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Abstract 

 
In this paper, a new two-dimensional shear deformable beam element based on the 

absolute nodal coordinate formulation is proposed. The nonlinear elastic forces of the 

beam element are obtained using a continuum mechanics approach without employing a 

local element coordinate system. In this study, linear polynomials are used to interpolate 

both the transverse and longitudinal components of the displacement. This is different 

from other absolute nodal-coordinate-based beam elements where cubic polynomials are 

used in the longitudinal direction. The accompanying defects of the phenomenon known 

as shear locking are avoided through the adoption of selective integration within the 

numerical integration method. The proposed element is verified using several numerical 

examples, and the results are compared to analytical solutions and the results for an 

existing shear deformable beam element. It is shown that by using the proposed element, 

accurate linear and nonlinear static deformations, as well as realistic dynamic behavior, 

can be achieved with a smaller computational effort than by using existing shear 

deformable two-dimensional beam elements. 
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1.  Introduction 

 

The description of nonlinear deformations is a challenging and active research topic in 

the area of multibody dynamics. The goal of these studies is to obtain more realistic 

simulation models for applications such as belts and cables. Nonlinear deformation in 

multibody dynamics can be treated using, for example, the absolute nodal coordinate 

formulation [1, 2] or the large rotation vector formulation [3]. The absolute nodal 

coordinate formulation has many advantages, which include the correct description of the 

motion of an arbitrary rigid body and a constant mass matrix. This formulation has been 

successfully applied to three-dimensional beams [4, 5] and shells [6]. Despite numerous 

investigations into the usability and accuracy of the absolute nodal coordinate 

formulation, there is still a need to improve its accuracy and appropriateness for computer 

calculation. 

 

The objective of this investigation is to develop a new two-dimensional shear deformable 

beam element based on the nodal coordinate formulation where slopes and displacements 

are used as the nodal coordinates instead of finite or infinitesimal rotations. The proposed 

beam element uses a linear displacement field and a reduced amount of slope coordinates 

in comparison to the previously introduced absolute nodal coordinate finite elements. The 

smaller number of nodal coordinates leads to a reduced degree of freedom in the finite 

element, which leads to computational advantages in structural analysis. 

 

Using the absolute nodal coordinate formulation, the global position vector, r, of an 

arbitrary point in a planar case can be written as 

 

eSr ),(  yx= ,         (1) 

    

where S is the element shape function matrix, x and y are the local coordinates of the 

element and e is the vector of the nodal coordinates. The assumed displacement field of 

the two-dimensional shear deformable element can be defined in a global coordinate 

system by using the following polynomial expression [7, 8]: 
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The assumed displacement field in Eq. (2) includes 12 unknown polynomial coefficients. 

For this reason, six nodal coordinates are needed for each node for a two-noded (I, J) 

beam element. In this case, the nodal coordinates, , can be written as Ie

 
TT T

T I I
I I x y

 ∂ ∂
=  ∂ ∂ 

r re r  ,       (3) 

         

where  is the global position vector of node I and vectors  and y are the 

slopes of node I. Vector  defines the global orientation of the centerline of the 

beam and vector  defines the orientation of the height coordinates of the cross-

section of the beam [9].  
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2.  Kinematics of the Proposed Element 

 
In this chapter, the kinematics of the proposed beam element is introduced. The proposed 

beam element uses linear polynomials to interpolate both the transverse and longitudinal 

components of displacement, and the slope coordinates, /T x∂ ∂r , are neglected. The 

reduced amount of nodal coordinates produces a smaller degree of freedom in each node 

of the finite element. 

 

The assumed displacement field of the two-dimensional shear deformable element can be 

defined in a global coordinate system using the following linear polynomial expression: 
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Eq. (4) includes eight unknown polynomial coefficients. Four nodal coordinates can be 

chosen for each node of a two-noded beam element as follows: 
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The element shape function matrix, S, can be expressed by using the nodal coordinates 

and the interpolating polynomial of Eq. (4) as follows:  

 

[ IIIIS 4321 SSSS=        (6) 

In Eq. (6), I is a 2 × 2 identity matrix and the element shape functions, S1…S4, are 

ξ−= 11S , )(2 ξηη −= lS , ξ=3S ,  ξηlS =4 , 

where l is the length of the element in the initial configuration and the non-dimensional 

quantities, ξ and η, are defined as 

 
l
x

=ξ  , 
l
y

=η  

The shape functions contain only one quadratic term, xy, while the remaining shape 

functions are products of one-dimensional linear polynomials. 

 

3.  The elastic Forces of the Beam Element 

 

The definition of the elastic forces for the absolute nodal coordinate beam element can be 

obtained by using a continuum mechanics approach [7, 10]. In this investigation, a 

nonlinear expression is employed for the elastic forces. The gradient of the displacement 

vector can be defined as 

 

( ) ( ) 11
0 -1

0

−− ∂ ∂ ∂ ∂ = =   ∂ ∂ ∂ ∂   

Se Ser XD
x x x x

= JJ .     (7) 

 

In Eq. (7), X and x are the vectors of the global and local element coordinates, 

respectively. The vectors of the nodal coordinates in the deformed and initial 
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configuration are presented by e and e0. Matrix J is the deformation gradient and matrix 

J0 a constant transformation matrix. If the element has an arbitrary initial configuration, 

matrix J0 must be taken into account in the formulation of the elastic forces. Matrix J0 is 

the identity matrix in the case of a straight element. 

 

The Green Lagrange strain tensor,ε , can be written using the right Cauchy-Green 

deformation tensor as follows: 

m

 

(1
2

T
m =ε D D I)−



        (8) 

 

The strain tensor of  is symmetric, and therefore, only three strain components are 

needed to identify it and these components can be written in vector form as 

mε

 

11 22 12

 
2

T
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Using matrix E, which contains the elastic coefficients of the material, the expression of 

the strain energy can be written as follows: 

 

∫=
V

T dVU  Eεε 
2
1         (10) 

 

Matrix E can be expressed for an isotropic homogenous material in terms of Lame’s 

constants, λ and µ, as follows: 
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In Eq. (11), /[(1 )(1 2 )]Eλ ν ν ν= + −  and /[2(1 )]Eµ ν= + , where E is Young’s modulus 

of elasticity and ν  the Poisson’s ratio of the material. 

 
 
By neglecting the Poisson’s effect, the strain energy, U, can be written using Young’s 

modulus of elasticity, E, and shear modulus, G, as follows [11]: 

 

( 11 22 12

2 2 21   4  
2 m m s m

V

U E E k Gε ε ε= + +∫ ) dV      (12) 

 

In order to obtain the correct shear strain energy, the shear correction factor, ks, is needed 

to minimize the error between the constant and the known true parabolic shear strain 

contributions.  

 

The vector of the elastic forces, Qe, can be defined as the derivative of the strain energy 

expression with respect to the element nodal coordinate vector as follows: 

 
T

e
U







∂
∂

=
e

Q          (13) 

 

The mass matrix given by the absolute nodal coordinate formulation is constant and 

symmetric. Using the element shape function given by Eq. (6), the mass matrix, M, can 

be written as 

 

∫=
V

T dV SSM ρ ,        (14) 

where ρ and V are the mass, density and volume of the finite element, respectively.  

 
4.  Generalization to a Three-Dimensional Shear Deformable Beam Element 
 
The generalization of the proposed two-dimensional shear deformable beam element for 

three-dimensional problems is straightforward. Using the absolute nodal coordinate 

 7



formulation, the global position vector, r, of an arbitrary point in a spatial case can be 

written as 

 

eSr ),,(  zyx= ,        (15) 

    

where S is the element shape function matrix, x, y and z are the local coordinates of the 

element and e is the vector of the nodal coordinates. By neglecting the higher-order terms 

from the assumed displacement field, the assumed displacement field of the three-

dimensional shear deformable element can be defined in a global coordinate system using 

the following polynomial expression: 
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Eq. (16) includes 18 unknown polynomial coefficients. Nine nodal coordinates can be 

chosen for each node of a two-node beam element as follows: 
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where vector ∂  defines the orientation of the width coordinates of the cross-section 

of the beam [9]. 

zT
I ∂/r

 

The element shape function matrix, S, can be expressed by using the nodal coordinates 

and the interpolating polynomial of Eq. (16) as follows:  

 

[ IIIIIIS 654321 SSSSSS= ]      (18) 

 

In Eq. (18), I is a 3 × 3 identity matrix and the element shape functions S1…S6 are 
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ξ−= 11S ,  )(2 ξηη −= lS ,  )1(3 ξζ −= lS ,  

ξ=4S ,  ξηlS =5 ,   ξζlS =6 , 

where l is the length of the element in the initial configuration and the non-dimensional 

quantities ξ, η and ζ are defined as follows: 

 
l
x

=ξ  , 
l
y

=η ,  
l
z

=ζ  

The shape functions contain both quadratic terms and terms that are products of one-

dimensional linear polynomials. 

 

5.  Selective Integration of the Strain Energy 

 

The shape functions of the proposed two-dimensional shear deformable beam element 

include only one non-linear term, xy. Therefore, the element is able to exhibit only a 

rectangular deformation shape. This characteristic results in parasitic shear strain under 

pure bending. As a result, the element stores excess shear strain energy that leads to a 

phenomenon called shear locking, as shown in Fig. 1 [12]. This phenomenon is 

encountered when using the exact integration of all the integrals of the strain energy. In 

this case, the model is not able to receive analytical values of displacement, even if 

hundreds elements are used. Especially in cases of thin beam structures, element shear 

locking results in overly small displacement in comparison to the exact values. 

 

To avoid the accompanying defects of spurious shear strain, selective integration is 

adopted within the numerical integration method. In this case, one Gauss point is used to 

evaluate the contribution of shear strain in the equation of strain energy, while two Gauss 

points are used to evaluate the contribution of normal strains.  
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Figure 1.  (a) The correct deformation mode of a rectangular block in pure 

bending. 

(b) The shear locking of the element results in the incorrect 

deformation mode of a rectangular block in pure bending. 

 

6.  Equations of Motion 

 

Using the constant mass matrix and the elastic force vector, which is a nonlinear function 

when the absolute nodal coordinates are used, the equations of motion of the deformable 

finite element can be written as [1] 

 

e= −Me Q Qk

k

 ,        (19) 

 

where Qk is the vector of the generalized external nodal forces including gravity forces. 

Using force vector Q Q , the preceding equation takes the following form: e= −Q

 

           (20) =Me Q

 

Since the mass matrix is a constant matrix, the vector of the accelerations e  of Eq. (20) 

can be efficiently solved using numerical procedures on the following equation: 
-1=e M Q            (21) 

 

The kinematic constraints that depend on the nodal coordinates and possibly on time in 

the multibody system can be written in vector form as [13] 
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( , )t =C e 0 ,         (22) 

 

where C is the vector of linearly independent constraint equations, e the nodal coordinate 

vector and t time.  

 

The equation of motion that takes into account the effect of the constraints can be defined 

using Lagrange’s equation in matrix form as follows: 

 
T

e k+ = − +eMe C λ Q Q Qv

 



       (23) 

 

In Eq. (23), C  is the Jacobian matrix that is the partial derivative of the constraint vector 

with respect to nodal coordinate vector, λ is the vector of Lagrange multipliers and Q

T
e

v is 

a quadratic velocity vector. The unknowns λ and  of Eq. (23) can be determined by 

differentiating the constraints of Eq. (22) twice with respect to time: 

e

 

( ) 2tt t c= − − − =e e e eC e C C e e C e Q       (24) 

 

and writing a system of differential and algebraic equations in matrix form as follows: 

 
T

e k v

c

− +    
=   

    
e

e

Q Q QeM C
QλC 0

      (25) 

 

7.  Numerical Results 

 
In this section, the performance of the proposed shear deformable beam element is 

investigated in static and dynamic problems. In the static problems, the simple beam 

structures of Figs. 2…4 are investigated. The cross-section of the beam is rectangular and 

the length of the beam 2.0 m. The material of the structure is assumed to be isotropic, the 

Young’s modulus of the material is 112.07 10⋅  N/m2 and mass density 7850 kg/m3. The 
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results of the examples for the proposed beam element are compared to those of the 

analytical solutions and/or to the solution from a commercial finite element code ANSYS 

and a two-dimensional shear deformable beam element proposed by Omar and Shabana 

[7]. The strain energy of the proposed beam element is calculated using Eq. (12) with a 

shear correction factor ks = 5/6. Eq. (10) is used to determine the strain energy in the case 

of the element proposed by Omar and Shabana. 

 

In the first example, the linear deformations are considered using the simply supported 

beam structure of Fig. 2. The boundary conditions are given to eliminate the x and y 

displacements of the first node and the y displacement of the last node. The cross-section 

of the beam is a 0.1-m-sided square and a vertical load, F = 1000 N, is applied to the mid-

point of the beam. The vertical displacements of the midpoint are investigated using 

different numbers of elements for two values of the Poisson’s ratio, 0.0 and 0.3. In the 

analytical solution and in the BEAM3 model in ANSYS [14], the effect of the shear force 

is considered. The results of the first example are shown in Tables 1 and 2. 

 

F

l = 2.0 m

0.1 m

0.1 m

y

x

  
Figure 2. A simply supported beam for linear deformations. 
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Table 1. The vertical positions of the mid-point of the beam for a Poisson’s ratio of 
0.0 

 

Mid-point vertical position [mm] Number of 
elements The ANCF 2D beam 

element of Omar and 
Shabana 

Proposed ANCF 
2D beam element 

ANSYS: 
BEAM3 

2 -0.07289318 -0.07304348 -0.097021 
4 -0.09103438 -0.09115942 -0.097021 
8 -0.09557755 -0.09568840 -0.097021 
16 -0.09671692 -0.09682065 -0.097021 
32 -0.09700354 -0.09710371 -0.097021 
64 -0.09707761 -0.09717448 -0.097021 

The analytical result: -0.09719807 

Table 2. The vertical positions of the mid-point of the beam for a Poisson’s ratio of 
0.3 

 

Mid-point vertical position [mm] Number of 
elements The ANCF 2D beam 

element of Omar and 
Shabana 

Proposed ANCF 
2D beam element 

ANSYS: 
BEAM3 

2 -0.05438847 -0.07321739 -0.097142 
4 -0.06787886 -0.09133333 -0.097142 
8 -0.07126169 -0.09586232 -0.097142 
16 -0.07211204 -0.09699456 -0.097142 
32 -0.07232694 -0.09727763 -0.097142 
64 -0.07238182 -0.09734839 -0.097142 

The analytical result: -0.0972850 

It can be seen in Table 1 that in the case of a Poisson’s ratio of zero, all the models agree 

well with each other. The proposed beam element predicts the most accurate results in 

comparison to the analytical result, while the BEAM3 model predicts the most 

underestimated displacement. In the proposed element, the bending moment is constant 

as is also the case of the beam element of Omar and Shabana. For this reason, these 

elements give more accurate results when the number of elements is increased. Table 2 

shows that when the Poisson’s ratio of the material is non-zero, the model by Omar and 

Shabana suffers from residual transverse normal stresses [9], which leads to notably 

smaller deformations in comparison to the results of the other models. The proposed 

beam element converges to slightly larger deformations than the analytical solution, 

which demonstrates slightly excessive flexible behavior.  
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In the second example, large nonlinear deformations of the simple cantilever structure of 

Fig. 3 are considered and compared to the nonlinear solution of the BEAM188 model in 

ANSYS [9, 14]. The other end of the beam is clamped by boundary conditions that 

eliminate the x and y displacement and slopes 1 / y∂ ∂r  and 2 / y∂ ∂r

3h

 of the first node. The 

vertical displacements of the endpoint are investigated using different numbers of 

elements for the two different cantilever models: In the first model (Model 1), the beam 

has a 0.1-m-sided square cross-section and value of the Poisson’s ratio is 0.3, while in the 

second model (Model 2), the height h of the beam is increased from 0.1 m to 0.5 m while 

the Poisson’s ratio is 0.0. A vertical force, F = 805.0 1− ⋅ ⋅ N, is applied to the free end 

of the cantilever. The results of the second problem are shown in Tables 3 and 4. 

 

F

l = 2.0 m

0.1 m

h

y

x

 

Figure 3. The cantilever beam model for nonlinear deformations. 

 

Table 3. The beam endpoint positions in Model 1.  
Tip Position (x, y), [m] Number of 

elements The ANCF 2D beam 
element of Omar and 

Shabana 

Proposed ANCF 2D 
beam element 

ANSYS: BEAM188 

2  1.95536, -0.37731 1.93097   -0.47477 1.87080, -0.65671 
4  1.91696, -0.50935 1.86837   -0.64974 1.85918, -0.67485 
8  1.91342, -0.53039 1.85667   -0.67758 1.85618, -0.67947 
16  1.91274, -0.53271 1.85526   -0.68046 1.85540, -0.68069 
32  1.91262, -0.53313 1.85497   -0.68100 1.85520, -0.68100 
64  1.91259, -0.53323 1.85489   -0.68114 1.85515, -0.68108 
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As can be seen in Table 3, in the case of Model 1 the beam element of Omar and Shabana 

suffers from residual transverse normal stresses. The predicted displacements of the 

proposed model and the BEAM188 model are very similar with the exception of the case 

of two elements. 

 

Table 4. The beam endpoint positions in Model 2. 
Tip Position (x, y), [m] Number of 

elements The ANCF 2D beam 
element of Omar and 

Shabana 

Proposed ANCF 2D 
beam element 

ANSYS: BEAM188 

2  1.86888, -0.64147 1.87049   -0.65646  1.86749, -0.67783 
4  1.84807, -0.69512 1.84801   -0.70045 1.85551, -0.69700 
8  1.84462, -0.70421 1.84334   -0.70883 1.85246, -0.70179 
16  1.84371, -0.70654 1.84204   -0.71123 1.85169, -0.70299 
32  1.84341, -0.70725 No convergence 1.85150, -0.70329 
64  1.84330, -0.70750 No convergence 1.85145, -0.70337 

 

 

Table 4 shows that in the case of Model 2, the beam element of Omar and Shabana and 

the BEAM188 model are in good agreement but the proposed beam element fails in 

convergence when 32 or more elements are used. It was also noticed that if the Poisson’s 

ratio was changed to 0.3 or the height of the beam decreased, for example, to 0.4 m, the 

convergence of the beam element improved. When a small number of proposed elements 

is used, the model converges to larger deformations than do the other models. These 

results can be explained as a consequence of using reduced integration in the selective 

integration of the strain components of the element. Reduced integration has a softening 

effect and may also introduce some spurious modes, such as zero-energy deformation 

modes or hourglass modes. The spurious modes incorporated by the stiffness matrix of 

the element can deactivate the resistance to nodal loads. As a result, spurious zero energy 

modes are activated in the element [12]. The convergence problem is solved by 

increasing the number of Gauss points from one to two when evaluating the contribution 

of the y-component of the shear strain in the strain energy equation. The results achieved 

by this modification are shown in Table 5. The softening effect of the reduced integration 

can still be observed in the proposed element. 
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Table 5. The positions of the beam endpoint in Model 2. 
Tip Position (X, Y), [m] Number of 

elements The ANCF 2D beam 
element of Omar and 

Shabana 

Proposed ANCF 2D 
beam element 

ANSYS: BEAM188 

2  1.86888, -0.64147 1.87066   -0.65601  1.86749, -0.67783 
4  1.84807, -0.69512 1.84801   -0.70045 1.85551, -0.69700 
8  1.84462, -0.70421 1.84343   -0.70861 1.85246, -0.70179 
16  1.84371, -0.70654 1.84228   -0.71066 1.85169, -0.70299 
32  1.84341, -0.70725 1.84198   -0.71119 1.85150, -0.70329 
64  1.84330, -0.70750 1.84191   -0.71133 1.85145, -0.70337 

 

In the third example, the linear axial deformations of the simple cantilever structure of 

Fig. 4 are considered and compared to the ANSYS BEAM3 model and analytical results. 

The other end of the beam is pinned by eliminating the x and y displacement of the first 

node. The beam has a 0.1-m-sided square cross-section. A horizontal force, F = 50 000 

N, is applied to the free end of the cantilever. The elongation of the cantilever is 

investigated for two values of the Poisson’s ratio, 0.0 and 0.3. The results are independent 

of the numbers of elements and are shown in Table 6. The results are almost identical 

with the exception of the case of the beam element by Omar and Shabana with a 

Poisson’s ratio of 0.3. 

 

F

l = 2.0 m

0.1 m y

x
0.1 m

 
Figure 4. The cantilever beam model for linear axial deformations. 

 

 

 

 

 16



Table 6. The elongation of the beam in the x-direction. 
Model The elongation of the beam [mm] 
Analytical (Poisson’s ratio 0.0 and 0.3) 0.048309 
ANSYS BEAM3 (Poisson’s ratio 0.0 
and 0.3) 

0.048309 

The ANCF 2D beam element of Omar 
and Shabana (Poisson’s ratio 0.3) 

0.043960 

The ANCF 2D beam element of Omar 
and Shabana (Poisson’s ratio 0.0) 

0.048307 

Proposed ANCF 2D beam element 
(Poisson’s ratio 0.3 and 0.0) 

0.048307 

 

In the dynamic problem, the dynamic behavior of a simple planar pendulum, which 

consists of one beam, shown in Fig. 5, is investigated using different numbers of 

proposed two-node two-dimensional shear deformable beam elements. The pendulum is 

connected to the ground by a revolute joint, and the only force acting on the system is 

gravity, which is equal to 9.81 m/s2. The cross-section of the beam is a 0.1-m-sided 

square, while the length of the beam is 2.0 m. The material of the structure is assumed to 

be isotropic and the Young’s modulus of the material is 72.07 10⋅  N/m2, the Poisson’s 

ratio 0.3 and mass density 7850 kg/m3.  

 

l = 2.0 m

0.1 m

y

x
0.1 m

mg

 
 

Figure 5. A free falling flexible pendulum for dynamic verification in the initial 

position.  

 

The initial position of the beam is horizontal with an initial velocity of zero. The vertical 

displacement of the beam endpoint for different numbers of elements is shown in Fig. 6. 
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As can be seen, the solutions for 8 and 16 elements are almost identical and the solution 

for 4 elements is in good agreement with them.  

 
Figure 6.  Vertical displacement of the falling flexible beam tip point using 2, 4, 8 

and 16 elements. 

 

The energy balance of the beam should remain constant due to the fact that the free-

falling pendulum is a conservative system. This can be written as  

 

( ) constant
n

i i i

i

T V U+ + =∑ ,       (26) 

where n is the number of elements of the system, T  the kinetic energy, V  the potential 

energy and U  the strain energy of the element [10]. The energy components of the beam 

made up of 4 elements are shown in Fig. 7. It can be seen that the energy balance remains 

constant with excellent accuracy. Fig. 8 shows the linear behavior of the proposed beam 

element in the case of large deformations of the falling beam made up of 6 elements. The 

proposed elements remain straight due to the use of linear polynomials to interpolate the 

displacement components. 

i i

i
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Figure 7.  The energy components and energy balance of the falling flexible beam 

made up of 4 elements. 

 
Figure 8. The falling flexible pendulum at different time steps under the effect of 

gravity using 6 elements. 
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A comparison of the vertical displacement between the proposed element and that 

presented by Omar and Shabana is shown in Fig. 9. The results are obtained using 4 

elements and moderate agreement can be observed between the models. The differences 

between the results are reduced if the number of elements in the models is increased as 

shown in Fig. 10. Using the proposed beam element, a significant saving in computation 

time can be achieved in comparison to using the beam element presented by Omar and 

Shabana. This is due to the fact that less nodal coordinates and simpler polynomials are 

needed to identify the element, and the dimensions of the vectors and matrices in the 

calculation are smaller. 

 

 
Figure 9. A comparison of the vertical displacement between the proposed element 

and that presented by Omar and Shabana using 4 elements. 
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Figure 10.  A comparison of the vertical displacement between the proposed 

element and that presented by Omar and Shabana using 8 elements. 

 

8.  Conclusions 

 
It has been perceived that although the displacement field of the element includes a cubic 

interpolation polynomial in the axial direction of the displacement, the element exhibits 

linear bending behavior when a continuum mechanics approach is used. For this reason, 

the advantage of the third-order polynomial expansion is debatable.  

 
The objective of this investigation was to develop a computationally efficient two-

dimensional shear deformable beam element based on the absolute nodal coordinate 

formulation. The beam element uses a linear displacement field neglecting higher-order 

terms and a reduced number of nodal coordinates, which leads to fewer degrees of 

freedom in a finite element. The expression of the elastic forces is nonlinear. The 

accompanying defects of the phenomenon known as shear locking are avoided through 

the adoption of selective integration within the numerical integration method. 
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Several numerical examples, including both static and dynamic tests, were used to 

demonstrate the functionality and usability of the proposed beam model. The results were 

compared to the results of a commercial finite element code ANSYS, the results of the 

previously published beam element model by Omar and Shabana and analytical results. 

Generally the results, in the cases of linear and non-linear deformations, are in good 

agreement. For non-linear deformations, the discrepancies between the different models 

increased when the height of the beam was increased, which increased the significance of 

the role of shear strain. 

 

It was perceived that the proposed beam element experiences problems in convergence 

when the number of elements is increased for the non-linear deformation test excluding 

the case of a relatively thin beam. It is shown in this investigation that the convergence 

problem can be solved by increasing the number of Gauss points from one to two when 

evaluating the contribution of the y-component of shear strain. In the case of a simple 

pendulum, the results of the proposed beam element demonstrate good functionality. The 

energy balance of the dynamic model remains exactly constant, and the results are in 

good agreement with the beam model of Omar and Shabana with less computational 

effort.  
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