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Price forecasting enables businesses to make informed decisions, manage risks, optimise 

resource allocation, and stay competitive in dynamic markets. This thesis seeks to investigate 

various quantitative forecasting methods to predict case company’s pricing data. The thesis 

compares four different forecasting methods: two univariate models and two multivariate 

models which utilise external data.   

The pricing dataset encompasses Net Reference Prices (NRP) and consists of 33 

observations from January 2021 to September 2023. Six clusters are chosen from the pricing 

dataset for this study based on their volumes, grades, and customers, to ensure both the 

cluster's significance to the company and a diverse range representation of the clusters in the 

study. The exponential smoothing model, the family of autoregressive integrated moving 

average (ARIMA), vector autoregressive (VAR) and random forest regression models are 

tested for each of the six clusters the performance of the models will be assessed by their 

ability to predict the final three observations of the time series. 

Results of the study suggest that for each of the six clusters both exponential smoothing and 

random forest regression outperformed the benchmark model which consisted of forecasts 

made by experts in the company. Based on the mean absolute percentage errors, random 

forest regression demonstrated highest performance compared to the other models in three 

out of six clusters, exponential smoothing model had the highest performance in two clusters 

and ARIMA model in one. Moreover, across all clusters, random forest regression 

outperformed at least one univariate model, while VAR was outperformed by at least one 

univariate model in all cases. 
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Hinnan ennustamisen avulla yritykset voivat tehdä tietoon perustuvia päätöksiä, hallita 

riskejä, optimoida resurssien allokointia sekä pysyä kilpailukykyisinä dynaamisilla 

markkinoilla. Tämä tutkimus pyrkii tutkimaan erilaisia kvantitatiivisia hinnan 

ennustamismalleja ennustakseen tapausyrityksen hinnoitteludataa. Tutkimuksessa käytettiin 

neljä eri kvantitatiivista mallia, joista kaksi ovat yhden muuttujan mallia ja kaksi 

monimuuttuja mallia, joissa hyödynnetään myös ulkoista dataa.  

Hinnoitteludata kostui netto vertailuhinnoista (NRP) ja siinä oli 33 havaintoa tammikuusta 

2021 syyskuuhun 2023. Tutkimuksessa käytettyyn aineistoon oli valittu kuusi erilaista 

muuttujaa hinnoitteludatasta, jotka vaalittiin niiden volyymien, laatujen ja asiakkuuksien 

perusteella. Tarkoituksena oli varmistaa sekä muuttujien merkitys yritykselle, että 

muuttujien monipuolinen edustus tutkimuksessa. Eksponentiaalinen tasoitusmalli, 

autoregressiivisen integroidun liukuvan keskiarvon (ARIMA) perhe, vektori 

autoregressiivisen (VAR) ja satunnainen metsä regressio mallit testatiin näille kuudelle 

klusterille ja mallit arvioitiin sen perusteella, kuinka hyvin ne pystyvät ennustamaan 

aikasarjan viimeiset kolme havaintoa. 

Eksponentiaalinen tasoitus ja satunnainen metsä regressio suoriutuivat paremmin kuin 

bencmark-mallina toimivat eksperttien ennusteet jokaisessa kuudessa muuttujassa. 

Keskimääräisen absoluuttisen prosentuaalisen virheiden perusteella, satunnainen metsä 

regressio menestyi parhaiten kolmessa kuudesta muuttujasta verrattaessa muihin malleihin, 

eksponentiaalinen tasoitus menestyi parhaiten kahdessa muuttujassa ja ARIMA-malli 

yhdessä kulsterissa. Lisäksi satunnainen metsärergessio suoriutui paremmin kuin ainakin 

yksi yhden muuttujan malli kaikissa tapauksissa, kun taas vektori-autoregressiivinen mallia 

paremmin suoriutui ainakin yksi yhden muuttujan malli kaikissa tapauksissa. 
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1. Introduction  

Forecasting in business plays a crucial role in activities such as planning, strategizing and 

decision-making (Thomakos, Wood, Ioakimidis & Papagiannakis 2023). The purpose of 

forecasting is to predict what might happen in the future (Waller & Fawcett 2013) which 

allows more efficient decision-making, better cost control and quicker reactions to different 

scenarios in the future (Sanders 2017, 5-6).   

The steel industry is considered as one of the key industries that serves many large and small 

industries. Steel industry growth reflects on economic growth as a result of them being 

causally related and impacted by one another (Mehmanpazir, Khalili-DAmghani & 

Hafezalkotob 2019). The steel industry is considered highly cyclical, which makes 

forecasting a vital tool for steel companies. However, this cyclicality also poses challenges 

for accurate forecasting.   

The aim of this thesis is to study different quantitative forecasting methods for predicting 

Net Reference Prices (NRPs) for Outokumpu Oyj, a globally known stainless steel producer. 

A quantitative approach to price forecasting can serve as a vital tool and bring significant 

value to the company. Four different quantitative approaches, exponential smoothing 

models, the family of Autoregressive Integrated Moving Average (ARIMA), Vector 

Autoregressive (VAR) model and random forest regression, are compared in order to find 

what method among these demonstrates the highest performance. Using these methods in 

forecasting allows for a comprehensive analysis, utilising the company's historical price data 

in univariate time series models and incorporating relevant external data in the multivariate 

analyses.  

 

1.1. Previous research  

Over the last few decades, forecasting metal prices has become popular, with numerous 

researchers applying different techniques to improve the accuracy of forecasting metal prices 

(Ozdemir, Bulus & Zor 2022). Moreover, forecasting the price of steel has been broadly 

pursued subject among researchers. Adli (2020) forecasted 6-month steel prices in Turkey 
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and revealed that the ARIMA model with explanatory variables (ARIMAX) could not 

perform superior results compared to ARIMA models. Mancke (1968) studied the U.S. steel 

industry employing multiple regression analysis to examine how traffic and imports 

influenced domestic steel prices. Wu & Zhu (2012) utilized Neural Network (NN) models 

to forecast the price of eight steel products from the steel market in China. Chou, CC & Yang 

(2012) explored the connection between crude oil prices and global steel prices with the 

VAR model, discovering a long-run positive relationship between the variables. Adli & 

Sener (2021) found that the non-stationary VAR model performs better than the vector error 

correction (VEC) model when forecasting the United States steel prices index using 

cointegrated variables.  

In addition, forecasting the steel supply and demand has been investigated in previous 

literature. Rogers (1987) developed a supply and demand model for the American steel 

industry using regression analysis. Chen, Clements, Roberts & Weber (1991) used the VEC 

model to forecast crude steel consumption in China. Azadeh, Neshat, Mardan & Saberi 

(2013) forecasted steel demand using the Neural Networks, fuzzy regression and linear 

regression with US and Iran steel consumption. Mehmanpazir et al. (2019) employed 

multiple logarithmic regression analyses to fit supply and demand functions for Iran’s steel 

market. Igarashi, Kakiuchi, Daigo, Matsun & Adachi (2008) used logistic and conventional 

regression models were used to predict steel consumption in Asia, with factors such as 

population growth, economic expansion, and demand patterns for finished products like 

automobiles and electric appliances.   

While there are many research studies published in literature related to the steel industry 

forecasting analysis, to best of our knowledge none of these research studies have addresses 

specifically the forecasting of stainless steel. Therefore, investigating the stainless steel price 

forecasting is crucial, providing valuable insights and tools for industries and stakeholders.  

  

1.2. Research questions  

The main objective of this thesis is to study how the four different quantitative forecasting 

methods can forecast the company’s NRPs. The prices are grouped into several clusters 

based on the existing contracts, geographical areas, and product grades. Through the 

integration of historical data, the thesis seeks to enhance the Company’s ability to make data-
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driven decisions and optimize strategies. The findings of this study collectively affirm the 

potential benefits of integrating statistical methods into Outokumpu’s pricing strategies, 

promising more accurate and adaptable forecasts that can contribute to better decision-

making and ultimately enhance the company’s competitive edge in the market. Ultimately, 

the thesis aspires to investigate if these methods could be valuable tool that forecasts NRPs 

for the different pricing clusters.   

The objectives of the study are divided into three research questions as follows:  

1. Which of the exponential smoothing, ARIMA models, VAR models or random forest 

regression can outperform the used judgemental forecasts? 

Outokumpu, like many other companies, is already doing regular judgemental forecasts. The 

first question explores can the forecasting process be improved by utilizing quantitative 

methods. The judgemental forecasts which are made by the experts in the company serve as 

a benchmark in this study. This implies that in order to the model to perform well, the model 

needs to surpass the judgemental forecasts.  

2. Is there a difference in performance of the exponential smoothing, ARIMA model, 

VAR models or random forest regression? 

NRP forecasting is a unique phenomenon and different methods have different strength. If 

quantitative methods are better (question 1), the subsequent question seeks to identify the 

best method among them. Therefore, the models will be also compared against each other. 

The performance of the models will be assessed by their ability to predict the final three 

observations in the time series. 

3. Is there a difference in performance between the multivariate models (VAR or 

random forest regression) and the univariate models (exponential smoothing and 

ARIMA)? 

In principle, multivariate models contain more information so they should provide better 

forecast than univariate models. The third and final question explores and confirm this 

assertion. In this study, two models are univariate models considering solely the historical 

pricing data, while the remaining two models incorporate additional external data as well. 

The selection of external data for this study is done thoughtfully, considering factors that are 

observed to have an impact on stainless steel pricing. 
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The forecasting accuracy is measured with mean absolute percentage error (MAPE) and 

through training and test splitting. The current forecast is done based on judgemental 

forecast, which will be used as a benchmark model that gives minimum performance 

requirements for the models, which means that the forecasting models need to be able to 

forecast the last three observations better than the benchmark model. 

 

1.3. Research methods  

The data used in this research consists of Outokumpu’s historical NRPs clustered in different 

pricing groups, along with additional external data. The pricing data has several clusters, 

which are divided based on contracts, geographical area, and stainless-steel grades. For this 

study, six clusters are selected to test the forecasting models. The external dataset consists 

of three variables: average monthly nickel price, Gross Domestic Product (GDP) and Euro 

Short Term Rate (ESTER). The datasets contain 33 monthly observations from January 2021 

to September 2023, falling into the category of a small dataset in the context of forecasting. 

As these datasets are characterized as time series data, time series models are the logical 

choices for model selection.   

Previous studies have focused on comparing different models in time series forecasting with 

limited dataset and the results have concluded that using more complicated techniques 

doesn’t always lead to superior outcomes (Yu & Swartz 2006; Makridakis and Hibon 2000). 

For example, Yu & Schwartz (2006) compared fuzzy time series and grey theory to moving 

average and exponential smoothing models to forecast annual tourism demand. The study 

found that the length of the time series used to fit the model influenced forecasting accuracy 

to some extent, but no clear pattern emerged. The results indicate that with short time series, 

complex models don’t generate more accurate forecasts than simple traditional models and 

the choice of error measure doesn't significantly affect the ranking. (Yu & Schwartz 2006). 

Moreover, there is no single model in forecasting that consistently outperforms other models 

in terms of forecasting accuracy (Song & Li 2008).   

The methods selected to use in this study are exponential smoothing models, the family of 

autoregressive integrated moving average (ARIMA) models, Vector Autoregressive (VAR) 

model and random forest regression. ARIMA and exponential smoothing models can be 
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considered traditional time series methods as they are widely used in business forecasting 

analysis (Box 1991; Snyder, Koehler & Ord 2002). These methods are univariate time series 

models which focus on a single time series variable. The univariate models are compared to 

each other and multivariate models, VAR and random forest regression. VAR and random 

forest are multivariate models which deal with multiple time series variables 

simultaneously. Incorporating multivariate models that utilize external data in this study 

provides a more comprehensive context and captures additional relevant factors. 

Each model built will be evaluated based on how well it is able to forecast the last three 

observations in the time series. This is evaluated by plotting the original data with the 

forecasted values, providing a clear indication of the model's forecasting accuracy for the 

last three observations. Moreover, judgemental forecasts, which are made by experts in the 

company, are used as a benchmark and compared by plotting them against both forecasted 

values and actual values. To further compare the models, the Mean Absolute Percentage 

Error (MAPE) is calculated for the models and judgemental forecasts. This metric provides 

a quantitative measure of the accuracy of the model by evaluating the percentage difference 

between the predicted and actual values.  

 

1.4. Structure of the thesis  

The study is divided into 5 main chapters which are divided into subchapters as necessary. 

In chapter 2, the literature review is be conducted. The next chapter will go more deeply into 

what is forecasting and forecasting in business. Then commonly used forecasting methods 

are introduced in detail in chapter 2 as well. After the literature review, the case company 

Outokumpu Oyj is introduced with a description of their current price forecasting method in 

chapter 3. The empirical part of this study begins in chapter 3 with a description of the data 

set and results of the used models in chapter 4. After the empirical part, the conclusions of 

the work are presented in chapter 5, where research questions of the work are answered, the 

content of the work is reviewed and analysed, and finally, purpose topics for further research 

are presented.   
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2. A brief overview of forecasting models  

Forecasting is attempting to predict the future. Forecasting plays a pivotal role in all 

organizational operations. For instance, in the field of marketing, forecasting is crucial for 

estimating future demand and sales, as well as predicting market sizes, emerging 

competitors’ trends, and shifts in consumer preferences. Meanwhile, in finance, forecasting 

is used to evaluate financial performance, determine capital investment needs, and predict 

stock prices and investment portfolio returns. In order to make successful forecast, the 

phenomenon needs to be somewhat repetitive or deterministic and it cannot be chaotic or 

completely stochastic. For example, forecasting individual stock prices has proven 

challenging, as evidenced by the long-term success of index funds shows. (Sanders 2017, 5-

11).  

Armstrong (2001, 1-3) describes stages of forecasting as shown in Figure 1. Forecasting 

consists of six stages: formulating the problem, obtaining information, selecting methods, 

implementing methods, evaluating methods and using forecasts. It begins with defining the 

forecasting problem and collecting relevant data. After that, suitable forecasting methods are 

chosen and applied to the data. Subsequently, the accuracy of the forecasts is evaluated and 

if the forecasts are not meeting the desired level of accuracy, this stage may lead back to 

considering alternative methods, as shown in Figure 1. Finally, the generated forecasts can 

be used for example to help decision-making.  

 

Figure 1: Stages of forecasting (Armstrong 2001, 1) 

Forecasting methods can be categorized into two primary branches: judgmental or 

qualitative and statistical or quantitative methods (Sanders 2017, 50; Mentzer & Moon 

2005). Judgemental methods typically rely on the opinions of experts to make predictions. 

Quantitative methods utilize collected data to forecast a future quantity or quantities of 

interest. (Sanders 2017, 51). The quantitative methods can be further divided into time series 
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methods and explanatory methods. Time series methods use historical data to make 

predictions and explanatory methods seek to comprehend how factors affect predicted 

variables. (Mentzer & Moon 2005). The next subchapter will discuss how to select the right 

forecasting method. 

  

2.1. Forecasting method selection  

According to Armstrong (2001, 365-370) judgemental methods are preferred when there are 

major changes in the forecasting area, forecasts are done frequently and/or there are 

disagreements among decision makers. For selecting a quantitative method, the level of 

knowledge about relationships, the amount of change involved, the type of data, the need for 

policy analysis, and the extent of domain knowledge should be taken into consideration.    

Moreover, Armstrong (2001, 365) described six ways to select quantitative forecasting 

methods: convenience, market popularity, structured judgement, statistical criteria, relative 

track records and principles from published research. Armstong (2001, 366) doesn’t 

recommend using the convenience or market popularity since convenience has a high risk 

and market popularity may not be related as it overlooks some methods. Structured judgment 

involves forecasters developing explicit criteria first and then rating various methods against 

them. Statistical criteria, such as distribution of errors or statistical significance, are 

recommended to use together with structured judgement. Relative track records are the 

comparative performance of various methods and principles methods that have worked well 

in similar situations in the past. Relative track records can be expensive but useful, 

meanwhile, principles from published research can be a low-cost and effective approach but 

require a lot of work.  (Armstrong 2001, 366-376).   

Accuracy is often seen as the most important criterion in forecasting (Yokum & Armstrong 

1995). However, Yokum & Armstrong (1995) suggest that criteria for evaluating forecasting 

methods may vary depending on the specific contact. The authors recommend researchers 

consider a variety of criteria beyond accuracy when comparing forecasting methods, such as 

ease of interpretation, use, flexibility, employing available data, and implementation 

(Yokum & Armstrong 1995).   
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2.2. Judgemental forecasting   

Judgemental forecasting methods are the most common methods in business practice. 

Judgemental forecasting methods rely on the subjective assessments and judgements of 

individuals such as managers, sales staff, or customers. Consequently, these forecasts are 

inherently subjective and subjected to numerous human biases. The judgmental forecast 

offers notable advantages such as their ability to consider exceptional or unique events. 

However, they are also highly susceptible to human cognitive limitations and biases such as 

short-term memory and optimism. (Sanders 2017, 52).   

Forecasters may use different types of judgement heuristics to make judgemental forecasts. 

The heuristic used depends on the nature of the information available to the forecaster 

(Harvey 2007). Heuristics related to forecasting are for example representativeness 

(Kahneman and Tversky 1973) and anchor-and-adjustment (Hogarth & Makridakis 1981; 

Lawrence & O’Connor 1992). In cases where forecasters possess information about 

correlated variables, the representativeness heuristic is employed. This involves selecting a 

variable that represents the one to be predicted. (Kahneman and Tversky 1973). When 

forecasting future values based on past data, people often use anchor-and-adjustment 

heuristics, adjusting their forecast from a reference point such as the last data point to account 

for trends or autocorrelation (Lawrence & O’Connor 1992).  

 

2.3. Time series methods   

Time series models analyse the historical data, time series, and predict the continuation of 

historical patterns (Makridakis & Wheelwright 1989, 23). Time series models are 

categorized into two main types: univariate and multivariate. Univariate time series models 

focus on predicting future values by analysing single time serie variable, meanwhile, 

multivariate time series models make forecasts based on multiple time series variables. 

Essentially, univariate models focus on understanding and predicting the behaviour of a 

single variable over time, while multivariate models consider the relationship between 

multiple variables making multiple predictions. (Brooks 2008, 206). 



20 

 

There are four types of main patterns in time series: trend, cyclical, seasonal and irregular 

pattern. The time series can include only one pattern or combination of the patterns. (Sanders 

2017, 78-79). A trend is present when data shows a long-term increase or trend decrease. 

This type of pattern can be found in various economic indicators such as the gross national 

product as it exhibits a continuous trend in their movement over time. A cyclical pattern 

occurs when the data exhibit rises and cyclical falls that don’t follow a consistent timeframe. 

In economic contexts, these are usually due to economic fluctuations such as those 

associated with the business cycle. For instance, product sales, such as steel often display 

this kind of pattern. (Makridakis & Wheelwright 1989, 24).  

A seasonal pattern exists when a dataset is affected by recurring season factors, such as the 

quarter of the year, month, or day of the week. This pattern can be found for example in sales 

of products such as ice cream. An irregular pattern refers to movement in the dataset that is 

unrelated to a seasonal or cyclical pattern. These irregular patterns can manifest as isolated 

and unpredictable events, like natural disasters, that disrupt the otherwise expected patterns 

within the time series data. The primary difference between a seasonal and a cyclical pattern 

is that the seasonal pattern is of a constant length and recurs on a regular periodic basis. In 

contrast, the cyclical patterns have varied in length. Moreover, cyclical patterns tend to be 

longer than seasonal patterns. (Makridakis & Wheelwright 1989, 24-25).  

Another important characteristic to investigate in a time series is stationary which is a statical 

property of a time series. A time series is said to be weakly stationary if the time series has 

constant mean, constant variance and the covariance is independent of time. A strictly 

stationary time series is one where the distribution of the values remains the same through 

time. Some time series forecasting models require the time series to be stationary, due to 

their constant statistical properties. For example, if in an autoregressive model the time series 

is stationary, the coefficients will exhibit the unfortunate property that previous values of the 

error term will have a non-declining effect on the current value of 𝑦𝑡  as time progresses. 

(Brooks 2008, 216). The weak stationary is enough to ensure the statistical properties, 

therefore in this study when talking about stationarity, weak stationarity is meant.   

Often time series are not stationary and require transformation. The most common way to 

transform non-stationary time series to stationary is using first or second-order differencing. 

Differencing involves computing the differences between consecutive observations in a time 
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series. The primary goal in differencing is to remove the trend or seasonality in a time series, 

which often makes the series non-stationary. (Brooks 2008, 220).  

  

2.3.1. Exponential smoothing  

Exponential smoothing (Brown 1956) is a forecasting technique that calculates an average 

of past data points. It relies on the weighted average of past observations, where the weight 

decreases exponentially as one goes further back in time. The appropriate exponential 

smoothing method depends on the characteristics of the data. For instance, if there’s no clear 

trend or seasonal pattern, the appropriate model is Single (or Simple) Exponential Smoothing 

(SES): 𝑓𝑡+1 =  𝛼 ∗ 𝑦𝑡 + (1 −  𝛼)𝑓𝑡                                                                                                 (1) 

where 𝑓𝑡+1 is the desired forecasted value, 𝑓𝑡 is the latest forecasted value, 𝑦𝑡 is the actual 

value at time 𝑡 and 𝛼 is the exponential smoothing parameter which ranges from 0 to 1.  

(Petropoulos et al. 2022).  

In order to use SES, the initial forecast and the exponential smoothing parameter need to be 

estimated. The standard way to estimate both of these has been by minimising the sum of 

squares of the one-step ahead forecast errors (Petropoulos et al. 2022).  

The exponential smoothing model capable of handling local trends is known as double 

smoothing or Holt’s method (Holt 2004, originally published in 1957). The double 

smoothing model is a two-component model, including level and trend components. Holt’s 

method with additive trend can be characterised as follows:  

𝐿𝑡 =  𝛼 ∗ 𝑦𝑡 + (1 −  𝛼) ∗ (𝐿𝑡−1 + 𝑇𝑡−1)                                                                                                 (2) 

𝑇𝑡 =  𝛽 ∗ (𝐿𝑡 −  𝐿𝑡−1) + (1 − 𝛽) ∗ 𝑇𝑡−1                                                                                                 (3) 

𝑓𝑡+1 =  𝐿𝑡 + 𝑇𝑡 ∗ 𝑘                                                                                                                  (4) 

Where 𝐿𝑡 is the level component, 𝐿𝑡−1 is the previous level,  𝑇𝑡 is the trend component, 

𝑇𝑡−1is the previous trend, 𝛼 is the smoothing parameter for the level, 𝛽 is the smoothing 

parameter for the trend and 𝑘 is the number of forecasts into the future. (Holt 2004) 
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An extension of the double smoothing method is the triple smoothing method, also known 

as the Holt-Winters method (Winters 1960). The triple smoothing method adds a third 

component, seasonality, to the level and trend component from double smoothing. The Holt-

Winters method with additive trend and seasonality can be expressed as: 

𝐿𝑡 =  𝛼 ∗ (𝑦𝑡 − 𝑆𝑡−𝑚) + (1 −  𝛼) ∗ (𝐿𝑡−1 + 𝑇𝑡−1)                                                                                 (5) 

𝑇𝑡 =  𝛽 ∗ (𝐿𝑡 −  𝐿𝑡−1) + (1 − 𝛽) ∗ 𝑇𝑡−1                                                                                                 (6) 

𝑆𝑡 =  𝛾 ∗ (𝑦𝑡 −  𝐿𝑡 − 𝑇𝑡−1) + (1 − 𝛾) ∗ 𝑆𝑡−𝑚                                                                                 (7)                              

𝑓𝑡+1 =  (𝐿𝑡 + 𝑇𝑡) ∗ 𝑆𝑡+ℎ−𝑚∗(𝑘+1)                                                                                                                 (8) 

Where 𝑆𝑡 is the seasonal component, 𝑚 is the number of periods in season,  𝑆𝑡−𝑚 is the 

previous trend with previous seasonality component and 𝛾 is the smoothing parameter for 

seasonality.  

The trend and seasonal components can take either an additive or multiplicative form, 

leading to Holt’s method having two iterations, while Holt-Winters has four iterations. The 

additive approach for time series data is considered as the sum of its components as seen in 

the formulas above, while multiplicative is the product of its components. (Koehler, Snyder 

& Ord 2001). 

 

2.3.2. ARIMA models  

The family of Autoregressive Integrated Moving Average (ARIMA) models (Box, George, 

Jenkins & Gwilym 1967) is often used in time series forecasting. It includes models such as 

Moving Average (MA), Autoregressive (AR) and a combination of these to ARIMA models. 

The Moving Average of order q, MA(q), process uses a linear combination of past white 

noise error terms. MA model smooths out the noise in the data by averaging values over 

consecutive time periods. The order term ‘q’ tells how many past error terms are considered 

in the prediction. MA(q) process can be expressed as follows:  

𝑦𝑡 =  𝜇 +  𝑢𝑡 + 𝜃1𝑢𝑡−1 +  𝜃2𝑢𝑡−2+. . +𝜃𝑞𝑢𝑡−𝑞                                                                    (9) 
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where 𝜇 is the constant, 𝑢𝑡 is a white noise error term at time 𝑡,  𝑢𝑡−𝑞 is the lagged white 

noise error term , 𝜃𝑞 are the parameters and 𝑞 is the order of the model. (Brooks 2008, 2006-

212). 

On the other hand, the Autoregressive Process of order p, AR(p), signifies that the present 

value of y is determined solely by the previous values of y, with the addition of an error 

term. The AR(p) can be expressed as,  

𝑦𝑡 =  𝜇 +  ∅1𝑦𝑡−1 +  ∅2𝑦𝑡−2+. . +∅𝑝𝑦𝑡−𝑝 + 𝑢𝑡                                                                 (10) 

where 𝜇 is the constant, 𝑦𝑡 is the observed value at time 𝑡,  𝑦𝑡−𝑝 is the lagged value, ∅𝑝 are 

the parameters, 𝑢𝑡 is a white noise term and 𝑝 is the order of the model (Brooks 2008, 215). 

Autoregressive Moving Average (ARMA) model is a combination of AR and MA processes. 

ARMA model states that the current value of some series y depends linearly on its previous 

values plus a combination of current and previous values of a white noise error term. (Brooks 

2008, 233). The model can be written as,   

𝑦𝑡 =  𝜇 +  ∅1𝑦𝑡−1 +  ∅2𝑦𝑡−2+. . +∅𝑝𝑦𝑡−𝑝 + 𝜃1𝑢𝑡−1 +  𝜃2𝑢𝑡−2+. . +𝜃𝑞𝑢𝑡−𝑞 + 𝑢𝑡             (11) 

𝜃𝑞 are the moving average parameters and ∅𝑝 are the autoregressive parameters. (Brooks 

2008, 215). 

To determine which of the ARIMA family models to select and the order of the model, 

autocorrelation function (ACF) and partial autocorrelation function (PACF) are typically 

plotted. The ACF measures the degree of correlation between the observations of time series 

that are separated by k time units (Box 2016). The PACF measures the correlation between 

an observation from k periods ago and the present observation while adjusting for the 

influences of observations at intermediate lags. (Brooks 2008, 222). Table 1 summarizes 

how the characterises of each model are shown in the functions. For example, if the AFC 

graph seems to be geometrically decaying and in the PACF graph the lags become abruptly 

zero after lag 3, the AR(3) model could be appropriate.   
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Table 1: Characteristics of AR, MA and ARMA process in ACF and PACF 

  AR(p)  MA(q)  ARMA  

ACF  Geometrically decaying  The cutoff to zero  

after lag p  

Geometrically decaying  

PACF  Cutoff to zero  

after lag p  

Geometrically decaying  Geometrically decaying  

 

Another technique to help determine the right model and order is information criteria. 

Information criteria consist of a combination of two components: one that relies on the 

residual sum of squares (RSS), and another that accounts for the reduction in degrees of 

freedom caused by adding extra parameters. The two most popular information criteria are 

Akaike’s information criteria (AIC) (1974), and Schwarz’s Bayesian information criteria 

(SBIC) (1978). SBIC is strongly consistent but inefficient and AIC is not consistent but is 

generally more efficient, meaning that as sample size increases, AIC it may not always select 

the true underlying model, yet it is generally more efficient, tending to choose models with 

better predictive performance in finite sample sizes. (Brooks 2008, 232-233). Therefore, in 

this study, AIC is used. AIC can be formulated as:  

𝐴𝐼𝐶 = ln(𝜎̂2) +
2𝑘

𝑇
                                                                                                              (12) 

where 𝜎̂2 is the residual variance (also equivalent to the residual sum of squares divided by 

the number of observations), 𝑘 is the total number of parameters estimated and 𝑇 is the 

sample size. 

The ARIMA modelling, as opposed to ARMA modelling, includes the extra letter ‘I’ which 

stands for ‘integrated’. An integrated autoregressive process is characterized by having a 

root on the unit circle. Generally, researchers transform the variable by differencing it as 

required, and then they construct an ARMA model based on these differenced values. An 

ARMA(p, q) model applied to a variable differenced ‘d’ times is essentially equivalent to an 

ARIMA(p, d, q) model applied to the original data. (Brooks 2008, 233).  
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2.3.3. VAR model 

A vector autoregressive (VAR) model (Sims 1980) is a multivariate time series model which 

deals with multiple time series variables. The VAR model consists of a collection of linear 

regression equations that explain how endogenous variables change over time. In each 

equation, every variable is expressed as a function of lagged values of all the variables in the 

system. Like other time series models, VAR models require the series to be stationary. 

(Petropoulos et al. 2022). VAR(1) model with two variables is formulated as follows: 

𝑦1t =  𝐵1 +  𝛼1,1 ∗ 𝑦1,t−1 + 𝛼1,2 ∗ 𝑦2,𝑡−1 + 𝑢1𝑡                                                                (13) 

𝑦2t =  𝐵2 + 𝛼2,1 ∗ 𝑦1,t−1 +  𝛼2,2 ∗ 𝑦2,t−1 + 𝑢2𝑡                                                               (14) 

Where 𝐵1 and 𝐵1 are the constants, 𝛼1,1, 𝛼1,2, 𝛼2,1and 𝛼2,2  are the coefficients, 𝑦1,𝑡−1 and 

𝑦2,t−1 are the lagged values at the time point 𝑡 − 1,  𝑢1𝑡 and 𝑢2𝑡are the white noise terms 

(Brooks 2008, 327). The formula shows that VAR requires rather many parameters to be 

estimated, which leads to a requirement of a large number of observations for larger orders 

of VAR models.  

 

2.4. Explanatory methods  

The explanatory models assume that the variable being forecast is related to other variables 

(Sanders 2017, 78). The purpose of the explanatory model is to discover the form of the 

relationship and apply it to predict future values of the target variable. In explanatory 

forecasting, it is assumed that any change in inputs will have a predictable impact on the 

system’s output assuming the explanatory relationship will not change. (Makridakis & 

Wheelwright 1989, 8-10).   

A type of typical explanatory model is linear regression. This scenario is used when there 

are only two variables. When more variables are added, multiple regression will be used. 

Multiple regression extends regression by looking at a relationship between the independent 

variable and multiple dependent variables. The general formula for multiple linear regression 

is as follows:  

𝑦 =  𝛽0 + 𝛽1 ∗ 𝑥1 +  𝛽2 ∗ 𝑥2+. . . +𝛽𝑘 ∗ 𝑥𝑘                                                                          (15) 
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where 𝑦 is the dependent variable, 𝛽0 is the intercept term, 𝛽1 … 𝛽k are the regression 

coefficients and 𝑥1 … 𝑥k  are the independent variables. (Sanders 2017, 85-86).  

 

2.4.1.  Tree-based regression 

Another approach to regression is tree-based methods. Three-based methods are simple and 

useful for interpretation. In tree-based methods, several trees are created and then combined 

to generate a single consensus prediction. For regression tasks, the prediction is typically the 

mean or median of predictions made by each individual tree. (James, Witten, Hastie, 

Tibshirani & Taylor 2023). Two common tree-based regressions are bootstrap aggregating 

or bagging (Breiman 1996) and random forest regression (Kam 1995).  

The bagging regression technique involves creating multiple decision trees on different 

subsets of the training data and then combining their predictions. The fundamental concept 

behind bagging is to train multiple trees on different data subsets and average their 

predictions. The trees are developed separately using random samples of the observations, 

resulting in the trees being quite similar to each other. One issue with bagging arises when 

there is one exceptionally strong predictor in the dataset, alongside several moderately strong 

predictors. In such cases, bagging may not significantly reduce variance compared to a single 

tree. Random forests address this issue by restricting each split to consider only a subset of 

the predictors. (James et al. 2023). 

In the construction of decision trees within a random forest, each time a split in a tree is 

considered, a random sample of predictors is chosen as split candidates from the full set of 

predictors. Predictions from individual trees are averaged to obtain the final ensemble 

prediction. It is common to use a larger number of trees, in random forests, as in many cases 

by increasing the number of trees doesn’t lead to overfitting, but there’s a risk of underfitting 

if the number of trees is too small. Random forest is effective for capturing complex 

relationships in data, reducing overfitting, and providing robust predictions in various 

regression scenarios. (James et al. 2023) 
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2.5. Evaluation and validation of forecasting models 

Evaluation and validation are crucial in forecasting as they collectively assess and ensure the 

performance, generalization, and reliability of models, guiding the selection to make 

informed decisions based on accurate and meaningful results. In this study, the train-test split 

is used, which means that the dataset is split into two subsets: a training set used to train the 

model and a separate test set used to evaluate its performance.  

 

2.5.1. Accuracy measures 

There are many common point forecast error measures (PFEM), such as the mean squared 

error (MSE), mean absolute error (MAE), mean absolute scaled error (MASE), and mean 

absolute percentage error (MAPE) to evaluate the forecast accuracy. (Petropoulos et al. 

2022) In this study, to evaluate the model performance MAPE is used, which is a commonly 

used metric for evaluating the accuracy of a forecasting model (Makridakis & Wheelwright 

1989, 43). MAPE is typically expressed as a percentage, and it provides a measure of the 

average absolute percentage difference between the predicted and actual values. The lower 

the MAPE, the better the forecasting accuracy. The MSE and MAPE formulas are defined 

as follows:   

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑡 − 𝑓𝑡)2,

𝑛

𝑖=1
                                                                                                    (16) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑡−𝑓𝑡

𝑦𝑡
| × 100

𝑛

𝑖=1
                                                                                                     (17) 

where 𝑛 is the number of observations, 𝑦𝑡 is the observed value at time 𝑡 and 𝑓𝑡 is the 

forecasted value at time 𝑡. The MAPE is not without drawbacks. The most critical drawback 

is that it is biased towards low forecasts (Armstrong & Collopy 1992). Therefore, Symmetric 

mean absolute percentage error (SMAPE) was proposed to handle the drawbacks of the 

MAPE metric. The max value of SMPAE is 200%. (Chicco, Warrens & Jurman 2021). The 

SMAPE formula is defined as follows:   

𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑡−𝑓𝑡|

(|𝑦𝑡|+|𝑌𝑡|)/2

𝑛

𝑡=1
                                                                                         (18) 
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where 𝑛 is the number of observations, 𝑦𝑡 is the actual value at time 𝑡 and 𝑓𝑡 is the forecasted 

value at time 𝑡. (Chicco et al. 2021). In this study, both MAPE and SMAPE are chosen as 

the accuracy metrics due to their comparability and their presentation in percentage form, 

which conceals the absolute values, as the actual NRP values cannot be directly revealed. 

 

2.5.2. Time series cross-validation 

Cross-validation is a methodology for determining the optimal model and parameters by 

iteratively training and testing on different data subsets. It involves multiple rounds of the 

train-test split with varying data for each iteration. (James et al. 2023). In the context of time 

series data, time series cross-validation is employed to evaluate predictive models. This 

technique divides time-ordered data into consecutive segments, training the model on earlier 

segments and testing on later ones. The process is repeated for each segment, simulating 

how well the model generalizes to unseen future data, crucial in time series analysis where 

observation order matters. Common types of time series cross-validation include “rolling" 

or "expanding" window methods, where the training set gradually incorporates more data 

over time, and "fixed origin" methods, where a fixed training window is used with a sliding 

testing window. (Deng 2023).  

Figure 2 illustrates an example of time series cross-validation divination, showcasing the 

dataset used in this study with 33 observations. In this scenario, the time series is divided 

into 4 folds, and the testing set always consists of the most recent 3 observations. The first 

fold contains the whole dataset. The second fold contains the same dataset except the last 

three observations. Consequently, the training se in the second fold comprises 27 

observations and test set consist of the last three observations. This pattern repeats for the 

remaining folds, where the last three observations are consistently excluded, leading to a 

new test set. This is the same split that is used in this study. 
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Figure 2: Time series cross-validation 

 

2.5.3. Residuals 

When assessing the model’s performance, it’s crucial to examine the residuals. Residuals 

are the differences between the observed and predicted values.  If the residuals exhibit 

characteristics of white noise, implying no discernible pattern or correlation, the model can 

be considered a good fit. In contrast, if residuals show a pattern or correlation, it indicates 

that there are still aspects of the data that the model has not captured. In such cases, it might 

be necessary to consider an alternative model. The autocorrelation can be tested for example 

with the Ljun-Box test, which tests whether the residuals are autocorrelated. (Petropoulos et 

al. 2022).  
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3. Case Outokumpu Oyj 

This chapter provides a thorough exploration of the case company, as well as, describing the 

company’s current approach to price forecasting and the extensive dataset utilized in this 

study. A brief introduction to the company is followed by an overview of their existing price 

forecasting methodology. Subsequently, a detailed examination is conducted on the 

comprehensive set of internal and external datasets used in this study. 

 

3.1. Outokumpu Oyj 

Outokumpu Oyj is a stainless steel producer headquartered in Helsinki, Finland. Outokumpu 

is the market leader in cold-rolled stainless steel in Europe and the second-largest stainless 

steel producer in the Americas. Outokumpu produces stainless steel in mills in Finland, 

Germany, Mexico, Sweden and the US. In addition, Outokumpu is the owner of the largest 

known chromite reserves in Europe, which is located in Finland. (Outokumpu 2022).  

Outokumpu is known for the quality of its products and expertise in stainless steel. The 

customers of Outokumpu use their stainless steel in the construction of bridges and 

buildings, produce cars, trains and trucks as well as in the production of various household 

appliances and utensils. Outokumpu’s customer base is all over the world in the European, 

Middle-Eastern, Asian and African markets. Outokumpu’s vision is to be the customer’s 

first choice in sustainable stainless steel. (Outokumpu 2022).  

Sustainability is one of the key drivers in Outokumpu. Outokumpu is the global leader in 

sustainable stainless steel and their stainless steel has the smallest carbon footprint on the 

market. Outokumpu has a strong track record in sustainable performance and ambitious 

climate targets. Outokumpu’s total carbon footprint is less than 30% of the global average. 

As well as Outokumpu’s regular production being the current sustainable leader in the 

industry, Outokumpu has an emission-minimized Circle Green stainless steel line. The 

Circle Green product line has up to 92% lower carbon footprint than the average. 

(Outokumpu 2022).  
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Europe is Outokumpu’s biggest business area and Europe brings 66% of the Company’s net 

sales. Moreover, Outokumpu is the cost leader in high-volume stainless steel products in 

Europe. (Outokumpu 2023). In the year 2022, the sales for the European business area were 

6,266 million euro (Outokumpu 2022).  

 

3.2. Price forecasting at Outokumpu  

At the moment, Outokumpu Oyj is using a judgmental approach to forecast Net Reference 

Prices in the specific business lines in Europe. At Outokumpu, five experts are forecasting 

NRPs every month for the end of the year and next year at the moment. The prices are 

grouped into several clusters based on the existing contracts, geographical areas, and product 

grades. The experts are responsible for the clusters based on the market area. The experts 

make their forecasts based on already placed orders, old and new customers and history of 

the prices. Moreover, the experts ensure that the price forecasts are in line with the volume 

forecasts made by the supply department.  

The number of clusters has been continuously changing. Before organizational changes in 

2022, the number of price clusters was nine for the whole Europe business area. The increase 

in the number of clusters was made possible by a higher level of granularity included in 

deployed Enterprise Resource Planning software SAP which allows the exact NRP to be 

calculated. Now the forecasting is done for each business line separately in the business area 

of Europe, taking into account order intake and how future monthly invoicing will be derived 

from it. With the improved data quality, a statistical approach can be introduced and bring 

significant value to the company.   

External organizations have made statistical price forecasting for Outokumpu; however, 

these forecasts have typically produced a very limited number of forecasts. External 

organizations have forecasted for example monthly total order intake and total price for 

specific products in Europe and Asia based on market data.   
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3.3. Case data 

The next part describes the dataset comprehensively. The data description and empirical 

research of this study are done via Python. The data set consists of Outokumpu’s price data 

and external data. Outokumpu’s price data consists of the historical actual NRPs and 

judgemental forecasts. The external data consists of nickel price, Gross Domestic Product 

(GDP) and Euro Short Term Rate (ESTER).  

 

3.3.1. NRPs 

The NRP data contains 33 observations from January 2021 to September 2023. The pricing 

data has several clusters, which are divided based on contracts, geographical area, and 

stainless-steel grades. For this study, six clusters are selected to test the forecasting models. 

The six clusters are chosen based on their volumes, grades and customers, with the goal of 

ensuring both the significance of the cluster to the company and a diverse range 

representation of the clusters in the study. This data is sensitive and contains information 

that is not allowed to be published, therefore, the NRP values are not shown in this research. 

Each cluster with its NRPs is plotted in the Figure 3. Based on Figure 3, none of the clusters 

seems to show any clear trends. The highest peaks occurred in 2021 in all clusters except for 

clusters 1 and 4. Clusters 2, 3 and 5 reached their highest points in December 2021, while 

cluster 6 reached its highest peak in November 2021.  Cluster 1, on the other hand, reached 

its highest peak in April 2022 and cluster 4 in April 2023. The lowest drops happened in 

2023 expect for clusters 1 and 4. More precisely, clusters 2 and 5 experienced their lowest 

values in NRPs in June 2023, while cluster 3 experienced its lowest point in February 2023 

and cluster 6 in December 2023. Finally, cluster 1 had its lowest value in January 2021 and 

cluster 4 in May 2021. 
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Figure 3: NRPs 

 

For each cluster, stationarity is tested with the Augmented Dickey-Fuller (ADF) test. The 

results of the ADF tests are presented in Table 2. The results indicate that only two of the 

clusters, clusters 3 and 4, are stationary with p-values of 0.042 and 0.013. The p-values are 

less than 0.05, meaning that we can reject the null hypothesis with a 5% confidence level. 

Other clusters fail to reject the null hypothesis with high p-values which indicates that time 

series are non-stationarity.  

 

Table 2: Augmented Dickey-Fuller (ADF) test results on original NRPs 

Cluster Test statistic 1% 5% 10% p-value 

Cluster 1 -2.758 -3.770 -3.005 -2.643 0.065 

Cluster 2 -1.725 -3.689 -2.972 -2.625 0.418 

Cluster 3 -2.933 -3.711 -2.981 -2.630 0.042 

Cluster 4 -3.348 -3.654 -2.957 -2.618 0.013 

Cluster 5 -0.996 -3.654 -2.957 -2.618 0.755 

Cluster 6 -1.436 -3.738 -2.992 -2.636 0.565 

 

Since four clusters are non-stationary, first-degree differencing is done for these datasets to 

ensure stationary. After the new series is created, stationery is again tested with the ADF 
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tests. The results of the second ADF tests are presented in Table 3. The result shows that 

cluster 5 is now stationary. With a confidence level of 1% the null hypothesis can be rejected 

in cluster 5. The null hypothesis cannot be rejected in other cases. Therefore, second-degree 

differencing is done for clusters 1, 2 and 6.  

 

Table 3: ADF test results on first-degree differenced NRPs 

Cluster Test statistic 1% 5% 10% p-value 

Cluster 1 -1.416 -3.700 -2.976 -2.628 0.574 

Cluster 2 -1.529 -3.689 -2.972 -2.625 0.519 

Cluster 5 -5.003 -3.661 -2.961 -2.619 0.000 

Cluster 6 -1.840 -3.753 -2.998 -2.639 0.361 

 

Stationarity is again tested with the second-degree differenced series for clusters 1, 2 and 6. 

The results of the third ADF test are presented in Table 4. The results show that clusters 1 

and 2 are now stationary. With a confidence level of 1% the null hypothesis can be rejected 

in these cases, but not in the case of cluster 6. Therefore, for cluster 6, third-degree 

differencing is performed, and stationarity is again tested. 

 

Table 4: ADF test results on second-degree differenced NRPs 

Cluster Test statistic 1% 5% 10% p-value 

Cluster 1 -8.128 -3.700 -2.976 -2.628 0.000 

Cluster 2 -5.912 -3.689 -2.972 -2.625 0.000 

Cluster 6 -1.956 -3.738 -2.992 -2.636 0.306 

 

The final results of the ADF test on the third-degree differenced cluster 6 show that the 

cluster 6 time series is stationary. The results are shown in Table 5. The p-value is 0.000 

and, therefore, the null hypothesis can be rejected. All the differenced clusters are now 

stationary and the differenced datasets a plotted in Appendix 1. From the Appendix 1, we 

can see now that the datasets appear relatively uniform and stable throughout the observed 

time period.  
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Table 5: Dickey-Fuller test results on third-degree differenced NRPs 

Cluster Test statistic 1% 5% 10% p-value 

Cluster 6 -7.232 -3.737 -2.992 -2.636 0.000 

 

3.3.2. Nickel price 

Nickel is the essential metal alloy in stainless-steel production (Outokumpu 2022), which 

means that NRPs can be exposed to price changes in nickel. The monthly nickel prices are 

extracted from of the London Metal Exchange (LME). The nickel prices are nickel cash 

settlements. The LME data is in USD/Tonne; therefore, it’s transformed to Euro/Tonne with 

the average monthly exchange rates from LME. The monthly average nickel prices from 

January 2021 to September 2023 are plotted in Figure 4.  

 

 

Figure 4: Monthly nickel price (LME) 

 

From Figure 4, it is evident that the nickel was the most expensive in March of 2022. During 

the same month at least 3 price clusters experienced notable drops in their values. Moreover, 

the nickel price had quite a high peak in January 2023 as well, when many price clusters 

experienced drops in their NRPs again. On the other hand, the nickel price was the cheapest 

in March 2021. During the same month, three price clusters experienced their lowest values 

in NRPs. All of the clusters are visualized together in a single figure with each external data 
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in Appendix 2. This visualization utilizes the same scaling technique known as max-min 

scaling, where variables are transformed by subtracting the minimum value and dividing the 

range of the variable. 

The correlation matrix for the clusters and external data is presented in Appendix 3. From 

the matrix, we can see that nickel has a strong positive correlation with cluster 1 (0.604) and 

cluster 4 (0.540). The strong positive correlation indicates that as one variable increases, the 

other variable tends to increase as well. With clusters 2 (-0.129), 3 (-0.226) and 6 (-0.222) 

nickel price has a weak negative correlation. A weak negative correlation indicates that as 

one variable increases, the other variable tends to decrease slightly, but the relationship is 

not very strong.  For cluster 5 the correlation is close to zero, indicating no correlation at all.  

 

3.3.3. Eurozone GDP 

Economic growth impacts steel industry growth (Mehmanpazir et al. 2019), therefore, Gross 

Domestic Product (GDP) growth in the Euro area is chosen as one of the external variables. 

The Eurozone GDP data was collected from Refinitiv Eikon. The GDP data is expressed as 

a percentage change year over year, meaning that it measures how much Eurozone GDP has 

changed compared to the same period in the previous ear.  

The Eurozone GDP is expressed quarterly and plotted in Figure 5. From the Figure 5, we 

can see that the data had the highest peak in the second quarter of 2021. This means that the 

GDP changed 14.8 compared to the same quarter in 2020. This can be related to the COVID-

19 pandemic. In the second quarter of 2020, the whole world experienced a sharp economic 

contraction due to the pandemic and associated lockdowns. By the second quarter of 2021, 

many Eurozone countries had started reopening their economies as they lifted COVID-19 

restrictions.  
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Figure 5: Quarterly Eurozone GDP (Refinitiv Eikon 2023) 

 

The European GDP data is converted into monthly rates to align with the monthly nature of 

the price data aimed to predict. The data is converted into monthly values by dividing each 

quarterly rate by 3 to get the equivalent monthly rate. The correlation matrix in Appendix 3, 

shows that GDP shows the highest correlation with cluster 2 (0.512) and cluster 3 (0.517). 

On the other hand, the smallest correlation value is observed in cluster 1 (-0.030), indicating 

a lack of correlation between GDP and cluster 1. Cluster 4 exhibits a moderate negative 

correlation of -0.445, while clusters 5 and 6 exhibit a moderate positive correlation with 

GDP, having values of 0.485 and 0.454. 

 

3.3.4. Interest rate 

Interest rates can have an indirect effect on steel prices through their impact on the overall 

economy and the cost structure of the steel industry. The interest rate used in this research is 

the Euro Short Term Rate (ESTER). The ESTER or €STR rate is a measure of the overnight 

borrowing costs of banks in the Eurozone. It shows the interest rates at which banks lend to 

each other without requiring collateral. This rate is published every Euro system TARGET2 

business day based on transactions that are conducted and settled on the previous TARGET2 

business day with maturity. These transactions are considered to be conducted at arm’s 

length and represent unbiased market rates. (European Central Bank 2023). The monthly 

short-term interest rates from January 2021 to September 2023 are plotted in Figure 6. The 
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Figure shows that the interest rates were negative until August of 2022, after which they 

began to increase steadily, following a nearly linear line.  

 

 

Figure 6: Eurozone short-term interest rate (Refinitiv Eikon 2023) 

 

The correlation matrix in Appendix 3, shows that ESTER exhibits a very strong negative 

correlation with cluster 2 (-0.806), cluster 3 (0.803) and cluster 5 (-0.796). In addition, 

cluster 6 exhibits a strong negative correlation of -0.642 and cluster 1 has a weak negative 

correlation of -0.180. Cluster 4 is the only cluster that exhibits a positive correlation of 0.261 

with ESTER. 

 

3.3.5. Statistical analysis and stationarity of external data 

Table 6 presents data statistics for the external variables, including nickel prices, GDP 

growth and interest rate. The data shows notable variability, with standard deviations 

reflecting dispersion. The range for each variable is substantial, with significant fluctuations 

in nickel prices. GDP growth and interest rates vary from negative to positive with close 

fluctuations.  
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Table 6: External data statistics 

 Nickel (€/t) GDP (%) Interest rate (%) 

mean 20 369.144 1.224 0.651 

std 4 711.669 1.354 1.636 

min 13 788.970 -0.067 -0.593 

max 30 788.340 4.933 3.880 

median 19 767.010 0.8 -0.566 

 

For external data, stationarity is also tested with the Augmented Dickey-Fuller test. Table 7 

displays the test outcomes, revealing non-stationarities for all variables with p-values of 

0.304, 0.293 and 0.834. Therefore, each variable requires at least first-degree differencing. 

In addition, Table 7 summarizes the outcomes of both first-degree and second-degree 

differencing if needed. The results suggest that achieving stationarity nickel price and GDP 

require first-degree differencing, while interest rate requires second-degree differencing. All 

the differenced variables are now stationary and the differenced datasets a plotted in 

Appendix 1 as well. From the Appendix 1, we can see now that the datasets appear relatively 

uniform and stable throughout the observed time period. 

 

Table 7: Stationarity tests for external data 

 Test statistic 1% 5% 10% p-value 

Nickel price -1.960 -3.661 -2.961 -2.619 0.304 

GDP -1.986 -3.752 -3.000 -2.639 0.293 

Interest rate -0.746 -3.680 -2.968 -2.623 0.834 

  First-degree differencing   

Nickel Price -4.236 -3.661 -2.961 -2.619 0.001 

GDP -13.718 -3.679 -2.968 -2.623 0.000 

Interest rate -1.248 -3.679 -2.968 -2.623 0.653 

  Second-degree differencing   

Interest rate -9.018 3.679 -2.968 -2.623 0.000 
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4. Analysis and implementation of forecasting models 

This chapter describes the method implementation of the research. First, exponential 

smoothing models are tested with the original NRP datasets. The datasets are partitioned into 

training and testing sets, with the training set including all observations except the last three 

(circa 91% of the dataset), and the testing set consisting of the last three observations (circa 

9% of the dataset). Subsequently, the model is trained using the training data and evaluated 

using the testing data. After exponential smoothing models, ARIMA and VAR models are 

tested. These models require datasets to be stationarity, and as such, they employ either the 

original data or if required the differenced data. After ARIMA and VAR models, random 

forest regression is tested as well. 

The models are built and tested in Python. In this research, 5% is used as the confidence 

level which means that the null hypothesis is rejected at a 0.05 level. The results of the 

research are therefore valid with 95% confidence and at the same time, the probability of 

error is 5%. 

 

4.1. Exponential smoothing 

Simple exponential smoothing (SES), double smoothing and triple smoothing are all tested 

for each cluster and the model with the lowest MAPE is selected for further analyses. It’s 

important to note that due to the nature of the model, the SES model provides a constant 

prediction for the entire forecasting horizon. On the other hand, Holt’s method provides a 

linear outcome that incorporates both level and trend components. The Holt-Winters takes 

this a step further, providing a more complex outcome by including level, trend, and 

seasonality components. 

The optimal smoothing pattern (alpha) level in the SES model is selected by a loop built in 

Python that calculates MAPEs for each model with alpha levels from 0.1 to 0.9 with a 0.1 

gap and finds the alpha that results in the lowest MAPE. The alpha with the lowest MAPE 

is selected to use in the SES model.  
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4.1.1. Cluster 1 

For cluster 1, the optimal alpha level was found as 0.6, therefore the SES model is built with 

this alpha value. Subsequently, the double and triple smoothing models are as well evaluated 

for cluster 1. The outcomes of these evaluations, specifically the Mean Absolute Percentage 

Errors (MAPEs), are detailed in Table 8, showcasing the accuracy of different exponential 

smoothing models applied within the cluster.  

The judgemental forecasts, serving as the benchmark, exhibit a MAPE of 7.08%. Among all 

models, the double smoothing model with additive trend demonstrates the lowest MAPE at 

4.08% and double smoothing models with multiplicative trend has a slightly higher MAPE 

of 4.30%. The SES model has slightly higher 5.08% MAPE than both of the double 

smoothing models. The triple smoothing models are not far away, exhibiting MAPEs 

ranging from 9.68 to 11.45%.  

 

Table 8: Exponential smoothing models MAPEs for cluster 1 

Model MAPE 

Judgemental forecast (Benchmark) 7.08% 

Simple Exponential Smoothing 5.08% 

Double Smoothing, Trend: Multiplicative (Mul.) 4.30% 

Double Smoothing, Trend: Additive (Add.) 4.08% 

Triple Smoothing, Trend: Mul., Seasonal: Mul. 10.67% 

Triple Smoothing, Trend: Mul., Seasonal: Add 11.45% 

Triple Smoothing, Trend: Add., Seasonal: Add. 10.46% 

Triple Smoothing, Trend: Add., Seasonal: Mul. 9.68% 

 

Since the double smoothing model with the additive trend model exhibits the lowest MAPE, 

this model is used for further analyses. The model exhibits an AIC of 266.52. The double 

smoothing model is applied to make the predictions, and the results are compared with both 

the original values and judgemental forecasts, as depicted in Figure 7. From the Figure 7, it 

seems that the model is following the trends of the actual values but with delay. Moreover, 

the drops and peaks are underestimated. When predicting the last three observations, the 
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forecasted values decrease slightly. The forecasted values are higher than the actual values 

in the first two observations, but since the actual value increases in the last observations, the 

forecasted value decreases lower than the actual values. Furthermore, the model’s 

predictions appear to be a better fit than the judgemental forecasts, as the judgemental 

forecasts are predicted to be lower than the actual values.  

 

  

Figure 7: Double Smoothing model for cluster 1 

 

4.1.2. Cluster 2 

In cluster 2, the ideal alpha level was found as 0.4, leading to the construction of an SES 

model using this alpha value. The MAPEs for each exponential smoothing model are 

presented in Table 9. The judgemental forecast, serving as the benchmark, has a MAPE of 

45.50%. Among the exponential smoothing models, the SES model demonstrates the lowest 

MAPE at 28.24%, which is lower than the benchmark model as well. Double smoothing 

models with multiplicative and additive trends have MAPEs of 89.70% and 155.82%, 

indicating that the multiplicative is a more suitable trend in double smoothing models.  The 

triple smoothing models' MAPEs range from 85.34% to 198.34% with the lowest MAPE 

found in models containing multiplicative trend and multiplicative seasonality.  
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Table 9: Exponential smoothing models MAPEs for cluster 2 

Model MAPE 

Judgemental forecast (Benchmark) 45.50% 

Simple Exponential Smoothing 28.24% 

Double Smoothing, Trend: Multiplicative (Mul.) 89.70% 

Double Smoothing, Trend: Additive (Add.) 155.82% 

Triple Smoothing, Trend: Mul., Seasonal: Mul. 85.34% 

Triple Smoothing, Trend: Mul., Seasonal: Add 141.78% 

Triple Smoothing, Trend: Add., Seasonal: Add. 198.34% 

Triple Smoothing, Trend: Add., Seasonal: Mul. 102.71% 

 

Since the SES model exhibits the lowest MAPE, this model is used for further analyses. The 

model’s AIC is measured at 342.11. The SES model is utilized, and the model’s fit and 

predictions are plotted in Figure 8. Overall, the model seems to effectively capture the trends 

of the actual values but with some delay. From the Figure 8, we can see that for the second 

observation, the model is a perfect fit when examining the predictions for the last three 

observations. However, as the actual values show a linear increasing trend, the forecasted 

values are higher in the first observation and lower in the last observation. Moreover, it is 

evident that the model’s predictions appear to be a better fit than the judgemental forecasts, 

which are forecasted to be clearly lower than the actual values and the model’s forecasts.  

 

  

Figure 8:  SES for cluster 2 
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4.1.3. Cluster 3 

Due to the nature of the cluster 3 data, exponential smoothing models with multiplicative 

trends or seasonality cannot be used, therefore, only the SES model, double smoothing 

model with additive trend and triple smoothing model with additive trend and additive 

seasonality are tested. For cluster 3, the optimal alpha level was found as 0.3, therefore the 

SES model is built with this alpha value. The MAPEs for each exponential smoothing 

models are presented in Table 10. The judgemental forecast, serving as the benchmark, has 

a MAPE of 108.77%. In comparison, the SES model demonstrates lower MAPE at 80.00%, 

which is the lowest among all exponential smoothing models as well. While MAPE of 

80.00% is deemed high, it remains lower than the benchmark model, making it acceptable 

in this study. The double smoothing model with an additive trend exhibits a MAPE of 

309.21%, while the triple smoothing model with an additive trend and additive seasonality 

shows an even higher MAPE at 528.79%. 

 

Table 10: Exponential smoothing models MAPEs for cluster 3 

Model MAPE 

Judgemental forecast (Benchmark) 108.77% 

Simple Exponential Smoothing 80.00% 

Double Smoothing, Trend: Additive (Add.) 309.21% 

Triple Smoothing, Trend: Add., Seasonal: Add. 528.79% 

 

Since the SES model exhibits the lowest MAPE of the exponential smoothing models, this 

model is used for further analyses. The model exhibits an AIC of 577.51. The SES model is 

applied to forecast predictions for the last three observations and plotted in Figure 9. The 

model appears to follow the trend from the actual values but underestimating most of the 

values. When predicting the last three observations, the forecasted values are close to the 

first two actual values, however, as the last value increases, the model falls behind in 

accuracy. Moreover, the Figure shows that the forecasted values are not quite far from the 

judgemental forecasts but still being a better fit as they are closer to the actual values. 
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Figure 9: SES for cluster 3 

 

4.1.4. Cluster 4 

Due to the nature of the cluster 4 data, smoothing models with multiplicative trends or 

seasonality cannot be used, therefore, only the SES model, double smoothing model with 

additive trend and triple smoothing model with additive trend and additive seasonality are 

tested. For cluster 4, the optimal alpha level is found to be 0.1, which is utilized to construct 

the SES model. Table 11 provides the MAPEs for the exponential smoothing models applied 

to cluster 4. The judgemental forecast, serving as the benchmark, shows a MAPE of 65.19%. 

The SES model exhibits a lower MAPE at 26.62%, which is additionally the lowest MAPE 

of all models. The double smoothing model with an additive trend displays a MAPE of 

45.57% and the triple smoothing model with an additive trend and seasonality MAPE of 

55.15%. Moreover, these both are lower than the benchmark. 

 

Table 11: Exponential smoothing models MAPEs for cluster 4 

Model MAPE 

Judgemental forecast (Benchmark) 65.20% 

Simple Exponential Smoothing 26.62% 

Double Smoothing, Trend = Additive (Add.) 45.57% 

Triple Smoothing, Trend: Add., Seasonal: Add. 55.15% 

 

Since the SES model exhibits the lowest MAPE, this model is used for further analyses. The 

model exhibits an AIC of 329.55. The SES model and predictions are plotted in Figure 10. 
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The model fit exhibits signs of underfitting, as it fails to capture the inherent patterns and 

lacks alignment with the observed trends in the actual values. When predicting the last three 

observations, the forecasted values appear to be in proximity to the most recent peak 

observed in the actual values. The model’s predictions continue to demonstrate a superior fit 

than the judgemental forecasts as judgemental forecasts are predicted to be higher than the 

actual values.  

 

  

Figure 10: SES for cluster 4 

 

4.1.5. Cluster 5 

For cluster 5, the optimal alpha level was found as 0.4 and utilized to build the SES model. 

The MAPEs for each exponential smoothing models are presented in Table 12. The 

judgemental forecast, serving as the benchmark, has a MAPE of 14.77% and the SES model 

exhibits a lower MAPE of 12.12%. The double smoothing models exhibit MAPEs of 24.21% 

and 30.91%. Among the triple smoothing models, the lowest MAPE is exhibited with 

multiplicative trend and multiplicative seasonality at 27.89%. The other triple smoothing 

models exhibit MAPEs ranging from 30.71% to 53.08%. 
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Table 12: Exponential smoothing models MAPEs for cluster 5 

Model MAPE 

Judgemental forecast (Benchmark) 14.77% 

Simple Exponential Smoothing (SES) 12.12% 

Double Smoothing, Trend: Multiplicative (Mul.) 24.21% 

Double Smoothing, Trend: Additive (Add.) 30.91% 

Triple Smoothing, Trend: Mul., Seasonal: Mul. 27.89% 

Triple Smoothing, Trend: Mul., Seasonal: Add 30.71% 

Triple Smoothing, Trend: Add., Seasonal: Add. 53.08% 

Triple Smoothing, Trend: Add., Seasonal: Mul. 31.62% 

  

Since the simple smoothing model exhibits the lowest MAPE, this model is selected for 

further analysis. The model exhibits an AIC of 275.70. The fit of the model and predictions 

for the last three observations are plotted in Figure 11. The model appears to exhibit a good 

fit, effectively capturing the trends of the actual values but with a delay. When examining 

the predictions for the last three observations, the model predicts the second value perfectly 

but overestimates the first value and underestimates the last value as the actual values show 

an increase. Furthermore, the model’s predictions appear to still be a better fit than the 

judgemental forecasts as the judgemental forecast are close to the actual value for the first 

observation. 

 

  

Figure 11: SES for cluster 5 
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4.1.6. Cluster 6 

Due to the nature of the cluster 6 data, smoothing models with multiplicative trends or 

seasonality cannot be used, therefore, only the SES model, double smoothing model with 

additive trend and triple smoothing model with additive trend and additive seasonality are 

tested. In cluster 6, the optimal alpha was determined to be 0.1 which is utilized to construct 

the SES model. Table 13 provides the MAPEs for the exponential smoothing models applied 

to cluster 6. The judgemental forecast, serving as the benchmark, shows a significantly high 

MAPE of 458.72%. The SES model exhibits the lowest MAPE at 133.03%. MAPE of 

133.03% is considered to be high, but it is lower than the benchmark model and therefore 

acceptable in this study. When we move from the SES model to double smoothing and triple 

smoothing models, there is a noticeable increase in the MAPEs. Specifically, the MAPE for 

the double smoothing model rises significantly to 567.43%, and for the triple smoothing 

mode, it further increases to 750.56%. This shift indicates a substantial decrease in the 

accuracy of the predictions as we move from simpler to more complex smoothing models. 

 

Table 13: Exponential smoothing models MAPEs for cluster 6 

Model MAPE 

Judgemental forecast (Benchmark) 458.72% 

Simple Exponential Smoothing 133.03% 

Double Smoothing, Trend: Additive (Add.) 567.43% 

Triple Smoothing, Trend: Add., Seasonal: Add. 750.56% 

 

As a result of the SES model exhibiting the lowest MAPE, this model is selected for further 

analyses. The model’s AIC is 384.16. The model fit and predictions from the SES model are 

plotted in Figure 12. The model fit portrayed in Figure 12 suggests underfitting, indicating 

an inability to grasp underlying patterns and a lack of alignment with the observed trends in 

the actual values. When examining the predictions for the last three observations, it’s evident 

that the model’s predictions appear to be a better fit than the judgemental forecasts as they 

are close to the last two actual values.  
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Figure 12: SES results for cluster 6 

 

4.1.7. Validation for exponential smoothing models 

After analysing the exponential smoothing models, it is evident that SES models were used 

in most cases, with the one exception occurring in cluster 1, where the lowest MAPE was 

found in the double smoothing model with an additive trend. As described in the data 

description, none of the clusters exhibited clear evidence of trends or seasonality. 

Consequently, it is logical that among the exponential smoothing models, the SES model 

performs best given that it doesn’t consider trend or seasonality components, unlike the other 

models. Overall, the exponential smoothing models performed well in over half of the 

models. Four clusters exhibit MAPEs under 29% (clusters 1, 2, 4 and 5) while the MAPEs 

of the others (clusters 4 and 6) range from 80.00% to 133.03%. Moreover, the exponential 

smoothing models outperformed judgemental forecasts across all clusters.  

For each cluster, we are examining the impact on the model's MAPEs when altering the 

forecasting horizon to six months. In this scenario, the training dataset consists of 27 

observations, and the testing dataset consists of 6 observations. Across all clusters, except 

for Cluster 4, the MAPEs exhibit an increase. Specifically, cluster 4 experienced a decrease 

in MAPE from 26.62% to 20.57. Cluster 1 rises from 4.74% to 9.99%, cluster 2 rises from 

28.24% to 161.16%, cluster 3 increases from 80.00% to 282.34%, cluster 5 climbs from 

12.12% to 29.23%, and cluster 6 ascends from 133.03% to 253.26%. The increased MAPEs 

collectively suggest that the accuracy of the forecasting model is decreasing as we extend 

the prediction period. 
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Moreover, the best-performing model for each cluster undergoes time series cross-

validation, where datasets are partitioned into four folds. The folds are partitioned as 

described in chapter 4, where the fourth and last fold contains 26 observations, 23 in the 

training set and the next three in the test set. Table 14 presents the results for each fold and 

the average of MAPEs in the folds. From Table 14, it is evident that for cluster 1 and cluster 

4, the MAPEs decrease or don’t increase a lot compared to the first folds MAPE, indicating 

that the model performing well across the diverse subset of the dataset. For clusters 2, 3 and 

6, two or more folds exhibit high MAPEs, which indicates potential issues or outliers in the 

data or the models. Cluster 5 has both low and high MAPEs across the folds, indicating 

variability of the model's performance across different subsets of the data. However, it is 

important to note that the high variability between the folds can be resulted due to the small 

dataset. Cross-validation with a small dataset can lead to instability in model evaluation, as 

the limited data may result in high variability between folds.  

Table 14: MAPEs of cross-validation for Exponential Smoothing Models  

Cluster Model Fold 1 Fold 2 Fold 3 Fold 4 

Cluster 1 Double Smoothing 4.08% 8.75% 1.34% 6.74% 

Cluster 2 Simple Smoothing 28.24% 229.61% 28.28% 135.42% 

Cluster 3 Simple Smoothing 80.00% 391.79% 159.73% 390.59% 

Cluster 4 Simple Smoothing 26.62% 17.85% 24.39% 9.17% 

Cluster 5 Simple Smoothing 12.12% 29.43% 6.21% 50.06% 

Cluster 6 Simple Smoothing 133.03% 173.85% 195.50% 262.24% 

 

4.2. ARIMA 

For each price cluster, ARIMA models are estimated either with the original data or 

differenced data. For each price cluster ACF and PACF are plotted and described. 

Auto_arima function from the pmdarima package in Python is used to help identify the most 

optimal parameters for an ARIMA model by finding the model that has the lowest AIC. 

When the optimal model is found, the last three observations are estimated and plotted 

against the original value and judgemental forecasted values.  
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4.2.1. Cluster 1 

As previously mentioned, the dataset for cluster 1 exhibits non-stationary behaviour and 

therefore, the second-degree differenced dataset is used to estimate the parameters. The ACF 

and PACF are presented in Figure 13. For cluster 1, the ACF has a statistically significant 

lag at lag 1 and PACF shows three statistically significant lags at lag 1, 2 and 4. Moreover, 

the PACF seems to be geometrically decaying after lag 4. This indicates that appropriate 

models could be for example MA(1) or AR(4). 

The auto_arima search found the lowest AIC value 329.74 1 in ARIMA(4,2,0) model. The 

results of this model are presented in Table 15. The results indicate that in ARIMA(4,2,0) 

all the orders are statistically significant with p-values smaller than 0.05. The Ljung-Box is 

performed as well with the models to test the autocorrelation of the residuals. The results are 

presented in the same Table 15. The results of the Ljung-Box test indicate that there is no 

autocorrelation detected in the model with a p-value of 0.96. 

The ARIMA(4,2,0) model is chosen to build the forecasts for cluster 1. The model’s fit and 

the predictions for the last three observations are plotted in Figure 14. From the Figure 14, 

it seems that the model fits the training data well; however, overestimating some drops and 

peaks. When predicting the last three observations, it appears that the model starts to predict 

the values higher than the actual values. However, in the last observation the model correctly 

forecasts an increase and the last value approaches close to the actual value. Moreover, the 

forecasted values seem to be a better fit as the judgemental forecasts are predicted to be 

lower than the model’s predictions and actual values. The MAPEs corroborate the findings 

from the graphs.  The MAPE for the predictions with the ARIMA model is 4.74% while for 

the judgemental forecasts, it is slightly higher at 7.08%. This suggests that the ARIMA 

model performs better in predictions. 
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Figure 13: ACF and PACF of cluster 1 

Table 15: ARIMA(4,2,0) results for cluster 1 

 coef std err z P>|z| [0.025 0.975] 

ar.L1 -1.279 0.159 -8.062 0.000 -1.590 -0.968 

ar.L2 -1.375 0.193 -7.135 0.000 -1.753 -0.997 

ar.L3 -1.016 0.190 -5.337 0.000 -1.389 -0.643 

Ar.L4 -0.591 0.191 -3.089 0.002 -0.966 -0.216 

Sigma2 44723.946 1675.759 2.819 0.005 1439.517 8008.374 

Ljung-Box 

(L1) (Q) 

0.00      

Prob(Q) 0.96      
 

 

 

Figure 14: ARIMA(4,2,0) plots for cluster 1 

 

4.2.2. Cluster 2 

The cluster 2 data require second-degree differencing to ensure stationary, therefore, the 

differenced data is used to estimate the parameters. The ACF and PACF of cluster 2 are 

presented in Figure 15. The ACF doesn’t have any significant lags, however, the PACF 

shows one statistically significant lag at lag 3. This indicates that the AR(3) model might be 

appropriate.  
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The auto_arima search found the lowest AIC value of 364.01 in the ARIMA(3,2,0) model. 

The results of the model are presented in Table 16. The results indicate that only the 

estimated variance of the residual (sigma2) is statistically significant. The results of the 

Ljung-Box test indicate that there is no autocorrelation detected in the model with a p-value 

of 0.75.  

The ARIMA(3,2,0) model is chosen to build predictions for cluster 2. The model’s fit on 

training data and the predictions for the last three observations are plotted in Figure 16. From 

the Figure 16, it seems that the model fits the training data’s trends well, however, 

overestimating some drops and peaks. When predicting the last three observations, it appears 

that the model predicts the values to be lower than the actual values. Moreover, the model 

predicts a decrease while the original values increase. The judgemental forecasts seem to 

perform better compared to the model as the forecasts are closer to the actual values. The 

MAPEs confirm these findings; the MAPE for judgemental forecasts is 45.50% and for the 

ARIMA model 115.55%. 
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Figure 15: ACF and PACF for cluster 2 

Table 16: ARIMA(3,2,0) results 

 coef std err z P>|z| [0.025 0.975] 

ar.L1 -0.3562 0.280 -1.270 0.204 -0.906 0.193 

ar.L2 -0.3729 0.230 -1.620 0.105 -0.824 0.078 

ar.L3 -0.4346 0.229 -1.902 0.057 -0.883 0.013 

Sigma2 18920.0 67209.786 2.624 0.009 4787.178 33000.0 

Ljung-Box (L1) (Q) 0.10      

Prob(Q) 0.75      
 

 

 

Figure 16: ARIMA(3,2,0) plots for cluster 2 

 

4.2.3. Cluster 3 

The dataset for cluster 3 is stationarity, therefore there is no need for differencing and the 

original dataset is used for estimating the parameters. The ACF and PACF of cluster 3 are 

presented below in Figure 17. The ACF has two statistically significant lags at lag 1 and lag 

2. Moreover, the PACF shows three statistically significant lags at lag 1, 2 and 7. This 

indicates appropriate models to be, for example, AR models with q = 7 or MA models with 

p = 1 or 2.  
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The auto_arima found the lowest AIC value of 423.37 in ARIMA(1,0,1). The results of the 

ARIMA(1,0,1) are presented in Table 17. The results show autoregressive order of 1 (ar.L1) 

and sigma2 are statistically significant. The results of the Ljung-Box test indicate that there 

is no autocorrelation detected in either of the models with a p-value of 0.68.  

The ARIMA(1,0,1) model is used to build predictions for cluster 3. The model’s fit and the 

predictions for the last three observations are plotted in Figure 18. As depicted in the Figure 

18, the model seems to fit the model quite well. When predicting the last three observations, 

the model initially forecasts values lower than the actual values, but it anticipates a rising 

trend. Subsequently, the real values also increase, causing the model to align more closely 

with the actual values. Moreover, the model surpasses the judgemental values during the 

second observation. From the Figure, it seems that the model’s accuracy is close to the 

judgemental forecast’s accuracy. The MAPE for the forecasted values with ARIMA is 

114.51% while for the judgemental forecasts, it is slightly lower at 108.77%. This suggests 

that the model doesn’t outperform the judgemental forecasts.  
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Figure 17: ACF and PACF of cluster 3 

Table 17: ARIMA(1,0,1) results for cluster 3 
 coef std err z P>|z| [0.025 0.975] 

const 768.788 873.344 0.880 0.379 -942.936 2480.510 

ar.L1 0.913 0.076 12.028 0.000 0.764 1.062 

ma.L1 0.344 0.258 1.334 0.182 -0.161 0.848 

Sigma2 55520.0 14200.0 3.906 0.000 27700.0 83400.0 

Ljung-Box (L1) (Q) 0.17      

Prob(Q) 0.68      
 

 

 
Figure 18: ARIMA(1,0,1) plots for cluster 3 

 

4.2.4. Cluster 4 

The dataset for cluster 4 is stationarity, therefore there is no need for differencing and the 

original dataset is used for estimating the parameters. The ACF and PACF are presented in 

Figure 19, and both figures seem to have one significant lag at lag 1. Moreover, both 

functions seem to be geometrically decaying. This indicates that the ARMA(1,1) model for 

an appropriate model.  

Auto_arima found the lowest AIC value of 449.36 in ARIMA(1,0,0) ergo AR(1). The results 

of the AR(1) are presented in Table 18. The Table 18 shows the autoregressive order of 1 

(ar.L1), constant term (const) and estimated variance of the residual (simga2) are all 
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statistically significant. The results of the Ljung-Box test indicate that there is no 

autocorrelation detected in either of the models with a p-value of 0.89. 

The model’s fit and the predictions for the last three observations are plotted in Figure 20. 

The model appears to follow the actual values, however, consistently underestimates both 

drops and peaks in the data. When predicting the last three values, the model predicts the 

values to be higher than the actual values. Nevertheless, as the actual values increase during 

the second observation, the model gradually converges towards the actual values. 

Unfortunately, when the actual values experience a significant decline in the last 

observation, the model is unable to follow the drop. Based on the visual representation, it 

appears that the model’s predictions are closer to the actual values compared to the 

judgemental forecasts which are predicted to be too high. The same conclusion is supported 

by the MAPEs. Specifically, the model exhibits a MAPE of 23.68% whereas the MAPE for 

the judgemental forecast is higher at 65.20%. 
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Figure 19: ACF and PACF of cluster 4 

Table 18: ARIMA(1,0,0) results for cluster 4 

 coef std err z P>|z| [0.025 0.975] 

const 1507.829 184.700 8.164 0.000 1145.824 1869.834 

Ar.L1 0.534 0.119 4.500 0.000 0.302 0.767 

sigma2 152100.0 37200.0 4.083 0.000 79100.0 225000.0 

Ljung-Box (L1) (Q) 0.02      

Prob(Q) 0.89      
 

 

 

Figure 20: ARIMA(1,0,0) plots for cluster 4 

 

4.2.5. Cluster 5 

The dataset for cluster 5 requires first-degree differencing to achieve stationarity. Therefore, 

the differenced dataset is used for estimating the parameters. The ACF and PACF graphs 

don’t show any statistically significant lags in Figure 21. The lowest AIC value of 409.65 is 

found in ARIMA(0,1,0). The ARIMA(0,1,0) model is a first-order differencing model with 

no autoregressive or moving average components, also referred to as a random walk model. 

The results of the ARIMA(0,1,0) model are presented in Table 19. The Table shows that 

only sigma2 is statistically significant. The results of the Ljung-Box test indicate that there 

is no autocorrelation detected in either of the models with a p-value of 0.60. 
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The model fit and predictions are plotted in Figure 22. The model appears to exhibit a good 

fit, effectively capturing the trends of the actual values but with a delay. The model forecasts 

all of the observations to have the same value as it is the random walk model and doesn’t 

have any autoregressive or moving average components. Therefore, the model is unable to 

forecast the increasing trend in the last three observations. Moreover, based on the Figure 

22, the judgemental forecasts appear to be a better fit than the model’s predictions. The 

judgemental forecasts seem to be closer to the actual values than the model’s predictions. 

The MAPE confirms these findings. The MAPE for the model is 17.09% and for the 

judgemental forecast, it is slightly lower at 14.76%.  

 

 

Figure 21: ACF and PACF of cluster 5 

Table 19: ARIMA(0,1,0) results for cluster 5 

 coef std err z P>|z| [0.025 0.975] 

Sigma2 21360.0 8109.180 2.634 0.008 5464.478 37300.0 

Ljung-Box (L1) (Q) 0.12      

Prob(Q) 0.73      
 

 

 

Figure 22: ARIMA(0,1,0) plots for cluster 5 
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4.2.6. Cluster 6 

The data for cluster 6 is not stationarity and requires third-degree differencing to achieve 

stationarity. Therefore, third-degree differenced data is used to estimate the parameters. The 

ACF and PACF are presented in the Figure 23. The ACF shows one significant lag at lag 1 

and PACF shows three significant lags at lag 1, 2 and 3. Moreover, the PACF seems to be 

geometrically decaying, indicating an AR model. The lowest AIC value was found in the 

ARIMA(6,3,0) model with AIC of 410.27. The model is presented in Table 20. Table 20 

shows that all the orders and sigma2 in the model are statistically significant. Moreover, the 

Ljung-Box test shows that there is no autocorrelation detected in the model with a p-value 

of 0.84. 

The ARIMA(6,3,0) model is chosen to build predictions for cluster 6 and the model fit and 

predictions for the last three observations are plotted in Figure 24. The model doesn’t seem 

to be a good fit for the data based on the Figure 24. For example, in the other half of 2022, 

the model’s values decrease when the actual values increase and vice versa. When predicting 

the last three observations, it seems that the model predicts a peak in the last three 

observations. However, during this period, the actual values are declining, and a peak in the 

values occurred earlier in the sequence. The judgemental values are notably lower than the 

actual values, indicating a more accurate predictions than the model. The MAPE for 

judgemental forecast is at 458.72% and for the model is even higher at 543.33%. This 

suggests that both models struggle to make accurate forecasts, yet judgemental forecasts still 

outperform the model. 
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Figure 23: ACF and PACF of cluster 6 

Table 20: ARIMA(6,3,0) results for cluster 6 

 coef std err z P>|z| [0.025 0.975] 

ar.L1 -1.876 0.149 -12.576 0.000 -2.168 -1.583 

ar.L2 - 2.449 0.298 -8.226 0.000 -3.033 -1.866 

ar.L3 -2.541 0.421 -6.031 0.000 -3.367 -1.715 

ar.L4 -2.161 0.479 -4.508 0.000 -3.101 -1.222 

ar.L5 -1.511 0.362 -4.175 0.000 -2.221 -0.802 

ar.L6 -0.669 0.244 -2.737 0.006 -1.147 -0.190 

sigma2 115100.0 44800.0 2.571 0.010 27400.0 203000.0 

Ljung-Box (L1) (Q) 0.04      

Prob(Q) 0.84      
 

 

 

Figure 24: ARIMA(6,3,0) results for cluster 5 

 

4.2.7. Validation for ARIMA models 

After analysing the ARIMA models, AR and ARMA models were mostly used. It is also 

interesting to note that clusters 1 and 2 were second-degree differenced and cluster 6 was 

third-degree differenced and all found the best model in AR. Cluster 1 demonstrated strong 

performance when using the AR(4) model on the second-degree differenced dataset, 
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achieving a MAPE of 4.74%. Conversely, clusters 2 and 6 showed poor performance with 

MAPEs exceeding 110% for AR(3) and AR(6) models on the second and third-degree 

differenced datasets. In the case of cluster 6 where especially high MAPE were detected, the 

models used high orders AR(6). This indicates that there might be too complex and there 

might be overfitting. Moreover, only the models for clusters 1 and 4 could outperform the 

judgemental forecasts.  

For each cluster, the forecasting horizon is changed to six months to observe the changes in 

MAPEs. In this scenario, the training dataset consists of 27 observations, and the testing 

dataset consists of 6 observations. Across all clusters, except for Cluster 4, the MAPEs 

exhibit an increase. Specifically, Cluster 4 experienced a decrease in MAPE from 23.68% 

to 17.89%. Conversely, cluster 1 rises from 4.74% to 6.41%, cluster 2 from 115.55% to 

359.37%, Cluster 3 from 114.51% to 380.18%, cluster 5 from 17.09% to 32.23%, and cluster 

6 from 543.33% to 784.47%. The increased MAPEs collectively suggest that the accuracy 

of the forecasting model is decreasing as we extend the prediction period. 

Table 21 presents the results of the cross-validation for each cluster. From the Table 21, it is 

evident that for cluster 1 and cluster 4, the MAPEs decrease or are similar to the first folds 

MAPE, indicating that the model performing well across the diverse subsets of the dataset. 

For clusters 2 and 3, two or more folds exhibit high MAPEs, which indicates potential issues 

or outliers in the data or the models.  Cluster 2 and 3 exhibit both lower and higher MAPEs 

compared to the first fold, indicating variability of the model's performance across different 

subsets of the data. Cluster 5 exhibits slightly higher MAPEs across the folds, meanwhile, 

cluster 6 MAPEs decrease across the folds.  

 

Table 21: MAPEs of Cross-validation for ARIMA models 

Cluster Model Fold 1 Fold 2 Fold 3 Fold 4 

Cluster 1 ARIMA(4,2,0) 4.74% 5.87% 2.65% 2.02% 

Cluster 2 ARIMA(3,2,0) 115.55% 435.20% 106.31% 179.26% 

Cluster 3 ARMA(1,1) 114.51% 407.72% 64.58% 128.57% 

Cluster 4 AR(1) 23.68% 15.92% 25.13% 11.87% 

Cluster 5 ARIMA(0,1,0) 17.09% 32.43% 24.70% 22.34% 

Cluster 6 ARIMA(6,3,0) 543.33% 98.44% 276.09% 327.18% 
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4.3. VAR models 

For each price cluster, VAR models are estimated either with the original train data or 

differenced train data. For each cluster and appropriate lag order (p) for the VAR(p) model 

is determined by fitting VAR models with progressively higher orders and selecting the order 

that results in the model with the lowest AIC. Given that the dataset consists of 33 

observations, the maximum order of lag for the VAR model is set at 3. This is due to higher-

order VAR models requiring a larger amount of data. When the optimal model is found, the 

last three observations are estimated and plotted against the original test data and 

judgemental forecasted values.  

Before building the VAR models, relationships between NRPs and external data are 

examined with Granger’s Causality test. This test assesses the null hypothesis that the 

explanatory variable does not Granger-cause the response variable, indicating that the 

explanatory variable does not have a significant impact on the responsible variable. Table 

22 provides a summary of the p-values obtained from these tests for each variable with the 

maximum number of lags at 3. In Table 22, the rows represent the responses (Y), while the 

columns correspond to the predictor series (X).  

The findings from the Granger causality test indicate that there is a statistically significant 

influence of cluster 4 and GDP on cluster 1. The p-values associated with these influences 

are 0.017 and 0.006, leading to the rejection of the null hypothesis and indicating an impact 

on the response variable. In the case of Cluster 2, there is evidence of influence from nickel 

price and cluster 3 and 5 with associated p-values of 0.024, 0.009 and 0.012. In the case of 

cluster 3, ESTER and clusters 2, 4 and 5 can be said to have an impact on cluster 3 with p-

values of 0.000 0.043, 0.014 and 0.006, respectively. Cluster 4 appears to be influenced by 

only external variable GDP as suggested by the p-value of 0.000, meanwhile, cluster 4 and 

nickel appear to have an impact on cluster 5 with the p-values of 0.029 and 0.033. Lastly, 

for cluster 6 all the explanatory variables have high p-values, indicating no impact on cluster 

6 from any variable. Therefore, constructing a VAR model for the cluster 6 is not feasible 

since it requires multiple variables.  
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Table 22: Granger causality 

y/x Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Cluster 

6 

Nickel GDP ESTER 

Cluster 1 - 0.322 0.716 0.017 0.370 0.276 0.308 0.006 0.103 

Cluster 2 0.356 - 0.009 0.287 0.012 0.180 0.024 0.443 0.368 

Cluster 3 0.467 0.043 - 0.014 0.006 0.024 0.642 0.687 0.000 

Cluster 4 0.509 0.874 0.738 - 0.299 0.252 0.525 0.000 0.673 

Cluster 5 0.428 0.166 0.399 0.029 - 0.248 0.033 0.181 0.458 

Cluster 6 0.470 0.543 0.076 0.236 0.225 - 0.335 0.566 0.303 

 

4.3.1. Cluster 1 

Cluster 1 is influenced by Cluster 4 and GDP based on the Granger causality test; therefore, 

these variables are used in the VAR model. The lowest AIC value was found in the VAR(3) 

model at 18.78. However, the results in Appendix 4, show that at lag three (L3) both of the 

explanatory variables GDP and cluster 4 exhibit high p-values, indicating that they are not 

statistically significant and don’t impact cluster 1. Therefore, lag order 3 is changed to 2 and 

VAR(2) is constructed and examined further. The results of the VAR(2) model are presented 

in Table 23 below. The results indicate that cluster 1 is statistically significant at lag 1 

(L1.C1) and lag 2 (L2.C1), cluster 4 at lag 1 (L1.C4) and GDP at lag 2 (L2.GDP) with a 

confidence level of 5%. Moreover, L2.C4 can be said to be statistically significant with a 

confidence level of 10% as its p-value is under 0.10.  

The VAR(2) is used to plot predictions and compare them against the original values and 

judgemental forecasts in Figure 25. The model seems to fit the model well; however, some 

drops and peaks are underestimated. When predicting the last 3 values, the Figure 25 shows 

that the model correctly predicts a drop in the values. However, the model’s projected decline 

is not as pronounced as the actual values. From the visual representation, the model seems 

still to be a better fit than the judgemental values as the judgemental forecasts are predicted 

to be essentially lower than the actual values. This is supported by MAPE, where the MAPE 

of the VAR model is 4.41% and for the judgemental forecasts it stands at 7.08%. 
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Figure 25: VAR(2) results for cluster 1 

Table 23: VAR(2) results for cluster 1 equation with cluster 4 and GDP 

 coefficient Std. error t-stat prob 

Const -86.256 102.784 -0.839 0.401 

L1.C1 -0.905 0.172 -5.252 0.000 

L1.C4 0.145 0.068 2.126 0.033 

L1.GDP 7.822 17.984 0.435 0.664 

L2.C1 -0.517 0.168 -3.068 0.002 

L2.C4 -0.093 0.048 -1.921 0.055 

L2.GDP 47.182 23.359 2.020 0.043 
 

 

4.3.2. Cluster 2 

In the case of cluster 2, the Ganger causality test revealed that nickel price, cluster 3 and 

cluster 5 have an influence on cluster 2. The lowest AIC is found in the VAR(2) model of 

46.36. The results of the VAR(2) model are presented in Appendix 4. The results show that 

none of the coefficients are statistically significant. Cluster 5 exhibits the highest p-values 

and, therefore, the model is tested again without this variable. The AIC of the VAR(2) with 

cluster 3 and nickel price is 37.11 which is the smaller AIC of the three VAR models. The 

results of the VAR(2) model with nickel price and cluster 3 are presented in Appendix 4 as 

well. From the result, we can see that both explanatory variables are statistically significant 

at lag 1 but none of the variables are statistically significant at lag 2. Therefore, VAR(1) is 

built for further analysis. The results of the VAR(1) model are presented in Table 24.  

The model’s fitted values and predictions are still plotted in Figure 26. The Figure 26 shows 

that the model that the model seems to follow the actual values directions well, however, 

most of the drops and peaks are underestimated. When predicting the last three observations, 

the model seems to correctly predict a decrease. Moreover, the model predicts excessively 
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lower values than the actual values. It is evident that the judgemental forecasts are a better 

fit based on the Figure 26. Furthermore, the MAPE for the model is 168.27% and 45.50% 

for the judgemental forecasts, indicating that the judgemental forecasts are better fit. 

 

 

Figure 26: VAR(1) results for cluster 2 

Table 24: VAR(1) results for cluster 2 equation with  nickel price and cluster 3 

 coefficient Std. error t-stat prob 

Const 37.839 42.896 0.882 0.378 

L1.C2 -0.155 0.182 -0.853 0.394 

L1.Nickel 0.031 0.012 2.545 0.011 

L1.C3 -0.067 0.039 -1.715 0.086 
 

 

4.3.3. Cluster 3 

The Granger causality test found evidence of clusters 2, 4, 5 and ESTER having an influence 

on cluster 3. With these variables, the lowest AIC was again found in the VAR(3) model at 

36.12. The results of the VAR(3) model, in Appendix 4, show that clusters 2, 4 and 5 are not 

statistically significant at any lag and, therefore, they are removed from the model. The 

lowest AIC with only ESTER as an explanatory variable was found again in the VAR(3) 

model at 8.11, which is considerably lower than the AIC of the VAR(3) model with 5 

variables. The results of the model are presented in Table 25. 

The model is fitted, and predictions are plotted in Figure 27. The model seems to fit the train 

values well to the actual data. When predicting the last 3 observations, it's clear that the 

model initially forecasts values higher than the actual ones, showing a slight decrease in the 

last 3 observations. The predictions closely match the actual values in the first two 

observations, but as the real values increase in the last observation and the model's 
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predictions decrease slightly, the alignment is not good in the final observations. Still, the 

Figure 27 shows that the model seems to be a better fit than the judgemental forecast, and 

this is supported by MAPE as well. The MAPE for the VAR model is 79.66% while the 

judgemental forecast has a higher MAPE at 108.77%. 

 

 

Figure 27: VAR(3) results for cluster 3 

Table 25: VAR(3) for cluster 3 equation with ESTER 

 coefficient Std. error t-stat prob 

Const -0.962 65.900 -0.015 0.988 

L1.C3 1.484 0.181 8.176 0.000 

L1.ESTER -322.804 239.280 -1.349 0.177 

L2.C3 -0.843 0.304 -2.774 0.006 

L2.ESTER -805.553 341.801 -2.357 0.018 

L3.C3 0.342 0.200 1.714 0.087 

L3.ESTER -878.345 247.330 -3.551 0.000 
 

 

4.3.4. Cluster 4 

The Granger causality test found only GDP having an influence on cluster 4. The lowest 

AIC of 9.62 is in the VAR(3) model. The results of the VAR(3) are in Appendix 4 and when 

examining the results of VAR(3), it is evident GDP has a high p-value at lag three (L3.GDP), 

and therefore VAR(2) model is used. The AIC of the VAR(2) model is 11.60. The model is 

presented in Table 26 below, where we can see that L1.C4, L1.GDP an L2.GDP are all 

statistically significant.  
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The model’s fitted values and the predictions are plotted in Figure 28. From the Figure 28, 

it seems that the model fits the values quite well as it follows the directions of the actual 

values. Figure 28 shows that the model predicts a small drop although the actual values 

exhibit a peak. The first and last predicted value seems to have a significant error term 

compared to the actual values. Nevertheless, the model still seems to be a more suitable fit 

than the judgemental forecasts, considering that the judgemental forecasts are consistently 

predicted too high. The MAPE for the VAR model is 27.83% and for judgemental forecasts, 

it is 65.20%. 

 

 

Figure 28: VAR(2) results for cluster 4 

Table 26: VAR(2) for cluster 4 equation with GDP 

 coefficient Std. error t-stat prob 

Const 484.420 253.937 1.908 0.056 

L1.C4 0.775 0.167 4.647 0.000 

L1.GDP -171.588 46.339 -3.703 0.000 

L2.C4 -0.074 0.127 -0.577 0.564 

L2.GDP 221.667 57.940 3.826 0.000 
 

 

4.3.5. Cluster 5 

For cluster 5, The Ganger causality test found evidence of nickel price and cluster 4 having 

an influence. With these variables, the lowest AIC was found in the VAR(1) model at 37.36. 

The results of the VAR(1) model are presented in Appendix 4. The results show that none 

of the variables are statistically significant at a 5% threshold, however, cluster 4 is 

statistically significant at lag 1 (L1.C4) with a 10% threshold as the p-value is 0.083 and 

smaller than 0.10. Therefore, the model is tested again without the nickel price and the lowest 



69 

 

AIC of 21.94 is still found in VAR(1). The results of the VAR(1) model are presented below 

in Table 27 and now cluster 4 is statistically significant at lag 1. 

The model fitted model to the differenced data is plotted in Figure 29. The model appears to 

follow the actual values, yet consistently underestimates both drops and peaks in the 

differenced data. The predicted values of the VAR(1) model are plotted against the original 

values as well in Figure 29. The Figure 29 shows that the model’s predictions a clearly 

smaller than the actual values. Moreover, the actual values exhibit an increase while the 

model predicts a small decrease. From the Figure 29, it’s evident that the judgemental 

forecasts seem to be a better fit than the model. The MAPE for the VAR model is 20.39% 

and for the judgemental forecast 14.77% indicating that the judgemental forecast 

outperforms the model. 

 

 

Figure 29: VAR(1) results for cluster 5 

Table 27: VAR(1) for cluster 5 equation with cluster 4 

 coefficient Std. error t-stat prob 

Const 588.705 1.885 1.885 0.059 

L1.C5 0.571 0.638 0.894 0.371 

L1.C4 0.625 0.199 3.139 0.002 
 

 

4.3.1. Validation for VAR models 

In most of the cases VAR(2) or VA(1) models were used, except for cluster 3 where VAR(3) 

was found as the most suitable model. VAR models incorporating GDP demonstrated the 

best performance, with the smallest MAPEs of 4.41% and 27.83% for clusters 1 and 4. 

Moreover, the models for clusters 1, 3 and 4 outperformed the judgemental forecasts. The 
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poorest performance with MAPE of 168.27% was found in VAR model cluster 2 where the 

explanatory variable was cluster 3. In addition to cluster 2, cluster 5 couldn’t outperform the 

judgemental forecast. 

When changing the forecasting horizon to six months, the MAPEs increase in two clusters 

and decrease in three clusters. Cluster 1 decreases from 4.41% to 3.46%, Cluster 2 rises from 

168.27% to 261.62%, Cluster 3 increases from 79.66% to 136.82%, Cluster 4 decreases from 

27.83% to 16.62% and Cluster 5 drops from 20.39% to 13.60%. The decreased MAPES, 

indicates an improvement in the accuracy of the VAR models over a six-month horizon, 

therefore, suggesting that the models might perform better when making predictions over a 

longer horizon. 

VAR models are complicated due to the temporal nature of time and therefore in the cross-

validation, only new one-fold is tested. Implementing more folds in cross-validation with 

VAR models would demand a substantial amount of data and the data in this research is 

limited. The fold 2 that is tested contains 30 observations, where 27 are in training and 3 are 

in testing. The results of the cross-validation are presented in Table 28 below. From the 

Table 28, we can see that three clusters of MAPEs decreased substantially in fold 2. Cluster 

1 decreased from 4.41% to 1.84%, Cluster 4 dropped from 27.83% to 4.51% and Cluster 5 

decreased from 20.39% to 14.37%, indicating an improvement in the model’s accuracy. On 

the other hand, the other two clusters, cluster 2 and 3, experienced a substantial increase in 

the MAPEs. Cluster 2 rises from 168.27% to 740.46% and cluster 3 increases from 76.66% 

to 305.80%.  

 

Table 28: MAPEs of Cross-validation for VAR models 

Cluster Model Fold 1 Fold 2 

Cluster 1 VAR(2) 4.41% 1.84% 

Cluster 2 VAR(1) 168.27% 740.46% 

Cluster 3 VAR(3) 79.66% 305.80% 

Cluster 4 VAR(2) 27.83% 4.51% 

Cluster 5 VAR(1) 20.39% 14.37% 
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4.4. Random Forest Regression 

For every price cluster, random forest regression models are constructed using external data. 

The monthly NRPs serve as the response variable, while the external data acts as explanatory 

variables. In addition, the NRPs from the previous month are included as an explanatory 

variable “NRP month before”. As the first value January 2021 doesn’t have a month before 

value, it is excluded from all datasets. Therefore, the datasets used in random forest 

regression comprise 32 observations, where 29 observations are in the training set and the 

last 3 in the test set. The optimal number of trees is examined by plotting the number of trees 

against the model’s MAPEs for each cluster.  

 

4.4.1.  Cluster 1 

For cluster 1, the number of trees plot clearly indicates that the lowest MAPE is found when 

using only one tree. Therefore, for cluster 1 random forest is built with one tree. The model’s 

fit, as depicted in Figure 30, exhibits good performance at certain data points but struggles 

at others. For example, in the first few values, the model fits perfectly but in the tenth value 

when the actual values show an increase the model predicts a substantial decrease. Moreover, 

in the forecast plot, it is evident that the model struggles to predict the significant increase 

in the last value. When predicting the last three values, the model tends to overestimate the 

initial two values, predicting them to be higher than the actual values. Despite these 

discrepancies, the model’s predictions appear more accurate compared to the judgemental 

forecast, as confirmed by the MAPE values as well. The model achieves a MAPE of 4.11% 

outperforming the judgemental forecasts with a MAPE of 7.08%. 

 

 



72 

 

 

 

 

Figure 30: Random forest result for cluster 1 

 

4.4.2. Cluster 2 

For cluster 2, the number of trees plot clearly indicates that the lowest MAPE is found close 

to the end of 100 trees, more precisely at 98 trees. Therefore, a random forest is built with 

98 trees. The model seems to fit the values well based on the Figure 31. However, when 

predicting the last 3 values the model struggles the predict the increase that happens in the 

actual values. Additionally, the model tends to underestimate the last two values, predicting 

them to be lower than the actual values. Still, the model’s predictions appear more accurate 

compared to the judgemental forecast, as they are even lower than the model’s forecast. This 

is supported by MAPEs, where the model exhibits a MAPE of 28.08% and the judgemental 

forecasts exhibit a MAPE of 45.50%. 
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Figure 31: Random forest result for cluster 2 

 

4.4.3. Cluster 3 

For cluster 3, Figure 32 indicates that the lowest MAPE is found using two trees. Therefore, 

a random forest is built with two trees. The model seems to fit the model well; however, 

some drops and peaks are underestimated. When predicting the last 3 values the model seems 

to predict the first two values almost perfectly. However, the model struggles to predict the 

increase in the last value. The model’s predictions appear to be a better fit than the 

judgemental forecast, as they are even lower than the model’s forecast. Conclusion 

supported by MAPEs, where the model exhibits MAPE of 62.23% and the judgemental 

forecasts exhibit MAPE of 108.77%. 
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Figure 32: Random forest results for cluster 3 

 

4.4.4. Cluster 4 

For cluster 4, the number of trees plot indicates that the lowest MAPE is found using 8 trees 

based on the Figure 33, and therefore, a random forest is built with 8 trees. The model seems 

to struggle to fit accurately the substantial drops and peaks in the beginning well based on 

the Figure 33. However, its performance noticeably improves as we progress through the 

observations. In forecasting the last three values, the model struggles to anticipate the initial 

increase, and furthermore, it overestimates the first value compared to the actual observation. 

However, as the observed values start to decrease, the model also forecasts a decline, though 

not to the same extent as the actual values. The model’s predictions appear to be a better fit 

than the judgemental forecast, as they are even higher than the model’s forecast. Conclusion 

supported by MAPEs, where the model exhibits MAPE of 11.75% and the judgemental 

forecasts exhibit MAPE of 65.20%. 
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Figure 33: Random Forest results for cluster 4 

 

4.4.5. Cluster 5 

For cluster 5, the number of trees plot clearly indicates that the lowest MAPE is found using 

four trees based on Figure 34. Therefore, a random forest is built with four trees. The model 

seems to fit the model well; however, some drops and peaks are underestimated based on 

Figure 34. When predicting the last 3 values the model consistently predicts the same value 

throughout the entire forecasting periods, while the actual values show an increase. The 

model predicts the second value perfectly but overestimates the first value and 

underestimates the last value as the actual values show an increase. The model’s predictions 

appear to still be a better fit than the judgemental forecast. The model exhibits a MAPE of 

11.75% and the judgemental forecasts exhibit a MAPE of 14.77%. 
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Figure 34: Random forest results for cluster 5 

 

4.4.6. Cluster 6 

For cluster 6, the number of trees plot clearly indicates that the lowest MAPE is found using 

13 trees based on Figure 35. Therefore, a random forest is built with 13 trees. The model 

appears to follow the actual values, yet consistently underestimates both drops and peaks in 

the data based on Figure 35. In forecasting the last three values, the model foresees both an 

increase and a decrease. Specifically, for the first two values, the model anticipates an 

increase, contrary to the decrease in actual values. However, an alignment between the 

model's predictions and the actual values occurs at the second value. In the final value, the 

model accurately predicts a decrease, although the decrease is larger than what is observed 

in the actual values. The model exhibits a MAPE of 181.71% and the judgemental forecasts 

exhibit a MAPE of 458.72% indicating a better fit with the model.  
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Figure 35: Random Forest results for cluster 6 

 

Table 29 summarizes the importance of each variable in the random forest model built 

before. The importance represents how much adding a certain variable improves the 

accuracy of predictions. Table 29 reveals that, in cluster 1, the foremost influential variable 

is the NRP month before. In cluster 2, GDP emerges as the pivotal variable, while in cluster 

3, ESTER is the most influential variable, with GDP closely following. Cluster 4 is 

characterized by the nickel price as the most critical variable. For cluster 5, the most 

important variable is the NRP month before, and for cluster 6, it is ESTER. Interestingly, 

the variable with the lowest significance is the nickel price in clusters 1, 2, 3, and 5. In cluster 

4, the least influential variable is ESTER, and in cluster 6, it is GDP. 
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Table 29: Importance of each variable in the random forest regressions 

Cluster Nickel Price GDP ESTER NRP month before 

Cluster 1 0.068 0.138 0.079 0.714 

Cluster 2 0.034 0.426 0.298 0.242 

Cluster 3 0.043 0.398 0.493 0.066 

Cluster 4 0.487 0.128 0.076 0.309 

Cluster 5 0.026 0.255 0.056 0.663 

Cluster 6 0.135 0.059 0.509 0.297 

 

4.4.7. Validation for random forest regressions 

After analysing the random forest regressions, it is interesting to notice that each model 

identified the optimal number of trees differently. Notably, all models utilized thirteen trees 

or fewer, except for Cluster 2, where the best-performing model was found to be composed 

of 98 trees. Overall, the random forest regressions performed well in over a half of the 

models. Four clusters exhibit MAPEs under 29% (clusters 1, 2, 4 and 5) while the MAPEs 

of the others (clusters 4 and 6) exhibited MAPEs of 62.23% and 181.71%. However, it is 

important to note that other models and judgemental forecasts struggled to predict these 

clusters as well. Moreover, the random forest models outperformed judgemental forecasts 

across all clusters.  

For each cluster, we are examining the impact on the model's MAPEs when altering the 

forecasting horizon to six months. Across all clusters, the MAPEs exhibit an increase. 

Cluster 1 rises from 4.11% to 28.08%, Cluster 2 rises from 89.22% to 260.40%, Cluster 3 

increases from 62.23% to 106.13%%, Cluster 4 sees an increase from 25.71 to 28.08%. 

Cluster 5 climbs from 11.75% to 34.36%, and Cluster 6 ascends from 181.71% to 251.11%. 

The increased MAPEs collectively suggest that the accuracy of the forecasting model is 

decreasing as you extend the prediction period. 

Table 30 displays the outcomes for each cross-validation folds. Observing the Table 30, it is 

apparent that in the case of clusters 1 and 4, the MAPEs either decrease or exhibit marginal 

increases compared to the MAPE in the initial fold. This suggests that the model performs 

consistently well across diverse subsets of the dataset for these clusters. Conversely, for 

clusters 2 and 5, there is a substantial decrease in MAPE for one-fold, while the other two 
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folds witness increases. This inconsistency suggests that the model might be sensitive to 

variations in certain subsets of the data, performing well in some cases but less effectively 

in others. In the case of cluster 3, the MAPEs increase compared to the first fold and for 

cluster 6 the MAPEs decrease across the folds, indicating improved performance or 

adaptability of the model to diverse data samples within Cluster 6. Again, it is important to 

note that the high variability between the folds can be resulted due to the small dataset.  

 

Table 30: MAPEs of Cross-validation for random forest models 

Cluster Number of trees Fold 1 Fold 2 Fold 3 Fold 4 

Cluster 1 1 4.11% 1.63% 5.39% 8.47% 

Cluster 2 98 28.08% 358.80% 7.32%% 62.30% 

Cluster 3 2 62.23% 138.55% 139.72% 65.58% 

Cluster 4 8 25.71% 20.19% 29.85% 11.71% 

Cluster 5 4 11.75% 34.76% 7.14% 40.02% 

Cluster 6 13 181.71% 162.55% 94.31% 99.18% 
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5. Result discussions and conclusions 

In this final chapter, the results of the implemented forecasting models are analysed, and the 

insights derived from these models are discussed. Moreover, we address the research 

questions that guided our study and the main findings, explaining the details and nuances we 

discovered. Additionally, the limitations of this study are discussed, and possible future 

research directions are discussed.  

Table 31 below presents the MAPE results from all used forecasting methods for a three-

month time horizon. For cluster 1 the exponential smoothing model exhibited the best 

performance with a MAPE of 4.08%, closely followed by the random forest with a slightly 

higher MAPE of 4.11%. Moving on to cluster 2, the random forest showed the best 

performance with a MAPE of 28.08% followed by exponential smoothing with a close 

MAPE of 28.24%. For cluster 3, random forest outperformed other models’ performance 

with the MAPE of 62.23%. For cluster 4, the ARIMA model stood out with the lowest 

MAPE of 23.68%. Cluster 5 shows MAPEs ranging from 11% to 34% for the models with 

the lowest 11.75% found in the random forest and followed by exponential smoothing model 

closely with a MAPE of 12.12%. Lastly, for cluster 6 the lowest MAPE is found in the SES 

model at 133.03%. 

 

Table 31: MAPEs of models for three-month time horizon 

 Judgemental 

Forecasts 

(Benchmark) 

Exponential 

smoothing 

models 

ARIMA VAR Random forest 

Cluster 1 7.08% 4.08% 4.74% 4.41% 4.11% 

Cluster 2 45.50% 28.24% 115.55% 168.27% 28.08% 

Cluster 3 108.77% 80.00% 114.51% 79.66% 62.23% 

Cluster 4 65.20% 26.62% 23.68% 27.83% 25.71% 

Cluster 5 14.77% 12.12% 17.09% 

 

33.80% 11.75% 

Cluster 6 458.72% 133.03% 543.33% - 181.71% 
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As discussed in the second chapter, reservations and uncertainties surround the use of 

MAPE. Therefore, the Symmetrical Mean of Absolute Percentage (SMAPE) is computed 

for each cluster and model over a three-month time horizon, with the results presented in 

Table 32. Overall, the SMAPE outcomes remain consistent with the MAPE; random forest 

attains the lowest SMAPEs in three clusters, exponential in two, and ARIMA in one. 

However, variations emerge when comparing the performance of each model for the cluster. 

Despite random forest achieving the lowest MAPE in cluster 2, upon considering SMAPE, 

exponential smoothing emerges as the optimal model. Additionally, changes are noted in 

cluster 6, where, despite exponential smoothing initially exhibiting the lowest MAPE, the 

lowest SMAPE is now observed in random forest. 

 

Table 32: SMAPEs of the models for three-month time horizon 

 Judgemental 

Forecasts 

(Benchmark) 

Exponential 

smoothing 

models 

ARIMA VAR Random forest 

Cluster 1 7.41% 4.07% 4.60% 4.32% 4.08% 

Cluster 2 62.36% 27.88% 179.64% 200.0% 33.96% 

Cluster 3 98.86% 84.33% 109.94% 102.32% 80.69% 

Cluster 4 47.34% 22.95% 21.49% 23.92% 22.44% 

Cluster 5 16.36% 11.55% 19.55% 43.01% 11.29% 

Cluster 6 177.89% 139.77% 176.11% - 116.49% 

 

In conclusion from both Tables 31 and 32, across all clusters, at least two quantitative models 

consequently outperform judgemental forecasts. For cluster 1, all models performed better 

than the judgemental forecasts. Cluster 2 shows only exponential smoothing model and 

random forest outperforming judgemental forecasts. For cluster 3, random forest, VAR and 

exponential smoothing models performed better than the judgemental forecasts based on 

MAPEs and based on SMAPEs only random forest and exponential smoothing outperformed 

judgemental forecasts. For cluster 4, all models outperformed judgemental forecasts. For 

both, clusters 5 and 6, exponential smoothing and random forest models could outperform 

the judgemental based on MAPEs, but based on SMAPEs, ARIMA could outperform the 

judgemental forecast as well with exponential smoothing and random forest in cluster 6. 
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For each model, we also changed the forecasting time horizon to six month and performed 

cross validation to see how the model’s performance was affected. Changing the forecasting 

time horizon from three months to six months resulted in widespread rise in MAPEs across 

various clusters in all models, indicating an overall decline in forecasting model accuracy as 

we extend the prediction period. Moreover, the cross-validation outcomes for all models 

revealed that the MAPEs fluctuate a lot across the folds within nearly every cluster. These 

fluctuations in MAPE values imply potential variations in the models’ effectiveness, 

underscoring the importance of the starting point for forecasting. Nevertheless, it is crucial 

to bear in mind that the dataset is small which poses challenges in the cross-validation 

process. The high variability between the folds can be resulted due to the dataset being small.  

 

5.1. Answering the objectives 

The first objective was to find out find out can quantitative methods outperform the 

benchmark model. The judgemental forecasts were used as a benchmark in this study. The 

exponential smoothing model and random forest regression performed better than the 

judgemental forecasts in all clusters, the VAR model in three cases out of five and the 

ARIMA models outperformed judgemental forecasts in two clusters out of six clusters. 

Therefore, we can say that quantitative methods can outperform the benchmark model. The 

SMAPE values in table 32 of the exponential smoothing and random forest are close to half 

of the benchmark (expect cluster 5). Therefore, it is evident that exponential smoothing and 

random forest have potential to outperform judgemental forecasts. Although the results are 

rather convincing, the dataset is limited, and the reliability of the models needs to be verified. 

Judgmental forecasts for an extended historical period are unavailable, limiting our ability 

to compare them. As a result, we can only assess them in relation to this specific dataset and 

specific test set. Not all methods outperform the benchmark in every case which indicates 

that the methods should be used to improve judgemental forecasts, not replace it.  

The second objective of this study was to find if there is a difference in performance of the 

quantitative models used. For each cluster MAPEs and SMAPEs were calculated, and 

random forest models were able to outperform the other models in three clusters based on 

MAPEs and SMAPEs. In the remaining three clusters random forest was second best. Out 

of these methods random forest is the most performant. However, it does not outperform 
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other clearly and consistently. The differences in MAPEs between exponential smoothing 

model and random forest are minimal for example in cluster 1 and 2. Therefore, more 

validation and larger data sets are required to establish the best method among these.   

The third and final objective of this study was to find out if there is a difference in 

performance between the multivariate models used and the univariate models. Here the 

results are somewhat mixed. Based on the MAPEs, random forest was able to outperform 

both univariate models exponential smoothing and ARIMA models in three clusters (clusters 

2, 3 and 5) out of six and in the other three clusters (clusters 1, 4 and 6), it was able to 

outperform one univariate model. VAR models were able to outperform two univariate 

models in one cluster (cluster 3) and one univariate model in another cluster (cluster 1). 

Exponential smoothing model was able outperform both multivariate models in two clusters 

(clusters 1 and 6) and in three clusters (clusters 2, 4 and 5) it was able to outperform one 

multivariate model VAR. ARIMA models were able to outperform both two multivariate 

models in one cluster (cluster 4) and one multivariate model in 2 clusters (clusters 2 and 5). 

Based on SMAPEs in table 32, random forest regression was able to outperform at least one 

univariate model in all clusters and exponential smoothing model was able outperform both 

multivariate models in five clusters. ARIMA models were able to outperform at least one 

multivariate model in three clusters. VAR outperformed one univariate model in two 

clusters, but it was also outperformed by at least one univariate model in all cases. Therefore, 

multivariable models do not always outperform models, but random forest seems to be 

mostly better than the univariable models. 
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Table 33: Answers to the research questions 

Research question Answers 

Which of the exponential smoothing, 

ARIMA models, VAR models or rand 

forest regression can outperform the used 

judgemental forecasts? 

Across all six clusters, two quantitative models 

exponential smoothing and random forest 

regression outperformed judgemental forecasts.  

Is there a difference in performance of the 

exponential smoothing, ARIMA model, VAR model 

or random forest regression? 

The random forest regression demonstrated highest 

performance compared to other models in three out 

of six clusters and performed second bets in the 

remaining three clusters. Exponential smoothing 

model exhibited highest performance compared to 

other models in two clusters and ARIMA model in 

one cluster. 

Is there a difference in performance of the 

exponential smoothing, ARIMA model, VAR model 

or random forest regression? 

Across all clusters, random forest regression 

outperformed at least one univariate model, while 

VAR was outperformed by at least one univariate 

model in all six cluster. 

 

As the random forest regression with external data emerged as the model with most accurate 

results for the company’s dataset. It is important to note that incorporating additional 

variables and external data presents challenges due to the need to obtain values monthly. 

However, the three external variables used in this random forest regression are easily 

available as public information with public information, and forecasts for these variables are 

also easily obtainable from public sources. Therefore, it is advantageous to use additional 

variables in this case.  

 

5.2. Research limitations 

The study has several limitations which highlight the need for additional research. First, the 

research is constrained by the limited dataset, and this limitation is notably evident when 

considering the accuracy as well. The dataset consists of 33 observations and is divided into 

training and test sets, with the training test containing the first 30 observations and the test's 

last 3 observations. With a larger and more diverse dataset, the models can better capture the 

underlying patterns in the data, thereby improving their ability to make accurate predictions. 
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Second, the models used in this research are not without limitations. In the case of the 

exponential smoothing model, it relies on weighted averages of past observations which can 

make it struggle to capture and predict complex patterns or sudden shifts in the data. The 

ARIMA models require careful selection of model parameters with the risk of inaccurate 

forecasts if inappropriate values are chosen for the parameters. While VAR models can 

handle multiple time series variables, the complexity increases with the number of variables, 

and estimating parameters becomes more challenging. Random forest regression, in the other 

hand, has potential to overfitting and lack of understandability in complex models. 

Third, when selecting the best model order for each method only one test set was used. As 

the dataset was small, cross-validation was not performed in the model selection. This means 

that we cannot say that the models used for each method in this study are always the best. 

Cross-validation with a small dataset can lead to instability in model evaluation, as the 

limited data may result in high variability between folds, and it can lead to challenges to 

obtain reliable performance estimates. However, cross-validation was performed for each 

model chosen. The cross-validation relieved that the performances varied between folds, 

which confirms the fact that time series cross-validation for small data set is difficult.  

Fourth, the data set is from an era that was characterised by Covid-19 pandemic which has 

a major impact on all business transactions. It is likely that the normal cyclic or seasonal 

variations are hidden by changes due to Covid-19 pandemic. Finally, it is important to 

acknowledge that this research has employed a limited number of methods, suggesting that 

potentially valuable approaches may have been overlooked. While this study’s findings may 

not encompass the full spectrum of available methodologies, future research can broaden the 

scope for a more comprehensive understanding.  

 

5.3. Future research  

When considering potential future research perspectives, we have already highlighted that 

expanding the research to include new model families which were not tested in this research, 

could provide interesting insights. In this research, more complex models were left out due 

to the limited number of observations in the datasets. For example, more complex methods 

such as neural network methods and fuzzy set theory could be included in future research. 
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Moreover, the development of hybrid models could be a valuable direction for future 

exploration. Hybrid models combine the strengths of traditional time series methods with 

the flexibility and learning capabilities of more advanced approaches. 

An alternative angle for future research could be changing the external variables or adding 

variables from internal data to contribute to a more comprehensive understanding of the 

factors influencing the predictions. Additionally, adding different measurement methods in 

terms of accuracy could bring more insights. Unlike this research which evaluated the 

measurement accuracy from the prediction error direction, future research may benefit from 

alternative accuracy measurements.  
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Appendix 1. Figures of differenced variables 

 

Figure 1: Differenced NRPs 

 

 

Figure 2: External data differenc
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Appendix 2. Figures of NRPs and External data 

Figure 1: Clusters and Nickel Price 

Figure 2: Clusters and Eurozone GDP 

 

 



2 

 

 

Figure 3: Clusters and ESTER 
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Appendix 3. Correlations 

Table 1: Correlation matrix 

 

 

 

 

 

 

 Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Cluster 

6 

Nickle 

Price 

ESTER GDP 

Cluster1 1.000 0.406 0.333 0.525 0.498 0.265 0.604 -0.180 -0.030 

Cluster2 0.406 1.000 0.967 -0.112 0.974 0.857 -0.129 -0.806 0.512 

Cluster3 0.333 0.967 1.000 -0.131 0.926 0.843 -0.226 -0.803 0.517 

Cluster4 0.525 -0.112 -0.131 1.000 -0.058 -0.212 0.540 0.261 -0.445 

Cluster5 0.498 0.974 0.926 -0.058 1.000 0.809 -0.073 -0.796 0.485 

Cluster6 0.265 0.857 0.843 -0.212 0.809 1.000 -0222 -0.642 0.454 

Nickel 0.604 -0.129 -0.226 0.540 -0.073 -0.222 1.000 0.186 -0.291 

ESTER -0.179 -0.806 -0.803 0.261 -0.796 -0.642 0.186 1.000 -0.516 

GDP -0.039 -0.512 0.512 -0.445 0.485 0.454 -0.291 -0.516 1.00 
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Appendix 4. VAR results 

Cluster 1 

Table 1: VAR(3) for cluster 1 equation with cluster 4 and GDP 

 coefficient Std. error t-stat prob 

Const -78.543 109.910 -0.715 0.475 

L1.C1 -1.224 0.205 -5.987 0.000 

L1.C4 0.177 0.082 2.157 0.031 

L1.GDP -4598 37.584 -0.122 0.903 

L2.C1 -0.909 0.254 -3.573 0.000 

L2.C4 -0.065 0.099 -0.659 0.510 

L2.GDP 47.546 22.192 2.143 0.032 

L3.C1 -0.470 0.188 -2.506 0.012 

L3.C4 -0.071 0.065 -1.106 0.269 

L3.GDP -6.568 30.996 -0.212 0.832 

 

Cluster 2 

Table 3: VAR(2) for cluster 2 equation with nickel price, cluster 3 and 5 

 coefficient Std. error t-stat prob 

Const 9.806 45.285 0.217 0.829 

L1.C2 -0.237 0.217 -1.093 0.274 

L1.Nickel 0.022 0.014 1-584 0.113 

L1.C3 -0.225 0.141 -1.598 0.110 

L1.C5 -0.142 0.268 -0.531 0.596 

L2.C2 -0.171 0.198 -0.865 0.387 

L2.Nickel 0.016 0.015 1.084 0.278 

L2.C3 0.173 0.137 1.260 0.208 

L2.C5 -0.046 0.281 -0.162 0.871 
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VAR(2) results for cluster 2 equation with nickel price and cluster 3 

 coefficient Std. error t-stat prob 

Const 17.064 40.497 0.421 0.673 

L1.C2 -0.263 0.191 -1.377 0.168 

L1.Nickel 0.026 0.012 2.256 0.024 

L1.C3 -0.257 0.111 -2.322 0.020 

L2.C1 -0.194 0.180 -1.074 0.283 

L2.Nickel 0.014 0.013 1.138 0.255 

L2.C3 0.197 0.118 1.670 0.095 

 

Cluster 3 

Table 5: VAR(3) for cluster 3 equation with cluster 2, 4, 5 and ESTER 

 coefficient Std. error t-stat prob 

Const 448.985 328.047 1.369 0.171 

L1.C3 1.287 0.3145 4.092 0.000 

L1.C2 0.579 0.788 0.735 0.462 

L1.C4 -0.188 0.161 -1.172 0.241 

L1.C5 -0.349 0.637 -0.547 0.584 

L1.ESTER -138.577 349.763 -0.396 0.692 

L2.C3 -0.492 0.536 -0.918 0.359 

L2.C2 0.184 0.473 0.388 0.698 

L2.C4 0.035 0.177 0.199 0.843 

L2.C5 0.105 0.578 0.182 0.855 

L2.ESTER -636.693 519.378 -1.226 0.220 

L3.C3 0.131 0.339 0.387 0.699 

L3.C2 -0.376 0.480 -0.783 0.434 

L3.C4 -0.105 0.170 -0.618 0.537 

L3.C5 0.471 0.699 0.674 0.500 

L3.ESTER -840.689 378.740 -2.220 0.025 
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Cluster 4 

Table 8: VAR(3) for cluster 4 with GDP 

 coefficient Std. error t-stat prob 

Const 500.497 263.145 1.902 0.057 

L1.C4 0.720 0.204 3.522 0.000 

L1.GDP -2323.084 46.984 -4.748 0.000 

L2.C4 -0.299 0.220 -1.359 0.174 

L2.GDP 203.572 56.029 3.633 0.000 

L3.C4 0.287 0.130 2.198 0.028 

L3.GDP -34.033 69.175 -0.492 0.623 

 


