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ABSTRACT 
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Master’s thesis 2007 
103 pages, 12 figures, 2 tables and 12 appendixes 
 
 
 
To enable a mathematically and physically sound execution of the fatigue test and a 

correct interpretation of its results, statistical evaluation methods are used to assist in the 

analysis of fatigue testing data. The main objective of this work is to develop step-by-step 

instructions for statistical analysis of the laboratory fatigue data. The scope of this project 

is to provide practical cases about answering the several questions raised in the treatment 

of test data with application of the methods and formulae in the document 

IIW-XIII-2138-06 (Best Practice Guide on the Statistical Analysis of Fatigue Data). 

Generally, the questions in the data sheets involve some aspects: estimation of necessary 

sample size, verification of the statistical equivalence of the collated sets of data, and 

determination of characteristic curves in different cases. The series of comprehensive 

examples which are given in this thesis serve as a demonstration of the various statistical 

methods to develop a sound procedure to create reliable calculation rules for the fatigue 

analysis. 
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NOMENCLATURE 
 
 

α  Significance level 

A  Intercept of the regression line 

β  Shape parameter of Weibull distribution 

η  Scale parameter of Weibull distribution 

γ  Location parameter of Weibull distribution, significance 

level of confidence limits 

C  Fatigue capacity 

Cμ  Confidence level applied on the population mean 

Cσ  Confidence level applied on the population variance 

Cr  Criteria of hypothesis test 

E  Parameter of Multiple non-linear regression,   

F  Percentage point of the distribution, Parameter of 

Multiple non-linear regression 

F

2,h χ  Independent variable in the chi-square distribution 

k  One sided tolerance limit factor 

ck  Confidence limit factor 

m  Slope exponent of the S-N curve 

λ  Independent variable in the standardized normal 

distribution 

μ  Population mean of a continuous random variable 

n  Number of specimens 

N  Life in number of cycles from the S-N curve 

pN  Life related to failure probability  P

P  Probability of failure 
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R  Reliability, stress ratio, variance ratio 

s  Sample standard deviation 

S  Stress range 

aS  Stress amplitude 

mS  Mean stress 

maxS  Maximum stress equal to the sum of the mean and the 

amplitude of an alternating stress 

sS  Standard deviation 

SΔ  Stress range 

σ  Stress, population standard deviation 

2σ̂  The best estimate of the variance of the data about 

regression line 

aσ  Stress amplitude  

eσ  Estimate of the common variance of two samples 

t  Independent variable in the Student’s t distribution 

T  Difference between two estimated slops 

x  Continuous random variable 

x  Sample mean 

kx  
Characteristic value 

X  Difference between two estimated intercept 

( )xΦ  Distribution function. Probability density integral 

δ  Specified precision of the estimate 

zα  Ordinate on the normal curve corresponding to significant 

level 
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1 INTRODUCTION 

 

Components of machines are frequently subjected to cyclic loads, and the resulting cyclic 

stresses can lead to microscopic physical damage. The process of damage and failure due 

to cyclic loading is called fatigue. In practice, Mechanical structures often have defects or 

stress concentrations which cause cracks to nucleate and propagate. Even very small 

stress concentration areas can lead to fatigue failure of dynamically loaded structures. 

Therefore, the fatigue failures have been highly concerned in engineering design. 

 

Fatigue tests are made with the objective of determining the relationship between the 

stress range and the number of stress cycles applied before causing failure. It is 

implemented to determine basic material or material joining characteristics such as: 

fatigue limit, S-N fatigue strength curves and crack propagation curves. It based on the 

relationship between the fatigue resistance of a given material, component or structural 

detail and cyclic load. The testing samples are usually subjected to cyclically varying 

stresses which may be tension, compression, torsion and bending or a combination of 

these stresses. 

 

In fatigue tests, different test specimens and testing conditions make the observed results 

distinct and invariably scattered. Consequently, statistical methods are used to establish 

the required relationship between applied load and the number of cycles to failure. 

Statistical methods are available to assist in the analysis of fatigue testing data. For the 

non-expert, these are often difficult to apply. 

 

With the increasing use of fatigue testing to supplement design rules, the IIW commission 

of fatigue of welded components and structures has developed a Best Practice Guide on 

Statistical Analysis of Fatigue Data (Schneider and Maddox, 2006). It focuses on fatigue 

endurance test results obtained under constant amplitude load. The analyses are concerned 

purely with the experimental data. They are independent of the tested material.  
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This current work is based on this Best Practice Guide. The goal has been to develop data 

sheets to solve a series of practical questions in the analysis of fatigue. The objective of 

this work is to provide step-by-step recommendations on the use for analyzing fatigue 

data. The scope of this guidance is to provide practical cases to answer several important 

questions raised regarding the treatment of test result. Generally, the questions involved 

the estimation of necessary sample size, verification of the statistical equivalence of the 

collated sets of data, and determination of characteristic curves in different cases. 

 

Working group 1 of Commission XIII in the International Institute of Welding is currently 

developing a series of working sheets in order to help non-experts apply the statistical 

principals outlined in the best practice guidance document [IIW.XIII-WG1-121r3-06] 

(International institute of welding, 2006). The goal is that works sheets on the following 

questions should be developed: 

 

1. Can two data sets be merged? 

2. Are the variances of 2 data sets statistically equivalent? 

3. Are the means of 2 data sets statistically equivalent? 

4. Are the data normal distributed using a normal probability graph (Henry graph) 

5. Are the data normal distributed using a likelihood test? 

6. Are the data Weibull distributed using a Weibull probability graph? 

7. Does a standard S-N curve fit with a data set? 

8. How many results are necessary to validate a selected S-N curve? 

9. What S-N curve can be selected from a set of non cracked samples results? 

10. How to determine a design S-N curve, slope fixed (prediction limits)? 

11. How to determine a design S-N curve, slope estimated (prediction limits)? 

12. How to determine a design S-N curve, slope fixed (tolerance limits)? 

13. How to determine a design S-N curve, slope estimated (tolerance limits)? 

14. How to determine a mean S-N curve, Bastenaire equation? 

15. Are 2 experimental design S-N curves statistically equivalent? 
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Additionally, Lappeenranta University of Technology is interested in post weld 

improvement technologies; therefore, one additional question has been added. 

16.  How to determine the degree of improvement produced by a post-weld treatment 

process? 

  

Draft versions of worksheets for questions 1 through 5 and question 7 have been 

developed previously. The specific goal of this thesis is to develop draft worksheets for 

questions 6, 8 through 13, 15 and 16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 10



2 FATIGUE TESTING 
2.1 The relationship between stress range and cycles 
 

The results of fatigue tests from a number of different stress levels can be plotted to 

obtain a stress-life curve, also called an S-N curve. The amplitude of local stress or 

nominal stress, aσ or  is commonly plotted versus the number of cycles to failureaS fN . 

 

In most cases, test results are obtain at constant stress ratios, R . The S-N data is presented 

in a graph showing logarithm of endurance in cycles as the abscissa and logarithm of 

stress range as the ordinate. There is an underlying linear relationship between and 

of the form: 

log S

log N

log log logN A m= − S                                                  (2.1) 

where: is the slope and m log A is the intercept  

Another rewritten form is commonly used to describe S-N curves in design rules: 

mS N A=                                                             (2.2) 

The lower limit on is determined by the fatigue endurance limit. Commonly, it is chosen 

on the basis of endurance that can be achieved without fatigue cracking, typically 

between and cycles. While, the upper limit on is taken to be the 

maximum allowable static design stress. 

S

62 10N = × 710 S

 
2.2 The log-normal distribution 
 

In statistics, a probability distribution describes how probabilities are distributed on 

events. The probability distribution is used to help us estimate the population by using 

limited samples. According to different types of random variables, the probability 

distribution is categorized to discrete distributions, continuous distributions, and joint 

distributions (Marray, 1990). 
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For statistical evaluation of fatigue testing data, it is often assumed that fatigue life in the 

finite life regime is log-normally distributed. The log-normal distribution which is one of 

basic continuous distributions provides a lot of benefits to researchers due to its wide 

applicability to reliability problems, especially in the area of maintainability and to certain 

fracture problem.  

 

Mathematically, if is log-normally distributed, then is normally distributed. If a 

variable can be thought as the multiplicative product of many small independent factors, 

it is able to be regarded as log-normally distributed.  

Y logY

 

A probability density function (pdf) serves to represent a probability distribution in terms 

of integrals. For continuous random variables, the expression for the log-normal 

probability density function (pdf) and cumulative distribution function (CDF) are given as 

follow (Mann, Schafer, and Singpurwalla, 1974). 

pdf   

2ln( ) / 21( )
2

x

f x e
x

μ
σ

σ π

⎛ ⎞−⎡ ⎤⎜ ⎟− −⎢ ⎥⎜ ⎟⎣ ⎦⎝= ⎠             0 x≤ ≤ +∞              (2.3) 

CDF  1 1 ln( )( )
2 2 2

xF x erf μ
σ

−⎡= + ⎢⎣ ⎦

⎤
⎥                 0 x≤ ≤ +∞              (2.4) 

where: x  is the continuous random variable 

      μ  is the population mean 

      σ  is the population standard deviation 

 

 

 

 

 

 

 
 

Figure 2.1 Log-normal pdf and CDF (Stahel, Limpert, and Abbt, 2001) 
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2.3 Statistical independent results 

 

In probability theory, statistical independence means that the occurrence of events makes 

it neither more nor less probable that the others occur. In fatigue testing, individual 

specimen is usually tested for the basic research of fatigue strength. The test specimen is 

usually simple welded and is known the weakest part in terms of the fatigue resistance. 

For example, a longitudinal fin in a base plate or a base plate welded with longitudinal 

fins on both sides. Various strain gauges are often implemented in tests and the loading 

can be multi-axial. Final failure appears in the form of crack growth which is caused by 

numerous stress ranges (Niemi, Marquis and Poutiainen, 2005). The number of endurance 

cycles at different stress range level is recorded. Each test is carried out separately and 

does not affect the outcome each other. In other words, the result from each test is 

statistically independent of the others.  

 

The above mentioned characteristics are foremost assumptions in the statistical evaluation 

of fatigue data. The testing data must be match for them in order to truly represent the 

population. Commonly, the above assumptions are available in practice. There are relative 

statistical tests which are able to justify their validity. 
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3 FITTING A S-N CURVE 
 
Simply, the S-N curve is composed of data points according to stress range and the 

endurance in cycles. The standard approach in curve fitting is to assume that the 

parameter on the x-axis is the independent variable and the one on the y-axis is dependent 

variable.  

n

 

In the S-N curve, the constant amplitude fatigue limit (CAFL) is defined as the stress 

range below which failure will not occur. For design purposes, it is assumed that the S-N 

curve extends down to the CAFL and then turns sharply to become a horizontal line. 

Typically, the endurance of smooth specimens is around cycles. For notched 

specimens, cycles is commonly used. Moreover, it is important to note that the test 

results which lie in region approaching the CAFL should not be used to estimate the 

best-fit linear S-N curve. These suggestions are from the Best Practice Guide (Schneider 

and Maddox, 2006). 

62 10×

710

 

 

 
Figure 3.1 Example of S-N curve with data (Maddox, 1993) 
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3.1 Fatigue data 
 

Statistical evaluation relies extensively on the testing data to make estimations. Hence, the 

supplied data affects the accuracy of the prediction greatly. The fatigue life data can be 

separated into two categories: complete data or censored data.  

 

Complete data means that the value of each sample unit is observed or known. In the case 

of life data analysis, the data set would be composed of the times-to-failure of all units in 

the sample. For instance, if five samples are tested and all failed, we would have complete 

information as the time of each failure in the sample. (Reliasoft, 1992) 

 

Figure 3.2 Complete data (Reliasoft, 1992) 

 

In fatigue testing, all of the samples may not have failed when the testing finishes. We do 

not make sure each specimen under fatigue test yielded an exact failure endurance. 

Therefore, it is possible to obtain results from the specimens or parts of specimens which 

are unfailed. These unfailed specimen are often termed ‘run-outs’. This type of data is 

commonly called censored data. There are three types of possible censoring schemes, 

right censored (suspended data), interval censored and left censored. 

 

Right censored is common in the fatigue testing. These data sets are composed of units 

that did not fail. The failure would yields at some time on the right on the time scale. 
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Figure 3.3 Right censoring data (Reliasoft, 1992) 

Interval censored data reflects uncertainty as to the exact times the units failed within an 

interval. We concern about whether the samples are failed in a certain interval of time. 

 
Figure 3.4 Interval censoring data (Reliasoft, 1992) 

In left censored data, a failure time is only known before a certain time. For example, we 

know that a certain unit failed sometime before an interval time.  
 

 
Figure 3.5 Left censoring data (Reliasoft, 1992) 

 16



3.2 Methods of estimating the S-N curve parameters 
 

The general problem of finding equations of approximating curves which fit given sets of 

data is called curve fitting. One of the main purposes of curve fitting is to estimate 

dependent variable from the other independent variable. The process of estimation is 

termed as regression. (Spiegel, 1990) 

 

Many methods of statistical evaluation are available to determine best-fitting line and the 

statistical parameters. Generally, those methods are used to model the univariate data with 

a specific probability distribution.  
 

Table 3.1 Method of estimating the S-N curve parameters 
(International Organization for Standardization, 2000) 

Method 
of 

Analysis 
S-N curve equation Method and Assumptions Parameters

(A) log log logN C m S= − Mean line bisecting the two 
regression lines 

s, , logSC m

(B) log log logN C m S= − Linear regression of log N on log S 
ignoring run-out's 

s, , logSC m

(C) log log logN C m S= − Maximum likelihood (includes 
run-out's) 

s, , logSC m

(D) log log logN C m S= − Linear regression of log N on log S 
run-out's being included 

s, , logSC m

(E) 
( )A S E CN

S E B
−⎡ ⎤= −⎢ ⎥− ⎣ ⎦

Multiple non-linear regression  
including censored data (run-out's) 

Stress response curves: sigmoid 
normal 

A ,B ,E  

sS F,  

 
It is noted that methods A and B do not take unbroken specimens into account. While other 

three methods consider the run-outs into account in the analysis and which have a bearing 

on the final results. 

 

Whether the results from unfailed specimen are used in the statistical analysis of the data 

depends on the circumstances. But when the fatigue data include either run-outs or 
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suspended data, the appropriate statistical analyses become more complicated. Fortunately, 

many statistical software packages can perform the required calculations according to 

(International Organization for Standardization, 2000). 

 
3.21 Least squares regression method 

 

Considering only the results from truly failed specimens, the ordinary linear regression, 

called ‘least square estimation’, is used to estimate the intercept log A and slope of the 

best-fit line through the data. This method attempts to minimize the sum of the squares of 

the dependent variables between points generated by the function and corresponding 

points in the data. Note that the implicit requirement of the least squares method to work 

is the errors in each measurement should be randomly distributed.  

m

 

Calculate the intercept log A and slope for best-fit S-N curve by using least square 

regression method (Spiegel, 1990): 

m

Y A mX= +                                                          (3.1) 

Y = log N                                  logX S=                  (3.2) 

2
ˆ

( )
i i i i

i i

n x y x y
m

n x x
−

=
−

∑ ∑ ∑
∑ ∑ 2                                                (3.3) 

ˆ ˆiy x
A m

n n
= −∑ ∑ i                                                     (3.4) 

Linear least square regression is widely used in process modeling because of its 

effectiveness and completeness. Moreover, linear least squares regression makes very 

efficient use of the data. Good results can be obtained within relatively small data sets. 

However, when the data sets include the unusual data points, the estimates will be 

affected greatly. 

 

Least squares estimation for linear models is notoriously weak to outliers. If the 

distribution of outliers is skewed, the estimates maybe biased. This problem affects the 

 18



efficiency extremely. When outliers occur in the data, another method such as robust 

regression is more appropriated to be used. 

 

3.22 Maximum likelihood regression method  

 

We suggested a method of curve fitting the probability density function to the test data in 

a maximum likelihood sense. It has the advantage of considering every valid observation 

of the sample. This method expressed the probability of the combined events failures and 

runouts to find the optimum estimates of the sample mean and variance. 

 

Simply, when the fatigue life data satisfied with the assumptions mentioned in section 2 

and are neither run-outs nor suspended data, the following maximum likelihood 

estimators of intercept log A and slope m are recommended to use (ASTM international, 

2004): 

 
The S-N relationship is described by the linear model: 
Y A mX= +                                                                 

Y = log N                                      logX S=                      

ˆ ˆA Y mX= −                                                           (3.5) 

1

2

1

( )(
ˆ

( )

k

i i
i

k

i
i

)X X Y Y
m

X X

=

=

− −
=

−

∑

∑
                                                (3.6) 

Maximum likelihood Method can be developed for a large variety of estimation situations. 

As the sample size increases, it offers minimum variance unbiased estimators. The 

approximate normal distributions and sample variances can be used to generate 

confidence bounds and hypothesis tests for the parameters. However, the estimates might 

be heavily biased for small samples. Additionally, the calculation is laborious without 

computer assistant. 
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3.3 Sample size and population 

 

In practice we are interested in drawing valid conclusions about a large group of 

individuals or objects. Instead of examining the entire group, called the population, which 

may be difficult to do, one may arrive at the idea of examining only a small part of this 

population, which is called a sample (Spiegel, 1990).  

 

In fatigue testing, we face a finite population which is sampled with replacement. “How 

many measurements should be included in the sample?” It is one of the most frequent 

questions which need to be considered for statistical evaluation. Sample size determines 

the precision of that estimate. Larger sample size gives smaller error bounds of estimation. 

In order to determine the sample size we need to consider a series of factors such as cost 

of sampling, variability of the population, the precision of the final estimation. 

Fortunately, the prior information derived form previous study or research can be used to 

reduce the sample size. 

 

Commonly, there is no correct answer without additional information or specific 

assumptions. But the following steps can help us basic idea how to solve the problem. 

First, determine what we are trying to estimate and how precise we want. Second, find 

some equations that connect the desired precision of the estimate with the sample size. 

Third, get unknown properties in the equations. Final, review the final sample size to 

make sure it is acceptable. 

 

Actually, the researcher should make sampling decisions based on the data. The basic 

sample size determinations can be categorized according to the type of continuous data 

and categorical data. Continuous data is measured on a scale and can be meaningfully 

subdivided into finer and finer increments. Categorical variables represent types of data 

which may be divided into groups. Before proceeding with sample size calculations, 

assuming continuous data, it is important to determine if a categorical variable will play a 
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primary role in data analysis. For fatigue analysis, the fatigue data are continuous data 

because they are continuous in stress range.  

 

In this work, I study this question: How many results are necessary to validate a selected 

S-N curve? The assumption is that the slope and standard deviation of the mean S-N 

curve of the new test results are the same as those parameters of the selected S-N curve. 

Then the null hypothesis that the new test results belong to the same population as the 

main data base is made (Schneider and Maddox, 2006) 

%log log p
test

Z
A A

n
σ

≥ +                                                  (3.7) 

where: log testA is the mean logarithm of interception from new tests  

log A  is the logarithm of the interception from the mean for the selected S-N 

curve  

%pZ  is standard normal probability for a probability 

The above equation can be transformed into following form to determine the sample size: 

2
2

2n zα
σ
δ

⎛ ⎞
≥ ⎜

⎝ ⎠
⎟                                                           (3.8) 

where: σ is the population standard deviation 

      zα is the ordinate on the normal curve corresponding toα  

      δ is the specified precision of the estimate. For instance, log logtestA Aδ = − . 

It is indicates that the essential thing of determination sample size for fatigue testing is to 

determine a sample size that is large enough to guarantee the risk. In other hand, sample 

along with high quality data collection efforts will result in more reliable, valid, and 

generalizable results. It is able to do resource saving greatly. 

 

 

 

 21



4 ESTABLISHING A DESIGN CURVE 
4.1 Mean, characteristic and design values 
 

Generally, a structure can be damaged in various ways. Calculation of a single value such 

as strength value for a structure does not ensure that the structure itself will not fail. 

Numbers of values are needed to be obtained from the alternated failure modes. Then the 

mean value is often to be calculated to report central tendency. The mean value is not 

appropriate for describing skewed distributions. Fortunately, samples from fatigue testing 

are normal distributed. 

 

In practice, there are some load events which are not known in advance. Therefore, 

designer often uses limit state design to avoid failures due to unforeseen events. A limit 

state is a condition beyond which a structure is less than suitable to perform the required 

function. Fundamental ideas of limit state design include statistically based definitions of 

characteristic strength, characteristic loads and characteristic stress. By using those 

characteristic values associated with partial safety factor, the design values are able to be 

calculated. (Niemi, Marquis and Poutiainen, 2005).  

 

Commonly, on the load side, the characteristic value is determined that it is larger than the 

mean value by two times the standard deviations. The design value can be calculated by 

using the characteristic value multiply the partial safety factor for fatigue actions. On the 

resistance side, the characteristic value is defined that the mean value subtracted twice 

standard deviation. The design value can be obtained by using the characteristic value 

divided by the partial safety factor for fatigue resistance. Moreover, using the twice 

standard deviations is based on the 95% probability of survival to reach a reliability of 

75%. 

 

The figure 4.1 indicates that, on resistance side, the mean value and characteristic value 

according to 95% probability of survival. 
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Figure 4.1 Mean and characteristic strength 

In most cases for normal fabrication quality and regular inspections, the partial safety 

.2 Confidence limits 

hen we take a random sample from a population to approximate the mean of the 

 

factor is selected to be 1. Therefore, a characteristic or design curve is established by 

adopting characteristic values that lay a certain number of standard deviations below the 

mean S-N curve as the figure 3.1. Fatigue life verification of fail safe structures depends 

largely on the design parameters of a structure. Three different methods have been 

developed to determine the design curve. 

 

4

 

W

population, we concern about how well the sample statistically estimates the population 

value. The confidence limits, also called as confidence interval, which provides a range of 

values which is likely to contain the population parameter of interest. Confidence 

intervals with a confidence level mean that if the population is sampled on numerous 

occasions and interval estimates are made on each occasion, the resulting intervals would 

bracket the true population parameter in approximately the certain percentage of the 

confidence level (NIST/SEMATECH, 2003). For example, a 95% confidence interval 

means that if many samples are collected and the confidence interval computed, in the 

long run about 95% of these intervals would contain the true mean. 
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A fatigue design or characteristic curve is established by adopting characteristic values 

 

hen the confidence is applied to the sample mean and variance, the sample mean and 

that lay a certain number of standard deviations below the mean S-N curve. It has to be 

accepted that only a small part of the samples can be tested in practice. It is normally 

accepted that the sample mean of normal distribution is characterized by the Student’s 

t distribution and the sample variance is characterized by the chi-square distribution. 

W

variance will be limited without the influence from number of tests. These values with 

confidence are used as the mean value respective the variance for the whole population. 

In principle, the characteristic values are values at a 95%α = survival probability 

associated to confidence interval of the mean and the standard deviation: 

k cx x k s= − ⋅                                                          (4.1) 

The factor ck considers the effects of variance of data and deviation evaluated. It 

corresponds to the minimum value of the mean confidence interval and maximum value 

of the variance confidence interval. Taking into account the probability distribution of the 

mean corresponds to student t -distribution and the variance corresponds to Chi-square 

distribution, it can be calculated by using following equation (Hobbacher, 2005): 

( , 1) 1
( ) 2

1( , 1)
2

1p nt n− − −
c alpa

n

k
n βχ +

−

= +Φ                                             (4.2) 

where: value of the two sided t-distribution 

 normal distribution probability 

t  

     Φ  distribution function of the Gaussian

 Chi-square for a probability at 1n−  degrees of freedom      2χ

Normally we use 95% confidence level to analysis the test results. The following figure 

shows the typical confidence limits.  
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Figure 4.2 Regression line and design curve based on 95% confidence limits 

 

4.3 Prediction limits 

 

The prediction limit describes the probability that an individual point will be above or 

below a certain value. A two-sided prediction limit sets an interval for the data while a 

one-sided prediction limit describes the probability that a point will exceed a certain 

value. 

 

For the normally distributed fatigue data sets, the prediction limits at stress range can be 

expressed explicitly in the form (Schneider and Maddox, 2006): 

S

2

%
2

1

1 (log log )ˆlog (log log ) 1
(log log )

P n

i
i

S SN A m S t
n S S

σ±

=

−
= + ± + +

−∑
                    (4.3) 

where: log A and are the coefficients of the regression line through the data points m n

      log S  is the mean of the values of  n log iS
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        t    is the appropriate percentage point of Students distribution  t

       σ̂    is the best estimate of the variance of the data about the regression line, 

        f    is degrees of freedom, 2f n= −  in case where the two coefficients of the 

regression line have been estimated from the data 

When the slope is chosen to take a fixed value, the expression under the square roots is 

exactly equal to one. It is recommended to use when the sample size is less than ten. But 

when the sample sizes are smaller than 4, the following method of tolerance limits is 

regard as a more conservative design curve compared with prediction limits. 

 

4.4 Tolerance limits 

 

According to the “Best Practice Guide on Statistical Analysis of Fatigue Data” (Schneider 

and Maddox, 2006), the tolerance limits yield a more conservative design curve. The 

disadvantages of tolerance limits also could be ignored. They are inherently more 

complicated and harder to implement. They are more sensitive to deviations from the 

assumed normality. 

 

Generally, the tolerance limits are defined by lower and upper tolerance limits which are 

calculated from a series of results. For fatigue testing, the lower one-sided tolerance 

limit takes general form: 

%P

% ˆlog PN μ− = − ks                                                       (4.4) 

where: μ̂  is an estimate of the mean log of the endurance at stress , based on n  

observations 

S

s  is an estimate of the standard deviation of the log of the endurance at stress S, 

based on degree of freedom  

k  is a one-sided tolerance limit factor 

Estimating lower confidence limits of the form ˆ ksμ − on the prediction limit is available 

to avoid the sampling uncertainties. This statement means that at least a proportion 
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%P of the population is greater than ˆ ksμ − with confidence %γ . 

 

For fatigue analysis, if the slope of the regression line is estimated from the data, 

tolerance limit factors for the normal distribution are not easy to obtain. It needs the 

evaluation of both percentage points of the normal distribution and 

the

%P

%γ percentage points of the noncentral distribution. Based on the handbook of 

statistical tables (Owen, 1962), is determined by: 

t

k

{ }Pr ( )Pnoncenral t with K n k nδ γ= ≤ =                               (4.5) 

where: the noncentral t has f degrees of freedom 

PK is defined by 21 exp( / 2)
2

pK
x dx P

π −∞
− =∫  

The main trouble of calculation is to obtain the critical values of the 

noncentral -distribution, because its calculation involved several parameters such 

as

0t

t

η ,δ ,λ . Tables of factors for computing critical values of the noncentral -distribution 

in (Owen, 1962) are used to calculate value of

t

λ according toη ,δ . After obtaining 

corresponding valueλ , critical value is obtained by the formula: 0t

2 2

0 2

1
2 2

1 ( / 2 )
f f

t
f

δ λδ λ

λ

⎛ ⎞
+ + −⎜ ⎟

⎝=
−

⎠                                                 (4.6) 

Then value can be obtained by equation: k

0tk
n

=                                                              (4.7) 

For the case of degree of freedom 2f n= − , the relative laborious calculation has been 

done in this thesis. The common used values are able to be find from the table of 

one-sided tolerance limit factor in appendixⅪ 

k

 

While, if the slope is fixed, the tolerance factors for several cases which are interested in 
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fatigue analysis are offered in appendixⅩ from (Schneider and Maddox, 2006). 

 
4.5 Comparison  
 

Typically, confidence limits are based on sample mean and sample standard deviations. 

Therefore, it is usually recommended to use when we have larger sample sizes. Prediction 

intervals are especially powerful because they can predict a future compliance point. Its 

requirement of sample size is low. The tolerance limits is a way to determine a range that 

will contain a certain percentage of the population. It is recommended to be used as a 

means of justifying design curves that are based on small samples, especially for critical 

applications.  

 

Figure 4.3 is the design curve based on 95% confidence limits and prediction limits for 

the same regression line. It indicates prediction limits are more conservative than 

confidence limits. 
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Figure 4.3 Design S-N curve based on confidence and prediction limits 
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Figure 4.4 Design S-N curve based on prediction and tolerance limits 

 

The figure 4.4 shows the comparison of the results from data sheets 10 and 12. The green 

and red line respectively expresses the design curves based on prediction and tolerance 

limits. It is obvious that the tolerance limits offers a lower design curve. It proves that 

tolerance limits are more conservative than prediction limits. 
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5 VERIFICATION OF THE STATISTICAL EQUIVALENCE FOR 

TWO S-N CURVES 
 
In manufacturing field, when the manufacturing process has been changed or new 

processing technology is used, we want to determine whether a significant change has 

been produced. In statistical evaluation of fatigue data, this problem is transformed to 

justify the significant difference between two sets of S-N data or whether two sets of S-N 

data from the same population. 

 

A null hypothesis is often used to check this problem. In statistics, a null hypothesis is a 

hypothesis set up to be nullified or refuted in order to support an alternative hypothesis. 

This is the basis for regarding the null hypotheses as plausible, and for rejecting the 

alternative hypothesis that two data sets of test results belong to different populations. In 

this thesis, it is assumed that both sets of S-N data are exact data even though this 

approach can be extended to the case of censored data in principle. (Spiegel, 1990) 

 

The limitation of this a null hypothesis is that it is only useful if it is possible to calculate 

the probability of observing a data set with particular parameters form it. It is much 

harder to be precise about how probable the data would be if the alternative hypothesis is 

true. The theory underlying the idea of a null hypothesis is closely associated with the 

frequency theory of probability. A failure to reject the null hypothesis is meaningful only 

in relation to an arbitrarily large population from which the observed sample is supposed 

to be drawn. 

 

5.1 Tests performed to an S-N curve 

 

When we consider the statistical equivalence of the two S-N curves, the residual standard 

deviation, the intercepts and slopes of the two S-N curves are need to be taken into 

account. These formulas have been given by (Schneider and Maddox, 2006): 
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Test the residual standard deviation 

Null hypothesis: two sets of results belong to populations having the same standard 

deviation. 

2

1

2
1
2
2

ˆ
ˆ

f
fFσ

σ
≤                                                             (5.1) 

where: 2

1

f
fF  is the percentage point of the distribution %P F

      2σ̂   is the best estimated variances. 2 2
1 2ˆ ˆσ σ>  

Test the intercepts of the two S-N curves 

Null hypothesis: two sets of results belong to populations having the same intercept. 

1 2

2 2
21 2

1 2
2 21 2

1, 1 2, 2
1 1

(log ) (log )1 1log log
(log log ) (log log )

en n

i j
i j

S SA A t
n n S S S S

σ

= =

⎛ ⎞
⎜ ⎟
⎜ ⎟− ≤ + + +
⎜ ⎟

− −⎜ ⎟
⎝ ⎠

∑ ∑
    (5.2) 

where: 1log A , 2log A are the estimated intercepts of the regression lines of two data sets 

t  is the appropriate two-sided percentage point of Student’s distribution, with  

degrees of freedom

t

1 2 4n n+ −  

eσ is an estimate of the common variance of the two samples, 
2 2

2 1 1 2 2

1 2

ˆ ˆ
e

f f
f f

σ σσ +
=

+
 

Test the slopes of the two S-N curves 

Null hypothesis: two sets of results belong to populations having the same slope. 

1 2

2
1 2

2 2
1, 1 2, 2

1 1

1 1

(log log ) (log log )
en n

i j
i j

m m t
S S S S

σ

= =

⎛ ⎞
⎜ ⎟
⎜ ⎟− ≤ +
⎜ ⎟

− −⎜ ⎟
⎝ ⎠
∑ ∑

                 (5.3) 

where: ,  are the estimated slopes of the regression lines of the two data sets 1m 2m

In this case, the numbers of degree of freedom should be equal to , because two 

coefficients of intercept and slope have been estimated to obtain the S-N curves. At the 

same time, the significance level of the null hypothesis should be noted. For instance, 

each of the three null hypotheses is tested at 5% significance level; the combination of the 

2n−
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probability is 15%. Therefore the guild (Schneider and Maddox, 2006) is recommended 

choosing 1.7% significance level for each individual test in order to get a 5% significance 

level of the composite hypothesis. 

 

Here, I need to emphasize the definition of the significance level. In this hypothesis 

testing, the significance level of a test is the maximum probability, assuming the null 

hypothesis, that the statistic would be observed. Therefore, the significance level is the 

probability that the null hypothesis will be rejected in error when it is true. That means 

when we use significance level 1.7% instead of 5%, we have more opportunities to accept 

the null hypothesis. 

 

For example, test whether two sets of results belong to populations having the same slope. 

The null hypothesis at a significance level %α is accepted if the equation (5.3) is 

satisfied. When we reduce the significance level, the critical region is increased due to 

growing value of . However, a smaller significance level is possible to give greater risks 

of failing to reject a false null significance. 

t
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6 VERIFICATION OF WEIBULL DISTRIBUTED DATA 
6.1 Weibull probability graph 
 

Weibull probability plot is a graphical technique for assessing whether or not a data set 

follows the Weibull distribution. The data are plotted against a theoretical distribution in 

such a way that the points should form approximately a straight line. In this plot, the 

departures from this straight line indicate departures from the Weibull distribution. 

 

The Weibull distribution has a relatively simple distribution form, while, the shape 

parameter allows it to assume a wide variety of shapes. This combination of simplicity 

and flexibility in the shape of the Weibull distribution has made it to be an effective 

distributional model in reliability applications. Depending on the parameters’ values, the 

Weibull distribution can approximate an exponential, a normal or a skewed distribution. 

The standard form of any distribution is the form that has location parameter zero and 

scale parameter one. Therefore, the Weibull plot is a graphical technique for determining 

if data sets from a population that would logically be fitted by a 2-parameter Weibull 

distribution. The following graphs show the Weibull distribution function with shape 

parameters: 0.5, 1.0, 2.0 and 5.0. (Mann, Schafer and Singpurwalla, 1974) 

 
Figure 6.1 Weibull distribution function with different shape parameters 

(NIST/SEMATECH, 2003) 
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Generally, the Weibull shape parameter indicates whether the failure rate is increasing, 

constant or decreasing. The value of shape parameter 1.0β < indicates that a decreasing 

failure rate. The 1.0β = indicates a constant failure rate and 1.0β > indicates an 

increasing failure rate.  

 

The weibull distribution density function is given by (Mann, Schafer and Singpurwalla, 

1974): 

( )
1( ) ( ) , 0, 0, 0

xxf x e x
βγ

β ηβ γ β η γ
η η

−
−

−−
= > > > ≥                            (6.1) 

The cumulative Weibull distribution function is given by (Mann, Schafer and 

Singpurwalla, 1974): 

( )
( ) 1

x

F x e
βγ

η
−

−
= −                                                   (6.2) 

where:β is the shape parameter, η is the scale parameter, andγ is the location parameter. 

Letting γ =0, we change the form of the cumulative Weibull distribution function 

equation: 

1ln ln[ ] ln ln
1 ( )

x
F x

β β η
⎛ ⎞

= −⎜ ⎟−⎝ ⎠
                                         (6.3) 

Formula for reliability assuming a Weibull distribution is given in (Dorner, 1999): 

( )R t e

βχ
η
⎛ ⎞

−⎜ ⎟
⎝ ⎠=                                                         (6.4) 

Then the Weibull probably graph can be plotted corresponding to above equations. The 

probability plot is formed by: Vertical axis: Ordered reliability of responsible values and 

Horizontal axis: Order endurance cycles. It is possible to visualize the reliability of each 

design for multiple cycle values. 
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6.2 Determine the shape parameter and scale parameter 

 

For distribution with shape parameters, the shape parameters are necessary to generate the 

Weibull probability graph. For Weibull distribution which has only single shape parameter, 

the shape parameter can be estimated by probability plot correlation correlation 

coefficient plot (PPCC). PPCC is a graphical technique for identifying the shape 

parameter for a distribution family. It is suitable for Weibull distribution perfectly. 

 

The PPCC plot is used first to find a good choice for estimating the shape parameter of 

Weibull distribution. Then find estimates of the location and scale parameter. First of all, 

estimate the from following methods. Commonly, we choose the median rank.  ( )iF x

Table 6.1 Methods of estimating  (Al-Fawzan, 2000) ( )iF x

Method ( )iF x  

Mean Rank 
1

i
n +

 

Median Rank 
0.3
0.4

i
n
−
+

 

Symmetrical CDF
0.5i
n
−

 

 

Then use the least squares method to estimate the shape parameterβ in equation 6.3. 

When we perform the linear regression, we will find the estimate for Weibullβ parameter 

comes directly form the slope of the line. The estimate for the scale parameterηmust be 

calculated as follows: 

A

e βη
⎛ ⎞

−⎜ ⎟
⎝ ⎠=                                                         (6.5) 

where: A  is estimated for the linear regression Y A Xβ= +  
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6.3 A goodness of fit test: Anderson-Darling 

 

When we assume the fatigue data follow a specific distribution, e.g. Weibull distribution, 

it takes a serious risk. If our assumption is wrong, the results obtained from research 

could be invalid and useless.  

 

According to document: Anderson-Darling: A Goodness of Fit Test for Small Samples 

Assumptions from DoD Reliability Analysis Center (Volume 10, Number 5), there are 

two main approaches to checking distribution assumptions. One involves empirical 

procedures and is based on the intuitive and graphical properties of the distribution. 

Another one is more formal. It is the goodness of fit test. The results form latter approach 

is more reliable than those form the empirical procedure. At the same time, Goodness of 

fit test is essentially based on either of two distribution elements: the cumulative 

distribution function (CDF) or the probability density function (pdf). The 

Anderson-Darling (AD) test which use CDF is suitable for small samples. Moreover, this 

AD test is also used in the Minitab software.  

 

In AD test, we assume a pre-specified distribution to estimate the distribution parameters. 

This process generates a distribution hypothesis. When the assumed distribution is correct, 

the theoretical CDF closely follows the empirical step function CDF, as conceptually 

illustrated in Fatigue 6.2. The data are given as an ordered sample and the assumed 

distribution has a CDF. We will compare the theoretical and empirical results. If they 

agree, the data supports the assumed distribution. 

 

The following equation is used to calculate the AD value for fitting Weibull distribution: 

}{ ( ) ( 1 )
1

1 2 ln(1 exp( ))
n

i n i
i

iAD Z
n + −

=

−
= − − −∑ Z n−                              (6.6) 

where: ( ) ( )[ / ]i iZ x βη=  

(1 0.2 / )AD∗ = + n AD            (Corresponding to the estimation)          (6.7) 
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The OSL is given: 

}{1/ 1 exp[ 0.1 1.24ln( ) 4.48( )]OSL AD AD∗= + − + + ∗                          (6.8) 

 

 
Figure 6.2 Distance goodness of fit test conceptual approach 

Then the observed significance level (OSL) probability is used for testing the Weibull 

assumption. If this p-value is less then 0.05, Weibull assumption is rejected and the error 

committed is less than 5%. In other hand, the null hypothesis is accepted.  
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7 DETERMINE THE IMPROVEMENT FROM POST-WELD  

TREATMET 

7.1 post-weld treatment 

 

The dominant intention in fatigue design of load-carrying structures in mechanical 

engineering is to prevent fatigue failure. During cyclic load, it has been turned out that the 

weakest point in fabricated structures is normally the welded joints. In the weld area, it 

presents high stress concentration and high tensile residual stress. 

 

The post-weld treatment is a good method to improve fatigue resistance of welded joints. 

The principles of this method are: (a) to modify the stress distribution near the weld to 

produce beneficial compressive residual stress. (b) to modify the local geometry of the 

weld toe to eliminate the initial defects and decrease the local stress concentration. 

 

For the most improvement techniques such as needle peening, hammer peening and 

ultrasonic impact treatment, the magnitude of the improvement depends on the joint 

severity and base material strength. The benefit for steel can only be achieved in design 

class FAT 90 or lower in the IIW notation for S-N curves according to (Lihavainen 

Marquis and Statnikov, 1990). 

 

7.2 Statistical analysis of the test data 
 

The null hypothesis also can be used to analyze this problem to justify the significant 

difference between the data sets from as-weld and the data sets form post-weld. But it is 

much harder to be precise about how probable the data would be if the alternative 

hypothesis were true as we mentioned in section 5. Therefore, the fatigue class (FAT) is 

calculated to compare the difference of them in order to derive the degree of 

improvement. 
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The FAT indicates the characteristic stress range, which gives a fatigue life of two million 

cycles at 95% survival probability. The method of statistical analysis is developed within 

the International Institute of Welding (Niemi, Marquis and Poutiainen, 2005): 

2000000m m
i i iN C FATσ ⋅ = = ⋅                                           (7.1) 

Mean fatigue capacity  50%

log
log iC

C
n

= ∑                                 (7.2) 

Standard deviation   

2
50%(log log )

1

iC C
s

n

−
=

−

∑
                           (7.3) 

95% 50%
1.15log log (1.64 )C C s

n
= − +                                       (7.4) 

Characteristic Fatigue capacity 95%
95% 2000000

m
CFAT =                          (7.5) 

 

Note that: due to the relatively small sample size and the convenience of evaluation, the 

slope is choose to be 3 for welded steel joint which the fatigue life is dominated by crack 

growth. Using =3 to do the calculation is a conservative estimate.  m

 

When we estimate the slope form the obtained fatigue data to do this statistical analysis, 

we will find the value of degree of improvement is higher than that value obtained by 

using fixed slope. 
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8 DATA SHEETS: APPLICATION OF STATISTICAL ANALYSIS OF 

FATIGUE 

 

In this data sheets, the familiar questions of statistical analysis in fatigue design are 

studied. In addition, the instructions of solution are shown with examples. The relative 

fatigue testing data is from (Marquis, 1995) and Laboratory of Fatigue and Strength in 

Lappeenranta University of Technology. The data form laboratory is shown in appendixⅫ. 

The data sheets are in the appendixes. 

 

In the above chapters, the background and basic knowledge for each questions in the data 

sheets has been presented. The following words state the application of them: 

 

Data sheets 6: Weibull distribution is often used in place of the normal distribution due to 

it is able to be generated easily without typically variates as normal 

distribution. That is the reason to determine whether the data set is Weibull 

distributed.   

 

Data sheets 8: The validation of a selected S-N curve is based on a limited number of new 

fatigue tests. The tests of hypotheses and significance are applied to 

determine the sample size. 

 

Data sheets 9: In the estimation of parameters of S-N curve, the suitable method needs to 

be selected according to the type of fatigue data. If the data sets include 

censored data, the appropriate statistical analysis will be more 

complicated. 

 

Data sheets 10-13: Characteristic curve are developed to ensure the safety in design. Two 

methods are introduced to establish the design S-N curve with 
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different numbers of estimated coefficients from the data.  

 

Data sheets 15,16: When different fabrication techniques or procedures are implemented, 

it is necessary to ensure the improvement is obtained not only due to 

the sampling. Usually, we verify the means of data sets. For S-N curve, 

additional parameters are needed to be taken into account. 
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9 CONCLUSION AND RECOMMENDATIONS 
 
In this thesis project, it illustrates the basic frame of how to use statistical methods to 

evaluate fatigue testing data and the solution of problem in practice. I think the well 

planed statistical procedures in the first several sections from section 2 to section 7 and 

the specific instructions for special practical cases in appendixes are helpful in fatigue 

design. 

 

In this work, the precondition which assumes that the fatigue life for a given stress 

range is log-normally distributed has been emphasized. Both of least squares method 

and maximum likelihood method are widely used to obtain the linear regression line of 

S-N curve. The maximum likelihood estimation of the sample density function has many 

advantages and is recommended for analyzing censored data.  

N

S

 

The sample mean and standard deviation for the normal distribution are random variables. 

The sample mean is related to the student’s  distribution and the sample standard 

deviation is characterized by the chi-square distribution. There are more or less 

differences between the evaluation of the sample mean and the sample variance from the 

test data with a curve fitting method and that from theoretical distributions. It is 

recommended to apply a confidence level to the sample mean and deviation to get the 

population mean and population standard deviation. The confidence limits, prediction 

limits and tolerance limits are also generated to obtain characteristic values and design 

values of the results. They are able to be chosen according to the sample size. When we 

separately use the prediction limits and tolerance limits to determine the design curve 

base on the testing data, the comparison indicates that the second methods are more 

conservative. 

t

 

Weibull probability graph is one of useful approaches to checking the Weibull 

distributional assumption. The advantage of this method is the simplicity and speed. The 
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parameters of the distribution can be obtained easily, because the intercept and slope 

estimate of the fitted line are in fact estimates for the location and scale parameters of the 

distribution. At the same time, the Anderson-Darling test is illustrated in this work. This 

distance test is available to check the distribution assumption and is suitable for Weibull 

distribution. 

 

The importance of determination of the significance of two fatigue data sets has been 

mentioned in this work. We need to pay more attention to the significance level of the 

composite hypothesis. However, we ignore that null hypothesis has always been 

controversial about the likelihood of rejecting. The theoretical calculation of fatigue class 

is proved to be an available method to approximate the degree of improvement. 

 

As development of data sheets, there are still some questions need to be done. For 

example, how to determine a mean S-N curve by using Bastenaire equation? However, I 

wish this work can give people some conveniences to do statistical evaluation of fatigue 

data.   
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APPENDIXES 

 

AppendixⅠsheets 6:  Are the data Weibull distributed using a Weibull probability graph?            

AppendixⅡsheets 8:  How many results are necessary to validate a selected S-N curve? 

AppendixⅢsheets 9:  What S-N curve can be selected form a set of non cracked samples results? 

AppendixⅣsheets 10: How to determine a design S-N curve, slope fixed (prediction limits) 

AppendixⅤsheets 11: How to determine a design S-N curve, slop estimated (prediction limits)? 

AppendixⅥsheets 12: How to determine a design S-N curve, slope fixed (tolerance limits)? 

AppendixⅦsheets 13: How to determine a design S-N curve, slop estimated (tolerance limits)? 

AppendixⅧsheets 15: Are 2 experimental design S-N curves statistically equivalent?   

AppendixⅨsheets 16: How to determine the degree of improvement produced by a post-weld  

 treatment process? 

AppendixⅩTable 1:  One-sided tolerance limit factors  for k %γ =90% 1f n= −  

AppendixⅪTable 2 One-sided tolerance limit factors  for k %γ =90%  2f n= −

AppendixⅫTable 3: Fatigue testing data from Laboratory of Fatigue and Strength in LUT 

 

 

 

 

 

 

 
 
 
 
 
 

 46



AppendixⅠ 
IIW/IIS 

Com XIII-WG1 
Are the data Weibull distributed using a Weibull probability graph? Sheet 6

General 
1. Context 

The Weibull distribution is an important distribution especially for reliability and 

maintainability analysis. The graphical methods are used because of their simplicity 

and speed. However, it involves a great probability of error. 

2. Principle 

This test is based on the verification of the linearity of the cumulative frequency 

distribution using a graph with adapted scales. 

The cumulative Weibull distribution function is given by:
( )

( ) 1
x

F x e
βγ

η
−

−
= −  

where: β is the shape parameter, η is the scale parameter, and γ is the location 

parameter. 
Letting γ =0, we change the form of the cumulative Weibull distribution function 

equation: 1ln ln[ ] ln ln
1 ( )

x
F x

β β η
⎛ ⎞

= −⎜ ⎟−⎝ ⎠
 

Anderson-Darling statistic is used to measure the nonparametric step function (based 

on the plot points). The smaller Anderson-Darling values indicate that the distribution 

fits the data better. Then observed significance level (OSL) probability (p-value) is 

obtained to check the assumption. If OSL<0.05, the hypothesis of Weibull distribution 

is rejected. 

3. Condition of application 

The necessary data to determine the Weibull probability graph are the following: 

The data set, values n ix (cycles) 

( )iF x , Commonly, we choose the median rank 0.3
0.4

i
n
−
+

to estimate the  ( )iF x

Shape parameter β , Scale parameterη  

Determine the survival probability and reliability of failure thi
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IIW/IIS 

Com XIII-WG1 
Are the data Weibull distributed using a Weibull probability graph? Sheet 6

Procedure 
1. Criteria 

The selected level of risk is set toα , 0.05% probability to reject a correct hypothesis 

2. Calculation 

Calculate the shape parameterβ by using least square method: 

y A Bx= +  

Y =
1ln ln[ ]

1 ( )F x
⎛ ⎞
⎜ −⎝ ⎠

⎟                ln( )iX x=  

Estimate of failure-( )iF x i 0.3( )
0.4i

iF x
n
−

=
+

    

2 ( )
i i i i

i i

n x y x y
B

n x x
−

=
−

∑ ∑ ∑
∑ ∑ 2            i iy x

A B
n n

= −∑ ∑  

B =  ………….                  A =…………. 

Shape parameter- mβ =                                          …………. 

Scale parameter-η =
A

e β
⎛ ⎞

−⎜ ⎟
⎝ ⎠                                         …………. 

Reliability estimate-
( )

( )
x

R t e
β

η
−

=  

Survival probability- ( )1 tR−   

A goodness of fit test: Anderson-Darling 

}{ ( ) ( 1 )
1

1 2 ln(1 exp( ))
n

i n i
i

iAD Z
n + −

=

−
= − − −∑ Z n−                       

( ) ( )[ / ]i iZ x βη=  

(1 0.2 / )AD n∗ = + AD  

}{1/ 1 exp[ 0.1 1.24ln( ) 4.48( )]OSL AD AD∗ ∗= + − + +  

3. Conclusion

If OSL<0.05, the correct hypothesis of Weibull distribution is rejected. 
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IIW/IIS 

Com XIII-WG1 
Are the data Weibull distributed using a Weibull probability graph? Sheet 6

Example 
1. Data and formula 

Samples data 

n =29 

cycles to failure 
521,382 112,910 1,133,000 689,973 

1,879,752 6,766,000 3,675,000 958,318 
115,816 6,195,271 22,082,998 13,475,000 

10,204,041 4,310,000 7,154,785 20,511,538 
14,910,395 1,015,824 664,000 95,982 
10,646,018 1,580,669 3,816,199 19,048,838 
1,475,769 11,541,520 787,894 605,721 

   9,232,000 
 
2. Calculation 

Calculate the shape parameterβ by using least square method: 

Y A BX= +                         

Y =
1ln ln[ ]

1 ( )F x
⎛ ⎞
⎜ −⎝ ⎠

⎟                ln( )iX x=  

( )iF x  
1ln(ln( ))

1 ( )iF x−
 Rank ix  ln( )ix  

1 0.023809524 -3.725645038 95,982 11.47191595 
2 0.057823129 -2.820733108 112,910 11.63434632 
3 0.091836735 -2.33996397 115,816 11.659758 
4 0.12585034 -2.006163702 521,382 13.16423826
5 0.159863946 -1.747600408 605,721 13.31417476
6 0.193877551 -1.534703301 664,000 13.40603743
7 0.227891156 -1.352357777 689,973 13.44440775
8 0.261904762 -1.191772815 787,894 13.57711884 
9 0.295918367 -1.047365219 958,318 13.77293494
10 0.329931973 -0.915351077 1,015,824 13.83121066
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IIW/IIS 

Com XIII-WG1 
Are the data Weibull distributed using a Weibull probability graph? Sheet 6

 

 

11 0.363946 -0.79303 1,133,000 13.94038 
12 0.397959 -0.6784 1,475,769 14.20469 
13 0.431973 -0.56989 1,580,669 14.27336 
14 0.465986 -0.46628 1,879,752 14.44665 
15 0.5 -0.36651 3,675,000 15.11706 
16 0.534014 -0.26971 3,816,199 15.15477 
17 0.568027 -0.17508 4,310,000 15.27645 
18 0.602041 -0.08185 6,195,271 15.6393 
19 0.636054 0.010694 6,766,000 15.72742 
20 0.670068 0.10334 7,154,785 15.78329 
21 0.704082 0.196941 9,232,000 16.03819 
22 0.738095 0.292501 10,204,041 16.13829 
23 0.772109 0.39129 10,646,018 16.1807 
24 0.806122 0.495018 11,541,520 16.26146 
25 0.840136 0.60619 13,475,000 16.41635 
26 0.87415 0.728834 14,910,395 16.51757 
27 0.908163 0.870349 19,048,838 16.76252 
28 0.942177 1.047448 20,511,538 16.8365 
29 0.97619 1.318462 22,082,998 16.91032 

 

2 ( )
i i i i

i i

n x y x y
B

n x x
−

=
−

∑ ∑ ∑
∑ ∑ 2            i iy x

A B
n n

= −∑ ∑  

0.7244B =                         11.22A = −  

Shape parameter- β = m                                             0.7244 

Scale parameter-η =
A

e β
⎛ ⎞

−⎜ ⎟
⎝ ⎠                                          5329032 

Reliability estimate-
( )

( )
x

R t e
β

η
−

=  

Survival probability- ( )1 tR−  
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IIW/IIS 

Com XIII-WG1 
Are the data Weibull distributed using a Weibull probability graph? Sheet 6

 

 

Cycles Reliability 
Survival 

probability
Cycles Reliability 

Survival 

probability

521,382 0.830554006 0.169445994 3,675,000 0.465804 0.534196 
1,879,752 0.624950498 0.375049502 22,082,998 0.060773 0.939227 
115,816 0.939476587 0.060523413 7,154,785 0.289992 0.710008 

10,204,041 0.20171019 0.79828981 664,000 0.801553 0.198447 
14,910,395 0.121586325 0.878413675 3,816,199 0.456054 0.543946 
10,646,018 0.191884736 0.808115264 787,894 0.778497 0.221503 
1,475,769 0.674013375 0.325986625 689,973 0.796571 0.203429 
112,910 0.940547031 0.059452969 958,318 0.749349 0.250651 

6,766,000 0.30458684 0.69541316 13,475,000 0.141119 0.858881 
6,195,271 0.327823034 0.672176966 20,511,538 0.070315 0.929685 
4,310,000 0.424223692 0.575776308 95,982 0.946968 0.053032 
1,015,824 0.740083541 0.259916459 19,048,838 0.080762 0.919238 
1,580,669 0.660587425 0.339412575 605,721 0.813049 0.186951 
11,541,520 0.173717071 0.826282929 9,232,000 0.225612 0.774388 
1,133,000 0.721977173 0.278022827    
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Weibull probability graph 
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IIW/IIS 

Com XIII-WG1 
Are the data Weibull distributed using a Weibull probability graph? Sheet 6

 

 

A goodness of fit test: Anderson-Darling 

}{ ( ) ( 1 )
1

1 2 ln(1 exp( ))
n

i n i
i

iAD Z
n + −

=

−
= − − −∑ Z n−  

( ) ( )[ / ]i iZ x βη=  

AD =29.4244-29=0.4244 

(1 0.2 / )AD∗ = + n AD =0.4402 

}{1/ 1 exp[ 0.1 1.24ln( ) 4.48( )]OSL AD AD∗ ∗= + − + +  

0.425 0.05OSL α= > =  
 

3. Conclusion 
As OSL>0.05 then the data is Weibull distributed. 
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AppendixⅡ 
IIW/IIS 

Com XIII-WG1 
How many results are necessary to validate a selected S-N curve? Sheet 8

General 
1．Context

In fatigue testing, we would like to take enough observations to obtain reasonably 

precise estimates of the interested parameters, but we also want to do it within a 

practical resource budget. 

2. Principle 

We estimate the mean of population to determine the minimum sample size. When 

sample data is collected and the sample mean is calculated. The margin of errorδ is 

the maximum difference between the observed sample mean and the population mean. 
2

2( )n z zα β
σ
δ
⎡ ⎤= + ⎢ ⎥⎣ ⎦

                                      One-sided test [1] 

where: the positive value is at the vertical boundary in the right tail of the standard 

normal distribution. To control the risk of accepting a false hypothesis,

z

β is the 

probability of accepting the null hypothesis. σ is the population standard deviation; 

is the sample size. n

Validating tests performed to S-N curve: 
1.645log logtestA A

n
σ

≥ +                                              [2] 

where: log testA  is the mean logarithm of interception from the tests. log A  is the 

logarithm of the interception from the mean for the selected S-N curve and the value 

1.645 is obtained from standard normal probability tables for a probability of 0.95. 

3. Condition of application 

 The slope of the mean S-N curve for the new test results is the same as of the 

selected curve.  

m

 The standard deviation testσ of log N about the mean S-N curve for the new tests is 

the same as that for the main database. 
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IIW/IIS 

Com XIII-WG1 
How many results are necessary to validate a selected S-N curve? Sheet 8

Procedure 
1. Criteria 

For other significance levels, different values are obtained from the table: 

10% Level of significance: 1.285 

5% Level of significance: 1.645 

2.5% level of significance: 1.96 

1% Level of significance: 2.33 

Note that the corresponding level of significance of 5% is commonly considered to 

give a sufficiently low probability of concluding that the populations are different in 

the case where they are actually that same. 

 

2. Data and formula 

Validation the use of Class D at the 5% level of significance: 

Mean S-N curve for Class D-  3 13.99 10S N = × 2

Standard deviation of -log N 0.2097σ =  

Slop of design curve- m                                           ………... 

Sum of values-                                           ………... log N∑

Mean value-
log

log
N

N
n

= ∑                                      ………... 

Sum of values-                                           ………... log S∑

Mean value-
log

log
S

S
n

= ∑                                       ………... 

According to log log logA N m S= + , mean value- log A                 ………… 

Transform the Eq.[2] into the form as Eq.[1]: 
2

2
/ 2( )

log logtest

n z z
A Aα β
σ⎛ ⎞

≥ + ⎜ ⎟
−⎝ ⎠
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IIW/IIS 

Com XIII-WG1 
How many results are necessary to validate a selected S-N curve? Sheet 8

Example 
1. Data and formula 

Samples data 

   n =29 

Stress range cycles to failure Stress range cycles to failure 
147 521,382 74 3,675,000 
96 1,879,752 53 22,082,998 

250 115,816 53 7,154,785 
61 10,204,041 136 664,000 
57 14,910,395 75 3,816,199 
57 10,646,018 136 787,894 
96 1,475,769 136 689,973 

250 112,910 147 958,318 
74 6,766,000 53 13,475,000 
74 6,195,271 53 20,511,538 
74 4,310,000 265 95,982 

136 1,015,824 54 19,048,838 
136 1,580,669 176 605,721 
53 11,541,520 74 9,232,000 

136 1,133,000   
 

2. Calculation 

Validation the use of Class D S-N curve at the 5% level of significance: 

Mean S-N curve for Class D-  3 13.99 10S N = × 2

Standard deviation of -log N 0.2097σ =  

Slop of design curve- m                                                 3 

Mean value- log A                                                 12.601 

Sum of values-                                          185.401 log testN∑

Mean value-
log

log test
test

N
N

n
= ∑                                      6.393 
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IIW/IIS 

Com XIII-WG1 
How many results are necessary to validate a selected S-N curve? Sheet 8

 

 

Sum of values- log testS                                            57.437 

Mean value-
log

log test
test

S
S

n
= ∑                                      1.  981

According to log log logA N m S= + , mean value- log testA                  12.335  

Transform the Eq.[2] into the form as Eq.[1]: 
2

2( )
log logtest

n z z
A Aα β
σ⎛ ⎞

≥ + ⎜
−⎝ ⎠

⎟                   5%α =           10%β =  

2
2 0.2097(1.645 1.285)

12.335 12.601
n ⎛ ⎞≥ + ⎜ ⎟−⎝ ⎠

 

5.335n ≥  

 

 

3. Conclusion 

According to above calculations, the minimum number of sample size to validate the 

selected class D S-N curve should not be less than 6. 
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AppendixⅢ 
IIW/IIS 

Com XIII-WG1 
What S-N cure can be selected from a set of non cracked results? Sheet 9

General 
1. Contest 

Commonly, we assumed that each specimen in the test yielded an exact failure. 

Actually, the results or parts of specimens which are obtained from specimens have 

not failed. Those unfailed or non cracked specimen are often termed ‘run-outs’.  

 

It is known that under constant amplitude loading there is a fatigue endurance defined 

as the stress range below which failure will not occur. For design purpose, we make 

the S-N curve extend down to the constant amplitude fatigue limit and turn to a 

horizontal line. However, in practice fatigue test results usually follow an S-N curve 

that gradually changes slope in the region of the constant amplitude fatigue limit. 

2. Principle 

Various statistical methods can be used to analyze the endurance test results, 

determined statistical parameters. Based on the working group 1 of Commission XII 

of the International Institute of Welding, those statistical methods can be sorted as the 

following table according to the each main characteristic. 

 

Method 
of 

Analysis 
S-N curve equation Method and Assumptions Parameters

(A) log log logN C m= − S s, , logSC mMean line bisecting the two regression 
lines 

(B) log log logN C m= − S s, , logSC mLinear regression of log N on log S 
ignoring run-out's 

(C) log log logN C m= − S s, , logSC mMaximum likelihood (includes run-out's) 

(D) log log logN C m= − S s, , logSC mLinear regression of log N on log S 
run-out's being included 

(E) 
A ( )S E CN

S E B
−⎡ ⎤= −⎢ ⎥− ⎣ ⎦

Multiple non-linear regression  
including censored data (run-out's) 

Stress response curves: sigmoid normal 

A , B , E
sS ,  F
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IIW/IIS 

Com XIII-WG1 
What S-N cure can be selected from a set of non cracked results? Sheet 9

 

 

Method A 

Definition of the S-N curve by drawing bisecting line of the straight lines plotted from 

the regression of against and of against respectively. log N log S log S log N

Method B 

Conventional plotting of -  log N log S

Method C 

By using the maximum likelihood method, straight lines can be plotted in a 

 coordinate system. It is an appropriate tool for solving the general 

problem of estimating the ‘best fit’ line through censored test data. In general case, 

numerical iteration is required to derive maximum likelihood estimates. In special 

case of exact data, the maximum likelihood method leads to the least squares function 

on which linear regression is generally based. 

log logS − N

This method amounts to curve fitting in compliance with the formula: 

nN S K× =  

Method D and E 

BASTENAIRE’s method provides for fitting particularly any model of S-N curve by 

supplementing a basal computer program with sub-programs. Two models may be 

considered: 

mN S C× =                                  M e t h o d  D 

( ) exp[ ( ) / ]cN S E A S E B− = − −                      M e t h o d  E 

where: S is the nominal stress and the corresponding number of cycles to failure, A, 

B, C and E are statistically assessed parameters. 

N
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IIW/IIS 

Com XIII-WG1 
What S-N cure can be selected from a set of non cracked results? Sheet 9

 

 

3. Condition of application

 In statistical analysis, we are able to decide whether the results from unfailed 

specimens can be used according to the circumstance. 

 Test results from either failed or unfailed specimens that lie in this transition 

region approaching the constant amplitude fatigue limit should not be combined 

with those obtained at higher stresses in the estimation of the best-fit linear S-N 

curve. 

 Depending on this guide, notched or welded specimens that give 

cycles could be fall into this category, for smooth specimen <1062 10N < × N 6. 

 In addition, fatigue test results from unfailed specimens can be used to estimation 

of the best-fit S-N curve in two other situations: 

a) The test is stopped deliberately. 

b) The test specimen contains more than one site for potential fatigue 

failure and fails from just one of them. 

4. Conclusion

The methods A and B do not take unbroken specimens into account. While other three 

methods consider the run-outs in the analysis and which have a bearing on the final 

results. But when the fatigue data include either run-outs or suspended test, the 

appropriate statistical analyses become more complicated. Fortunately, many 

statistical software packages can perform the required calculations. 

 

At the same time, methods based on the formula mN S C× = yield strongly variable 

results if parametersC and are taken into consideration; while the deviation between 

the values is smaller for a given fatigue life. 

m

S
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Com XIII-WG1 
What S-N cure can be selected from a set of non cracked results? Sheet 9

 

 

When we test a number of specimens which contain the same number of nominally 

identical welds and any of which might fail first. If each specimen is tested until it 

fails at exactly one of the potential locations, then the S-N curve for a single weld can 

be established by using least squares estimation, together with the tabulated extreme 

value statistics for normal distribution. 
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AppendixⅣ 
IIW/IIS 

Com XIII-WG1 
How to determine a design S-N curve, slope fixed (prediction limits)? Sheet 10

General 
1. Contest 

For design purpose, it is necessary to establish limits between which a given 

proportion (typically 95%) of the data lies. Prediction limits are used to avoid 

confusion with the confidence limits on the coefficients of the regression line. The 

interval between the upper and lower prediction limits is called a prediction interval. 

2. Principle 

Prediction limits at stress range can be expressed explicitly, in the form: S
2

%
2

1

1 (log log )ˆlog (log log ) 1
(log log )

p n

i
i

S SN A m S t
n S S

σ±

=

−
= − ± + +

−∑
 

where: log A and are the coefficients of the regression line through the n data points m

      log S  is the mean of the values of log  n iS

       t    is the appropriate percentage point of Student’s t distribution  

      σ̂    is the best estimate of the variance of the data about the regression line, 

      f    is degrees of freedom 

3. Condition of application 

 It is often assumed that design curves will only be applied to values of that 

are not far from the mean value. In this case the third term under the square root 

in the equation can be ignored. 

log S

 When slope is chosen to take a fixed value. The number of degrees of freedom 

should be . Whenever the sample sizes is less than ten it is recommended. 

The expression under the square root is exactly equal to one. 

m

1n−

 When the sample size is larger than 20, the second term under the square root is 

able to be ignored. 
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Com XIII-WG1 
How to determine a design S-N curve, slope fixed (prediction limits)? Sheet 10

Procedure 
1. Criteria 

The design curves will only be applied to values of lo that are not far removed from 

the mean value

g S

log S .  

In general welding case, we use a gradient of =3. m

 

2. Data and formula 

Using the number of stress range, load cycles, and log log logA N m S= + to obtain: 

Mean of Intercept of regression line- log A                                    

Slop of design curve- m                                          ………… 

Sample size-                                                ………… n

Sum of values-                                          ………… log iS∑

Mean values-
log

log iS
S

n
= ∑                                     ………… 

Sum of values-                                          ………… log iN∑

Mean values- log iN
N

n
= ∑                                       ………… 

Estimated mean of Intercept of regression line- ˆlog A                   ………… 

Estimated value-  ˆˆlog log 3 logi iN A= − × S

Estimated the variance-

2

2 1

ˆ(log log )
ˆ

n

i i
i

N N

f
σ =

−
=
∑

                     ………… 

Degree of freedom- 1f n= −                                       ………… 
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How to determine a design S-N curve, slope fixed (prediction limits)? Sheet 10

 

 

2ˆ(log log )
ˆ iN N

f
σ

−
= ∑ i

t

                                      ………… 

Appropriate percentage point of two sided Student’s t distribution- t        ………… 

Design S-N curve: % ˆlog (log log )pN A m S σ± = − ±  
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IIW/IIS 

Com XIII-WG1 
How to determine a design S-N curve, slope fixed (prediction limits)? Sheet 10

Example 
1. Data and formula 

Samples data 
 =9 n

Stress range cycles to failure 
147 521,382 
96 1,879,752 
250 115,816 
61 10,204,041 
57 14,910,395 
57 10,646,018 
96 1,475,769 
250 112,910 
74 6,766,000 

 

2. Calculation 

Proportion 95% 

Using the number of stress range, load cycles, and log log logA N m S= + to obtain 

Mean of Intercept of regression line- log A                                 

Slop of design curve- m                                                 3 

Sample size-                                                        9 n

Sum of values-                                             18.094 log iS∑

Mean values-
log

log iS
S

n
= ∑                                         2.010 

Sum of values-                                            56.317 log iN∑

Mean values- log iN
N

n
= ∑                                           6.257 

Estimated mean of Intercept of regression line- ˆlog A                     12.2889 
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How to determine a design S-N curve, slope fixed (prediction limits)? Sheet 10

 

 

Estimated value-  ˆˆlog log 3 logi iN A= − × S

Estimated the variance-

2

2 1

ˆ(log log )
ˆ

n

i i
i

N N

f
σ =

−
=
∑

                       0.0117 

Degree of freedom- 1f n= −                                              8 

2ˆ(log log )
ˆ iN N

f
σ

−
= ∑ i                                           0.108 

Appropriate percentage point of two sided Student’s t distribution- t           2.306           

Design S-N curve: %
1ˆlog (log log ) 1pN A m S t
n

σ± = − ± +  

95%log N ± = 1(12.2889 3log ) 2.306 0.108 1
9

S− ± × × +  

95%log N ± = (12.2889 3log ) 0.2625S− ±  
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Design curve based on prediction limits (slope fixed) 
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AppendixⅤ 
IIW/IIS 

Com XIII-WG1 
How to determine a design S-N curve, slop estimated 

(prediction limits)? 
Sheet 11

General 
1. Contest 

For design purpose, it is necessary to establish limits between which a given 

proportion (typically 95%) of the data lies. The instruction for determination of a 

design S-N curve based on prediction limits has been introduced in Data Sheet10. But 

it focuses on the slop fixed case. When both of the slop and intercept are needed to be 

estimated, some changes are needed to be emphasized. 

2. Principle 

Prediction limits at stress range can be expressed explicitly, in the form: S
2

%
2

1

1 (log log )ˆlog (log log ) 1
(log log )

p n

i
i

S SN A m S t
n S S

σ±

=

−
= − ± + +

−∑
 

where: log A and are the coefficients of the regression line through the n data points m

      log S  is the mean of the values of log  n iS

         t  is the appropriate percentage point of Student’s t distribution  

        σ̂  is the best estimate of the variance of the data about the regression line, 

        f  is degree of freedom, 2f n= − in case where the two coefficients of the 

regression line have been estimated from the data 

Additionally, the Maximum likelihood estimation is used to estimate the slope and 

intercept coefficients. 

3. Condition of application 

 In general, it is often assumed that design curves will only be applied to values of 

log S that are not far from the mean value log S .In this case the third term under 

the square root of equation can be ignored 

 When the sample size larger than 20. Then the second term under the square root 

is able to be ignored. 
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IIW/IIS 

Com XIII-WG1 
How to determine a design S-N curve, slop estimated 

(prediction limits)? 
Sheet 11

Procedure 
1. Criteria 

The design curves will only be applied to values of lo that are not far removed from 

the mean value

g S

log S  

 

2. Data and formula 

The correct values for the constants A and are obtained from the following two 

equations by using the maximum likelihood method: 

m

log log logA N m S= +  

1

2

1

(log log )(log log )

(log log )

n

i i
i

n

i
i

S S N
m

S S

=

=

− −
=

−

∑

∑

N
 

Sample size-                                               …………. n

Degree of freedom-                                    …………. 2f n= −

Sum of values-                                        …………. log iS∑

Mean values-
log

log iS
S

n
= ∑                                   …………. 

Sum of values-                                        …………. log iN∑

Mean values- log iN
N

n
= ∑                                     …………. 

1

(log log )(log log )
n

i i
i

S S N
=

− −∑ N                                …………. 

2

1

(log log )
n

i
i

S S
=

−∑                                            …………. 
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IIW/IIS 

Com XIII-WG1 
How to determine a design S-N curve, slop estimated 

(prediction limits)? 
Sheet 11

 

 

Estimated slope-                                           …………. m̂

Estimated mean of Intercept of regression line- ˆlog A                   …………. 

Estimated value-  ˆˆ ˆlog log logi iN A m= − × S

Estimated the variance-

2

2 1

ˆ(log log )
ˆ

n

i i
i

N N

f
σ =

−
=
∑

                    …………. 

2ˆ(log log )
ˆ iN N

f
σ

−
= ∑ i                                      …………. 

Appropriate percentage point of two sided Student’s t distribution- t      …………. 

Design S-N curve: %
1ˆlog (log log ) 1pN A m S t
n

σ± = − ± +               
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IIW/IIS 

Com XIII-WG1 
How to determine a design S-N curve, slop estimated 

(prediction limits)? 
Sheet 11

Example 
1. Data and formula 

Samples data 
n =29 

Stress range cycles to failure Stress range cycles to failure 
147 521,382 74 3,675,000 
96 1,879,752 53 22,082,998 
250 115,816 53 7,154,785 
61 10,204,041 136 664,000 
57 14,910,395 75 3,816,199 
57 10,646,018 136 787,894 
96 1,475,769 136 689,973 
250 112,910 147 958,318 
74 6,766,000 53 13,475,000 
74 6,195,271 53 20,511,538 
74 4,310,000 265 95,982 
136 1,015,824 54 19,048,838 
136 1,580,669 176 605,721 
53 11,541,520 74 9,232,000 
136 1,133,000   
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Linear regression S-N curve 
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Com XIII-WG1 
How to determine a design S-N curve, slop estimated 

(prediction limits)? 
Sheet 11

 

 

2. Calculation 
Proportion 95% 
The correct values for the constants A and are obtained from the following two 

equations by using the maximum likelihood method: 

k

ˆlog log logA N m S= +  

1

2

1

(log log )(log log )
ˆ

(log log )

n

i i
i

n

i
i

S S N
m

S S

=

=

− −
= −

−

∑

∑

N
 

Sample size-                                                       29 n

Degree of freedom-                                            27 2f n= −

Sum of values-                                             57.437 log iS∑

Mean values-
log

log iS
S

n
= ∑                                        1.9806 

Sum of values-                                           185.401 log iN∑

Mean values- log iN
N

n
= ∑                                          6.3931 

1

(log log )(log log )
n

i i
i

S S N
=

− −∑ N                                      -4.332 

2

1

(log log )
n

i
i

S S
=

−∑                                                 1.427 

Estimated slope-                                                  3.036 m̂

Estimated mean of Intercept of regression line- ˆlog A                     12.4062 

Estimated value-  ˆˆ ˆlog log logi iN A m= − × S
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Com XIII-WG1 
How to determine a design S-N curve, slop estimated 

(prediction limits)? 
Sheet 11

 

 

Estimated the variance-

2

2 1

ˆ(log log )
ˆ

n

i i
i

N N

f
σ =

−
=
∑

                        0.0215 

2ˆ(log log )
ˆ iN N

f
σ

−
= ∑ i                                           0.1465 

Appropriate percentage point of two sided Student’s t distribution- t            2.052 

Design S-N curve: %
1ˆlog (log log ) 1pN A m S t
n

σ± = − ± +

t

 

29 20n = >  

% ˆlog (log log )pN A m S σ± = − ±  

95%log (12.4062 3.036 log ) 2.052 0.1465N S± = − ± ×  

95%log (12.4062 3.036 log ) 0.301N S± = − ±  
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Design curve based on prediction limits (slope estimated) 
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AppendixⅥ 
IIW/IIS 

Com XIII-WG1 
How to determine a design S-N curve, slope fixed (tolerance limits)? Sheet 12

General 
1. Contest 

The use of tolerance limits rather than prediction limits would yield a more 

conservative design curve and they have the advantage that they explicitly allow for 

uncertainty in estimates of population statistics from a small sample. 

2. Principle 

This statement is made on the basis of a sample of n independent observations. A 

tolerance limit can be regarded as a confidence limit on a prediction limit. 

% ˆlog pN kμ− = − s  

where: μ̂  is an estimate of the mean log of the endurance at stress  S

        is an estimate of the standard deviation of the log of the endurance at 

stress , based on

s

S f degree of freedom  

       k  is a one-sided tolerance limit factor 

Tolerance limits stated that at least a proportion of normal population is greater than 

ˆ ksμ − with confidenceγ . 

In this slope fixed case, the one sided tolerance limit factor has been tabulated in the 

appendixⅹ table 1. 

k

3. Condition of application 

 It is assumed that design curves will only be applied to values of that are not 

far removed from the mean value

log S

log S . 

 When slope is chosen to take a fixed value. The number of degrees of freedom 

should be increased by one. Whenever the sample sizes is less than ten it is 

recommended. 

m
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IIW/IIS 

Com XIII-WG1 
How to determine a design S-N curve, slope fixed (tolerance limits)? Sheet 12

Procedure 
1. Criteria 

A normal distribution for %γ =90%, Proportion 95% 

The design curves will only be applied to values of lo that are not far removed from 

the mean value 

g S

log S  

 

2. Data and formula 

Using the number of stress range, load cycles, and log log logA N m S= + to obtain 

mean of Intercept of regression line- log A                                    

Slop of design curve- m                                          ………… 

Sample size-                                                ………… n

Sum of values-                                         ………… log iS∑

Mean values-
log

log iS
S

n
= ∑                                    ………… 

Sum of values-                                         ………… log iN∑

Mean values- log iN
N

n
= ∑                                      ………… 

Estimated mean of Intercept of regression line- ˆlog A                   ………… 

Estimated value-  ˆˆlog log 3 logi iN A= − × S

Estimated the variance-

2

2 1

ˆ(log log )
ˆ

n

i i
i

N N

f
σ =

−
=
∑

                    ………… 

Degree of freedom- 1f n= −                                      ………… 
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How to determine a design S-N curve, slope fixed (tolerance limits)? Sheet 12

 

 

2

1

ˆ(log log )
ˆ

n

i i
i

N N

f
σ =

−
=
∑

                                      ………… 

One-sided tolerance limit factor- k                                  ………… 

Design S-N curve: % ˆlog pN μ− ks= −                                        
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IIW/IIS 

Com XIII-WG1 
How to determine a design S-N curve, slope fixed (tolerance limits)? Sheet 12

Example 
1. Data and formula 

Samples data 
n =9 

Stress range cycles to failure 
147 521,382 
96 1,879,752 
250 115,816 
61 10,204,041 
57 14,910,395 
57 10,646,018 
96 1,475,769 
250 112,910 
74 6,766,000 

2. Calculation 

Proportion 95% 

Using the number of stress range, load cycles, and log log logA N m S= + to obtain 

Mean of Intercept of regression line- log A                                   

Slop of design curve- m                                                 3 

Sample size-                                                        9 n

Sum of values-                                             18.094 log iS∑

Mean values-
log

log iS
S

n
= ∑                                         2.010 

Sum of values-                                            56.317 log iN∑

Mean values- log iN
N

n
= ∑                                           6.257 

Estimated mean of Intercept of regression line- ˆlog A                     12.2889 

Estimated value-  ˆˆlog log 3 logi iN A= − × S
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How to determine a design S-N curve, slope fixed (tolerance limits)? Sheet 12

 

 

Estimated the variance-

2

2 1

ˆ(log log )
ˆ

n

i i
i

N N

f
σ =

−
=
∑

                       0.0117 

Degree of freedom- 1f n= −                                              8 

2ˆ(log log )
ˆ iN N

f
σ

−
= ∑ i

s

                                          0.108 

One-sided tolerance limit factor-                                      2.650 k

Design S-N curve: % ˆlog pN kμ− = −  

%log pN − = 1ˆ(log log ) 1A m S k
n

σ− − +  

95%log N − = 1(12.2889-3logS)-2.65 0.108 1+
9

× ×  

95%log N − =11.9869 3log S−  
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Design curve based on tolerance limits (slope fixed) 
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AppendixⅦ 
IIW/IIS 

Com XIII-WG1 
How to determine a design S-N curve, slop estimated 

(tolerance limits)? 
Sheet 13

General 
1. Contest 

In Data Sheet12, the instructions for determining a design S-N curve with fixed slope 

value based on tolerance limits have been illustrated. In the general case where the 

slope of the regression line is estimated from the data, the tolerance limit factor is 

different from the previous example. 

2. Principle 

This statement is made on the basis of a sample of n independent observations. A 

tolerance limit can be regarded as a confidence limit on a prediction limit. 

% ˆlog pN kμ− = − s  

where: μ̂  is an estimate of the mean log of the endurance at stress  S

         is an estimate of the standard deviation of the log of the endurance at 

stress , based on

s

S f degree of freedom  

       k   is a one-sided tolerance limit factor 

The involved calculation to determine the one-side tolerance limit factor is laborious. 

Mathematically, is determined by the following equation: 

k

k

{ }Pr ( )pnoncenral t with K n k nδ γ= ≤ =  

where: pK  is defined by 21 exp( / 2)
2

pK
x dx P

π −∞
− =∫  

Ifδ and f are given, the critical value of noncentral t -distribution can be calculated, 

then value can be obtained by equation:

0t

k 0tk
n

= . 

3. Condition of application 

 It is assumed that design curves will only be applied to values of that are not 

far removed from the mean value

log S

log S . 
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IIW/IIS 

Com XIII-WG1 
How to determine a design S-N curve, slop estimated 

(tolerance limits)? 
Sheet 13

Procedure 
1. Criteria 

A normal distribution for %γ =90%, Proportion 95% 

The design curves will only be applied to values of lo that are not far removed from 

the mean value 

g S

log S  

2. Data and formula 

The correct values for the constants A and are obtained from the following two 

equations by using the maximum likelihood method: 

m

log log logA N m S= +  

1

2

1

(log log )(log log )

(log log )

n

i i
i

n

i
i

S S N
m

S S

=

=

− −
=

−

∑

∑

N
 

Sample size-                                                 …………. n

Degree of freedom-                                      …………. 2f n= −

Sum of values-                                          …………. log iS∑

Mean values-
log

log iS
S

n
= ∑                                     …………. 

Sum of values-                                         …………. log iN∑

Mean values- log iN
N

n
= ∑                                       …………. 

1

(log log )(log log )
n

i i
i

S S N
=

− −∑ N                                  …………. 

2

1

(log log )
n

i
i

S S
=

−∑                                              …………. 
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Com XIII-WG1 
How to determine a design S-N curve, slop estimated 

(tolerance limits)? 
Sheet 13

 

 

Estimated slope-                                              …………. m̂

Estimated mean of Intercept of regression line- ˆlog A                   …………. 

Estimated value-                           …………. ˆˆ ˆlog log logiN A m= − × iS

Estimated the variance-

2

2 1

ˆ(log log )
ˆ

n

i i
i

N N

f
σ =

−
=
∑

                    …………. 

2ˆ(log log )
ˆ iN N

f
σ

−
= ∑ i                                       …………. 

Upper critical value of standard normal distribution-               …………. 95%K

Value of pK nδ =                                             …………. 

Value of 
1/ 22

1
22 ff

δ δη
−

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
                                   …………. 

Value of λ  based on , fη                                       …………. 

Critical values of the Noncentral -distribution-t

2 2

0 2

1
2 2

1 ( / 2 )
f f

t
f

δ λδ λ

λ

⎛ ⎞
+ + −⎜ ⎟

⎝=
−

⎠   …………. 

According to ( )Pr %noncenral t k n γ≤ =  

One-sided tolerance limit factor- 0 /k t n=                          …………. 

Design S-N curve: %
1ˆlog (log log ) 1pN A m S k
n

σ± = − ± +                         
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Com XIII-WG1 
How to determine a design S-N curve, slop estimated 

(tolerance limits)? 
Sheet 13

Example 
1. Data and formula 

Samples data 

n =18 

Stress range cycles to failure Stress range cycles to failure 
147 521,382 74 6,195,271 
96 1,879,752 74 4,310,000 
250 115,816 136 1,015,824 
61 10,204,041 136 1,580,669 
57 14,910,395 53 11,541,520 
57 10,646,018 136 1,133,000 
96 1,475,769 74 3,675,000 
250 112,910 53 22,082,998 
74 6,766,000 53 7,154,785 
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Linear regression S-N curve 
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Com XIII-WG1 
How to determine a design S-N curve, slop estimated 

(tolerance limits)? 
Sheet 13

 

 

2. Calculation 

Proportion 95% 

The correct values for the constants A and are obtained from the following two 

equations by using the maximum likelihood method: 

k

ˆlog log logA N m S= +  

1

2

1

(log log )(log log )
ˆ

(log log )

n

i i
i

n

i
i

S S N
m

S S

=

=

− −
= −

−

∑

∑

N
 

Sample size-                                                       18 n

Degree of freedom-                                            16 2f n= −

Sum of values-                                             35.275 log iS∑

Mean values-
log

log iS
S

n
= ∑                                        1.9597 

Sum of values-                                           115.829 log iN∑

Mean values- log iN
N

n
= ∑                                          6.4350 

1

(log log )(log log )
n

i i
i

S S N
=

− −∑ N                                      -2.477 

2

1

(log log )
n

i
i

S S
=

−∑                                                 0.8314 

Estimated slope-                                                  2.979 m̂

Estimated mean of Intercept of regression line- ˆlog A                     12.2729 

Estimated value-  ˆˆ ˆlog log logi iN A m= − × S
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Estimated the variance-

2

2 1

ˆ(log log )
ˆ

n

i i
i

N N

f
σ =

−
=
∑

                       0.0232 

2ˆ(log log )
ˆ iN N

f
σ

−
= ∑ i                                          0.1522 

Upper critical value of standard normal distribution-                    1.65 95%K

Value of 95%Kδ = n                                                 7.0 

Value of 
1/ 22

1
22 ff

δ δη
−

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
                                       0.778 

Value of λ  based on , fη                                           1.338 

Critical values of the Noncentral -distribution-t

2 2

0 2

1
2 2

1 ( / 2 )
f f

t
f

δ λδ λ

λ

⎛ ⎞
+ + −⎜ ⎟

⎝=
−

⎠      10.923 

According to ( )Pr 90%noncenral t k n≤ =  

One-sided tolerance limit factor- 0 /k t n=                               2.575 

Design S-N curve: %
1ˆlog (log log ) 1pN A m S k
n

σ± = − − +                                 

95%
1log (12.2729 2.979log ) 2.575 0.1522 1

18
N S± = − − × +  

95%log 11.8699 2.979 logN S± = −  
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Design curve based on tolerance limits (slope estimated) 
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AppendixⅧ 
IIW/IIS 

Com XIII-WG1 
Are 2 experimental design S-N curves statistically equivalent? Sheet 15

General 
1. Contest 

The problem is likely to be of interest where the two data sets have been collected 

under different conditions, but are expected to give comparable fatigue performance. 

The following methods are used to justify the conclusion that there is a significant 

difference between them. 

2. Principle 

Whether two experimental design S-N curves are statistically equivalent can be 

determined by using a hypothesis test. Because the design curve is established by 

adopting characteristic values lay a certain number of standard deviations below the 

mean S-N curve, the question can be solved to determine the statistical equivalence of 

the mean S-N curve. 

 

A lower significance level is often used for each individual hypothesis test. For 

instance, a significance level of 1.7% for each individual test would roughly 

correspond to a 5% significance level for the composite hypothesis.  

3. Condition of application 

      Design curves will only be applied to values of that are not far removed for the 

mean value. The necessary data to perform the equivalence verification are the 

following: 

log S

 The two data sets, 1iσ  , n 1 values and 2iσ  , 2values n

It is assumed here that both sets of S-N data are exact data 

If the data sets do not follow a normal distribution, the number of 1 and 2 

shall be greater or equal to 30. 

n n

 The estimated means of the 2 data sets 

 The estimated variances of the 2 data sets 
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Com XIII-WG1 
Are 2 experimental design S-N curves statistically equivalent? Sheet 15

Procedure 
1. Criteria 

The one of applied tests is the two-sided Snedecor F-test with unpaired samples. 

The selected level of risk is set toα , %α probability to reject a correct hypothesis. 

 

2. Data and formula 

Test that residual standard deviation are consistent 

The correct values for the constants A and are obtained from the following two 

equations by using the maximum likelihood method: 

m

log log logA N m S= +                                                 (1) 

1

2

1

(log log )(log log )

(log log )

n

i i
i

n

i
i

S S N
m

S S

=

=

− −
=

−

∑

∑

N
                                    (2) 

                                      Sample No.1          Sample No.2 

Sample size-                          …………             ………… in

Sum of values-                    …………              ………… log iN∑

Mean value-
log

log i
i

i

N
N

n
= ∑              …………             ………… 

Sum of values-                  …………             ………… log iS∑

Mean value-
log

log i
i

i

S
S

n
= ∑               …………              ………… 

2
,

1

(log log )
n

i i i
i

S S
=

−∑                     …………            ………… 

Estimated value of the slop-            …………             ………… m̂

Estimated value of the intercept- ˆlog A      …………             ………… 

Degree of freedom-              …………             ………… 2i if n= −

Estimated value-  ˆˆ ˆlog log logi iN A m= − S
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Are 2 experimental design S-N curves statistically equivalent? Sheet 15

 

 

Estimated variances-
2

2
ˆ(log log )

ˆ i
i

N N
f

σ
−

= i∑  …………              …………  

Variance ratio-
2

2

ˆ
ˆ

i

j

R σ
σ

=                                           ………… 

Critical value for one-sided Snedecor F-distribution- (1 , , )i jF f fα−        ………… 

Criteria- (1 , , )i jCr R F f fα= − −                                   ………… 

Conclusion:  

IfCr >0 the hypothesis of equivalence has to be rejected 

 

Test that the intercepts of the two S-N Consistent 

Two-sided percentage point of Student’s distribution-t 1 2(1 , 4)t n nα− + −  ………… 

An estimate of the common variance of the two samples- eσ  

2
1σ̂ = …………                         2

2σ̂ =………… 

2 2
2 1 1 2 2

1 2

ˆ
e

ˆf f
f f

σ σσ +
=

+
                                           ………… 

Estimated intercepts of the regression lines- log iA       …………      ………… 

Mean difference of estimated intercepts- X = 1log logA − 2A             ………… 

Criteria= X -
1 2

2 2
21 2

2 21 2
1, 1 2, 2

1 1

(log ) (log )1 1

(log log ) (log log )
en n

i j
i j

S St
n n S S S S

σ

= =

⎛ ⎞
⎜ ⎟
⎜ ⎟+ + +
⎜ ⎟

− −⎜ ⎟
⎝ ⎠

∑ ∑
          

Conclusion: 

IfCr >0 the hypothesis of equivalence has to be rejected 
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Are 2 experimental design S-N curves statistically equivalent? Sheet 15

 

 

Testing that the slopes of the two S-N curves are consistent 

Estimated slopes of the regression lines-           …………        ………… im

Difference of estimated slopes- 1T m m= − 2                         ………… 

Criteria=
1 2

2

2 2
1, 1 2, 2

1 1

1 1

(log log ) (log log )
en n

i j
i j

T t
S S S S

σ

= =

⎛ ⎞
⎜ ⎟
⎜ ⎟− +
⎜ ⎟

− −⎜ ⎟
⎝ ⎠
∑ ∑

 

Conclusion: 

IfCr >0 the hypothesis of equivalence has to be rejected 

 

3. Conclusion

If one of above hypothesis is rejected, the composite hypothesis can not be accepted. 
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Com XIII-WG1 
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Example 
1. Data and formula 

Samples data 

No.1 n 1=14                         No.2 n 2=15 
 

Stress range Cycles to failure 
147 521382 
96 1879752 
250 115816 
61 10204041 
57 14910395 
57 10646018 
96 1475769 
250 112910 
74 6766000 
74 6195271 
74 4310000 
136 1015824 
136 1580669 
53 11541520 

Stress range Cycles to failure 
136 1133000 
74 3675000 
53 22082998 
53 7154785 
136 664000 
75 3816199 
136 787894 
136 689973 
147 958318 
53 13475000 
53 20511538 
265 95982 
54 19048838 
176 605721 
74 9232000  

2. Calculation 

The risk level is fixed to α =1.7% 
Test that residual standard deviation are consistent 

The correct values for the constants A and are obtained from the following two 

equations by using the maximum likelihood method: 

m

log log logA N m S= +                                                 (1) 

1

2

1

(log log )(log log )

(log log )

n

i i
i

n

i
i

S S N
m

S S

=

=

− −
=

−

∑

∑

N
                                    (2) 
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                                     Sample No.1           Sample No.2 

Sample size-                             14                    15 in

Sum of values-                       89.011                96.390 log iN∑

Mean value-
log

log i
i

i

N
N

n
= ∑                  6.3579                6.4260 

Sum of values-                  27.824             29.613 log iS∑

Mean value-
log

log i
i

i

S
S

n
= ∑               1.9874              1.9742 

2
,

1
(log log )

n

i i i
i

S S
=

−∑                      0 .6714            0.7543 

Estimated value of the slop-                  3.062                  3.008 m̂

Estimated value of the intercept- ˆlog A      12.444              12.365 

Degree of freedom-                 12                     13 2i if n= −

Estimated value-  ˆˆ ˆlog log logi iN A m= − S

Estimated variances-
2

2
ˆ(log log )

ˆ i
i

N N
f

σ
−

= i∑    0.0171                0.0283 

Variance ratio-
2

2

ˆ
ˆ

i

j

R σ
σ

=                                           1.6550 

Critical value for one-sided Snedecor F-distribution- (1 , , )i jF f fα−         3.4808 

Criteria- (1 , , )i jCr R F f fα= − −                                   -1.8258 

Conclusion: 

AsCr <0 the hypothesis of equivalence has no reason to be rejected and therefore the 

residual standard deviations are statistically equivalent. 
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Test that the intercepts of the two S-N Consistent 

Two-sided percentage point of Student’s distribution- 1 2(1 , 4)t n nα− + −       2.5572 

An estimate of the common variance of the two samples- eσ  

2
1σ̂ = 0.0171                         2

2σ̂ =0.0283 

2 2
2 1 1 2 2

1 2

ˆ
e

ˆf f
f f

σ σσ +
=

+
                                           0.0382 

Estimated intercepts of the regression lines- log iA            12.444      12.365 

Mean difference of estimated intercepts- X = 1log logA − 2A                0.079 

Criteria= X -
1 2

2 2
21 2

2 21 2
1, 1 2, 2

1 1

(log ) (log )1 1

(log log ) (log log )
en n

i j
i j

S St
n n S S S S

σ

= =

⎛ ⎞
⎜ ⎟
⎜ ⎟+ + +
⎜ ⎟

− −⎜ ⎟
⎝ ⎠

∑ ∑
          

1 1 3.95 3.90=0.079-2.5572 0.0382
14 15 0.6714 0.7543
⎛ ⎞× + + +⎜ ⎟
⎝ ⎠

 

= =-1.593 0.079 1.672−

Conclusion: 

AsCr <0 the hypothesis of equivalence has no reason to be rejected 

 

Testing that the slopes of the two S-N curves are consistent 

Estimated slopes of the regression lines-                 3.062         3.008 im

Difference of estimated slopes- 1T m m= − 2                             0.054 
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Criteria=
1 2

2

2 2
1, 1 2, 2

1 1

1 1

(log log ) (log log )
en n

i j
i j

T t
S S S S

σ

= =

⎛ ⎞
⎜ ⎟
⎜ ⎟− +
⎜ ⎟

− −⎜ ⎟
⎝ ⎠
∑ ∑

          

Criteria= 1 10.054 2.5572 0.0382
0.6714 0.7543

⎛ ⎞− +⎜ ⎟
⎝ ⎠

 

Criteria= =-0.785 0.054 0.839−

Conclusion: 

AsCr <0 the hypothesis of equivalence has no reason to be rejected 

 

3. Conclusion 

The above three individual null hypothesizes with a significance level 1.7% are 

accepted. Now, we can draw the conclusion this composite hypothesis with a 

significance level 5% is accepted. 

 

 

 

 

 

 

 

 

 

 

 

 

 91



AppendixⅨ 
IIW/IIS 

Com XIII-WG1 
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General 
1. Context 

A post-weld treatment is implemented to remove welding residual stresses in order to 

pursue improvement in fatigue behavior. Commonly used residual stress methods are 

hammer peening, wire bundle, shot peening and ultrasonic peening. 

 

The magnitude of improvement depends primarily on the joint severity and base 

material. The pose-weld treatment can be regarded as a means of improving the 

fatigue strength of welded joints. 

2. Principle 

The term fatigue class (FAT) indicates the characteristic stress range, which gives a 

fatigue life of two million cycles at 95% survival probability. The data is able to be 

evaluated according to the statistical methods outlined by the Huther.  

 

In order to prove that a process has been improved, we must measure the process 

capability before and after improvements are implemented. The difference of FAT 

between the as-weld and post-weld indicates the degree of improvement produced by 

the post-weld treatment. 

3. Condition of application 

 It is noticed that the benefit of peening of steel components can only be claimed 

for details in design Class FAT 90 or lower in the IIW notation for S-N curves. 

 The effect of specimen thickness on fatigue strength was only slight. 

4. Conclusion 

The conclusion is able to be drawn after the comparison based on the statistical 

analysis. Generally, there is a definite increase in the fatigue life of the as-weld 

versus post-weld in these tests. 
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Procedure 
1. Criteria 

A failure probability of 97.5 percent can be used in the standard since the results are 

based on a large number of test pieces. 

If the sample size is small, characteristic fatigue strength is and not  95%FAT 97.5%FAT

 

2. Data and formula 

 

                                            No.1 AW     No.2 UIT 

Sample size-                                 ………..        ……….. n

Slop of curve-                               ………..        ……….. m

Calculate the by following equations: 95%FAT

2000000m m
i i iN C FATσ ⋅ = = ⋅                   

Sum of values-                      ………..       ……….. log iC∑

Mean fatigue capacity- 50%

log
log iC

C
n

= ∑          ………..        ……….. 

Standard deviation-

2
50%(log log )

1

iC C
s

n

−
=

−

∑
     ………..       ……….. 

95% 50%
1.15log log (1.64 )C C s

n
= − +                   ………..        ……….. 

Characteristic Fatigue capacity- 95%
95% 2000000

m
CFAT =     ………..        ……….. 
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Example 1 
Note: The slope of the S-N curve m is fixed. 

1. Data and formula 

Samples data No.1 

 t R σΔ  N FAT(m=3) Observation
AW-11 5 0.1 180 599377 120 WT 
AW-12 5 0.1 221 422755 131 WT 
AW-13 5 0.1 127 2173795 131 WT 
AW-14 5 0.1 132 1313035 115 WT 
AW-15 5 0.1 204 480284 127 WT 
UIT-1 5 0.1 349 596082 233 UITG 
UIT-2 5 0.1 318 310170 171 UITG 
UIT-3 5 0.1 324 620074 219 UITG 
UIT-4 5 0.1 327 505913 207 UITG 
UIT-5 5 0.1 318 781200 232 UITG 

 
 

Number of Cycles

St
re

ss
 R

an
ge

 [
M

pa
]

20
00

00
0

15
00

00
0

10
00

00
0

90
00

00

80
00

00

70
00

00

60
00

00

50
00

00

40
00

00

30
00

00

350

300

250

200

150

100

Variable
No.1 * AW
No.2 * UIT

 

The comparison between as-welded and UI-treated test series, =5mm, t R =0.1 
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2. Calculation 

                                                 No.1 AW        No.1 UIT 

Sample size-                                       5                   5   n

Slop of curve- m                                      3                   3 

Calculate the by following equations:  95%FAT 2000000m m
i i iN C FATσ ⋅ = = ⋅

Sum of values-                              62.9418          66.3745 log iC∑

Mean fatigue capacity-
50%

log
log iC

C
n

= ∑              12.5884          13.2749 

Standard deviation-
2

50%(log log )

1

iC C
s

n

−
=

−

∑
         0.07566         0.16704 

95% 50%
1.15log log (1.64 )C C s

n
= − +                   12.4254         12.915 

Characteristic Fatigue capacity- 95%
95% 2000000

m
CFAT =      110.0162        160.1978 
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Example 2 
1. Data and formula 

Samples data No.2 

 t  R  σΔ  N  FAT( =3) m Observation
AW-28 8 0.1 193 485897 120 WT 
AW-29 8 0.1 193 640024 132 WT 
AW-30 8 0.1 161 1257193 138 WT 
AW-31 8 0.1 180 1091393 147 WT 
AW-32 8 0.1 169 1199013 143 WT 
UIT-18 8 0.1 288 1902884 283 UITG 
UIT-19 8 0.1 369 441958 223 UITG 
UIT-20 8 0.1 383 407610 225 UITG 
UIT-21 8 0.1 335 588203 223 UITG 
UIT-22 8 0.1 338 1892369 332 UITG 

 
 

Number of Cycles

St
re

ss
 R

an
ge

 [
M

pa
]

20
00

00
0

15
00

00
0

10
00

00
0

90
00

00

80
00

00

70
00

00

60
00

00

50
00

00

40
00

00

400

350

300

250

200

150

Variable
No.1 * AW
No.2 * UIT

 

The comparison between as-welded and UI-treated test series, =8mm, t R =0.1 
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2. Calculation 

                                                 No.2 AW     No.2UIT 

Sample size-                                       5               5   n

Slop of curve-                                      3               3 m

Calculate the by following equations:   95%FAT 2000000m m
i i iN C FATσ ⋅ = = ⋅

Sum of values-                              63.4923       67.5723 log iC∑

Mean fatigue capacity-
50%

log
log iC

C
n

= ∑              12.6984       13.5145 

Standard deviation-
2

50%(log log )

1

iC C
s

n

−
=

−

∑
         0.1013        0.2364 

95% 50%
1.15log log (1.64 )C C s

n
= − +                  12.4802     13.0052 

Characteristic Fatigue capacity- 95%
95% 2000000

m
CFAT =      114.7422      171.6814 

3. Calculation 

Table: Comparison fatigue classes FAT95% between welded and treated series, m is fixed 

 
post-weld 
treatment 

as-weld treatment Post-weld/as-weld 

FAT95%(t=5mm) 160 110 1.45 
FAT95%(t=8mm) 172 115 1.50 

FAT95%(8mm)/FAT95%(5mm) 1.075 1.045  

The fatigue strength of post-weld welds is 45%-50% higher than the fatigue class for 

as-welded specimens. The fatigue strength of 8mm thick specimen is higher than 

5mm thick specimen. It also turns out that the thickness of specimen does not affect 

the degree of improvement in fatigue strength greatly. 
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Example 3 
Note: The slope of the S-N curve m is estimated. 

1．Data and formula 

Samples data No.2 

 t  R  σΔ  N  FAT( =3) m Observation
AW-28 8 0.1 193 485897 120 WT 
AW-29 8 0.1 193 640024 132 WT 
AW-30 8 0.1 161 1257193 138 WT 
AW-31 8 0.1 180 1091393 147 WT 
AW-32 8 0.1 169 1199013 143 WT 
UIT-18 8 0.1 288 1902884 283 UITG 
UIT-19 8 0.1 369 441958 223 UITG 
UIT-20 8 0.1 383 407610 225 UITG 
UIT-21 8 0.1 335 588203 223 UITG 
UIT-22 8 0.1 338 1892369 332 UITG 

 

2. Calculation 

The correct values for the constants A and are obtained by using least squares 

regression method: 

m

Y A mX= −  
Y = log N                                  logX S=        

iy
A m

n n
= +∑ ∑ ix

                                                  (1) 

2 ( )
i i i i

i i

n x y x y
m

n x x
−

= −
−

∑ ∑ ∑
∑ ∑ 2                                             (2)  

5 66.888 334.555
5 25.367 126.812AWm × −

=
× −

                                           AW 

4.754 AWm =                              

5 74.8701 374.609
5 32.082 160.366UITm × −

=
× −

                                          UIT 

5.63UITm =  
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                                                  No.2 AW    No.2 UIT 

Sample size-                                       5               5    n

Slop of curve- m                                      4.754         5.630 

Calculate the by following equations:   95%FAT 2000000m m
i i iN C FATσ ⋅ = = ⋅

Sum of values-                             83.244     100.878 log iC∑

Mean fatigue capacity-
50%

log
log iC

C
n

= ∑              16.6488     20.1755 

Standard deviation-
2

50%(log log )

1

iC C
s

n

−
=

−

∑
         0.0806      0.2001 

95% 50%
1.15log log (1.64 )C C s

n
= − +                  1 6 . 4 7 5     1 9 . 7 4 4 

Characteristic Fatigue capacity- 95%
95% 2000000

m
CFAT =      138.0658    244.196 

 

Table Comparison fatigue classes FAT95% between welded and treated series, is estimated m

 
post-weld 

treatment 

as-weld 

treatment 
Post-weld/as-weld 

FAT95%(t=8mm) 244 138 1.77 

 

3. Calculation 

When the fatigue class based on free slope, there is 77% improvement can be obtained 

by using post-treatment. The improvement of fatigue strength based on free slope is 

larger than the one based on a fixed slope. 
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Table 1 One-sided tolerance limit factors for a normal distribution for k %γ =90%  

       Degree of freedom 1f n= −  (Schneider and Maddox, 2006) 

Sample size  n Value of fork p %=95% Value of fork p %=97.5% 

2 13.090  15.586  
3 5.311  6.244  
4 3.975  4.637  
5 3.401  3.983  
6 3.093  3.621  
7 2.893  3.389  
8 2.754  3.227  
9 2.650  3.106  
10 2.568  3.011  
11 2.503  2.936  
12 2.448  2.872  
13 2.403  2.820  
14 2.363  2.774  
15 2.329  2.735  
16 2.299  2.700  
17 2.272  2.670  
18 2.249  2.643  
19 2.228  2.618  
20 2.208  2.597  
21 2.190  2.575  
22 2.174  2.557  
23 2.159  2.540  
24 2.145  2.525  
25 2.132  2.510  
30 2.080  2.450  
35 2.041  2.406  
40 2.010  2.371  
45 1.986  2.344  
50 1.965  2.320  
60 1.933  2.284  
70 1.909  2.257  
80 1.890  2.235  
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90 1.874  2.217  
100 1.861  2.203  
120 1.841  2.179  
145 1.821  2.158  
300 1.765  2.094  
500 1.736  2.062  
∞ 1.645  1.960  
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Table 2 One-sided tolerance limit factors for a normal distribution for k %γ =90%  

       Degree of freedom  2f n= −

Sample size  n Value of for %=95% k p Value of for %=97.5% k p

3 13.080 15.587 
4 5.251 4.193 
5 — — 
6 4.204 5.226 
7 3.754 4.636 
8 3.467 4.259 
9 3.267 4.000 
10 3.117 3.807 
11 3.000 3.655 
18 2.575 3.113 
38 2.221 2.668 
146 1.917 2.290 
∞  1.650 1.960 
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AppendixⅫ 
 
Table3 fatigue testing data from Laboratory of Fatigue and Strength in LUT 

 t  R  SRσΔ  N  FAT( 3m = ) Observation 

UIT-1 5 0.1 349 596082 233 UITG 

UIT-2 5 0.1 318 310170 171 UITG 

UIT-3 5 0.1 324 620074 219 UITG 

UIT-4 5 0.1 327 505913 207 UITG 

UIT-5 5 0.1 318 781200 232 UITG 

UIT-6 5 Ohta 333 298108 177 UITG 

UIT-7 5 Ohta 338 473704 209 UITG 

UIT-8 5 Ohta 327 980692 258 UITG 

UIT-9 5 Ohta 297 333199 163 UITG 

UIT-10 5 Ohta 295 1163070 246 UITG 

AW-11 5 0.1 180 599377 120 WT 
AW-12 5 0.1 221 422755 131 WT 
AW-13 5 0.1 127 2173795 131 WT 
AW-14 5 0.1 132 1313035 115 WT 
AW-15 5 0.1 204 480284 127 WT 
AW-16 5 0.1 173 6814655 - RO 

AW-17 5 0.1 134 3086407 - RO 

UIT-18 8 0.1 288 1902884 283 UITG 

UIT-19 8 0.1 369 441958 223 UITG 

UIT-20 8 0.1 383 407610 225 UITG 

UIT-21 8 0.1 335 588203 223 UITG 

UIT-22 8 0.1 338 1892369 332 UITG 

UIT-23 8 Ohta 360 256226 181 UITG 

UIT-24 8 Ohta 392 393186 230 UITG 

UIT-25 8 Ohta 367 247240 183 UITG 

UIT-26 8 Ohta 379 205424 177 UITG 

UIT-27 8 Ohta 336 254817 169 UITG 

AW-28 8 0.1 193 485897 120 WT 
AW-29 8 0.1 193 640024 132 WT 
AW-30 8 0.1 161 1257193 138 WT 
AW-31 8 0.1 180 1091393 147 WT 
AW-32 8 0.1 169 1199013 143 WT 
AW-33 8 0.1 153 3453562 - RO 
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