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In this thesis, the focus is on evaluating object detection technologies with a specific 
application in small and medium-sized enterprises (SMEs). The research conducts a 
comparative analysis of various object detection methods, notably Haar Cascades, Faster R-
CNN, and YOLOv8, within the context of detecting objects from electrical diagrams. The 
study aims to determine the balance between technological performance and the practical 
considerations of resource management for SMEs. By assessing the capabilities and 
limitations of each method, the thesis presents a structured approach to selecting appropriate 
object detection technologies that align with the operational and financial constraints of 
SMEs. 

The outcomes of this research clarify that YOLOv8, among the methods analysed, provides 
an optimal balance of accuracy and processing efficiency suitable for SMEs. This finding 
enables SMEs to make informed decisions on adopting object detection technologies that 
are not only technologically advanced but also feasible within their operational and financial 
constraints. By demonstrating YOLOv8's superiority in terms of both performance and 
resource efficiency, the study lays the groundwork for SMEs to leverage object detection 
technology effectively, thus potentially enhancing their operational efficiency and 
competitive position in the market. This contribution is significant to the ongoing discourse 
on digital transformation within SMEs, offering a clear direction for the strategic 
implementation of object detection technologies based on empirical evidence.  
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Tässä tutkielmassa keskitytään objektien tunnistusteknologioiden arviointiin keskittyen 
erityisesti pieniin sekä keskisuuriin yrityksiin (pk-yrityksiin). Tutkimuksessa suoritetaan 
vertaileva analyysi eri objektien tunnistusmenetelmistä, erityisesti Haar Cascades, Faster R-
CNN ja YOLOv8, sähköpiirustusten komponenttien tunnistamisen kontekstissa. 
Tutkimuksen tavoitteena on määrittää teknologisen suorituskyvyn ja pk-yritysten 
resurssienhallinnan käytännön näkökohtien välinen tasapaino. Arvioimalla kunkin 
menetelmän kyvykkyyksiä ja rajoituksia, tutkielma esittää lähestymistavan sopivien 
objektien tunnistusteknologioiden valitsemiseksi, jotka vastaavat pk-yritysten toiminnallisia 
ja taloudellisia rajoitteita.  

Tutkimuksen tulokset osoittavat, että YOLOv8 tarjoaa parhaimman tasapainon tarkkuuden 
ja prosessointikyvyn välillä pk-yritysten käyttöön soveltuvien menetelmien joukossa. Tämä 
tulos mahdollistaa pk-yritysten tehdä tietoon perustuvia päätöksiä 
objektientunnistusteknologioiden omaksumiseen liittyen. Nämä teknologiat eivät ole 
ainoastaan teknisesti edistyneitä, vaan myös toteutuskelpoisia pk-yritysten toiminnallisten ja 
taloudellisten rajoitteiden puitteissa. YOLOv8:n ylivoimaisuuden osoittaminen sekä 
suorituskyvyn että resurssitehokkuuden näkökulmista luo vankan perustan pk-yrityksille 
objektientunnistusteknologian tehokkaaseen hyödyntämiseen. Tämä voi potentiaalisesti 
parantaa niiden operatiivista tehokkuutta sekä vahvistaa yritysten kilpailuasemaa 
markkinoilla. Tämä kontribuutio on merkittävä lisä pk-yrityksissä käytävään digitaalisen 
transformaation keskusteluun, tarjoten selvän suunnan objektien tunnistusteknologioiden 
strategiseen käyttöönottoon empiirisen todistusaineiston pohjalta. 
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1  Introduction 

The rise of machine learning has already revolutionized most industries, as evidenced by its 

applications in healthcare and data recognition (Usmani, Happonen, & Watada, 2024), 

digital process automation (Ylä-Kujala et al., 2023), anomaly detection (Usmani, Happonen, 

& Watada, 2022), and autonomous machinery (Abdelsalam et al., 2022), influencing 

decision-making and operational processes. Central to this wave of innovation is object 

detection, which plays a crucial role by providing critical insights and enhancing automation 

across different sectors. This technology has shown effectiveness in the challenging tasks of 

analysing and interpreting complex schematics, where accuracy and reliability are crucial. 

The advancement of object detection technologies, especially through the development of 

Convolutional Neural Networks (CNNs), has marked significant milestones in the field (Zou 

et al., 2019). Such progress has not only improved the performance of object detection 

systems but also led to the development of efficient models, including the “You Only Look 

Once” (YOLO) methodology, known for its speed and accuracy. 

Small and medium-sized enterprises (SMEs) form an integral part of the economic landscape 

and stand to gain significantly from the adoption of object detection technologies. Yet, they 

face distinct challenges due to their constrained resources and expertise. The careful 

selection of an object detection method is crucial, as it can dramatically affect SMEs’ 

operational efficiency and competitive advantage. This thesis will explore how SMEs can 

strike a balance between the performance benefits of object detection technologies and the 

practical considerations of resource management, addressing the nuances of implementing 

technologically advanced solutions within the tighter budgets and limited computational 

capacities. 

The challenge in object detection stems from a lack of clear academic guidance on selecting 

algorithms, primarily due to the vast array of use cases and the rapid evolution of technology. 

This thesis aims to bridge this gap by introducing a foundational framework that categorizes 

various object detection methods, detailing their strengths, limitations, and conditions for 

optimal application, thereby providing a structured approach to algorithm selection. This 

approach provides researchers and practitioners with a starting point for a more in-depth 

exploration of object detection methodologies. The thesis aims to provide easily 



 

 

understandable and actionable insights, particularly focusing on the needs and constraints 

faced by SMEs, thereby aiding in making informed decisions about the choice of object 

detection techniques in various scenarios. 

1.1  Significance of the Study 

The process of selecting an object detection algorithm is complex, involving considerations 

such as computational demand, processing velocity, and accuracy. This study focuses on 

Small and Medium-sized Enterprises (SMEs), defined as companies employing fewer than 

250 people (OECD, n.d.). It aims to provide a clear analysis of object detection technologies 

within the operational and resource constraints typical for SMEs. The significance of this 

research lies in its attempt to bridge the knowledge gap for SMEs, facilitating informed 

technological choices that align with their specific needs. This contribution is intended to 

support SMEs in enhancing their operational processes and maintaining relevance in a 

technology-centric market environment. 

1.2  Research Goals and Objectives 

The central aim of this research is to offer a comparative analysis of object detection 

methodologies, highlighting those that are most relevant and advantageous for SMEs. To 

navigate this analysis, the study is structured around the following research questions: 

1. What are the comparative strengths and weaknesses of prevalent object detection 

algorithms when applied within the resource constraints of SMEs? 

2. How do different object detection methods perform in practical SME scenarios, 

particularly in terms of processing speed, accuracy, and resource consumption? 

These questions will guide the critical evaluation of various algorithms and facilitate the 

demonstration of their applications through a case study, ultimately informing SMEs about 

the strategic selection of technology suited to their unique circumstances. 



 

 

1.3  Scope and Limitations 

This thesis evaluates four distinct object detection methods, chosen from a broad spectrum 

of available algorithms for their relevance to the specific challenges faced by SMEs, which 

often operate under resource constraints. The selected methods are Template Matching, Haar 

Cascades, YOLO (You Only Look Once), and Faster R-CNN. These methods were chosen 

because they represent different levels of resource intensity and algorithmic approaches. 

Template Matching and Haar Cascades are less resource-intensive but offer limited 

capabilities, whereas YOLO provides a balance with its efficient single-stage approach. In 

contrast, Faster R-CNN, though more resource-intensive, showcases the advantages of a 

two-stage method. The diverse selection is crucial to highlight the balance between 

performance and resource consumption, based on SMEs' limited resources and efficiency 

needs. This consideration stems from understanding that SMEs often operate under 

constraints that necessitate optimizing for both performance and minimal resource use. 

The limitations of this study include its focus on a select number of object detection methods, 

which may not include the entire spectrum of technologies available in the field. 

Additionally, the findings are based on the specific application to electrical diagrams, which 

may not fully represent the diverse range of potential use cases in various SME settings. 

Aside from this, the study’s particular focus and methodology limit the results’ applicability 

to other SME scenarios or industry sectors. 

1.4  Methodology 

The study uses a mixed-methods approach, combining both quantitative and the qualitative 

analyses to examine object detection techniques within SMEs. 

Quantitative Methods: 

• Performance Evaluation: Assesses object detection algorithms' accuracy, speed, and 

computational demands using precision, recall, and processing time metrics, vital for 

determining their fit for SMEs. 



 

 

• Computational Analysis: Analyses CPU and GPU efficiency of algorithms, crucial 

for SMEs with limited tech resources. 

Qualitative Methods: 

• Case Study: Empirically examines the YOLO methodology in an SME setting, 

offering insights into its real-world adaptability and effectiveness. 

• Literature Review: Reviews existing research on object detection technologies, their 

evolution, and SME applications, providing a theoretical background and identifying 

research gaps. 

1.4.1  Case Analysis 

Central to the thesis’ empirical data collection is a case study that tests object detection 

methods under SME constraints. Initially, Template Matching was experimented with, but 

was quickly found unsuitable due to its lack of accuracy and inability to handle variations in 

the same component types. According to a review on advances and applications in template 

matching (Hashemi et al., 2016), while template matching is a fundamental method used in 

computer vision, its application is limited as a pre- or post-processing step (Hashemi et al., 

2016). After further research and experimentation, this led to the exclusion of Template 

Matching in favour of the YOLO (You Only Look Once) method. YOLO, as described by 

Redmon et al. (2016), offers a significant balance between detection performance and 

computational efficiency, processing images in real-time at 45 frames per second and 

achieving more than twice the mean average precision of other real-time systems (Redmon 

et al., 2016). This balance is critical for SMEs operating under resource constraints. 

1.4.2  Alternative Object Detection Methods 

Although the empirical focus is on the YOLO method, since it was eventually used in the 

finished product, the study also includes a theoretical evaluation of alternative object 

detection methods, namely Haar Cascades and the R-CNN variant Faster R-CNN, in the 

context of the case study. Haar Cascades was considered due to their simplicity and lower 



 

 

computational load, as well as it being recommended by the client, making them a potential 

fit for projects with limited resources. Faster R-CNN was selected for its high precision and 

two-stage detection process, offering a contrast to YOLO’s single-stage approach. These 

choices were informed by their specific attributes and project’s unique requirements, where 

Haar Cascades’ efficiency and Faster R-CNN’s accuracy provided valuable insights into the 

trade-offs and application scenarios for different detection methods (Ren et al., 2015). 

1.4.3  Integrative Analysis 

By combining insights from the literature with practical examination, the study analyses 

specific performance metrics of these object detection methods, such as precision, recall, 

processing time and Mean Average Precision (mAP).  Through this integrated approach, the 

study not only assesses the theoretical capabilities of these methods but also their practical 

viability, ensuring that the analysis is both comprehensive and aligned with the study's goals. 

2  Background 

In the field of object detection, the transition from early techniques to advanced methods 

showcases the dynamic evaluation of neural networks and computer vision. Initially, object 

detection relied on conventional methods such as template matching, a staple of early 

computer vision, and Haar Cascades, significantly enhanced by the Viola-Jones detector in 

2001 (Viola & Jones, 2001). These foundational approaches, while pivotal, often lacked 

accuracy and adaptability. The introduction of Convolutional Neural Networks (CNNs) 

marked a turning point, steering the field towards more refined and efficient algorithms 

(Krizhevsky, Sutskever & Hinton, 2012). This shift led to the development of 

groundbreaking models like R-CNN and its successors, as well as the YOLO series. 

The emergence of R-CNN and its enhanced versions, Fast R-CNN and Faster R-CNN, 

revolutionised object detection by balancing speed with precision, though at the expense of 

higher computational demands (Grishick, 2015; Ren e tal., 2015). The YOLO (You Only 

Look Once) model further advanced the field with its real-time detection capabilities, 



 

 

striking a balance between rapid processing and accuracy (Redmon et al., 2016). The latest 

innovations include state-of-the-art models like YOLOv7, which surpasses all known object 

detectors in both speed and accuracy (Wang et al., 2023), These developments along with 

ongoing progress in deep learning, are transforming object detection and its application in 

areas such as healthcare, autonomous driving, and smart surveillance. 

Table 1: Evolution of Object Detection Methods. 

Method Source(s) Description and Source Citations 

CNN Krizhevsky, 
Sutskever & 
Hinton, 2012 

Introduced a paradigm shift in object detection. Uses 
convolutional layers for feature extraction. (Krizhevsky, 
Sutskever & Hinton, 2012) 

R-CNN Grishick, 2015 Region-based CNN. Enhances accuracy in object detection 
but increases computational complexity. (Grishick, 2015) 

Fast R-CNN Grishick, 2015 Improved version of R-CNN. Faster and more efficient, 
but still with high accuracy. (Grishick, 2015) 

Faster R-
CNN 

Ren et al., 
2015 

Further improvement on R-CNN, enhancing both speed 
and accuracy. Introduces Region Proposal Networks. (Ren 
et al., 2015) 

YOLO Redmon et al., 
2016 

Stands for "You Only Look Once." Renowned for real-
time object detection capabilities. Balances speed and 
accuracy. (Redmon et al., 2016) 

EfficientDet Tan, M., et al. 
(2020) 

EfficientDet: Scalable and Efficient Object Detection. 
Focuses on optimizing efficiency and scalability in object 
detection. (Tan, M., et al., 2020) 

YOLOv7 Wang, J., et al. 
(2023) 

YOLOv7: Trainable bag-of-freebies sets new state-of-the-
art for real-time object detectors. Presents significant 
advancements in speed and accuracy. (Wang, J., et al., 
2023) 

 

However, challenges such as achieving high precision in complex environments and the 

computational intensity of deploying these models at scale continue to be areas of focus. Zou 

et al. (2020) discuss these challenges in their survey of modern deep learning-based object 

detection models, highlighting the ongoing efforts to address these issues. Future trends in 

the field may include further integration with augmented and virtual reality, as well as 



 

 

considerations regarding the ethical implications in the development and deployment of 

object detection technologies. 

In the broad arena of object detection techniques, this study concentrates on exploring 

various methods including Template Matching, Haar Cascades, a R-CNN variant (Faster R-

CNN), and YOLO, especially in the context of identifying electrical components. Template 

Matching was initially considered for its lightweight approach but was eventually dismissed 

due to its insufficient handling of variations in components. Haar Cascades, though 

suggested by our client, was also dismissed because it is not effective with line-intense 

images typical of electrical schematics. ON the other hand, the R-CNN variant, Faster R-

CNN, was selected for its two-stage detection process, which is a good contrast for YOLO’s 

single-stage process, and potentially offers higher accuracy but with a slower rate compared 

to YOLO. YOLO was ultimately chosen for the project due to its one-stage detection 

process, balancing speed with accuracy. This selection aligns with the project's goals of 

creating an effective web-based application for processing and analysis, without the need for 

continuous intensive computation. 

3  Advancements in Object Detection: A Focus on SME 

Applications 

In this section, we conduct a detailed exploration of object detection technologies, focusing 

on their evolution and current relevance to SMEs. Starting with the fundamentals like 

template matching and Haar cascades, we navigate through the progressions in CNNs and 

their variants, leading up to the latest methodologies such as YOLO and SSD. The section 

goes through the technological advancements but also examines their practical applicability 

in the SME context. By doing so, this part of the thesis aims to bridge the gap between 

theoretical innovation and real-world utility, addressing the specific challenges faced by 

SMEs. Through this analysis, the thesis highlights the transformative impact of these 

developments on object detection, providing insights into their potential to enhance SME 

operations within the constraints of limited resources and operational realities. 



 

 

3.1  Evolution of Object Detection Technologies 

In the rapidly evolving field of computer vision, object detection technologies have 

undergone a remarkable transformation over the past few decades. This chapter delves into 

the chronological advancements of object detection methods, tracing the journey from early 

techniques to the latest innovations in the field. Starting with simple template matching and 

Haar cascades, we will explore the shift towards more sophisticated methods like 

handcrafted features and the ground-breaking advent of Convolutional Neural Networks 

(CNNs). The chapter will further discuss the development of region-based CNNs and their 

variants, as well as the emergence of efficient single-stage detectors like YOLO and SSD. 

This historical overview not only highlights the technological leaps in object detection but 

also sheds light on their practical implications, particularly for small and medium-sized 

enterprises (SMEs). Through this exploration, we aim to provide a comprehensive 

understanding of how object detection technologies have evolved and the potential they hold 

for future applications. 

Table 2: Evolution of Object detection methods 

Year Method Summary 

2001 Haar-like AdaBoost Introduced simple feature-based detection with a boosting algorithm for 
performance. 

2005 Histogram of Oriented Gradients (HOG) Analyzed image gradients for better detection capabilities. 

2008 Deformable Part Model (DPM) Used parts of objects and their deformable configurations for detection. 

2009 Integral Channel Features (ICF) Enhanced Haar features with additional channel types. 

2010 Aggregate Channel Features (ACF) / 
LDCF 

Improved channel features for more efficient detection. 

2014 R-CNN Combined deep learning with region proposals for accurate detection. 

2014 Spatial Pyramid Pooling (SPP-net) Processed variable image sizes through spatial pyramid pooling. 

2015 Fast R-CNN Made R-CNN faster with streamlined processing and training. 

2015 Faster R-CNN Achieved real-time detection using neural networks for region proposals. 

2016 YOLO (You Only Look Once) Implemented a single neural network pass for speedy detection. 

2017 SSD (Single Shot Detector) Balanced speed and accuracy with one deep neural network. 

2018 YOLOv3 Enhanced YOLO with multi-scale detection and better features. 

2020 DETR (Detection Transformer) Utilized transformers to model object relationships for detection. 

2021 YOLOv7 Advanced the YOLO series focusing on real-time application speed and 
accuracy. 

2022 AdaMixer Combined convolutional and transformer architectures for object detection. 

 



 

 

 

Figure 1: This timeline shows the evolution of object detection technologies from 2001 

onwards, hihglighting key developments like Haar-like features, HOG, DPM, and the 

various versions of R-CNN and YOLO (Deguchi & Murase 2023). 

 

Figure 1, from Deguchi and Murase (2023), showcases the significant milestones in the field 

of object detection from the early 2000s to the present. This timeline begins with the 

introduction of Haar-like features in 2001, a critical juncture that underscored the shift by 

offering a methodological foundation for more complex and effective object detection 

approaches. Following this, the development of Histogram of Oriented Gradients (HOG) in 

2005 and Deformable Parts Model (DPM) in 2008 represented major advancements in 

feature extraction and part-based models. The timeline then highlights the revolution brought 

about by the introduction of R-CNN in 2014, which integrated deep learning into object 

detection, setting the stage for subsequent innovations like Fast R-CNN, Faster R-CNN, and 



 

 

YOLO variants. Each of these developments, marked on the timeline, indicates a leap 

forward in accuracy and efficiency, culminating in the latest YOLO versions, which are 

particularly relevant to SME applications due to their speed and real-time processing 

capabilities (Deguchi & Murase, 2023). 

3.1.1  Template Matching to Haar Cascades and HOG 

Object detection technologies have undergone significant advancements, tracing back to 

early methods such as Template Matching. This technique, which involves identifying 

matches between a template and a target image, faced challenges due to object appearance 

variations. Evolution in the field introduced Haar Cascades by Viola and Jones, leveraging 

feature selection and cascading classifiers for efficient real-time detection, notably in facial 

recognition. Subsequently, the development of the Histogram of Oriented Gradients (HOG) 

further refined object detection by analysing the distribution of gradient directions in image 

sections. This method improved accuracy for detecting objects under various poses and 

conditions. Each of these methodologies represents a key advancement in the domain of 

object detection, highlighting the progression towards increasingly sophisticated, accurate, 

and versatile detection techniques. 

Template Matching is portrayed in Figure 2, where a predefined template is methodically 

slid over the image to identify matching areas based on pixel intensity values. This figure 

illustrates the process with non-dotted lines representing strong matches and dotted lines 

indicating matches with lower confidence. This deterministic approach is particularly 

effective in controlled environments where the target object's appearance remains relatively 

constant (Binjie & Hu, 2014). 

Haar Cascade Classifiers, depicted in Figure 3, signify a leap to a machine learning-based 

approach in object detection. Developed by Viola and Jones (2001), this method employs 

feature selection and cascading classifiers for detecting objects with varying appearances. 

The image demonstrates the Haar features through a series of black and white blocks, 

highlighting the method's ability to aggregate pixel intensities within specified regions and 

compute their differences. This innovative approach allows for a detailed analysis of an 



 

 

image's textural and structural characteristics, enhancing detection capability in complex 

real-time applications. 

 

Expanding on the foundation set by Haar Cascades, the Histogram of Oriented Gradients 

(HOG), proposed by Dalal and Triggs in 2005, introduced an advanced approach to object 

detection by analysing the distribution of edge directions across localized sections of an 

image. Primarily utilized for pedestrian detection, HOG leverages gradient information for 

feature descriptors. It provides a complementary method to Haar-based techniques, as 

reflected in the combined impact of these methods on the evolution of object detection. The 

synergy of Haar Cascades and HOG has been essential in creating the foundation for later 

developments in the field, leading to the development of more sophisticated models. The 

progression from Template Matching to Haar Cascades and HOG illustrates the dynamic 

nature of object detection technology. This progression from Template Matching to Haar 

Cascades and HOG demonstrates the adaptable nature of object detection technology, 

offering businesses of varying sizes, especially SMEs with limited resources, a scalable 

range of solutions tailored to diverse operational needs and budgetary constraints. 

Figure 2:  Example of Haar cascade object 

detection. This figure illustrates the various 

stages of Haar cascade detection on a single 

image, demonstrating the method's 

systematic approach to feature identification 

(Hako, n.d.). 

 

 

Figure 3: Example of template matching. 

This figure illustrates the process of 

template matching where a template 

(highlighted in the box) is slid over the 

image to find matching areas. Adapted from 

Hashemi, N. S., Aghdam, R. B., Ghiasi, A. 

S. B., & Fate. 



 

 

3.1.2  Advent of Convolutional Neural Networks (CNNs) 

Since the onset of deep learning's integration into object detection around the early 2010s, 

methodologies have seen significant advancements, notably Convolutional Neural Networks 

(CNNs) and transformer-based architectures. This transition has led to measurable 

improvements in accuracy and efficiency in object detection tasks, as highlighted by Tasnim 

& Qi (2023). For small and medium-sized enterprises (SMEs), these developments have 

expanded practical applications, including surveillance and quality control, as documented 

by Zhou et al. (2021). 

Central to this evolution in object detection were the backbone architectures of CNNs, which 

evolved from simpler designs like AlexNet and VGG to more complex and efficient 

structures. This progression included multi-path designs such as Inception and the 

introduction of residual learning in ResNet, which helped address issues like training 

degradation and enabled the creation of deeper, more effective networks (Li et al., 2020). 

Additionally, the development of lightweight networks, such as SqueezeNet, responded to 

the constraints of memory and computing resources, a consideration particularly relevant for 

SME applications (Zou et al., 2019; Li et al., 2020). 

3.1.3  Development of R-CNN and Its Variants 

Building on the CNN advancements discussed in Section 1.1.2, the development of the R-

CNN family of algorithms has been a pivotal aspect of object detection evolution. Initially 

proposed by Girshick et al., R-CNN combined CNNs with region proposal algorithms to 

improve detection accuracy. This methodology evolved into Fast R-CNN and Faster R-

CNN, which enhanced processing speed and accuracy, establishing new standards in the 

field of object detection (Girshick, Donahue, Darrell & Malik, 2014; Girshick, 2015; Ren, 

He, Girshick & Sun, 2015). 

Figure 4 illustrates the incremental improvements in two-stage object detection methods, 

starting from the foundational R-CNN to the more advanced Faster R-CNN. Each iteration 

in this family of algorithms brought key enhancements, such as spatial pyramid pooling in 



 

 

SPPnet, RoI pooling in Fast R-CNN, and the introduction of the Region Proposal Network 

in Faster R-CNN. These improvements significantly accelerated the object detection 

process, demonstrating the rapid advancements in CNN-based methodologies, crucial for 

real-time applications in SMEs (Zhang & Hong, 2019). 

 

Figure 4: Evolution of Two-Stage Object Detectors. This figure compares the architectures 

of R-CNN, SPPnet, Fast R-CNN, and Faster R-CNN, showing the incremental 

improvements in two-stage object detection methods. Adapted from (Zhang & Hong, 2019).  

The selection of backbone architectures plays a crucial role in improving feature extraction 

processes, with a spectrum from traditional Convolutional Neural Networks (CNNs) to 

newer transformer-based models affecting the efficacy of object detection systems. The shift 

towards transformer-based architectures, as evidenced by leading methods on the COCO 

dataset, marks a discernible transition in the feature extraction process of these models. This 



 

 

progression has expanded the differences in performance between transformers and 

traditional CNNs, underlining the criticality of choosing suitable backbone architectures for 

enhancing both accuracy and efficiency in object detection tasks, particularly in the context 

of the R-CNN framework (Zou et al., 2019). 

3.1.4  Emergence of Single-Stage Detectors: YOLO and SSD 

The advancements in backbone architectures have notably enhanced the capabilities of 

single-stage detectors such as YOLO and SSD. Incorporating more efficient and robust 

backbone models into these detectors has facilitated improvements in both speed and 

accuracy, elements essential for effective real-time object detection, as reported by Li et al. 

(2020). 

Figure 5, as delineated by Deguchi and Murase (2023), effectively illustrates the primary 

strategies employed in object detection. The exhaustive search strategy involves scanning 

the entire image with varying window sizes to detect objects, often resulting in high 

computational costs. In contrast, the region proposal method focuses on identifying potential 

regions of interest before classifying them, thereby reducing the computational load. The 

single-shot detection approach, on the other hand, streamlines the process by combining 

detection and classification in a single step, enhancing speed but potentially compromising 

accuracy in complex scenarios (Deguchi & Murase, 2023). 

Figure 5: This figure illustrates three main strategies for object detection: exhaustive search, 

region proposal, and single-shot detection, each depicted through a flow diagram. (Deguchi 

& Murase, 2023). 



 

 

The introduction of single-stage detectors like YOLO (You Only Look Once) and SSD 

(Single Shot MultiBox Detector) marked a significant shift in object detection 

methodologies. These frameworks, characterized by their efficiency in real-time processing, 

have been pivotal in advancing object detection. YOLO, developed by Redmon et al. (2016), 

revolutionized object detection with its unique architecture that enables simultaneous 

predictions of bounding boxes and class probabilities, significantly increasing detection 

speed and making it suitable for real-time applications (Zaidi et al., 2022). Similarly, SSD, 

introduced by Liu et al. (2016), balanced speed and accuracy effectively, offering a robust 

alternative to two-stage detectors (Zaidi et al., 2022). The practical implications of these 

technologies, especially for SMEs, are profound, providing efficient and accurate detection 

capabilities essential for modern-day applications. 

Figure 6 illustrates the distinct approaches taken by one-stage detectors like YOLO and SSD. 

YOLO's unique grid-based detection and SSD's utilization of multi-scale feature maps 

exemplify the innovative strategies that bypass the need for region proposals, thereby 

accelerating the detection process (Zhang & Hong, 2019). 

 

Figure 6: Operational pipelines of YOLO and SSD models. This figure contrasts the grid-

based detection strategy of YOLO with the multi-scale feature map approach of SSD. (Zhang 

& Hong, 2019). 



 

 

3.1.5  Implications for SMEs 

 The development of object detection technologies provides small and medium-sized 

enterprises (SMEs) with a range of adaptable tools suited to various operational needs. 

Specifically, SMEs can choose between two-stage detectors, which excel in accuracy and 

are ideal for applications requiring detailed image analysis, and single-stage detectors, which 

offer faster processing speeds for real-time applications. The advancements in deep learning 

methodologies enable SMEs to leverage these technologies for efficient and precise object 

detection, even when operating with constrained resources. This opens possibilities for 

SMEs to enhance their capabilities in areas such as inventory management, surveillance, and 

quality control without significant investment. 

3.2  Impact of YOLO Methodology 

The introduction of YOLO (You Only Look Once) by Redmon et al. (2016) introduced a 

novel approach to real-time object detection by integrating the detection process into a single 

neural network evaluation. This method significantly diverged from previous techniques that 

relied on separate stages for detecting regions and classifying objects. YOLO's innovation 

lies in its ability to directly predict both bounding boxes and class probabilities from full 

images, streamlining the detection workflow. This integration resulted in a substantial 

increase in processing speed, enabling it to run at 45 frames per second, and up to 155 frames 

per second for the optimized version, Fast YOLO. This enhancement in speed, without 

compromising accuracy, represented a pivotal advancement in enabling real-time object 

detection applications. 

Figure 6 shows YOLO Detection Pipeline. Illustration of YOLO's grid-based detection 

strategy, enabling real-time object detection by predicting bounding boxes and class 

probabilities directly from full images in a single network evaluation. 

YOLO's architecture was inspired by the GoogLeNet model for image classification, 

consisting of 24 convolutional layers followed by 2 fully connected layers. The design 

allowed the network to reason globally about the image, leading to fewer background errors 



 

 

compared to methods like Fast R-CNN. Additionally, YOLO demonstrated strong 

generalizability, performing well when trained on natural images and tested on different 

domains such as artwork (Redmon et al., 2016). 

3.2.1  Advancements in YOLO Versions 

YOLOv2, released in 2017, made several improvements over the original YOLO. It 

introduced batch normalization on all convolutional layers, enhancing convergence and 

reducing overfitting. The architecture transitioned to a fully convolutional one and employed 

anchor boxes for bounding box prediction. Moreover, YOLOv2 utilized dimension clusters 

and direct location prediction to enhance accuracy. It achieved an average precision of 78.6% 

on the PASCAL VOC2007 dataset, significantly improving upon YOLOv1's 63.4% 

(Redmon & Farhadi, 2017). 

Introduced in 2018, YOLOv3 featured a more extensive architecture with significant updates 

to match state-of-the-art performance while ensuring real-time processing. It employed a 

new backbone, Darknet-53, with 53 convolutional layers and residual connections. YOLOv3 

made advancements in bounding box prediction and class prediction, adopting binary cross-

entropy for independent logistic classifiers. Additionally, it included spatial pyramid pooling 

(SPP) and multi-scale predictions, enabling better detection of small objects. YOLOv3 

achieved an average precision of 36.2% and an AP50 of 60.6%, which indicates its precision 

for detecting objects with at least half overlap with the perfect bounding box, at 20 FPS on 

the Microsoft COCO dataset (Redmon & Farhadi, 2018). 

These advancements in YOLO's methodology, particularly in real-time processing and 

accuracy, have significantly impacted the field of object detection. The continuous 

improvements in YOLO versions demonstrate the evolving nature of object detection 

technology, with each iteration offering enhanced performance and efficiency suitable for 

various applications, including those relevant to SMEs. 



 

 

3.2.2  Limitations and Trade-offs 

Despite its strengths, YOLO does have limitations. It struggles with precise localization of 

small objects and imposes strong spatial constraints on bounding box predictions, which can 

limit the detection of nearby objects (Redmon et al., 2016). 

3.2.3  Performance Metrics and Evaluation 

YOLO's performance, when compared to other real-time detection systems like DPM and 

R-CNN variants, underscores its efficiency. It outperforms these systems in terms of speed 

and mean average precision (mAP), though it lags slightly behind in accuracy due to higher 

localization errors. However, YOLO's lower rate of false positives on background objects 

and its ability to generalize to different domains like artwork highlight its versatility and 

robustness (Redmon et al., 2016). 

3.3        Recent advances in Object Detection Technologies  

The field of object detection has seen transformative changes in recent years, leading to 

notable improvements in accuracy and efficiency. This section delves into the latest 

innovations that are reshaping the field, such as attention-based models, one-stage fully 

convolutional detectors, and cutting-edge network frameworks including PANet. These 

developments represent a departure from conventional methodologies, steering towards 

more sophisticated, effective, and accurate object detection strategies. The integration of 

attention mechanisms and the trend towards fully convolutional systems are indicative of the 

evolving nature of object detection, focusing on adaptive and streamlined solutions. 

3.3.1  Innovations in Multiscale Feature Aggregation for Object Detection 

Multiscale feature aggregation plugins have revolutionized the field of object detection by 

dramatically improving accuracy and efficiency. Feng (2022) highlighted the importance of 

these plugins in remote sensing object detection, emphasizing their role in reducing semantic 

gaps and improving feature representation (Feng, 2022). Similarly, Rajput et al. (2020) 



 

 

discussed the effectiveness of these plugins in improving accuracy, particularly through the 

integration of feature-fusion and attention mechanisms like CBAM and SFCM in various 

models (Rajput, Mittal, & Narayan, 2020). 

A significant advancement in this domain is the Bi-YOLOX network, an enhancement over 

the traditional YOLOX model. Zhang et al. (2022) innovated with the introduction of the 

Tri-Head module and the BiNet feature fusion into this network, which significantly 

improved small object detection in UAV aerial images. These enhancements, including a 

focus on densely contiguous small objects and complex background scenarios, have been 

pivotal in advancing the performance of object detection systems (Zhang et al., 2022).  

Table 3 provides a comparative analysis of various object detection models, including the 

baseline SSD and its enhancements through CBAM and other plugins. The table effectively 

demonstrates the varied applications of each plugin, as evidenced by the mAP and FPS 

metrics, which respectively measure accuracy and efficiency, showcasing their adaptability 

to meet specific requirements. These recent advancements underscore the vital role of 

sophisticated feature aggregation in modern object detection algorithms, setting new 

benchmarks in the field by effectively addressing the unique challenges of small object 

detection. 

Table 3: Performance comparison of object detection models, detailing parameters, mAP 

scores, and frame rates, emphasizing multiscale feature enhancements. (Rajput et al., 2020). 

Model Number of parameters mAP Frame-rate (FPS) 

SSD (baseline) 22 million 77.20 56 

SSD-CBAM 23 million 78.14 47 

SSD-Fusion-CBAM 28 million 78.78 46 

SSD-SFCM 25 million 78.82 50 

SSD-SFCM-CFE 28 million 78.94 41 

SSD-Fusion-SE 28 million 78.54 48 

SSD-Fusion-DANet 31 million 78.29 44 



 

 

3.3.2  Omni-Supervised Object Detection with Transformers 

Recent advancements in object detection have been marked by the adoption of transformer-

based models, like Omni-DETR, which utilize a range of annotations from fully labelled to 

weakly labelled data. Omni-DETR, a pivotal development in omni-supervised object 

detection (OSOD), leverages weak labels such as image tags, counts, and points, to generate 

accurate pseudo labels through a unified framework. This approach, which employs a 

bipartite matching-based filtering mechanism, has demonstrated superior results on multiple 

datasets, indicating its effectiveness in improving detection performance while offering a 

better balance between annotation cost and accuracy (Wang et al., 2022). 

The use of weak annotations in OSOD, particularly through Omni-DETR, addresses the high 

costs and scalability challenges associated with complete and accurate detection annotations. 

For example, fully annotating an image in datasets like MS-COCO can be prohibitively time-

consuming (Wang et al., 2022). Omni-DETR’s framework, grounded in recent 

advancements in semi-supervised object detection and end-to-end detection architectures, 

allows for the effective use of weak ground truth labels. This strategy enhances learning 

processes and facilitates more cost-effective approaches to object detection (Wang et al., 

2022). 



 

 

Figure 7: Top row is the visualization of different forms of weak annotations. The bottom 

row is the trade-off comparison (accuracy vs. annotation cost) of supervised, semi-

supervised and omni-supervised detection. (Wang et. al., 2022). 

Figure 7 presents a comparison between the annotation costs and detection accuracy of 

various object detection methods. On the x-axis, annotation time is measured in hours, 

indicating the investment required to train each model. The y-axis displays mean Average 

Precision (mAP), a key indicator of detection accuracy, with higher values signifying better 

performance. The graphs illustrate that omni-supervised learning strikes an effective 

balance, achieving high mAP with less annotated data compared to fully supervised 

methods. This suggests that omni-supervised models, like Omni-DETR, can deliver precise 

object detection with less annotation effort, making them attractive for large-scale 

applications where efficiency is crucial. 



 

 

3.3.3  Advancements in Attention Mechanisms for Object Detection 

Recent advances in attention mechanisms, when integrated into Convolutional Neural 

Networks (CNNs), have concretely enhanced the field of object detection. Mei (2020) 

incorporated a light attention mechanism called the attended residual module into an object 

detection backbone. This module, combined with a cascade region proposal network (RPN) 

and a criss-cross attention module, resulted in a tangible improvement in performance. 

Specifically, it yielded a 43.6 Average Precision (AP) score on the COCO test-dev, which is 

a standardized dataset used to benchmark object detection algorithms. This AP score 

represents a quantified improvement, reflecting the precise impact of attention mechanisms 

on the accuracy of object detection models. 

Song (2021) further enhanced attention mechanisms in CNNs by proposing the Cross-Scale 

Non-Local (CS-NL) attention and exhaustive Self-Exemplars Mining (SEM), which allowed 

for the full excavation of self-similarity in images. They achieved state-of-the-art 

performance in image restoration tasks, especially when integrated into the EDSR network, 

outperforming the original EDSR and the SAN network, which was the best model in 2019 

(Mei et al., 2021). 

Wang (2019) proposed a pyramid attention structure and salient edge detection module for 

Salient Object Detection (SOD), achieving state-of-the-art performance (Wang et al., 2019). 

These innovations hold significant potential for practical applications, particularly in defence 

technologies, by improving the accuracy, efficiency, and speed of object detection systems. 

3.3.4  Innovations in Path Aggregation for Feature Learning 

Object detection systems have had notable enhancements in feature learning due to recent 

strides in path aggregation networks. These advancements include the use of a Gated Path 

Aggregation Network (GPA) for remote sensing image detection (Zheng, 2022), and a class-

constrained spatial-temporal relation network coupled with a correlation-based feature 

alignment module for video object detection (Han et al., 2020). 



 

 

Zheng et al. (2022) addressed the unique challenges in remote sensing object detection, such 

as small geometries and variable orientations of targets. They proposed a GPA network 

integrating path enhancement and information filtering, using soft switchable atrous 

convolution in the topmost feature layer. This method demonstrated considerable 

improvements over traditional Feature Pyramid Network structures, achieving state-of-the-

art performance on the NWPU VHR-10 dataset. 

For Video Object Detection (VOD), Han et al. (2020) tackled issues like occlusion and 

motion blur through feature aggregation from local or global support frames. They 

developed a class-constrained spatial-temporal relation network, which operates on object 

region proposals to learn dependencies among same-class objects from support frames and 

spatial relations among different objects in the target frame. Their correlation-based feature 

alignment module aligns the support and target frames for feature aggregation in the 

temporal domain. This method significantly improved the accuracy of single-frame 

detectors, outperforming previous temporal or spatial relation networks, and achieved an 

impressive 84.80% accuracy with ResNet-101 on the ImageNet VID dataset, without any 

post-processing methods. 

Both Zheng et al. (2022) and Han et al. (2020) represent significant strides in object 

detection, showcasing the evolution of feature aggregation techniques. Zheng et al.’s GPA 

network effectively handles hierarchical convolutional layers, reducing redundancy in 

feature fusion. Han et al.’s (2020) approach to VOD underscores the importance of class-

constrained networks and correlation-based alignment, leading to improved detection 

performance across various scenarios. 

3.3.5  Breakthroughs in Single-Stage Object Detection 

Recent developments in single-stage object detection, exemplified by FCOS (Fully 

Convolutional One-Stage object detection), have improved both the computational 

efficiency and the localization accuracy of these models. Chu et al. (2022) put forward 

EfficientFCOS, which enhances the original FCOS by requiring fewer computational 

resources for operation and providing more accurate object localization within images. This 



 

 

model leverages EfficientNet for feature extraction, utilizing its fewer parameters and 

superior performance compared to ResNet. EfficientFCOS employs scaling approaches to 

uniformly scale the number of channels in the model’s backbone network, feature fusion 

network, and shared head network based on image resolution. It integrates geometric factors 

(centre point distance, overlap rate, and scale) into the regression loss of target prediction, 

making the regression of the target prediction box more stable. This results in a 2.8% 

increase in mAP value on the Pascal VOC dataset, while having a 4.3x smaller network size 

and improving both GPU and CPU latency by 12.2% and 20.0%, respectively (Chu, Yan, 

Guo, Jianpeng, Shan, Wen, & Wang, Zhengkui, 2022). 

FCOS emerges as a significant simplification in detection frameworks, eliminating the need 

for anchor boxes and reducing hyper-parameter tuning. Hwang et al.'s (2022) HISFCOS 

enhances this by improving feature utilization, reflected in a notable accuracy gain on the 

PASCAL VOC dataset. These developments underscore a push towards more streamlined 

and effective object detection models. 

Tian et al. (2019) introduced FCOS, an anchor-free and proposal-free detector, as a 

breakthrough in simplifying the detection framework while achieving improved accuracy. 

FCOS eliminates the need for pre-defined anchor boxes, reducing the complexity associated 

with anchor-based methods and avoiding hyper-parameter sensitivity, which is often a 

challenge in object detection models. 

Further improvements to FCOS were made by Hwang, Lee, and Lee (2022), who introduced 

HISFCOS. This model uses a half-inverted stage block to minimize feature loss and 

reconstruct the feature pyramid. HISFCOS's innovative design leads to a notable 3.0 AP 

increase in detection accuracy on the PASCAL VOC dataset. The diverse detection 

capabilities of HISFCOS are further emphasized in the performance table (Table 4), which 

details the accuracy improvements across various object categories. This illustrates the 

ongoing trend in object detection models towards achieving higher efficiency and 

performance through innovative architectural modifications. 



 

 

Table 4: Comparative accuracy results for FCOS and HISFCOS models on the PASCAL 

VOC dataset, detailing performance across various object categories, with and without the 

lightweight detection head (Adapted from Hwang, Lee, & Lee, 2022). 

FCOS 

aero bike bird boat bottle bus car cat chair cow 

83.1 85.4 81.3 72.4 60.6 83.2 87.6 91.7 57.8 81.8 

table dog horse mbike person plant sheep sofa train tv 

64.5 88.1 87.0 82.3 83.8 53.8 81.9 73.7 87.9 79.4 

HISFCOS  

aero bike bird boat bottle bus car cat chair cow 

81.0 87.3 84.5 74.6 66.8 85.3 88.7 93.4 60.9 82.8 

(w/o) Lightweight 
detection head) 

table dog horse mbike person plant sheep sofa train tv 

68.7 90.6 87.5 87.2 84.9 55.4 83.1 77.0 90.2 79.2 

HISFCOS 

aero bike bird boat bottle bus car cat chair cow 

85.4 88.6 83.8 76.1 65.7 88.2 89.0 93.3 58.9 84.8 

table dog horse mbike person plant sheep sofa train tv 

72.4 89.9 90.0 86.9 85.1 56.3 85.2 74.1 91.3 81.6 

 

In Table 4, the PASCAL VOC dataset serves as the benchmark for evaluating the object 

detection accuracy of two models: the original FCOS and its more advanced iteration, 

HISFCOS. The table breaks down performance by object category, offering a clear view of 

the improvements HISFCOS brings to the table, especially when it incorporates a 

lightweight detection head. This data is critical for understanding the specific advancements 

in detection accuracy that HISFCOS contributes to the field. 

These advancements highlight the ongoing evolution of single-stage object detection 

models. The move to more streamlined architectures such as EfficientFCOS, along with 

strategies to boost accuracy while cutting down on computational demands, signifies 

considerable progress in the domain. The consistent enhancement of these models is 

progressively expanding the limits of object detection capabilities. 



 

 

3.3.6  Technological Advancements Overview 

This section aimed to concisely summarize recent advancements in object detection 

technologies, focusing on the objectives and outcomes associated with multiscale feature 

aggregation, attention-based models, one-stage fully convolutional detectors, and advanced 

network frameworks like PANet. The primary purpose of this section was to highlight how 

these technological innovations collectively mark a significant advancement in the field, 

notably enhancing the accuracy, efficiency, and sophistication of detection systems. By 

exploring transformer-based models such as Omni-DETR, detailing advancements in 

attention mechanisms within CNNs, and examining the evolution of models like FCOS and 

its variants, this summary underscored the substantial progress achieved. It showcased the 

transition from traditional methods to cutting-edge approaches, paving the way for future 

innovations. Ultimately, this section demonstrated the dynamic progression of object 

detection research and its promising potential to transform various applications, from 

autonomous driving to advanced surveillance systems. 

3.4  SME Object Detection: Resource Constraints and Tech Choices  

In the rapidly evolving technological landscape, small and medium-sized enterprises (SMEs) 

grapple with obstacles such as financial constraints, limited access to cutting-edge 

technological expertise, and challenges in adopting flexible object detection methods suited 

to their unique operational contexts. These challenges have been further intensified by the 

COVID-19 pandemic, which has demanded rapid adaptation and innovation from SMEs 

under tight resource constraints. This section explores how SMEs manage the adoption of 

object detection technologies amidst these specific challenges: navigating financial 

limitations that restrict their ability to invest in new technologies, bridging the knowledge 

gap in a field that is both specialized and rapidly advancing, and selecting object detection 

technologies that are sufficiently adaptable to fit within their operational constraints. The 

discussion aims to provide insights into effective strategies that enable SMEs to integrate 

advanced object detection technologies into their operations, overcoming these distinct 

challenges to leverage the benefits of technological advancements. 



 

 

3.4.1  Introduction to SME Challenges in Technology Adoption 

The COVID-19 pandemic dramatically impacted the global economy, with small and 

medium-sized enterprises (SMEs) among the hardest hit (Sarker et al., 2022). These 

businesses, integral to economic development and employment, have been compelled to 

reassess their operational strategies. The pandemic's enforced lockdowns and subsequent 

economic downturn exposed the vulnerability of SMEs, leading to significant financial 

losses and, in many cases, closures (Mishrif & Khan, 2023). In response, SMEs have 

increasingly turned to technology and innovation as essential tools for survival and 

competitiveness. This technological pivot, however, has been fraught with challenges due to 

SMEs' inherent limitations in resources and expertise. 

3.4.2  The Impact of Limited Resources on Technology Selection 

Despite the recognized necessity for technological adaptation, SMEs face significant barriers 

due to their limited resources. These constraints are not merely financial but also encompass 

restricted access to advanced technological infrastructure and a scarcity of in-house technical 

expertise. The challenge is twofold: SMEs must identify technologies that are both 

affordable and aligned with their operational capabilities. During the pandemic, the 

importance of digital skills and innovation was emphasized, yet a significant research gap 

remains concerning technology adoption in developing countries, where the majority of 

SMEs are located (Mishrif & Khan, 2023). The choice of technology, particularly in the 

realm of object detection, must therefore consider these limitations while also providing the 

potential for enhanced performance and a competitive edge. The normative literature has 

focused on the identification of factors such as benefits, barriers, and costs affecting the 

integration technologies (e.g., Electronic Data Interchange (EDI) and Enterprise Resource 

Planning (ERP)) adoption in SMEs. However, it is unclear whether these factors efficiently 

explain SMEs’ decision-making process related to emerging integration technologies like 

EAI and Web Services adoption (Themistocleous, 2003). 



 

 

3.4.3  The Role of Technological Know-How in SMEs 

The lack of technological knowledge within SMEs (Kareem et al., 2021; Valdez-Juárez, 

García-Pérez de Lema, & Maldonado-Guzmán, 2022) further complicates the adoption of 

advanced technologies like object detection. Previous research highlights the necessity for 

SMEs to substantially improve their technological innovation capabilities to ensure growth 

and sustainability (Mishrif & Khan, 2023). This need for improvement is not just in the 

adoption of new technologies but also in understanding and leveraging them effectively 

within their business operations. The pandemic has accelerated the technological 

transformation, prompting SMEs to quickly adapt to new technologies for managing their 

operations under crisis conditions. This rapid adaptation, however, has often been 

hamstringed by a lack of in-depth technological understanding and expertise within these 

organizations. Whipp and Rosenfeld (1989) and Caldeira and Ward (2003) emphasize the 

internal and external resources to analyse the IS/IT implementation in SMEs. They state that 

the internal resources include financial resources, human resources, management 

perspectives and attitudes, IS/IT competences, organizational structure, power relationships, 

and user attitudes. The external resources cover external expertise (e.g., vendors’ support or 

consultant effectiveness), technology available, and business environment (e.g., clients and 

suppliers’ pressure to adopt IS/IT) (Themistocleous, 2003). 

3.4.4       Adaptability of Object Detection Methods for SMEs 

In the context of SMEs, selecting and implementing object detection technologies comes 

with specific challenges. A critical aspect is the choice of technology. SMEs often face 

difficulties in choosing technologies that align with their operational requirements without 

overburdening their resources (Aura Technology, n.d.). Moreover, maintaining data 

security, especially when managing large volumes of data required for training object 

detection (OD) models, presents a considerable challenge. This is particularly relevant for 

SMEs, which may become prime targets for cybercriminals due to their typically less 

developed security infrastructures (Aura Technology, n.d.). Therefore, ensuring the security 

of object detection technologies is vital. Cost is another substantial barrier for SMEs. A study 

indicates that financial constraints are among the biggest hurdles SMEs face in adopting new 



 

 

technologies (Chen et al., 2016). Exploring cost-effective solutions, such as open-source 

tools or cloud-based services, can be a practical approach for SMEs. Moreover, the 

integration of these technologies into existing systems is a challenge, emphasizing the need 

for compatibility with SMEs' current infrastructure. Finally, SMEs frequently lack the 

technical expertise required for deploying and managing new technologies effectively. This 

challenge underscores the importance of selecting user-friendly object detection 

technologies and ensuring the availability of training and support services (Chen et al., 

2016). Addressing these challenges requires a multi-faceted approach that balances 

performance, security, cost, and ease of integration. 

To effectively address the implementation challenges of object detection solutions, several 

platforms offer turnkey solutions tailored for Small and Medium-sized Enterprises (SMEs). 

Notably, the Google Cloud Vision API exemplifies a scalable, cloud-based service that 

simplifies object detection for organizations with limited technical resources. Alongside 

Amazon Rekognition, it underscores the importance of data security with robust measures. 

Similarly, Microsoft Azure Computer Vision and IBM Watson Visual Recognition provide 

SMEs with advanced tools for image and video analysis, accompanied by comprehensive 

support and training resources to alleviate the technical expertise barrier. 

Implementing Google Cloud Vision API, for example, entails a series of straightforward 

steps, illustrating the platform's accessibility: 

1. Create a Google Cloud project, enabling the organization to access Google's cloud-

based services. 

2. Enable the Cloud Vision API for the project, granting access to object detection 

capabilities. 

3. Generate an API key for authentication, ensuring secure access to the service. 

4. Optionally set up a service account for enhanced security, offering more granular 

control over API access. 



 

 

These steps demonstrate the seamless integration of advanced object detection technologies 

with SMEs' existing infrastructure and operational demands, ensuring both compatibility and 

cost-effectiveness. 

3.5  Future Trends and Challenges 

The landscape of object detection technology is rapidly evolving, (Wang, Jiao, & Xu, 2021) 

driven by advancements in deep learning and increasing computational capabilities. This 

evolution presents a range of opportunities and challenges, particularly for Small and 

Medium-sized Enterprises (SMEs) that seek to leverage these technologies for enhanced 

operational efficiency and competitive advantage. While the advancements offer 

unprecedented accuracy and capabilities in object detection, they also bring forth challenges 

in terms of computational intensity and the need for high precision in diverse application 

scenarios. This section delves into the emerging trends in object detection technologies, 

examining their potential impact on SMEs. It also explores the ongoing challenges these 

businesses face, particularly in achieving high precision in complex environments and 

managing the computational demands of advanced object detection models. The discussion 

is anchored on recent academic research and studies, providing a comprehensive view of the 

future trajectory of object detection technology and its implications for SMEs. 

3.5.1  Emerging Technologies and SME Applications 

 From the late 2010s to the early 2020s, advancements in object detection have been 

significantly influenced by deep learning (Safdar et al., 2022; Wu, Sahoo, & Hoi, 2020). 

Hector et al. (2021) discusses the high accuracy of deep neural networks (DNNs) in complex 

detection scenarios, making them suitable for smart city applications. However, the 

deployment of these technologies in SME settings is challenging due to their high 

computational demands. To counter this, elastic neural networks have been proposed as a 

resource-adaptive solution, effectively balancing computational complexity and detection 

accuracy (Hector et al., 2021). 



 

 

In addition to these technological advancements, the field is witnessing a shift towards more 

holistic and integrated approaches. A study by Kaur et al. (2021) outlines several anticipated 

areas of focus within the object detection field, including expressive learning, quick training, 

and the development of universal object detectors. Furthermore, federated learning and 

brain-inspired computing are identified as promising areas for enhancing object detection 

capabilities, particularly in resource-constrained environments like those faced by SMEs 

(Kaur et al., 2021). 

3.5.2  Challenges in High Precision and Computational Intensity 

In addressing computational efficiency and precision in object detection, Kaur et al. (2021) 

point to the adoption of transformers and improved hyper-parameter optimization as keys to 

enhancing model performance. For SMEs, where both precision and computational 

resources are critical, these advancements could lead to more effective object detection 

without disproportionately increasing computational demands. 

Aligning with these insights, the scatter plot in Figure 5 from Vaidya and Paunwala (2019) 

presents the empirical relationship between an algorithm's processing speed and its accuracy. 

The plot serves as a valuable reference for SMEs to assess object detection algorithms, 

emphasizing the necessity to evaluate the performance implications of adopting newer 

models that promise to balance speed with accuracy. Thus, for an SME prioritizing quick 

and accurate object detection, understanding this trade-off is essential for selecting a system 

that aligns with their operational needs and resource capacities. 



 

 

 
Figure 8: Performance Trade-offs in Object Detection Algorithms. The plot illustrates 

balance between speed (FPS) and accuracy (mAP) across different object detection 

algorithms, highlighting the variations in perform suitable for SME applications (Adapted 

from Vaidya and Paunwala (2019). 

Moreover, the study by Zhou et al. (2021) underscores the importance of multi-scale object 

detection and addressing intra-class variance, which are critical for security applications. 

The ability to detect objects of varying sizes and similar class types with high precision is 

essential for SMEs engaged in activities like surveillance and quality control (Zhou et al., 

2021). 

3.5.3  Future Directions and Challenges in Object Detection for SMEs 

The field of object detection continues to evolve, with researchers exploring new directions 

to address open challenges. Integrating object detection with tasks like segmentation and 

pose estimation can lead to more comprehensive scene representations, beneficial for 

applications in robotics, autonomous vehicles, and virtual reality. Developing few-shot and 

zero-shot learning methods can improve scalability and adaptability in object detection 



 

 

(Tasnim & Qi, 2023). Additionally, ensuring fairness, accountability, and transparency in 

object detection algorithms is essential for their ethical deployment. 

3.6  Key Insights and Future Directions 

The literature review highlights significant advancements in object detection technologies, 

especially in their application to SMEs, underlining the importance of digital technologies 

for competitiveness and growth in the modern era (Chen et al., 2016). This field, a crucial 

aspect of computer vision, has seen remarkable developments in enhancing accuracy, 

efficiency, and capabilities in real-time and video object detection, crucial for broad 

applications including autonomous vehicles and surveillance systems ("Object Detection in 

2023: The Definitive Guide," 2023). Yet, challenges persist, particularly the need for greater 

precision in complex environments and the management of computational demands crucial 

for resource-limited SMEs, alongside the underexplored potential of integrating emerging 

technologies like Blockchain and Distributed Ledger Technologies (DLT) to offer 

significant benefits to SMEs (Chen et al., 2016). 

Looking forward, the field is set to continue its focus on enhancing the efficiency and 

accuracy of object detection algorithms, with future trends indicating new avenues for 

practical applications that promise to revolutionize key industries further. Despite the rapid 

evolution of object detection technologies presenting both opportunities and challenges, the 

importance of ongoing research and development is underscored, especially in leveraging 

these advancements within the unique operational constraints and market dynamics of 

SMEs. This dynamic environment emphasizes the critical need for SMEs to stay abreast of 

technological advancements to harness their potential effectively ("Object Detection in 

2023: The Definitive Guide," 2023; Chen et al., 2016). 

4  Advanced Technologies for Electrical Diagram Object Detection 

In this section, we compare the performance of Haar Cascade, Faster R-CNN, and YOLOv8 

technologies on electrical diagram datasets. Object detection, a crucial component of 



 

 

automated diagram analysis, has made significant advancements recently. The research aims 

to benchmark and compare these methods' effectiveness in real-life situations, contributing 

to the broader context of object detection technology in the field. 

Haar Cascade, Faster R-CNN, and YOLOv8 were selected for their historical significance, 

adaptability, and diverse complexity and efficiency levels. Haar Cascade is known for its 

compact size and effectiveness in basic applications. Faster R-CNN, recognized for its 

precision and state-of-the-art performance, utilizes convolutional neural networks to achieve 

remarkable accuracy in object identification. YOLOv8 represents the pinnacle of real-time 

detection technology, offering unmatched speed and accuracy for tasks requiring rapid 

processing. 

The analysis is based in the specifics of electrical diagrams, employing a detailed 

methodology that includes data collection, preparation, model optimization, and evaluation. 

With a custom-annotated dataset of nearly 500 PDFs, our study directly relates to and applies 

within the sector. 

Evaluation will be based on a comprehensive set of metrics, including accuracy and 

processing time, to provide an in-depth understanding of each method's strengths and 

weaknesses. This approach allows for a detailed assessment, highlighting not only 

performance but also practical aspects such as computational expense and ease of 

implementation. 

The research plan anticipates and addresses key challenges, particularly focusing on 

computational constraints, to ensure the study's findings are both relevant and actionable for 

scholarly discussion and practical application. The study aims to outline the strengths and 

weaknesses of each object detection technique, providing critical analysis and 

recommendations to the field. By bridging the gap between theoretical knowledge and 

practical application, this research contributes to the future development and implementation 

of object detection technologies in electrical diagram analysis, with a keen focus on 

optimizing computational efficiency and model performance. 



 

 

4.1  Methodology Overview and Data Preparation 

This section details the methodologies and preparation steps for evaluating the three distinct 

object detection technologies in electrical diagram analysis. The core of the methodology is 

designed around a dual approach: preparing a dataset annotated in the YOLO format to suit 

the requirements of each technology and adapting each technology to the specific challenges 

of accurately detecting and classifying objects within complex electrical diagrams. This 

preparation involves a process of converting these YOLO annotations, which are normalized 

coordinates, into formats compatible with the HAAR Cascade's precise pixel coordinates 

requirements and the XML format requisite for Faster R-CNN and ensuring that the dataset 

accurately represents the diversity of components found in electrical diagrams. 

Central to the methodology is the management of software dependencies and optimization 

of environment setups for model training. Recognizing the limitations posed by OpenCV 4.x 

in classifier training, we employed Docker to create a compatible training environment with 

OpenCV 3.x for HAAR Cascade, chosen for its support of essential training tools. Similarly, 

for both Faster R-CNN and YOLOv8, we employed Conda to simplify the setup process, 

ensuring consistency and efficiency in software across these techniques. This purposeful 

integration of Docker and Conda emphasizes the crucial role of efficient dependency 

management in conducting evaluations of different models. Through this comprehensive 

strategy, the research aims to create a detailed comparative analysis of each method's 

performance, offering valuable insights into their practical utility and efficiency in real-

world applications. 

4.2  Technology-Specific Implementations 

4.2.1  HAAR Cascade Classifier 

To adapt our dataset for HAAR Cascade training, we first converted the annotations from 

their original YOLO format, which uses normalized coordinates, into a form suitable for 

HAAR Cascade. This adaptation was crucial for creating a training dataset that HAAR 

Cascade could effectively learn from. Subsequently, the dataset was organized into positive 



 

 

samples (images containing the objects of interest) and negative samples (images without 

the objects), a necessary step for HAAR training which enables the generation of .vec files 

for positive samples and the use of plain images for negative samples. The creation of these 

files is essential for training the classifier to distinguish between objects of interest and the 

background. 

Leveraging Docker containers was necessary in this process, providing a consistent and 

controlled environment that mitigated potential issues arising from different legacy OpenCV 

versions. This approach ensured the efficiency and effectiveness of the HAAR Cascade 

training process, allowing us to maintain a stable setup across various computational 

environments and OpenCV configurations. 

4.2.2  Faster R-CNN 

For the implementation of Faster R-CNN, we adapted its architecture to the specific demands 

of electrical diagram object detection. This adaptation involved customizing the Faster R-

CNN ResNet50 FPN V2 architecture, leveraging ResNet50's deep learning capabilities and 

FPN V2's efficient handling of varying object scales. The dataset's annotations, initially 

formatted for YOLO, were converted into the XML format required by Faster R-CNN. This 

conversion was accomplished using a customized script, which streamlined the process 

without necessitating further adjustments to individual annotations. The Conda environment 

was helpful in this process, providing a seamless setup and ensuring consistency across the 

software stack. 

4.2.3  YOLOv8 

Given the dataset was already formatted in YOLO annotations, no additional adjustments 

were necessary. As it is with Faster R-CNN there was no need for separating the dataset into 

different categories for objects of interest and background or negative samples, as YOLO 

inherently distinguishes between annotated objects and the rest of the image as background. 

Including images without any objects (or annotations) as explicit negative samples can 

enhance the model's accuracy by teaching it to identify scenes without target objects, thereby 



 

 

reducing false positives. However, such negative samples should be used sparingly, 

maintaining a balance to prevent bias in the model training process. 

4.3  Model Training 

This passage provides a more detailed overview of the training and ongoing refinement 

processes for three distinct object detection methods (Haar Cascade, Faster R-CNN, and 

YOLOv8) as applied to electrical diagram datasets. It delves into the tailored training 

approaches, the optimization of parameters, and the iterative testing phases specific to each 

method, emphasizing the critical role of continuous refinement based on testing results and 

evaluation metrics. 

4.3.1  Haar Cascade Classifier  

In training a cascade classifier for object detection with OpenCV 3.x, two critical steps were 

executed. The first involved using opencv_createsamples to generate a vector file from 

positive samples—images featuring the target object. This required specifying an input file 

(positives.txt), the quantity of samples (515), and their dimensions (24x24 pixels), 

resulting in positives.vec for the next phase. Notably, larger sample dimensions induced 

core dump errors due to limited RAM, resolved by reducing sample size or alternatively, by 

increasing RAM to avoid compromising model accuracy. Processing images in smaller 

batches was also recommended to manage memory usage efficiently. 

opencv_createsamples -info positives.txt -num 515 -w 24 -h 24 -vec 

positives.vec 

Subsequently, opencv_traincascade was utilized for training, leveraging both the vector file 

and negative samples—images absent of the target. The command: 

opencv_traincascade -data ./ -vec ./positives.vec -bg ./negatives.txt -

numPos 500 -numNeg 122 -numStages 10 -w 24 -h 24 



 

 

included parameters for the save directory, positive vector file, negative sample list, number 

of positive (500) and negative (122) samples, training stages (10), and sample dimensions, 

aligning with the initial phase. Adjusting training stages impacted model accuracy, 

processing time, and false positive rates, highlighting the balance between efficiency and 

performance. 

This methodological approach stresses the importance of parameter optimization, reflecting 

the challenge of training in resource-limited environments and suggesting solutions to 

maintain training quality without compromising model integrity. 

4.3.2  Faster R-CNN 

In this study, the Faster R-CNN model was enhanced by integrating the ResNet50 FPN V2 

architecture, leveraging the principles of transfer learning to augment the model's object 

detection capabilities. Transfer learning, as described by Pan and Yang (2010), involves 

applying knowledge gained from one domain to a different but related problem domain. This 

approach significantly streamlines the training process by using a model pre-trained on a 

large dataset, such as ImageNet, thus enabling the adaptation of the model to our specific 

object detection tasks with less computational overhead and data requirement. 

The employment of the COCO dataset further exemplifies the application of transfer 

learning, wherein the model, through exposure to a diverse set of annotated images, benefits 

from the wide-ranging visual information, thereby enhancing its detection performance 

across various object types and scenarios (Lin et al., 2014). 

Following the integration of the ResNet50 FPN V2 architecture and the COCO dataset, the 

actual implementation of the model training was executed via a specific command-line 

instruction. The command: 

python train.py --model fasterrcnn_resnet50_fpn_v2 --config 

data_configs/diagrams.yaml --epochs 10 --project-name 

fasterrcnn_resnet50_fpn_v2_diagrams --use-train-aug --no-mosaic 



 

 

was constructed to define the model architecture (fasterrcnn_resnet50_fpn_v2), specify 

the custom dataset via (--config data_configs/diagrams.yaml) which contained 

instructions of paths to directories and number of classes present, and set the training 

duration (--epochs 10). The epoch count was chosen to grant each model approximately 

the same amount of time for development, ensuring a fair comparison. Using the --use-

train-aug parameter means incorporating variations in the training data through methods 

like rotating, scaling, or cropping images. This enhances the model's robustness by teaching 

it to recognize objects under various conditions, improving its ability to generalize. The --

no-mosaic parameter was used to exclude mosaic augmentation from the training process. 

This decision was made to simplify training and focus on augmentation methods more 

directly beneficial to the specific dataset being used, aiming to improve the model's accuracy 

and computational efficiency by avoiding the complexity mosaic augmentation can 

introduce. 

 

YOLOv8  

During our study on training the YOLOv8 object detection model, we specifically utilized 

Metal Performance Shaders (MPS) on Apple's M1 chip to ensure compatibility and 

performance consistency across different detection methods. Although YOLO models 

typically show enhanced performance on NVIDIA GPUs due to CUDA optimization, the 

utilization of MPS on the M1 chip was essential for achieving a fair comparison within our 

research context, despite the conventional preference for CPU or NVIDIA GPU training in 

other scenarios. This decision allowed us to maintain a balanced evaluation framework for 

the object detection methods under review. 

Training the YOLOv8 model using MPS on the M1 chip, given its optimization for CUDA 

and NVIDIA GPUs, posed certain challenges, especially regarding the model's efficiency 

and accuracy. The training process was initiated by loading a pre-trained yolov8n.pt model, 

aiming to capitalize on the model's pre-existing knowledge base. Our training command, 

adapted for MPS, looked as follows: 



 

 

The command yolo detect train data=dataset.yaml model=yolov8n.pt 

epochs=100 imgsz=640 device=mps was used in our study to train the YOLOv8 model on 

the M1 chip using Metal Performance Shaders (MPS). This section breaks down the 

elements of the command and reflects on the training performance without repeating 

previous information. 

• data=dataset.yaml: Specifies the dataset configuration file, which includes paths 

to the training and validation datasets, class names, and other dataset-related 

parameters. 

• model=yolov8n.pt: Indicates the YOLOv8 Nano model file to be used for training. 

• epochs=100: Sets the number of training cycles through the entire dataset. In this 

case, the model will be trained for 100 cycles, allowing for sufficient learning without 

overfitting. 

• imgsz=640: Defines the input image size as 640x640 pixels, which is a standard size 

for YOLO models that balances between speed and accuracy. 

• device=mps: Directs the training to utilize the MPS backend on the M1 chip, 

optimizing the process for Apple's hardware architecture. 

Training the YOLOv8 model on Apple's M1 chip with MPS showcased the model's 

flexibility across different hardware but also underscored the importance of selecting optimal 

hardware for deep learning. Moreover, leveraging NVIDIA GPUs for training can 

significantly improve performance, enabling the trained models to be efficiently deployed 

even on less powerful devices. This approach not only optimizes the training phase but also 

ensures versatile deployment capabilities across various platforms. Hardware-aware training 

and co-designing model architectures with an understanding of hardware capabilities have 

been shown to further enhance deep learning model performance (Yang et al., 2022; Spoon 

et al., 2021). 



 

 

In conclusion, while training on the M1 chip using MPS offers insights into hardware 

adaptability, using NVIDIA GPUs with deep learning optimizations presents clear 

advantages in terms of efficiency and performance. This is crucial for developing strategies 

to train complex models like YOLOv8 in various computational environments. 

4.4  Evaluation and Comparative Analysis 

This section goes thorough evaluation and comparative analysis of performance metrics 

derived from the application of Haar Cascades, Faster R-CNN, and YOLOv8 on datasets of 

electrical diagrams. It scrutinizes essential metrics including accuracy (precision, recall, F1 

score), processing time, model training duration, model size, and complexity. 

 

Figure 9: Training performance of Faster R-CNN and YOLOv8 on electrical diagram 

datasets. The mAP50 and mAP50-95 scores over epochs illustrate Faster R-CNN's high 

precision and YOLOv8's balance between accuracy and processing speed, highlighting 

fluctuations during training. 

 



 

 

Table 5: Performance Metrics of Haar Cascades, Faster R-CNN, and YOLOv8 in Object 

Detection 
Method Precision/Score Recall/mAP50-

95 
F1 
Score 

Inference 
Time/Image 

Training 
Time 

Model 
Size 

Remarks 

Haar Cascades Precision: 
0.3125 Recall: 1 0.4762 3.576 sec 2 min 44 

sec 4.4K 
Moderate setup 
complexity, 
limited accuracy 

Faster R-CNN mAP50: 0.900 mAP50-95: 
0.492 - 1.34 sec 1.635 hours 173.4 

MB 
High complexity, 
high accuracy 

YOLOv8 mAP50: 0.645 mAP50-95: 
0.421 - - 1.094 hours 6.3 MB 

High efficiency, 
compact size, 
adaptable 

 

In the evaluation of object detection algorithms, Haar Cascade, Faster R-CNN, and YOLOv8 

each present distinct characteristics and constraints. Specifically, Haar Cascade is noted for 

its operational efficiency and low computational requirements. However, it cannot employ 

the mean Average Precision (mAP) as a metric for performance assessment due to it not 

predicting with confidence score and instead just saying if something is there or not without 

saying how sure it is. 

Conversely, object detection models like Faster R-CNN and YOLOv8 rely on mAP as a key 

performance indicator. As illustrated in Figure 9, while Faster R-CNN consistently 

demonstrates high precision in its mAP scores, the YOLOv8's mAP scores, when trained on 

a Metal Performance Shaders (MPS) chip, exhibit an initial phase of stagnation. This plateau 

early in the training suggests an issue with MPS's training optimization for YOLOv8, 

potentially due to the complex nature of the electrical diagram data. It contrasts with the 

behaviour observed when training on a CPU, where YOLOv8 does not exhibit this early 

performance lag, underlining the need for specific tuning or methodological adjustments to 

fully leverage MPS capabilities from the start. 

These models predict bounding boxes and their associated class labels, enabling detailed 

assessments of precision at various confidence levels across different classes. Such 

evaluations are essential for understanding each model's effectiveness in differentiating 

between object classes and accurately localizing objects within images (Mahendrakar, 

Ekblad, Fischer, White, Wilde, Kish, & Silver, 2023). 



 

 

When training on a Metal Performance Shaders (MPS) chip, the distinction among object 

detection methods such as Haar Cascade, Faster R-CNN, and YOLOv8 becomes evident, 

each with its own operational focus. Haar Cascade is noted for its applicability to basic 

detection tasks with its low computational demand. Conversely, Faster R-CNN is tailored 

for tasks that demand greater precision in object detection. YOLOv8 offers a balance 

between detection accuracy and processing speed, making it suitable for various 

applications, including those constrained by computational resources. This comparison 

underscores the unique advantages and applications of each detection method, particularly 

in the context of training on an MPS chip, highlighting their adaptability and performance 

in specific computational environments. 

4.5  Challenges and Solutions 

Throughout the exploration of object detection algorithms applied to electrical diagram 

datasets, this research encountered a range of challenges inherent to the methods utilized: 

Haar Cascade Classifier, Faster R-CNN, and YOLOv8. The methodological accuracy and 

innovative solutions developed in response to these challenges are central to the research 

findings. 

The initial deployment of the Haar Cascade Classifier encountered a core dump error due to 

the dimensional limitations of the .vec file. This issue, along with a high rate of false 

positives—a common problem in object detection tasks—significantly hindered the 

refinement process. To overcome these obstacles, the dimensions for .vec file creation were 

decreased to meet the requirements of the OpenCV tool. Employing OpenCV 3.x tools 

within a Docker container facilitated addressing version incompatibilities, enabling 

successful generation of .xml files. Moreover, adjusting parameters such as scaleFactor and 

minNeighbors led to a notable improvement in detection accuracy. 

The implementation of Faster R-CNN presented the dual challenges of ensuring 

computational efficiency and achieving high precision, despite the model's complexity and 

computational demands. Through hyperparameter tuning and data preparation, the model 

attained mAP scores of 0.900 (mAP50) and 0.492 (mAP50-95), which underscore its 



 

 

precision. However, this came at the cost of increased processing times and model size, 

highlighting its suitability for contexts where computational resources are not a limiting 

factor. 

The performance gap between YOLOv8 and Faster R-CNN, particularly in mAP scores, 

highlights a critical challenge: the impact of training environments on model effectiveness. 

YOLOv8's lower mAP scores, when compared to Faster R-CNN, suggest training on Multi-

Processor Systems (MPS) rather than on NVIDIA GPUs with at least 8GB of memory and 

CUDA support may compromise training efficiency and model accuracy. NVIDIA GPUs 

facilitate faster and more efficient parallel processing crucial for deep learning model 

training. Transitioning YOLOv8's training to the recommended NVIDIA hardware could 

enhance its learning capability, potentially improving accuracy and performance. Once 

trained on the appropriate system, the model can be deployed across various setups, 

maintaining flexibility in application.  

5  Conclusion 

In this thesis, we have explored the significant advancements in object detection 

technologies, focusing on their application within the context of small and medium-sized 

enterprises (SMEs). This investigation reveals how these technologies, which form a crucial 

part of the broader field of computer vision, have evolved to offer remarkable improvements 

in accuracy, efficiency, and the capability for real-time detection. The study delves into 

various methodologies such as Haar Cascades, despite its less advanced nature, Faster R-

CNN, and YOLOv8, emphasizing their respective impacts on operational efficiency and the 

competitive landscape for SMEs. The critical analysis provided aims to guide SMEs in 

selecting appropriate object detection technologies that align with their operational needs 

and resource constraints, acknowledging the challenges posed by complex environments and 

computational demands. 

This research directly addresses the main question regarding the strategic selection and 

implementation of object detection technologies by SMEs. It is evident that the thoughtful 



 

 

integration of these technologies can significantly influence an SME's operational processes 

and market positioning. However, this potential benefit is accompanied by the need for a 

careful approach that considers the balance between technological benefits and the inherent 

limitations of SMEs, such as resource scarcity. Future research directions highlighted in this 

thesis, including the potential integration of Blockchain and Distributed Ledger 

Technologies (DLT) in object detection processes, suggest promising areas that could yield 

substantial benefits for SMEs. These emerging technologies present an opportunity for 

innovative applications and efficiencies that have yet to be fully explored in the SME 

context. 

Furthermore, the contributions of this thesis to the academic and practical understanding of 

object detection technologies in SMEs are manifold. By providing a comprehensive 

comparison of different object detection methods, this work aims to demystify the 

technological landscape for SMEs, enabling them to make informed decisions that best suit 

their specific requirements. The findings underscore the importance of continued research 

and development in this fast-evolving field to ensure that SMEs are equipped to navigate the 

challenges and seize the opportunities presented by digital technologies. 

In summary, as object detection technology continues to advance rapidly, its application in 

SMEs poses unique challenges but also opens avenues for transformative growth and 

innovation. This thesis serves as a resource for SMEs looking to leverage object detection 

technologies, offering insights into the nuances of various methodologies and their practical 

implications. The continuous evolution of this field underscores the need for SMEs to stay 

informed and adaptable, ensuring they can leverage these technologies to enhance their 

operations and competitive advantage in a digitalized market landscape. 
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