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The human motion study, which relies on mathematical and computational
models in general, and multibody dynamic biomechanical models in particular,
has become a subject of many recent researches. The human body model can be
applied to different physical exercises and many important results such as muscle
forces, which are difficult to be measured through practical experiments, can be
obtained easily. In this work, a human skeletal lower limb model consisting of
three bodies is built using the flexible multibody dynamic simulation approach.
The floating frame of reference formulation is used to account for the flexibility in
the bones of the human lower limb model. The main reason of considering the
flexibility  in  the  human  bones  is  to  measure  the  strains  in  the  bone  result  from
different physical exercises. It has been perceived that the bone under strain will
become stronger in order to cope with the exercise. On the other hand, the bone
strength is considered an important factor in reducing the bone fractures.
The simulation approach and model developed in this work are used to measure
the  bone  strain  results  from  applying  raising  the  sole  of  the  foot  exercise.  The
simulation results are compared to the results available in literature. The
comparison shows good agreement. This study sheds the light on the importance
of using the flexible multibody dynamic simulation approach to build human
biomechanical models, which can be used in developing some exercises to
achieve the optimal bone strength.
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NOMENCLATURE
Abbreviations
ADAMS Automatic Dynamic Analysis of Mechanical Systems
CMS Component Mode Synthesis
CT Computerized Tomography
DAE Differential Algebraic Equations
DOF Degree of Freedom
MRI Magnetic Resonance Imaging
VIVO Latin expression refers to experimentation done on a living body
Symbols
iA Transformation matrix of the flexible body i coordinate system
i
qA Matrix results from taking the derivative of the transformation
matrix of the flexible body i coordinate system with respect to the
rotation angle
i
ka Eigenvectors correspond to the eigenvalues of the flexible body i
ijB Boolean transformation matrix defines the vector of element ij nodal
coordinates in terms of the total vector of elastic nodal coordinates
of the flexible body i
i
rB Boolean reference transformation matrix defines the reference
conditions applied to the flexible body i
C Vector of linearly independent constraint equations of the multibody
system
ijC          2 x 2 transformation matrix defines the orientation of the element j
coordinate system with respect to the flexible body i coordinate
system
qC Jacobian matrix
iD Strain-displacement matrix of the flexible body i
iE Symmetric matrix of the elastic coefficients of the flexible body i
ije Vector of the element ij nodal coordinates
ie Vector of the elastic nodal coordinates of the flexible body i
ij
oe Vector of the nodal coordinates of the element ij in the undeformed
state
ij
fe Vector of the nodal coordinates of the element ij in the deformed
state
ie&& Acceleration vector of the elastic nodal coordinates of the flexible
body i
iF External force acting on a flexible body i
I 2 x 2 identity matrix
i
1I Vector defines the moment of the body mass about the axes of the
flexible body i coordinate in the undeformed state
I~ Skew symmetric matrix
iK              Generalized stiffness matrix associated with the generalized
coordinates of the flexible body i
i
ffK Symmetric positive definite stiffness matrix associated with the
generalized elastic coordinates of the flexible body i
i
pK Modal stiffness matrix of the flexible body i
iKˆ Craig-Bampton stiffness transformation matrix of the flexible body i
ik Modal stiffness coefficients of the flexible body i
iM Mass matrix of the flexible body i
i
pM Modal mass matrix of the flexible body i
iMˆ Craig-Bampton mass transformation matrix of the flexible body i
m Number of low frequency mode shapes
im Mass of the flexible body i
dm Number of uncoupled differential equations
imˆ Modal mass coefficients of the flexible body i
i
ffm Constant submatrix of the mass matrix associated with the elastic
flexible body i coordinates
i
RRm Submatrix of the mass matrix associated with the translational
coordinates of the flexible body i coordinate system
i
Rfm Submatrix of the mass matrix represents the coupling between the
flexible body i translational reference motion and the elastic
deformation
i
Rqm Submatrix of the mass matrix represents the coupling between the
flexible body i reference translational and rotational coordinates
i
fqm Submatrix of the mass matrix represents the coupling between the
flexible body i rotational reference motion and the elastic
deformation
i
qqm Constant submatrix of the mass matrix associated with the flexible
body i rotational reference coordinates
ff
im )( qq Scalar represents the change in the mass moment of inertia of the
flexible body i due to deformation
rf
im )( qq Scalar represents the change in the mass moment of inertia of the
flexible body i due to deformation
rr
im )( qq Scalar represents the mass moment of inertia of the flexible body i in
the undeformed state about perpendicular axis to the plane
iNˆ Transformation matrix transforms the modal coordinates of the
Craig-Bampton modes of the flexible body i to an equivalent
orthogonal modal coordinates
n Number of generalized coordinates of the multibody system
bn Total number of the bodies in the planar multibody dynamic system
cn Number of the constraint equations of the multibody system
fn Number of the elastic coordinates of the flexible body i
nn Number of the elastic nodal coordinates of the flexible body i
iO Origin of the flexible body i coordinate system
ijO Origin of the element j coordinate system
iP Arbitrary point on the flexible body i
ijP Arbitrary point on element ij
ip Vector of the modal coordinates of the flexible body i
i
fp Vector of the modal elastic nodal coordinates of the flexible body i
i
rp Vector of the modal reference coordinates of the flexible body i
ipˆ Vector of the modal coordinates of the Craig-Bampton modes of the
flexible body i
i
Cpˆ Vector of modal coordinates of the Craig-Bampton constraint modes
of the flexible body i
i
Npˆ Vector of modal coordinates of the Craig-Bampton fixed boundary
normal modes of the flexible body i
iQ Vector of the generalized elastic and external forces of the flexible
body i
i
eQ Vector of generalized external forces associated with the generalized
coordinates of the flexible body i
i
fQ Vector of generalized external forces associated with elastic
coordinates of the flexible body i
i
RQ Vector of generalized external forces associated with the
translational reference coordinates of the flexible body i
i
vQ Quadratic velocity vector of the flexible body i
i
qQ Vector of generalized external forces associated with the rotational
reference coordinates of the flexible body i
f
i
v )(Q         Quadratic velocity vector associated with the elastic coordinates of
the flexible body i
R
i
v )(Q Quadratic velocity vector associated with the translational reference
coordinates of the flexible body i
q)(
i
vQ Quadratic velocity vector associated with the rotational reference
coordinates of the flexible body i
q Vector of the total multibody system generalized coordinates
iq Generalized coordinates system of the flexible body i
i
fq Vector of elastic coordinates of the flexible body i
i
rq Vector of reference coordinates of the flexible body i
iq& Velocity of the generalized coordinates system of the flexible body i
i
fq& Velocity of the generalized elastic coordinates of the flexible body i
iq&& Acceleration of the generalized elastic coordinates of the flexible
body i
iR Vector of the translation of the origin of the flexible body i
coordinate system with respect to the global coordinate
iR& Vector of the translational velocities of the origin of the flexible
body i with respect to the global coordinate system
i
Pr Position vector of any arbitrary point on the flexible body i with
respect to the global coordinate system
ij
Pr Position vector for any arbitrary point on the element ij with respect
to the global coordinate system
i
Pr&              Velocity vector of any arbitrary point on the flexible body i with
respect to the global coordinate system
i
Pr&&             Acceleration vector of any arbitrary point on the flexible body i with
respect to the global coordinate system
iS Space dependent shape matrix of the flexible body i
ijS Space dependant shape matrix of the element ij
iS~ Constant skew symmetric matrix of the flexible body i
iT Kinetic energy of the flexible body i
t time
iu Position vector of any arbitrary point on the flexible body i with
respect to the body coordinate system
i
fu Deformed position vector of any arbitrary point on the flexible body
i with respect to the body coordinate system
i
ou Undeformed position vector of any arbitrary point on the flexible
body i with respect to the body coordinate system
iju Vector of the assumed displacement field of the nodal coordinates of
the element ij with respect to the flexible body i coordinate system
iV Volume of the flexible body i
i
eWd        Virtual work of external forces acting on a flexible body i
i
sWd           Virtual work done by the elastic forces acting on a flexible body i
ijw             Vector of the assumed displacement field of the nodal coordinates of
the element ij with respect to the element ij coordinate system
21XX Global coordinate system
ii
21XX Flexible body i coordinate system
ijij
21 XX Element j coordinate system
Greek Letters
iq Orientation angle of the flexible body i coordinate  system  with
respect to the global coordinate system
iq& Angular velocity of the flexible body i coordinate  system  with
respect to the global coordinate system
ir Density of the flexible body i
i? Stress vector of the flexible body i
i? Strain vector of the flexible body i
? Vector of Lagrange multipliers
i
kw Eigenvalues or natural frequencies associated with each nodal
coordinate of the flexible body i
i? Modal transformation matrix
i? Modal transformation matrix for the total vector of the generalized
coordinates system of the flexible body i
i? Craig-Bampton transformation matrix of the vector of generalized
coordinates system of the flexible body i
i
IC? Craig-Bampton transformation matrix of the vector of elastic nodal
coordinates of the flexible body i or the ineterior DOF in the
constraint modes
i
IN? Craig-Bampton transformation matrix of the vector of elastic nodal
coordinates of the flexible body i or the ineterior DOF in the normal
modes
il Eigenvalues or natural frequencies associated with each modal
coordinate of the Craig-Bampton modes of the flexible body i
i? Orthogonal eigenvectors correspond to the eigenvalues associated
with each modal coordinate of the Craig-Bampton modes of the
flexible body i
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1. INTRODUCTION
Multibody dynamic approach is a mathematical tool that can be used to model
different mechanical and structural systems. For instance, such systems included
under the definition of multibody systems comprise robots, manipulators, vehicles
and human skeleton. Figure 1.1 illustrates a general multibody system shown in
abstract form.
External forces
Damper
Joint
Joint
Spring
Body 1
Body 2
Body 3
Body 4
Body 5
Figure 1.1. General multibody system.
As depicted from Figure 1.1, a multibody system consists of several bodies,
which can be rigid, flexible or combination of them. Those bodies are connected
together by means of kinematic joints described by constraint equations. The
forces  applied  over  the  multibody  system  bodies  may  be  a  result  of  springs,
dampers, actuators or any external applied forces such as gravitational forces. The
biomechanical human models are typically more complicated than technical
multibody systems, as they involve a larger variety of joint types and body forms,
complex actuators in the form of muscles, connected groups of bones and
neighbouring soft tissue [1]. Recently, multibody dynamic approach has been
used extensively in modelling human skeleton. Several important results can be
depicted from the human skeleton model. For instance, the internal forces in the
skeleton and muscular reactions. The key issue from using multibody dynamic in
human skeleton modelling is that there are no experimental methodologies
capable of measuring these depicted parameters [2]. In other words, using the
multibody dynamic model of the human skeleton, several important parameters
can be measured, which are of a major importance in many scientific fields such
as, medicine, sports and biomechanical engineering. In this particular study, a part
from human skeleton which is the lower limb shown in Figure 1.2, is modelled
using multibody dynamic approach.
Figure 1.2. Lower limb [3].
It can be noticed from Figure 1.2 that the lower limb consists of several bodies
connected to each other by means of joints, with external forces applied on these
Thigh
Shank
Foot
bodies. Therefore by comparing the lower limb shown in Figure 1.2 with the
general multibody system shown in Figure 1.1, one may notice that the multibody
dynamic approach can be applied to model the lower limb. For simplicity, the
lower limb model will be consisting of three bodies; the thigh, the shank and the
foot. The motivation of this study is to calculate the strains in the lower limb
bones. It has been perceived  that the bone under strain will become stronger in
order to cope with the exercises induced loading. The strength of the bone is
considered an important factor in reducing the risk of bone osteoporotic fracture,
which is mainly, affecting the aged people. Therefore, many sport exercises can
be developed, in order to maintain or increase the bone strength [4]. In order to
calculate the strains in the lower limb bone, the bone has to be modelled as a
flexible body. Many previous studies have been conducted in human skeleton
modelling. In the work of Bei and Fregly (2004) a detailed musculoskeletal
multibody model is created in order to predict muscle forces and contact pressures
simultaneously in a knee joint [5]. In this model, the flexible contact of the joint is
combined  with  the  rigid  body  dynamics  of  two  bones.  Silva et al. [6] have
included the natural boundary conditions for joints in a multibody model in order
to prevent physically unnatural positions of limbs when modelling human
kinematics. Another specified model of a particular area of interest is found in
Reference [7] where muscles are studied. A combined biomechanical model
including three rigid bones and active muscles to simulate real human movements
in a vertical jump is studied in Reference [3]. In order to verify and perform an
inverse dynamical problem, the motion of a limb is captured using cameras [8]. A
number of articles have been published on the analysis of the kinematics and
motion of the entire human body, e.g. [9-11]. The natural coordinates approach
has been applied in many cases when whole human body models are studied.
Kraus et al. [1] have built a human model including over 100 degrees of freedom.
In a model of this size, the number of parameters is high and they need to be
systematically determined. In reference [12], the parameters area studied for the
model applied in a vehicle crash simulation. Crash test models have been under
intensive research and many studies are related to this field. In multibody
application topics related to the computational techniques are often important and
interesting. In Reference [13], the authors study the problem related to the
solution of differential-algebraic equations (DAE) in a multibody model defining
an android in a crash test. In all of the previous studies, the bones were modelled
as rigid bodies. Therefore, these models can not be used to calculate the bone
strains. In this study, the lower limb bones are modelled as flexible bodies.
Flexibility in multibody dynamic models can be taken into account through
several ways. In this study, floating frame of reference [14-16] is used to account
for the flexibility in the lower limb model.
1.1 Scope of the Work
Many parameters in the human body such as muscle forces and their net moments
force about the anatomical joints are difficult to be measured through real
experiments. Thus, using computer tools to model the human body becomes an
important issue. In this work, a skeletal lower limb is modelled using the flexible
multibody dynamic approach. The flexibility has been taken into account in order
to measure the strains in the bone, which play a major role in strengthening the
bones. The strength of the bone is considered an important resistant factor against
the  metabolic  bone  diseases.  The  main  purpose  of  this  work  is  to  show  the
capability of the flexible multibody dynamic approach in modelling the human
skeletal through measuring the strains in the bone.  Not all the important issues in
human skeletal modelling are covered in this work. Aspects, such as neural
control system or muscle tendons modelling are not addressed here, as they have
negligible effects on the main purpose of this work.
2. FLOATING FRAME OF REFERENCE FORMULATION
In theory all the bodies are flexible and have infinite number of degree of
freedom. However in practice there are number of ways to account for flexibility.
In this chapter, a method to take into account the flexibility of the bodies in
multibody dynamic system is explained in details. This method is called the
floating frame of reference.
In the following sections of this chapter a detailed formulation of the equations of
motion  based  on  the  floating  frame  of  reference  for  a  planar  flexible  body  is
presented. For a better accuracy in modelling the elastic deformation in the
flexible body, the finite element method is used in the floating frame of reference
formulation. This method that implies discretization the flexible body into
elements and each element consists of number of nodes is explained in later
sections in this chapter. Due to the high number of elastic coordinates resulted
from discretization of the flexible body into finite number of elements, modal
reduction method is presented at the end of this chapter to reduce the number of
the elastic coordinates.
2.1 Description of Kinematics
The floating frame of reference formulation is based on the use of two coordinate
systems; reference and elastic coordinate systems. Figure 2.1 shows the floating
frame of reference coordinate systems, for a planar flexible body i.
Figure 2.1. Coordinates for a planar flexible body i in the floating frame of
reference formulation.
The generalized coordinates system of the flexible body i shown in the previous
figure can be expressed as follows:
[ ]ifiri qqq =                                      (2.1)
where irq  is the vector of reference coordinates, which describes the translation
and rotation of the flexible body i coordinate system ii 21XX  with  respect  to  the
global coordinate system 21XX and
i
fq is the vector of elastic coordinates, which
describes the elastic deformation of the flexible body i with respect to the body
coordinate system. The vector irq can be expressed as follows:
[ ]Tiiir qRq =                (2.2)
where iR is the vector that describes the translation of the origin iO of the flexible
body i coordinate system with respect to the global coordinate system and iq is the
i
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i
2X
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i
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i
Pr
iR
1X
2X
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orientation angle of the flexible body i coordinate  system  with  respect  to  the
global coordinate system. The vector ifq  in Eq 2.1 can be expressed as follows:
[ ]Tifnififif fqqqq L21=                (2.3)
where fn is the number of the elastic coordinates. The vector
iu shown in the
previous figure, describes the position of any arbitrary point iP on the flexible
body i with respect to the body coordinate system. The vector can be expressed as
follows:
i
f
i
o
i uuu +=                                                                                                       (2.4)
where iou  is the vector describes the undeformed position of point
iP with respect
to the body coordinate system and ifu is  the  vector  describes  the  deformed
position of point iP with respect to the body coordinate system. The vector
i
fu can be expressed by means of shape function matrix and elastic coordinates as
follows:
i
f
i
f qSu =                                                                                                           (2.5)
where iS is a space dependent shape matrix, which identify the shape of the
deformation for each point in the flexible body i. Substituting Eq 2.5 into Eq 2.4
yields to the following equation:
i
f
ii
o
i qSuu +=                                                                                                   (2.6)
The vector iPr  shown in the previous figure, describes the position of point
iP with
respect to the global coordinate system. The vector can be expressed in the
following equation:
)( if
ii
o
iiiiii
P qSuARuARr ++=+=                                                              (2.7)
where iA is the transformation matrix, which describes the rotation of the flexible
body i coordinate system with respect to the global coordinate system. It can be
expressed as follows:
ú
û
ù
ê
ë
é -
= ii
ii
i
qq
qq
cossin
sincosA                                                                                      (2.8)
Description of Velocity
In order to get the velocity equations, Eq 2.7 has to be differentiated with respect
to the time. This yields to the velocity vector of any arbitrary point on the flexible
body i with  respect  to  the  global  coordinate  system,  which  can  be  expressed  as
follows:
iiiiii
P uAuARr &&&& ++=                                                                                       (2.9)
where iR& is the vector of translational velocities of the origin iO of the flexible
body i with respect to the global coordinate system and iu& can be obtained by
differentiating Eq 2.6 with respect to the time. This yields to the following
equation:
i
f
ii qSu && =                                                                                                          (2.10)
where ifq& is the velocity of the generalized elastic coordinates. One may notice
here, that differentiating the vector iou with respect to the time, yields to zero as the
vector is constant. The matrix iA& in Eq 2.9 can be expressed as follows:
iiii qq && SAA =                                                                                                     (2.11)
where iq& is the angular velocity of the flexible body i coordinate system with
respect to the global coordinate system and iqA  is  the  matrix  results  from taking
the derivative of the transformation matrix described in Eq 2.8 with respect to the
rotation angle iq . The matrix can be expressed as follows:
ú
û
ù
ê
ë
é
-
--
= ii
ii
i
qq
qq
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cossinA                                                                                (2.12)
Subsisting Eq 2.10 into Eq 2.9 yields to the following equation:
i
f
iiiiii
P qSAuARr &&&& ++=                                                                                 (2.13)
The preceding equation can be simplified for later derivation purpose, by
rewriting the central term on the right hand side as follows:
iiii q&& BuA =                                                                                                      (2.14)
where iB can be expressed as follows:
iii uAB q=                                                                                                         (2.15)
Substituting Eq 2.14 into Eq 2.13 yields to the following equation:
i
f
iiiiii
P qSABRr &&&& ++= q                                                                                 (2.16)
The velocity vector defined in the preceding equation can be described in a
partitioned form as follows:
[ ]
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where I is the 2 x 2 identity matrix. Equation 2.17 can be also expressed as
follows:
iii
P qLr && =                                                                                                           (2.18)
where iq& is the velocity of the generalized coordinates system of the flexible body
i and iL is a matrix which can be expressed as follows:
[ ]iiii SABIL =                                                                                         (2.19)
Description of Acceleration
Recalling back Eq 2.18, and differentiating it with respect to time, the
acceleration of point iP with respect to the global coordinate system can be
expressed as follows:
iiiii
P qLqLr &&&&&& +=                                                                                                (2.20)
where iq&& is the acceleration of the generalized elastic coordinates and iL& can be
expressed as follows:
[ ]iiii SAB0L &&& =                                                                                         (2.21)
where 0 is a 2 x 2 zero matrix and iB& can be obtained by differentiating Eq 2.15
with respect to the time which yields to the following equation:
i
f
iiiiii qSAuAB &&& qq +-=                                                                                  (2.22)
2.2 Kinematic Constraints
Multibody dynamic system consists of several bodies connected to each other by
means of joints. These joints restrict the system mobility because the motion of
different bodies is no longer independent. Consequently, the movement for the
bodies  in  multibody  dynamic  system  are  related  to  each  other  by  means  of
constraints equations. Constraints equations can be taken into account in the
equations of motion in multibody dynamic system using two techniques;
Embedding and Augmented technique. In this study, the kinematic constraint
equations are taken into account using augmented technique. Augmented
equations of motion formulation are based on the use of Lagrangian multipliers.
The kinematic constraint equations can be expressed in the general form as
follows:
0),( =tqC                                                                                                         (2.23)
where q is the vector of the total multibody system generalized coordinates, t is the
time and C is the vector of linearly independent constraint equations of the
multibody  system.  The  number  of  degree  of  freedom  (DOF) of a multibody
system which is equal to the independent generalized coordinates can be
expressed as follows:
=- cnn DOF                                                                                                   (2.24)
where n is the number of generalized coordinates of the multibody system and
cn is the number of the constraint equations of the system. Applying a virtual
displacement to the kinematic constraint equations expressed in Eq 2.23 leads to
the following equation:
0=qCqd                                                                                                           (2.25)
where qC is the jacobian matrix. The jacobian matrix has )x( nnc dimension.
Consequently, the jacobian matrix has a full row rank. Jacobian matrix can be
obtained by differentiating the algebraic constraint equations with respect to the
generalized coordinates of the multibody system. In general it can be expressed as
follows:
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2.3 Description of Inertia
The mass matrix of the flexible body i shown in Figure 2.1 can be defined using
different components as the case in rigid body. The mass matrix can be expressed
as follows:
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where the term iRRm  represents the mass matrix associated with the translational
coordinates of the flexible body i coordinate system. It can be expressed as
follows:
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where I is a 2 x 2 identity matrix, ir  is the density of the flexible body i, iV is the
volume of the flexible body i and im is the mass of the flexible body i. The term
i
Rqm which represents the coupling between the flexible body i reference
translational and rotational coordinates can be expressed as follows:
[ ]ifiiiR qSIAm += 1qq                                                                                     (2.29)
where the vector i1I defines the moment of the body mass about the axes of the
body coordinate in the undeformed state. Consequently, the vector i1I will be equal
to zero in case the origin of the body coordinate is initially attached to the center
of the mass of the body. The vector i1I can be expressed as follows:
ò=
iV
ii
o
ii dVuI r1                                                                                                 (2.30)
In Eq 2.29 the vector if
iqS represents the change in the moment of the mass due to
the deformation. In which the matrix iS can be written as follows:
ò=
iV
ii
o
ii dVuS r                                                                                                (2.31)
The term iRfm which represents the coupling between the translational reference
motion and the elastic deformation, can be expressed as follows:
iii
Rf SAm =                                                                                                      (2.32)
The term i fqm which represents the coupling between the rotational reference
motion and the elastic deformation, can be expressed as follows:
ò +=
iV
iiT
f
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o
ii
f dV SqSIum
~~rq                                                                          (2.33)
where I~ is a skew symmetric matrix which can be identified as follows:
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And iS~ is a constant skew symmetric matrix identified as follows:
iiiT
V
ii dV
i
SISS ~~ ò= r                                                                                          (2.35)
One may note that i fqm consists of two parts;  the first  part  is  constant,  while the
second one depends on the elastic coordinates of the flexible body i.
The term iffm which is associated with the flexible body i coordinates  is  a
constant matrix. The matrix can be defined as follows:
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The term iqqm consists of summation of three scalars identified as follows:
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The first scalar is rr
im )( qq represents the mass moment of inertia of the flexible
body i,  in  the  undeformed  state  about  perpendicular  axis  to  the  plane.  It  can  be
identified as follows:
ò=
iV
ii
o
iT
o
i
rr
i dVm uurqq )(                                                                                  (2.38)
The last two scalars rf
im )( qq and ff
im )( qq represent the change in the mass moment
of inertia of the flexible body i due to deformation. They can be identified
respectively as follows:
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2.4 Generalized Forces
The generalized forces in the floating frame of reference formulation are divided
into  two parts;  the  first  part  is  the  generalized  external  forces,  while  the  second
part is the generalized elastic forces. In the Figure 2.2, a flexible body i is
subjected to an external force iF acting on an arbitrary point iP on the body.
Figure 2.2. Generalized forces in the floating frame of reference formulation.
Generalized External Forces
The vector of an external force iF acting on an arbitrary point iP on the flexible
body i shown in Figure 2.2, can be constant, spring, damping or variable force, or
a combination of all them. The virtual work of external forces can be expressed as
follows:
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where ieQ is The vector of generalized external forces associated with the
generalized coordinates of the flexible body i. The vector can be expressed as
follows:
[ ]iTfiTiTRie QQQQ q=                                                                                  (2.42)
where iRQ is the vector of generalized external forces associated with the
translational reference coordinates of the flexible body i.  The  vector  can  be
expressed as follows:
iTiT
R FQ =                                                                                                          (2.43)
The middle component at the middle on the right hand side of Eq 2.42, is the
vector of generalized external forces associated with the rotational reference
coordinate of the flexible body i. The vector can be expressed as follows:
iiTiT BFQ =q                                                                                                       (2.44)
The last component on the right hand side in Eq 2.42, is the vector of generalized
external forces associated with elastic coordinates of the flexible body i. The
vector can be expressed as follows:
iiiTiT
f SAFQ =                                                                                                   (2.45)
Generalized Elastic Forces
It is important to note the difference between the virtual work done by the external
forces and the elastic forces on the flexible body i. It has been noticed previously
from Eq 2.40 that the virtual work done by external force acting on a flexible
body i is associated with the body generalized coordinates. Consequently, the
external force applied to the flexible body i, results with a translational or
rotational displacement, or both of them, which are associated with reference
coordinates of the flexible body i.  Those  types  of  displacement  are  called  rigid
body motion, as the flexibility of the body is not taken into account. In addition
the external force applied to the flexible body i results with an elastic linear
deformation associated with the generalized elastic coordinates of the flexible
body i. Such deformation affects the shape of the flexible body. It should be
mentioned here that this type of deformation due to the body flexibility, may
result with regardless to the existence of external force applied on the body. For
example,  the  elastic  deformation  of  a  free  rotating  beam,  when  the  effect  of
gravity forces is neglected [17]. The virtual work done by the elastic forces can be
expressed as follows:
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where i? is the stress vector and i?  is the strain vector. The strain vector can be as
follows:
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where iD is the strain-displacement matrix, which is a matrix whose components
are the derivative of the shape functions with respect to the flexible body i axes.
Substituting Eq 2.5 into Eq 2.47, in order to describe the strain vector in terms of
the generalized elastic coordinates of the flexible body i, yields to the following
equation:
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Assuming that the material of the flexible body i is a linear isotropic, Hooke’s law
which relate the stress and strain by the following linear equation can be applied
as follows:
iii ?E? =                                                                                                            (2.49)
where iE is the symmetric matrix of the elastic coefficients. Substituting Eq 2.48
into Eq 2.49 yields to the following equation:
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Substituting Eq 2.48 and Eq 2.50 into Eq 2.46, yields to the following equation:
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Rearranging the preceding equation, using the symmetrical property of elastic
coefficients matrix and the fact that the elastic coordinates of the flexible body i
depends only on time, yields to the following equation:
i
f
V
iiiiTiiiT
f
i
s
i
dV qSDESDqW dd
ú
ú
û
ù
ê
ê
ë
é
-= ò )(                                                          (2.52)
The preceding equation can be written as follows:
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where iffK is  the symmetric positive definite stiffness matrix associated with the
generalized elastic coordinates of the flexible body i. It can be defined from Eq
2.52 as follows:
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The virtual work described in Eq 2.53 can be written in a partitioned form as
follows:
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One may notice from the previous equation, that the generalized stiffness matrix
associated with the generalized coordinates of the flexible body i can be defined
as follows:
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It is shown clearly from the previous equation that the virtual work of elastic
forces due to the flexibility of the body i, is associated only with the generalized
elastic coordinates of the flexible body i.
2.5 Quadratic Velocity Vector
The quadratic velocity vector of the flexible body i has three components. The
vector can be expressed as follows:
[ ]TfivivRiviv )()()( QQQQ q=                                                                         (2.57)
The first component is associated with the translational reference coordinates of
the flexible body i. It defines the coriolis and centrifugal forces associated with
translational reference coordinates. It can be expressed as follows:
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The  second  component  is  associated  with  the  rotational  reference  coordinate  of
the flexible body i. It defines the coriolis forces associated with the rotational
reference coordinate. It can be identified as follows:
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where ioI is identified as follows:
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The last component is associated with the elastic coordinates of the flexible body
i. It defines the centrifugal and coriolis forces associated with the elastic degrees
of freedom of the body i.  It can be expressed as follows:
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2.6 Reference Conditions
In order to define a unique elastic displacement field with respect to the body
coordinate system, the flexible body has to be modelled in such a way that the
rigid body modes have be eliminated. To this end a set of reference conditions
correspond to the selected model have to be applied on the elastic coordinates of
the flexible body. The set of the reference conditions has to be chosen carefully as
it defines the nature of the flexible body coordinate system [17, 18]. For example,
the simply supported and free-free reference conditions define a floating frame
body coordinate system, the origin of which is not rigidly attached to a material
point  of  the  flexible  body  beam  model.  However,  the  two  cantilever  beams
reference conditions, define a body fixed coordinate system, the origin of which is
rigidly attached to the geometric center of the beam in the undeformed state. The
reference conditions can be applied by means of a constant matrix called Boolean
reference transformation matrix, whose elements are either zeros or ones. The
function of this matrix is to select the elastic coordinates, where the reference
conditions should be applied. One may notice that Eq 2.7 includes rigid body
modes. Thus, to eliminate those modes, a set of reference conditions have to be
applied. In general, Eq 2.7 can be rewritten after applying the reference conditions
as follows:
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where irB is the Boolean reference transformation matrix defined by Shabana in
Reference [14].
2.7 Equations of Motion
After formulating the mass matrix, the jacobian matrix, the stiffness matrix, the
vector of the external generalized forces and the vector of the quadratic velocity,
the equations of motion can be formulated using the augmented technique based
on using Lagrange multiplies. For a planar flexible body i in the multibody
dynamic system, Lagrange equation of motion can be expressed as follows:
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where iT is the kinetic energy of the flexible body i, ?  is the vector of Lagrange
multipliers and iQ is the vector of the generalized elastic and external forces. The
vector can be expressed as follows:
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The first two terms on the left hand side of Eq 2.63 can be defined as follows:
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Substituting Eq 2.64 and Eq 2.65 into Eq 2.63 yields to the following Lagrange
equation of motion:
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where bn is the total number of the bodies in the planar multibody dynamic
system. The previous equation can be expressed in a partitioned form as follows:
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Equation 2.66 is  a  system  of  second  order  differential  equations  that  has
)( cnn + number of unknowns while the number of equations is n. Therefore,
additional kinematic constraint algebraic equations describing the joints between
the bodies in the system are added. Those equations have to be satisfied at all
times during the motion. The addition of those constraint equations leads to the
following set of DAE:
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2.8 Finite Element Assembling Procedure
Finite element procedure is used in the floating frame of reference formulation to
describe the elastic deformation of the flexible body with increased accuracy.
Moreover, exact modelling of rigid body motion associated with large translation
and rotation can be obtained, while infinitesimal rotations are used as nodal
coordinates. In the finite element floating frame of reference, the flexible body is
discretized  to  a  finite  number  of  elements.  Each  element  consists  of  number  of
nodes results from discretization, which defines the elastic deformation of the
element. The position of each element is defined with respect to the body
coordinate system using element coordinate system. The elastic deformation of
each element is defined using nodal coordinates and space dependant element
shape matrix. The nodal coordinates for each element are identified in terms of the
total nodal coordinates of the flexible body using Boolean transformation matrix.
Reference conditions are applied at the boundary nodes of the flexible body in
order to eliminate the rigid body modes. For more convenience, Figure 2.3 shows
the coordinate systems for a planar flexible body i in finite element floating frame
of reference.
Figure 2.3. Finite element floating frame of reference coordinates.
It can be noticed from Figure 2.3 that the flexible body i has been discretized to a
finite number of elements. The origin ijO of the element j coordinate system
ijij
21 XX is rigidly attached to a point on the element. While on the other hand, the
origin iO of the flexible body i coordinate system ii 21XX is  not necessarily has to
be  rigidly  attached  to  a  point  on  the  flexible  body.  All  the  positions  of  the
elements  have  to  be  defined  with  respect  to  the  body  coordinate  system.
Therefore, it serves as a reference for all elements and expresses the connectivity
between them. The orientation of the flexible body i coordinate system is defined
with  respect  to  the  global  coordinate  system  using  the  transformation  matrix
defined in Eq 2.8. In the finite element floating frame of reference assembling
procedure two constant mapping matrices are needed to be identified. Those
matrices do not change and are kept constant during the simulation. The first
matrix  is  a  2  x  2  transformation  matrix  used  to  define  the  orientation  of  the
element j coordinate system with respect to the flexible body i coordinate system.
The matrix can be expressed as follows:
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where the subscript ij refers to the element j in the flexible body i and ijb  is the
orientation  angle  of  the  element j coordinate system with respect to the flexible
body i coordinate system. The second matrix is called Boolean mapping
transformation matrix, whose elements are either zeros or ones. This matrix is
used to define the vector of element ij nodal  coordinates  in  terms  of  the  total
vector of elastic nodal coordinates of the flexible body i as follows:
iTijij eBe =                                                                                                        (2.70)
where ije is the vector of the element ij nodal coordinates, ijB is the Boolean
mapping transformation matrix which is defined by Shabana in Reference [14]
and ie is  the  vector  of  the  total  elastic  nodal  coordinates  of  the  flexible  body i.
Recalling Eq 2.70 the  vector  of  nodal  coordinates  of  the  element ij can be
expressed as follows:
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where ijoe defines the nodal coordinates of the element ij in the undeformed state
and ijfe defines the elastic deformation of the nodal coordinates of the element ij .
The assumed displacement field of the nodal coordinates of the element ij can be
expressed in the element ij coordinate system using the shape function of the
element ij as follows:
ijijij eSw =                                                                                                         (2.72)
where ijS is  the  space  dependant  shape  matrix  of  the  element ij . The assumed
displacement field of the nodal coordinates of the element ij defined in the
previous equation can be expressed with respect to the flexible body i coordinate
system as follows:
ijijij wCu =                                                                                                        (2.73)
where iju is the vector of the assumed displacement field of the nodal coordinates
of the element ij defined with respect to the flexible body i coordinate system.
Substituting Eq 2.72 and Eq 2.70 into Eq 2.73 yields to the following equation:
iTijijijij eBSCu =              (2.74)
The preceding equation can be written in a more compact form as follows:
iTijij eNu =                                                                                                        (2.75)
where ijN can be described from Eq 2.74 as follows:
ijijijij BSCN =                                                                                                    (2.76)
The vector describes the position of any arbitrary point ijP on the element ij can
be expressed with respect to the global coordinate system using the two constant
mapping matrices as follows:
iijiiij
P eNARr +=                                                                                              (2.77)
where ijPr is the vector describes the location for any arbitrary point
ijP on the
element ij with respect to the global coordinate system.
2.9 Modal Reduction
Using finite element method in the floating frame of reference formulation results
with a large number of generalized elastic nodal coordinates of the flexible body.
This is due to the flexible body discretization into finite number of elements
which leads to a large number of nodal degrees of freedom. Thus, describing the
deformation of the body, requires describing the deformation for each node,
which leads to a long and expensive computation. As a result, a modal reduction
method can be adopted to reduce the generalized elastic nodal coordinates. The
reduction is achieved by eliminating the high natural frequency modes which may
carry little energy. Removing those types of vibration modes associated with high
natural frequencies prevent the body from adopting the particular deformation
shape associated with this mode. Vibration modes with high natural frequencies
have  deformation  shape,  which  are  not  important  and  interesting  in  practice,  so
eliminating them will not affect considerably the solution. Modal reduction offers
an efficient way to reduce the number of generalized elastic nodal coordinates
with a minimum effect in accuracy of the solution. Modal reduction can be carried
out by transferring from the physical nodal coordinate system of the deformable
body into the modal elastic coordinates. This can be accomplished by modal
transformation. Modal transformation can be adopted using the following two
steps. First step, is to solve the eigenvalue equation derived by assuming the
flexible body i vibrating freely about a reference configuration. The equation is
defined as follows:
0eKem =+ iiff
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where ie&& is the acceleration of the elastic nodal coordinates of the flexible body i.
A trial solution for the preceding equation which has been suggested by (Clough
and Penzien 1975; Shabana 1997) can be defined as follows:
tjii e wae =                                                                                                         (2.79)
Substituting the preceding equation into Eq 2.78 yields to the following equation:
[ ] 0amK =- ikiffikiff 2)(w nnk ,...,2,1=                                                   (2.80)
The preceding equation is called the standard eigenvalue problem. Where nn is the
number of the elastic nodal coordinates of the flexible body i resulted from
discretization, ikw is a set of eigenvalues or natural frequencies associated with
each nodal coordinate of the flexible body i and ika are the corresponding
eigenvectors for the eigenvalues. The eigenvectors are sometimes called as the
normal modes or the mode shapes. The second step is to eliminate the modes
associated with high natural frequencies, in addition to the rigid boy modes. The
modes that have zero natural frequencies and thus zero eigenvalues are called
rigid  body modes.  As  a  result  of  the  second step,  a  reduced  model  with m  low
frequency mode shapes can be obtained. It is important to note that the number of
mode shapes results after elimination m is much less than the number of the nodal
coordinates nn )( nnm << . After choosing the mode shapes best describing the
deformation of the body i, a coordinate transformation from the physical nodal
coordinates to the modal elastic nodal coordinates can be accomplished as
follows:
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where ifp is the vector of the modal elastic nodal coordinates of the flexible body i
and i? is the modal transformation matrix whose columns are the low frequency
m  mode shapes. The matrix can be expressed as follows:
[ ]Timiii aaa? L21=                                                                                   (2.82)
where ima represents the mode shape correspond to the low natural frequency
i
mw .
The vector of the generalized coordinates system of the flexible body i can be
expressed by means of the modal coordinate system as follows:
iii p?q »                                                                                                           (2.83)
 where ip is the vector of the modal coordinates of the flexible body i and i? is
the modal transformation matrix for the total vector of the generalized coordinates
system of the flexible body i. The preceding equation can be rewritten in a
partitioned form as follows:
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where irp is the vector of the modal reference coordinates. It can be noticed from
the previous equation that the reference modal coordinates are equal to the
physical reference coordinates.
Orthogonality of the Mode Shapes
The orthogonality of the mode shapes which was proven by Shabana [15], is an
important property. This property can be used to obtain a diagonal mass and
stiffness matrices which yield to dm number of uncoupled differential equations.
To this end, Eq 2.68 can be rewritten using the vector of the modal coordinates of
the flexible body i as follows:
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Premultiplying the preceding equation by iT? yields to the following equation:
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where iiiT ?M? can be expressed as follows:
ú
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ê
ë
é
==
iT
m
iiT
m
iTiiT
iTiiT
iiiTi
p
aMa
aMa
aMa
?M?M
000
000
000
22
11
MOMM
                             (2.87)
ú
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ê
ë
é
=
i
m
i
i
m
m
m
ˆ000
00ˆ0
000ˆ
2
1
MOMM
where ipM is the modal mass matrix and
imˆ are the modal mass coefficients. The
matrix iiiT ?K? can be expressed as follows:
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where ipK is called the modal stiffness matrix and
ik are the modal stiffness
coefficients. It can be noticed from Eq 2.87 and Eq 2.88 that the modal mass and
stiffness matrices are diagonal as a result of the orthogonality property of the
mode shapes. The vectors on the right hand side of the Eq 2.86 can be expressed
respectively as follows:
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It is important to note from Eq 2.86 that the jacobian matrix is evaluated by
differentiating the constraint equations with respect to the modal coordinates.
However, it is more convenient to differentiate the constraint equations with
respect to the physical coordinates. This can be accomplished using the following
relation:
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Therefore the jacobian matrices associated with the modal reference and elastic
nodal coordinates can be expressed as follows:
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Solving Eq 2.86 yields to a number m of modal elastic nodal coordinates.
Substituting the solution into Eq 2.81 yields to the physical elastic nodal
coordinates which describe the deformation of the body i.
Craig-Bampton Method
The modal transformation matrix expressed in Eq 2.82 contains the selected mode
shapes that best describe the deformation. However, to obtain acceptable dynamic
accuracy, an excessive number of mode shapes may be still required. As a result,
the modal reduction may lose its importance in decreasing the number of
deformation mode shapes which are not interesting. To overcome this problem,
one of the component mode synthesis (CMS) methods, which has been widely
used and is available in a number of commercial finite element codes such as
ANSYS [19] can be applied. This method is called Craig-Bampton method [20].
This method can be applied by defining two sets of modes known as Craig-
Bampton modes. The first set is called constraint modes, which can be obtained
by giving each boundary DOF a unit displacement while holding all other
boundary DOF fixed. These modes span all possible motions of the boundary
DOF. To illustrate the methodology of the constraint modes, Figure 2.4 shows an
example of two different constraint modes for a beam that has attachment points
at the two ends.
Figure 2.4. Craig-Bampton constraint modes.
The previous figure on the left, shows the constraint mode corresponds to a unit
translation, while the figure on the right, shows the constraint mode corresponds
to a unit rotation. The second set is called fixed boundary normal modes, which
can be obtained by fixing the boundary DOF and computing an eigensolution.
These modes span all possible motions of the interior DOF. To illustrate the
X X
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methodology of the fixed boundary normal modes, Figure 2.5 shows  two
different fixed boundary normal modes for a beam that has attachment points at
the two ends.
Figure 2.5. Craig-Bampton fixed boundary normal modes.
As a result of defining the previous two sets of modes, a new set of coordinates,
called modal coordinates of the Craig-Bampton modes, is formed. Modal
coordinates of the Craig-Bampton modes can be defined by means of the vector of
generalized coordinates system of the flexible body i as follows:
iii p?q ˆ=                                                                                                           (2.94)
where i? is the Craig-Bampton transformation matrix of the vector of generalized
coordinates system of the flexible body i and ipˆ is the vector of modal coordinates
of the Craig-Bampton modes. The preceding equation can be rewritten in a more
explicit form as follows:
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where iIC?  is the Craig-Bampton transformation matrix of the vector of elastic
nodal coordinates of the flexible body i or the ineterior DOF in the constraint
modes, iIN? is the Craig-Bampton transformation matrix of the vector of elastic
nodal coordinates of the flexible body i or the ineterior DOF in the normal modes,
i
Cpˆ is the vector of modal coordinates of the Craig-Bampton constraint modes of
the flexible body i and iNpˆ is  the  vector  of  modal  coordinates  of  the  Craig-
Bampton fixed boundary normal modes of the flexible body i.  The  Craig-
Bampton modes are not orthogonal. Therefore, the Craig-Bampton transformation
matrix is unsuitable for direct use in dynamic system simulation, as it can not be
XX
YY
utilized to obtain diagonal mass and stiffness matrices. To overcome this problem,
a new transformation matrix iNˆ which transforms the Craig-Bampton modes to
equivalent orthogonal modes expressed by means of modal coordinates is defined.
The new transformation matrix can be obtained by solving the following
eigenvalue problem:
[ ] 0?MK =- iiii ˆ)(ˆ 2l                                                                                     (2.96)
where iKˆ is the Craig-Bampton stiffness transformation matrix, which can be
expressed by means of the generalized stiffness matrix of the flexible body i as
follows:
iiiTi ?K?K =ˆ                                                                                                  (2.97)
il in Eq 2.96 is a set of eigenvalues or natural frequencies associated with each
modal coordinate of the Craig-Bampton modes of the flexible body i, i? are the
corresponding orthogonal eigenvectors for the eigenvalues and iMˆ is the Craig-
Bampton mass transformation matrix, which can be expressed by means of the
generalized mass matrix of the flexible body i as follows:
iiiTi ?M?M =ˆ                                                                                                 (2.98)
The orthogonal eigenvectors i? result from solving the eigenvalue problem
expressed in Eq 2.96 are arranged in the transformation matrix iNˆ , which
transforms the modal coordinates of the Craig-Bampton modes to an equivalent
orthogonal modal coordinates. Consequently, the modal coordinates can be
expressed by means of modal coordinates of the Craig-Bampton modes as
follows:
iii pNp ˆˆ=                                                                                                          (2.99)
Using Eq 2.83 and Eq 2.99 the  effect  of  the  superposition  can  be  expressed  as
follows:
iiiiii pN?p?q ˆˆ==                                                                                       (2.100)
The Craig-Bampton transformation matrix of the vector of generalized
coordinates system of the flexible body i can be expressed using the previous
equation as follows:
iii N?? ˆ=                                                                                                      (2.101)
3. SIMULATION MODEL OF THE HUMAN LOWER LIMB
In this chapter, the procedure of building a two dimensional human lower limb
simulation model is shown. For the sake of simplicity, the model is assumed to be
consisting of three bodies or bones; the thigh, the shank and the foot, which they
were shown previously in Figure 1.2.  The  shank  bone  only  is  modeled  as  a
flexible body. While on the other hand, the thigh and the foot bones are modeled
as rigid bodies. The model consists of three revolute joints; first one connects the
foot and the shank, second one connects the shank and the thigh and the third one
connects the thigh and the human skeleton. In this work, MCS.ADAMS software
[21] version 12.0 is used to study and analyze the lower limb model. Moreover,
the software is used to calculate the strain in the shank bone as a result of applying
different exercises to this model. In the following chapter, raising the sole of the
foot is considered the exercise to be applied to the lower limb model.
The geometrical model of the lower limb has been built based on the Visible
Human Viewer Project [22]. The visible human project is a Java Applet written to
allow users to explore slices of the visible human data set from three different
viewpoints (axial, coronal, and sagittal). It is the creation of complete,
anatomically detailed, three-dimensional representations of the normal male and
female human bodies. Acquisition of transverse computerized tomography (CT),
magnetic resonance imaging (MRI) and cryosection images of representative
male and female cadavers has been completed. The male was sectioned at one
millimeter intervals, the female at one-third of a millimeter intervals. The visible
man  is  a  set  of  digital  images  of  the  body  of  a  39  year  old  man,  Joseph  Paul
Jernigan, who donated his body to science after being convicted of murder and
sentenced to death. He was executed by lethal injection in Texas in 1993. The
visible man data was made available in 1994. The visible woman data is for a 59
year old woman who died of natural causes. This data was made available in
December 1995. In this model, the lower limb of the male is only considered.
Figure 3.1 shows the main panel of the applet  which contains the preview three
images (axial, coronal, and sagittal) of the human body.
Figure 3.1. Visible human viewer main panel [22].
It can be noticed from Figure 3.1 that in addition to the three viewpoints shown in
the main panel, a control panel is also included in the main panel that provides
several options to the user. Through the control panel, the user can select the
image type (male or female), the image format (MRI, Photo or CT), the image
resolution (Low, Medium or High), the image to be magnified (Load Image) and
the image to be previewed through the slice adjust triangular buttons that moves
the cutting line on each viewpoint image. Since the male viewpoint images were
sectioned to one millimeter intervals, the slices triangular buttons can be used for
measuring purposes.
3.1 Shank Model
The shank bone has two parts; the anterior and the posterior. The two parts are
connected together at their endings, and they have complicated geometrical
features. Figure 3.2 shows the geometrical shape of the male shank bone as well
as the cross section at the middle point of it, as depicted from the visible human
viewer.
Figure 3.2. Geometrical shape and cross section of the shank bone [22].
It can be noticed from Figure 3.2 that the geometrical shape and the cross section
of the anterior and posterior shank bone have irregular shapes. For simplicity, the
shank is modeled as one body, the cross section is assumed to be hollow circular
and the shape of the two endings of the shank bone is assumed to be identical at
each end. Table 3.1 shows the dimensions used to build the shank bone model in
addition to other physical specifications needed. The model of the shank bone is
shown in Figure 3.3.
Cross section of the
anterior shank bone
Shank bone
Cross section of the
posterior shank bone
Table 3.1. Dimensions and specifications of the shank bone model.
Parameters Values
Length 0.421 m
Outer radius 0.037 m
Inner radius 0.027 m
Mass 3 kg
Center of gravity location as a
percentage of the shank length
measured from the proximal end
43.4 %
Elastic modulus 17 GPa
Figure 3.3. Shank bone model.
The model shown in the previous figure is built using ANSYS 8.1 software. The
bone is meshed using shell element with type shell 63. ANSYS software is used to
calculate the number of the deformation mode shapes needed in the floating frame
of reference formulation based on the Craig-Bampton method explained in
chapter two.
Deformation Mode Shapes
The number of deformation modes, in addition to the strain and stress results
associated with each deformation mode can be calculated and transferred to
ADAMS software. The deformation mode shapes can be investigated and
analyzed through ADAMS software in which the user has the option to select the
suitable deformation modes. Usually the first six modes represent the rigid body
modes, where the natural frequency associated with them are » zero. By default,
the rigid body modes are automatically disabled through the software, however,
the user has to check carefully the other transferred modes in order to disable the
unsuitable deformation modes. Figure 3.5 shows the selected elastic deformation
mode shapes of the shank bone model, and Table 3.2 shows the natural
frequencies associated with each mode.
(a)             (b)     (c)
                   (d)            (e)       (f)
Figure 3.4. Selected elastic deformation modes for the shank bone.
Table 3.2. Natural frequencies of the selected deformation modes.
Deformation Mode Natural Frequency  (Hz)
(a) 652.054
(b) 652.117
(c) 1596.295
(d) 1596.664
(e) 2634.429
(f) 2635.569
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3.2 Thigh Model
Similar to the shank bone, the thigh bone has complicated geometrical features as
well. Figure 3.5 shows the geometrical shape of the male thigh bone as well as
the cross section at the middle point of it, as depicted from the visible human
viewer.
Figure 3.5. Geometrical shape and cross section of the thigh bone [22].
It can be noticed from Figure 3.5 that the geometrical shape and the cross section
of the thigh bone have irregular shapes. For simplicity, the cross section is
assumed to be hollow circular and the shape of the two endings of the thigh bone
is  assumed to  be  identical  at  each  end. Table 3.3 shows the dimensions used to
build the thigh bone model in addition to the mass and the center of gravity
location. The model of the thigh bone is shown in Figure 3.6.
Cross section of the
thigh bone
 Thigh bone
Table 3.3. Dimensions and specifications of the thigh bone model.
Parameters Values
Length 0.464 m
Outer radius 0.045 m
Inner radius 0.035 m
Mass 5 kg
Center of gravity location as a
percentage of the thigh length measured
from the proximal ends
43.3 %
Figure 3.6. Thigh bone model.
The  model  shown  in Figure 3.6 is built using SolidWorks 2004 SP04.2 [23]
software. It can be noticed that the thigh bone is modeled as a rigid body. The
model is imported to the ADAMS software, where it will be connected to the
other bodies.
3.3 Foot Model
The geometrical shape of the foot bones is shown in Figure 3.7 as depicted from
the visible human viewer.
Figure 3.7. The geometrical shape of the foot bones [22].
It  can  be  noticed  from  the  previous  figure  that  the  foot  bones  have  complex
geometrical features. For simplicity, the foot bones are modeled as one rigid body.
The foot model is built directly using ADAMS Software. Table 3.4 shows the
dimensions used to build the foot bone model in addition to the mass and the
center of gravity location.
Table 3.4. Dimensions and specifications of the foot model.
Parameters Values
Length 0.1 m
Height 0.05 m
Mass 1 kg
Center of gravity location as a
percentage of the foot length measured
from the proximal ends
50 %
3.4 Assembly of the Model
The complete model is assembled using ADAMS software. Figure 3.9 shows the
assembled lower limb model.
 Foot bones
Figure 3.8. Lower limb model.
The three joints connecting the four bodies are modeled as revolute joints. The
kinematic  restrictions  for  each  joint  depend on  the  exercise  to  be  applied  to  the
model. The human body is modeled as rectangle with a mass equal to 30 kg. The
mass of the upper body is based on the assumption that each leg will carry half of
the upper human body weight. The muscles connected to the lower limb bones,
can be modeled as forces between the bodies. However, only the active muscles
concerned with the physical exercise can be taken into consideration. In the
following chapter the model shown in Figure 3.8 is investigated under raising the
sole of the foot exercise, and only two muscles are being modeled.
Revolute joints
4. NUMERICAL EXAMPLE
Raising the sole of the foot is considered one of the simplest and most common
physical exercises the human can do. One cycle of the exercise is conducted by
raising the sole of the foot. Consequently, the heel rises up from the ground until
reaching a maximum height from it. Upon releasing the muscles of the lower
limb, the heel hits the ground again and so on. In this chapter, the model of the
lower limb built in the previous chapter is studied under this exercise. The most
important muscles that control the movement in this exercise are gastrocnemius
and soleus muscles. Figure 4.1 show gastrocnemius and soleus muscles.
Figure 4.1. Gastrocnemius and soleus muscles [24].
Some important specifications of the two muscles needed in the model are shown
in Table 4.1.
Gastrocnemius muscle Soleus muscle
Table 4.1. Specifications of the gastrocnemius and soleus muscles [24].
Specifications Gastrocnemius muscle Soleus muscle
Origin
Medial head from posterior
nonarticular surface of medial
femoral condyle; lateral head
from lateral surface of
femoral lateral condyle
Posterior aspect of fibular head,
upper 1/4 - 1/3 of posterior
surface of fibula, middle 1/3 of
medial border of tibial shaft, and
from  posterior  surface  of  a
tendinous arch spanning the two
sites of bone origin
Insertion
The  two  heads  unite  into  a
broad aponeurosis which
eventually unites with the
deep  tendon  of  the  soleus  to
form the achilles tendon,
inserting on the middle 1/3 of
the posterior calcaneal surface
Eventually unites with the
gastrocnemius aponeurosis to
form the achilles tendon,
inserting on the middle 1/3 of
the posterior calcaneal surface
Action
Powerful plantar flexor of
ankle
Powerful plantar flexor of ankle
It can be noticed from the action of the two muscles mentioned in the previous
table, that both of them are considered the main active muscles in moving the
ankle joint. Gastrocnemius muscle is modelled as a force acting between the thigh
and the foot, where the foot is the action body and the thigh is the reaction body.
Soleus muscle is modelled as a force acting between the shank and the foot, where
the foot is the action body and the thigh is the reaction body. Both forces have the
same origin point on the foot and controlled via step function. Figure 4.2 shows
the step function control for the forces exerted from gastrocnemius and soleus
muscles respectively for one cycle only.
Figure 4.2. Step function control of the gastrocnemius and soleus forces for one
cycle.
It can be noticed from the previous figure that the force exerted from the soleus
muscle is larger than the force exerted from the gastrocnemius muscle. This is due
to the fact that, the force production capacity from the muscle is determined by
means  of  its  physiological  area.  The  ratio  between the  physiological  area  of  the
soleus muscle to the one of the gastrocnemius muscle equals to 230 : 96 [25]. One
may notice also, the mechanism at which the exercise is conducted in which there
are two pauses at each cycle of the exercise. First one occurs at the standing state,
while the second one occurs when the heel reaches the highest point from the
ground. The positions of the exercise in one cycle are shown in Figure 4.3.
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Figure 4.3. Positions of raising the sole of the foot exercise.
The modifications for the lower limb model when it experiences raising the sole
of the foot exercise are shown in Figure 4.4.
          t = 0 sec           t = 1.2 sec           t =2 sec
Figure 4.4. The lower limb model under raising the sole of the foot exercise.
It can be noticed from the previous figure that, two torsional spring forces have
been added; one at the knee joint and the other one at the joint connecting the
thigh with the body. This addition has been done to prevent the rotation for these
two joints, as they are kept fixed during the exercise. SFORCE_1 represents the
force  exerted  from  the  soleus  muscle,  while  SFORCE_2  represents  the  force
exerted from the gastrocnemius muscle. In reality, the human brain maintains the
balance of the body through orders and instructions transferred to the muscles by
a complicated central nervous system. In this model, the control system that
includes the brain and central nervous system has not been modelled, thus a
transitional joint has been added between the body and the space, in the direction
of the exercise movement. The function of this translational joint is to prevent the
body from falling down while rising due to the gravitational force and maintains
the body balance. To prevent the foot from sliding on the ground, a revolute joint
has been added between the foot and the ground. Finally, the ground reaction
force has been modelled as a contact force (CONTACT_1) between the foot and
the ground. The specifications of this contact force is shown in Table 4.2.
Table 4.2. Specifications the contact force.
Specifications Values
Type Impact
Stiffness 1 x 810  N/m
Damping 1 x 510  Nsec/m
Force component 2.2
Penetration depth 1 x 410- m
4.1 Results and Discussion
The exercise simulation has been studied and tested at different simulation control
parameters to check the behaviour of it. The simulation of the exercise has been
carried out at the following step size values: 0.01, 0.001, 0.0001 and 0.00001. The
model has shown logical behaviour at the different simulation control parameters,
in which the variations between the results were negligible. However, the results
shown in the following figures are measured for one exercise cycle, and at the
following  simulation  control  parameters;  end  time  equals  to  2  sec  and  step  size
equals to 0.01. Two nodes have been selected; one is located at the middle of the
anterior shank bone and the other one is located at the middle of the posterior
shank bone. The two nodes are located next to each other at the circular
circumferential surface of the shank bone along the global X axis. Figure 4.5
shows the locations of the selected nodes in the shank bone.
Figure 4.5. Nodes of interest in the shank bone.
In  order  to  make  a  comprehensive  analysis  of  the  results  shown in  the  previous
figures, it is important to recognize the stresses concern in this physical exercise,
which are; the pure compression and the bending moment stresses. The main
stress is the bending moment, which is caused by the forces exerted from the
soleus and gastrocnemius muscles. This stress takes place when the heel starts to
rise  from ground until  it  reaches  to  a  maximum height  from the  ground.  Due  to
this bending moment stress acting on the shank bone, the anterior shank will be in
compression, while on the other hand, the posterior shank will be in tension. The
pure compression stress is considered to have a minor deformation compared to
the bending stress. This stress takes place during the standing still state at which
the heel is on the ground. The ground reaction force, in addition to different strain
and stress measurements at the two nodes shown in the previous figure with
respect to the global coordinate system (XY) for one cycle of the exercise, are
plotted in the following figures.
Node (1) location at
the anterior shank
Node (2) location at
the posterior shank
Y
X
Figure 4.6. Ground reaction force magnitude.
In the previous figure, the magnitude of the ground reaction force is plotted. It can
be noticed that the ground reaction force at the beginning of the exercise during
the  first  standing  still  is  equal  to » 650 N. While on the other hand, it increases
steeply with a large amount as the heel hits the ground again. This is due to the
momentum energy results from the movement of the body during the exercise.
This  leads  to  a  high  impact  force  as  the  heel  hits  the  ground  before  the  second
standing still.
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Figure 4.7. Normal X strain at the nodes (1) and (2).
Figure 4.8. Normal X stress at the nodes (1) and (2).
node (1)
node (2)
N
or
m
al
X
  s
tra
in
Time (sec)
node (2)
node (1)
Time (sec)
N
or
m
al
 X
 st
re
ss
 (P
a)
In Figure 4.7 and Figure 4.8 the normal strains and stresses in X direction at the
nodes (1) and (2) are plotted respectively. It can be noticed that the normal stress
in X direction at the standing still state at the beginning and ending of the exercise
at both nodes is equal to zero. This can be justified that, during the standing still
state, the only stress acting is the pure compression which is in Y direction. While
on  the  other  hand,  the  normal  strain  in  X  direction  at  both  nodes  during  the
standing still state is not equal to zero. This can be explained that the pure
compression stress in Y direction causes a strain in X direction. As a result of the
bending moment stress, Node (1) experiences a compression stress, which causes
a tensile normal strain in X direction. While on the other hand, node (2)
experiences a tensile stress, which causes a compression normal strain in X
direction.
Figure 4.9. Normal Y strain at the nodes (1) and (2).
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Figure 4.10. Normal Y stress at the nodes (1) and (2).
In Figure 4.9 and Figure 4.10 the normal strains and stresses in Y direction at the
nodes (1) and (2) are plotted respectively. As a result of the bending moment
stress, Node (1) experiences a compression stress, which causes a compression
normal strain in Y direction. While on the other hand, node (2) experiences a
tensile stress, which causes a tensile normal strain in Y direction. It can be noticed
from Figures (4.7, 4.9 and 4.10) that the normal compression stress and thus the
normal compression strain in Y direction, in addition to the normal strain in X
direction at both nodes, experience a sudden change in direction as the heel hits
the ground at the end of the exercise before the second standing still. This is due
to the fact that the ground reaction force that causes the pure compression stress,
increases incredibly as the heel hits the ground due to the momentum energy,
which was shown previously in Figure 4.6.
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Figure 4.11. Shear XY strain at the nodes (1) and (2).
Figure 4.12. Shear XY stress at the nodes (1) and (2).
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In Figure 4.11 and Figure 4.12 the shear strains and stresses in XY direction at
the nodes (1) and (2) are plotted respectively. It can be noticed that the shear
strain results from the bending moment stress only, as the compression XY shear
stress is equal to zero. As a result of the bending moment, node (1) experiences a
tensile XY shear strain, while node (2) experiences a compression XY shear
strain. From Figures (4.7-4.12) some general comments can be noticed. First, as
the heel reaches to maximum height from the ground, the stress and thus the strain
curves plateau. This is due to the mechanism at which the exercise is conducted,
in which there is a little pause as the heel reaches a maximum height from ground.
Second, the strains result from the pure compression stresses are small compared
to the strains result from the bending moment stress. This can be shown clearly in
the following Figures (4.13-4.16) where the maximum and minimum principle
strains and stresses at node (1) and (2) are plotted respectively.
Figure 4.13. Maximum principal strain at the nodes (1) and (2).
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Figure 4.14. Minimum principal strain at the nodes (1) and (2).
Figure 4.15. Maximum principal stress at the nodes (1) and (2).
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Figure 4.16. Minimum principal stress at the nodes (1) and (2).
From Figure 4.13, it can be noticed that the maximum principal strains at both
nodes due to the bending moment stress are much higher than their magnitudes
results from the pure compression stress. While on the other hand, from Figure
4.14, it can be noticed that the absolute magnitudes of the minimum principal
strains at both nodes due to the bending moment stress are much higher than their
absolute magnitudes results from pure compression stress. Third, the stress and
thus strain results at nodes (1) and (2) are equal in magnitude and contrast in sign.
The equality in magnitude is due to the fact that both nodes are located next to
each others along the global X axis. While on the other hand, the contrast in sign
results from the bending moment stress, thus node (1) will be in compression and
node (2) in tension.
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Figure 4.17. Von mises strain at the nodes (1) and (2).
Figure 4.18. Von mises stress at the nodes (1) and (2).
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In Figure 4.17 and Figure 4.18 von mises strains and stresses at the nodes (1) and
(2) are plotted respectively. It can be noticed that they are equal at both nodes as
the  von  mises  stress  is  an  expression  of  the  stress  in  terms  of  normal  and  shear
stresses. While on the other hand, the von mises strain is a strain expressed in
terms of  normal and shear strains.
The previous measurements of the maximum and minimum principle strains
shown in Figure 4.13 and Figure 4.14 show good agreement with real strain
measurements in VIVO (Latin expression refers to experimentation done on a
living body). In Reference [26] the principle strains were measured in VIVO in an
adult human shank during walking at level correspond to nodes (1) and (2). The
maximum principle strain was equal to 437 micro strain, while the minimum
principal strain was equal to -544 micro strain. In this model the maximum tensile
strain, which corresponds to the maximum principle strain, occurs at node (2), and
according to Figure 4.13 it  is  equal to » 212.5 micro strain. While on the other
hand, the maximum compression strain, which corresponds to the minimum
principal strain, occurs at node (1), and according to Figure 4.14 it is equal to » -
212.5 micro strain. In this model, the maximum principal strain equals to the
minimum principal strain, as both nodes are located exactly next to each other
along the global X axis. However, walking is considered more strenuous than
rising the sole of the foot exercise. This leads to a result, that the multibody
dynamic approach is considered a powerful tool in modelling human skeletal.
5. CONCLUSION
The aim of this study is to prove the efficiency and capability of the flexible
multibody dynamic approach in measuring the strain in the human lower limb
bones resulted from different exercises. The bone strain plays major role in the
battle against the metabolic bone diseases, as the absolute strain increment is
considered one of the important factors in increasing the bone strength. The main
motivation in using multibody dynamic approach in modelling the human lower
limb is the difficulty of obtaining different important measurements such as
muscle forces and bone strain directly from the human by means of invasive
techniques. To satisfy the aim of this study, the human lower limb is modelled
using multibody dynamic approach. The model consists of three bodies; the thigh,
the shank and the foot. The shank is considered to be flexible while the other
bodies are considered to be rigid. Floating frame of reference formulation was
used to account for the flexibility in the shank. The model was tested and verified
through a numerical example showing raising the sole of the foot exercise. In this
study, a commercial multibody simulation code (ADAMS) was used to
accomplish the model. The strain was measured in the middle of the shank, and
the  results  have  shown  good  agreement  with  the  real  strain  measurements  in
VIVO (Latin expression refers to experimentation done on a living body) in the
shank taken at the same location. According to this study presented in this thesis,
the multibody dynamic approach can be seen as a promising and challenging tool
in modelling human skeletal from three points of views. First, modelling and
simulation can provide information that is not directly accessible by
experimentation on humans. Second, the model simulation data can be very
helpful in explaining the results obtained from the motion analysis experiment.
Third, the flexible multibody model of the human lower limb can be used to
design several physical training exercises to achieve the optimal strength of the
bones. For example, the model presented in chapter three can be improved and
extended to be used in developing different exercises in order to maintain or
increase the bone strength.
The results obtained from the previous example, show that the theory and method
used in introducing the flexibility is potentially utilizable in human bone
modelling. In addition, they demonstrate a good functionality and suitability of
the floating frame of reference formulation for the computationally efficient and
realistic modelling of the human bones. In the future, a more detailed and
complex model of the human lower limb bones can be built in three dimensions.
In this model a detailed description of the muscles, joints and tendons can be
done. Moreover, further studies can be conducted in modelling the control system
that includes the brain and central nervous system. The control system is very
important in controlling the muscles and thus obtaining the desirable movement of
the lower limb model. This detailed lower limb model can be utilized in designing
several physical exercises to achieve the optimal bone strength.
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