS mandates: 99%

for VaR and 97.5% for ES, which are approximately equivalent to each other (BCBS, 2019b).

Table 8: Estimation process

S&P500 Cryptocurrencies

t t +WE − 1 VaR(t +WE) ES(t +WE) t t +WE − 1 VaR(t +WE) ES(t +WE)

1 252 VaR(253) ES(253) 1 365 VaR(366) ES(366)

2 253 VaR(254) ES(254) 2 364 VaR(367) ES(368)
... ... ... ... ... ... ... ...

479 731 VaR(732) ES(732) 696 1059 VaR(1060) ES(1060)
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After the estimation process, the accuracy of the models is tested using various backtesting

methods, after which their accuracy is evaluated. In the next sections, the estimation methods

and backtesting methods used are presented, and their characteristics are briefly discussed.

3.3 Parametric methods

After analyzing the stylized facts of the returns, different estimation methods are introduced,

starting from parametric methods. Numerous parametric methods exist to estimate VaR

and ES. Nadarajah et al. (2017) identify over 100 methods that encompass various distri-

butional assumptions (e.g., Gaussian, Johnson family, Student’s t distributions, etc.). These

approaches can utilize various econometric models (e.g., EWMA, ARMA, or GARCHmeth-

ods). The downside of parametric methods are that they rely on assuming a specific model,

thus carrying substantial model risk.

3.3.1 Gaussian Variance-Covariance

The VCV has various names, such as the delta-normal method and parametric VaR, how-

ever, the term delta is closely related to option pricing and may imply a linear relationship

between VaR and risk factors, which is not the case when dealing with portfolios containing

derivatives. Similarly, the term “normal” can be misleading, since the risk factor can also

be log-normal or follow a Student’s t-distribution. Hence, the term “Variance-Covariance

Method” is used.

In this study, for the estimation of VaR and ES using the VCV method under the assumption

of Gaussian distribution, we make the assumption that the loss Xt+1 follows a multivariate

normal distribution, unconditionally or conditionally. Furthermore, we assume that the lin-

earized loss, expressed in terms of risk factors, serves as a reasonably precise approximation

of the actual loss. Subsequently, we utilize the unbiased estimators for the mean and vari-

ance of the population, denoted as µ and σ2, respectively. These estimators are calculated as

follows:

µ̂ =
1

n

n∑
t=1

xt, (3.4) σ̂2 =

√√√√ 1

n− 1

n∑
t=1

(xt − µ)2 (3.5)
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VaRα,t under the assumption of Gaussian distribution is estimated as follows:

V̂ aRα,t = µ̂+ σ̂Φ−1(α), (3.6)

and ESα, respectively:

ÊSα,t = µ̂+ σ̂
ϕ(Φ−1(α))

α
, (3.7)

where Φ−1(α) is the normal inverse cumulative distribution function and ϕ is the density

function (McNeil et al., 2005).

The VCV provides a straightforward analytical approach to address the problem of risk mea-

surement. However, this simplicity comes with the trade-off of relying on two oversimplified

assumptions. First, the linearization approach may not provide an accurate approximation

of the connection between the actual loss distribution and changes in risk factors. Second,

it is improbable that normality is able to accurately represent the distribution of risk-factor

changes, particularly whenworkingwith daily data and possibly evenwithweekly ormonthly

data. (McNeil et al., 2005, p. 49) One significant issue arises from the presence of heavy tails

in the return distribution of most financial and digital assets (see, e.g., Wong and Vlaar 2003;

Koutmos; 2018; Auwera et al. 2020). These heavy tails are of particular concern because VaR

aims to depict the behavior of the portfolio’s returns in the left tail. In such circumstances, a

model that relies on a normal distribution would underestimate the number of extreme events,

leading to an underestimated VaR (Jorion, 2007, p. 262). This is also a concern in this study

since, as we previously concluded, our data exhibit thicker tails than normal distribution.

3.3.2 GARCH(1,1) applications

The GARCH model, an extension developed by Bollerslev (1986) following Engle’s ARCH

model, is designed to address volatility clustering and the leptokurtic distribution of price

returns, both recognized as stylized statistical properties of returns (Barjašić & Antulov-

Fantulin, 2021). In this study, statistical tests have revealed the presence of significant ARCH

effects and leptokurtic distributions. To accommodate these characteristics, a GARCH(1,1)

model is introduced that considers time-dependent volatility. Empirical studies suggest that

a GARCH (1,1) model with a lag of past variance and one lag of past innovation is gener-

ally sufficient to capture the dynamics of volatility (Asgharian et al., 2021). Various studies
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(for example, Trucíos and Taylor 2023; Jiménez et al. 2020a; Acereda et al. 2020), utilize

GARCH(1,1) applications with different distributional assumptions.

The conditional variance of the GARCH(1,1) model is calculated as follows:

σ2
t = κ+ γϵ2t−1 + βσ2

t−1 (3.8)

where σ2
t is conditional variance at time t, κ is the constant term representing the long-term

average of the conditional variance, ϵ2 is lagged squared residuals, γ is the coefficient of the

lagged squared residuals and β is the coefficient of lagged conditional variance.

Thus, VaRα,t under the assumption of Gaussian distribution is estimated as follows:

V̂ aRα,t = µ̂+ σ̂tΦ
−1(α), (3.9)

and ESα,t, respectively:

ÊSα,t = µ̂+ σ̂t
ϕ(Φ−1(α))

α
. (3.10)

where σ̂t is estimated conditional volatility.

The assumption of a normal distribution of returns simplifies the estimation of risk estimates.

However, findings from studies such as Auwera et al. (2020) and Fung et al. (2022) pro-

pose that the distribution of returns in cryptocurrencies is better approximated by Student’s

t-distribution. Taking into account the aforementioned results and descriptive statistics, Stu-

dent’s t applications are included in this study. Unlike the Gaussian distribution, which in-

corporates only location parameter µ (mean) and scale parameter σ (standard deviation), the

Student’s t-distribution also includes a shape parameter ν (degrees of freedom).

According to Gaunt (2021) the Student’s t-distribution can be expressed as follows. Let X

∼ Tν follow Student’s t-distribution with ν greater than 0 and PDF:

fX(x) =
Γ[(ν + 1)/2]√
πνΓ(ν/2)

[
1 +

x2

ν

]− ν+1
2

(3.11)

where Γ denotes gamma function and ν denotes degrees of freedom.
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From the above equation, we can derive the Student’s t-distribution into the GARCH (1,1)

process. Thus, VaRα,t under the assumption of Student’s t-distribution is estimated as fol-

lows:

V̂ aRα,t = µ̂+ σ̂tT
−1
ν (α), (3.12)

and ESα,t, respectively:

ÊSα,t = µ̂+ σ̂t
ϕ(T−1

ν (α))

α
, (3.13)

where Tν is an inverse cumulative distribution function of Student’s t-distribution with ν

degrees of freedom.

In the process of estimating with different parametric methods, we opt for simplicity by not

estimating the mean, denoted as µ. The assumption that µ = 0 is considered relatively incon-

sequential, given that the error remains negligible at the daily level, as noted by Daníelsson

(2011). This observation is also consistent with the findings of this study (recall Table 6).

3.4 Non-parametric methods

Non-parametric models are approaches used to estimate VaR and ES without making explicit

assumptions about the underlying probability distribution of asset returns. Non-parametric

models offer flexibility, proving beneficial in situations where data deviates from standard

distributions or during financial turbulence when distributions are variable. However, they

can be more prone to the influence of outliers compared to parametric models.

3.4.1 Historical Simulation

HS iswidely used non-parametricmethod for estimatingVaR andES (see, e.g., Likitratcharoen

et al. 2023; Pele and Mazurencu-Marinescu-Pele 2019). The risk estimates are calculated

from the empirical distribution of the outcomes of the assets. The method is a substantive

non-parametric approach to calculate VaR and ES due to its straightforwardness and simplic-

ity. For the empirical VaR estimator, historical losses x1, . . . , xt are first ranked in ascending
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order, and the i-th smallest observation is denoted as x(i) (McNeil et al., 2005). In this case,

VaR at the confidence level α can be estimated as follows.

V̂ aRα,n(x) = x([nα]), (3.14)

where [nα] is the largest integer smaller than nα.

The ES indicates the expected value of the loss when it exceeds the loss level given by the

VaR of the same confidence level. The simplest way to estimate this expected value is to

calculate the average of the losses above the VaR level:

ÊSα,n(x) =
1

n− [na] + 1

n∑
i=[n[nα]]

x(i), (3.15)

Using HS avoids typical problems associated with the parametric approach, the three most

significant being the assumption of a normal distribution of returns, the assumption of con-

stant correlation, and the assumption of a constant delta (Szylar, 2013). Instead of making

assumptions about the return distribution, HS relies on actual data, using the empirical distri-

bution, which is a significant advantage over parametric methods because it avoids estimation

errors (Dowd & Blake, 2006). Although HS is widely used and easy to execute, the method

also has its drawbacks. Since most extreme observations fluctate a lot more than observations

that are less extreme, HS benefits from a larger sample size. However, the downside is that

the old data may not be representative. Furthermore, if the data have structural breaks, HS

tends to perform inaccurately (Daníelsson, 2011). The precision of HS is based on having

the right data points that truly reflect the changing dynamics of the market. Therefore, the

estimation method needs sufficient data without including all historical dynamics because

markets never perfectly mirror the past.

3.5 Backtesting procedures

After the creation of the models and before practical applications, it is crucial to thoroughly

evaluate the reliability of the models. Furthermore, during its implementation, it is vital to

consistently assess its efficacy. A pivotal aspect of confirming the accuracy of the models

involves performing various backtests. In this study, VaR is backtested with three different
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backtests and ES with one backtest. Furthermore, VRs and NSs (recall Section 2.6) are

calculated, respectively.

3.5.1 Kupiec’s proportion of failure test

The widely used VaR backtest method in the context of traditional assets and cryptocurrency

(see, e.g., Likitratcharoen et al. 2018; Jiménez et al. 2020b; Odel et al. 2019), was presented

by Kupiec (1995). The test mimics the framework of Bernoulli trials. Next, the Bernoulli

trials framework is defined according to Daníelsson (2011).

The Bernoulli density on day t is given by:

(1− p)1−ηt(p)ηt , ηt = 0, 1 (3.16)

The likelihood function is given by:

LU(p̂) =
n∏

t=WE+1

(1− p̂)1−ηt(p̂)ηt (3.17)

The restricted likelihood function is defined as follows:

LR(p) =
n∏

t=WE+1

(1− p)1−ηt(p)ηt (3.18)

Using Proportion of Failure (POF) we test whetherLR = LU or equivalently, whether p = p̂:

LRPOF = −2log
(1− p̂)v0(p̂)v1

(1− p)v0(p)v1
∼ χ2

1. (3.19)

The test follows a chi-square (χ2
1) distribution with one degree of freedom and evaluates the

null hypothesis, which posits that the actual violation rate is equal to the observed violation

rate. The POF test is two-sided, which means that it is capable of testing if there are too

many or too few violations. If the statistic value of LRPOF exceeds the 99th percentile of

a chi-square distribution with one degree of freedom, Kupiec (1995) suggests rejecting the

null hypothesis.
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3.5.2 Christoffersen’s tests

Backtesting a VaRmodel involves assessing the probability of encountering violations within

a given sample period. However, if these violations occur in clusters for consecutive days,

it can compromise the efficacy of the VaR model (Daníelsson, 2011). In response, Christof-

fersen (1998) introduced aConditional Coverage Independence (CCI) test to determinewhether

the likelihood of observing a violation on a specific day depends on the occurrence of a previ-

ous violation. The test can be presented as a Markov chain with two states. Christoffersen’s

Conditional Coverage (CC) jointly tests previously mentioned POF and CCI tests using the

chi-square with two degrees of freedom instead of one. Both of these tests are widely used

to test VaR in a cryptocurrency context (see, e.g., Jiménez et al. 2020a; Liu et al. 2020).

Following the framework outlined by Daníelsson (2011), the two-state Markov chain is sub-

sequently characterized. The p00 denotes the probability for a period without violations is

succeeded by another period without violations. Similarly, p10 signifies the probability that a

day with a violation is followed by a day without any violations. Furthermore, p01 represents

the probability that a day without violations is succeeded by a day with a violation, while p11
captures the probabilities of two consecutive violations. This can be represented equivalently

pij = P (ηt = j|ηt−1 = i), pij ∈ [0, 1] for all i, j ∈ [0, 1]. The first-order transformation

probability matrix of a Markov chain with states can be defined as follows:

Π1 =

 1− p01 p01

1− p11 p11


Thus, the likelihood function is:

L1(Π1) = (1− p01)
v00pv0101 (1− p11)

v10pv1111 , (3.20)

where vij is the number of observations where j follows i.

∴ Π̂1 =

 v00
v00+v01

v01
v10+v11

v10
v10+v11

v11
v10+v11


Then p01 = p11 = p and the transition matrix is:
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Π2 =

 1− p p

1− p p


And the maximum likelihood estimate is:

p̂ =
v01 + v11

v00 + v10 + v01 + v11
(3.21)

The likelihood function then is:

L2(Π) = (1− p)v00+v10pv01+v11 (3.22)

∴ Π̂2 =

 1− p̂ p̂

1− p̂ p̂


From where we can derive the test statistic for Christoffersen (1998) CCI test:

LRCCI = −2log

(
(1− Π̂)voΠ̂v1

(1− Π̂01)v00Π̂
v01
01 (1− Π̂11)v10Π̂

v11
11

)
∼ χ2

1, (3.23)

The test follows a chi-square (χ2
1) distribution with one degree of freedom and evaluates the

null hypothesis, which posits that there is no clustering in violations (Π1 = Π2). Conse-

quently, if significant differences exist between the probabilities, the test indicates the unre-

liability of the VaR model. (Christoffersen, 1998)

CC is a joint test derived from the likelihood ratio of Kupiec’s (1995) POF test and Christof-

fersen’s (1998) CCI test. The test statistic of Christoffersen’s (1998) CC test can be defined

as follows:

LRCC = (LRPOF + LRCCI) ∼ χ2
2. (3.24)

The conditional coverage likelihood ratio test is asymptotically distributed as a chi-square

with two degrees of freedom. In the CC test, the null hypothesis of unconditional coverage is

tested against the alternative hypothesis of the independence test. The joint test has less power
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to reject a VaRmodel which only satisfies one of the two properties. Testing clustering effects

on violations is of significant economic importance, as clusters of violations can pinpoint

VaR models that provide inaccurate risk predictions. Especially, when the appearance of

clusters is least favorable — during economic downturns and financial crises — when there

is a clustering of extreme losses in investments due to a persistent increase in volatility levels

(Ziggel et al., 2014).

3.5.3 Acerbi’s and Szekelys’ unconditional test

Acerbi and Szekely (2014) introduced several inventive methodologies for the backtest of

ES. One of these approaches involves the unconditional testing framework, which tests ES

directly. The unconditional test statistic of Acerbi and Szekely (2014) is based on uncon-

ditional expectation and jointly evaluates the frequency and magnitude of α-tail events. Let

t = 1, . . . , n,Xt represent the outcome of the asset distributed along a real distributionFt that

is forecasted by a predictive distribution Dt and let ηt be an indicator of whether a violation

occurs during the period t.

The hypotheses for the test are as follows:

H0 : D
[α]
t = F

[α],
t for all t

H1 : ESD
α,t ≥ ESα,t, for all t and > for some t

V aRF
α,t ≥ V aRα,t, for all t

Then the unconditional expectation can be defined as follows:

ESα,t = −E
[
Xtηt
α

]
, (3.25)

That suggests defining:

ZUC(X) =
n∑

t=1

Xtηt
nαESa,t

+ 1 (3.26)

The test statistic for the UC test is affected by both the magnitude of VaR violations in relation

to the ES estimate and the frequency of VaR violations. Consequently, a single exceptionally
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large VaR violation relative to the ES (or a few instances of significant losses) could result

in the rejection of a model within a specific time period. The impact of a substantial loss on

a day with a large ES estimate might not be as significant in the test results compared to a

day with a smaller ES estimate. Furthermore, a model can be rejected during periods with

numerous VaR violations, even if all violations are relatively minor and only slightly exceed

the VaR (MathWorks, 2023). However, the UC test continues to demonstrate consistency in

critical levels in various tail shapes (Acerbi & Szekely, 2014).
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4 Results

Using the models described in Sections 3.3 and 3.4, the study performed calculations for

VaR estimates at a 99% confidence level and ES estimates at a 97.5% confidence level for

the S&P 500, Bitcoin, and Ethereum. Risk estimates were calculated for a single day using

five different estimation windows (WE) – 50, 100, 150, 200, and 250 – in the estimation

process. In addition to using data splitting and a rolling time window method, the reliability

of the models is evaluated using various backtest methods detailed in Section 3.5. The results

for a 50-day estimation window are presented in Table 9, for a 100-day estimation window

in Table 10, for a 150-day estimation window in Table 11, for a 200-day estimation window

in Table 12, and for a 250-day estimation window in Table 13, respectively. For models in

which Student’s t-distribution was applied, the degrees of freedom (ν) used were as follows:

SP500: 5.66, BTC 2.47, and ETH 2.99.

When interpreting the results, the ”Asset” field indicates the product under examination, the

”Method” specifies the method used for estimating VaR and ES, and the ”Observations”

denotes the number of observations in the test window (WT ). In the VaR 99% column, the

results of the statistical backtest are presented along with the calculated VR values. The VR

value should be equal to one if the model accurately measures the risk. A higher VR than

1 represents an underestimation and a lower VR than 1 represents an overestimation of risk,

respectively. The expected number of VaR exceedances at the 99% confidence level is 4.8

for S&P500 and 6.97 for both cryptocurrencies.

In the ES 97.5% column, UC refers to the unconditional test backtest method introduced

earlier in the chapter, the ES column corresponds to the expected severity value, and OS rep-

resents the observed severity value. The ES column uses the average ratio of ES to VaR for

the VaR violation periods. The OS column shows the average ratio of loss to VaR during

periods when VaR was violated. Additionally, the last column presents NS, a value compa-

rable to the corresponding VaR VR. In the case of ES, the expected amount of violations are

12 for S&P 500 and 17.425 for cryptocurrencies, respectively. The significance level for all

implemented backtests is 0.05. More detailed results, including p-values, test statistics, and

critical values, are provided in the appendices.
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Cryptocurrencies show rejection of the Gaussian VCV and GARCH(1,1) models in both

the VaR and ES backtests. Violation rates (VRs) are elevated, leading to the rejection of

Probability of Failure (POF) tests, which assess the number of violations. Despite this, no

clustering of violations has been observed in any asset class. The UC test also rejects the

ES estimates, even though its NS results appear to be comparatively better than the VR re-

sults. This is because the observed severity is significantly higher than the expected severity,

resulting in rejection. Student’s t GARCH(1,1) remains unrejected in both the VaR and ES

models, suggesting that fitting the distribution to the data could yield benefits. In particular,

the estimation of ES using Student’s t GARCH appears promising, considering the short esti-

mation window. However, HSmodels face rejection in the case of ES. Although the BTC and

S&P500 VaR estimates using HS are not rejected, they exhibit a noticeable underestimation

of risk.

Table 9: Comparison of risk models with 50-day estimation window

Asset Method Observations VaR 99% ES 97.5%

POF CCI CC VR UC ES OS NS

S&P500 Gaussian VCV 480 Fail to reject Fail to reject Fail to reject 1.458 Fail to reject 1.193 1.209 1.333

Gaussian GARCH (1,1) 480 Fail to reject Fail to reject Fail to reject 1.458 Fail to reject 1.193 1.230 1.417

Student’s t GARCH (1,1) 480 Fail to reject Fail to reject Fail to reject 0.833 Fail to reject 1.193 1.319 0.667

HS 480 Fail to reject Fail to reject Fail to reject 1.667 Reject 1.222 1.294 1.583

BTC Gaussian VCV 697 Reject Fail to reject Reject 2.009 Reject 1.193 1.713 1.148

Gaussian GARCH(1,1) 697 Reject Fail to reject Reject 2.439 Reject 1.193 1.599 1.492

Student’s t GARCH (1,1) 697 Fail to reject Fail to reject Fail to reject 1.291 Fail to reject 1.193 1.342 0.689

HS 697 Fail to reject Fail to reject Fail to reject 1.722 Reject 1.409 1.767 1.377

ETH Gaussian VCV 697 Reject Fail to reject Reject 2.152 Reject 1.193 1.511 1.377

Gaussian GARCH (1,1) 697 Reject Fail to reject Reject 2.869 Reject 1.193 1.464 1.836

Student’s t GARCH (1,1) 697 Fail to reject Fail to reject Fail to reject 1.435 Fail to reject 1.193 1.388 0.976

HS 697 Reject Fail to reject Fail to reject 1.865 Reject 1.433 1.552 1.377

Extending the estimation window from 50 to 100 days results in a higher number of models

that remain unrejected by statistical tests. Specifically, none of the VaR model estimates in

the ETH time series is rejected in addition to S&P500 models. Compared to Gaussian VCV,

Gaussian GARCH(1,1) and HS were rejected in the previous scenario. Regarding ES, only

the Gaussian GARCH model is rejected in the case of ETH, while it also shows a relatively

high value of NS (1.607). When evaluating the risk associated with cryptocurrencies using

HS models, both VaR and ES models demonstrate favorable results for cryptocurrencies but

not for S&P500. In particular, VR and NS closely approach a value of 1 in this context.

Student’s t GARCH estimates are also notably accurate. Furthermore, in the case of BTC,

the VaR model is rejected due to violation clustering. However, Student’s t GARCH model

provides conservative estimates for both VaR and ES in the context of BTC. The outcomes
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for the S&P 500 appear somewhat uncertain, since there is an increase in VR results, but

statistical tests have not yet led to the rejection of VaR.

Table 10: Comparison of risk models with 100-day estimation window

Asset Method Observations VaR 99% ES 97.5%

POF CCI CC VR UC ES OS NS

S&P500 Gaussian VCV 480 Fail to reject Fail to reject Fail to reject 1.875 Reject 1.193 1.201 1.667

Gaussian GARCH (1,1) 480 Fail to reject Fail to reject Fail to reject 1.875 Fail to reject 1.193 1.203 1.417

Student’s t GARCH (1,1) 480 Fail to reject Fail to reject Fail to reject 0.625 Fail to reject 1.193 1.145 1.083

HS 480 Fail to reject Fail to reject Fail to reject 1.875 Fail to reject 1.118 1.192 1.333

BTC Gaussian VCV 697 Reject Fail to reject Fail to reject 1.865 Fail to reject 1.193 1.572 1.033

Gaussian GARCH (1,1) 697 Reject Fail to reject Reject 2.296 Reject 1.193 1.62 1.205

Student’s t GARCH (1,1) 697 Fail to reject Reject Reject 0.574 Fail to reject 1.193 1.29 0.689

HS 697 Fail to reject Fail to reject Fail to reject 1.148 Fail to reject 1.457 1.443 1.033

ETH Gaussian VCV 697 Fail to reject Fail to reject Fail to reject 1.722 Fail to reject 1.193 1.501 1.09

Gaussian GARCH(1,1) 697 Fail to reject Fail to reject Fail to reject 1.578 Reject 1.193 1.415 1.607

Student’s t GARCH (1,1) 697 Fail to Reject Fail to Reject Fail to Reject 1.004 Fail to reject 1.193 1.425 0.803

HS 697 Fail to reject Fail to reject Fail to reject 1.148 Fail to reject 1.275 1.41 0.978

The results of HS continue to stay close to the value of 1 regarding cryptocurrencies as the

estimation window increases to 150 days. For BTC, the estimates are slightly closer to 1

compared to using a 100-day estimation window, while for ETH, the estimates are slightly

farther from the value of 1. Furthermore, none of the statistical tests succeeds in rejecting

the VaR or ES model when HS is used. Student’s t GARCH models are also not rejected

for Ethereum; however, for BTC, the VaR model is rejected due to clustering. In the case

of BTC, the ES estimates become even more conservative, whereas for ETH, they remain

the same as with a shorter 100-day estimation window. VaR models experience rejection for

the first time in statistical tests for S&P 500. On the other hand, estimates from Student’s t

GARCH and HS models have been converging towards the value of 1 more consistently as

the estimation window increases. The Gaussian GARCH model has been rejected by the UC

test at each estimation window so far.

Table 11: Comparison of risk models with 150-day estimation window

Asset Method Observations VaR 99% ES 97.5%

POF CCI CC VR UC ES OS NS

S&P500 Gaussian VCV 480 Reject Fail to reject Reject 2.917 Reject 1.193 1.288 1.75

Gaussian GARCH (1,1) 480 Fail to reject Fail to reject Fail to reject 1.875 Reject 1.193 1.199 1.5

Student’s t GARCH (1,1) 480 Fail to reject Fail to reject Fail to reject 0.625 Fail to reject 1.193 1.187 0.917

HS 480 Fail to reject Fail to reject Fail to reject 1.875 Fail to reject 1.1297 1.255 1.083

BTC Gaussian VCV 697 Reject Fail to reject Fail to reject 2.152 Fail to reject 1.193 1.496 1.033

Gaussian GARCH(1,1) 697 Reject Fail to reject Reject 2.726 Reject 1.193 1.468 1.263

Student’s t GARCH (1,1) 697 Fail to reject Reject Fail to reject 0.861 Fail to reject 1.193 1.452 0.517

HS 697 Fail to reject Fail to reject Fail to reject 1.004 Fail to reject 1.442 1.332 1.033

ETH Gaussian VCV 697 Fail to reject Fail to reject Fail to reject 1.722 Fail to reject 1.193 1.412 1.09

Gaussian GARCH (1,1) 697 Reject Fail to reject Fail to reject 1.865 Reject 1.193 1.368 1.377

Student’s t GARCH (1,1) 697 Fail to reject Fail to reject Fail to reject 1.435 Fail to reject 1.193 1.337 0.803

HS 697 Fail to reject Fail to reject Fail to reject 1.291 Fail to reject 1.293 1.334 0.918
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When using a 200-day estimation window, HS continues to demonstrate stability in staying

close to the value of 1 with respect to cryptocurrencies when using VaR and ES. Statistical

tests also do not reject ESmodels, but for BTC, the HSVaRmodel is rejected due to clustering

of violations. Studentized GARCH models once again show promising results, although the

outcomes remain relatively conservative. However, this may not necessarily be a negative

aspect from a risk management perspective. The Gaussian GARCHmodel, on the other hand,

is again rejected based on statistical tests for cryptocurrencies in all cases except for the ETH

VaRmodel. Results for S&P 500 still appear somewhat arbitrary and do not follow a specific

trend. For example, VCV estimates have increased as the estimation window grows, leading

to more frequent rejections of the models. On the contrary, with regard to ETH, the results

of the VCV model have improved as the estimation window increases.

Table 12: Comparison of risk models with 200-day estimation window

Asset Method Observations VaR 99% ES 97.5%

POF CCI CC VR UC ES OS NS

S&P500 Gaussian VCV 480 Reject Fail to reject Reject 3.542 Reject 1.193 1.396 1.667

Gaussian GARCH (1,1) 480 Fail to reject Fail to reject Fail to reject 1.667 Reject 1.193 1.213 1.5

Student’s t GARCH (1,1) 480 Fail to reject Fail to reject Fail to reject 0.833 Fail to reject 1.193 1.18 1.083

HS 480 Fail to reject Fail to reject Fail to reject 1.875 Reject 1.2 1.27 1.583

BTC Gaussian VCV 697 Fail to reject Fail to reject Fail to reject 1.578 Fail to reject 1.193 1.434 1.09

Gaussian GARCH(1,1) 697 Reject Fail to reject Reject 2.001 Reject 1.193 1.505 1.205

Student’s t GARCH (1,1) 697 Fail to reject Reject Fail to reject 0.717 Fail to reject 1.193 1.468 0.574

HS 697 Fail to reject Reject Fail to reject 0.861 Fail to reject 1.429 1.39 0.976

ETH Gaussian VCV 697 Fail to reject Fail to reject Fail to reject 1.578 Fail to reject 1.193 1.407 1.09

Gaussian GARCH(1,1) 697 Fail to reject Fail to reject Fail to reject 1.578 Reject 1.193 1.421 1.32

Student’s t GARCH (1,1) 697 Fail to reject Fail to reject Fail to reject 1.004 Fail to reject 1.193 1.378 0.803

HS 697 Fail to reject Fail to reject Fail to reject 1.291 Fail to reject 1.429 1.368 1.033

When increasing the size of the estimation window from 200 to 250, the ES estimates for

cryptocurrencies are not rejected by the UC test. Additionally, their NS values are quite

close to 1. An exception is the Student’s t GARCHmodel, which, however, does not directly

indicate the model’s poor performance, but rather suggests that it is conservative. In the case

of ETH, the VaR models are also not rejected. On the other hand, for BTC, surprisingly, all

models except Gaussian VCV are rejected in at least one test. Regarding S&P500, the results

still appear more random, making it more difficult to draw direct conclusions. This may be

influenced by the estimation window that covers a proportionally larger part of the year’s

observations for S&P500 compared to cryptocurrencies. However, the performance of the

models does not necessarily improve or worsen directly as the size of the estimate window

changes.
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Table 13: Comparison of risk models with 250-day estimation window

Asset Method Observations VaR 99% ES 97.5%

POF CCI CC VR UC ES OS NS

S&P500 Gaussian VCV 480 Reject Fail to reject Reject 3.125 Reject 1.193 1.405 1.833

Gaussian GARCH (1,1) 480 Fail to reject Fail to reject Fail to reject 1.667 Fail to reject 1.193 1.225 1.417

Student’s t GARCH (1,1) 480 Fail to reject Fail to reject Fail to reject 0.833 Fail to reject 1.193 1.231 0.917

HS 480 Reject Fail to reject Fail to reject 2.083 Fail to reject 1.202 1.335 1.333

BTC Gaussian VCV 697 Fail to reject Fail to reject Fail to reject 1.578 Fail to reject 1.193 1.436 1.033

Gaussian GARCH(1,1) 697 Reject Fail to reject Reject 2.001 Fail to reject 1.193 1.462 1.09

Student’s t GARCH (1,1) 697 Fail to reject Reject Reject 0.574 Fail to reject 1.193 1.468 0.459

HS 697 Fail to reject Reject Fail to reject 0.717 Fail to reject 1.414 1.331 1.033

ETH Gaussian VCV 697 Fail to reject Fail to reject Fail to reject 1.435 Fail to reject 1.193 1.413 1.033

Gaussian GARCH (1,1) 697 Fail to reject Fail to reject Fail to reject 1.578 Fail to reject 1.193 1.419 1.09

Student’s t GARCH (1,1) 697 Fail to reject Fail to reject Fail to reject 0.861 Fail to reject 1.193 1.387 0.631

HS 697 Fail to reject Fail to reject Fail to reject 1.004 Fail to reject 1.414 1.392 0.861

At this point, it can be stated that the results of the HS and Student’s t GARCH(1,1) models

were the most promising concerning cryptocurrencies. The HS model managed to produce

relatively stable risk estimates with different-sized estimation windows, while the GARCH

model using the Student’s t distribution provided a conservative approach to risk estimation.

Additionally, when considering VaR and ES models as a whole, through which the risk esti-

mates for cryptocurrencies were calculated, HS and Student’s t GARCH were relatively less

frequently rejected with backtesting methods. Therefore, we could examine the performance

of these two models through a few figures.
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Figure 7: ES estimates using HS and different estimation windows (BTC)

The Figure 7 shows the performance of ES on BTC, using HS and various sizes of estima-

tion windows. From the figure, it is clearly noticeable that when using a 50-day estimation

window, ES reacts rapidly to changes in volatility. While this can be beneficial in some

cases, generally, even a 50-day estimation window fails to react quickly enough to signif-

icant volatility spikes, such as the one before 07/2022 or around 11/2022. However, when

using this estimation window, the model tracks the actual logarithmic returns more closely.

In contrast, a 250-day estimate window naturally responds more slowly to changes. This

can be advantageous if there are no significant changes in volatility and the risk level re-

mains relatively constant. However, like models predicted with other estimation windows,

this model also struggles to react to major changes in volatility. It is essential to note that the

volatility around 09/2022 could be modeled using 100-250-day estimation windows, while

the 50-day estimation window reacted sharply to the earlier decline in volatility, failing to

capture the mentioned spike effectively. ES model with a 150-day estimation window was

violated fewer times than other models (see Appendix H).
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Figure 8: ES estimates using Student’s t GARCH(1,1) and different estimation windows
(ETH)

From the Figure 8, calculated risk estimates for ETH using ES with different-sized estimation

windows can be observed. It is evident from the figure that the impact of the estimation

window size is not as pronounced as when using HS. Additionally, modeling volatility using

the GARCH(1,1) model with the assumption of a Student’s t-distribution produces estimates

that more smoothly follow logarithmic returns compared to HS. Although, in general, longer

time framesmay be recommended for volatility modeling, this figure provides some evidence

that the estimation window size may have a smaller impact when using the GARCHmodel (at

least under the assumption of Student’s t-distribution) compared to the HS model. Although

models with different-sized estimationwindows performed quite well overall, violationswere

minimized when using a 250-day estimation window (see Appendix G). However, all models

passed the UC test.

.
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5 Summary and conclusion

Cryptocurrencies serve as an investment asset characterized by significant volatility. Given

the rapid growth of the cryptocurrency market and its stressed market conditions, evaluat-

ing investment risks becomes increasingly important. In this thesis, parametric and non-

parametric models were used to calculate VaR and ES for cryptocurrencies and the S&P500,

which served as a benchmark. The process included employing five distinct estimation win-

dows for each VaR and ES models, with the HS and Student’s t GARCH estimation tech-

niques generally demonstrating better accuracy compared to other models for cryptocurren-

cies.

To answer the first research question “What is the impact of the size of the estimation win-

dow on the applicability of VaR and ES risk estimates in times of heightened market stress?”

it can be inferred that although VaR and ES are not directly comparable risk measures, the

mathematical properties of ES are more favorable for measuring the market risk of the cryp-

tocurrencies used in the study. The result aligns with traditional asset classes. Although some

studies suggest that VaR is not a favorable risk measure under stressful market conditions,

this study cannot refute the possibility that the measure may have its place when used with

caution and with awareness of its limitations. However, VaR is an easy-to-implement risk

measure, and the results it produces are easily expressible and understandable.

Additionally, when comparing the accuracy of measures based on the results provided by

backtesting methods, it is important to note that ES backtesting methods consider not only

the quantity of errors but also their magnitude. As a result, a few severe violations may

lead to the rejection of the model, whereas several less significant violations may pass post-

testing. The information obtained about the average size of losses is a crucial factor, making

ES a more informative risk measure than VaR and, consequently, better suited for cryptocur-

rency markets, where rapid and substantial changes in volatility occur. In this study, ES

demonstrated the ability to produce more accurate risk estimates for Bitcoin and Ethereum,

especially during periods of elevated market risk, particularly when using the Student’s t-

distribution GARCH(1,1) method and the HS method. However, it is crucial to recognize

that ES is sensitive to parameter changes; for example, in the case of BTC, the Student’s
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t-distribution GARCH(1,1) model became more conservative as the estimation window in-

creased. This may not necessarily be a drawback and can, in some cases, be a desirable

feature depending on the risk manager’s perspective. However, it is essential to be aware of

this when using the model and its assumptions.

Considering the ease of implementation and promising results, it can be stated that HS in the

estimation method for VaR and ES may, in many cases, be a more reliable solution, as its use

can help avoid model errors related to assumptions about distributions. On the other hand,

VaR provides a simpler approach to risk estimation, but it should be noted that statistical

backtesting methods may not necessarily reject VaR models, even if the model’s VaR ratio is

nearly twice as large as expected. This does not necessarily preclude the use of models, but

it is crucial to be aware of this consideration. In conclusion, this research identifies ES as a

comprehensive risk measure to assess the market risk of cryptocurrencies. Moreover, it sees

no obstacle to the VaRmodel serving as a helpful tool for risk management in cryptocurrency

markets when used with the appropriate parameters.

To answer the second research question “How estimation window size impact on applicability

of VaR and ES risk estimates during periods of increased market stress?” it can be stated

that in this study, the alteration of the estimation window did not produce significant effects

on the risk estimates. However, it should be noted that the most promising models, HS and

Student’s t GARCH(1,1), provided themost accurate risk estimates (i.e., the fewest amount of

violations in the backtesting) when a 250-day estimation window was used. This estimation

window aligns with the BCBS recommendation. On the other hand, the study does not rule

out the possibility that, in certain situations, shorter estimation windows could be used or

might yield better results. For example, VaR estimates using the Gaussian VCV method for

S&P500 deteriorated as the estimation window increased. This makes the assessment of the

impact of the size of the estimation window multifaceted. It is also crucial to note that, in

addition to the estimation window size, the time frame to which it is applied has a significant

effect.

According to Daníelsson (2011), HS requires a minimum 300-day estimation window, and

GARCHmodels need at least a 500-day estimationwindow in the context of traditional assets.

Although this study did not use these specific estimation windows, it generally does not

provide evidence supporting the superior performance of larger estimation windows for HS

VaR and ESmodels. Additionally, none of the Student’s GARCH(1,1) models faced rejection
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in statistical tests for VaR and ES in ETH. Although the results with a 250-day estimation

window generally appeared more stable, there is the possibility that even shorter windows

could prove effective for both cryptocurrency and traditional asset risk models. In a manner

analogous to how VaR and ES can be applicable in various scenarios, the same holds true for

different estimation window sizes, as suggested by the findings of this study.

5.1 Limitations and future directions

This research contributed by adding information to the limited studies on the management

of the market risk of cryptocurrencies, especially during periods of increased market stress.

It should be noted that this thesis only provides a picture of the “life” of the selected cryp-

tocurrencies, and as a result, the estimates of VaR and ES relate only to the period considered

in this study. It is important to note that the time frame used in the study captures a unique

moment in the cryptocurrency markets, as their volatility has been at its highest during these

years. However, there is currently a lack of additional data on the high-volatility period, and

exploring this subject further would be valuable with additional data. On the contrary, the

duration of the volatility of the market remains uncertain. The future may be very different,

with volatility potentially decreasing or increasing.

Furthermore, the research emphasized shorter estimation windows in contrast to previous

studies, resulting in a limited comparison between relatively lengthy and shorter estimation

windows. It is crucial to note that for cryptocurrencies, the longest estimation window falls

short of covering nearly the entire year’s observations, unlike the S&P500 case where it

does, potentially impacting the results. The confidence levels for the risk measures used in

this thesis align with the BCBS standards, but the use of different confidence levels could

produce results divergent from those of this study. Taking into account the above, caution

should be exercised when making generalizations. As this study did not explore multiple

estimationmethods, it could be interesting in the future to compare different volatilitymodels,

especially by using a larger set of different estimation windows and distribution assumptions.
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A Appendix: VaR estimates using theGaussianVariance-Covariance

model

This table illustrates the VaR results derived by the Gaussian VCV method for the S&P500.

The term ”WE” represents the size of the estimation window, while ”VaR cl.” indicates the

confidence level for which VaR is being estimated. The ”ObservedLevel” column indicates

the actual confidence level. The ”Violations” column reveals the number of violated, and

”Expected” indicates the anticipated number of model violations. The ”Ratio” represents the

proportion between these two quantities. ”FirstViolation” denotes the observation at which

the initial violation occurred, and ”Missing” indicates the count of missing observations.

Asset WE VaR cl. ObservedLevel Observations Violations Expected Ratio FirstViolation Missing

S&P500 50 0.99 0.98542 480 7 4.8 1.4583 44 0

S&P500 100 0.99 0.98125 480 9 4.8 1.875 3 0

S&P500 150 0.99 0.97083 480 14 4.8 2.9167 3 0

S&P500 200 0.99 0.96458 480 17 4.8 3.5417 3 0

S&P500 250 0.99 0.96875 480 15 4.8 3.125 3 0

This table displays the results of the statistical backtests used for model validation. Themean-

ings of the first three columns remain consistent with those in the preceding table. Subse-

quently, the backtest results are outlined in the following manner: The first column specifies

the test name, the subsequent one indicates the Likelihood Ratio of the test, and the third

column displays the p-value of the test. To illustrate, CC corresponds to Christoffersen’s

Conditional Coverage test, LR denotes the Likelihood Ratio of the test, and the p-value repre-

sents the p-value of the test. Following this, the ”Observations” column provides the number

of observations, and the ”Violations” column reports the count of violations, mirroring the

structure of the upper table. The symbol v00 signifies the count of days without violations

followed by another violation-free period. Similarly, v10 denotes the count of days with a

violation succeeded by a day without any violations. Furthermore, v01 represents the count

of days without violations followed by a day with a violation, while v11 represents the count

of days with two consecutive violations. Lastly, ”TestLevel” indicates the confidence level

of the backtests used.
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Asset WE VaR cl. CC LR p-value POF LR p-value CCI LR p-value Observations Violations v00 v10 v01 v11 TestLevel.

S&P500 50 0.99 Fail to Reject 1.1 0.57696 Fail to Reject 0.89232 0.34485 Fail to Reject 0.20763 0.64863 480 7 465 7 7 0 0.95

S&P500 100 0.99 Fail to Reject 3.2969 0.19235 Fail to Reject 2.9522 0.085761 Fail to Reject 0.3447 0.55713 480 9 461 9 9 0 0.95

S&P500 150 0.99 Reject 12.595 0.0018411 Reject 11.752 0.0006079 Fail to Reject 0.84314 0.3585 480 14 451 14 14 0 0.95

S&P500 200 0.99 Reject 19.149 6.9472e-05 Reject 18.912 1.3687e-05 Fail to Reject 0.23693 0.62643 480 17 446 16 16 1 0.95

S&P500 250 0.99 Reject 14.494 0.0007123 Reject 14.004 0.00018247 Fail to Reject 0.49047 0.48372 480 15 450 14 14 1 0.95

This table illustrates the VaR results derived by the Gaussian VCV method for the BTC.

The term ”WE” represents the size of the estimation window, while ”VaR cl.” indicates the

confidence level for which VaR is being estimated. The ”ObservedLevel” column indicates

the actual confidence level. The ”Violations” column reveals the number of violated, and

”Expected” indicates the anticipated number of model violations. The ”Ratio” represents the

proportion between these two quantities. ”FirstViolation” denotes the observation at which

the initial violation occurred, and ”Missing” indicates the count of missing observations.

Asset WE VaR cl. ObservedLevel Observations Violations Expected Ratio FirstViolation Missing

BTC 50 0.99 0.97991 697 14 6.97 2.0086 21 0

BTC 100 0.99 0.98135 697 13 6.97 1.8651 21 0

BTC 150 0.99 0.97848 697 15 6.97 2.1521 21 0

BTC 200 0.99 0.98422 697 11 6.97 1.5782 21 0

BTC 250 0.99 0.98422 697 11 6.97 1.5782 21 0

This table displays the results of the statistical backtests used for model validation. Themean-

ings of the first three columns remain consistent with those in the preceding table. Subse-

quently, the backtest results are outlined in the following manner: The first column specifies

the test name, the subsequent one indicates the Likelihood Ratio of the test, and the third

column displays the p-value of the test. To illustrate, CC corresponds to Christoffersen’s

Conditional Coverage test, LR denotes the Likelihood Ratio of the test, and the p-value repre-

sents the p-value of the test. Following this, the ”Observations” column provides the number

of observations, and the ”Violations” column reports the count of violations, mirroring the

structure of the upper table. The symbol v00 signifies the count of days without violations

followed by another violation-free period. Similarly, v10 denotes the count of days with a

violation succeeded by a day without any violations. Furthermore, v01 represents the count

of days without violations followed by a day with a violation, while v11 represents the count

of days with two consecutive violations. Lastly, ”TestLevel” indicates the confidence level

of the backtests used.
Asset WE VaR cl. CC LR p-value POF LR p-value CCI LR p-value Observations Violations v00 v10 v01 v11 TestLevel

BTC 50 0.99 Reject 6.7153 0.034817 Reject 5.5402 0.018584 Fail to Reject 1.175 0.27837 697 14 669 13 13 1 0.95

BTC 100 0.99 Fail to Reject 5.6086 0.060548 Reject 4.1995 0.040435 Fail to Reject 1.4091 0.2352 697 13 671 12 12 1 0.95

BTC 150 0.99 Reject 7.996 0.018352 Reject 7.0269 0.0080296 Fail to Reject 0.96912 0.3249 697 15 667 14 14 1 0.95

BTC 200 0.99 Fail to Reject 3.979 0.13676 Fail to Reject 2.0017 0.15712 Fail to Reject 1.9773 0.15968 697 11 675 10 10 1 0.95

BTC 250 0.99 Fail to Reject 3.979 0.13676 Fail to Reject 2.0017 0.15712 Fail to Reject 1.9773 0.15968 697 11 675 10 10 1 0.95
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This table illustrates the VaR results derived by the Gaussian VCV method for the ETH.

The term ”WE” represents the size of the estimation window, while ”VaR cl.” indicates the

confidence level for which VaR is being estimated. The ”ObservedLevel” column indicates

the actual confidence level. The ”Violations” column reveals the number of violated, and

”Expected” indicates the anticipated number of model violations. The ”Ratio” represents the

proportion between these two quantities. ”FirstViolation” denotes the observation at which

the initial violation occurred, and ”Missing” indicates the count of missing observations.

Asset WE VaR cl. ObservedLevel Observations Violations Expected Ratio FirstViolation Missing

ETH 50 0.99 0.97848 697 15 6.97 2.1521 21 0

ETH 100 0.99 0.98278 697 12 6.97 1.7217 21 0

ETH 150 0.99 0.98278 697 12 6.97 1.7217 21 0

ETH 200 0.99 0.98422 697 11 6.97 1.5782 21 0

ETH 250 0.99 0.98565 697 10 6.97 1.4347 21 0

This table displays the results of the statistical backtests used for model validation. Themean-

ings of the first three columns remain consistent with those in the preceding table. Subse-

quently, the backtest results are outlined in the following manner: The first column specifies

the test name, the subsequent one indicates the Likelihood Ratio of the test, and the third

column displays the p-value of the test. To illustrate, CC corresponds to Christoffersen’s

Conditional Coverage test, LR denotes the Likelihood Ratio of the test, and the p-value repre-

sents the p-value of the test. Following this, the ”Observations” column provides the number

of observations, and the ”Violations” column reports the count of violations, mirroring the

structure of the upper table. The symbol v00 signifies the count of days without violations

followed by another violation-free period. Similarly, v10 denotes the count of days with a

violation succeeded by a day without any violations. Furthermore, v01 represents the count

of days without violations followed by a day with a violation, while v11 represents the count

of days with two consecutive violations. Lastly, ”TestLevel” indicates the confidence level

of the backtests used.

Asset WE VaR cl. CC LR p-value POF LR p-value CCI LR p-value Observations Violations v00 v10 v01 v11 TestLevel

ETH 50 0.99 Reject 7.996 0.018352 Reject 7.0269 0.0080296 Fail to Reject 0.96912 0.3249 697 15 667 14 14 1 0.95

ETH 100 0.99 Fail to Reject 4.6907 0.095814 Fail to Reject 3.0157 0.082459 Fail to Reject 1.675 0.1956 697 12 673 11 11 1 0.95

ETH 150 0.99 Fail to Reject 4.6907 0.095814 Fail to Reject 3.0157 0.082459 Fail to Reject 1.675 0.1956 697 12 673 11 11 1 0.95

ETH 200 0.99 Fail to Reject 3.979 0.13676 Fail to Reject 2.0017 0.15712 Fail to Reject 1.9773 0.15968 697 11 675 10 10 1 0.95

ETH 250 0.99 Fail to Reject 3.4948 0.17422 Fail to Reject 1.1727 0.27884 Fail to Reject 2.3221 0.12755 697 10 677 9 9 1 0.95
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B Appendix: VaR estimates using the Gaussian GARCH(1,1)

model

This table illustrates the VaR results derived by the Gaussian GARCH(1,1) model for the

S&P500. The term ”WE” represents the size of the estimation window, while ”VaR cl.”

indicates the confidence level for which VaR is being estimated. The ”ObservedLevel” col-

umn indicates the actual confidence level. The ”Violations” column reveals the number of

violated, and ”Expected” indicates the anticipated number of model violations. The ”Ratio”

represents the proportion between these two quantities. ”FirstViolation” denotes the obser-

vation at which the initial violation occurred, and ”Missing” indicates the count of missing

observations.

Asset WE VaR cl. ObservedLevel Observations Violations Expected Ratio FirstViolation Missing

S&P50 50 0.99 0.98542 480 7 4.8 1.4583 3 0

S&P50 100 0.99 0.98125 480 9 4.8 1.875 3 0

S&P50 150 0.99 0.98125 480 9 4.8 1.875 3 0

S&P50 200 0.99 0.98333 480 8 4.8 1.6667 3 0

S&P50 250 0.99 0.98333 480 8 4.8 1.6667 3 0

This table displays the results of the statistical backtests used for model validation. Themean-

ings of the first three columns remain consistent with those in the preceding table. Subse-

quently, the backtest results are outlined in the following manner: The first column specifies

the test name, the subsequent one indicates the Likelihood Ratio of the test, and the third

column displays the p-value of the test. To illustrate, CC corresponds to Christoffersen’s

Conditional Coverage test, LR denotes the Likelihood Ratio of the test, and the p-value repre-

sents the p-value of the test. Following this, the ”Observations” column provides the number

of observations, and the ”Violations” column reports the count of violations, mirroring the

structure of the upper table. The symbol v00 signifies the count of days without violations

followed by another violation-free period. Similarly, v10 denotes the count of days with a

violation succeeded by a day without any violations. Furthermore, v01 represents the count

of days without violations followed by a day with a violation, while v11 represents the count

of days with two consecutive violations. Lastly, ”TestLevel” indicates the confidence level

of the backtests used.
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Asset WE VaR cl. CC LR p-value POF LR p-value CCI LR p-value Observations Violations v00 v10 v01 v11 TestLevel

S&P50 50 0.99 Fail to Reject 1.1 0.57696 Fail to Reject 0.89232 0.34485 Fail to Reject 0.20763 0.64863 480 7 465 7 7 0 0.95

S&P50 100 0.99 Fail to Reject 3.2969 0.19235 Fail to Reject 2.9522 0.085761 Fail to Reject 0.3447 0.55713 480 9 461 9 9 0 0.95

S&P50 150 0.99 Fail to Reject 3.2969 0.19235 Fail to Reject 2.9522 0.085761 Fail to Reject 0.3447 0.55713 480 9 461 9 9 0 0.95

S&P50 200 0.99 Fail to Reject 2.0666 0.35583 Fail to Reject 1.7948 0.18034 Fail to Reject 0.27178 0.60214 480 8 463 8 8 0 0.95

S&P50 250 0.99 Fail to Reject 2.0666 0.35583 Fail to Reject 1.7948 0.18034 Fail to Reject 0.27178 0.60214 480 8 463 8 8 0 0.95

This table illustrates the VaR results derived by the Gaussian GARCH(1,1) model for the

BTC. The term ”WE” represents the size of the estimation window, while ”VaR cl.” indi-

cates the confidence level for which VaR is being estimated. The ”ObservedLevel” column

indicates the actual confidence level. The ”Violations” column reveals the number of vi-

olated, and ”Expected” indicates the anticipated number of model violations. The ”Ratio”

represents the proportion between these two quantities. ”FirstViolation” denotes the obser-

vation at which the initial violation occurred, and ”Missing” indicates the count of missing

observations.

Asset WE VaR cl. ObservedLevel Observations Violations Expected Ratio FirstViolation Missing

BTC 50 0.99 0.97561 697 17 6.97 2.439 21 0

BTC 100 0.99 0.97704 697 16 6.97 2.2956 21 0

BTC 150 0.99 0.97274 697 19 6.97 2.726 21 0

BTC 200 0.99 0.97991 697 14 6.97 2.0086 21 0

BTC 250 0.99 0.97991 697 14 6.97 2.0086 21 0

This table displays the results of the statistical backtests used for model validation. Themean-

ings of the first three columns remain consistent with those in the preceding table. Subse-

quently, the backtest results are outlined in the following manner: The first column specifies

the test name, the subsequent one indicates the Likelihood Ratio of the test, and the third

column displays the p-value of the test. To illustrate, CC corresponds to Christoffersen’s

Conditional Coverage test, LR denotes the Likelihood Ratio of the test, and the p-value repre-

sents the p-value of the test. Following this, the ”Observations” column provides the number

of observations, and the ”Violations” column reports the count of violations, mirroring the

structure of the upper table. The symbol v00 signifies the count of days without violations

followed by another violation-free period. Similarly, v10 denotes the count of days with a

violation succeeded by a day without any violations. Furthermore, v01 represents the count

of days without violations followed by a day with a violation, while v11 represents the count

of days with two consecutive violations. Lastly, ”TestLevel” indicates the confidence level

of the backtests used.
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Asset WE VaR cl. CC LR p-value POF LR p-value CCI LR p-value Observations Violations v00 v10 v01 v11 TestLevel

BTC 50 0.99 reject 11.031 0.0040231 reject 10.401 0.0012596 Fail to Reject 0.63055 0.42715 697 17 663 16 16 1 0.95

BTC 100 0.99 reject 9.4383 0.008923 reject 8.6498 0.0032709 Fail to Reject 0.78841 0.37458 697 16 665 15 15 1 0.95

BTC 150 0.99 reject 14.634 0.00066408 reject 14.258 0.00015936 Fail to Reject 0.37594 0.53978 697 19 659 18 18 1 0.95

BTC 200 0.99 reject 6.7153 0.034817 reject 5.5402 0.018584 Fail to Reject 1.175 0.27837 697 14 669 13 13 1 0.95

BTC 250 0.99 reject 6.7153 0.034817 reject 5.5402 0.018584 Fail to Reject 1.175 0.27837 697 14 669 13 13 1 0.95

This table illustrates the VaR results derived by the Gaussian GARCH(1,1) model for the

ETH. The term ”WE” represents the size of the estimation window, while ”VaR cl.” indi-

cates the confidence level for which VaR is being estimated. The ”ObservedLevel” column

indicates the actual confidence level. The ”Violations” column reveals the number of vi-

olated, and ”Expected” indicates the anticipated number of model violations. The ”Ratio”

represents the proportion between these two quantities. ”FirstViolation” denotes the obser-

vation at which the initial violation occurred, and ”Missing” indicates the count of missing

observations.

Asset WE VaR cl. ObservedLevel Observations Violations Expected Ratio FirstViolation Missing

ETH 50 0.99 0.97131 697 20 6.97 2.8694 5 0

ETH 100 0.99 0.98422 697 11 6.97 1.5782 21 0

ETH 150 0.99 0.98135 697 13 6.97 1.8651 21 0

ETH 200 0.99 0.98422 697 11 6.97 1.5782 21 0

ETH 250 0.99 0.98422 697 11 6.97 1.5782 21 0

This table displays the results of the statistical backtests used for model validation. Themean-

ings of the first three columns remain consistent with those in the preceding table. Subse-

quently, the backtest results are outlined in the following manner: The first column specifies

the test name, the subsequent one indicates the Likelihood Ratio of the test, and the third

column displays the p-value of the test. To illustrate, CC corresponds to Christoffersen’s

Conditional Coverage test, LR denotes the Likelihood Ratio of the test, and the p-value repre-

sents the p-value of the test. Following this, the ”Observations” column provides the number

of observations, and the ”Violations” column reports the count of violations, mirroring the

structure of the upper table. The symbol v00 signifies the count of days without violations

followed by another violation-free period. Similarly, v10 denotes the count of days with a

violation succeeded by a day without any violations. Furthermore, v01 represents the count

of days without violations followed by a day with a violation, while v11 represents the count

of days with two consecutive violations. Lastly, ”TestLevel” indicates the confidence level

of the backtests used.
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Asset WE VaR cl. CC LR p-value POF LR p-value CCI LR p-value Observations Violations v00 v10 v01 v11 TestLevel

ETH 50 0.99 reject 17.536 0.00015564 reject 16.352 5.2592e-05 Fail to Reject 1.1836 0.27662 697 20 656 20 20 0 0.95

ETH 100 0.99 Fail to Reject 3.979 0.13676 Fail to Reject 2.0017 0.15712 Fail to Reject 1.9773 0.15968 697 11 675 10 10 1 0.95

ETH 150 0.99 Fail to Reject 5.6086 0.060548 reject 4.1995 0.040435 Fail to Reject 1.4091 0.2352 697 13 671 12 12 1 0.95

ETH 200 0.99 Fail to Reject 3.979 0.13676 Fail to Reject 2.0017 0.15712 Fail to Reject 1.9773 0.15968 697 11 675 10 10 1 0.95

ETH 250 0.99 Fail to Reject 3.979 0.13676 Fail to Reject 2.0017 0.15712 Fail to Reject 1.9773 0.15968 697 11 675 10 10 1 0.95
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C Appendix: VaR estimates using the Student’s t GARCH(1,1)

model

This table illustrates the VaR results derived by the Student’s t GARCH(1,1) model for the

S&P500. The term ”WE” represents the size of the estimation window, while ”VaR cl.”

indicates the confidence level for which VaR is being estimated. The ”ObservedLevel” col-

umn indicates the actual confidence level. The ”Violations” column reveals the number of

violated, and ”Expected” indicates the anticipated number of model violations. The ”Ratio”

represents the proportion between these two quantities. ”FirstViolation” denotes the obser-

vation at which the initial violation occurred, and ”Missing” indicates the count of missing

observations.

Asset WE VaR cl. ObservedLevel Observations Violations Expected Ratio FirstViolation Missing

S&P500 50 0.99 0.99167 480 4 4.8 0.83333 3 0

S&P500 100 0.99 0.99375 480 3 4.8 0.625 3 0

S&P500 150 0.99 0.99375 480 3 4.8 0.625 3 0

S&P500 200 0.99 0.99167 480 4 4.8 0.83333 3 0

S&P500 250 0.99 0.99167 480 4 4.8 0.83333 3 0

This table displays the results of the statistical backtests used for model validation. Themean-

ings of the first three columns remain consistent with those in the preceding table. Subse-

quently, the backtest results are outlined in the following manner: The first column specifies

the test name, the subsequent one indicates the Likelihood Ratio of the test, and the third

column displays the p-value of the test. To illustrate, CC corresponds to Christoffersen’s

Conditional Coverage test, LR denotes the Likelihood Ratio of the test, and the p-value repre-

sents the p-value of the test. Following this, the ”Observations” column provides the number

of observations, and the ”Violations” column reports the count of violations, mirroring the

structure of the upper table. The symbol v00 signifies the count of days without violations

followed by another violation-free period. Similarly, v10 denotes the count of days with a

violation succeeded by a day without any violations. Furthermore, v01 represents the count

of days without violations followed by a day with a violation, while v11 represents the count

of days with two consecutive violations. Lastly, ”TestLevel” indicates the confidence level

of the backtests used.
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PortfolioID WE VaR cl. CC LR p-value POF LR p-value CCI LR p-value Observations Violations v00 v10 v01 v11 TestLevel

S&P500 50 0.99 Fail to Reject 0.21014 0.90026 Fail to Reject 0.14277 0.70554 Fail to Reject 0.067369 0.79521 480 4 471 4 4 0 0.95

S&P500 100 0.99 Fail to Reject 0.8246 0.66212 Fail to Reject 0.78679 0.37507 Fail to Reject 0.037815 0.84581 480 3 473 3 3 0 0.95

S&P500 150 0.99 Fail to Reject 0.8246 0.66212 Fail to Reject 0.78679 0.37507 Fail to Reject 0.037815 0.84581 480 3 473 3 3 0 0.95

S&P500 200 0.99 Fail to Reject 0.21014 0.90026 Fail to Reject 0.14277 0.70554 Fail to Reject 0.067369 0.79521 480 4 471 4 4 0 0.95

S&P500 250 0.99 Fail to Reject 0.21014 0.90026 Fail to Reject 0.14277 0.70554 Fail to Reject 0.067369 0.79521 480 4 471 4 4 0 0.95

This table illustrates the VaR results derived by the Student’s t GARCH(1,1) model for the

BTC. The term ”WE” represents the size of the estimation window, while ”VaR cl.” indi-

cates the confidence level for which VaR is being estimated. The ”ObservedLevel” column

indicates the actual confidence level. The ”Violations” column reveals the number of vi-

olated, and ”Expected” indicates the anticipated number of model violations. The ”Ratio”

represents the proportion between these two quantities. ”FirstViolation” denotes the obser-

vation at which the initial violation occurred, and ”Missing” indicates the count of missing

observations.

Asset WE VaR cl. ObservedLevel Observations Violations Expected Ratio FirstViolation Missing

BTC 50 0.99 0.98709 697 9 6.97 1.2912 21 0

BTC 100 0.99 0.99426 697 4 6.97 0.57389 164 0

BTC 150 0.99 0.99139 697 6 6.97 0.86083 129 0

BTC 200 0.99 0.99283 697 5 6.97 0.71736 129 0

BTC 250 0.99 0.99426 697 4 6.97 0.57389 164 0

This table displays the results of the statistical backtests used for model validation. Themean-

ings of the first three columns remain consistent with those in the preceding table. Subse-

quently, the backtest results are outlined in the following manner: The first column specifies

the test name, the subsequent one indicates the Likelihood Ratio of the test, and the third

column displays the p-value of the test. To illustrate, CC corresponds to Christoffersen’s

Conditional Coverage test, LR denotes the Likelihood Ratio of the test, and the p-value repre-

sents the p-value of the test. Following this, the ”Observations” column provides the number

of observations, and the ”Violations” column reports the count of violations, mirroring the

structure of the upper table. The symbol v00 signifies the count of days without violations

followed by another violation-free period. Similarly, v10 denotes the count of days with a

violation succeeded by a day without any violations. Furthermore, v01 represents the count

of days without violations followed by a day with a violation, while v11 represents the count

of days with two consecutive violations. Lastly, ”TestLevel” indicates the confidence level

of the backtests used.
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Asset WE VaR cl. CC LR p-value POF LR p-value CCI LR p-value Observations Violations v00 v10 v01 v11 TestLevel

BTC 50 0.99 Fail to Reject 0.78276 0.67612 Fail to Reject 0.54695 0.45957 Fail to Reject 0.23581 0.62725 697 9 678 9 9 0 0.95

BTC 100 0.99 reject 7.6281 0.022059 Fail to Reject 1.5102 0.21911 reject 6.1179 0.013382 697 4 689 3 3 1 0.95

BTC 150 0.99 Fail to Reject 4.4914 0.10586 Fail to Reject 0.14309 0.70522 reject 4.3483 0.037047 697 6 685 5 5 1 0.95

BTC 200 0.99 Fail to Reject 5.7514 0.056378 Fail to Reject 0.62385 0.42962 reject 5.1275 0.023549 697 5 687 4 4 1 0.95

BTC 250 0.99 reject 7.6281 0.022059 Fail to Reject 1.5102 0.21911 reject 6.1179 0.013382 697 4 689 3 3 1 0.95

This table illustrates the VaR results derived by the Student’s t GARCH(1,1) model for the

ETH. The term ”WE” represents the size of the estimation window, while ”VaR cl.” indi-

cates the confidence level for which VaR is being estimated. The ”ObservedLevel” column

indicates the actual confidence level. The ”Violations” column reveals the number of vi-

olated, and ”Expected” indicates the anticipated number of model violations. The ”Ratio”

represents the proportion between these two quantities. ”FirstViolation” denotes the obser-

vation at which the initial violation occurred, and ”Missing” indicates the count of missing

observations.

Asset WE VaR cl. ObservedLevel Observations Violations Expected Ratio FirstViolation Missing

ETH 50 0.99 0.98565 697 10 6.97 1.4347 21 0

ETH 100 0.99 0.98996 697 7 6.97 1.0043 21 0

ETH 150 0.99 0.98565 697 10 6.97 1.4347 21 0

ETH 200 0.99 0.98996 697 7 6.97 1.0043 21 0

ETH 250 0.99 0.99139 697 6 6.97 0.86083 21 0

This table displays the results of the statistical backtests used for model validation. Themean-

ings of the first three columns remain consistent with those in the preceding table. Subse-

quently, the backtest results are outlined in the following manner: The first column specifies

the test name, the subsequent one indicates the Likelihood Ratio of the test, and the third

column displays the p-value of the test. To illustrate, CC corresponds to Christoffersen’s

Conditional Coverage test, LR denotes the Likelihood Ratio of the test, and the p-value repre-

sents the p-value of the test. Following this, the ”Observations” column provides the number

of observations, and the ”Violations” column reports the count of violations, mirroring the

structure of the upper table. The symbol v00 signifies the count of days without violations

followed by another violation-free period. Similarly, v10 denotes the count of days with a

violation succeeded by a day without any violations. Furthermore, v01 represents the count

of days without violations followed by a day with a violation, while v11 represents the count

of days with two consecutive violations. Lastly, ”TestLevel” indicates the confidence level

of the backtests used.
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Asset WE VaR cl. CC LR p-value POF LR p-value CCI LRI p-value Observations Violations v00 v10 v01 v11 TestLevel

ETH 50 0.99 Fail to Reject 1.4643 0.48088 Fail to Reject 1.1727 0.27884 Fail to Reject 0.29156 0.58923 697 10 676 10 10 0 0.95

ETH 100 0.99 Fail to Reject 0.14237 0.93129 Fail to Reject 0.00013024 0.99089 Fail to Reject 0.14224 0.70607 697 7 682 7 7 0 0.95

ETH 150 0.99 Fail to Reject 1.4643 0.48088 Fail to Reject 1.1727 0.27884 Fail to Reject 0.29156 0.58923 697 10 676 10 10 0 0.95

ETH 200 0.99 Fail to Reject 0.14237 0.93129 Fail to Reject 0.00013024 0.99089 Fail to Reject 0.14224 0.70607 697 7 682 7 7 0 0.95

ETH 250 0.99 Fail to Reject 0.24744 0.88363 Fail to Reject 0.14309 0.70522 Fail to Reject 0.10435 0.74667 697 6 684 6 6 0 0.95
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D Appendix: VaR estimates using theHistorical Simulationmodel

This table illustrates the VaR results derived by the HS method for the S&P500. The term

”WE” represents the size of the estimation window, while ”VaR cl.” indicates the confidence

level for which VaR is being estimated. The ”ObservedLevel” column indicates the actual

confidence level. The ”Violations” column reveals the number of violated, and ”Expected”

indicates the anticipated number of model violations. The ”Ratio” represents the proportion

between these two quantities. ”FirstViolation” denotes the observation at which the initial

violatin occurred, and ”Missing” indicates the count of missing observations.

Asset WE VaR cl. ObservedLevel Observations Violations Expected Ratio FirstViolation Missing

S&P500 50 0.99 0.98333 480 8 4.8 1.6667 23 0

S&P500 100 0.99 0.98125 480 9 4.8 1.875 23 0

S&P500 150 0.99 0.98125 480 9 4.8 1.875 23 0

S&P500 200 0.99 0.98125 480 9 4.8 1.875 23 0

S&P500 250 0.99 0.97917 480 10 4.8 2.0833 23 0

This table displays the results of the statistical backtests used for model validation. Themean-

ings of the first three columns remain consistent with those in the preceding table. Subse-

quently, the backtest results are outlined in the following manner: The first column specifies

the test name, the subsequent one indicates the Likelihood Ratio of the test, and the third

column displays the p-value of the test. To illustrate, CC corresponds to Christoffersen’s

Conditional Coverage test, LR denotes the Likelihood Ratio of the test, and the p-value repre-

sents the p-value of the test. Following this, the ”Observations” column provides the number

of observations, and the ”Violations” column reports the count of violations, mirroring the

structure of the upper table. The symbol v00 signifies the count of days without violations

followed by another violation-free period. Similarly, v10 denotes the count of days with a

violation succeeded by a day without any violations. Furthermore, v01 represents the count

of days without violations followed by a day with a violation, while v11 represents the count

of days with two consecutive violations. Lastly, ”TestLevel” indicates the confidence level

of the backtests used.
Asset WE VaR cl. CC LR p-value POF LR p-value CCI LR p-value Observations Violations v00 v10 v01 v11 TestLevel

S&P500 50 0.99 Fail to Reject 2.0666 0.35583 Fail to Reject 1.7948 0.18034 Fail to Reject 0.27178 0.60214 480 8 463 8 8 0 0.95

S&P500 100 0.99 Fail to Reject 3.2969 0.19235 Fail to Reject 2.9522 0.085761 Fail to Reject 0.3447 0.55713 480 9 461 9 9 0 0.95

S&P500 150 0.99 Fail to Reject 3.2969 0.19235 Fail to Reject 2.9522 0.085761 Fail to Reject 0.3447 0.55713 480 9 461 9 9 0 0.95

S&P500 200 0.99 Fail to Reject 3.2969 0.19235 Fail to Reject 2.9522 0.085761 Fail to Reject 0.3447 0.55713 480 9 461 9 9 0 0.95

S&P500 250 0.99 Fail to Reject 4.763 0.092413 Reject 4.3365 0.037304 Fail to Reject 0.42647 0.51373 480 10 459 10 10 0 0.95
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This table illustrates the VaR results derived by HS method for the BTC. The term ”WE” rep-

resents the size of the estimation window, while ”VaR cl.” indicates the confidence level for

which VaR is being estimated. The ”ObservedLevel” column indicates the actual confidence

level. The ”Violations” column reveals the number of violated, and ”Expected” indicates

the anticipated number of model violations. The ”Ratio” represents the proportion between

these two quantities. ”FirstViolation” denotes the observation at which the initial violation

occurred, and ”Missing” indicates the count of missing observations.

Asset WE VaR cl. ObservedLevel Observations Violations Expected Ratio FirstViolation Missing

BTC 50 0.99 0.98278 697 12 6.97 1.7217 21 0

BTC 100 0.99 0.98852 697 8 6.97 1.1478 21 0

BTC 150 0.99 0.98996 697 7 6.97 1.0043 21 0

BTC 200 0.99 0.99139 697 6 6.97 0.86083 21 0

BTC 250 0.99 0.99283 697 5 6.97 0.71736 129 0

This table displays the results of the statistical backtests used for model validation. Themean-

ings of the first three columns remain consistent with those in the preceding table. Subse-

quently, the backtest results are outlined in the following manner: The first column specifies

the test name, the subsequent one indicates the Likelihood Ratio of the test, and the third

column displays the p-value of the test. To illustrate, CC corresponds to Christoffersen’s

Conditional Coverage test, LR denotes the Likelihood Ratio of the test, and the p-value repre-

sents the p-value of the test. Following this, the ”Observations” column provides the number

of observations, and the ”Violations” column reports the count of violations, mirroring the

structure of the upper table. The symbol v00 signifies the count of days without violations

followed by another violation-free period. Similarly, v10 denotes the count of days with a

violation succeeded by a day without any violations. Furthermore, v01 represents the count

of days without violations followed by a day with a violation, while v11 represents the count

of days with two consecutive violations. Lastly, ”TestLevel” indicates the confidence level

of the backtests used.

Asset WE VaR cl. CC LR p-value POF LR p-value CCI LR p-value Observations Violations v00 v10 v01 v11 TestLevel

BTC 50 0.99 Fail to Reject 4.6907 0.095814 Fail to Reject 3.0157 0.082459 Fail to Reject 1.675 0.1956 697 12 673 11 11 1 0.95

BTC 100 0.99 Fail to Reject 3.3218 0.18997 Fail to Reject 0.14676 0.70165 Fail to Reject 3.1751 0.07477 697 8 681 7 7 1 0.95

BTC 150 0.99 Fail to Reject 3.7106 0.1564 Fail to Reject 0.00013024 0.99089 Fail to Reject 3.7105 0.054071 697 7 683 6 6 1 0.95

BTC 200 0.99 Fail to Reject 4.4914 0.10586 Fail to Reject 0.14309 0.70522 Reject 4.3483 0.037047 697 6 685 5 5 1 0.95

BTC 250 0.99 Fail to Reject 5.7514 0.056378 Fail to Reject 0.62385 0.42962 Reject 5.1275 0.023549 697 5 687 4 4 1 0.95

This table illustrates the VaR results derived by HS method for the ETH. The term ”WE” rep-

resents the size of the estimation window, while ”VaR cl.” indicates the confidence level for
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which VaR is being estimated. The ”ObservedLevel” column indicates the actual confidence

level. The ”Violations” column reveals the number of violated, and ”Expected” indicates

the anticipated number of model violations. The ”Ratio” represents the proportion between

these two quantities. ”FirstViolation” denotes the observation at which the initial violatin

occurred, and ”Missing” indicates the count of missing observations.

Asset WE VaR cl. ObservedLevel Observations Violations Expected Ratio FirstViolation Missing

ETH 50 0.99 0.98135 697 13 6.97 1.8651 21 0

ETH 100 0.99 0.98852 697 8 6.97 1.1478 21 0

ETH 150 0.99 0.98709 697 9 6.97 1.2912 21 0

ETH 200 0.99 0.98709 697 9 6.97 1.2912 21 0

ETH 250 0.99 0.98996 697 7 6.97 1.0043 21 0

This table displays the results of the statistical backtests used for model validation. Themean-

ings of the first three columns remain consistent with those in the preceding table. Subse-

quently, the backtest results are outlined in the following manner: The first column specifies

the test name, the subsequent one indicates the Likelihood Ratio of the test, and the third

column displays the p-value of the test. To illustrate, CC corresponds to Christoffersen’s

Conditional Coverage test, LR denotes the Likelihood Ratio of the test, and the p-value repre-

sents the p-value of the test. Following this, the ”Observations” column provides the number

of observations, and the ”Violations” column reports the count of violations, mirroring the

structure of the upper table. The symbol v00 signifies the count of days without violations

followed by another violation-free period. Similarly, v10 denotes the count of days with a

violation succeeded by a day without any violations. Furthermore, v01 represents the count

of days without violations followed by a day with a violation, while v11 represents the count

of days with two consecutive violations. Lastly, ”TestLevel” indicates the confidence level

of the backtests used.

Asset WE VaR cl. CC LR p-value POF LR p-value CCI LR p-value Observations Violations v00 v10 v01 v11 TestLevel

ETH 50 0.99 Fail to Reject 5.6086 0.060548 Reject 4.1995 0.040435 Fail to Reject 1.4091 0.2352 697 13 671 12 12 1 0.95

ETH 100 0.99 Fail to Reject 3.3218 0.18997 Fail to Reject 0.14676 0.70165 Fail to Reject 3.1751 0.07477 697 8 681 7 7 1 0.95

ETH 150 0.99 Fail to Reject 3.2646 0.19548 Fail to Reject 0.54695 0.45957 Fail to Reject 2.7176 0.099245 697 9 679 8 8 1 0.95

ETH 200 0.99 Fail to Reject 3.2646 0.19548 Fail to Reject 0.54695 0.45957 Fail to Reject 2.7176 0.099245 697 9 679 8 8 1 0.95

ETH 250 0.99 Fail to Reject 3.7106 0.1564 Fail to Reject 0.00013024 0.99089 Fail to Reject 3.7105 0.054071 697 7 683 6 6 1 0.95
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E Appendix: ES estimates using theGaussianVariance-Covariance

model

This table illustrates the ES results derived by the Gaussian VCV model for the S&P500.

The term ”WE” represents the size of the estimation window, while ”ES cl.” indicates the

confidence level for which ES is being estimated. The ”ObservedLevel” column indicates

the actual confidence level. The ExpectedSeverity tells how severe VaR excaadences are

expected to be, whereas ObservedSeverity tells the empirical value. The ”Observations”

column indicates the number of observations. ”Violations” denotes the number of violations

the model faced, and ”Expected” indicates the number of expected violations. The ”Ratio”

represents the proportion between these two quantities and ”Missing” indicates the count of

missing observations.

Asset WE ES cl. ObservedLevel ExpectedSeverity ObservedSeverity Observations Violations Expected Ratio Missing

S&P500 50 0.975 0.96667 1.1928 1.2085 480 16 12 1.3333 0

S&P500 100 0.975 0.95833 1.1928 1.2012 480 20 12 1.6667 0

S&P500 150 0.975 0.95625 1.1928 1.2881 480 21 12 1.75 0

S&P500 200 0.975 0.95833 1.1928 1.3964 480 20 12 1.6667 0

S&P500 250 0.975 0.95417 1.1928 1.4052 480 22 12 1.8333 0

This table presents the backtesting results of ES using UC. The initial three columns mirror

those in the preceding table. The ”UnconditionalTest” column indicates whether the test is

rejected or not. The ”p-value” displays the test’s p-value, while the ”TestStatistic” column

reveals the actual value of the UC test. In the ”CriticalValue” column, you can find the

critical value associated with the UC test. The ”Observations” column denotes the number

of observations utilized, and the ”TestLevel” column specifies the confidence level of the UC

test.

Asset WE ES cl. UnconditionalTest p-value TestStatistic CriticalValue Observations TestLevel

S&P500 50 0.975 Fail to Reject 0.12186 -0.35095 -0.49713 480 0.95

S&P500 100 0.975 Reject 0.015981 -0.67846 -0.49713 480 0.95

S&P500 150 0.975 Reject 0.0034097 -0.88986 -0.49713 480 0.95

S&P500 200 0.975 Reject 0.0020797 -0.95119 -0.49713 480 0.95

S&P500 250 0.975 Reject 0.00026473 -1.1598 -0.49713 480 0.95
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This table illustrates the ES results derived by theGaussianVCVmodel for the BTC. The term

”WE” represents the size of the estimation window, while ”ES cl.” indicates the confidence

level for which ES is being estimated. The ”ObservedLevel” column indicates the actual

confidence level. The ExpectedSeverity tells how severe VaR excaadences are expected to

be, whereas ObservedSeverity tells the empirical value. The ”Observations” column indi-

cates the number of observations. ”Violations” denotes the number of violations the model

faced, and ”Expected” indicates the number of expected violations. The ”Ratio” represents

the proportion between these two quantities and ”Missing” indicates the count of missing

observations.

Asset WE ES cl. ObservedLevel ExpectedSeverity ObservedSeverity Observations Violations Expected Ratio Missing

BTC 50 0.975 0.97131 1.1928 1.7132 697 20 17.425 1.1478 0

BTC 100 0.975 0.97418 1.1928 1.572 697 18 17.425 1.033 0

BTC 150 0.975 0.97418 1.1928 1.4955 697 18 17.425 1.033 0

BTC 200 0.975 0.97274 1.1928 1.4339 697 19 17.425 1.0904 0

BTC 250 0.975 0.97418 1.1928 1.436 697 18 17.425 1.033 0

This table presents the backtesting results of ES using UC. The initial three columns mirror

those in the preceding table. The ”UnconditionalTest” column indicates whether the test is

rejected or not. The ”p-value” displays the test’s p-value, while the ”TestStatistic” column

reveals the actual value of the UC test. In the ”CriticalValue” column, you can find the

critical value associated with the UC test. The ”Observations” column denotes the number

of observations utilized, and the ”TestLevel” column specifies the confidence level of the UC

test.

Asset WE ES cl. UnconditionalTest p-value TestStatistic CriticalValue Observations TestLevel

BTC 50 0.975 Reject 0.0068092 -0.64853 -0.41331 697 0.95

BTC 100 0.975 Fail to Reject 0.076596 -0.36145 -0.41331 697 0.95

BTC 150 0.975 Fail to Reject 0.11958 -0.29518 -0.41331 697 0.95

BTC 200 0.975 Fail to Reject 0.10477 -0.31078 -0.41331 697 0.95

BTC 250 0.975 Fail to Reject 0.16853 -0.2436 -0.41331 697 0.95

This table illustrates the ES results derived by theGaussianVCVmodel for the ETH. The term

”WE” represents the size of the estimation window, while ”ES cl.” indicates the confidence

level for which ES is being estimated. The ”ObservedLevel” column indicates the actual

confidence level. The ExpectedSeverity tells how severe VaR excaadences are expected to

be, whereas ObservedSeverity tells the empirical value. The ”Observations” column indi-

cates the number of observations. ”Violations” denotes the number of violations the model
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faced, and ”Expected” indicates the number of expected violations. The ”Ratio” represents

the proportion between these two quantities and ”Missing” indicates the count of missing

observations.

Asset WE ES cl. ObservedLevel ExpectedSeverity ObservedSeverity Observations Violations Expected Ratio Missing

ETH 50 0.975 0.96557 1.1928 1.5111 697 24 17.425 1.3773 0

ETH 100 0.975 0.97274 1.1928 1.5012 697 19 17.425 1.0904 0

ETH 150 0.975 0.97274 1.1928 1.4122 697 19 17.425 1.0904 0

ETH 200 0.975 0.97274 1.1928 1.4067 697 19 17.425 1.0904 0

ETH 250 0.975 0.97418 1.1928 1.4134 697 18 17.425 1.033 0

This table presents the backtesting results of ES using UC. The initial three columns mirror

those in the preceding table. The ”UnconditionalTest” column indicates whether the test is

rejected or not. The ”p-value” displays the test’s p-value, while the ”TestStatistic” column

reveals the actual value of the UC test. In the ”CriticalValue” column, you can find the

critical value associated with the UC test. The ”Observations” column denotes the number

of observations utilized, and the ”TestLevel” column specifies the confidence level of the UC

test.

Asset WE ES cl. UnconditionalTest p-value TestStatistic CriticalValue Observations TestLevel

ETH 50 0.975 Reject 0.003084 -0.74493 -0.41331 697 0.95

ETH 100 0.975 Fail to Reject 0.071002 -0.37236 -0.41331 697 0.95

ETH 150 0.975 Fail to Reject 0.12358 -0.29096 -0.41331 697 0.95

ETH 200 0.975 Fail to Reject 0.12836 -0.28592 -0.41331 697 0.95

ETH 250 0.975 Fail to Reject 0.18704 -0.2241 -0.41331 697 0.95
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F Appendix: ES estimates using theGaussianGARCH(1,1)model

This table illustrates the ES results derived by the Gaussian GARCH(1,1) model for the

S&P500. The term ”WE” represents the size of the estimation window, while ”ES cl.” indi-

cates the confidence level for which ES is being estimated. The ”ObservedLevel” column in-

dicates the actual confidence level. The ExpectedSeverity tells how severe VaR excaadences

are expected to be, whereas ObservedSeverity tells the empirical value. The ”Observations”

column indicates the number of observations. ”Violations” denotes the number of violations

the model faced, and ”Expected” indicates the number of expected violations. The ”Ratio”

represents the proportion between these two quantities and ”Missing” indicates the count of

missing observations.

Asset WE ES cl. ObservedLevel ExpectedSeverity ObservedSeverity Observations Violations Expected Ratio Missing

S&P500 50 0.975 0.96458 1.1928 1.2303 480 17 12 1.4167 0

S&P500 100 0.975 0.96458 1.1928 1.2027 480 17 12 1.4167 0

S&P500 150 0.975 0.9625 1.1928 1.1987 480 18 12 1.5 0

S&P500 200 0.975 0.9625 1.1928 1.2127 480 18 12 1.5 0

S&P500 250 0.975 0.96458 1.1928 1.2252 480 17 12 1.4167 0

This table presents the backtesting results of ES using UC. The initial three columns mirror

those in the preceding table. The ”UnconditionalTest” column indicates whether the test is

rejected or not. The ”p-value” displays the test’s p-value, while the ”TestStatistic” column

reveals the actual value of the UC test. In the ”CriticalValue” column, you can find the

critical value associated with the UC test. The ”Observations” column denotes the number

of observations utilized, and the ”TestLevel” column specifies the confidence level of the UC

test.

Asset WE ES cl. UnconditionalTest p-value TestStatistic CriticalValue Observations TestLevel

S&P500 50 0.975 Fail to Reject 0.065189 -0.46119 -0.49713 480 0.95

S&P500 100 0.975 Fail to Reject 0.079002 -0.4285 -0.49713 480 0.95

S&P500 150 0.975 Reject 0.047562 -0.50743 -0.49713 480 0.95

S&P500 200 0.975 Reject 0.043389 -0.52505 -0.49713 480 0.95

S&P500 250 0.975 Fail to Reject 0.067719 -0.4552 -0.49713 480 0.95

This table illustrates the ES results derived by the Gaussian GARCH(1,1) model for the BTC.

The term ”WE” represents the size of the estimation window, while ”ES cl.” indicates the
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confidence level for which ES is being estimated. The ”ObservedLevel” column indicates

the actual confidence level. The ExpectedSeverity tells how severe VaR excaadences are

expected to be, whereas ObservedSeverity tells the empirical value. The ”Observations”

column indicates the number of observations. ”Violations” denotes the number of violations

the model faced, and ”Expected” indicates the number of expected violations. The ”Ratio”

represents the proportion between these two quantities and ”Missing” indicates the count of

missing observations.

Asset WE ES cl. ObservedLevel ExpectedSeverity ObservedSeverity Observations Violations Expected Ratio Missing

BTC 50 0.975 0.9627 1.1928 1.5991 697 26 17.425 1.4921 0

BTC 100 0.975 0.96987 1.1928 1.6196 697 21 17.425 1.2052 0

BTC 150 0.975 0.96844 1.1928 1.4684 697 22 17.425 1.2626 0

BTC 200 0.975 0.96987 1.1928 1.5046 697 21 17.425 1.2052 0

BTC 250 0.975 0.97274 1.1928 1.4618 697 19 17.425 1.0904 0

This table presents the backtesting results of ES using UC. The initial three columns mirror

those in the preceding table. The ”UnconditionalTest” column indicates whether the test is

rejected or not. The ”p-value” displays the test’s p-value, while the ”TestStatistic” column

reveals the actual value of the UC test. In the ”CriticalValue” column, you can find the

critical value associated with the UC test. The ”Observations” column denotes the number

of observations utilized, and the ”TestLevel” column specifies the confidence level of the UC

test.

Asset WE ES cl. UnconditionalTest p-value TestStatistic CriticalValue Observations TestLevel

BTC 50 0.975 Reject 0.00011918 -1.0004 -0.41331 697 0.95

BTC 100 0.975 Reject 0.0076527 -0.63643 -0.41331 697 0.95

BTC 150 0.975 Reject 0.017062 -0.55425 -0.41331 697 0.95

BTC 200 0.975 Reject 0.022011 -0.52026 -0.41331 697 0.95

BTC 250 0.975 Fail to Reject 0.089506 -0.33627 -0.41331 697 0.95

This table illustrates the ES results derived by the Gaussian GARCH(1,1) model for the ETH.

The term ”WE” represents the size of the estimation window, while ”ES cl.” indicates the

confidence level for which ES is being estimated. The ”ObservedLevel” column indicates

the actual confidence level. The ExpectedSeverity tells how severe VaR excaadences are

expected to be, whereas ObservedSeverity tells the empirical value. The ”Observations”

column indicates the number of observations. ”Violations” denotes the number of violations

the model faced, and ”Expected” indicates the number of expected violations. The ”Ratio”
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represents the proportion between these two quantities and ”Missing” indicates the count of

missing observations.

Asset WE ES cl. ObservedLevel ExpectedSeverity ObservedSeverity Observations Violations Expected Ratio Missing

ETH 50 0.975 0.95409 1.1928 1.4637 697 32 17.425 1.8364 0

ETH 100 0.975 0.95983 1.1928 1.4149 697 28 17.425 1.6069 0

ETH 150 0.975 0.96557 1.1928 1.3677 697 24 17.425 1.3773 0

ETH 200 0.975 0.967 1.1928 1.4214 697 23 17.425 1.3199 0

ETH 250 0.975 0.97274 1.1928 1.4193 697 19 17.425 1.0904 0

This table presents the backtesting results of ES using UC. The initial three columns mirror

those in the preceding table. The ”UnconditionalTest” column indicates whether the test is

rejected or not. The ”p-value” displays the test’s p-value, while the ”TestStatistic” column

reveals the actual value of the UC test. In the ”CriticalValue” column, you can find the

critical value associated with the UC test. The ”Observations” column denotes the number

of observations utilized, and the ”TestLevel” column specifies the confidence level of the UC

test.

Asset WE ES cl. UnconditionalTest p-value TestStatistic CriticalValue Observations TestLevel

ETH 50 0.975 Reject 0.0001 -1.2535 -0.41331 697 0.95

ETH 100 0.975 Reject 0.00042208 -0.90613 -0.41331 697 0.95

ETH 150 0.975 Reject 0.013417 -0.57929 -0.41331 697 0.95

ETH 200 0.975 Reject 0.014342 -0.57294 -0.41331 697 0.95

ETH 250 0.975 Fail to Reject 0.11741 -0.29746 -0.41331 697 0.95
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G Appendix: ES estimates using the Student’s t GARCH(1,1)

model

This table illustrates the ES results derived by the Student’s t GARCH(1,1) model for the

S&P500. The term ”WE” represents the size of the estimation window, while ”ES cl.” indi-

cates the confidence level for which ES is being estimated. The ”ObservedLevel” column in-

dicates the actual confidence level. The ExpectedSeverity tells how severe VaR excaadences

are expected to be, whereas ObservedSeverity tells the empirical value. The ”Observations”

column indicates the number of observations. ”Violations” denotes the number of violations

the model faced, and ”Expected” indicates the number of expected violations. The ”Ratio”

represents the proportion between these two quantities and ”Missing” indicates the count of

missing observations.

Asset WE ES cl. ObservedLevel ExpectedSeverity ObservedSeverity Observations Violations Expected Ratio Missing

S&P500 50 0.975 0.98333 1.1928 1.319 480 8 12 0.66667 0

S&P500 100 0.975 0.97292 1.1928 1.1448 480 13 12 1.0833 0

S&P500 150 0.975 0.97708 1.1928 1.1873 480 11 12 0.91667 0

S&P500 200 0.975 0.97292 1.1928 1.1798 480 13 12 1.0833 0

S&P500 250 0.975 0.97708 1.1928 1.2307 480 11 12 0.91667 0

This table presents the backtesting results of ES using UC. The initial three columns mirror

those in the preceding table. The ”UnconditionalTest” column indicates whether the test is

rejected or not. The ”p-value” displays the test’s p-value, while the ”TestStatistic” column

reveals the actual value of the UC test. In the ”CriticalValue” column, you can find the

critical value associated with the UC test. The ”Observations” column denotes the number

of observations utilized, and the ”TestLevel” column specifies the confidence level of the UC

test.

Asset WE ES cl. UnconditionalTest p-value TestStatistic CriticalValue Observations TestLevel

S&P500 50 0.975 Fail to Reject 0.5 0.26277 -0.49713 480 0.95

S&P500 100 0.975 Fail to Reject 0.43352 -0.039761 -0.49713 480 0.95

S&P500 150 0.975 Fail to Reject 0.5 0.08757 -0.49713 480 0.95

S&P500 200 0.975 Fail to Reject 0.39407 -0.071562 -0.49713 480 0.95

S&P500 250 0.975 Fail to Reject 0.5 0.054166 -0.49713 480 0.95
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This table illustrates the ES results derived by the Student’s t GARCH(1,1) model for the

BTC. The term ”WE” represents the size of the estimation window, while ”ES cl.” indicates

the confidence level for which ES is being estimated. The ”ObservedLevel” column indicates

the actual confidence level. The ExpectedSeverity tells how severe VaR excaadences are

expected to be, whereas ObservedSeverity tells the empirical value. The ”Observations”

column indicates the number of observations. ”Violations” denotes the number of violations

the model faced, and ”Expected” indicates the number of expected violations. The ”Ratio”

represents the proportion between these two quantities and ”Missing” indicates the count of

missing observations.

Asset WE ES cl. ObservedLevel ExpectedSeverity ObservedSeverity Observations Violations Expected Ratio Missing

BTC 50 0.975 0.98278 1.1928 1.3416 697 12 17.425 0.68867 0

BTC 100 0.975 0.98278 1.1928 1.2895 697 12 17.425 0.68867 0

BTC 150 0.975 0.98709 1.1928 1.355 697 9 17.425 0.5165 0

BTC 200 0.975 0.98565 1.1928 1.2728 697 10 17.425 0.57389 0

BTC 250 0.975 0.98852 1.1928 1.3343 697 8 17.425 0.45911 0

This table presents the backtesting results of ES using UC. The initial three columns mirror

those in the preceding table. The ”UnconditionalTest” column indicates whether the test is

rejected or not. The ”p-value” displays the test’s p-value, while the ”TestStatistic” column

reveals the actual value of the UC test. In the ”CriticalValue” column, you can find the

critical value associated with the UC test. The ”Observations” column denotes the number

of observations utilized, and the ”TestLevel” column specifies the confidence level of the UC

test.

Asset WE ES cl. UnconditionalTest p-value TestStatistic CriticalValue Observations TestLevel

BTC 50 0.975 Fail to Reject 0.5 0.22544 -0.41331 697 0.95

BTC 100 0.975 Fail to Reject 0.5 0.25552 -0.41331 697 0.95

BTC 150 0.975 Fail to Reject 0.5 0.41325 -0.41331 697 0.95

BTC 200 0.975 Fail to Reject 0.5 0.38763 -0.41331 697 0.95

BTC 250 0.975 Fail to Reject 0.5 0.48643 -0.41331 697 0.95

This table illustrates the ES results derived by the Student’s t GARCH(1,1) model for the

ETH. The term ”WE” represents the size of the estimation window, while ”ES cl.” indicates

the confidence level for which ES is being estimated. The ”ObservedLevel” column indicates

the actual confidence level. The ExpectedSeverity tells how severe VaR excaadences are

expected to be, whereas ObservedSeverity tells the empirical value. The ”Observations”

column indicates the number of observations. ”Violations” denotes the number of violations
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the model faced, and ”Expected” indicates the number of expected violations. The ”Ratio”

represents the proportion between these two quantities and ”Missing” indicates the count of

missing observations.

Asset WE ES cl. ObservedLevel ExpectedSeverity ObservedSeverity Observations Violations Expected Ratio Missing

ETH 50 0.975 0.97561 1.1928 1.3876 697 17 17.425 0.97561 0

ETH 100 0.975 0.97991 1.1928 1.4248 697 14 17.425 0.80344 0

ETH 150 0.975 0.97991 1.1928 1.3366 697 14 17.425 0.80344 0

ETH 200 0.975 0.97991 1.1928 1.3776 697 14 17.425 0.80344 0

ETH 250 0.975 0.98422 1.1928 1.3867 697 11 17.425 0.63128 0

This table presents the backtesting results of ES using UC. The initial three columns mirror

those in the preceding table. The ”UnconditionalTest” column indicates whether the test is

rejected or not. The ”p-value” displays the test’s p-value, while the ”TestStatistic” column

reveals the actual value of the UC test. In the ”CriticalValue” column, you can find the

critical value associated with the UC test. The ”Observations” column denotes the number

of observations utilized, and the ”TestLevel” column specifies the confidence level of the UC

test.

Asset WE ES cl. UnconditionalTest p-value TestStatistic CriticalValue Observations TestLevel

ETH 50 0.975 Fail to Reject 0.28406 -0.13495 -0.41331 697 0.95

ETH 100 0.975 Fail to Reject 0.5 0.040267 -0.41331 697 0.95

ETH 150 0.975 Fail to Reject 0.5 0.099677 -0.41331 697 0.95

ETH 200 0.975 Fail to Reject 0.5 0.072052 -0.41331 697 0.95

ETH 250 0.975 Fail to Reject 0.5 0.26611 -0.41331 697 0.95
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H Appendix: ES estimates using theHistorical Simulationmodel

This table illustrates the ES results derived by the HS model for the S&P500. The term

”WE” represents the size of the estimation window, while ”ES cl.” indicates the confidence

level for which ES is being estimated. The ”ObservedLevel” column indicates the actual

confidence level. The ExpectedSeverity tells how severe VaR excaadences are expected to

be, whereas ObservedSeverity tells the empirical value. The ”Observations” column indi-

cates the number of observations. ”Violations” denotes the number of violations the model

faced, and ”Expected” indicates the number of expected violations. The ”Ratio” represents

the proportion between these two quantities and ”Missing” indicates the count of missing

observations.

Asset WE ES cl. ObservedLevel ExpectedSeverity ObservedSeverity Observations Violations Expected Ratio Missing

S&P500 50 0.975 0.96042 1.2218 1.2941 480 19 12 1.5833 0

S&P500 100 0.975 0.96667 1.118 1.1915 480 16 12 1.3333 0

S&P500 150 0.975 0.97292 1.1297 1.2548 480 13 12 1.0833 0

S&P500 200 0.975 0.96042 1.2 1.27 480 19 12 1.5833 0

S&P500 250 0.975 0.96667 1.2015 1.3353 480 16 12 1.3333 0

This table presents the backtesting results of ES using UC. The initial three columns mirror

those in the preceding table. The ”UnconditionalTest” column indicates whether the test is

rejected or not. The ”p-value” displays the test’s p-value, while the ”TestStatistic” column

reveals the actual value of the UC test. In the ”CriticalValue” column, you can find the

critical value associated with the UC test. The ”Observations” column denotes the number

of observations utilized, and the ”TestLevel” column specifies the confidence level of the UC

test.

Asset WE ES cl. UnconditionalTest p-value TestStatistic CriticalValue Observations TestLevel

S&P500 50 0.975 Reject 0.015872 -0.67937 -0.49713 480 0.95

S&P500 100 0.975 Fail to Reject 0.080665 -0.42456 -0.49713 480 0.95

S&P500 150 0.975 Fail to Reject 0.23632 -0.20511 -0.49713 480 0.95

S&P500 200 0.975 Reject 0.016194 -0.67667 -0.49713 480 0.95

S&P500 250 0.975 Fail to Reject 0.056975 -0.48063 -0.49713 480 0.95

This table illustrates the ES results derived by the HS model for the BTC. The term ”WE”

represents the size of the estimation window, while ”ES cl.” indicates the confidence level for
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which ES is being estimated. The ”ObservedLevel” column indicates the actual confidence

level. The ExpectedSeverity tells how severe VaR excaadences are expected to be, whereas

ObservedSeverity tells the empirical value. The ”Observations” column indicates the num-

ber of observations. ”Violations” denotes the number of violations the model faced, and ”Ex-

pected” indicates the number of expected violations. The ”Ratio” represents the proportion

between these two quantities and ”Missing” indicates the count of missing observations.

Asset WE ES cl. ObservedLevel ExpectedSeverity ObservedSeverity Observations Violations Expected Ratio Missing

BTC 50 0.975 0.96557 1.4094 1.7671 697 24 17.425 1.3773 0

BTC 100 0.975 0.97418 1.4573 1.4425 697 18 17.425 1.033 0

BTC 150 0.975 0.97418 1.4422 1.3315 697 18 17.425 1.033 0

BTC 200 0.975 0.97561 1.4285 1.3898 697 17 17.425 0.97561 0

BTC 250 0.975 0.97418 1.4136 1.3314 697 18 17.425 1.033 0

This table presents the backtesting results of ES using UC. The initial three columns mirror

those in the preceding table. The ”UnconditionalTest” column indicates whether the test is

rejected or not. The ”p-value” displays the test’s p-value, while the ”TestStatistic” column

reveals the actual value of the UC test. In the ”CriticalValue” column, you can find the

critical value associated with the UC test. The ”Observations” column denotes the number

of observations utilized, and the ”TestLevel” column specifies the confidence level of the UC

test.

Asset WE ES cl. UnconditionalTest p-value TestStatistic CriticalValue Observations TestLevel

BTC 50 0.975 Reject 0.0023404 -0.77227 -0.41331 697 0.95

BTC 100 0.975 Fail to Reject 0.33616 -0.10007 -0.41331 697 0.95

BTC 150 0.975 Fail to Reject 0.4689 -0.011194 -0.41331 697 0.95

BTC 200 0.975 Fail to Reject 0.5 0.020865 -0.41331 697 0.95

BTC 250 0.975 Fail to Reject 0.48019 -0.0036359 -0.41331 697 0.95

This table illustrates the ES results derived by the HS model for the BTC. The term ”WE”

represents the size of the estimation window, while ”ES cl.” indicates the confidence level for

which ES is being estimated. The ”ObservedLevel” column indicates the actual confidence

level. The ExpectedSeverity tells how severe VaR excaadences are expected to be, whereas

ObservedSeverity tells the empirical value. The ”Observations” column indicates the num-

ber of observations. ”Violations” denotes the number of violations the model faced, and ”Ex-

pected” indicates the number of expected violations. The ”Ratio” represents the proportion

between these two quantities and ”Missing” indicates the count of missing observations.
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Asset WE ES cl. ObservedLevel ExpectedSeverity ObservedSeverity Observations Violations Expected Ratio Missing

ETH 50 0.975 0.96557 1.4325 1.5523 697 24 17.425 1.3773 0

ETH 100 0.975 0.97561 1.2753 1.4095 697 17 17.425 0.97561 0

ETH 150 0.975 0.97704 1.2932 1.334 697 16 17.425 0.91822 0

ETH 200 0.975 0.97418 1.4042 1.3675 697 18 17.425 1.033 0

ETH 250 0.975 0.97848 1.4133 1.3923 697 15 17.425 0.86083 0

This table presents the backtesting results of ES using UC. The initial three columns mirror

those in the preceding table. The ”UnconditionalTest” column indicates whether the test is

rejected or not. The ”p-value” displays the test’s p-value, while the ”TestStatistic” column

reveals the actual value of the UC test. In the ”CriticalValue” column, you can find the

critical value associated with the UC test. The ”Observations” column denotes the number

of observations utilized, and the ”TestLevel” column specifies the confidence level of the UC

test.

Asset WE ES cl. UnconditionalTest p-value TestStatistic CriticalValue Observations TestLevel

ETH 50 0.975 Reject 0.016267 -0.55971 -0.41331 697 0.95

ETH 100 0.975 Fail to Reject 0.34127 -0.096649 -0.41331 697 0.95

ETH 150 0.975 Fail to Reject 0.5 0.048011 -0.41331 697 0.95

ETH 200 0.975 Fail to Reject 0.45593 -0.019879 -0.41331 697 0.95

ETH 250 0.975 Fail to Reject 0.5 0.14323 -0.41331 697 0.95
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