

UNVEILING ISSUES AND THEIR CAUSES IN OPEN-SOURCE SERVERLESS

FRAMEWORK, AN EMPIRICAL STUDY

Lappeenranta–Lahti University of Technology LUT

Master in Software Product Management and Business, Master’s thesis

2024

Khac Tam Nguyen

Examiner(s): Professor Kari Smolander

Muhammad Hamza

ABSTRACT

Lappeenranta–Lahti University of Technology LUT

LUT School of Engineering Science

Software Engineering

Khac Tam Nguyen

Unveiling issues and their causes in open-source serverless framework, an empirical

study

Master’s thesis

Year of completion of the thesis 2024

65 pages, 16 figures, and 4 appendices

Examiner(s): Professor Kari Smolander and Junior Researcher Muhammad Hamza M.Sc.

Keywords: serverless architecture, serverless framework, AWS, GCP, Azure, cloud

computing, microservice, software architecture.

This empirical research - master thesis identifies and understands the problem underlying

serverless frameworks' deployment and use, with an increased area of interest focused on

the most popular open-source project, Serverless Framework. The master thesis motivation

is brought about due to the adoption of serverless computing, which promises to cut the cost

and provide scaling but also brings about other new challenges such as cold starts, security

vulnerabilities, and application complexities amidst distributed applications.

This draws a grand total of over 1,809 issues analyzed from the context of the major

problematics represented by these categories of topics. Some of the examples include

networking, update and installation problems, performance problems, GUI concerns, and

much more. This largely adds up to the contribution of the serverless architectures into

different constituencies of the network communication types of problems. On top of that,

there also lies an issue related to updating and installation in a large margin. This points at

the factor of complexity that can bind compatibility and configuration of thousands of

serverless services. One of the problems is performance: resource spending and speed

increase.

Here is the cause that included architectural limitation, technical debt, design complexities,

challenges in serverless edge computing, security concern, resource limitation, and

challenges of monitoring and debugging the serverless application. Some of the issues are

serverless-agnostic, while there are others specifically tied to The Serverless Framework.

This thesis contributes by detailing the usual issues and challenges surrounding the

serverless frameworks, with even more detail directed at the serverless framework itself. The

project provides a guideline and avenues that may be of help to developers, institutions, and

academicians in treading within the serverless landscape, which in turn will lead to improved

performance, security, and scale of applications. Future work will include a detailed cause

analysis of the issues and the development of solutions that will help in mitigating the

problems.

ACKNOWLEDGEMENTS

Thank you, Hamza, for the idea and the inspiration. Serverless was not my first attention but

discussing with you sparks lots of ideas to me. Even though you did not have much time

during the journey of this paper when it was being made, you already helped me with ideas

and directions from the beginning.

Thank you, professor Smolander, for your support and trust. Without your trust, I would

have not made this paper.

ABBREVIATIONS

API Application Programming Interface

AWS Amazon Web Services

BaaS Backend-as-a-Service

CD Continuous Development

CI Continuous Improvement

CLI Command Line Interface

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

FaaS Function-as-a-Service

GCP Google Cloud Platform

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

IoT Internet of Things

IP Internet Protocol

RQ Research Question

SLAAC Stateless Address Auto Configuration

TCP Transmission Control Protocol

TSIG Transaction Signature

UDP User Datagram Protocol

6

Table of contents

Abstract

Abbreviations

1. Introduction .. 10

1.1. An overview of serverless computing ... 10

1.2. Master thesis structure ... 11

2. Objective of the thesis .. 12

2.1. Research objectives ... 12

2.2. The expected outcome ... 14

3. Serverless Computing in earlier research and introduction of Serverless Framework 15

3.1. Core concepts of serverless computing ... 15

3.1.1. The advantages .. 17

3.1.2. The disadvantages .. 18

3.2. Cloud platforms that enable serverless architectures .. 19

3.2.1. Amazon Web Services (AWS) Lambda .. 19

3.2.2. Microsoft Azure Functions .. 19

3.2.3. Google Cloud Functions .. 20

3.2.4. Others ... 20

3.3. Introduction of Serverless Framework .. 20

3.4. Utilization of serverless computing .. 23

3.5. Different angles of serverless architecture .. 23

4. Methodology... 25

4.1. Research questions .. 25

4.2. Research phases .. 26

4.2.1. Phase One: Identification and Initial Extraction .. 27

4.2.2. Phase Two: Filtering and Categorization ... 28

5. Findings .. 32

5.1. Types of Issues (RQ1): In-Depth Analysis ... 32

5.1.1. Networking issues .. 34

5.1.2. Update and Installation Issues ... 36

5.1.3. Performance Issues .. 38

5.1.4. GUI (Graphical User Interface) Issues .. 39

5.1.5. API-Related Issues ... 41

5.1.6. CI/CD Issues .. 42

5.1.7. Cloud Services ... 44

5.1.8. Other Themes ... 44

5.2. Causes of issues (RQ2): An overview of the cause .. 48

6. Discussion... 51

6.1. The findings and their usage ... 51

6.2. Limitations .. 51

6.3. Further research topics .. 52

7

Conclusions .. 53

References .. 55

Appendices ... 1

8

Appendices

Appendix 1. Extraction code

Appendix 2. Issue detail extraction code

Appendix 3. Summary number of main themes and subthemes

Appendix 4. Main themes and subthemes categorization script

9

Figures

Figure 1 Serverless Architecture overview (Mampage et al., 2022)

Figure 2 Commits to main of Serverless Framework GitHub repository.

Figure 3 An overview of Phase One

Figure 4 An overview of excluding (filtering out) out of scope issues

Figure 5 An overview of the categorization process

Figure 6 An overview of the cause’s categorization process

Figure 7 An overview of issues and their main themes and subthemes

Figure 8 Overview of Networking issues and its subthemes.

Figure 9 Overview of Update and Installation issues

Figure 10 An overview of Performance Issues

Figure 11 An overview of GUI issues.

Figure 12 An overview of API-Related issues

Figure 13 An overview of CI/CD issues.

Figure 14 An overview of Cloud Services issues.

Figure 15 Portions of issue types.

Figure 16 Taxonomy of issue types.

https://lut-my.sharepoint.com/personal/tam_nguyen_student_lut_fi/Documents/thesis/UNVEILING%20ISSUES%20AND%20THEIR%20CAUSES%20IN%20OPEN-SOURCE%20SERVERLESS%20FRAMEWORK,%20AN%20EMPIRICAL%20STUDY.docx#_Toc160285386

10

1. Introduction

1.1. An overview of serverless computing

Serverless computing is a big step in cloud services. It mixes spending less with doing more.

In this model, the folks who run the cloud service handle the heavy lifting. They only charge

for the time you use it. This setup helps businesses focus on their work, avoiding the tough

work about managing resources. This makes it faster and easier to develop and grow apps.

However, serverless computing also brings up new problems, mostly about keeping eve-

rything secure (Li et al., 2023).

Serverless computing is known for using managed, short-term, and stateless computing

solutions. These are things like Function-as-a-Service (FaaS) and Backend-as-a-Service

(BaaS). Both big companies and schools like these services more and more. This is because

they help with operations. They allow those who make apps to focus on the business part,

while the cloud services handle the tech side, like deploying, resource allocation, and

autoscaling. This teamwork makes the development process cleaner and the apps more

efficient (Eismann et al., 2021).

The new era opens with challenges, as always. Serverless architecture comes with many

serverless frameworks, there are many open-source projects that are helping and contributing

to the growth of serverless architecture in general. However, there are several issues with

serverless architecture and its frameworks in practice. Even though the concept of serverless

architecture is not new, the frameworks are still dealing with back-and-forth challenges.

Many known issues with serverless architecture and its frameworks such as networking,

performance, and security, so on and so forth. There are also new challenges that frameworks

of serverless architecture may not be able to keep up with, such as the dynamic of the service,

wide range of supported cloud providers, different configurations or architecture, complex

infrastructure and integration, compatibility and many more that is not even yet recognized.

This master thesis will go through the fundamental types of issues and their causes of one

specific and popular serverless framework, called Serverless Framework. The main research

questions of this master thesis are to drill down on identifying the types of issues and

mentioning their causes. To answer the questions, this master thesis will analyse the issue

11

types and the causes of them, and based on that in future research, we will propose solutions

that can prevent users from facing the issues or help guide users and readers to overcome the

known issues.

1.2. Master thesis structure

This master thesis will consist of four main parts: positioning the master thesis within the

studies of serverless architecture and serverless computing and its purpose; the process of

extracting issues and categorize them into themes and subthemes; a short introduction of

serverless, its architecture overall and the context of Serverless Framework; and finally the

analysis of extracted issues and their types and answers to the research questions that are

stated in the methodology section.

Starting with stating the objective of the thesis that will explain the purpose and motivation

behind the master thesis. This part is important to understand why this master thesis research

is valuable and it will provide an overall scenery about the expected outcomes that the thesis

will deliver in the findings.

Serverless Computing in earlier research will remind the foundation of serverless

architecture and its developments in academia. It will provide an overall picture of serverless

architecture and Serverless Framework. Stating the advantages and disadvantages of

serverless architecture, its providers, and several other aspects of serverless computing.

Methodology section will provide an overview of research methodology, research questions,

explain how the data is extracted and categorized, and how the analysis is conducted.

The Findings section is to give out the results of the analysis. What are the types of issues

Serverless Framework encountered and detail categories and the explanation for each theme

and subtheme of issues. A brief description of about the cause of issues will be mentioned

in last part of the section and it will be open for further research in the future.

A conclusion is to sum up the research findings and validate the findings against the research

questions.

Further study will be shortly mentioned and discussed. References and appendices are

available in the end of the master thesis.

12

2. Objective of the thesis

2.1. Research objectives

The primary objective of this research is to methodically investigate and understand the

various issues and challenges associated with serverless computing frameworks. This study

aims to identify the root causes of these issues, assess their impact, and validate the potential

complications that may arise when adopting a serverless framework. The goal is to provide

a comprehensive analysis that aids in determining the most suitable serverless framework

for specific use cases, ensuring informed decision-making for organizations and developers

venturing into serverless computing.

Development of a comprehensive list of the common problems that normally come up as

part of using serverless frameworks will be the first stage in the research. This involves

conducting a full investigation into the current common bottlenecks, which include cold

starts, security exploits currently occurring, scaling and lack of customization capabilities.

To understand what lies underneath the working of serverless computing and the places such

a technology can be practically applied in various categories of use cases, deep

understanding of these problems becomes a must. These include cold start times pushing up

response time to standard levels for initial requests as some functions are spun up, security

loopholes leaving room for breaches, and restricted customization to complex business

needs. Additionally, default autoscaling limits may come into effect and have poor

performance when there is a sudden bloom in traffic. Thus, there is a need to future-proof

serverless solutions via identification of such performance, security, and flexibility

roadblocks through comprehensive analysis and understanding their respective technical

reasons.

Identifying these issues, the master thesis will carry out an in-depth investigation regarding

the factors that brought on such problems and the implications that have generated. This is,

therefore, an essential step towards the realization of technical and structural facets that

harbinger onto challenges of serverless computing. It is in this perspective that the study

attempts at developing insights into intrinsic complexities and complications within

serverless frameworks thereby deconstructing these foundational components. This will

13

enable deeper understanding of the strengths and limitations made by these structures. While

serverless architecture has diversified advantages such as reduction in cost and increased

scalability, its disruptive nature can prove to be challenging during the development process.

This research is aimed to help the designers to implement serverless apps better through

useful insights into the elements that cause these challenges and explaining them in detail.

Besides, understanding the consequences of current problems will help to beautify serverless

frameworks with some time so that their usage becomes more give habit.

This investigation must comprise a comprehensive look into potential intricacies this may

occasion. As a part of this strategy, an empirical analysis is conducted regarding the impact

which these challenges may have on performance, management, maintenance of serverless

applications. The validation strives to provide a pragmatic perspective on the outcomes of

implementing serverless architectures by assessing how such considerations impact

performance of the framework, economic efficiency of the framework, as well as the overall

dependability of the application. It is, therefore, necessary to clearly understand how

different issues that have been linked to the new serverless designing model could impact on

your project before getting into it. For instance, one should analyze carefully how cold starts,

resource management, and security among other problems can undermine performance,

cost-effectiveness, or reliability. It also examines how the implications of those challenges

could change when complexities increase across applications and workloads. A valuable

insight into the benefits and possible implications of serverless frameworks is offered by this

critical assessment that makes more informed choices about their adoption.

Thus, the motivation of our research endeavour is to seek and identify the serverless system

best fitted for a diversity of application contexts. The objective of the study is to provide

associations and designers with a manual that will help them in choosing the appropriate

system or combination of systems subject to the needs of applications. Several viewpoints

will be greatly influenced during this decision-making process including the frequency with

which events require to be dealt with, efforts for data processing, and that of the integration

of internet things. A serverless system facilitating programmed scaling and simple

onboarding of capacities could be optimal in such applications needing to respond rapidly

and flexibly process enormous informational collections or live information streams from

IoT gadgets. On the other hand, applications that may need more or better management for

design as well as execution could demand a more customizable system. The purpose of our

14

research is to provide clear guidance so that an organization can choose the serverless

solution which is best placed to meet its needs and to achieve its goals by evaluating fully

each of the available systems against a wide range of application scenarios.

2.2. The expected outcome

The master thesis shall generate knowledge and guidelines that can eventually help the users

in choosing, setting up or improving serverless frameworks. Deriving outcomes from

comparative assessment and problem confirmation would thereby provide the understanding

through the study that can be implemented as well as ideal practices for exploration of the

realm of serverless computing. The proposals are aimed at having increased the help that

would be accorded to the practitioners in making enlightened decisions that would increase

their effectiveness and efficiency in serverless application. However, there exist some

barriers that serve while preventing one from perfecting with the use of serverless

architectures. Further research still needs to be done in developing best practices only for,

among others, monitoring, debugging and performance tuning. In general promises which

from the low operational costs, better flexibility and ease of management using serverless

computing are quite compelling. But fully realizing the benefits will require ongoing work

to address limitations and standardize new approaches.

By achieving these objectives, the research expects to significantly contribute to the field of

serverless computing by offering a detailed understanding of the challenges and

considerations in selecting and utilizing serverless frameworks. This study aims to equip

practitioners with knowledge and tools to effectively navigate the serverless landscape,

ultimately enhancing the efficiency, security, and scalability of serverless applications.

15

3. Serverless Computing in earlier research and introduction of

Serverless Framework

Serverless Computing: A Paradigm Shift in Cloud Computing

Serverless computing has emerged as a major paradigm shift in cloud computing providing

scalable, cost-effective solutions abstracting the management and maintaining of servers.

This literature review then compiles the new research and discussions on serverless

computing particularly focusing on IoT, task scheduling, performance, security applications,

challenges, and frameworks of the same.

3.1. Core concepts of serverless computing

Function-as-a-Service, also known as FaaS, is the fundamental component of serverless

computing. The execution of your code if certain events take place is a simple and

uncomplicated process, and you do not need to be concerned about the servers. The small

pieces of code that you write are referred to as functions, and they only function when they

are required. At that point, they cease their activity in a stealthy manner. Examples of this

include well-known services such as Amazon Web Services Lambda, Microsoft Azure

Functions, and Google Cloud Functions. Because they are responsible for the servers, you

are free to concentrate solely on writing your code. Because of this, the entire process of

developing applications is simplified significantly (Baldini et al., 2017).

Another type of cloud service that is utilised by serverless computing is known as Backend-

as-a-Service (BaaS). For your application, BaaS is responsible for all the tasks that occur in

the background, such as managing databases, determining who the users are, and storing

files. Based on the findings of Leitner et al. (2019), it eliminates the challenging aspects of

managing servers, allowing developers to devote more time to the aspects of their

applications that are important.

16

Figure 1 Serverless Architecture overview (Mampage et al., 2022)

Key aspects of serverless computing include:

Ease of Deployment and Operations: Serverless computing makes the deployment of code

into production easier that allows leaving developers more time to write code but not

managing and operating servers. It is because serverless platforms reduce the demand for

server management and capacity planning (Ali, 2021).

Cost-Effectiveness: In the serverless service model, payment is done based on a "pay-as-

you-go" model where developers pay for their code by counting the number of times their

code is executed and how much of the resource it consumes, rather than paying for underused

provisioned computing resources (Jiang et al., 2020).

Event-driven Architecture: Serverless computing inherently depends on events for its

execution. Functions are invoked following the occurrence of an event, and co-resident

resources automatically scale out and deallocate (Kelly et al., 2020).

Scalability and Flexibility: Serverless architectures will automatically scale according to

the requirements presented by an application. Meaning that serverless architectures are

elastic, which is good for applications with workloads that cannot be entirely defined in

advance or those that are varying (Djemame, Parker, & Datsev, 2020).

17

Performance Considerations: While serverless computing is rewarding, it still carries as

much its own reverse side like in matters of latency, especially when "cold starts" come into

play and a certain function takes longer to start if it was not used so long ago (Maissen et al.,

2020).

Emerging Applications: Serverless computing is being incorporated within emerging

arenas more and more such as machine learning and AI applications since its ability to cut

down the complexity of the machine learning system contributed to providing management

easily (Bac, Tran, & Kim, 2022).

Portability and migration issues: In special, the serverless applications have identified

various problems to be associated with their portability into various cloud providers given

that there exists differing of scenes, models, and APIs (Yussupov et al., 2020).

Resource Management: Efficient control of computing resources in serverless

environments involve provisions for, allocations, schedules, monitors, and scales critical

considerations (Mampage et al., 2021).

Security Considerations: Despite some advantages that serverless computing provides such

as increased cost savings, and the potential to scale for organizations, security is still a major

challenge to be tackled especially regarding multi-cloud scenarios (Poorvadevi &

Ramamoorthy, 2018).

3.1.1. The advantages

One of the most apparent perks of serverless computing is that it's noticeably more cost-

effective than its conventional counterpart. The difference between serverless computing

and the traditional server-based model is substantial. Essentially, serverless computing goes

by a 'pay-as-you-go' pricing strategy. This means charges are directly tied to how much it's

used and how long the functions execute. Baldini and his colleagues in 2017 pointed out that

this system gets rid of any financial strain caused by servers idling, which consequently

enhances a business's cost efficiency.

Serverless architectures make life easier for developers by getting rid of the need to manage

servers. It takes away some serious complications. Instead, the companies that provide the

cloud service deal with server maintenance, scaling, and managing the infrastructure. This

18

means developers can really get their teeth into creating and innovating their products. A

2021 study by Eisenmann and others found that going serverless really lowers the amount

of operational work and makes the deployment process smoother.

One of the natural advantages of serverless computing is its impressive scalability. What's

really great is how it automatically adjusts, scaling up or down based on demand. This means

there's no need for someone to manually intercede. This is especially helpful for apps that

have fluctuating workloads, or for budding startups that need the capability to grow on de-

mand. This flexibility is particularly beneficial for applications. (Yussupov et al., 2019)

By simplifying operations and doing away with the tasks tied to server management, we've

sped up the development cycle. This means that apps can hit the market quicker, giving

businesses a leg up in ever-changing markets (Leitner et al., 2019).

3.1.2. The disadvantages

Securing serverless computing is challenging. Given that serverless apps are spread out

across many locations, keeping all data safe poses a real challenge. Thorough knowledge of

the entire system and possible issues that could crop up is a must-have to keep everything

secure (Li et al., 2023.)

Moreover, there is a known issue in serverless computing popularly known as 'cold starts'.

It is essentially the delay you come across when you get down to using a function that has

been inactive for a while. As highlighted by Lynn and his colleagues in 2017, this delay can

pose significant troubles for applications that require super-fast, real-time functionality.

Using serverless computing can create a few hurdles. A significant one is the risk of be-

coming too reliant on a single cloud provider's tool set and services. This situation is often

called 'vendor lock-in.' Baldini and his colleagues mentioned in their 2017 study that this

dependence could make it hard to switch to another provider or to integrate different services

into your app.

To sum it up, while serverless computing certainly makes some things easier, it doesn't offer

complete control to developers over how their applications operate. As highlighted by

Yussupov et al. in 2019, this may pose challenges in making precise adjustments or in

achieving the best possible performance under given circumstances.

19

3.2. Cloud platforms that enable serverless architectures

Serverless cloud computing is a paradigm in which the cloud provider manages the server

infrastructure. This paradigm has seen rapid adoption since it is scalable, cost-effective, and

easy to use. It is because of this that several significant players have emerged in the market,

each of which provides distinctive characteristics and services. The introduction of

serverless computing platforms by major cloud service providers like AWS, Azure, and

Google Cloud Platform reflects a shift towards more cost-efficient, manageable, and rapidly

scalable cloud services. AWS Lambda has been identified as a leading platform for

serverless computing research (Lynn, Rosati, Lejeune, & Emeakaroha, 2017).

3.2.1. Amazon Web Services (AWS) Lambda

Amazon Web Services (AWS) and its AWS Lambda service are often seen as the first

companies to use serverless computing. With its automatic scaling, high availability, and

pay-per-use pricing model, Amazon Web Services Lambda quickly established itself as a

standard for serverless computing within a brief period after its launch in 2014. It is a popular

choice for a wide variety of applications because Lambda enables developers to execute code

in response to events without the need to provision or manage servers.

3.2.2. Microsoft Azure Functions

Azure Functions is an example of a serverless computing platform that exemplifies the trend

towards cloud-oriented software development, allowing developers to focus on product

development rather than server maintenance and administration (Sawhney, 2019). Microsoft

Azure Functions is a significant competitor in the serverless market. It offers an execution

environment that is driven by events and integrates without any complications with other

Azure services. The Azure Functions platform was introduced in 2016, and it can support a

wide range of programming languages. Additionally, it brings Microsoft's enterprise-grade

security and compliance capabilities to the realm of serverless computing.

20

3.2.3. Google Cloud Functions

The Google Cloud Functions is Google's response to the serverless computing trend. It gives

developers the ability to execute backend code in response to HTTP requests or event

triggers that are generated by Google Cloud services. It offers a fully managed environment

that is scalable and has a pay-per-use pricing model. One of the most notable features of

Google Cloud Functions is its extensive integration with other Google Cloud services, as

well as its powerful data analytics capabilities.

3.2.4. Others

Using Apache OpenWhisk as its foundation, IBM Cloud Functions is a flexible and multi-

language FaaS (Function-as-a-Service) platform. In addition to providing developers with

the ability to execute code in response to a wide variety of events, it provides an open-source,

event-driven model that also provides the advantage of IBM's comprehensive collection of

artificial intelligence and data tools.

The Alibaba Cloud Function Compute service offers a serverless computing solution that is

fully managed and driven by different events. It is gaining popularity, particularly in Asia,

because it provides a platform that is both flexible and scalable, while also supporting several

different programming languages and integrating with the extensive suite of services that

Alibaba Cloud provides.

For the scope of this thesis, only AWS, Azure and Google Cloud will be analyzed and

mentioned in serverless contexts.

3.3. Introduction of Serverless Framework

Serverless Framework (or serverless in short) is an open-source framework focuses on

establishing, managing, maintaining, and operating serverless architecture. The very first

commit of the whole project dated back to April 21st, 2015, by Austen Collins, founder, and

CEO of Serverless, Inc. and he is also the creator of the Serverless Framework. Serverless

Framework stands out from the current frameworks for serverless in the market because of

its maturity and high maintenance.

21

Picture 1 Serverless Framework

Serverless Framework in short, is a framework that helps software engineers and cloud

professionals set up new services (such as AWS Lambda, GCP Cloud Run, Azure Function

App, AWS DynamoDB, etc.) and configure them in the same tool and in a comprehensive

procedure. Serverless Framework supports several languages, i.e. Node.js, Python, Java, Go,

C#, Ruby, Swift, Kotlin, PHP, Scala, and F# which is why Serverless Framework gains its

popularity quickly within computing cloud and software engineering communities.

Currently when writing this paper, Serverless Framework has over 45k stars, 5.8k forks and

near 1k watching in its GitHub official repository. Şahin et al. (2019) discussed how the

number of stars a repository receives is often considered a measure of its popularity, and

how various factors like the number of forks and contributors influence this popularity

(Şahin et al., 2019). With over 45k stars and 5.8k forks, Serverless Framework is among the

popular open-source repositories in GitHub.

Over 40k repositories that depend on Serverless Framework according to GitHub repository

Insight. All the numbers have painted a popular and useful open-source project that can bring

serverless architecture closer to software engineers and cloud practitioners, without lengthy

establishment process, complex configuration and different techniques required for each

cloud provider, Serverless Framework removes those obstacles and creates a simple and yet

effective process and technique to achieve complex architectures.

Throughout the years, serverless has gained huge attentions from software engineers and

cloud professionals. There are over 15 thousand commits from more than 1 thousand

contributors from everywhere in the world.

22

Figure 2 Commits to main of Serverless Framework GitHub repository.

Over 300 releases in the span of over 9 years (counting until the time writing this paper),

that is equivalent to over 40 releases per year and on average close to 1 release every week.

That is the evidence that Serverless Framework has been being updated and renewed on

weekly basis with a strong community and wide range of supporting features.

All the numbers have shown the impact of Serverless Framework has been making in

software and cloud development. Since Serverless Framework has supported many features

and for many cloud providers, it also has its own issues. Over the years, a cumulated number

of issues has been over 6 thousand in total. Over 5 thousand issues have been closed and the

other 1 thousand issues are still open. Kavaler et al. (2017) studied the effect of issue

discussion complexity on issue resolution times, highlighting the importance of effective

communication in issue management. Based on the study, it suggests that repositories that

are like Serverless Framework is a complex topic which is suggested in the discussions of

the issues. Over 1 thousand issues are still open due to miscommunication, complex

explanations, complex architecture, and many other reasons. These factors indicate

Serverless Framework, and serverless architecture frameworks related topics are difficult to

comprehend and resolve.

With all the mentioned factors, Serverless Framework can be the great case study for this

paper. It cannot stand for serverless architecture and other serverless open-source

frameworks in general, however it can provide an overview of what types of issues and

common causes of issues that serverless architecture and open-source serverless frameworks

may encounter. It is not trivial knowledge and analysis for all other serverless frameworks,

but it can hint some relevant trends that all other serverless frameworks have, so that the in-

depth analysis will hold true in majority of aspects.

23

3.4. Utilization of serverless computing

Serverless Computing and IoT: Cassel et al. (2022) have done detailed research to find out

the role of serverless computing on Internet of Things (IoT). These provided a systematic

literature review that shed light on the challenges and benefits gained by the usage of

serverless architectures in IoT landscapes, primarily elaborating how they reduce operations

due to reducing complexity and further enhancing scalability (Cassel et al., 2022).

Serverless Computing and Cloud Task Scheduling: Scheduling tasks on cloud platforms as

a typical approach has been elaborated by Alqaryouti and Siyam (2018) with serverless

computing. The authors, in their research, touch upon the architectural benefits of serverless

computing ranging from efficiency and flexibility applied to scheduling tasks based on

clouds (Alqaryouti & Siyam, 2018).

Use Cases for Serverless Computing: The analysis of Eismann et al. (2020) added

significantly to the aspect associated with the serverless use case review and characteristics,

giving a realistic look at how serverless characteristic can be applied and what effects in

future over numerous industries and other surroundings (Eismann et al., 2020).

3.5. Different angles of serverless architecture

Design and Performance of Serverless Computing: McGrath et al. (2017) had carried out a

study on the design, implementation, and performance of serverless computing. This is an

important study to understand the design intricacies architectural aspects of serverless

computing and implications of the same in terms of different performance parameters

(McGrath & Brenner, 2017).

Security in Serverless Computing: Golec et al. (2021) introduced iFaaSBus, a security

framework that specializes serverless computing environments. This typology has been able

to help in resolving the challenges associated with the escalations of security as well as

privacy architectural aspects of serverless by combining IoT and machine learning (Golec et

al., 2021).

Performance Evaluation in Function-as-a-Service: Scheuner and Leitner (2020) conducted a

comprehensive literature review on FaaS performance evaluation. These performance

24

benchmarks cover the judgment for serverless computing platforms (Scheuner & Leitner,

2020).

Tradeoffs and Challenges in Serverless Deployments: The outline of the trade-offs and

challenges of serverless deployments could adequately depict a proper understanding of the

modern-day limitations and problems that need to be resolved for improving serverless

computing, comprising cold start delays, data communication overhead as well as hardware

heterogeneity problems (Garcia-Lopez, 2021).

Temporal Performance Modelling: In relation to serverless computing platforms, Mahmoudi

and Khazaei (2020) conducted an analysis of the temporal performance to give insights in

respect to the performance dynamics, and architecture's scalability in time of serverless

(Mahmoudi & Khazaei, 2020).

Quality-of-Service in Serverless Computing: Tariq et al. (2020) described the issues as well

as solutions with respect to quality-of-service provisioning within serverless computing

environments. Their work highlights maintaining and achieving enough service quality

despite the dynamic nature of serverless computing (Tariq et al., 2020).

25

4. Methodology

The investigation of serverless frameworks and the problems that are associated with them

is a comprehensive process that has been created with great care to unravel the complexities

and nuances that are inherent in these systems. The objectives of this research methodology

are accomplished through the utilisation of a combination of technological tools and

analytical strategies. This methodology is comprised of two distinct phases that are

interrelated to one another. In the scope of this thesis, Serverless Framework will be selected

for further analysis, other frameworks will be in a further study in the future.

4.1. Research questions

RQ1: What issues do occur in the development of system utilized open source

Serverless Framework?

Rationale: RQ1 is pertinent due to the growing practice of serverless architectures

experienced across the software industry. This question will delve into technical,

operational, and collaborative aspects associated with a popular open source serverless

framework called Serverless Framework. Rationale: Understanding of these challenges

essential in enhancing scalability, efficiency, and cost effectiveness in cloud computing

through a smaller scale of one of the most popular serverless open sources called Serverless

Framework. Additionally, it addresses complexities in debugging, integration and

performance fine tuning are unique to the serverless technology. The findings of this master

thesis are critical to improvement in development practices, better community driven

collaboration and the future ready state of serverless technologies. This contribution not only

helps in the technical advancement of serverless frameworks but also assists developers,

organizations, and the whole tech community in risk mitigation, security adherence, all while

staying aligned with industry standards.

RQ2: What are the causes of issues that occur in open source Serverless Framework?

Rationale: The purpose of RQ2 is an early investigation of the causes of issues in Serverless

Framework and it is vital given the rapidly expanding role of serverless technology in

modern software development. This research question targets the heart of challenges faced

in the deployment and maintenance of this selected framework – Serverless Framework.

26

Limitation: For the scope of this master thesis, an overview of what are the causes of issues

will be presented and not going to detail analysis due to the lack of resource and time

constraints. In practice, to be able to identify the causes and base on the causes suggested

proposing solutions requires a sophisticated process of selecting seasoned professionals with

different backgrounds, experiences in various technologies and in several regions which will

paint a more reliable overview of opinions and propose universal solutions.

4.2. Research phases

The analysis consists of two phases: Identification and Initial Extraction and Filtering and

Categorization. The reason behind the two phases is they are a sequent of work that the later

one depends on the previous one. Both phases are required to involve several steps and

combined automated and manual work. Each phase is also required to carefully review and

adjust the automated steps to reach the required accuracy and correctness.

An empirical analysis is conducted to analyze the collected and categorized data from the

two phases. The methodology of empirical analysis is a cornerstone of any scientific research

and underpins the importance of direct or indirect observation and experience in data

collection. At the heart of this approach lies a precisely articulated and proper research

question which, so to say, stages the whole investigation. This very research question must

be formulated in such a manner that it could further become, in a certain way, testable by

empirical means.

Interpretation of the results in here is quite delicate since it involves comparing findings to

the first hypothesis and what is already in the literature. From that comparison, it is possible

to identify implications from the study, considering its boundaries of reach, and putting at

stake findings with bigger dynamics.

Finally, the results that are established should be reported in a clear structured way with clear

information how methodology was applied, and data analysis and analysis employed draw

results. This will make the other scientists feasible to evaluate, replicate or build upon it to

add scientific knowledge.

27

4.2.1. Phase One: Identification and Initial Extraction

Phase One is the first step in the journey, and it is equally important because it establishes

the groundwork for the entire study. One of the primary objectives of this endeavour is to

search through the vast digital landscape to locate serverless frameworks that are of

significant relevance. This selection process is not arbitrary; rather, it involves a careful

consideration of a variety of factors that indicate the significance and impact of these

frameworks in the field.

Figure 3 An overview of Phase One

After these frameworks have been identified, the attention will shift to the process of

obtaining relevant data concerning the problems that are associated with both. Performing

this extraction is not a simple task; it is carried out with the assistance of a complex Python

script that was developed specifically for the purpose of performing this extraction.

Repositories are combed through with great care by the script, which then extracts important

information regarding each respective issue.

Before the script can function as expected, a personal GitHub token needs registering with

the READ permission and storing in the .env file in the root folder of the project. The script

gets the GitHub token from an .env file that is in the root folder of the project and uses the

token to fetch all the issues from a defined repository. The script loops through the data it

gets and extract the repository’s issues to an excel file, the information that was gathered

includes the following: the title of the issue, which gives an overview of the problem; the

link to the issue, which acts as a portal to more in-depth discussions; the dates that mark the

beginning and ending of the issue, which provide insights into the issue's lifespan; and the

28

number of participants involved, which reflects the level of engagement and interest in the

issue.

Following this, the data is compiled into a comprehensive file, which functions as a rich

repository of information and a foundational component for the subsequent phase of the

study.

4.2.2. Phase Two: Filtering and Categorization

Exploring serverless frameworks and assessing their associated difficulties requires a

thorough and comprehensive effort meant to untangle the nuanced complexities innate to

these systems. The standards for this screening process are selected with great care to make

certain only the most pertinent and meaningful problems remain for additional investigation.

This is done with the goal of confirming solely the most critical issues are kept while

removing less significant matters. The examination seeks to bring clarity and understanding

to truly comprehend the intricacies involved.

Any issues without comprehensive descriptions are excluded from the criteria, mainly

because they do not contribute much to our analysis. Similarly, the objective of this thesis is

setting aside broad questions, thoughts, feedback, and ideas to focus on more specific issues.

While feature requests like enhancements or proposals are considered at this stage, they're

not the top priority. We also screen out announcements, especially relating to new updates,

and any repeated issues. Lastly, if a problem has only been raised by one person, we take it

as less influential to our study and hence ignore it.

29

Figure 4 An overview of excluding (filtering out) out of scope issues.

We make use of an additional Python script to streamline the complicated and time-

consuming filtering process. Besides identifying problem descriptions, this script delves de-

eper into a thorough search process. It primarily employs two strategies - a keyword search

looking for pertinent terms and phrases in the text, and a context search. The context search

is a sophisticated technique made possible by integrating a substantial language model. Due

to its profound understanding of language and context, this model is excellent at identifying

subtle nuances in problems. This capability lets it provide a categorization that's richer in

detail and remarkably precise.

Figure 5 An overview of the categorization process

30

The culmination of this phase is the categorization of issues into a variety of different

categories that have been predefined. It is important to note that these categories are not

merely containers for data; rather, they are thematic clusters that reflect the underlying

patterns, challenges, and trends in the landscape of serverless frameworks. The study offers

a structured and insightful lens through which to examine and comprehend the complexities

of serverless technologies. This is accomplished by classifying the issues into the categories.

After the automation search and categorization, a manual correctness check for all the issues

to make sure the automated categorization works as expected. Manual adjustments and

modifications are conducted if there are errors or unjustified categories. The process is

considered that there are overlapped categories for an issue, which means one issue can be

categorized into two themes and based on its nature cause or weighted theme, the issue is

categorized to one main theme and subtheme only.

Similar to the categorization of issue types filtering, the categorization of issue causes

filtering follows the same principles and process. Ten causes are identified from earlier

studies and literature that will be mentioned later in the RQ2 section. A similar python script

is used to conduct keyword matching in the discussion to identify the cause topic of each

issue to find out what are the root causes of every issue. After that, issues are mapped with

those causes and causes topics. The result is collected and show case in the RQ2 question

with the minimum effort of sanitization due to the time constraints which is mentioned in

the RQ2 question limitation section.

Figure 6 An overview of the cause’s categorization process

A further thorough sanitization will be needed to make sure the studies of the causes and the

identified causes and the issues are associated and mapped scientifically correct. The process

31

is time consuming and required a standardized process which is not included in the scope of

the master thesis.

32

5. Findings

5.1. Types of Issues (RQ1): In-Depth Analysis

With the first research question, we will break down all the issues into several main themes

where we can identify key areas of the issues Serverless Framework is encountered. A

thorough analysis of prevailing issues is essential for further analysis of finding the cause

and effect of each issue. Based on this analysis, we can provide a set of proposals which

make the utilization of Serverless Framework, and further serverless architecture

sustainability and cost effectiveness.

The filtered issues are categorized into 12 main themes which are defined by relevancy of

the description and the discussion of each issue. Based on each main themes, each issue is

further categorized into a more detailed sub-theme which states more accurately which type

the issues are belonging to. The figure 6 is an overview of total issues and their themes.

33

Figure 7 An overview of issues and their main themes and subthemes

4

50

28

170

4

1

31

33

1

61

3

4

3

39

9

683

8

4

23

86

14

7

1

11

7

3

156

218

147

0 100 200 300 400 500 600 700 800

Endpoint Issues

JSON/XML

REST/Web Services

Deployment Processes

Integration Tools

Pipeline Configuration

AWS/Azure/GCP

Serverless Architecture

SQL/NoSQL

Bugs

Crashes

Exceptions

Graphic Elements

Interface Design

User Experience

DNS/HTTP

Security

TCP/UDP/IP

None

Resource Usage

Speed/Optimization

Authentication

Vulnerabilities

Integration Testing

Test Automation

Unit Testing

Configuration

Installation Issues

Update Problems
A

P
I

C
I/

C
D

C
lo

u
d

Se
rv

ic
es

D
a

ta
b

as
e

Er
ro

r
H

an
d

lin
g

G
U

I
N

e
tw

o
rk

i
n

g
O

t
h

e
rP

er
fo

r
m

an
ce

Se
cu

ri
ty

Te
st

in
g

U
p

d
at

e
an

d
In

st
al

la
ti

o
n

Number of issues

Th
e

m
e

s

34

5.1.1. Networking issues

With 695 of 1809 total of issues, networking issues are the most common issue type within

the Serverless Framework repository issues. This finding is important to understand the core

nature of the serverless architecture overall with a smaller scale repository like Serverless

Framework. It does not mean that networking issues are the most common issue in serverless

architecture and serverless frameworks in general, however it suggests that networking

related issues are among the most common and one of the most known issues in the

serverless architecture overall.

The nature of Serverless architecture is the applications are broken down into smaller

individual functions or services which will only serve a specific purpose. This model

requires an event-based trigger system that requires the involvement of communicating

through network. The traditional architecture has minimal communication between backend

services as they are usually a giant monolithic stateful application unlike serverless

architecture has several stateless functions working in harmony through a sophisticated

message event queue. There are several networking types of issues in serverless architecture

context such as: network latency, cold start, network control limitation, security, or scaling

issues and in Serverless framework is similar. The three main subthemes from the issue list

are DNS/HTTP, Security and TCP/UDP/IP which is a significant factor to the total number

of issues.

The high amount number of issues does not indicate that networking is the biggest issue in

serverless architecture, it only shows that networking issues are common due to the nature

of serverless architecture which requires communication and event management between

functions or services within the architecture.

Networking issue type is taking the most significant share of issue types in Serverless

Framework in its GitHub closed issues. This also indicates the common and predictable trend

in serverless architecture due to its nature architecture.

35

Figure 8 Overview of Networking issues and its subthemes.

- DNS/HTTP (683/1809, 37.76% of total issues): When working with serverless

architectures, it is essential to handle HTTP requests and responses in an efficient

manner. Often, serverless functions depend on HTTP to interact with external se-

rvices or APIs. Every HTTP request adds some delay, which becomes increasingly

obvious during instances like cold starts of functions or when they are short-lived

and need constant initialization. This delay can notably affect the serverless

application's overall performance. For this reason, optimizing HTTP requests for

maximum efficiency is of utmost importance. One more hurdle to consider in serve-

rless environments is managing DNS resolutions. Your serverless functions will

usually need to conduct DNS queries to figure out domain names for outgoing HTTP

requests. If we're not careful with how these DNS lookups are cached, it can seriously

slow down the process and contribute to overall latency. Serverless functions, by

their fleeting nature, don't typically have the luxury of long-term DNS caching. This

results in repetitive resolutions that can cause even more delays. Of course, we can

alleviate this problem by efficiently managing DNS queries and smartly applying

caching strategies. Just keep in mind, it requires some well-thought-out planning and

proper execution. On top of everything else, serverless architectures do struggle with

managing connections. Keeping up constant connections—like those supported by

683

8 4
0

100

200

300

400

500

600

700

800

DNS/HTTP Security TCP/UDP/IP

36

HTTP keep-alive—becomes less productive within a serverless framework. Serve-

rless functions have a short lifespan, making it difficult to uphold long-lasting conne-

ctions. This leads to extra work in creating new connections every time a function is

used. This constant setting up of connections makes the system slower and lessens

the overall effectiveness of serverless applications. The security of DNS operations

is also a crucial aspect, especially with the use of dynamic updates in DNS records.

Implementing secure mechanisms such as Transaction Signature (TSIG) and Domain

Name System Security Extensions (DNSSEC) is necessary to address security

vulnerabilities, especially in IPv6 networks using Stateless Address Auto

Configuration (SLAAC) (Rafiee & Meinel, 2013).

- Security (8/1809, 0.44%): Even though they make up a smaller portion of overall

problems, network security issues are extremely important. They can involve serious

threats such as unauthorized entrance, breaches of data, and weaknesses in network

protocols.

- TCP/UDP/IP (4/1809, 0.22%): Problems in this area could be linked to managing

various network protocols and guaranteeing that data is transmitted effectively and

dependably over these protocols.

5.1.2. Update and Installation Issues

Compatibility and harmonization are usually key considerations when it comes to update

and installation in serverless architecture context. Once a part of the system gets updated or

has a new version, it also requires the other to handle the changes. That comes with a cost

that the architecture needs to be built in a way that it can handle partially update and

sometimes, backward compatibility is also required. Configuration, in the other hand, is

considered the joint between the services, therefore, issues related to configuration are often

common.

Having 521 of 1809 of total issues, Update and Installation contributes a significant number

of issues to the total issues. This type of issue often comes in three kinds: Configuration,

Installation issues and Update issues. As mentioned before, serverless architecture has

several individual functions work together in harmony, meaning that if one of the functions

gets in some challenges, the whole orchestration will be compromised and fail the

37

application. Correct installation is the key to make sure that the chain of messages to trigger

functions are handled, configuration in the other hand, will dictate how each function is setup

to work with others and update is to keep all the functions or part of them up-to-date.

Figure 9 Overview of Update and Installation issues

- Installation issues (218/1809, 12.05%): It includes setting the individual functions

and services in cloud providers. Also includes setting up of messaging or event

management as a broker of functions and services to listen and get triggered when it

is needed. This subtheme is dominating in case of number of issues under Installation

and Update issue’s theme because setting up and installer individual functions and

its messaging broker are a procedure aimed at invoice processing and getting this

very difficult right from the beginning.

- Configuration (156/1809, 8.62%): Having important role to connect functions

together with individual and partially independent functions in configurations

because it also contains configurations for functions in cloud providers. There are

tiers and different pricing in cloud providers which allow the flexibility of options

for various use cases, correctly configuring the functions as well as its resources in

cloud providers will help the workflow running smoothly and boost up the benefits

156

218

147

0

50

100

150

200

250

Configuration Installation Issues Update Problems

38

of the functions as well as optimizing the cost. Authentication and integration also

are the pitch for Serverless Framework issues in Configuration part.

- Update Issues (8.13%, 147/1809): Changing serverless apps isn't only about fresh

code. It often gets tricky due to a system part change. This may involve the change

of function configs, keeping compatibility of cloud service, and managements of

dependency. The sizeable percentage of update issues underlines difficulties in

looking after serverless apps, especially in making sure that updates don't mess with

the current features or cause shutdown.

5.1.3. Performance Issues

Performance in serverless applications or serverless architecture means 2 things which are

equivalent to two sub themes: Resource Usage and Speed/Optimization. In serverless

architecture, there are not many cases that applications are paid up-front, which means there

is not on-going resource but instead, an on-demand resource is preferred because of its cost

effectiveness and scalability. With that in mind, selecting the right resource and optimize it

to meet the demand and at the same time save cost is the most crucial decision to make.

100 of 1809 total issues indicate a demanding aspect of performance that serverless

framework and serverless architecture in general are dealing with. Having many individual

functions and the functions themselves work separately and independently make

performance, especially optimization within each function becoming more and more crucial

in terms of reasonable response time and utilization of resources. Engineers that can balance

the benefits of serverless frameworks and successfully optimize each and all functions in the

system are admirable.

39

Figure 10 An overview of Performance Issues

- Resource Usage (86/1809, 4.75%): From overall them of subject that is subject of

this theme, mainly which are in demand are using CPU, memory, and storage mostly.

Each resource of the function of the computer system is considered crucial that must

be effectively managed and utilized for having stable yet meet the performance

requirement. There is highly essential efficient management of resource for ensuring

performance and ability to scale in software applications.

- Speed and Optimization (14/1809, 0.77%): Not having most shared issues but this

subtheme is important for cost effectiveness and utilization of the selected service.

Having optimized resource in term of resource management is one step ahead to

increase performance without must pay extra dollars.

5.1.4. GUI (Graphical User Interface) Issues

Unlike majority of open-source repositories, Serverless Framework provides a user interface

which plays as a portal to help bridging users with various tasks and actions. A dashboard

provides insight about your applications, metrics, and stack traces for debugging purposes.

Software engineers can find themselves comfortable with graphs about metric aggregation,

information about uncaught errors and essential traces to identify the issues without logging

into each cloud provider portal or installing CLI for all the cloud providers and logging all

86

14

0

10

20

30

40

50

60

70

80

90

100

Resource Usage Speed/Optimization

40

monitoring metrics. Other than that, Serverless Framework also mitigates the necessity of

checking native portals from cloud providers when it comes to CI/CD, adjusting parameters,

executing tests, or upgrading packages versions.

However, GUI provided by Serverless Framework also causes a small number of problems.

These problems are categorized into three smaller subthemes with the dominance of

Interface Design issues and followed by User Experience and Graphic Elements.

Figure 11 An overview of GUI issues.

- Interface Design (39/1809, 2.16%): This sub-theme looks at challenges that are

inherent on designing interfaces that are both effective and user-friendly as well as

aesthetically appealing. Problems here may start with the complications of aligning

the design to the need of the user and how it intersects the technical constraints.

Serverless Framework is heavy technical repository which difficult justify contains-

it-all design. Minor issues share about Interface Design, but the way to resolve these

will help increase user experience and usability.

- User Experience (9/1809, 0.50%): This portrays some considerations given towards

the general intended user and application software interaction. Among its

considerations might comprise the need to design intuitive, responsive, as well as

visually appealing user interfaces. User Experience is not the most critical factor for

3

39

9

0

5

10

15

20

25

30

35

40

45

Graphic Elements Interface Design User Experience

41

Serverless Framework requirements, in fact it does not bring a lot of troubles while

being in competition to this framework context.

- Graphic Elements (3/1809, 0.17%): Issues under this subtheme might be regarding

the design elements like icons, buttons, and layouts which are significant to the

aesthetics and using the application designed and woven well. Constitute a

statistically insignificant fraction from overall entries counted as a minor issue.

5.1.5. API-Related Issues

Figure 12 An overview of API-Related issues

API-Related issues are very common in serverless architecture because there are several

communications between services. As a rule, the communications are often sending out from

each other with the different formats and sometimes with different models and techniques

which require data parsing and data handling one to another being partially altered

information. Most of those steps are easily to be the complexity.

- JSON/XML Handling (50/1809, 2.76%): This is applicable to many issues in this

sub-theme, and this is probably because JSON and XML were prevalent as the

common data formats used by web services and applications. With most

4

50

28

0

10

20

30

40

50

60

Endpoint Issues JSON/XML REST/Web Services

42

communications between the multi-platforms, so that it can be complexities in the

parsing, validating, and transforming these data formats when they are still popularly

used.

- REST/Web Services (28/1809, 1.55%): This subtheme reflects issues concerning

the problems of realizing RESTful services. These problems may have been

originating from complexities in fulfilling statelessness and cache-ability

prescription by principles of REST coupled with effective mechanisms of

exchanging data.

- Endpoint Issues (4/1809, 0.22%): Not all the endpoint issues might just be

negligible but perhaps some of the less frequent ones. It may be due to possible

security vulnerability, scalability issue, or difficulty in handling an endpoint

configuration in a distributed architecture.

5.1.6. CI/CD Issues

Particularly, in relation to the serverless architecture, Continuous Integration (CI) and

Continuous Deployment (CD) may present specific challenges and difficulties. Serverless

architectures depict a new type of computing architecture whereby they comprise functions

that get triggered by events and are administered at zero. The way applies radically from the

standard technique based on servers.

Serverless functions often have the dependencies to need to pack and deploy with the

function code. The ones needed should get included only, and the making sure they work in

the serverless environment can be hard. It often becomes more dependent on certain not so

generative tooling or scripts. That is due to the fact that the 170 issues, out of the total of

1809 issues, belong to the Deployment Processes, which is roughly a 9.4%.

Decision making process in CI/CD, and especially in serverless environments, is hard given

that many decisions must be made, and that fuzziness exists concerning functional

requirements and architecture decisions. This complexity makes it relevant to the study on

the decisions in open-source projects in the field of CI/CD, based on which it can be told

that most of the decisions are associated with functional requirements (Luo, Liang, Shahin,

Li, & Yang, 2022). Although Integration Tools and Pipeline Configuration do not raise a lot

43

of issues, this process is yet very important to give thought.

Figure 13 An overview of CI/CD issues.

- Deployment Processes (170/1809, 9.40%): Serverless infrastructures introduce new

fault modes that do not exist in traditional deployments, which in turn introduces

challenges to implement correct services (Kallas, Zhang, Alur, Angel, & Liu, 2023).

This is the reflection of the dominance of a sub-theme on the CI/CD category, as this

goes onto exhibit how complex and critical deployment process is in software

development. Challenges here include issues linked with automation, environment

configuration, version control, integration issues with various tools and platforms. It

involves complexities in building and deploying serverless applications like design

of a workflow and migration of other apps, especially where there are transactions

that need to involve different parties (Meladakis et al., 2022).

- Integration Tools (4/1809, 0.22%) and Pipeline Configuration (1/1809, 0.06%):

All less occurrence areas but equally important to have a smooth functioning CI/CD

pipeline. Here, occasional issues may arise in the form of a requisite to integrate

several tools properly with each other and reap optimal performance and reliability

from pipelines via proper configuration.

170

4 1
0

20

40

60

80

100

120

140

160

180

Deployment Processes Integration Tools Pipeline Configuration

44

5.1.7. Cloud Services

Cloud services are increasingly central to IT infrastructure, and the data reflects related

challenges:

Figure 14 An overview of Cloud Services issues.

- Serverless Architecture (33/1809, 1.82%): Issues in serverless computing could be

due to the complexity of managing stateless functions, scalability, and dealing with

cold starts, where functions may have latency issues when they are invoked after a

period of inactivity.

- AWS/Azure/GCP (31/1809, 1.71%): As the major cloud platforms, challenges in

these services might include platform-specific configurations, optimization for cost

and performance, and navigating the vast array of services offered by these providers.

5.1.8. Other Themes

Additional themes include Database issues (specifically SQL/NoSQL) and Error Handling

(notably, bugs), each contributing a smaller yet significant part of the overall issue spectrum.

Challenges in databases might relate to the efficient management of data and ensuring

consistency and performance, while error handling primarily concerns identifying and

31

33

30

30.5

31

31.5

32

32.5

33

33.5

AWS/Azure/GCP Serverless Architecture

45

resolving software bugs effectively. Testing is also worth mentioning even though the share

of issues is insignificant.

46

Figure 15 Portions of issue types.

47

Figure 16 Taxonomy of issue types.

48

5.2. Causes of issues (RQ2): An overview of the cause

In this section, this master thesis will provide a brief description of the causes of the issues

in the context of Serverless Framework. In the context of Serverless Framework, the causes

of some issues are not always following the common trends of serverless frameworks in

general. Some of the challenges are common in other serverless open-source frameworks or

serverless architecture in general but in Serverless Framework, a few of the popular known

causes are not making up majority of the total issues. With this understanding, Challenges

of Serverless Edge Computing with 1475 of total 1809 issues which equivalent to 81.54%

of all the issues that are being categorized. The challenges come with several smaller detail

causes topics, including Resource Management, Function Execution and Runtime Issues,

Integration and Compatibility and so on.

Limitation: In this master thesis, the causes of the total issues are listed with a brief

description of what each cause means in serverless architecture context of Serverless

Framework. The result is from a python using a keyword match algorithm which has a

minimum effort of sanitization due to time constrains the huge amount of efforts required.

Architectural Issues and Technical Debt (41/1809, 2.27%)

- Modular Architecture: Serverless computing breaks down applications into smaller,

event-driven functions. While this modularization offers scalability and agility, it

also introduces complexity in orchestration and inter-service communication.

- Technical Debt: Quick deployments and easy setup can lead to rushed decisions in

architectural design, accumulating technical debt. This debt manifests as increased

maintenance costs, difficulties in scaling, and challenges in introducing new features

or making significant changes (Lenarduzzi et al., 2021).

Complexity in Design Architecture (0/1809, 0%)

- Scalability vs. Complexity: The scalability of serverless architectures comes at the

cost of increased complexity in managing numerous small, discrete components.

- Decoupling and Integration Issues: The decoupled nature of serverless functions can

lead to challenges in integration and comprehensive testing, requiring more

sophisticated design and testing strategies (Li et al., 2021).

49

Challenges in Serverless Edge Computing (1475/1809, 81.54%)

- Resource Management (335/1475, 22.7% of total issues in Challenges in Serverless

Edge Computing): Balancing and managing resources effectively in serverless edge

computing is complex due to the distributed nature of resources.

- Function Execution and Runtime Issues (286/1475, 19.39% of total issues in

Challenges in Serverless Edge Computing): Problems related to the runtime

environment of serverless functions, including execution errors, function triggers,

and runtime limitations.

- Integration and Compatibility (250/1475, 16.95 % of total issues in Challenges in

Serverless Edge Computing): Challenges related to integrating serverless

components with existing systems, services, and third-party APIs. Compatibility

issues with different platforms and technologies can also be included here.

- Service Deployment and Lifecycle Management (13/1475, 0.88%): Efficient

deployment and management of services are challenging, especially in maintaining

performance and reliability at the edge of the network (Xie et al., 2021).

- Others (Event Handling and Messaging – 19/1475, User Experience and Interface –

19/1475, Data Management and Storage – 15/1475): These issues are taking place in

this cause however, majority of them are small and easy-to-handle issues.

Security Concerns (116/1809, 6.42%)

- New Security Paradigms: The fragmented application boundaries in serverless

architectures necessitate a different approach to security compared to traditional

cloud or virtualized environments.

- Security Shortcomings: Identifying and addressing the unique security shortcomings

of serverless computing is crucial, particularly in areas like data protection and access

control (Marin et al., 2021).

Cold Start Issue (2/1809, 0.11%)

- Startup Latency: A notable issue in serverless computing is the 'cold start' problem,

where there is a delay in function execution due to the time taken to allocate resources

50

for a new instance. This issue is more pronounced in languages that have longer

startup times.

Resource Limitations and Performance Issues (167/1809, 9.23%)

- Memory and Compute Constraints: Serverless functions are subject to limitations in

terms of memory and compute capacity, which can impact the performance of

compute-intensive applications.

Monitoring and Debugging Difficulties (167/1809, 9.23%)

- Observability Challenges: Due to the ephemeral and stateless nature of serverless

functions, traditional monitoring and debugging tools are often inadequate, requiring

new tools and approaches for effective observability.

Vendor Lock-in and Portability Issues (0/1809, 0%)

- Dependence on Specific Cloud Providers: Applications designed for one serverless

platform might not be easily portable to another, leading to vendor lock-in. This

limits flexibility and can increase long-term costs.

Cost Prediction and Optimization (4/1809, 0,22%)

- Unpredictable Costs: While serverless computing is often cost-effective, predicting

costs can be challenging due to the dynamic nature of resource utilization. Managing

and optimizing costs requires careful analysis and understanding of the pricing

models of serverless services.

Skillset and Training Requirements (2/1809, 0.11%)

- Need for Specialized Knowledge: The unique aspects of serverless architecture

require specialized skills and understanding, which can be a barrier for teams

accustomed to traditional server-based environments.

51

6. Discussion

6.1. The findings and their usage

With the findings from this master thesis, software engineers and cloud practitioners can

have an overall picture of Serverless Framework and its unique types of issues to make

sensible decision before choosing the framework into their project. The findings also give a

strong foundation for further research about the other serverless frameworks and based on

that, we can have an understanding about serverless computing and its frameworks in

practice.

The findings of this master thesis will also provide useful analysis for parties that are

interested in serverless architecture and Serverless Framework to make decision to shift their

infrastructure and architecture toward serverless architecture using Serverless Framework.

It helps identifying the complexity areas and brings the transparency into the decision-

making process. This will also help mitigate unforeseen complications that may occur during

the adoption process of starting to use or migrating to Serverless Framework.

This master thesis will also give the audience an overall picture of serverless architecture

and Serverless Framework. This is helpful for educational use and help strengthening the

understanding of serverless computing in a practical way.

6.2. Limitations

Time constrains and limited resources are the main limitations of this master thesis. This

master thesis is limited to one serverless framework which does not give an overall big

picture of serverless frameworks in general. There are other popular serverless frameworks

such as OpenFaas, Zappa, Vendia Serverless Express or kubeless, etc. which have different

types of issues and causes. This master thesis is focusing on Serverless Framework which

will only provide the serverless architecture picture from the lens of Serverless Framework.

The limitation on resources impacts the outcome of the research which narrows the research

outcome on in-depth analysis of issue types. Briefly mentioning about their causes and the

disappearance of potential solutions make the possible outcome of the research less

52

attractive. However, it will create possibilities for future research and development on the

theories that are provided in this thesis findings.

The approach of the analysis in this master thesis also has its limitation. Analyzing the closed

issues does not give the most recent status of the development of Serverless Framework.

Because of that, the thesis may not be up-to-date with the trending issue types and their

causes which may give a slightly different perspective from the most recent developments

of Serverless Framework and serverless computing. However, the impact and the gap are

considerably minimal and acceptable.

6.3. Further research topics

Further research to study the cause is essential and can be a potential research topic to

understand why the causes are appearing during the utilization of Serverless Framework. It

will require a more sophisticated study and interviews of cloud practitioners, software

developers, software architects and solution architects with seasoned backgrounds and

various experience in different cloud technologies to have wide perspectives for the analysis.

An in-depth analysis of the causes will be required to study the root causes of majority of

serverless architecture issues and based on that, we can propose solutions in the future

research that can help professionals identify the advantages and disadvantages when

choosing the cloud architecture and framework.

Another further research topic is to unify the issue types, causes and potential solutions.

Having the theory of the issue types, their causes, and possible solutions, we can make the

value tree or a decision model which helps professionals, engineers, enterprises, and

organizations to select the right technologies and frameworks to start with which will help

increasing the performance of architecture, optimizing the workflow with the minimum

unforeseen issues, cost efficiency, high level stability, and top-notch security.

53

Conclusions

The findings show the significant share of DNS/HTTP type of issues in Serverless

Framework which indicates the common trend in serverless computing and serverless

architecture in general. The mentioned type of issues boils down to the nature of serverless

computing and Serverless Framework itself rely on network communication between

different instances, entities and services. The result is not a surprise and as mentioned in

many earlier studies, network communication is and will always be one of the most common

types of issues in serverless architecture.

Taking this into account, as the conclusion draws near on this exploration into serverless

architecture and the Serverless Framework, it is of key importance at this juncture to re-

evaluate our initial objectives and what has been consequentially discovered. The present

thesis embarked on the quest of disentangling the complexities that surround serverless

computing, in an attempt through to provide a fresh understanding of its architecture and the

role leading the way by the Serverless Framework that enables one harness such a modern

compute paradigm.

Serverless architecture is an important thing to understand. The advent of a non-server-based

serverless computing model has entirely revolutionized the paradigm in which modern

applications are deployed and managed. It has been a radical departure from all the

traditional common models that had servers at the core. It lets developers or organizations

work more efficiently by freeing up the valuable time consumed in managing and scaling

the server infrastructure and spending better time in core product development. As such,

serverless computing is hence positioned as a transformational force in cloud computing,

further strengthening the value proposition with respect to operational complexities that are

reduced by serverless, and the cost efficiencies introduced through pay-per-use model.

The Serverless Framework: A Catalyst for Efficiency

In the perspective of serverless architecture, the Serverless Framework is an important tool.

Facilitates painless scaling and operational agility in the process of deploying serverless

applications. It offers a high-level capacity for developers in their application development

since most of them would not really have to deal with complexities in managing servers

hence turning out to be more productive and faster in their deployment cycles. This results

54

in a more effective development workflow, one important fact of today's rapidly changing

tech landscape.

Negotiating the Trade-offs

However, with its numerous advantages, serverless computing does also pose its challenges.

Challenges such as cold starts, vendor lock-ins, networking, updates and installations and

intricacies of debugging serverless applications embody its significant trade-offs. This thesis

has explored these challenges with a view to highlighting critical types of issues and briefly

discuss about their causes for the adoption of this architecture in reasonable measure. This

highlights the need for strategic review of the benefits and pitfalls ensuring that the decision

to go for serverless computing resonates with the needs and restrictions in any project.

Future outlooks and changing landscape.

Continuing further, the field of serverless computing is all poised to further shape up. With

more advancements in technology, there can be better cold start optimization, improved

debugging tools, and more options for vendor. Thus, this trend is likely to evolve further and

eliminate most of these limitations in present times as the role of serverless computing with

technological ecosystems becomes increasingly well-entrenched.

I may conclude this thesis by underscoring the need for understanding serverless architecture

and using tools like the Serverless Framework. To investigate what benefits and trade-offs

the serverless computing offers will provide insights not just to the practitioners but also to

the overall landscape of cloud computing as well. In this connection, the knowledge and

perspectives accrued from this study will positively be important in influencing the future

applicability as well as development of serverless architectures.

55

References

Ali, M. A. (2021, July 15). Serverless: Next Generation of Cloud Computing. International

Journal for Research in Applied Science and Engineering Technology, 9(VII), 1168–1172.

https://doi.org/10.22214/ijraset.2021.36551

Alqaryouti, O., & Siyam, N. (2018). Serverless computing and scheduling tasks on cloud: a

review. American Academy of Sciences Research Journal of Engineering and Technology

Science, 40(1), 235–247.

Austen Collins. (2022, November 15). https://www.serverless.com/author/austencollins

Bac, T., Tran, M., & Kim, Y. (2022). Serverless Computing Approach for Deploying

Machine Learning Applications in Edge Layer. 2022 International Conference on

Information Networking (ICOIN), 396-401.

https://doi.org/10.1109/ICOIN53446.2022.9687209.

Baldini, I., Cheng, P., Fink, S. J., Mitchell, N., Muthusamy, V., Rabbah, R., ... & Suter, P.

(2017). Serverless computing: Current trends and open problems. In Research Advances in

Cloud Computing.

Cassel, G. A. S., Rodrigues, V. F., da Rosa Righi, R., Bez, M. R., Nepomuceno, A. C., & da

Costa, C. A. (2022). Serverless computing for Internet of Things: a systematic literature

review. Future Generation Computer Systems, 128, 299–316.

Chen, F., Li, L., Jiang, J., & Zhang, L. (2014). Predicting the number of forks for open source

software project., 40-47. https://doi.org/10.1145/2627508.2627515.

Djemame, K., Parker, M., & Datsev, D. (2020). Open-source Serverless Architectures: An

Evaluation of Apache OpenWhisk. 2020 IEEE/ACM 13th International Conference on

Utility and Cloud Computing (UCC), 329-335.

https://doi.org/10.1109/UCC48980.2020.00052.

Eismann, S., et al. (2020). A review of serverless use cases and their characteristics. SPEC

RG Gainesville Tech. Rep.

Eismann, S., Scheuner, J., Van Eyk, E., Schwinger, M., Grohmann, J., Herbst, N., ... & Iosup,

A. (2021). Serverless Applications: Why, When, and How? IEEE Software, 38(1), 32-39.

https://doi.org/10.22214/ijraset.2021.36551
https://doi.org/10.1109/ICOIN53446.2022.9687209
https://doi.org/10.1145/2627508.2627515
https://doi.org/10.1109/UCC48980.2020.00052

56

Golec, M., Ozturac, R., Pooranian, Z., Gill, S. S., & Buyya, R. (2021). iFaaSBus: a security

and privacy-based lightweight framework for serverless computing using IoT and machine

learning. IEEE Transactions on Industrial Informatics, 18(5), 3522–3529.

Jiang, L., Pei, Y., & Zhao, J. (2020, January 1). Overview Of Serverless Architecture

Research. Journal of Physics: Conference Series, 1453(1), 012119.

https://doi.org/10.1088/1742-6596/1453/1/012119

Kallas, K., Zhang, H., Alur, R., Angel, S., & Liu, V. (2023). Executing Microservice

Applications on Serverless, Correctly. Proceedings of the ACM on Programming

Languages, 7, 367 - 395. https://doi.org/10.1145/3571206.

Kavaler, D., Sirovica, S., Hellendoorn, V., Aranovich, R., & Filkov, V. (2017). Perceived

language complexity in GitHub issue discussions and their effect on issue resolution. 2017

32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), 72-

83. https://doi.org/10.1109/ASE.2017.8115620.

Kelly, D., Glavin, F., & Barrett, E. (2020). Serverless Computing: Behind the Scenes of

Major Platforms. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD),

304-312. https://doi.org/10.1109/CLOUD49709.2020.00050.

Leitner, P., Wittern, E., Spillner, J., & Hummer, W. (2019). A mixed-method empirical study

of Function-as-a-Service software development in industrial practice. Journal of Systems

and Software, 149, 340-359.

Lenarduzzi, V., Daly, J., Martini, A., Panichella, S., & Tamburri, D. (2021). Toward a

Technical Debt Conceptualization for Serverless Computing. IEEE Software, 38, 40-47.

https://doi.org/10.1109/MS.2020.3030786.

López, P., Artigas, M., Shillaker, S., Pietzuch, P., Breitgand, D., Vernik, G., Sutra, P.,

Tarrant, T., & Ferrer, A. (2019). ServerMix: Tradeoffs and Challenges of Serverless Data

Analytics. ArXiv, abs/1907.11465.

Luo, Y., Liang, P., Shahin, M., Li, Z., & Yang, C. (2022). Decisions in Continuous

Integration and Delivery: An Exploratory Study., 457-462.

https://doi.org/10.18293/SEKE2022-171.

https://doi.org/10.1088/1742-6596/1453/1/012119
https://doi.org/10.1145/3571206
https://doi.org/10.1109/ASE.2017.8115620
https://doi.org/10.1109/CLOUD49709.2020.00050
https://doi.org/10.1109/MS.2020.3030786

57

Li, Z., Guo, L., Cheng, J., Chen, Q., He, B., & Guo, M. (2021). The Serverless Computing

Survey: A Technical Primer for Design Architecture. ACM Computing Surveys (CSUR),

54, 1 - 34. https://doi.org/10.1145/3508360.

Lynn, T., Rosati, P., & Lejeune, A. (2017). An empirical study on the adoption of serverless

computing and the impact of its use on future software development. In ACM Computing

Research Repository.

Lynn, T., Rosati, P., Lejeune, A., & Emeakaroha, V. (2017). A Preliminary Review of

Enterprise Serverless Cloud Computing (Function-as-a-Service) Platforms. 2017 IEEE

International Conference on Cloud Computing Technology and Science (CloudCom), 162-

169. https://doi.org/10.1109/CloudCom.2017.15.

Mahmoudi, N., & Khazaei, H. (2020, December 7). Temporal Performance Modelling of

Serverless Computing Platforms. Proceedings of the 2020 Sixth International Workshop on

Serverless Computing. https://doi.org/10.1145/3429880.3430092

Maissen, P., Felber, P., Kropf, P., & Schiavoni, V. (2020). FaaSdom: a benchmark suite for

serverless computing. Proceedings of the 14th ACM International Conference on

Distributed and Event-based Systems. https://doi.org/10.1145/3401025.3401738.

Mampage, A., Karunasekera, S., & Buyya, R. (2022, January 31). A Holistic View on

Resource Management in Serverless Computing Environments: Taxonomy and Future

Directions. ACM Computing Surveys, 54(11s), 1–36. https://doi.org/10.1145/3510412

Marin, E., Perino, D., & Pietro, R. (2021). Serverless computing: a security

perspective. Journal of Cloud Computing, 11, 1-12. https://doi.org/10.1186/s13677-022-

00347-w.

McGrath, G., & Brenner, P. R. (2017). Serverless computing: design, implementation, and

performance. In IEEE 37th International Conference on Distributed Computing Systems

Workshops (ICDCSW), 405–410.

Meladakis, K., Zeginis, C., Magoutis, K., & Plexousakis, D. (2022). Transferring

transactional business processes to FaaS. Proceedings of the Eighth International Workshop

on Serverless Computing. https://doi.org/10.1145/3565382.3565882.

https://doi.org/10.1145/3508360
https://doi.org/10.1109/CloudCom.2017.15
https://doi.org/10.1145/3429880.3430092
https://doi.org/10.1145/3401025.3401738
https://doi.org/10.1145/3510412
https://doi.org/10.1145/3565382.3565882

58

Poorvadevi, R., & Ramamoorthy, S. (2018). Security Enhancement in Multi Clouds Using

Serverless Computing Approach., 6, 12. https://doi.org/10.11648/j.iotcc.20180601.12.

Rafiee, H., & Meinel, C. (2013). A Secure, Flexible Framework for DNS Authentication in

IPv6 Autoconfiguration. 2013 IEEE 12th International Symposium on Network Computing

and Applications, 165-172. https://doi.org/10.1109/NCA.2013.37.

Sahin, S.E., Karpat, K., Tosun, A. (2019). Predicting Popularity of Open Source Projects

Using Recurrent Neural Networks. In: Bordeleau, F., Sillitti, A., Meirelles, P., Lenarduzzi,

V. (eds) Open Source Systems. OSS 2019. IFIP Advances in Information and

Communication Technology, vol 556. Springer, Cham. https://doi.org/10.1007/978-3-030-

20883-7_8.

Sawhney, R. (2019). Introduction to Azure Functions. Beginning Azure Functions.

https://doi.org/10.1007/978-1-4842-4444-9_1.

Scheuner, J., & Leitner, P. (2020). Function-as-a-service performance evaluation: a

multifocal literature review. Journal of Systems and Software, 170, 110708.

Tariq, A., et al. (2020). Sequoia: enabling quality-of-service in serverless computing. In

Proceedings of the 11th ACM Symposium on Cloud Computing.

Xie, R., Tang, Q., Qiao, S., Zhu, H., Yu, F., & Huang, T. (2021). When Serverless

Computing Meets Edge Computing: Architecture, Challenges, and Open Issues. IEEE

Wireless Communications, 28, 126-133. https://doi.org/10.1109/mwc.001.2000466.

Xing Li, Xue Leng, and Yan Chen, "Securing Serverless Computing: Challenges Solutions

and Opportunities," 2023.

Yussupov, V., Breitenbücher, U., Kaplan, A., & Leymann, F. (2020). SEAPORT: Assessing

the Portability of Serverless Applications., 456-467.

https://doi.org/10.5220/0009574104560467.

Yussupov, V., Wurster, M., Breitenbücher, U., Leymann, F., & Reinfurt, L. (2019). Research

challenges in serverless computing. In 2019 IEEE International Conference on Software

Architecture Companion (ICSA-C) (pp. 97-100). IEEE.

https://doi.org/10.11648/j.iotcc.20180601.12
https://doi.org/10.1007/978-3-030-20883-7_8
https://doi.org/10.1007/978-3-030-20883-7_8
https://doi.org/10.1109/mwc.001.2000466

1

Appendices

Appendix 1. Extraction code

import requests
import time
import pandas as pd

Replace with your GitHub token and repository details
token = [read access token]
owner = 'serverless'
repo = 'serverless'

url = f"https://api.github.com/repos/{owner}/{repo}/issues"
headers = {
'Authorization': f'token {token}',
'Accept': 'application/vnd.github.v3+json'
}

params = {
'state': 'closed',
'per_page': 100 # Fetch 100 issues per request
}

issues_list = []

while url:
response = requests.get(url, headers=headers, params=params)
if response.status_code == 403: # Rate limit reached
reset_time = int(response.headers.get('X-RateLimit-Reset', 0))
sleep_time = max(reset_time - int(time.time()), 0) + 1
print(f"Rate limit reached. Sleeping for {sleep_time} seconds.")
time.sleep(sleep_time)
continue
if response.status_code != 200:
print(f"Error: Unable to fetch issues. HTTP Response Code: {response.status_code}")
print(f"Response Content: {response.text}")
break
issues = response.json()
for issue in issues:
if 'pull_request' in issue: # Skip pull requests
continue
Initialize set of participants with the creator of the issue
participants = set([issue.get('user', {}).get('login', '')])
comments_url = issue.get('comments_url', '')
if comments_url: # Fetch comments to get additional participants

2

comments_response = requests.get(comments_url, headers=headers)
if comments_response.status_code == 200:
comments = comments_response.json()
for comment in comments:
participants.add(comment.get('user', {}).get('login', ''))
Append the issue details to the list
issues_list.append([
issue.get('number', ''),
issue.get('title', ''),
issue.get('html_url', ''),
issue.get('created_at', ''),
issue.get('closed_at', ''),
len(participants)
])
if 'next' in response.links:
url = response.links['next']['url']
else:
url = None

Print the length of issues_list
print(f"Number of issues fetched: {len(issues_list)}")

Write the fetched issues to a CSV file
df = pd.DataFrame(issues_list, columns=['Issue ID', 'Issue Title', 'Issue URL Link', 'Issue Open

Date', 'Issue Closed Date', 'Number of Participants'])
df.to_csv('serverless_issues.csv', index=False, sep=',')

Print a message after writing the file
print("CSV file has been written.")

3

Appendix 2. Issue detail extraction code

(GitHub repository: https://github.com/khactam/extract-github-issue-detail/tree/main)

import requests
import pandas as pd
import os
from dotenv import load_dotenv

load_dotenv()

GITHUB_TOKEN = os.getenv('GITHUB_TOKEN')

TOKEN = GITHUB_TOKEN
HEADERS = {
 "Authorization": f"token {TOKEN}",
 "Accept": "application/vnd.github.v3+json",
}

def get_issue_details(repo_url):
 # Convert the issue URL to the API URL for details
 api_url = repo_url.replace("github.com", "api.github.com/repos")

 # Fetch the issue details
 response = requests.get(api_url, headers=HEADERS)
 if response.status_code != 200:
 print(f"Error {response.status_code}: {response.text}")
 return None
 issue_data = response.json()

 # Fetch comments for the issue
 comments_url = issue_data["comments_url"]
 comments_response = requests.get(comments_url, headers=HEADERS)
 if comments_response.status_code != 200:
 print(f"Error {comments_response.status_code}: {comments_response.text}")
 return None
 comments_data = comments_response.json()

 # Extracting the issue description and comments
 details = {
 "description": issue_data["body"],
 "comments": [comment["body"] for comment in comments_data]
 }
 return details

Read the Excel file
df = pd.read_excel("C:/Users/tamn/Downloads/extractGithubIssueProj/trialrunv1.xlsx")

4

Fetch details for each GitHub issue
results = []
for _, row in df.iterrows():
 issue_id = row["Issue ID"]
 issue_title = row["Issue Title"]
 issue_link = row["Issue URL Link"]

 issue_data = get_issue_details(issue_link)
 results.append({
 "Issue ID": issue_id,
 "Issue Title": issue_title,
 "GitHub Link": issue_link,
 "Issue Details": str(issue_data)
 })

Convert results to a DataFrame and save to CSV
output_df = pd.DataFrame(results)
output_df.to_csv("C:/Users/tamn/Downloads/extractGithubIssueProj/file.csv", index=False)

5

Appendix 3. Summary number of main themes and subthemes

Main Theme
Sub Theme Number of Issues

API Endpoint Issues 4

API JSON/XML 50

API REST/Web Services 28

CI/CD Deployment Processes 170

CI/CD Integration Tools 4

CI/CD Pipeline Configuration 1

Cloud Services AWS/Azure/GCP 31

Cloud Services Serverless Architecture 33

Database SQL/NoSQL 1

Error Handling Bugs 61

Error Handling Crashes 3

Error Handling Exceptions 4

GUI Graphic Elements 3

GUI Interface Design 39

GUI User Experience 9

Networking DNS/HTTP 683

Networking Security 8

Networking TCP/UDP/IP 4

Other None 23

Performance Resource Usage 86

Performance Speed/Optimization 14

Security Authentication 7

Security Vulnerabilities 1

Testing Integration Testing 11

Testing Test Automation 7

Testing Unit Testing 3

Update and Installation Configuration 156

Update and Installation Installation Issues 218

Update and Installation Update Problems 147

6

Appendix 4. Main themes and subthemes categorization script

Redefining themes with subthemes
subthemes = {
 "Networking": {
 "DNS/HTTP": ["dns", "http"],
 "TCP/UDP/IP": ["tcp", "udp", "ip "],
 "Security": ["ssl", "tls"]
 },
 "Testing": {
 "Unit Testing": ["unit test", "unittest"],
 "Integration Testing": ["integration test"],
 "Test Automation": ["automated test", "automation"]
 },
 "GUI": {
 "User Experience": ["ux", "user experience"],
 "Interface Design": ["ui", "interface", "design"],
 "Graphic Elements": ["graphic", "visual"]
 },
 "Update and Installation": {
 "Installation Issues": ["install", "setup"],
 "Update Problems": ["update", "upgrade"],
 "Configuration": ["configure", "configuration"]
 },
 "Performance": {
 "Speed/Optimization": ["performance", "speed",

"optimize"],
 "Latency Issues": ["latency"],
 "Resource Usage": ["resource", "memory", "cpu"]
 },
 "CI/CD": {
 "Integration Tools": ["jenkins", "travis", "ci/cd"],
 "Deployment Processes": ["deployment", "deploy"],
 "Pipeline Configuration": ["pipeline"]
 },
 "Security": {
 "Authentication": ["auth", "authentication"],
 "Encryption": ["encrypt"],
 "Vulnerabilities": ["vulnerability", "security"]
 },
 "Database": {
 "SQL/NoSQL": ["sql", "nosql"],
 "Performance": ["database performance", "db performance"],
 "Configuration": ["database config", "db config"]
 },
 "API": {
 "REST/Web Services": ["api", "rest", "web service"],
 "JSON/XML": ["json", "xml"],
 "Endpoint Issues": ["endpoint"]
 },

7

 "Error Handling": {
 "Exceptions": ["exception"],
 "Crashes": ["crash", "fail"],
 "Bugs": ["bug", "error", "fault"]
 },
 "Cloud Services": {
 "AWS/Azure/GCP": ["aws", "azure", "gcp", "cloud"],
 "Serverless Architecture": ["serverless", "lambda"],
 "Storage Services": ["s3", "storage"]
 },
 "Other": {}
}

Function to categorize issues based on title and description

with subthemes
def categorize_issue_with_subthemes(title, description):
 text = f"{title} {description}".lower()

 # Find the themes and subthemes that match
 for main_theme, subthemes_dict in subthemes.items():
 for sub_theme, keywords in subthemes_dict.items():
 for keyword in keywords:
 if re.search(r"\b" + re.escape(keyword) + r"\b",

text):
 return main_theme, sub_theme

 # Default to "Other" if no match is found
 return "Other", "None"

Apply the new categorization to each issue
issues_df["Main Theme"], issues_df["Sub Theme"] =

zip(*issues_df.apply(lambda row:

categorize_issue_with_subthemes(row["Issue Title"], row["Issue

Details"]), axis=1))

Count of issues per main theme and sub theme
theme_subtheme_counts = issues_df.groupby(["Main Theme", "Sub

Theme"]).size().reset_index(name="Count")

theme_subtheme_counts.head() # Display the first few rows for

review

