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The human motion study, which relies on mathematical and computational

models in general, and multibody dynamic biomechanical models in particular,

has become a subject of many recent researches. The human body model can be

applied to different physical exercises and many important results such as muscle

forces, which are difficult to be measured through practical experiments, can be

obtained easily. In this work, a human skeletal lower limb model consisting of

three bodies is built using the flexible multibody dynamic simulation approach.

The floating frame of reference formulation is used to account for the flexibility in

the bones of the human lower limb model. The main reason of considering the

flexibility  in  the  human  bones  is  to  measure  the  strains  in  the  bone  result  from

different physical exercises. It has been perceived that the bone under strain will

become stronger in order to cope with the exercise. On the other hand, the bone

strength is considered an important factor in reducing the bone fractures.

The simulation approach and model developed in this work are used to measure

the  bone  strain  results  from  applying  raising  the  sole  of  the  foot  exercise.  The

simulation results are compared to the results available in literature. The



comparison shows good agreement. This study sheds the light on the importance

of using the flexible multibody dynamic simulation approach to build human

biomechanical models, which can be used in developing some exercises to

achieve the optimal bone strength.
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NOMENCLATURE

Abbreviations

ADAMS Automatic Dynamic Analysis of Mechanical Systems

CMS Component Mode Synthesis

CT Computerized Tomography

DAE Differential Algebraic Equations

DOF Degree of Freedom

MRI Magnetic Resonance Imaging

VIVO Latin expression refers to experimentation done on a living body

Symbols
iA Transformation matrix of the flexible body i coordinate system
i
θA Matrix results from taking the derivative of the transformation

matrix of the flexible body i coordinate system with respect to the

rotation angle
i
ka Eigenvectors correspond to the eigenvalues of the flexible body i

ijB Boolean transformation matrix defines the vector of element ij nodal

coordinates in terms of the total vector of elastic nodal coordinates

of the flexible body i
i
rB Boolean reference transformation matrix defines the reference

conditions applied to the flexible body i

C Vector of linearly independent constraint equations of the multibody

system
ijC          2 x 2 transformation matrix defines the orientation of the element j

coordinate system with respect to the flexible body i coordinate

system

qC Jacobian matrix

iD Strain-displacement matrix of the flexible body i
iE Symmetric matrix of the elastic coefficients of the flexible body i

ije Vector of the element ij nodal coordinates



ie Vector of the elastic nodal coordinates of the flexible body i
ij
oe Vector of the nodal coordinates of the element ij in the undeformed

state
ij
fe Vector of the nodal coordinates of the element ij in the deformed

state
ie&& Acceleration vector of the elastic nodal coordinates of the flexible

body i
iF External force acting on a flexible body i

I 2 x 2 identity matrix
i
1I Vector defines the moment of the body mass about the axes of the

flexible body i coordinate in the undeformed state

I~ Skew symmetric matrix
iK              Generalized stiffness matrix associated with the generalized

coordinates of the flexible body i
i
ffK Symmetric positive definite stiffness matrix associated with the

generalized elastic coordinates of the flexible body i
i
pK Modal stiffness matrix of the flexible body i

iK̂ Craig-Bampton stiffness transformation matrix of the flexible body i
ik Modal stiffness coefficients of the flexible body i

iM Mass matrix of the flexible body i
i
pM Modal mass matrix of the flexible body i

iM̂ Craig-Bampton mass transformation matrix of the flexible body i

m Number of low frequency mode shapes
im Mass of the flexible body i

dm Number of uncoupled differential equations

im̂ Modal mass coefficients of the flexible body i
i
ffm Constant submatrix of the mass matrix associated with the elastic

flexible body i coordinates



i
RRm Submatrix of the mass matrix associated with the translational

coordinates of the flexible body i coordinate system
i
Rfm Submatrix of the mass matrix represents the coupling between the

flexible body i translational reference motion and the elastic

deformation
i
Rθm Submatrix of the mass matrix represents the coupling between the

flexible body i reference translational and rotational coordinates
i
fθm Submatrix of the mass matrix represents the coupling between the

flexible body i rotational reference motion and the elastic

deformation
i
θθm Constant submatrix of the mass matrix associated with the flexible

body i rotational reference coordinates

ff
im )( θθ Scalar represents the change in the mass moment of inertia of the

flexible body i due to deformation

rf
im )( θθ Scalar represents the change in the mass moment of inertia of the

flexible body i due to deformation

rr
im )( θθ Scalar represents the mass moment of inertia of the flexible body i in

the undeformed state about perpendicular axis to the plane
iN̂ Transformation matrix transforms the modal coordinates of the

Craig-Bampton modes of the flexible body i to an equivalent

orthogonal modal coordinates

n Number of generalized coordinates of the multibody system

bn Total number of the bodies in the planar multibody dynamic system

cn Number of the constraint equations of the multibody system

fn Number of the elastic coordinates of the flexible body i

nn Number of the elastic nodal coordinates of the flexible body i

iO Origin of the flexible body i coordinate system
ijO Origin of the element j coordinate system
iP Arbitrary point on the flexible body i



ijP Arbitrary point on element ij
ip Vector of the modal coordinates of the flexible body i

i
fp Vector of the modal elastic nodal coordinates of the flexible body i

i
rp Vector of the modal reference coordinates of the flexible body i

ip̂ Vector of the modal coordinates of the Craig-Bampton modes of the

flexible body i
i
Cp̂ Vector of modal coordinates of the Craig-Bampton constraint modes

of the flexible body i
i
Np̂ Vector of modal coordinates of the Craig-Bampton fixed boundary

normal modes of the flexible body i
iQ Vector of the generalized elastic and external forces of the flexible

body i
i
eQ Vector of generalized external forces associated with the generalized

coordinates of the flexible body i
i
fQ Vector of generalized external forces associated with elastic

coordinates of the flexible body i
i
RQ Vector of generalized external forces associated with the

translational reference coordinates of the flexible body i
i
vQ Quadratic velocity vector of the flexible body i

i
θQ Vector of generalized external forces associated with the rotational

reference coordinates of the flexible body i

f
i
v )(Q         Quadratic velocity vector associated with the elastic coordinates of

the flexible body i

R
i
v )(Q Quadratic velocity vector associated with the translational reference

coordinates of the flexible body i

θ)( i
vQ Quadratic velocity vector associated with the rotational reference

coordinates of the flexible body i

q Vector of the total multibody system generalized coordinates



iq Generalized coordinates system of the flexible body i

i
fq Vector of elastic coordinates of the flexible body i

i
rq Vector of reference coordinates of the flexible body i

iq& Velocity of the generalized coordinates system of the flexible body i

i
fq& Velocity of the generalized elastic coordinates of the flexible body i

iq&& Acceleration of the generalized elastic coordinates of the flexible

body i
iR Vector of the translation of the origin of the flexible body i

coordinate system with respect to the global coordinate
iR& Vector of the translational velocities of the origin of the flexible

body i with respect to the global coordinate system
i
Pr Position vector of any arbitrary point on the flexible body i with

respect to the global coordinate system
ij
Pr Position vector for any arbitrary point on the element ij with respect

to the global coordinate system
i
Pr&              Velocity vector of any arbitrary point on the flexible body i with

respect to the global coordinate system
i
Pr&&             Acceleration vector of any arbitrary point on the flexible body i with

respect to the global coordinate system
iS Space dependent shape matrix of the flexible body i
ijS Space dependant shape matrix of the element ij

iS~ Constant skew symmetric matrix of the flexible body i
iT Kinetic energy of the flexible body i

t time
iu Position vector of any arbitrary point on the flexible body i with

respect to the body coordinate system
i
fu Deformed position vector of any arbitrary point on the flexible body

i with respect to the body coordinate system



i
ou Undeformed position vector of any arbitrary point on the flexible

body i with respect to the body coordinate system
iju Vector of the assumed displacement field of the nodal coordinates of

the element ij with respect to the flexible body i coordinate system
iV Volume of the flexible body i

i
eWδ        Virtual work of external forces acting on a flexible body i

i
sWδ           Virtual work done by the elastic forces acting on a flexible body i

ijw             Vector of the assumed displacement field of the nodal coordinates of

the element ij with respect to the element ij coordinate system

21XX Global coordinate system

ii
21XX Flexible body i coordinate system

ijij
21 XX Element j coordinate system

Greek Letters
iθ Orientation angle of the flexible body i coordinate  system  with

respect to the global coordinate system
iθ& Angular velocity of the flexible body i coordinate  system  with

respect to the global coordinate system
iρ Density of the flexible body i

i Stress vector of the flexible body i
i Strain vector of the flexible body i

Vector of Lagrange multipliers
i
kω Eigenvalues or natural frequencies associated with each nodal

coordinate of the flexible body i
i Modal transformation matrix
i Modal transformation matrix for the total vector of the generalized

coordinates system of the flexible body i
i Craig-Bampton transformation matrix of the vector of generalized

coordinates system of the flexible body i



i
IC Craig-Bampton transformation matrix of the vector of elastic nodal

coordinates of the flexible body i or the ineterior DOF in the

constraint modes
i
IN Craig-Bampton transformation matrix of the vector of elastic nodal

coordinates of the flexible body i or the ineterior DOF in the normal

modes
iλ Eigenvalues or natural frequencies associated with each modal

coordinate of the Craig-Bampton modes of the flexible body i
i Orthogonal eigenvectors correspond to the eigenvalues associated

with each modal coordinate of the Craig-Bampton modes of the

flexible body i
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1. INTRODUCTION

Multibody dynamic approach is a mathematical tool that can be used to model

different mechanical and structural systems. For instance, such systems included

under the definition of multibody systems comprise robots, manipulators, vehicles

and human skeleton. Figure 1.1 illustrates a general multibody system shown in

abstract form.

External forces

Damper

Joint

Joint

Spring

Body 1
Body 2

Body 3

Body 4

Body 5

Figure 1.1. General multibody system.

As depicted from Figure 1.1, a multibody system consists of several bodies,

which can be rigid, flexible or combination of them. Those bodies are connected

together by means of kinematic joints described by constraint equations. The

forces  applied  over  the  multibody  system  bodies  may  be  a  result  of  springs,

dampers, actuators or any external applied forces such as gravitational forces. The

biomechanical human models are typically more complicated than technical

multibody systems, as they involve a larger variety of joint types and body forms,

complex actuators in the form of muscles, connected groups of bones and



neighbouring soft tissue [1]. Recently, multibody dynamic approach has been

used extensively in modelling human skeleton. Several important results can be

depicted from the human skeleton model. For instance, the internal forces in the

skeleton and muscular reactions. The key issue from using multibody dynamic in

human skeleton modelling is that there are no experimental methodologies

capable of measuring these depicted parameters [2]. In other words, using the

multibody dynamic model of the human skeleton, several important parameters

can be measured, which are of a major importance in many scientific fields such

as, medicine, sports and biomechanical engineering. In this particular study, a part

from human skeleton which is the lower limb shown in Figure 1.2, is modelled

using multibody dynamic approach.

Figure 1.2. Lower limb [3].

It can be noticed from Figure 1.2 that the lower limb consists of several bodies

connected to each other by means of joints, with external forces applied on these

Thigh

Shank

Foot



bodies. Therefore by comparing the lower limb shown in Figure 1.2 with the

general multibody system shown in Figure 1.1, one may notice that the multibody

dynamic approach can be applied to model the lower limb. For simplicity, the

lower limb model will be consisting of three bodies; the thigh, the shank and the

foot. The motivation of this study is to calculate the strains in the lower limb

bones. It has been perceived  that the bone under strain will become stronger in

order to cope with the exercises induced loading. The strength of the bone is

considered an important factor in reducing the risk of bone osteoporotic fracture,

which is mainly, affecting the aged people. Therefore, many sport exercises can

be developed, in order to maintain or increase the bone strength [4]. In order to

calculate the strains in the lower limb bone, the bone has to be modelled as a

flexible body. Many previous studies have been conducted in human skeleton

modelling. In the work of Bei and Fregly (2004) a detailed musculoskeletal

multibody model is created in order to predict muscle forces and contact pressures

simultaneously in a knee joint [5]. In this model, the flexible contact of the joint is

combined  with  the  rigid  body  dynamics  of  two  bones.  Silva et al. [6] have

included the natural boundary conditions for joints in a multibody model in order

to prevent physically unnatural positions of limbs when modelling human

kinematics. Another specified model of a particular area of interest is found in

Reference [7] where muscles are studied. A combined biomechanical model

including three rigid bones and active muscles to simulate real human movements

in a vertical jump is studied in Reference [3]. In order to verify and perform an

inverse dynamical problem, the motion of a limb is captured using cameras [8]. A

number of articles have been published on the analysis of the kinematics and

motion of the entire human body, e.g. [9-11]. The natural coordinates approach

has been applied in many cases when whole human body models are studied.

Kraus et al. [1] have built a human model including over 100 degrees of freedom.

In a model of this size, the number of parameters is high and they need to be

systematically determined. In reference [12], the parameters area studied for the

model applied in a vehicle crash simulation. Crash test models have been under

intensive research and many studies are related to this field. In multibody

application topics related to the computational techniques are often important and

interesting. In Reference [13], the authors study the problem related to the



solution of differential-algebraic equations (DAE) in a multibody model defining

an android in a crash test. In all of the previous studies, the bones were modelled

as rigid bodies. Therefore, these models can not be used to calculate the bone

strains. In this study, the lower limb bones are modelled as flexible bodies.

Flexibility in multibody dynamic models can be taken into account through

several ways. In this study, floating frame of reference [14-16] is used to account

for the flexibility in the lower limb model.

1.1 Scope of the Work

Many parameters in the human body such as muscle forces and their net moments

force about the anatomical joints are difficult to be measured through real

experiments. Thus, using computer tools to model the human body becomes an

important issue. In this work, a skeletal lower limb is modelled using the flexible

multibody dynamic approach. The flexibility has been taken into account in order

to measure the strains in the bone, which play a major role in strengthening the

bones. The strength of the bone is considered an important resistant factor against

the  metabolic  bone  diseases.  The  main  purpose  of  this  work  is  to  show  the

capability of the flexible multibody dynamic approach in modelling the human

skeletal through measuring the strains in the bone.  Not all the important issues in

human skeletal modelling are covered in this work. Aspects, such as neural

control system or muscle tendons modelling are not addressed here, as they have

negligible effects on the main purpose of this work.



2. FLOATING FRAME OF REFERENCE FORMULATION

In theory all the bodies are flexible and have infinite number of degree of

freedom. However in practice there are number of ways to account for flexibility.

In this chapter, a method to take into account the flexibility of the bodies in

multibody dynamic system is explained in details. This method is called the

floating frame of reference.

In the following sections of this chapter a detailed formulation of the equations of

motion  based  on  the  floating  frame  of  reference  for  a  planar  flexible  body  is

presented. For a better accuracy in modelling the elastic deformation in the

flexible body, the finite element method is used in the floating frame of reference

formulation. This method that implies discretization the flexible body into

elements and each element consists of number of nodes is explained in later

sections in this chapter. Due to the high number of elastic coordinates resulted

from discretization of the flexible body into finite number of elements, modal

reduction method is presented at the end of this chapter to reduce the number of

the elastic coordinates.

2.1 Description of Kinematics

The floating frame of reference formulation is based on the use of two coordinate

systems; reference and elastic coordinate systems. Figure 2.1 shows the floating

frame of reference coordinate systems, for a planar flexible body i.



Figure 2.1. Coordinates for a planar flexible body i in the floating frame of
reference formulation.

The generalized coordinates system of the flexible body i shown in the previous

figure can be expressed as follows:

[ ]i
f

i
r

i qqq =                                      (2.1)

where i
rq  is the vector of reference coordinates, which describes the translation

and rotation of the flexible body i coordinate system ii
21XX  with  respect  to  the

global coordinate system 21XX and i
fq is the vector of elastic coordinates, which

describes the elastic deformation of the flexible body i with respect to the body

coordinate system. The vector i
rq can be expressed as follows:

[ ]Tiii
r θRq =                (2.2)

where iR is the vector that describes the translation of the origin iO of the flexible

body i coordinate system with respect to the global coordinate system and iθ is the

i
1X

i
2X

iu i
fu

i
ou

i
Pr

iR

1X

2X

iO

iP



orientation angle of the flexible body i coordinate  system  with  respect  to  the

global coordinate system. The vector i
fq  in Eq 2.1 can be expressed as follows:

[ ]Ti
fn

i
f

i
f

i
f f

qqqq L21=                (2.3)

where fn is the number of the elastic coordinates. The vector iu shown in the

previous figure, describes the position of any arbitrary point iP on the flexible

body i with respect to the body coordinate system. The vector can be expressed as

follows:
i
f

i
o

i uuu +=                                                                                                       (2.4)

where i
ou  is the vector describes the undeformed position of point iP with respect

to the body coordinate system and i
fu is  the  vector  describes  the  deformed

position of point iP with respect to the body coordinate system. The vector

i
fu can be expressed by means of shape function matrix and elastic coordinates as

follows:
i
f

i
f qSu =                                                                                                           (2.5)

where iS is a space dependent shape matrix, which identify the shape of the

deformation for each point in the flexible body i. Substituting Eq 2.5 into Eq 2.4

yields to the following equation:
i
f

ii
o

i qSuu +=                                                                                                   (2.6)

The vector i
Pr  shown in the previous figure, describes the position of point iP with

respect to the global coordinate system. The vector can be expressed in the

following equation:

)( i
f

ii
o

iiiiii
P qSuARuARr ++=+=                                                              (2.7)

where iA is the transformation matrix, which describes the rotation of the flexible

body i coordinate system with respect to the global coordinate system. It can be

expressed as follows:








 −
= ii

ii
i

θθ
θθ

cossin
sincosA                                                                                      (2.8)



Description of Velocity

In order to get the velocity equations, Eq 2.7 has to be differentiated with respect

to the time. This yields to the velocity vector of any arbitrary point on the flexible

body i with  respect  to  the  global  coordinate  system,  which  can  be  expressed  as

follows:
iiiiii

P uAuARr &&&& ++=                                                                                       (2.9)

where iR& is the vector of translational velocities of the origin iO of the flexible

body i with respect to the global coordinate system and iu& can be obtained by

differentiating Eq 2.6 with respect to the time. This yields to the following

equation:
i
f

ii qSu && =                                                                                                          (2.10)

where i
fq& is the velocity of the generalized elastic coordinates. One may notice

here, that differentiating the vector i
ou with respect to the time, yields to zero as the

vector is constant. The matrix iA& in Eq 2.9 can be expressed as follows:
iiii θθ

&& SAA =                                                                                                     (2.11)

where iθ& is the angular velocity of the flexible body i coordinate system with

respect to the global coordinate system and i
θA  is  the  matrix  results  from taking

the derivative of the transformation matrix described in Eq 2.8 with respect to the

rotation angle iθ . The matrix can be expressed as follows:










−
−−

= ii

ii
i

θθ
θθ

θ sincos
cossinA                                                                                (2.12)

Subsisting Eq 2.10 into Eq 2.9 yields to the following equation:
i
f

iiiiii
P qSAuARr &&&& ++=                                                                                 (2.13)

The preceding equation can be simplified for later derivation purpose, by

rewriting the central term on the right hand side as follows:
iiii θ&& BuA =                                                                                                      (2.14)

where iB can be expressed as follows:
iii uAB θ=                                                                                                         (2.15)

Substituting Eq 2.14 into Eq 2.13 yields to the following equation:



i
f

iiiiii
P qSABRr &&&& ++= θ                                                                                 (2.16)

The velocity vector defined in the preceding equation can be described in a

partitioned form as follows:

[ ]



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









=
i
f

i

i

iiii
P

q

R
SABIr

&

&

&

& θ                                                                              (2.17)

where I is the 2 x 2 identity matrix. Equation 2.17 can be also expressed as

follows:
iii

P qLr && =                                                                                                           (2.18)

where iq& is the velocity of the generalized coordinates system of the flexible body

i and iL is a matrix which can be expressed as follows:

[ ]iiii SABIL =                                                                                         (2.19)

Description of Acceleration

Recalling back Eq 2.18, and differentiating it with respect to time, the

acceleration of point iP with respect to the global coordinate system can be

expressed as follows:
iiiii

P qLqLr &&&&&& +=                                                                                                (2.20)

where iq&& is the acceleration of the generalized elastic coordinates and iL& can be

expressed as follows:

[ ]iiii SAB0L &&& =                                                                                         (2.21)

where 0 is a 2 x 2 zero matrix and iB& can be obtained by differentiating Eq 2.15

with respect to the time which yields to the following equation:
i
f

iiiiii qSAuAB &&&
θθ +−=                                                                                  (2.22)

2.2 Kinematic Constraints

Multibody dynamic system consists of several bodies connected to each other by

means of joints. These joints restrict the system mobility because the motion of

different bodies is no longer independent. Consequently, the movement for the

bodies  in  multibody  dynamic  system  are  related  to  each  other  by  means  of



constraints equations. Constraints equations can be taken into account in the

equations of motion in multibody dynamic system using two techniques;

Embedding and Augmented technique. In this study, the kinematic constraint

equations are taken into account using augmented technique. Augmented

equations of motion formulation are based on the use of Lagrangian multipliers.

The kinematic constraint equations can be expressed in the general form as

follows:

0),( =tqC                                                                                                         (2.23)

where q is the vector of the total multibody system generalized coordinates, t is the

time and C is the vector of linearly independent constraint equations of the

multibody  system.  The  number  of  degree  of  freedom  (DOF) of a multibody

system which is equal to the independent generalized coordinates can be

expressed as follows:

=− cnn DOF                                                                                                   (2.24)

where n is the number of generalized coordinates of the multibody system and

cn is the number of the constraint equations of the system. Applying a virtual

displacement to the kinematic constraint equations expressed in Eq 2.23 leads to

the following equation:

0=qCqδ                                                                                                           (2.25)

where qC is the jacobian matrix. The jacobian matrix has )x( nnc dimension.

Consequently, the jacobian matrix has a full row rank. Jacobian matrix can be

obtained by differentiating the algebraic constraint equations with respect to the

generalized coordinates of the multibody system. In general it can be expressed as

follows:
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2.3 Description of Inertia

The mass matrix of the flexible body i shown in Figure 2.1 can be defined using

different components as the case in rigid body. The mass matrix can be expressed

as follows:

















=
i
ff

i
f
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where the term i
RRm  represents the mass matrix associated with the translational

coordinates of the flexible body i coordinate system. It can be expressed as

follows:
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where I is a 2 x 2 identity matrix, iρ  is the density of the flexible body i, iV is the

volume of the flexible body i and im is the mass of the flexible body i. The term
i
Rθm which represents the coupling between the flexible body i reference

translational and rotational coordinates can be expressed as follows:

[ ]i
f

iii
R qSIAm += 1θθ                                                                                     (2.29)

where the vector i
1I defines the moment of the body mass about the axes of the

body coordinate in the undeformed state. Consequently, the vector i
1I will be equal

to zero in case the origin of the body coordinate is initially attached to the center

of the mass of the body. The vector i
1I can be expressed as follows:

∫=
iV

ii
o

ii dVuI ρ1                                                                                                 (2.30)

In Eq 2.29 the vector i
f

iqS represents the change in the moment of the mass due to

the deformation. In which the matrix iS can be written as follows:

∫=
iV

ii
o

ii dVuS ρ                                                                                                (2.31)

The term i
Rfm which represents the coupling between the translational reference

motion and the elastic deformation, can be expressed as follows:



iii
Rf SAm =                                                                                                      (2.32)

The term i
fθm which represents the coupling between the rotational reference

motion and the elastic deformation, can be expressed as follows:

∫ +=
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where I~ is a skew symmetric matrix which can be identified as follows:
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And iS~ is a constant skew symmetric matrix identified as follows:
iiiT

V
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i

SISS ~~
∫= ρ                                                                                          (2.35)

One may note that i
fθm consists of two parts;  the first  part  is  constant,  while the

second one depends on the elastic coordinates of the flexible body i.

The term i
ffm which is associated with the flexible body i coordinates  is  a

constant matrix. The matrix can be defined as follows:

∫=
iV

iiiTii
ff dVSSm ρ                                                                                         (2.36)

The term i
θθm consists of summation of three scalars identified as follows:
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The first scalar is rr
im )( θθ represents the mass moment of inertia of the flexible

body i,  in  the  undeformed  state  about  perpendicular  axis  to  the  plane.  It  can  be

identified as follows:
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The last two scalars rf
im )( θθ and ff

im )( θθ represent the change in the mass moment

of inertia of the flexible body i due to deformation. They can be identified

respectively as follows:
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2.4 Generalized Forces

The generalized forces in the floating frame of reference formulation are divided

into  two parts;  the  first  part  is  the  generalized  external  forces,  while  the  second

part is the generalized elastic forces. In the Figure 2.2, a flexible body i is

subjected to an external force iF acting on an arbitrary point iP on the body.

Figure 2.2. Generalized forces in the floating frame of reference formulation.

Generalized External Forces

The vector of an external force iF acting on an arbitrary point iP on the flexible

body i shown in Figure 2.2, can be constant, spring, damping or variable force, or

a combination of all them. The virtual work of external forces can be expressed as

follows:
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where i
eQ is The vector of generalized external forces associated with the

generalized coordinates of the flexible body i. The vector can be expressed as

follows:

[ ]iT
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i
e QQQQ θ=                                                                                  (2.42)

where i
RQ is the vector of generalized external forces associated with the

translational reference coordinates of the flexible body i.  The  vector  can  be

expressed as follows:
iTiT

R FQ =                                                                                                          (2.43)

The middle component at the middle on the right hand side of Eq 2.42, is the

vector of generalized external forces associated with the rotational reference

coordinate of the flexible body i. The vector can be expressed as follows:
iiTiT BFQ =θ                                                                                                       (2.44)

The last component on the right hand side in Eq 2.42, is the vector of generalized

external forces associated with elastic coordinates of the flexible body i. The

vector can be expressed as follows:
iiiTiT

f SAFQ =                                                                                                   (2.45)

Generalized Elastic Forces

It is important to note the difference between the virtual work done by the external

forces and the elastic forces on the flexible body i. It has been noticed previously

from Eq 2.40 that the virtual work done by external force acting on a flexible

body i is associated with the body generalized coordinates. Consequently, the

external force applied to the flexible body i, results with a translational or

rotational displacement, or both of them, which are associated with reference

coordinates of the flexible body i.  Those  types  of  displacement  are  called  rigid

body motion, as the flexibility of the body is not taken into account. In addition

the external force applied to the flexible body i results with an elastic linear

deformation associated with the generalized elastic coordinates of the flexible

body i. Such deformation affects the shape of the flexible body. It should be

mentioned here that this type of deformation due to the body flexibility, may



result with regardless to the existence of external force applied on the body. For

example,  the  elastic  deformation  of  a  free  rotating  beam,  when  the  effect  of

gravity forces is neglected [17]. The virtual work done by the elastic forces can be

expressed as follows:

∫−=
iV

iiiTi
s dVW δδ                                                                                        (2.46)

where i is the stress vector and i  is the strain vector. The strain vector can be as

follows:
i
f

ii uD=                                                                                                          (2.47)

where iD is the strain-displacement matrix, which is a matrix whose components

are the derivative of the shape functions with respect to the flexible body i axes.

Substituting Eq 2.5 into Eq 2.47, in order to describe the strain vector in terms of

the generalized elastic coordinates of the flexible body i, yields to the following

equation:
i
f

iii qSD=                                                                                                       (2.48)

Assuming that the material of the flexible body i is a linear isotropic, Hooke’s law

which relate the stress and strain by the following linear equation can be applied

as follows:
iii E=                                                                                                            (2.49)

where iE is the symmetric matrix of the elastic coefficients. Substituting Eq 2.48

into Eq 2.49 yields to the following equation:
i
f

iiii qSDE=                                                                                                   (2.50)

Substituting Eq 2.48 and Eq 2.50 into Eq 2.46, yields to the following equation:

∫−=
iV

ii
f

iiiTiiiT
f

i
s dVqSDESDqW δδ )(                                                             (2.51)

Rearranging the preceding equation, using the symmetrical property of elastic

coefficients matrix and the fact that the elastic coordinates of the flexible body i

depends only on time, yields to the following equation:
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The preceding equation can be written as follows:
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where i
ffK is  the symmetric positive definite stiffness matrix associated with the

generalized elastic coordinates of the flexible body i. It can be defined from Eq

2.52 as follows:

∫=
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The virtual work described in Eq 2.53 can be written in a partitioned form as

follows:
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One may notice from the previous equation, that the generalized stiffness matrix

associated with the generalized coordinates of the flexible body i can be defined

as follows:
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It is shown clearly from the previous equation that the virtual work of elastic

forces due to the flexibility of the body i, is associated only with the generalized

elastic coordinates of the flexible body i.

2.5 Quadratic Velocity Vector

The quadratic velocity vector of the flexible body i has three components. The

vector can be expressed as follows:
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The first component is associated with the translational reference coordinates of

the flexible body i. It defines the coriolis and centrifugal forces associated with

translational reference coordinates. It can be expressed as follows:
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The  second  component  is  associated  with  the  rotational  reference  coordinate  of

the flexible body i. It defines the coriolis forces associated with the rotational

reference coordinate. It can be identified as follows:
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where i
oI is identified as follows:
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The last component is associated with the elastic coordinates of the flexible body

i. It defines the centrifugal and coriolis forces associated with the elastic degrees

of freedom of the body i.  It can be expressed as follows:
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2.6 Reference Conditions

In order to define a unique elastic displacement field with respect to the body

coordinate system, the flexible body has to be modelled in such a way that the

rigid body modes have be eliminated. To this end a set of reference conditions

correspond to the selected model have to be applied on the elastic coordinates of

the flexible body. The set of the reference conditions has to be chosen carefully as

it defines the nature of the flexible body coordinate system [17, 18]. For example,

the simply supported and free-free reference conditions define a floating frame

body coordinate system, the origin of which is not rigidly attached to a material

point  of  the  flexible  body  beam  model.  However,  the  two  cantilever  beams

reference conditions, define a body fixed coordinate system, the origin of which is

rigidly attached to the geometric center of the beam in the undeformed state. The

reference conditions can be applied by means of a constant matrix called Boolean

reference transformation matrix, whose elements are either zeros or ones. The

function of this matrix is to select the elastic coordinates, where the reference

conditions should be applied. One may notice that Eq 2.7 includes rigid body

modes. Thus, to eliminate those modes, a set of reference conditions have to be

applied. In general, Eq 2.7 can be rewritten after applying the reference conditions

as follows:
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where i
rB is the Boolean reference transformation matrix defined by Shabana in

Reference [14].

2.7 Equations of Motion

After formulating the mass matrix, the jacobian matrix, the stiffness matrix, the

vector of the external generalized forces and the vector of the quadratic velocity,

the equations of motion can be formulated using the augmented technique based

on using Lagrange multiplies. For a planar flexible body i in the multibody

dynamic system, Lagrange equation of motion can be expressed as follows:
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where iT is the kinetic energy of the flexible body i,  is the vector of Lagrange

multipliers and iQ is the vector of the generalized elastic and external forces. The

vector can be expressed as follows:
i
e

iii QqKQ +−=                                                                                               (2.64)

The first two terms on the left hand side of Eq 2.63 can be defined as follows:
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Substituting Eq 2.64 and Eq 2.65 into Eq 2.63 yields to the following Lagrange

equation of motion:
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where bn is the total number of the bodies in the planar multibody dynamic

system. The previous equation can be expressed in a partitioned form as follows:
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Equation 2.66 is  a  system  of  second  order  differential  equations  that  has

)( cnn + number of unknowns while the number of equations is n. Therefore,

additional kinematic constraint algebraic equations describing the joints between

the bodies in the system are added. Those equations have to be satisfied at all

times during the motion. The addition of those constraint equations leads to the

following set of DAE:
i
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T
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iiii QQCqKqM
q

+=++&& bni ,...,2,1=                                          (2.68)

0qC =),( ti

2.8 Finite Element Assembling Procedure

Finite element procedure is used in the floating frame of reference formulation to

describe the elastic deformation of the flexible body with increased accuracy.

Moreover, exact modelling of rigid body motion associated with large translation

and rotation can be obtained, while infinitesimal rotations are used as nodal

coordinates. In the finite element floating frame of reference, the flexible body is

discretized  to  a  finite  number  of  elements.  Each  element  consists  of  number  of

nodes results from discretization, which defines the elastic deformation of the

element. The position of each element is defined with respect to the body

coordinate system using element coordinate system. The elastic deformation of

each element is defined using nodal coordinates and space dependant element

shape matrix. The nodal coordinates for each element are identified in terms of the

total nodal coordinates of the flexible body using Boolean transformation matrix.

Reference conditions are applied at the boundary nodes of the flexible body in

order to eliminate the rigid body modes. For more convenience, Figure 2.3 shows

the coordinate systems for a planar flexible body i in finite element floating frame

of reference.



Figure 2.3. Finite element floating frame of reference coordinates.

It can be noticed from Figure 2.3 that the flexible body i has been discretized to a

finite number of elements. The origin ijO of the element j coordinate system
ijij
21 XX is rigidly attached to a point on the element. While on the other hand, the

origin iO of the flexible body i coordinate system ii
21XX is  not necessarily has to

be  rigidly  attached  to  a  point  on  the  flexible  body.  All  the  positions  of  the

elements  have  to  be  defined  with  respect  to  the  body  coordinate  system.

Therefore, it serves as a reference for all elements and expresses the connectivity

between them. The orientation of the flexible body i coordinate system is defined

with  respect  to  the  global  coordinate  system  using  the  transformation  matrix

defined in Eq 2.8. In the finite element floating frame of reference assembling

procedure two constant mapping matrices are needed to be identified. Those

matrices do not change and are kept constant during the simulation. The first

matrix  is  a  2  x  2  transformation  matrix  used  to  define  the  orientation  of  the

element j coordinate system with respect to the flexible body i coordinate system.

The matrix can be expressed as follows:
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where the subscript ij refers to the element j in the flexible body i and ijβ  is the

orientation  angle  of  the  element j coordinate system with respect to the flexible

body i coordinate system. The second matrix is called Boolean mapping

transformation matrix, whose elements are either zeros or ones. This matrix is

used to define the vector of element ij nodal  coordinates  in  terms  of  the  total

vector of elastic nodal coordinates of the flexible body i as follows:
iTijij eBe =                                                                                                        (2.70)

where ije is the vector of the element ij nodal coordinates, ijB is the Boolean

mapping transformation matrix which is defined by Shabana in Reference [14]

and ie is  the  vector  of  the  total  elastic  nodal  coordinates  of  the  flexible  body i.

Recalling Eq 2.70 the  vector  of  nodal  coordinates  of  the  element ij can be

expressed as follows:
ij
f

ij
o

ij eee +=                                                                                                  (2.71)

where ij
oe defines the nodal coordinates of the element ij in the undeformed state

and ij
fe defines the elastic deformation of the nodal coordinates of the element ij .

The assumed displacement field of the nodal coordinates of the element ij can be

expressed in the element ij coordinate system using the shape function of the

element ij as follows:

ijijij eSw =                                                                                                         (2.72)

where ijS is  the  space  dependant  shape  matrix  of  the  element ij . The assumed

displacement field of the nodal coordinates of the element ij defined in the

previous equation can be expressed with respect to the flexible body i coordinate

system as follows:
ijijij wCu =                                                                                                        (2.73)

where iju is the vector of the assumed displacement field of the nodal coordinates

of the element ij defined with respect to the flexible body i coordinate system.

Substituting Eq 2.72 and Eq 2.70 into Eq 2.73 yields to the following equation:
iTijijijij eBSCu =              (2.74)



The preceding equation can be written in a more compact form as follows:
iTijij eNu =                                                                                                        (2.75)

where ijN can be described from Eq 2.74 as follows:
ijijijij BSCN =                                                                                                    (2.76)

The vector describes the position of any arbitrary point ijP on the element ij can

be expressed with respect to the global coordinate system using the two constant

mapping matrices as follows:
iijiiij

P eNARr +=                                                                                              (2.77)

where ij
Pr is the vector describes the location for any arbitrary point ijP on the

element ij with respect to the global coordinate system.

2.9 Modal Reduction

Using finite element method in the floating frame of reference formulation results

with a large number of generalized elastic nodal coordinates of the flexible body.

This is due to the flexible body discretization into finite number of elements

which leads to a large number of nodal degrees of freedom. Thus, describing the

deformation of the body, requires describing the deformation for each node,

which leads to a long and expensive computation. As a result, a modal reduction

method can be adopted to reduce the generalized elastic nodal coordinates. The

reduction is achieved by eliminating the high natural frequency modes which may

carry little energy. Removing those types of vibration modes associated with high

natural frequencies prevent the body from adopting the particular deformation

shape associated with this mode. Vibration modes with high natural frequencies

have  deformation  shape,  which  are  not  important  and  interesting  in  practice,  so

eliminating them will not affect considerably the solution. Modal reduction offers

an efficient way to reduce the number of generalized elastic nodal coordinates

with a minimum effect in accuracy of the solution. Modal reduction can be carried

out by transferring from the physical nodal coordinate system of the deformable

body into the modal elastic coordinates. This can be accomplished by modal

transformation. Modal transformation can be adopted using the following two

steps. First step, is to solve the eigenvalue equation derived by assuming the



flexible body i vibrating freely about a reference configuration. The equation is

defined as follows:

0eKem =+ ii
ff

ii
ff &&                                                                                            (2.78)

where ie&& is the acceleration of the elastic nodal coordinates of the flexible body i.

A trial solution for the preceding equation which has been suggested by (Clough

and Penzien 1975; Shabana 1997) can be defined as follows:
tjii e ωae =                                                                                                         (2.79)

Substituting the preceding equation into Eq 2.78 yields to the following equation:

[ ] 0amK =− i
k

i
ff

i
k

i
ff

2)(ω nnk ,...,2,1=                                                   (2.80)

The preceding equation is called the standard eigenvalue problem. Where nn is the

number of the elastic nodal coordinates of the flexible body i resulted from

discretization, i
kω is a set of eigenvalues or natural frequencies associated with

each nodal coordinate of the flexible body i and i
ka are the corresponding

eigenvectors for the eigenvalues. The eigenvectors are sometimes called as the

normal modes or the mode shapes. The second step is to eliminate the modes

associated with high natural frequencies, in addition to the rigid boy modes. The

modes that have zero natural frequencies and thus zero eigenvalues are called

rigid  body modes.  As  a  result  of  the  second step,  a  reduced  model  with m  low

frequency mode shapes can be obtained. It is important to note that the number of

mode shapes results after elimination m is much less than the number of the nodal

coordinates nn )( nnm << . After choosing the mode shapes best describing the

deformation of the body i, a coordinate transformation from the physical nodal

coordinates to the modal elastic nodal coordinates can be accomplished as

follows:
i
f

ii pe ≈                                                                                                          (2.81)

where i
fp is the vector of the modal elastic nodal coordinates of the flexible body i

and i is the modal transformation matrix whose columns are the low frequency

m  mode shapes. The matrix can be expressed as follows:
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where i
ma represents the mode shape correspond to the low natural frequency i

mω .

The vector of the generalized coordinates system of the flexible body i can be

expressed by means of the modal coordinate system as follows:
iii pq ≈                                                                                                           (2.83)

 where ip is the vector of the modal coordinates of the flexible body i and i is

the modal transformation matrix for the total vector of the generalized coordinates

system of the flexible body i. The preceding equation can be rewritten in a

partitioned form as follows:
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where i
rp is the vector of the modal reference coordinates. It can be noticed from

the previous equation that the reference modal coordinates are equal to the

physical reference coordinates.

Orthogonality of the Mode Shapes

The orthogonality of the mode shapes which was proven by Shabana [15], is an

important property. This property can be used to obtain a diagonal mass and

stiffness matrices which yield to dm number of uncoupled differential equations.

To this end, Eq 2.68 can be rewritten using the vector of the modal coordinates of

the flexible body i as follows:
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Premultiplying the preceding equation by iT yields to the following equation:
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where iiiT M can be expressed as follows:
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where i
pM is the modal mass matrix and im̂ are the modal mass coefficients. The

matrix iiiT K can be expressed as follows:
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where i
pK is called the modal stiffness matrix and ik are the modal stiffness

coefficients. It can be noticed from Eq 2.87 and Eq 2.88 that the modal mass and

stiffness matrices are diagonal as a result of the orthogonality property of the

mode shapes. The vectors on the right hand side of the Eq 2.86 can be expressed

respectively as follows:
i
e

iTi
e QQ =                                                                                                      (2.89)

i
v

iTi
v QQ =              (2.90)

It is important to note from Eq 2.86 that the jacobian matrix is evaluated by

differentiating the constraint equations with respect to the modal coordinates.

However, it is more convenient to differentiate the constraint equations with

respect to the physical coordinates. This can be accomplished using the following

relation:

i
i

i

ii ii C
p
q

q
C

p
CC pp =

∂
∂

∂
∂

=
∂
∂

=                                                                           (2.91)

Therefore the jacobian matrices associated with the modal reference and elastic

nodal coordinates can be expressed as follows:

i
r

i
r qp CC =                                                                                                          (2.92)



i
ii

f
CC ep =                                                                                                     (2.93)

Solving Eq 2.86 yields to a number m of modal elastic nodal coordinates.

Substituting the solution into Eq 2.81 yields to the physical elastic nodal

coordinates which describe the deformation of the body i.

Craig-Bampton Method

The modal transformation matrix expressed in Eq 2.82 contains the selected mode

shapes that best describe the deformation. However, to obtain acceptable dynamic

accuracy, an excessive number of mode shapes may be still required. As a result,

the modal reduction may lose its importance in decreasing the number of

deformation mode shapes which are not interesting. To overcome this problem,

one of the component mode synthesis (CMS) methods, which has been widely

used and is available in a number of commercial finite element codes such as

ANSYS [19] can be applied. This method is called Craig-Bampton method [20].

This method can be applied by defining two sets of modes known as Craig-

Bampton modes. The first set is called constraint modes, which can be obtained

by giving each boundary DOF a unit displacement while holding all other

boundary DOF fixed. These modes span all possible motions of the boundary

DOF. To illustrate the methodology of the constraint modes, Figure 2.4 shows an

example of two different constraint modes for a beam that has attachment points

at the two ends.

Figure 2.4. Craig-Bampton constraint modes.

The previous figure on the left, shows the constraint mode corresponds to a unit

translation, while the figure on the right, shows the constraint mode corresponds

to a unit rotation. The second set is called fixed boundary normal modes, which

can be obtained by fixing the boundary DOF and computing an eigensolution.

These modes span all possible motions of the interior DOF. To illustrate the

X X

YY



methodology of the fixed boundary normal modes, Figure 2.5 shows  two

different fixed boundary normal modes for a beam that has attachment points at

the two ends.

Figure 2.5. Craig-Bampton fixed boundary normal modes.

As a result of defining the previous two sets of modes, a new set of coordinates,

called modal coordinates of the Craig-Bampton modes, is formed. Modal

coordinates of the Craig-Bampton modes can be defined by means of the vector of

generalized coordinates system of the flexible body i as follows:
iii pq ˆ=                                                                                                           (2.94)

where i is the Craig-Bampton transformation matrix of the vector of generalized

coordinates system of the flexible body i and ip̂ is the vector of modal coordinates

of the Craig-Bampton modes. The preceding equation can be rewritten in a more

explicit form as follows:
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where i
IC  is the Craig-Bampton transformation matrix of the vector of elastic

nodal coordinates of the flexible body i or the ineterior DOF in the constraint

modes, i
IN is the Craig-Bampton transformation matrix of the vector of elastic

nodal coordinates of the flexible body i or the ineterior DOF in the normal modes,
i
Cp̂ is the vector of modal coordinates of the Craig-Bampton constraint modes of

the flexible body i and i
Np̂ is  the  vector  of  modal  coordinates  of  the  Craig-

Bampton fixed boundary normal modes of the flexible body i.  The  Craig-

Bampton modes are not orthogonal. Therefore, the Craig-Bampton transformation

matrix is unsuitable for direct use in dynamic system simulation, as it can not be
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utilized to obtain diagonal mass and stiffness matrices. To overcome this problem,

a new transformation matrix iN̂ which transforms the Craig-Bampton modes to

equivalent orthogonal modes expressed by means of modal coordinates is defined.

The new transformation matrix can be obtained by solving the following

eigenvalue problem:

[ ] 0MK =− iiii ˆ)(ˆ 2λ                                                                                     (2.96)

where iK̂ is the Craig-Bampton stiffness transformation matrix, which can be

expressed by means of the generalized stiffness matrix of the flexible body i as

follows:
iiiTi KK =ˆ                                                                                                  (2.97)

iλ in Eq 2.96 is a set of eigenvalues or natural frequencies associated with each

modal coordinate of the Craig-Bampton modes of the flexible body i, i are the

corresponding orthogonal eigenvectors for the eigenvalues and iM̂ is the Craig-

Bampton mass transformation matrix, which can be expressed by means of the

generalized mass matrix of the flexible body i as follows:
iiiTi MM =ˆ                                                                                                 (2.98)

The orthogonal eigenvectors i result from solving the eigenvalue problem

expressed in Eq 2.96 are arranged in the transformation matrix iN̂ , which

transforms the modal coordinates of the Craig-Bampton modes to an equivalent

orthogonal modal coordinates. Consequently, the modal coordinates can be

expressed by means of modal coordinates of the Craig-Bampton modes as

follows:
iii pNp ˆˆ=                                                                                                          (2.99)

Using Eq 2.83 and Eq 2.99 the  effect  of  the  superposition  can  be  expressed  as

follows:
iiiiii pNpq ˆˆ==                                                                                       (2.100)

The Craig-Bampton transformation matrix of the vector of generalized

coordinates system of the flexible body i can be expressed using the previous

equation as follows:
iii N̂=                                                                                                      (2.101)



3. SIMULATION MODEL OF THE HUMAN LOWER LIMB

In this chapter, the procedure of building a two dimensional human lower limb

simulation model is shown. For the sake of simplicity, the model is assumed to be

consisting of three bodies or bones; the thigh, the shank and the foot, which they

were shown previously in Figure 1.2.  The  shank  bone  only  is  modeled  as  a

flexible body. While on the other hand, the thigh and the foot bones are modeled

as rigid bodies. The model consists of three revolute joints; first one connects the

foot and the shank, second one connects the shank and the thigh and the third one

connects the thigh and the human skeleton. In this work, MCS.ADAMS software

[21] version 12.0 is used to study and analyze the lower limb model. Moreover,

the software is used to calculate the strain in the shank bone as a result of applying

different exercises to this model. In the following chapter, raising the sole of the

foot is considered the exercise to be applied to the lower limb model.

The geometrical model of the lower limb has been built based on the Visible

Human Viewer Project [22]. The visible human project is a Java Applet written to

allow users to explore slices of the visible human data set from three different

viewpoints (axial, coronal, and sagittal). It is the creation of complete,

anatomically detailed, three-dimensional representations of the normal male and

female human bodies. Acquisition of transverse computerized tomography (CT),

magnetic resonance imaging (MRI) and cryosection images of representative

male and female cadavers has been completed. The male was sectioned at one

millimeter intervals, the female at one-third of a millimeter intervals. The visible

man  is  a  set  of  digital  images  of  the  body  of  a  39  year  old  man,  Joseph  Paul

Jernigan, who donated his body to science after being convicted of murder and

sentenced to death. He was executed by lethal injection in Texas in 1993. The

visible man data was made available in 1994. The visible woman data is for a 59

year old woman who died of natural causes. This data was made available in

December 1995. In this model, the lower limb of the male is only considered.

Figure 3.1 shows the main panel of the applet  which contains the preview three

images (axial, coronal, and sagittal) of the human body.



Figure 3.1. Visible human viewer main panel [22].

It can be noticed from Figure 3.1 that in addition to the three viewpoints shown in

the main panel, a control panel is also included in the main panel that provides

several options to the user. Through the control panel, the user can select the

image type (male or female), the image format (MRI, Photo or CT), the image

resolution (Low, Medium or High), the image to be magnified (Load Image) and

the image to be previewed through the slice adjust triangular buttons that moves

the cutting line on each viewpoint image. Since the male viewpoint images were

sectioned to one millimeter intervals, the slices triangular buttons can be used for

measuring purposes.

3.1 Shank Model

The shank bone has two parts; the anterior and the posterior. The two parts are

connected together at their endings, and they have complicated geometrical

features. Figure 3.2 shows the geometrical shape of the male shank bone as well



as the cross section at the middle point of it, as depicted from the visible human

viewer.

Figure 3.2. Geometrical shape and cross section of the shank bone [22].

It can be noticed from Figure 3.2 that the geometrical shape and the cross section

of the anterior and posterior shank bone have irregular shapes. For simplicity, the

shank is modeled as one body, the cross section is assumed to be hollow circular

and the shape of the two endings of the shank bone is assumed to be identical at

each end. Table 3.1 shows the dimensions used to build the shank bone model in

addition to other physical specifications needed. The model of the shank bone is

shown in Figure 3.3.

Cross section of the
anterior shank bone

Shank bone

Cross section of the
posterior shank bone



Table 3.1. Dimensions and specifications of the shank bone model.

Parameters Values

Length 0.421 m
Outer radius 0.037 m
Inner radius 0.027 m
Mass 3 kg
Center of gravity location as a
percentage of the shank length
measured from the proximal end

43.4 %

Elastic modulus 17 GPa

Figure 3.3. Shank bone model.

The model shown in the previous figure is built using ANSYS 8.1 software. The

bone is meshed using shell element with type shell 63. ANSYS software is used to

calculate the number of the deformation mode shapes needed in the floating frame

of reference formulation based on the Craig-Bampton method explained in

chapter two.

Deformation Mode Shapes
The number of deformation modes, in addition to the strain and stress results

associated with each deformation mode can be calculated and transferred to

ADAMS software. The deformation mode shapes can be investigated and

analyzed through ADAMS software in which the user has the option to select the

suitable deformation modes. Usually the first six modes represent the rigid body

modes, where the natural frequency associated with them are ≈ zero. By default,

the rigid body modes are automatically disabled through the software, however,

the user has to check carefully the other transferred modes in order to disable the

unsuitable deformation modes. Figure 3.5 shows the selected elastic deformation

mode shapes of the shank bone model, and Table 3.2 shows the natural

frequencies associated with each mode.



(a)             (b)     (c)

                   (d)            (e)       (f)

Figure 3.4. Selected elastic deformation modes for the shank bone.

Table 3.2. Natural frequencies of the selected deformation modes.

Deformation Mode Natural Frequency  (Hz)
(a) 652.054
(b) 652.117
(c) 1596.295
(d) 1596.664
(e) 2634.429
(f) 2635.569
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3.2 Thigh Model

Similar to the shank bone, the thigh bone has complicated geometrical features as

well. Figure 3.5 shows the geometrical shape of the male thigh bone as well as

the cross section at the middle point of it, as depicted from the visible human

viewer.

Figure 3.5. Geometrical shape and cross section of the thigh bone [22].

It can be noticed from Figure 3.5 that the geometrical shape and the cross section

of the thigh bone have irregular shapes. For simplicity, the cross section is

assumed to be hollow circular and the shape of the two endings of the thigh bone

is  assumed to  be  identical  at  each  end. Table 3.3 shows the dimensions used to

build the thigh bone model in addition to the mass and the center of gravity

location. The model of the thigh bone is shown in Figure 3.6.

Cross section of the
thigh bone

 Thigh bone



Table 3.3. Dimensions and specifications of the thigh bone model.

Parameters Values

Length 0.464 m
Outer radius 0.045 m
Inner radius 0.035 m
Mass 5 kg
Center of gravity location as a
percentage of the thigh length measured
from the proximal ends

43.3 %

Figure 3.6. Thigh bone model.

The  model  shown  in Figure 3.6 is built using SolidWorks 2004 SP04.2 [23]

software. It can be noticed that the thigh bone is modeled as a rigid body. The

model is imported to the ADAMS software, where it will be connected to the

other bodies.

3.3 Foot Model

The geometrical shape of the foot bones is shown in Figure 3.7 as depicted from

the visible human viewer.



Figure 3.7. The geometrical shape of the foot bones [22].

It  can  be  noticed  from  the  previous  figure  that  the  foot  bones  have  complex

geometrical features. For simplicity, the foot bones are modeled as one rigid body.

The foot model is built directly using ADAMS Software. Table 3.4 shows the

dimensions used to build the foot bone model in addition to the mass and the

center of gravity location.

Table 3.4. Dimensions and specifications of the foot model.

Parameters Values

Length 0.1 m
Height 0.05 m
Mass 1 kg
Center of gravity location as a
percentage of the foot length measured
from the proximal ends

50 %

3.4 Assembly of the Model

The complete model is assembled using ADAMS software. Figure 3.9 shows the

assembled lower limb model.

 Foot bones



Figure 3.8. Lower limb model.

The three joints connecting the four bodies are modeled as revolute joints. The

kinematic  restrictions  for  each  joint  depend on  the  exercise  to  be  applied  to  the

model. The human body is modeled as rectangle with a mass equal to 30 kg. The

mass of the upper body is based on the assumption that each leg will carry half of

the upper human body weight. The muscles connected to the lower limb bones,

can be modeled as forces between the bodies. However, only the active muscles

concerned with the physical exercise can be taken into consideration. In the

following chapter the model shown in Figure 3.8 is investigated under raising the

sole of the foot exercise, and only two muscles are being modeled.

Revolute joints



4. NUMERICAL EXAMPLE

Raising the sole of the foot is considered one of the simplest and most common

physical exercises the human can do. One cycle of the exercise is conducted by

raising the sole of the foot. Consequently, the heel rises up from the ground until

reaching a maximum height from it. Upon releasing the muscles of the lower

limb, the heel hits the ground again and so on. In this chapter, the model of the

lower limb built in the previous chapter is studied under this exercise. The most

important muscles that control the movement in this exercise are gastrocnemius

and soleus muscles. Figure 4.1 show gastrocnemius and soleus muscles.

Figure 4.1. Gastrocnemius and soleus muscles [24].

Some important specifications of the two muscles needed in the model are shown

in Table 4.1.

Gastrocnemius muscle Soleus muscle



Table 4.1. Specifications of the gastrocnemius and soleus muscles [24].

Specifications Gastrocnemius muscle Soleus muscle

Origin

Medial head from posterior

nonarticular surface of medial

femoral condyle; lateral head

from lateral surface of

femoral lateral condyle

Posterior aspect of fibular head,

upper 1/4 - 1/3 of posterior

surface of fibula, middle 1/3 of

medial border of tibial shaft, and

from  posterior  surface  of  a

tendinous arch spanning the two

sites of bone origin

Insertion

The  two  heads  unite  into  a

broad aponeurosis which

eventually unites with the

deep  tendon  of  the  soleus  to

form the achilles tendon,

inserting on the middle 1/3 of

the posterior calcaneal surface

Eventually unites with the

gastrocnemius aponeurosis to

form the achilles tendon,

inserting on the middle 1/3 of

the posterior calcaneal surface

Action
Powerful plantar flexor of

ankle

Powerful plantar flexor of ankle

It can be noticed from the action of the two muscles mentioned in the previous

table, that both of them are considered the main active muscles in moving the

ankle joint. Gastrocnemius muscle is modelled as a force acting between the thigh

and the foot, where the foot is the action body and the thigh is the reaction body.

Soleus muscle is modelled as a force acting between the shank and the foot, where

the foot is the action body and the thigh is the reaction body. Both forces have the

same origin point on the foot and controlled via step function. Figure 4.2 shows

the step function control for the forces exerted from gastrocnemius and soleus

muscles respectively for one cycle only.



Figure 4.2. Step function control of the gastrocnemius and soleus forces for one
cycle.

It can be noticed from the previous figure that the force exerted from the soleus

muscle is larger than the force exerted from the gastrocnemius muscle. This is due

to the fact that, the force production capacity from the muscle is determined by

means  of  its  physiological  area.  The  ratio  between the  physiological  area  of  the

soleus muscle to the one of the gastrocnemius muscle equals to 230 : 96 [25]. One

may notice also, the mechanism at which the exercise is conducted in which there

are two pauses at each cycle of the exercise. First one occurs at the standing state,

while the second one occurs when the heel reaches the highest point from the

ground. The positions of the exercise in one cycle are shown in Figure 4.3.
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             First position                   Second position                 Third position

Figure 4.3. Positions of raising the sole of the foot exercise.

The modifications for the lower limb model when it experiences raising the sole

of the foot exercise are shown in Figure 4.4.

          t = 0 sec           t = 1.2 sec           t =2 sec



Figure 4.4. The lower limb model under raising the sole of the foot exercise.

It can be noticed from the previous figure that, two torsional spring forces have

been added; one at the knee joint and the other one at the joint connecting the

thigh with the body. This addition has been done to prevent the rotation for these

two joints, as they are kept fixed during the exercise. SFORCE_1 represents the

force  exerted  from  the  soleus  muscle,  while  SFORCE_2  represents  the  force

exerted from the gastrocnemius muscle. In reality, the human brain maintains the

balance of the body through orders and instructions transferred to the muscles by

a complicated central nervous system. In this model, the control system that

includes the brain and central nervous system has not been modelled, thus a



transitional joint has been added between the body and the space, in the direction

of the exercise movement. The function of this translational joint is to prevent the

body from falling down while rising due to the gravitational force and maintains

the body balance. To prevent the foot from sliding on the ground, a revolute joint

has been added between the foot and the ground. Finally, the ground reaction

force has been modelled as a contact force (CONTACT_1) between the foot and

the ground. The specifications of this contact force is shown in Table 4.2.

Table 4.2. Specifications the contact force.

Specifications Values

Type Impact

Stiffness 1 x 810  N/m

Damping 1 x 510  Nsec/m

Force component 2.2

Penetration depth 1 x 410− m

4.1 Results and Discussion

The exercise simulation has been studied and tested at different simulation control

parameters to check the behaviour of it. The simulation of the exercise has been

carried out at the following step size values: 0.01, 0.001, 0.0001 and 0.00001. The

model has shown logical behaviour at the different simulation control parameters,

in which the variations between the results were negligible. However, the results

shown in the following figures are measured for one exercise cycle, and at the

following  simulation  control  parameters;  end  time  equals  to  2  sec  and  step  size

equals to 0.01. Two nodes have been selected; one is located at the middle of the

anterior shank bone and the other one is located at the middle of the posterior

shank bone. The two nodes are located next to each other at the circular

circumferential surface of the shank bone along the global X axis. Figure 4.5

shows the locations of the selected nodes in the shank bone.



Figure 4.5. Nodes of interest in the shank bone.

In  order  to  make  a  comprehensive  analysis  of  the  results  shown in  the  previous

figures, it is important to recognize the stresses concern in this physical exercise,

which are; the pure compression and the bending moment stresses. The main

stress is the bending moment, which is caused by the forces exerted from the

soleus and gastrocnemius muscles. This stress takes place when the heel starts to

rise  from ground until  it  reaches  to  a  maximum height  from the  ground.  Due  to

this bending moment stress acting on the shank bone, the anterior shank will be in

compression, while on the other hand, the posterior shank will be in tension. The

pure compression stress is considered to have a minor deformation compared to

the bending stress. This stress takes place during the standing still state at which

the heel is on the ground. The ground reaction force, in addition to different strain

and stress measurements at the two nodes shown in the previous figure with

respect to the global coordinate system (XY) for one cycle of the exercise, are

plotted in the following figures.

Node (1) location at
the anterior shank

Node (2) location at
the posterior shank

Y

X



Figure 4.6. Ground reaction force magnitude.

In the previous figure, the magnitude of the ground reaction force is plotted. It can

be noticed that the ground reaction force at the beginning of the exercise during

the  first  standing  still  is  equal  to ≈ 650 N. While on the other hand, it increases

steeply with a large amount as the heel hits the ground again. This is due to the

momentum energy results from the movement of the body during the exercise.

This  leads  to  a  high  impact  force  as  the  heel  hits  the  ground  before  the  second

standing still.
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Figure 4.7. Normal X strain at the nodes (1) and (2).

Figure 4.8. Normal X stress at the nodes (1) and (2).
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In Figure 4.7 and Figure 4.8 the normal strains and stresses in X direction at the

nodes (1) and (2) are plotted respectively. It can be noticed that the normal stress

in X direction at the standing still state at the beginning and ending of the exercise

at both nodes is equal to zero. This can be justified that, during the standing still

state, the only stress acting is the pure compression which is in Y direction. While

on  the  other  hand,  the  normal  strain  in  X  direction  at  both  nodes  during  the

standing still state is not equal to zero. This can be explained that the pure

compression stress in Y direction causes a strain in X direction. As a result of the

bending moment stress, Node (1) experiences a compression stress, which causes

a tensile normal strain in X direction. While on the other hand, node (2)

experiences a tensile stress, which causes a compression normal strain in X

direction.

Figure 4.9. Normal Y strain at the nodes (1) and (2).
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Figure 4.10. Normal Y stress at the nodes (1) and (2).

In Figure 4.9 and Figure 4.10 the normal strains and stresses in Y direction at the

nodes (1) and (2) are plotted respectively. As a result of the bending moment

stress, Node (1) experiences a compression stress, which causes a compression

normal strain in Y direction. While on the other hand, node (2) experiences a

tensile stress, which causes a tensile normal strain in Y direction. It can be noticed

from Figures (4.7, 4.9 and 4.10) that the normal compression stress and thus the

normal compression strain in Y direction, in addition to the normal strain in X

direction at both nodes, experience a sudden change in direction as the heel hits

the ground at the end of the exercise before the second standing still. This is due

to the fact that the ground reaction force that causes the pure compression stress,

increases incredibly as the heel hits the ground due to the momentum energy,

which was shown previously in Figure 4.6.
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Figure 4.11. Shear XY strain at the nodes (1) and (2).

Figure 4.12. Shear XY stress at the nodes (1) and (2).
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In Figure 4.11 and Figure 4.12 the shear strains and stresses in XY direction at

the nodes (1) and (2) are plotted respectively. It can be noticed that the shear

strain results from the bending moment stress only, as the compression XY shear

stress is equal to zero. As a result of the bending moment, node (1) experiences a

tensile XY shear strain, while node (2) experiences a compression XY shear

strain. From Figures (4.7-4.12) some general comments can be noticed. First, as

the heel reaches to maximum height from the ground, the stress and thus the strain

curves plateau. This is due to the mechanism at which the exercise is conducted,

in which there is a little pause as the heel reaches a maximum height from ground.

Second, the strains result from the pure compression stresses are small compared

to the strains result from the bending moment stress. This can be shown clearly in

the following Figures (4.13-4.16) where the maximum and minimum principle

strains and stresses at node (1) and (2) are plotted respectively.

Figure 4.13. Maximum principal strain at the nodes (1) and (2).
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Figure 4.14. Minimum principal strain at the nodes (1) and (2).

Figure 4.15. Maximum principal stress at the nodes (1) and (2).
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Figure 4.16. Minimum principal stress at the nodes (1) and (2).

From Figure 4.13, it can be noticed that the maximum principal strains at both

nodes due to the bending moment stress are much higher than their magnitudes

results from the pure compression stress. While on the other hand, from Figure

4.14, it can be noticed that the absolute magnitudes of the minimum principal

strains at both nodes due to the bending moment stress are much higher than their

absolute magnitudes results from pure compression stress. Third, the stress and

thus strain results at nodes (1) and (2) are equal in magnitude and contrast in sign.

The equality in magnitude is due to the fact that both nodes are located next to

each others along the global X axis. While on the other hand, the contrast in sign

results from the bending moment stress, thus node (1) will be in compression and

node (2) in tension.
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Figure 4.17. Von mises strain at the nodes (1) and (2).

Figure 4.18. Von mises stress at the nodes (1) and (2).
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In Figure 4.17 and Figure 4.18 von mises strains and stresses at the nodes (1) and

(2) are plotted respectively. It can be noticed that they are equal at both nodes as

the  von  mises  stress  is  an  expression  of  the  stress  in  terms  of  normal  and  shear

stresses. While on the other hand, the von mises strain is a strain expressed in

terms of  normal and shear strains.

The previous measurements of the maximum and minimum principle strains

shown in Figure 4.13 and Figure 4.14 show good agreement with real strain

measurements in VIVO (Latin expression refers to experimentation done on a

living body). In Reference [26] the principle strains were measured in VIVO in an

adult human shank during walking at level correspond to nodes (1) and (2). The

maximum principle strain was equal to 437 micro strain, while the minimum

principal strain was equal to -544 micro strain. In this model the maximum tensile

strain, which corresponds to the maximum principle strain, occurs at node (2), and

according to Figure 4.13 it  is  equal to ≈ 212.5 micro strain. While on the other

hand, the maximum compression strain, which corresponds to the minimum

principal strain, occurs at node (1), and according to Figure 4.14 it is equal to ≈ -

212.5 micro strain. In this model, the maximum principal strain equals to the

minimum principal strain, as both nodes are located exactly next to each other

along the global X axis. However, walking is considered more strenuous than

rising the sole of the foot exercise. This leads to a result, that the multibody

dynamic approach is considered a powerful tool in modelling human skeletal.



5. CONCLUSION

The aim of this study is to prove the efficiency and capability of the flexible

multibody dynamic approach in measuring the strain in the human lower limb

bones resulted from different exercises. The bone strain plays major role in the

battle against the metabolic bone diseases, as the absolute strain increment is

considered one of the important factors in increasing the bone strength. The main

motivation in using multibody dynamic approach in modelling the human lower

limb is the difficulty of obtaining different important measurements such as

muscle forces and bone strain directly from the human by means of invasive

techniques. To satisfy the aim of this study, the human lower limb is modelled

using multibody dynamic approach. The model consists of three bodies; the thigh,

the shank and the foot. The shank is considered to be flexible while the other

bodies are considered to be rigid. Floating frame of reference formulation was

used to account for the flexibility in the shank. The model was tested and verified

through a numerical example showing raising the sole of the foot exercise. In this

study, a commercial multibody simulation code (ADAMS) was used to

accomplish the model. The strain was measured in the middle of the shank, and

the  results  have  shown  good  agreement  with  the  real  strain  measurements  in

VIVO (Latin expression refers to experimentation done on a living body) in the

shank taken at the same location. According to this study presented in this thesis,

the multibody dynamic approach can be seen as a promising and challenging tool

in modelling human skeletal from three points of views. First, modelling and

simulation can provide information that is not directly accessible by

experimentation on humans. Second, the model simulation data can be very

helpful in explaining the results obtained from the motion analysis experiment.

Third, the flexible multibody model of the human lower limb can be used to

design several physical training exercises to achieve the optimal strength of the

bones. For example, the model presented in chapter three can be improved and

extended to be used in developing different exercises in order to maintain or

increase the bone strength.



The results obtained from the previous example, show that the theory and method

used in introducing the flexibility is potentially utilizable in human bone

modelling. In addition, they demonstrate a good functionality and suitability of

the floating frame of reference formulation for the computationally efficient and

realistic modelling of the human bones. In the future, a more detailed and

complex model of the human lower limb bones can be built in three dimensions.

In this model a detailed description of the muscles, joints and tendons can be

done. Moreover, further studies can be conducted in modelling the control system

that includes the brain and central nervous system. The control system is very

important in controlling the muscles and thus obtaining the desirable movement of

the lower limb model. This detailed lower limb model can be utilized in designing

several physical exercises to achieve the optimal bone strength.
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