oikea
ISBN 952-214-057-0
ISBN 952-214-058-9 (PDF)
ISSN 1456-4491
Lappeenranta 2005
Lappeenrannan teknillinen yliopisto
Lappeenranta University of Technology
Acta Universitatis
Lappeenrantaensis
211
The proceedings of the 3rd Workshop on Applications of Wireless
Communications
3RD WORKSHOP ON APPLICATIONS OF WIRELESS
COMMUNICATIONS
 Edited by Jouni Ikonen, Jari Porras and Pekka Jäppinen
 Edited by Jouni Ikonen, Jari Porras and Pekka Jäppinen
3
RD
 WORKSHOP ON APPLICATIONS OF WIRELESS
COMMUNICATIONS
Acta Universitatis
Lappeenrantaensis
211
LAPPEENRANTA
UNIVERSITY OF TECHNOLOGY
The proceedings of the 3rd Workshop on Applications of Wireless Communications
ISBN 952-214-057-0
ISBN 952-214-058-9 (PDF)
ISSN 1456-4491
Lappeenrannan teknillinen yliopisto
Digipaino 2005
MESSAGE FROM THE CHAIRS

Welcome to the Lappeenranta and to the 3rd Workshop on Applications of Wireless
Communications. The workshop was established to bring together researchers, engineers
and students working on the field of wireless communication. In 1799, Count Rumford
identified engineering as "The application of science to the common purpose of life".
Following Count Rumford definition, WAWC concentrates on the question how wireless
communications can be applied in the different areas of life.

This year there were 10 submissions to the workshop. Four of the papers submitted were
from Finland while the rest from Europe and Asia. These submissions were delivered to at
least two program committee members for a blind review. In addition to that program
committee chair reviewed all the submissions. As a result three submissions were accepted
for the workshop, thus giving the acceptance rate of 30% for the workshop. The final
program includes a keynote presentation from Professor Audestad dealing the effects of
unwiring the society. Furthermore three invited papers are included to cover the gaming,
business and user aspects of wireless world.

Although this is 3rd year that the workshop is arranged, this event has longer traditions as
WAWC is arranged along with the 14th summer school on telecommunications. The
summer school has successfully brought together researchers and companies for fruitful
conversations for 14 years in a row, which itself shows the importance of the event. This
year summer school concentrates on the Personal Area Networking starting from radio
technology issues and ending to personal area networking aspects. These topics work as a
good introduction for the WAWC presentations thus linking the workshop and summer
school tightly together.

After the workshop the final event of summer school is a code camp. The camp is an
intensive 24 hour coding, learning and competing event for students. During the camp
participants program applications that this year rely on personal area networking. The
groups are encouraged to interact with each other and solve problems together and give
ideas to each other. All the creations and the group actions are evaluated and the best group
is awarded a prize as recognition.

We hope you have enjoyable event in Lappeenranta and hope to see you here again next
year.

Lappeenranta, 23.5. 2005

Pekka Jäppinen, Jouni Ikonen and Jari Porras

 Organization

Summer School Chair
Dr.Tech. Jouni Ikonen, Lappeenranta University of Technology

WAWC Program Chair
Dr. Tech. Pekka Jäppinen, Lappeenranta University of Technology

International Program Committee
Professor Jari Porras, Lappeenranta University of Technology, Finland
Professor Jarmo Harju, Tampere Univerity of Technology, Finland
Jukka K. Nurminen, Nokia Research Center, Finland
Professor Olli Martikainen, Oulu University, Finland
Assistant Professor Denis Trcek, Institut "Jozef Stefan", Ljubljana, Slovenia
Assistant Professor Dario Maggiorini, Università degli Studi di Milano, Italy

Keynote speaker
Prof. Jan Arild Audestad, Norwegian University of Science and Technology and Gjøvik
University College.

Organizing Chair
Professor Jari Porras, Lappeenranta University of Technology

Local Organizing Committee
Matti Juutilainen, Lappeenranta University of Technology, School Program Chair
Jani Peusaari, Lappeenranta University of Technology, Code Camp Chair
Janne Oksanen, Lappeenranta University of Technology, Network Arrangements
Harri Hämäläinen, Lappeenranta University of Technology, Web-pages
Kimmo Koskinen, Lappeenranta University of Technology, Technology strategist
Arto Hämäläinen, Lappeenranta University of Technology, Documentation

Table of Contents

Keynote speech: Prof. Jan Arild Audestad
THE UNWIRED SOCIETY: FLEXIBLE AND ROBUST BUT
DANGEROUSLY VULNERABLE

Invited Paper: Riku Suomela
PUBLIC SCREENS AND PRIVATE MOBILE PHONE SCREENS IN
MULTIPLAYER GAMES

Simone Leggio and Markku Kojo
ON THE EFFICIENT IMPLEMENTATION OF INSTANT MESSAGING
SERVERS FOR WIRELESS USERS

Arto Hämäläinen and Jari Porras
ENHANCING MOBILE PEER-TO-PEER ENVIRONMENT WITH
NEIGHBORHOOD INFORMATION

Sasu Tarkoma and Thalainayar Balasubramanian Ramya
A GATEWAY FOR SIP EVENT INTERWORKING
 7

 17

 27

 39

 49

5
5

6
6
THE UNWIRED SOCIETY: FLEXIBLE AND ROBUST BUT
DANGEROUSLY VULNERABLE
Jan A Audestad
Senior Adviser, Telenor Corporate Management,
Adjunct professor Norwegian University of Science and Technology (NTNU) (telematics),
 Adjunct professor Gjøvik University College (information security).

ABSTRACT
The evolution of telecommunications and information technology since 1995 has led to enormous flexibility for
users, efficient production of goods and services for manufacturers, and efficient management of society. The
price we may have to pay for this development is that we have created a society that is vulnerable to certain
types of malicious attacks. What makes it worse is that the evolution has been irreversible.

About five years ago investigations of the internet, the web and several biological and social networks
revealed that many of these networks had a structure that made them robust against random destruction of nodes
but very vulnerable to attacks directed at certain nodes called hubs. Such networks were named scale-free
networks. Since then, the structure of these networks and how they may form have been subject to intense
mathematical study.

The paper shows models of computer networks that may belong to the class of scale-free networks. Many
researchers believes that this is the case but this has not been definitely confirmed because it is tremendously
difficult to reveal the complete structure of internet, email networks and the web because of their size, the
dynamic changes going on all the time, and lack of adequate experimental methods.

The number of devices containing CPUs is more than 1000 billion devices, where only 1 billion of these
devices are under direct human control. All the devices are connected to the internet either directly or indirectly
and makes up the vast, connected computer infrastructure of the world. This gives rise to unprecedented security
challenges when designing these devices and the way in which they interact.
1. UBIQUITY AND VERSATILITY OF COMPUTING
It is assumed that there are about 1000 billion devices on Earth containing CPUs. Only about
one billion of these devices are what we traditionally call a computer (PC, server or
mainframe). Most of these CPUs are doing autonomous tasks not directly controlled by
humans.

Autonomous CPUs are found in automobiles, aircraft, measuring equipment, internet
routers, machines, control systems, water and sewage pumps, sluices, valves in oil refineries,
mobile phones, smart cards, printers, computer mouse, sensors of all kind, and so on and so
forth. Usually it does not occur to us that these devices exist, and we recognise them only if
the car stops for inexplicable reasons or the automatic teller machine is out of order when we
need cash.

7
7
Almost all the CPUs are connected to the internet either directly or indirectly. It is then
possible in principle, though very difficult if exact address information is not known, to reach
any such CPU from any other CPU. The CPUs are then making up a formidable computing
infrastructure connecting every corner of the globe.

Most CPUs are contained in small devices capable of doing just a few dedicated tasks.
Many of the CPUs are contained in mobile devices. An increasing number of them, also those
in fixed locations, communicate via radio interfaces. Radio connections exist for example
between the mouse and the PC, between the PC and the printer, or between pressure sensors
in the tyres and a computer in the car.

RFIDs containing CPUs will complicate this picture manifold when we find out how to
provide them with enough energy to accommodate a CPU rather than just simple electronics.

Every activity in society is controlled by computers. Management of society and industry,
interaction between people and the authorities, commerce and banking, retrieval and
dissemination of information and communication between people are part of the computer
infrastructure under direct human control. The operation of the infrastructure of society
(transport, energy distribution, and telecommunications) and the production processes in
industry are largely autonomous systems. In fact, all human controlled activities rely also on
an autonomous infrastructure – the internet and local networks and computer systems!

This computerisation of society has mainly taken place after 1995 and has been an
irreversible process: it is impossible to revert to old routines if the new ones fail. In fact, the
“ICT-ation” of society – technical or administrative – is an irreversible process.

In this paper I shall not consider the development of radio interfaces and devices
containing transmitters and receivers which I believe will be the main theme of this workshop.
What I shall do is to describe the big picture and from that derive some characteristics that
need to be taken into account when new systems are designed and implemented in the existing
computer infrastructure.
2. THE BIG PICTURE
Let us start with drawing the big picture. We need to understand this picture in order to see
the impact innovations even in the small and local scale may have on the information and
communication infrastructure at large.
8
8
Software
CPUs
Internet

Figure 1 The big picture of the computing infrastructure

Figure 1 shows a layered structure consisting of three networks. Internet, including local
systems such as LANs and piconets, ensuring the capability of passing bits from one location
to another, is at the bottom of the structure. A node in this network (black dish) represents a
router or another device responsible for passing bits. A link between two nodes means that a
direct communication channel exists between the devices.

The CPUs reside on the layer above. The CPUs are nodes in this network and there is a
direct link between two CPUs if they ever take part in a common computational task (for
example exchanging email). The links may even be weighted where the weight represents
how often the CPUs take part in a common activity. Different interrelationships such as email,
web search and distributed processing may be described in terms of separate graphs. The
different sub-graphs constructed in this way may have properties that are important for
assessing vulnerability, security threats or traffic handling capacity of the computer
infrastructure of society.

One important observation is that there exist paths between CPUs that are not directly
linked. This means that it is possible for two CPUs to exchange information via intermediary
devices. This is in fact how malicious code such as viruses and worms are spread in internet.

The CPUs are connected to nodes in the internet graph as shown but the structures of the
two graphs are independent of each other.

The CPUs are the kernel of computing devices containing from a few to millions of
executable programs or documents. A program or document can be represented as nodes in a
9
9
graph while links indicates that the program or document is used in a common computation
session. Though programs and documents reside in computers with CPUs, this is a graph
structure independent of the CPU network below.

The structure shown in Figure 1 is not static but highly dynamic in a stochastic way. The
interconnectivity graphs of CPUs and software not only grow in size at a rapid rate but also
changes internal structure. This stochastic behaviour is in a way fractal since it is likely to
contain a continuum of timescales from seconds to years. We do not know this for sure but
experience and intuition tells us that it must be so – and that this dynamics is completely
different from the dynamics of the telephone network and the GSM network. These networks
are planned to minute detail; the computer networks just evolve.

This is the big picture of the computing infrastructure. Let us then see how this
infrastructure may have grown from virtually nothing.
3. NATURAL GROWTH OF NETWORKS
Nature, society and technology are full of networks that started developing from a small seed.
Examples of such networks are cell metabolism where substances taking part in the same
chemical reaction are linked, co-authorship in science, industrial ownership, and the World
Wide Web and the internet.
1 2 3 4 5 6 7

Figure 2 Growing a network

Figure 2 shows how such an undirected graph may evolve1. The numbers refer to the
generation of the node. One algorithm among several is as follows. Call the number of links
terminating at a node the degree of that node. Start with interconnected nodes 1 and 2 and
then apply the following algorithm. At generation n add node n + 1 and link it to one of the
previous nodes in such a way that the probability of choosing a particular node is proportional
to the degree of that node. The degree distribution for a large graph grown in this or similar
ways is P(g) = 1/gγ where γ is a constant. This distribution is called a Pareto distribution or
power-law distribution. In the particular example, γ = 2. In sharp contrast, the node degree of
a graph where links between nodes are equally probable, the degree will be Poisson
distributed with almost all nodes having a degree very close to the average of the distribution.
Networks with degree distributions following a power law are called scale-free networks
because the degrees are not concentrated narrowly around a mean value (or single “scale”).
One important observation is that the tail of the distribution is thick (or the kurtosis or fourth
order moment of the distribution is large), which means that the probability of finding

1 Graphs may also be directed where an arrow on a link indicates that one node is connected to another node but
not vice versa. The web is such a graph. Directed graphs may grow in similar ways as undirected graphs.
10
10
occurrences far away from the average is much larger than in Poisson or Gauss distributions
where the tail drops off at exponential rate.

Scale-free networks were discovered and analysed as late as 1999 (Albert and Barabási).
Since then, a number of properties of naturally grown networks have been uncovered. One
particular aspect is vulnerability. Another contradictory observation is that these networks are
unusually robust against random destruction. This is why nature is so full of them.
4. VULNERABILITY AND ROBUSTNESS
Because of preferential growth, some nodes of the network will grow to become very large
with links to very many other nodes. Such nodes are called hubs. In the World Wide Web, the
search engines are obviously hubs and so are web pages containing own search engines or
many hyperlinks to other pages. In the internet, huge routers and certain functions in the
network, for example inter-traffic interworking units, are hubs. Investigations of these
networks indicate that they are scale-free but this is far from being definitely confirmed;
however, the structure is certainly one satisfying a thick-tail distribution over a large range of
the random variable.

A very small scale-free graph is shown in Figure 3. If nodes in this graph are removed at
random, the probability that the removed node has a large edge degree is small. This means
that in a huge graph such as the internet or the CPU network very little damage will be done
to the connectivity of the graph even if many nodes are removed at random. In the figure, 4
nodes (25% of all nodes) are removed at random and the graph is still connected. On the other
hand, if the attack on the graph is directed towards the hubs just a few nodes need to be
removed before the whole graph falls apart. In the figure two hubs are remover and the
network disintegrates completely. This effect is particularly noticeable in the WWW: remove
the search engines and the web falls apart.
Scale-free graph Directed attack Random attack

Figure 3 Scale-free networks

Another observation concerning scale-free networks is that the infection threshold of these
networks is zero. This needs some explanation. In an epidemic network where the link
11
11
distribution is Poisson, a certain number of nodes (people) must be infected before the disease
starts to spread. This is why random vaccination works. In a scale-free epidemiologic network
such as that of AIDS, no such threshold exists: the whole graph will be infected if a single
node is infected. The time it takes to infect the whole network just depends how long it takes
before major hubs are infected. As soon as a hub is reached the disease spreads quickly. In
scale-free networks random vaccination does not work: the spreading can only be stopped by
identifying and vaccinating the hubs – in the AIDS epidemic this is an ethic challenge. From
an information security viewpoint, this also means that data viruses are best stopped by
protecting the hubs better than the smaller nodes. The spreading of the internet worm SoBig a
couple of years ago was slowed down in this way because many large companies had
effective routines for filtering out emails containing suspicious attachments.

Since our intuition and current studies tell us – though we have no definite proofs that this
is true – that the internet and its major application (email and web) are scale-free networks,
we may conclude that it is extremely easy to contaminate these networks with data viruses
and worms if you first can figure out how to do it. The problem is that so much of the society
depends on ICT that a major virus attack may put important functions of society out of action
either by disturbing communication or by destroying critical computer programs.
5. PROTECTION
We can, of course, protect us against many attacks by malicious software. We may install
firewalls stopping doubtful software and accesses by parties we do not know. There are one
mathematical and one human reason why this does not work out properly.

The mathematical reason has to do with a deep result in mathematical logic called the
undecidability of the Turing halting problem. Turing’s theorem states that it is not possible to
design a general algorithm that can answer yes or no to the question whether another arbitrary
algorithm will, for an arbitrary input, return an answer to the problem in finite time or just
continue searching for a solution indefinitely. It is easy to show that if we were able to
construct a virus detection program that could detect every existing and future virus code, this
would violate Turing’s theorem. Hence, however sophisticated the firewall is, it does not
protect us against future virus attacks.

The human reason is that we want – and in fact need – to be a component of the vast
network structures I described in section 2 in order to do our daily work or function socially
in certain relationships. This means that we are part of not just one but several finely woven
webs of interdependence that certainly not are simple random networks but more likely are
networks with scale-free properties. This makes us vulnerable to several types of attack and
some of these attacks may also utilise the fact that scale-free networks do not have
contamination thresholds. One of the most effective protections we have had so far is
obviously the complexity of the networks. It is not just hard to construct countermeasures but
also to construct the weapons. On the other hand, we have no single idea about what the
arsenal of information weapons may contain. There are organisations even in democratic
countries that have an interest in building up such a secret arsenal.
12
12

A deeper understanding of the topologies of the technological and societal networks and
their interdependence may help us not only to avoid attacks but also to design fault tolerant
systems. These are systems that can recover by themselves after severe faults have taken them
down entirely or partially and that sometimes also can deliver services while under attack.
This brings information security into the field of fault tolerance and not only fault avoidance
where firewalls and access control is at focus. The marriage of fault avoidance and
information security is still a pristine research area.
6. UNWIRING THE SOCIETY
Figure 4 shows another view of the network (for example the internet). The network consists
of a fixed kernel of routers. The network is dynamic because the routing of individual packets
in the network is almost arbitrary: the routers push them, to their best effort and with a
minimum of computation, toward the termination. The periphery consists of the CPUs shown
in a different way in Figure 1. Some of these CPUs are located at geographically fixed points;
but an increasing number of CPUs are mobile capable of accessing the kernel at arbitrary
access points and also other fixed or mobile CPUs directly. Examples of such mobile CPUs
are mobile phones, smart phones, smart cards, electronic wallets, personal computers,
personal digital assistants, mobile hard disks, GPS receivers, MP3 devices, processors in
automobiles and aircraft, and so on and so forth.
Fixed but dynamic network kernel
Fixed periphery Mobile periphery

Figure 4 Telecommunications network model

Mobility provides us with enormous flexibility, and more and more businesses abandon
fixed telephones and fixed personal computers: a good day’s work is no longer the equivalent
of sitting in front of the office desk from 0800 in the morning until 1600 in the afternoon.
Now any time of the day at any place in the world may be office time. The result of this
evolution is that the fixed periphery becomes smaller while the mobile periphery increases.

Furthermore, one person possesses not just one mobile device but a number of them that
need to communicate with one another from time to time. In this way, a much richer structure
of interfaces between devices grows up. These interfaces require new protocols and new
platforms supporting distributed computing, mobility and resource sharing. This is good for
flexibility but is a nightmare for information security.
13
13
7. LIFE AT THE PERIPHERY
Network
Stationary periphery
Network
Dynamic periphery
Local system

Figure 5 From stationary to dynamic access

Figure 5 illustrates how computer networks have developed during the last few years. The
black rectangles represent computing devices of one kind or another – these are the nodes of
the CPU graph in Figure 1. Previously, the local network was connected to the network via
servers in the local network. All aspects of computation in this structure were under the
authority of one organisation – the owner of the local network. Since then, the local network
has become dynamic, mobile and distributed: computers within the network can access other
computers of the local system from access points outside the local system; computers within
or outside the local system may communicate directly without going through network
interfaces or servers; computers may move between access points both within and outside the
local system. The different computers taking part in the information exchange are of many
different types covering a large range of memory size, computational speed and capabilities.

The local system is not just dynamic but it is also incredibly complex. In the stationary
local system, communication both within the local system and with computers in other
systems took place via servers. The owner of the local system could then enforce security
policies and access control on these servers. This is only partially possible in the dynamic
systems. These systems still contains servers for special purposes such as email and web
access. Security policies are enforced on these systems as before. However, direct
communication between devices using Bluetooth, infrared, WLAN and other interconnection
methods opens up for uncontrolled exchange of information by circumventing the servers and
violating the access control policy. This we can do without anyone discovering it.

The main driving force, in addition to being fun to do research and invent new things,
behind developing all these access technologies is the need for more flexible systems that
increase productivity and the output by each employee, reduce production cost, and do things
that could not be done before.
The flexibility has multiplied the number of ways the computing infrastructure can be
attacked. If it is impossible to send malicious software through the server, it may be delivered
to a PDA over Bluetooth. When the PDA is synchronised with a personal computer on the
inside of the firewall, the malicious software may be spread unnoticed because usually there is
14
14
no access control between the PDA the PC. In fact, there is malicious software that is spread
in this way via smart-phones and PDAs to personal computers. So far, such attacks have not
been very successful probably because it is difficult to do it, but there is no comfort in this.

Enforcing security policies on lightweight interfaces and in simple equipment is not easy.
The device may be too small to accommodate such functions or the implementation of them
may be too expensive. Furthermore, there is a growing demand for being anonymous and
untraceable on the internet but at the same time accountable for the transaction one takes part
in. These are extremely difficult problems but there is much research going on in the field,
and there is still food for numerous PhDs on the subject.

The dynamic periphery brings up several difficult problems in different areas such as:
• design of radio subsystem, device hardware and software, and protocols
• device configuration, resource management and protection of critical functions (for
example tamper-resistant hardware for storing of secret information and encryption
keys)
• networking issues such as autonomous creation of network topologies, presence
detection and identification of device, attachment to friendly devices and
prevention of malicious attachment, interference and manipulation
• device characteristics and user profiles for automatic setting of access control
parameters and enforcement of user rights and security functions; this is one area
where much is still to be done

All the above points involve information security in one way or another. These are
problems concerned with the individual device. What we saw above was that the peripheral
devices (or CPUs) are interconnected in voluntary and involuntary network structures. Ideally
we only want voluntary interconnection between devices but the network formation at the
CPU level is such that the device is involuntarily interconnected with all devices in the
computer infrastructure. This configuration cannot be avoided.

Protecting the periphery against malicious attacks or accidental faults is not necessarily the
same as protecting the network. Ideally, of course, if the peripheral devices are perfectly
protected, the network itself is seemingly well protected. This is not true because of the
complex interaction between the devices may cause network failures that cannot be traced
back to single devices. These faults are structural but not localisable.

Furthermore, for mathematical (Turing’s theorem) and economic reasons it is not possible
to protect the devices against all possible malicious interference in the future. Again because
of the scale-free (or at least thick-tailed) structure of the networks of Figure 1, even a small
disturbance starting at a single peripheral device may cause structural collapse of the network.

However, the better we make the devices, the smaller is the chance that structural collapse
will take place. Therefore, the security problems associated with all the small devices
surrounding us must not be taken lightly.
15
15
REFERENCES
A.-L. Barabási, Linked: The New Science of Networks, Perseus Publishing, 2002
G. J. Chaitin, Exploring Randomness, Springer, 2001
D. L. Clark, Enterprise Security: The Manager’s Defence Guide, Addison Wesley, 2003
Complexity, Vol. 8/No. 1, September/October 2002, Special issue: Networks and Complexity
S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks: From Biological Nets to the
Internet and WWW, Oxford University Press, 2003
K. Gaarder and J. A. Audestad, Feature Interaction Policies and the Undecidability of a
General Feature Interaction Problem, TINA93 Workshop, L’Aquila, Italy, 27-30 September
1993
B. E. Helvik, Perspectives on the dependability of networks and services, Telektronikk, No 3,
2004
B. E. Helvik, Dependable Computing Systems and Communications Networks: Design and
Evaluation, Draft Lecture Notes, Department of Telematics, NTNU, 2001
J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, 1979
A. J Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1997
H. Pham (Ed), Handbook of Reliability Engineering, Springer, 2003
J. E. Savage, Models of Computation: Exploring the Power of Computing, Addison-Wesley,
1998.

16
16
PUBLIC SCREENS AND PRIVATE MOBILE PHONE
SCREENS IN MULTIPLAYER GAMES
Riku Suomela
Nokia Research Center, P.O. Box 100,
33721 Tampere, Finland
riku.suomela@nokia.com

ABSTRACT
The mobile phone is a gaming platform that is always available for the player. The phone is carried in the pocket, and
whenever there is spare time, a game can be played. Phone owners encounter large public screens in many places, such
as TVs in cafeterias. These screens could be used as a common public screen in mobile multiplayer gaming. The mobile
phone has a private personal screen, whereas the public screen would serve all players in the game, as well as all the
spectators in the place. We have an ongoing research project that study how public screens can be used in multiplayer
games played with mobile phones. We have developed three games using this approach, and this paper looks at the is-
sues in such games. We present three games, and analyze ingredients in games with a mobile phone and public screens.
KEYWORDS
Mobile multiplayer games, public screens, mobile phones, private information, public information
1. INTRODUCTION
Mobile phones have become the standard means for person-to-person communications.
There are many ways people can communicate with each other, but mobile phones have
one significant advantage over others - they are carried with their owners making them
available wherever and whenever. The mobile phones are not just communication devices,
as they can run general applications as well. The phones are also becoming open platforms,
and third parties can develop software for them, which increase the speed of new applica-
tion development. Web browsing and games are popular forms of applications in phones.
These applications can provide entertainment when the user has some extra time.

Mobile phone owners use the phone at varying use conditions. In many cases, the users
are in front of large public screens, which could be used as an extension to the mobile
phone screens. The screen size of a mobile phone is typically small compared to public
displays, and it would be beneficial to use the large screens in public spaces to allow more
information to be shown.

The large screen could be used in any way, but there are some things that should not be
done. The mobile phone screen is private, and it should not be shared with others unless
the user wants this. Also, public screens are meant to serve more than one person at a time,
so a single person should not be able to steal the screen.

Nomadic Media, an ITEA project we are working on, deals with public screens in public
places among other things. In this paper, we look at public screens, and how they can be
used in mobile multiplayer games. Here, we use the term public screen to refer to screens
17
17
that are in public spaces and viewed by many people at the same time. If a user is using a
screen at home, it is a private screen if it is not shared with others.

We have developed three games that use the public screen and the private screen in or-
der to provide an enhanced gaming experience. All the players have a private screen at
their use, which shows information only available to one player, whereas the public screen
shows data that is visible to all the players. The games are based on two main design driv-
ers: public information, and asymmetric information [1]. We have implemented a public
screen component to the Multi-User Publishing Environment (MUPE) [2], to enable easy
development of these games. The public screen component allows any MUPE application
to easily use one or many public screens.

This paper is organized as follows. First, we look at the mobile games and games with
public screens. Second, we present three games that we have developed, including a brief
look at the technology used in development, followed by analysis of the public screen in
the games. Finally, future work is discussed after which the work is concluded.
2. MOBILE MULTIPLAYER GAMES
Mobile multiplayer games differ from the desktop games in many regards. They are not
played at a fixed location, they almost always use batteries restricting processing power
and operation time, and the environment poses some problems for the use of the device, to
name a few examples. Further, outputting and inputting information varies between de-
vices, and the latency of the network connection is typically high, and varies a lot. Mobile
games should be designed to keep these facts in mind.

A lot of research on mobile games has concentrated on using the real world as gaming
arena. One of the earliest such games is geocaching played with a GPS receiver [3]. Pi-
rates! [4], ARQuake [5], BotFighters [6], Can You See Me Now? [7], and Human Pacman
[8] all use the real world as a gaming arena. In all games, the environment is a core part of
the game. Sotamaa studies in his excellent article on BotFighters [9] how the real world
can influence the gameplay. Tibia Micro Edition (TibiaME) [10] is a mobile multiplayer
game in a fantasy setting, which is one of the first mobile multiplayer commercial games
on a mobile phone.

Multiplayer game on a public screen is not a new idea. All the major consoles by Nin-
tendo, Microsoft, and Sony allow many people to play in front of a public screen. Nor-
mally, the controllers have no display and thus no private screens, but there are some ex-
ceptions. Sega Dreamcast [11] had a Visual Memory Unit (VMU), a memory card with a
small display and a controller. The VMU could be removed from the console, and some
tasks could be made with the unit. Later, Nintendo [12] presented games that combined the
Gamecube console and Gameboy Advance handheld console. Several games, such as The
Legend of Zelda: Four Swords Adventures [13] take advantage of the public and private
screens available.

18
18

Both screens should be used. Public screen gives information to all players, whereas
private screen only to oneself. This should be used fully in the game design, as this gives a
lot of possibilities for the designer. This is the main advantage of games with public and
private screen.

Switching between the two screens. If the players need to constantly switch between
which of the two screens they are viewing, this becomes strenuous. The game should be
designed to require only a little switching between the screens. Intuitive controls on the
mobile phone allow the device to be used without looking at it.

Spectators. In public screen games, there can be other people watching the game, and
the content should be interesting for spectators. If only the players know what is going on
in the game, there is no real spectator value, and the public screen only serves the players.

Lack of mobility. When the game is played in a static location with a public screen, the
game lacks mobility. This is a serious drawback for mobile phone games, if they become
location dependant. The game loses all benefits of the mobile platform, and this is the most
serious drawback of designing such games. This can be overcome, if it is possible to de-
sign a game so, that it is not necessary to play with a public screen. Public screens should
add something new and fun to the game, perhaps making it more interesting or increasing
its replayability. Another option is to use multiple public screens in many locations, which
increases the mobility, as the game is not restricted to a single public screen in a single
location.
5. FUTURE WORK
All the games presented here set players against each other. The goal of each game was to
beat others, and the public screen was used to show the game area, and each players units.
This is a very limited approach, and a lot more variance is needed. The players should be
playing in teams, all against the public screen, or the public screen would not be used to
show the play arena.
We are conducting usability evaluation for the FirstStrike game. It can be played both
with and without the public screen, and it will be interesting to see if the public screen
really adds something to the game. The public screen allows the players to be identified
with their photos, and the game is also slightly affected whether the public screen is pre-
sent or not.

We are implementing public screen opponents to our co-operative game MupeDungeon.
The public screen will contain tougher opponents for the players. The idea is to locate pub-
lic screens in the real world, to open up new challenges in the mobile game.

We are also interested in using many public screens in a game. This would add mobility
to a game, as a specific location would not be required to play a game. Locations, with
public screens would add new content and experiences to the normal mobile game.
23
23
6. CONCLUSION
In this paper, we presented our ongoing research on public screens and mobile multiplayer
games. We have designed and implemented public screen games, and three games were
presented in this paper. The main design driver for each game was in information distribu-
tion between two information channels: public screen visible to all players, and private
screens visible to players.

All games demonstrated a very different kind of gameplay. Racing Manager was a simu-
lation game on the public screen, and the players could affect the outcome with their ac-
tions on the mobile phone. Bizarre Creatures used the public screen as the game arena and
the mobile device as an advanced controller. FirstStrike could be played either with or
without the public screen.

We analyzed the games and presented a list of desirable and undesirable features of mo-
bile games using a public screen. The games should use both screens, but not require too
much switching on which screen should be viewed. Further, the spectators, who are not
actively participating in the game, should enjoy watching the game on screen. Finally, a
mobile game should not be tied to a location with the public screen if possible, as it loses
mobility in this case.
Acknowledgements
This work has been funded by the Nomadic Media ITEA project. We would also like to thank the
Racing Manager, Bizarre Creatures, and FirstStrike teams for the implementations.
REFERENCES
[1] S. Björk, J. et al.:. Patterns in Game Design. (2005) Charles River Media, ISBN 1-58450-354-8
[2] Suomela, R., et al.: Open-Source Game Development with the Multi-User Publishing Environment (MUPE)
Application Platform. Proceedings of the Third International Conference on Entertainment Computing (2004),
Lecture Notes in Computer Science Vol. 3166 Springer (2004) 308-320.
[3] Geocaching. http://www.geocaching.com/
[4] Björk, S., et al.: Pirates! - Using the Physical World as a Game Board. Proceedings of the Human-Computer
Interaction INTERACT’01 (2001) 423-430
[5] Thomas, B., et al.: ARQuake: an outdoor/indoor augmented reality first person application. Proceedings of the
Fourth International Symposium on Wearable Computers. (2000) 139-146
[6] It’s Alive: BotFighters. It’s Alive (2001)
[7] Can You See Me now? http://www.canyouseemenow.co.uk/
[8] Cheok, A.D., et al.: Human Pacman: a mobile, wide-area entertainment system based on physical, social, and
ubiquitous computing. Personal and Ubiquitous Computing. vol. 8. no. 2. Springer-Verlag (2004) 71-81
[9] Sotamaa, O. All The World's A Botfighter Stage: Notes on Location-based Multi-player Gaming. Proceedings
of the Computer Games and Digital Cultures Conference, Tampere University Press (2002) 35-44
[10] CipSoft: Tibia Micro Edition (TibiaME). T-Mobile. (2003)
[11] Sega Dreamcast. http://www.sega.com/home.php
[12] Nintendo Gamecube and Gameboy advance. http://www.nintendo.com/home
[13] The Legend of Zelda: Four Swords Adventures for the Nintendo Gamecube.
http://www.zelda.com/fourswords/launch/index.html
[14] Java 2, Micro Edition (J2ME) Wireless Toolkit 2.2. http://java.sun.com/products/j2mewtoolkit/download-
2_2.html
24
24
[15] Nokia Open Source License Version 1.0a (NOKOS License). Available online at
http://www.opensource.org/licenses/nokia.php
[16] MUPE website. http://www.mupe.net
25
25

26
26
ON THE EFFICIENT IMPLEMENTATION OF INSTANT
MESSAGING SERVERS FOR WIRELESS USERS
Simone Leggio, Markku Kojo
Department of Computer Science
University of Helsinki, Finland
{simone.leggio, markku.kojo}@cs.helsinki.fi
ABSTRACT
Instant Messaging (IM) is one of the current killer applications in the Internet. Until now, IM services have been accessed
mostly from wired networks; however, the number of wireless users is quickly growing. Wireless links have
characteristics different from their wired counterparts; they have lower bandwidth capabilities, increased unreliability,
variable delays and packet drops. IM servers have not been optimized for serving users accessing from wireless links. We
have emulated IM sessions with a user accessing an IM server over a wireless link to study how the server behaves in a
wireless environment. The experiments revealed shortcomings in IM server implementation and served as basis for
giving guidelines for an efficient implementation of IM servers. This paper presents the guidelines and a high level
timeout based, application level algorithm aiming to control the pace at which instant messages are pushed into the
network from an IM server.
KEYWORDS
Instant Messaging, Wireless Links, Jabber, experiments, efficient data delivery.
1. INTRODUCTION
For several years Instant Messaging (IM) has been a very popular application; nowadays,
millions of users make use of IM services every day, mostly accessing over wired links.
The basic IM service, consisting in exchange of relatively short textual messages, is not
problematic in such a network environment due to the reliability characteristics of the
physical medium and transport protocol used to carry instant messages (usually TCP).

IM servers and protocols have been designed to exchange messages over wired links;
however, the number of users that engage in IM conversations with remote parties utilizing
a wireless device is growing, due to improvements in the mobile device capabilities and
increase in the bandwidth of the wireless access links (GPRS/GSM 2.5 networks). Despite
such enhancements, resource availability and capabilities of mobile devices and wireless
links cannot equal those of wired links and stationary devices. In order to efficiently
deploy an IM platform in networks involving wireless links, a number of issues must be
considered to cope with the limited resources of wireless links and mobile devices.

Little earlier work exists on studying the behavior of the Instant Messaging in a mobile
and wireless environment; in [6] the focus is on ensuring user mobility during IM sessions,
rather than message exchange optimization. The authors propose a server based
architecture for ensuring heterogeneous access to IM systems from several clients.
27
27
In this paper, we have set up an IM platform to experimentally study the behavior of IM
message delivery in a wireless environment and to find out how the message delivery from
an IM server could be enhanced. In wireless environment, in fact, the available bandwidth
is often very low and packets delivered over the wireless link can get delayed or even
totally lost due to handovers and impairments of the medium. The server must be prepared
to handle efficiently these situations and limit the negative effect that the scarce resources
of the wireless link bring about in an IM session. We focused on optimizing the way the
IM server interacts with the TCP protocol to guarantee efficient and timely delivery of
instant messages to the wireless user. Optimization of the IM protocol itself was out of the
scope of our work. Based on the experiments, we present guidelines for the efficient
implementation of an IM server and an algorithm that IM servers can use for regulating the
pace at which IM messages are injected into the network.

The IM platform used in the experiments is Jabber [2], open source XML based IM and
Presence system. The reasons for this choice are various: first of all, the platform is open
source, which allows more operational freedom. Secondly, the XMPP protocol, which is
based on the original Jabber protocol, is in the standardization phase in IETF [8,9].
However, the guidelines and the algorithm we provide are not Jabber specific, but they are
applicable to any IM server and, in general, to any server in any network environment
performing store-and-forward types of operations and employing TCP as the transport
protocol. We stress anyway that the guidelines and the algorithm are especially important
in wireless environments.

The rest of the paper is structured as follows: Section 2 presents our test arrangements,
explaining the methodology used in the experiments; Section 3 gathers the most important
lessons learnt on the experiments. The results are the basis for the guidelines for efficient
implementation of IM servers, given in Section 4. We propose in Section 5 the timeout
based algorithm for controlling the pace of message delivery into the network. Section 6
concludes the paper and discusses future work topics.
2. TEST ARRANGEMENTS
The Jabber IM platform is conceptually similar to the architecture of an e-mail system.
Jabber clients are registered to a Jabber server, and they rely on the server they are
registered to for forwarding instant messages to the recipient. The server analyzes a
received instant message and checks the identity of the recipient client. If the recipient is
registered to the domain the server is responsible for, the message is delivered to the
recipient. If the recipient is not registered, the message is forwarded to the responsible
server, and then from it to the intended recipient. Jabber messages are carried over TCP.

Figure 1 shows the test set-up and the wireless environment emulated in the
experiments. We have analyzed Jabber message exchanges between a client that is
connected through a wireless link and one or more clients accessing over a wired link. The
fixed clients and the Jabber server are arbitrary hosts in the Internet. The Jabber server in
use was jabberd 2.0b3 [3] and the clients in use were GAIM [4].
28
28
The aim of the tests was to study the effect that packet delays and losses provoke to a
Jabber session; wireless links, together with user mobility, are very likely to cause such
phenomena. The experiments were run to understand the IM behavior in the first place, not
to gather measurement data for quantitative performance analysis. Therefore, the test runs
were not repeated for a large number of times.

We emulated scenarios that could be possible in a real life situation where one of the
clients in a Jabber session is attached over a wireless link. In all test cases, the clients
connect to the same server. Situations implying inter-server communication were not
studied. A typical configuration for the tests was a one-to-one communication between
clients; however, some of the test cases were repeated using two source clients.

The basic idea behind all experiments was to have a flow of messages towards the
wireless client (downlink direction) from a fixed client. The messages are first gathered at
the server and then forwarded over the wireless link to destination. The actual user
message sent in most of the tests was a single character. The average size of the resulting
Jabber messages that the server forwards to the recipient client was 160 bytes, comprising
the string indicating the source and the overhead due to the XML encoding. The test cases
include a situation where the network delays one of the messages sent by the client or the
server, and a situation where the fixed client sends messages to the wireless client when it
is still disconnected from the Jabber server. Such messages will be delivered from the
server to the recipient client, when it reconnects.

Mobile Client
Base Station Internet
Fixed Client
Fixed Client
Jabber Server
Downlink Direction
Uplink Direction
Wireless Link

Figure 1. Emulated Network Environment
The wireless link was emulated using the Seawind network emulator [5] developed for
emulating wireless networks. For the baseline tests, the wireless link had a bandwidth of
28.8 Kbps and a propagation delay of 200 msec to roughly approximate GPRS-type link
characteristics. Test cases were also repeated with different values of link bandwidth and
propagation delay. We have chosen a GPRS-type link as the reference as it is an example
of a wireless environment where delays and packet losses are likely to occur, but the test
runs have general validity.
29
29
3. EXPERIMENTAL RESULTS
The experiments showed that the IM server had shortcomings, which affected instant
messaging sessions. We discuss the effects of such shortcomings on the delivery of
messages to the wireless client and analyze the causes that provoke them. For brevity
reasons, we do not go into the details of the test runs, but discuss the main considerations
we have drawn after analyzing the results. These considerations will be the basis for the
guidelines, which we provide in Section 4.
3.1 The effect of Nagle algorithm on the size of the TCP segments
In various test scenarios several messages were sent continuously from a fixed client to the
mobile client. According to the Jabber protocol, the messages are first routed to the server
where the source client is registered, and then delivered to the intended recipient, after the
proper processing. In our experiments, we noticed that the typical behavior of the server
was sending one Jabber message in a TCP segment. This obviously results in inefficient
use of the network resources as Jabber messages are usually much smaller than the TCP
Maximum Segment Size (MSS) in use. Therefore, the protocol header overhead tends to
make up a significant proportion of the bytes delivered over the wireless link.

The reason for this behavior is that the arrival rate of the instant messages at the server
for a given recipient is often not higher than the round-trip time (RTT) between the server
and the recipient client. When this is the case, the TCP Nagle algorithm [7] is not able to
prevent the server from sending small TCP segments. According to the Nagle algorithm,
when a TCP acknowledgement for a small TCP segment, that is, smaller than the TCP
MSS, is pending, no additional small TCP segments can be sent to the network until the
acknowledgement has been received. This would effectively combine several consecutive
instant messages into a single full-sized TCP segment provided that enough instant
messages for the same recipient would arrive at the server and be delivered to the TCP
layer meanwhile the server is waiting the TCP acknowledgement for the previous small
segment.

In our tests, no new instant messages typically arrived at the server before the TCP
acknowledgement for the TCP segment carrying the previous message had arrived. The
Nagle algorithm was effective only in certain special cases, like when one of the messages
forwarded by the server gets delayed on the wireless link and does not reach the recipient
client “immediately”, causing a delay in receiving the TCP acknowledgement from the
mobile client.

Even if the arrival pattern of the instant messages at the server would allow the Nagle
algorithm to work, it would still result in suboptimal usage of the network resources as the
first of the messages arriving in a row at the server would always be delivered in a TCP
segment of its own. Furthermore, the number of messages arriving within a single RTT
would often be not enough to fill up a full-sized TCP segment, at least if RTT is rather low.
Of course, the server should not wait new messages to arrive for too long either as it would
harm the interactivity of the instant messaging.
30
30
3.2 Fetching stored messages at the server
In some IM systems, like Jabber, when messages are sent to a disconnected recipient
client, IM servers store the messages to deliver them upon the recipient client
reconnection. The typical behavior of the server discussed above is to send one Jabber
message in a single TCP segment. However, this is not acceptable when the server has
plenty of messages ready to deliver to the same recipient client. The ideal behavior of the
server is to minimize the number of TCP segments used to deliver the previously stored
messages to the recipient by sending full-sized TCP segments.

We emulated the scenario of client reconnection with variable RTT between the server
and recipient client and with varying load on the server, in terms of the number of instant
messages to handle within a short time period. We observed that when the RTT was short
or the server load high the server was sending one small Jabber message in a TCP segment,
even though it had several small instant messages ready to be delivered to the recipient.
The reason for this behavior was inefficient database access.

Particularly, the server fetched one Jabber message at a time from the database. If the
RTT is low, the TCP acknowledgement for the previously sent segment arrived before the
server was able to access the next message from the database. Therefore, the Nagle
algorithm was not effective in packing several user messages in a single TCP segment,
resulting in TCP to transmit each Jabber message in its own TCP segment. Similarly, even
if the RTT was relatively long but the load on the server was high packing several
messages in a TCP segment was not realized. This kind of misbehavior adds to the
protocol overhead and results in inefficient use of the network resources.

This shows that the way of accessing the messages from the database and the database
access time plays an important role in the behavior of IM servers. Ideally, before the server
delivers any message data to the TCP layer it should fetch from the database as many
instant messages as would be needed to fill up a MSS-sized TCP segment. In addition, the
access time to the stored messages should be optimized in order to speed up message
delivery, Messages can be stored either in the file system or in a dedicated database; the
server used in the experiments used Berkeley Database [1] for storing messages and user
information. The database access should not constitute a bottleneck, in any network and
server load conditions. Low database access times would allow the server to deliver several
MSS-sized data blocks quickly to the TCP layer and thereby take advantage of the bulk
data transfer capability of TCP.

Cellular networks, the primary target emulated environment, have higher values of RTT
than those with which we observed the server misbehavior. Nevertheless, optimizing
server access to the database constitutes anyway a relevant performance improvement for
any network environment.

31
31
4. GUIDELINES FOR INSTANT MESSAGING SERVERS
Ideally, an IM server should always send full-sized TCP segments as long as this does not
harm the interactivity of data transfer. In this section we present guidelines for more
efficient implementation of IM servers, based on the shortcomings observed in the
experiments. The list of guidelines is not and cannot be exhaustive, as many are the aspects
where an IM server can be improved; however, it constitutes a starting point and a
reference for those who want to implement an efficient IM server.
Guideline 1: Amount of data delivered to the TCP layer
An IM server should deliver stored messages to the TCP layer in large enough data blocks.
Each block written to TCP layer should have size of at least one TCP MSS, if possible. The
server must minimize the number of RTTs needed to deliver messages to a client.

This guideline should be strictly observed, i.e., in case of delivery of previously stored
messages to a newly connected client. The key idea is that the server sends as many
messages as possible in a single TCP segment. This approach would reduce the number of
TCP segments on the air. Less segments on the air implies lower protocol header overhead.
The protocol overhead is not meaningful for the end user, but in cellular networks the user
pays for it anyway and it consumes the system resources, so it is desirable to minimize the
overhead. The price to pay is a slight decrease in the interactivity of IM sessions.
Guideline 2: Pacing of TCP segments sent to network
IM servers should employ pacing of message delivery to the TCP layer.

Enabling Nagle does not result in efficient message delivery. Therefore, we propose to
give the control on pacing the messages to the application, that is, the server. The control
is exploited by means of a timer-based mechanism in which the IM server does not deliver
Jabber messages to the TCP layer immediately, but waits for the expiration of a timer or
that enough Jabber messages have accumulated to send a full-sized TCP segment. The
timeout value is tuned so that the number of small segments on the network is limited to at
most one per RTT. At the same time, the timer value should be highest possible value that
still allows interactive delivery of messages. This allows limiting the number of small TCP
segments in the network and at the same time preserving the interactivity of the message
delivery, creating a middle ground where the benefits of the Nagle algorithm can coexist
with the needs of IM sessions.
Guideline 3: Handling big messages
IM Servers should forward to TCP layer instant messages larger than the TCP MSS as
soon as they receive the first MSS bytes of data instead of waiting that the whole message
is stored before beginning to forward it.

32
32
Such an approach allows for a more timely delivery of the whole message to the
recipient. If the server begins to forward the message as soon as it processes the recipient
name, when the whole instant message will be received from the source, it is likely that
part of it will be already stored at recipient. In wireless networks, which are generally
slower than wired ones, this has a particularly positive effect on the performance.

Sending big instant messages is not so common, as the common behavior for the most
of the IM users is to quickly send small messages. Nevertheless, situations where users
send big instant messages are possible, and servers must be prepared to handle them
efficiently; for example, a user could copy and paste a text file and send it as an instant
message, rather than send it as separate file off-band. In this case, servers should avoid a
store and forward policy and begin to forward a large message as soon as the first TCP
segment carrying a part of it is received. We point out that the behavior of the server we
used was optimal from this point of view and followed the Guideline 3.
Guidelines 4-5: Efficiency of database access
Guideline 4: IM servers must access the database where they keep stored message in an
efficient way. They must minimize the number of database accesses needed for fetching the
messages to be delivered.

Guideline 5: IM servers should not fetch from the database a single message at a time for
sending but at least MSS bytes data, when possible, to give TCP the possibility to send
full-sized segments.

An optimal server implementation must guarantee an efficient database access, even
under heavy load conditions. By efficient access we mean minimizing the number of
interactions with the database, trying to fetch at least TCP MSS data at once when
possible. This means that if the database allows fetching only one message at a time, the
server should fetch several messages in a row until MSS worth of data are available before
passing them to TCP. Other optimization ways are possible, but we do not focus on them.
For example, the load on servers can be diminished by splitting server components over
different machines, or duplicating server components so that they can share the load.
However, while co-locating all the modules in the same machine may lead to performance
degradation under heavy load conditions, splitting the component over several machines
increases the time needed for transferring the message between components for processing
purposes.

An additional solution for improving the efficiency of message fetching for IM servers
is caching messages temporarily instead of storing them into the database only. This is
done when the recipient user is on line but the message cannot be immediately delivered
due to the timeout algorithm. Caching up to one MSS bytes of data per recipient is enough.
If the cache is associated with the timeout algorithm, in fact, as soon as MSS bytes of
messages have accumulated in it, they would be delivered to TCP. If more messages are
waiting for that recipient client, they are fetched from the database and moved to the cache
after the previous MSS chunk was delivered. This size suggestion for the cache is one
33
33
option; an alternative would be to tune the portion of cache assigned to each active user
according to the number of users on line. When a user goes off-line his portion of cache is
freed and can be distributed among other users. However, optimal handling of the cache
size is out of scope for this paper and we do not discuss it further.
5. TIMEOUT ALGORITHM
The rationale behind the proposal of a timeout algorithm for instant messaging servers is to
find the trade-off that the choice between sending full sized TCP segments and achieving
interactivity of message exchanges. In the solution we propose an algorithm that the server
application should follow in delivering instant messages to the TCP layer; the messages are
delivered only when either there are enough messages to fill up a full-sized TCP segment
or when a timer has expired, as further postponing of the delivery would cause loss of
interactivity.
5.1 Computing the Algorithm Parameters
The timeout value is set such that at most one small TCP segment is sent on the network in
an RTT. This solution preserves the efficiency of data delivery implying less small TCP
segments in the network and guarantees the interactivity of IM applications as messages
would never wait too long at the server before being delivered.

The server should tune the timer value based on the RTT of the connection between the
server and destination client, together with taking into account the interactivity
requirements of the message delivery. An ideal solution would be for the server to use the
RTT values already computed at TCP layer. When TCP layer information on the RTT is
not available, the RTT should be estimated at the application layer. As there are no
application level acknowledgements in Jabber, the RTT estimation could occur when a
Jabber session is established. In this phase, the server sends a digest authentication
challenge and the client a response message. In the following we assume that the server is
able to estimate the RTT of the connection with a given destination client in either way.

The RTT to be used for calculating the IM server timer value, IMTimeout, takes into
account the estimated RTT value (Estimated RTT):

TTEstimatedRIMTimeout ⋅= γ

The IMTimeout should be higher than the EstimatedRTT, which means γ > 1 but it
should not exceed any value that could hurt the interactivity of instant message delivery.
We do not enforce any specific value, but leave it as a subject to further study.
5.2 The Algorithm
The high-level timeout algorithm for a given destination client A is shown in Algorithm 1.
When A connects to the server, the RTT of the connection must be computed for the first
34
34
time. The RTT estimate is continuously updated by the server independently from the
execution steps of the algorithm according to the chosen method, application level or TCP
based. The server maintains a queue, where the pending messages for each destination
client are stored until the IMTimeout expires or until the total amount of data in the queue
reaches the threshold of TCP MSS bytes.

There are three events that trigger algorithm execution: arrival of a message for the
client, timeout expiration, and client disconnection. When a first message in queue for A is
received, if the size of the message is smaller than the MSS, the message is left in the
queue and the IMTimeout is started. If another message addressed to A is received, it is
stored and the size of the queue is checked. If the queue size is under the MSS threshold,
nothing happens and the IMTimeout timer continues to elapse.

Otherwise, if the first message was larger than MSS bytes, or if, due to a message
arrival the queue exceeds the threshold, the while loop is entered. TCP MSS-sized blocks
of data are delivered to TCP until the queue size goes below the threshold. If there are still
data in the queue after the delivery of the blocks, they remain stored and the IMTimeout
value is recomputed and the timer is started again. If the queue is empty after the last
delivery of data, the timer is cancelled. If the IMTimeout timer expires, the pending data
are delivered to TCP, and the timer is cancelled.

If the server receives a disconnection request for A, while there are pending messages, it
leaves the messages in the database for delivery upon next reconnection of client A. After
that, it can execute the disconnection operations, like communicating the change in the
presence state of A to the clients that are on the contact list of client A.
6. CONCLUSIONS AND FUTURE WORK
This paper discussed the result of an experimental study about the behavior of an IM server
in a wireless environment. We envisage that the use of IM services in such an environment
will gain diffusion in the near future. We observed shortcoming in the behavior of the
server in and presented guidelines for a more efficient IM server implementation over
wireless links. The guidelines are valid in any network scenario, even though the
improvement they bring about is particularly effective in wireless networks with scarce
resources.
An application-level timeout algorithm was presented, useful for limiting the number of
small TCP segments in transit on the network. This algorithm solves the trade-off deriving
in IM servers from employing the Nagle algorithm to prevent from sending small TCP
segments into the network as the Nagle algorithm only provides suboptimal performance.
The timeout algorithm creates a middle ground by allowing the server TCP layer to
always send full-sized TCP segments if enough data is available by delivering large
enough data blocks to the TCP layer at a time. The algorithm proposed is still a high level
one; future work comprises an implementation of the algorithm, at least in a simplified
version of an IM server to tune the γ parameter that defines the length of the IMTimeout.
35
35
This would allow a quantitative evaluation of the algorithm to test its effectiveness in
meeting the design goals.
Algorithm 1. The IMTimeout algorithm
Arrival of a message for client A

E

nqueue the message;
if ((message is first in the queue) && (queue size < TCP MSS))
{
 store it, compute the IMTimeout value;
 start the IMTimeout timer;
}
delivered_flag = FALSE;
while (queue size >= TCP MSS)
{
 deliver MSS-sized chunk of data;
 delivered_flag = TRUE;
}
if (delivered_flag == TRUE)
{
 if (there are pending data in queue)
 recompute IMTimeout value, restart IMTimeout timer;
 else
 cancel IMTimeout timer;
}
IMTimeout Expiration

Deliver all pending data in the queue to TCP layer;
Cancel IMTimeout timer;

Client A disconnection request

Leave the pending messages in the database;

Execute disconnection operations;
Another possible improvement direction is a more refined formula for computing the
IMTimeout. For example, its duration can take into account the pace of arrival of messages
for a given destination client, so that the length is stretched if the message arrival rate to a
destination client is high and vice versa. The rationale behind this proposal is that it is not
worth to wait long if messages for that client arrive only once in a while. The guidelines
are independent from the TCP version in use; an IM server can effectively apply these
guidelines regardless of any TCP enhancements used. TCP increased initial window may
contribute to improved message delivery efficiency.

An optimal implementation of an IM server would combine the use of the IMTimeout
with the caching of instant messages. Further study on how to dynamically adapt the cache
portion based on the number of users on line is required.
REFERENCES
[1] Berkeley DB Database. http://www.sleepycat.com 27-4-2005
[2] Jabber Software Foundation. http://www.jabber.org. 27-4-2005
[3] Jabber Studio Project. http://jabberd.jabberstudio.org/ 27-4-2005
36
36
[4] GAIM Multiprotocol IM Client. http://gaim.sourceforge.net/] 27-4-2005
[5] Kojo, M., et al., September 2001. Seawind: A Wireless Network Emulator. In Proceedings of 11th GI/ITG
Conference on Measuring, Modeling and Evaluation of Computer and Communication Systems (MMB 2001),
RWTH Aachen, Germany, Published by VDE Verlag
[6] Parviainen, P. and Parnes P. March 2003. Mobile Instant Messaging. In Proceedings of the 10th International
Conference on Telecommunications, ICT 2003. Volume 1, 23 Feb.-1 March 2003Pp:425 - 430
[7] Nagle, J., January 1984. Congestion Control in IP/TCP Internetworks. RFC 896, Internet Society.
[8] Saint-Andre, P. ed., October 2004, Extensible Messaging and Presence Protocol (XMPP): Core. RFC 3920,
Internet Society.
[9] Saint-Andre, P. ed., October 2004, Extensible Messaging and Presence Protocol (XMPP): Instant Messaging
and Presence. RFC 3921, Internet Society.
37
37

38
38
 ENHANCING MOBILE PEER-TO-PEER ENVIRONMENT
WITH NEIGHBORHOOD INFORMATION

Arto Hämäläinen and Jari Porras
Lappeenranta University of Technology
Laboratory of Communications Engineering
P.O. Box 20
53851 Lappeenranta
Finland
{Arto.Hamalainen, Jari.Porras}@lut.fi
ABSTRACT
In this paper some enhancements to the performance of mobile peer-to-peer environment are presented. The work is
based on our implementation of mobile peer-to-peer communication environment, PeerHood. PeerHood offers direct
communication between mobile devices by using Bluetooth, WLAN or GPRS communication technologies. PeerHood is
enhanced by allowing devices to exchange their neighborhood information thus extracting better view of the
environment. This information can both bypass problems caused by incomplete device discovery and provide information
about devices outside the immediate vicinity.
KEYWORDS
Personal trusted device, peer-to-peer, neighborhood, ad hoc networking, device discovery, service discovery
1. INTRODUCTION
Current trends in networking consist of wireless environments and mobile devices. These
devices are used both in infrastructure-based and ad hoc networks. Another widely
discussed topic is the ubiquitous computing. Until recently, all these concepts have been
just ideas because non-existent devices and network technologies. However, recently the
utilization of wireless environments like 802.11 wireless LANs and Bluetooth wireless
technology has rapidly increased.

Device and especially service discovery is fundamental part for mobile ad hoc
environment. Usually presumed roaming and mobility prevent the use of static directory-
based service and device discovery and suggest that dynamic service discovery technology
could be more suitable. Generally these dynamic service discovery protocols are used to
advertise services on own device and search services on remote devices. Each device
should have a client part which searches for services on other devices and a server part,
which responds service discovery requests originating from other devices [1].

Several service discovery protocols have been developed, but mainly for infrastructure-
based networks. These protocols have originated from and developed by both
standardization organizations and industrial consortiums. Internet engineering task force
has developed Service Location Protocol (SLP), which provides a scalable framework for
39
39
the service discovery [2]. SLP is intended for networks which have cooperative
administrative control. Therefore its usability for ad hoc networking must be inspected
before adoption. Sun's Jini, Microsoft's Universal Plug-and-Play and Bluetooth Service
Discovery Protocol are examples of industry-originated service discovery protocols.
Bluetooth SDP is the only one of these which is targeted directly to mobile wireless
network. [1]

Communications in ad hoc wireless networks are often established in a peer-to-peer
manner. Peer-to-peer environment implemented in mobile devices assists importing
applications to mobile ad hoc networking. In this paper some enhancements to the basic
operation of our mobile peer-to-peer environment, PeerHood, are presented. First the
PeerHood environment and its structure as well as operation is explained. Then the
neighborhood information exchange and ways to utilize it are examined. Finally some
scenarios and results for the evaluation of the enhanced PeerHood are given.
2. MOBILE PEER-TO-PEER ENVIRONMENT
The development in mobile devices, communication technologies and networking
paradigms during the last decade has been rapid. Computational power of the mobile
devices has increased, new short range networking technologies has emerged and personal
networking paradigm has evolved. Although each of the developments alone is significant
the combined effect is even more remarkable. Personal information management as well as
intelligent and possibly seamless connectivity is possible if considering a powerful mobile
device capable of short range communications. By allowing peer-to-peer connections
between devices (without network infrastructure) new possibilities will emerge. Currently
peer-to-peer approach is mainly used in fixed networks but some approaches to apply it to
mobile networks have been proposed. Peer-to-peer communication can be seen as one of
the most promising communication paradigms of the future as it allows resource sharing in
a flexible manner. It allows truly dynamic networking and is suitable for mobile networks
as well. There exist several approaches for the personal networking ranging from
proximity based approaches, e.g. Digital Aura [3] and Virtual device [4], to approaches
based on personal interests, e.g. Personal Networking [5], I-centric communications [6]
and Personal Distributed Environment [7]. We propose another approach, namely peer-to-
peer neighborhood, PeerHood. PeerHood is an implementation of a personal area network
(PAN) based on peer-to-peer paradigm in mobile environment [8]. PeerHood is built inside
a mobile device, i.e. Personal Trusted Device (PTD). Our approach is based on the need of
local services (proximity) and the use of them through different networking technologies
(Bluetooth, WLAN and GPRS). Figure 1 presents the idea of PeerHood. Our PTD, i.e.
mobile phone in this case, detects other devices in its vicinity. The size of the vicinity, i.e.
neighborhood, depends on the communication technology used for observing. Figure 2
presents another case where the neighborhoods of devices are not of the same size. It
should be noticed that some of the devices might not be visible for all the other devices.

40
40

Figure 1. PTD and its neighborhood.

Figure 2. Neighborhoods of different devices.
The main goal of our PeerHood system is to provide a communication environment
where devices act and communicate in a peer-to-peer manner. This means that devices
communicate directly with each other without any centralized servers, i.e. PTD might
communicate with all the devices in its neighborhood. In order to enable fast creation of
the required ad-hoc type networks the immediate neighbors of a device are monitored and
the gathered information is stored for possible future usage. This is presented in Figure 3.
Information concerning devices or services within the neighborhood is stored into
appropriate place in the PeerHood system. The second goal is to create a library that
enables the usage of any supported networking technology via a unified interface so that
the underlying networking structure is hidden from the applications point of view. As a
direct consequence the application development time should be reduced because complex
tasks like device discovery, connection establishment and error checking are handled by
the PeerHood system. This library is shown as an interface to the environment managed by
the PeerHood layer.
Bluetooth WLAN GPRS
Device Service
Search Maintain Monitor

Figure 3. PeerHood layer in PTD.

In our approach the PTD is continuously sensing its neighborhood through different
network technologies and it maintains the gathered information for the further usage. As
other devices are observed they are added into the neighborhood of the PTD. The seamless
connectivity is provided by the PeerHood layer through some basic operations i.e. search,
monitor and maintain operations of the changing ubiquitous environment. As new devices
and services are observed they are stored into neighborhood information tables. Thus the
PTD always has up-to-date information concerning its environment. This information is
provided for the application through the PeerHood interface. With PeerHood interface
41
41
applications can list devices and services in their wireless neighborhood and connect to
them when necessary. Figure 4 presents an example of a file sharing application on
PeerHood. This application shows the neighborhood (devices in upper box with their
interfaces) and files within the selected device.

Figure 4. Mobile file sharing over PeerHood.
3. PEERHOOD IMPLEMENTATION
PeerHood operations have been implemented both in Linux based PDA and Symbian
based mobile phone. In this paper we concentrate on the Linux implementation and its
enhancements.

Linux implementation of the PeerHood environment is based on four elements,
PeerHood Daemon, PeerHood Library, Additional Components and PeerHood
Applications. Of these components the daemon and the library are mandatory for any
application to work and thus will be presented in this paper. Additional components are
optional middleware libraries that further extend the PeerHood’s functionality and are
presented in other papers [9]. Figure 5 presents the components of the Linux based
implementation of the PeerHood. The daemon is one independent process which takes care
of locating other devices. The daemon implements device discovery using network specific
plugins through the plugin-interface. Bluetooth, WLAN and GPRS plugins are available
for the Linux PeerHood. The library interface provides all the PeerHood functionality to
the application.
42
42

Figure 5. Components of the Linux PeerHood

Because the daemon and the library are independent components, PeerHood class
structure is also divided into two parts. Important part of whole PeerHood structure is the
abstraction between networking specific classes and interfaces. PeerHood allows
developers to add new plugins which can be used by the daemon. To be able to provide
this architecture, the whole technology-specific functionality must be contained in one
class which implements the specific interface. This allows the core components to remain
the same while adding new functionality using plugins. Daemon class diagram is
illustrated in Figure 6.

Figure 6 - PeerHood daemon class diagram

The main issues towards the goals of this paper are in the management of the
neighborhood. This means that the functions taking care of finding and monitoring devices
43
43
in the environment need to be studied. To find and keep track of devices in the
neighborhood, PeerHood uses different device discovery functions of different network
technologies. While using Bluetooth connections PeerHood can utilize its service
discovery protocol, for WLAN or GPRS some specific methods has been implemented for
discovering devices. These device discovery functions are not always the most efficient
methods, i.e. the frequency of inquiries might degrade the performance of the whole
system. In this paper we have focused to handle this problem with the neighborhood
information exchange approach. By adding some neighborhood information into the
inquiries the performance of neighborhood information management is improved.
4. NEIGHBORHOOD INFORMATION EXCHANGE
Mobile ad hoc and infrastructure-based networks have different requirements and facilities
for service discovery. Peer-to-peer mobile networks are generally formed in an ad hoc
manner. However, some of the devices of an ad hoc network can also be connected to an
infrastructure-based network or their environment in an ad hoc network is changing
slowly. Therefore they likely have more comprehensive information about the devices
around than passing mobile devices. For this kind of situations where mobile ad hoc
networks meet networks based on fixed infrastructure, exchange of neighborhood
information may turn out to be valuable element of service discovery.

Neighborhood information exchange has been integrated to PeerHood operation.
Neighborhood information is gathered from other PeerHood devices and it’s used together
with regular device discovery to provide constant view of devices nearby and further away.
A message sequence chart for neighborhood information exchange can be seen in Figure 7.

Figure 7 - Message sequence chart for neighborhood information exchange
44
44
In this example, Remote 1 provides neighborhood information exchange service to other
devices. Mobile Personal Trusted Device PTD is sensing its neighborhood with regular
Device discoveries, which are performed at certain interval. Without neighborhood
information exchange, failure to discover a device offering a desired service, in this case
Remote 2, could postpone connection to service until the next device discovery. By using
neighborhood information exchange, however, Remote 1 provides the requesting PTD all
the needed information about the Remote 2.

Neighborhood discovery is carried out by the PeerHood daemon class, whose structure
is presented in Figure 5. Daemon is the component in the PeerHood, which takes care of
locating other devices and provides applications with an interface to connections. Daemon
also acts as a service discovery server, advertising services belonging to PeerHood
applications running on a device. It uses different plug-ins (Bluetooth plug-in, WLAN
plug-in and GPRS plug-in) through the PeerHood plug-in interface. The clients can
connect to a daemon and send requests to it through a socket interface provided by the
PeerHood library. Commands include listing of found devices and services, registering a
new service and monitoring a connection. Although neighborhood information inquiry in
general is a common operation for all network technologies, it is implemented within plug-
ins alongside co-existing device discovery functions. Discovering available PeerHood
services or neighboring PeerHood devices from another PeerHood device can be done
consecutively or separately.

If a device gathers information about neighboring devices and wants to provide it to
other devices also, the flag for neighborhood information exchange service is registered to
PeerHood. When a device finds the neighborhood information flag on a remote device
using service discovery, it requests the neighborhood information from it. The remote
device then compiles the list of neighboring devices and services and sends the list to the
requesting device.

Device information received by neighborhood information inquiry is stored to the
device storage (CDeviceStorage) just like information received by regular device discovery
methods. Along with regular information, address of device, where the neighborhood
information was received, is stored. This way the connection to a service can be
established through the intermediate device, if possible.
5. USAGE SCENARIOS
A few usage scenarios are designed for the neighborhood information. In a general level in
these scenarios neighborhood information is used both to provide more comprehensive
knowledge of the neighborhood and to gather information about devices outside the
immediate neighborhood.

45
45
5.1. Personal networking outside the immediate vicinity
Personal networks are formed around a person and they consist of devices which are
most likely to be used by him in his everyday routines [5]. Personal network is not limited
to nearby devices within the reach of wireless short-range technologies, but may be
extended via Internet or multi-hop wireless network to another set of devices. The use of
neighborhood information provides information about distant devices. If an interesting
device or service is found using neighborhood information exchange, then a connection
could be established either directly using long-range network technology or via one or
several intermediate devices, which may be the same devices that forwarded the device
information in the first place.
5.2. Exchanging detailed device information
Advanced mobile devices could be used in several purposes in addition to regular personal
communications and information management. The processing power and storage capacity
is increasing rapidly and their support for different communication is becoming more and
more comprehensive. These factors combined with increasing popularity of these advanced
mobile devices mean, that there's quite a lot processing power available around us in
everyday wireless neighborhood. Surrounding devices could be used in parallel manner to
solve large computational problems.

In addition to authorization and compatibility issues, the ability to survey available
resources is important element in this kind of operation. Resources can be scanned by
exchanging detailed device information between mobile devices. This information includes
information about the processing power, storage capacity and available services available
at each mobile device.
5.3. Dedicated service discovery
Another usage scenario is based on presence of certain devices in certain locations. For
example at home or at work there’s a personal computer available practically always.
Instead of running device discovery constantly itself, a mobile device may use a dedicated
computer to do the task. When information about other devices is needed, the mobile
device can connect to the PC and request the information. An advantage is gained by this
method, if the PC has other network connectivity not found in the mobile device, is that the
mobile device gets information about devices which are not reachable by its own
discoveries. If an important service is found on a device for instance in another floor or
department nearby, the mobile device user may connect to the service using the PC or walk
closer to the service and use it with his mobile device. If the mobile device has the needed
connectivity available but disabled due to power consumption or any other reason, it may
be enabled and the found service connected.

46
46
Another advantage of this method is the avoidance of battery consuming inquiry
process in the mobile device. Determining the power consumption of Bluetooth or other
wireless devices is difficult if the exact mode of operation is not known. While constant
transmitting and receiving could lead to an early drain of batteries, idle or sleep modes will
make it last a lot longer [10]. Although an idle Bluetooth chip requires in active mode
almost half of the current compared to the send or receive modes operation (50 mA), the
use of low-power modes reduces the power consumption drastically (down to 60µA) [11].
While device discovery modes differ from technology to technology, their operating
scheme is similar. A device transmits a request to the network and begins listening for
responses. When this is done constantly, the utilization of low-power modes is not
possible.
6. EVALUATION
Evaluation was done in a Bluetooth environment similar to one that is pictured in Figure 7.
The objective of the tests is to indicate enhancement in PeerHood operation by introducing
neighborhood information exchange. The measurements are shown in the Figure 8. Ten
tests were carried out and measured for both with and without neighborhood information
exchange. Time measured was the time between the launch the PeerHood daemon in PTD
and discovery of two other PeerHood devices located in a same room. Other Bluetooth
devices were also detected, but the detection of these two PeerHood devices was
considered the criteria for a completed test.

00:00:00
00:00:43
00:01:26
00:02:10
00:02:53
00:03:36
00:04:19
00:05:02
1 2 3 4 5 6 7 8 9 10
w ithout neighborhood information w ith neighborhood information

Figure 8 - Time taken to find two PeerHood devices with and without neighborhood information exchange
One of the other devices was a stationary device which was offering neighborhood
information and had a 30 second interval between its own device discoveries. The other
was acting as a mobile device with an interval of 10 seconds between device discoveries.
This reflects the heterogeneity of devices in a real environment. The device and service
discovery on the mobile device was often interfering our device discovery and the device
remained undiscovered. However, the stationary device with a longer device discovery
47
47
interval was found more certainly. As soon as it was found, the neighborhood information
could be inquired and exchanged, and the mobile device was also discovered. The average
time taken by the discovery was 77 seconds with and 129 seconds without neighborhood
information, so these results show that neighborhood information enhance the operation in
this kind of environment. Furthermore, implementing advanced fixed and mobile device
roles could improve the operation even more.
7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a mobile peer-to-peer based environment, PeerHood, and
proposed some enhancements to its operation. These enhancements allow us a faster
gathering of the neighborhood information and thus improve the whole environment.

Exchanging information like device addresses, names and service descriptions causes
also worries about the security of the system. A suitable solution could be implementation
of a generalized authentication module, which is used by other services and applications.
This way, authentication policies for each service could be managed in a one module.

REFERENCES

[1] Golden G. Richard III: Service and Device Discovery: Protocols and Programming, McGraw-Hill, 2002.
[2] Guttman E., et al.: Service Location Protocol, Version 2, IETF Request for Comments 2608, June 1999.
Available at: http://www.ietf.org/rfc/rfc2608.txt
[3] Ferscha A, et al.: Digital Aura, Advances in Pervasive Computing, part of the Second International Conference
on Pervasive Computing (Pervasive 2004), Austrian Computer Society (OCG), Vol. 176, pages: pp. 405-410,
April 2004
[4] Jonvik Tore E., et al.: Building a Virtual Device on Personal Area Network, Proceedings of 2003 International
Conference on Software, Telecommunications and Computer Networks (SoftCOM'2003), Dubrovnic (Croatia)
/ Ancona, Venice (Italy), October 7-10, 2003.
[5] Niemegeers I. and Hememstra de Groot S.: Personal Distributed Environments for Mobile Users, Mobile
Europe 2003, European conference on mobile solutions, 2003. Available at
http://katanga.bbn.de/mobile_europe_2003/
[6] Arbanowski, S., et al.: I-centric communications: personalization, ambient awareness, and adaptability for
future mobile services, Communications Magazine, IEEE, Volume: 42 , Issue: 9 , Sept. 2004.
[7] Atkinson, R. C., et al.: The Personal Distributed Environment, Wireless Personal Multimedia Communications
2004, September 2004.
[8] Porras, J., et al.: Peer-to-peer communication approach for mobile environment, 37th IEEE Annual Hawaii
International Conference on System Sciences (HICSS), 2004.
[9] Jäppinen, P., et al.: ME: Mobile E-Personality, WSEAS Transactions on Computers, Volume 2, Issue 2, April
2003.
[10] Morrow, R.: Bluetooth operation and use, McGraw-Hill 2002.
[11] Zhang X. et al.: Bluetooth Simulations for Wireless Sensor Networks Using GTNetS, The IEEE Computer
 Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and

 Telecommunications Systems (MASCOTS'04), 2004.
48
48
A GATEWAY FOR SIP EVENT INTERWORKING
Sasu Tarkoma and Thalainayar Balasubramanian Ramya
Helsinki Institute for Information Technology
P.O.Box 9800,
FIN-02015 HUT, Finland
{sasu.tarkoma, ramya}@hiit.fi
ABSTRACT
Session Initiation Protocol (SIP) is an application-layer control protocol for creating, modifying and terminating sessions
with one or more participants. These sessions include Internet telephone calls, multimedia distribution, and multimedia
conferences. SIP includes an extensible framework for asynchronous event notification. This paper investigates the
interworking of SIP events with a generic publish/subscribe system. Publish/subscribe systems typically support
anonymous one-to-many form of communication, which is not supported by the default SIP event package. We present
the design and implementation of a gateway component, and discuss supporting expressive subscription semantics using
filters and also mobile clients.
KEYWORDS
SIP, Gateway, Publish/Subscribe, Interworking
1. INTRODUCTION
The Session Initiation Protocol (SIP) is an application-layer protocol for establishing and
controlling sessions (Rosenberg 2002). SIP has been extended with support for
asynchronous event notification. In this paper, we discuss our experiences with bridging
the SIP event domain with a generic publish/subscribe (pub/sub) event API. The models
differ, because the SIP notification model does not support anonymous one-to-many event
dissemination with filters. Interworking is realized using a stateful gateway component,
which is based on the bridge pattern (OMG 2004).

Distributed publish/subscribe systems consist of three entities: subscribers, producers,
and the event service. The event service is a logically centralized component that provides
interest registration services for subscribers and API calls for producing events (Eugster
2003, OMG 2001). The service ensures that published events are delivered to proper
subscribers that have previously expressed interest in receiving events. The event service
decouples subscribers and publishers of information, and also allows anonymous
information delivery. Expressive, content-based pub/sub systems have been proposed for
the development of mobile applications, because they support run-time reconfiguration and
adaptation.

The SIP event model supports one-to-one and one-to-many communication between
SIP entities. The SIP event model requires that subscribers register directly with an event
producer. The event model does not specify a logically centralized component for
connecting subscribers and publishers. The model is simple and flexible, but lacks the
49
49
features of distributed pub/sub systems, such as expressiveness and anonymous
communication. The differences between the SIP model and the generic pub/sub model
complicate interworking of SIP event domains and other pub/sub domains. Interworking
support is motivated by the benefits of the generic pub/sub model and universal data
access.

This paper is structured as follows: Section 2 presents the motivation and Section 3 the
SIP event framework. Section 4 discusses the generic event model in more detail. Section 5
presents the gateway design and implementation. Finally, Section 6 presents the
conclusions.
2. MOTIVATION
A content-based pub/sub network facilitates the integration of systems, such as active
badge systems, proximity sensors, information and multimedia delivery services, and
positioning systems. Typical SIP applications are call control, presence management, and
instant messaging (IM). SIP has also been proposed for ubiquitous and context-aware
computing (Berger 2003) by using the presence extensions (IETF 2005) and the event
package (Roach 2002). By seamlessly integrating and combining information from both
SIP and pub/sub domains, we can create more expressive application behaviour, such as
location-based buddy lists. In addition, by using server-side filtering part of the application
complexity can be pushed into the infrastructure.

For example, consider the case of a WLAN-based positioning system in a hospital. This
enables the tracking of doctors, nurses, patients, and medical equipment within the
building. A doctor can subscribe tracking information to his SIP-based mobile phone or
PDA and receive updates using wireless communication. A content-based routing network
may be used to route information between various entities. The motivation for using the
pub/sub network is its flexibility and expressiveness in delivering information.

The gateway connects the SIP domain to the pub/sub network. Hence, the gateway also
brings the benefits of filtering to SIP clients and pushes this complexity to the edge of the
SIP domain. Filtering can be made transparent to existing SIP applications by using web-
based technologies. A conventional SIP buddy list and instant messaging application may
be used if the filters at the gateway are configured using a web browser. The notifications
routed from the pub/sub domain based on a set of filters are transformed into SIP
notifications at the gateway and they may be directly used by SIP-aware applications, such
as buddy lists or IM software. For example: the buddy list of a Doctor could be updated
based on people's location without changing the semantics of the buddy list application.
This would require transformation rules being set at the gateway for the SIP notifications
to be compatible with the buddy list application. Another example is pushing interesting
multimedia content to end-user consumers. In this case, subscribers subscribe content and
specify the filters in the application or they preconfigure the preferences at the gateway (or
some other server).

50
50
The gateway enables and supports applications that require expressive notification. The
pub/sub network could be thought of as a flow of rich information that is delivered based
on expressive filters. The SIP domain, on the other hand, can be thought of as an edge
domain for this content that connects various wireless and mobile devices to this
information pool. Context-aware applications are an important application area for the
gateway, for example the location-based notification of the hospital scenario. The system
should be able to realize interactions such as "shutdown all robots in room 100" or "Alice
has left room 100". The gateway may also provide more flexible support for disconnected
operation by buffering incoming notifications and support various queuing policies. One
way to realize context-based addressing of an entity is to use content-based routing and
subscribe the current context of the entity.
3. SIP EVENT FRAMEWORK
The SIP event package enables a client to subscribe to the desired events and receive
notifications when the expected event occurs (Roach 2002). The main application areas for
the SIP event package are callback services, buddy lists (presence), and message waiting
indications. The SIP domain consists of several entities. We concentrate on the two most
important components: the SIP client and server. The SIP client is a network element that
sends SIP requests and receives SIP responses. Clients interact directly with a human user
or a terminal device. Proxies and user agents are clients. The SIP server is a network
element that receives requests and sends back responses to requests. Servers include
proxies, user agent servers, redirect servers, and registrars.

The SIP event framework supports two methods for event subscription and notification,
namely, SUBSCRIBE and NOTIFY. The SUBSCRIBE method is used to request the
current state and state updates from a remote entity. The NOTIFY method is used to notify
the subscriber when the requested event occurs. Figure 1 shows the sequence diagram of
sending a subscribe request and receiving a notify response.

SUBSCRIBE
 200 OK
NOTIFY
200 OK
Figure 1: SIP Event Subscription and Notification
SUBSCRIBER NOTIFIER

The headers of the SUBSCRIBE and NOTIFY messages include values for expiry time,
request URI, and an event header. A Call Sequence value is stored in the header to
maintain the order of the transaction, while a Call Identifier value uniquely identifies the
51
51
particular invitation or registration from the client. Figure 2 presents the fields of the
SUBSCRIBE and NOTIFY headers. A subscribe header message with the expiry field
value set to zero denotes an unsubscribe request.

NOTIFY sip:subscriber address SIP/2.0
Via SIP/2.0/UDP origin
Max-Forwards:hop count
To: <sip:subscriber address>
From: <sip:notifier address>; tag=122
Call-ID: call-id value
Cseq: call sequence number
Contact:<sip:subscriber contact>
Event: package name
Subscription-State: subscription status
Allow-Events: supported packages
Content-Type: message type
Content Length: 0
SUBSCRIBE sip:notifier address SIP/2.0
Via SIP/2.0/UDP origin
Max-Forwards:hop count
To: <sip:notifier address>
From: <sip:subscriber address>; tag=122
Call-ID: call-id value
Cseq: call sequence number
Allow-Events: supported event packages
Contact:<sip:subscriber contact>
Event: package name
Content Length: 0
Figure 2: SIP subscription and notification headers
The SIP framework supports four different types of mobility (Schulzrinne 2000):
session mobility allows a user to maintain a media session while changing terminals,
terminal mobility allows a device to move between IP subnets while continuing to be
reachable for incoming requests and maintaining sessions across subnet changes, personal
mobility allows the addressing of a single user located at different terminals by using the
same logical address, and service mobility allows users to maintain access to services while
moving or changing devices and network service providers. These different types of
mobility support apply also for event delivery and subscribers receive notifications even
when they are roaming. Mobility support is realized by updating any client address
changes to respective servers. SIP supports personal mobility by using the forking
technique (Rosenberg 2002).
4. EVENT SYSTEMS
Event-based systems are seen as good candidates for supporting distributed applications in
dynamic and ubiquitous environments because they support decoupled, anonymous, and
asynchronous one-to-many information dissemination. Event systems are widely used,
because asynchronous messaging provides a flexible alternative to RPC (Remote
Procedure Call) (Colouris 1994). In the general model of event notification, subscribers
subscribe events by specifying their interests using filters. Filtering is central core
functionality for realizing event-based systems and accurate content-delivery. The main
motivation for filtering is to improve accuracy in information delivery by delivering only
those messages that are interesting for a client of the system — the delivered messages
must match the filters defined by the client. Filters and their properties are useful for many
different operations, such as matching, optimizing routing, load balancing, and access
control.

52
52
Typically, the event service interface consists of the basic primitives: subscribe(F),
unsubscribe(F), and publish(N). Figure 3 shows the basic operations supported by the
generic publish/subscribe event model. F denotes a filter and N a notification. The filter is
a stateless Boolean function that takes a notification as an argument. The notification is
usually represented as a list of typed tuples, but it may also be structured, for example an
XML fragment. The API may also be extended with advertisements.

Figure 3: Generic publish/subscribe event model
For the gateway design presented in this paper, we leave the exact nature of the filters
and notifications open. The pub/sub event domain part of the gateway implementation was
implemented using the Fuego event system (Tarkoma 2003, 2005). The Fuego event
system consists of a number of event routers connected into a routing topology. The
system divides a router into two parts: the access server part and the routing core part. The
former is responsible for event delivery and buffering for local clients, and the latter is
responsible for distributed event routing. The routing core is based on a set of efficient data
structures for content-based routing. Supported configurations include hierarchical, event
channel, and peer-to-peer routing.
5. SIP EVENT GATEWAY
The aim of the gateway design is the interworking of two different and non-interoperable
event systems, namely the SIP event domain and the generic pub/sub domain. The gateway
should be efficient, impose no modifications to the event APIs of the internetworked
domains, and also be transparent for applications and servers. In this section of the paper,
we present the gateway design and implementation. We assume that both event domains
have unique identifiers for subscriptions and that each event has an explicit or implicit
type. We also assume that the SIP client is able to send subscription and notification
messages and that the clients know the name of the gateway component.
5.1 Design
Figure 4 presents an overview of the gateway design with messaging abstracted using input
(I) and output (O) interfaces. Both interfaces must support subscription, unsubscription,
and notification (publishing events). The gateway uses the event API of the two domains.

EVENT SERVICE
subscribe(F)
unsubscribe(F)
publish(N)

subscribe
 publish

unsubscribe

pub1
pub2
pubn
sub1
sub2
subn
53
53
Therefore, it is a client of both domains and does not require any changes to the way the
domains operate. The gateway is a stateful entity and it tracks active subscriptions for both
domains.

Gateway

SIP Domain

Pub/Sub
Domain
I
O
I
O
SIP request/response Publish/Subscribe
Conversion,
Mapping,
State
Figure 4: Gateway design
SIP clients must register explicitly with the gateway in order to receive events from the
pub/sub domain. In our design, the SIP proxy handles client registrations. The proxy
maintains a list of registered domains and routes the SIP requests/responses to the gateway
that are intended for the pub/sub domain. The registration may include a filter and the type
of the filter. The gateway only accepts registrations with the filter types it supports.

One of the central challenges of the design is how SIP event producers are informed of
active subscribers. If filters are used, the producers have to explicitly register at the
gateway in order to receive a subscription request, which then may result in NOTIFY
messages being produced. If the SIP event producer does not support source-side filtering,
the gateway is responsible for filtering. The producers may be preconfigured to avoid
changes to applications. If entity-to-entity event delivery is used based on the name of a
SIP entity, the subscription request may be forwarded without prior registration at the
gateway. The subscription request to SIP event producers is needed to avoid unsolicited
messaging.

The gateway is also a client to the pub/sub system. The gateway API is exposed using
the generic pub/sub system by subscribing an event-type / attribute with the gateway name.
This is the gateway service subscription. Any subscribers in the pub/sub domain need first
to subscribe the event they are interested in and then to contact the gateway. A subscriber
contacts the gateway by simply publishing an event that matches the gateway’s service
subscription, and including in the event any relevant subscription information.
Unsubscription is similar to subscription, but instead of creating state at the gateway and
possibly at SIP producers, it removes state. Publication of events is transparent for the
pub/sub domain, because the gateway uses the subscribe() - primitive in the client API. A
similar pub/sub API-based mechanism is used in the Siena mobility support service
(Caporuscio 2003) to support mobile subscribers.

54
54
All subscribe and unsubscribe operations are acknowledged by the gateway when it
receives a reply from the server it is using through the pub/sub API. Acknowledgement
semantics differ in the two domains and in the pub/sub domain notifications are not
necessarily delivered until the subscription message has propagated throughout the event
network.

The proposed gateway mechanism supports scalability by partitioning event types into
different gateways. Different event types are independent and thus may be handled by
different gateways. This kind of partitioning works for both SIP and pub/sub domains. In
the SIP domain, the gateway can be selected at lookup time. In pub/sub domains, each
gateway subscribes the event types it supports. Therefore, having multiple gateways does
not cause inconsistency problems for content-based routing.
5.2 Main Functions
The four main functions of the gateway are as follows: 1. to receive SIP messages
(requests/responses), 2. convert and forward SIP messages to the pub/sub domain, 3.
receive pub/sub messages, and 4. convert and forward pub/sub messages to the SIP
domain. Figure 5 illustrates the different steps in SIP subscription and Figure 6 shows the
steps needed for performing a subscription from the pub/sub domain.

The gateway also creates provisional SIP responses back to the SIP domain based on
the status of the pub/sub responses received. Thus the gateway mainly receives messages,
reformats them, and forwards them to the proper domain. Messages are associated with
client-specific sessions at the gateway. We use the Call Identifier of SIP messages and the
subscription identifiers of pub/sub messages to perform this association. These two
identifiers are assumed to be unique.

SIP DOMAIN FUEGO SYSTEM
SUBSCRIBE
Mapping, reformat
SUBSCRIBE
Forward SUBSCRIBE
Process subscription Subscription status
Create SIP response

Forward SIP response
NOTIFY
Mapping, reformat
NOTIFY Forward NOTIFY
OK
GATEWAY
Figure 5: SIP Subscription and Fuego Notification
55
55

FUEGO SYSTEMSIP DOMAIN GATEWAY
SUBSCRIBE
Mapping, reformat
SUBSCRIBE Forward SUBSCRIBE
Process subscription
OK
NOTIFY
Mapping, reformat
NOTIFY
Forward NOTIFY OK
Figure 6: Fuego Subscription and SIP Notification
5.3 Filtering
The default SIP event package does not support filters. The gateway may support them
using a proprietary scheme, for example by introducing filters into the message header or
payload. Filtering is easy to add for any events to/from the pub/sub domain, because the
pub/sub domain natively supports filtering and the filtering data structures may be used by
the gateway. If there are any differences in the filtering languages of the two domains
appropriate conversion is needed.

Two Internet Engineering Task Force (IETF) drafts about event filtering for SIP events
have been proposed. An XML-based filtering format for event notification is described in
(Khartabil 2004a). A functional description of event filtering for SIP is given in (Khartabil
2004b). In the latter proposal, the subscriber defines a set of filtering rules in the content
part of the SUBSCRIBE message. Filters can be changed within a SIP dialog by sending a
new SUBSCRIBE request. The notifier examines the content of the SUBSCRIBE message
and sends a 200-class response to the subscriber when the content type is understood and
the subscription accepted. Notifications are then sent to the subscriber. A non-200 class
response indicates that the subscription was not accepted and created.
5.4 Mobility
The proposed gateway can be extended to support mobility between the two domains. SIP
supports different mobility types and several pub/sub systems also support mobility, for
example the Fuego system, Siena (Caporuscio 2003), and Rebeca (Mühl 2004). Four
different mobility categories need to be examined, namely terminal and user mobility, both
intra-and inter-domain. Terminal mobility occurs when the user and the terminal change
their location and access point. Terminal mobility for intra-domain operation is supported
by both SIP and the mentioned pub/sub technologies by allowing clients to change their
access points. Intra-domain mobility can be implemented in a transparent fashion so that
applications do not need to be modified. Terminal mobility for inter-domain mobility is
56
56
more difficult, because the access protocol and API change, which requires that
applications support both SIP and pub/sub mechanisms. User mobility happens when the
user changes the terminal device. This requires at least support for disconnected operation,
but may require support for terminal mobility as well. SIP supports user mobility by
forking messages and also re-sending messages, however, longer term disconnections are
not supported. Mobility-aware pub/sub systems support disconnected operation by storing
undeliverable messages.

Of the discussed mobility types, intra-domain mobility support appears to be more
important and interesting for applications than support for mobility between the domains.
When a client that uses the gateway moves to the other domain, it no longer needs the
gateway service in the direction of the old domain. If the client is interested in events from
both domains, the direction of event flow provided by the gateway is reversed. We
envisage that event messages from both domains can be buffered at the gateway and that
the gateway can provide the necessary APIs for inter-domain mobility management. The
roaming client sends a signaling message to the gateway from its current domain. The
gateway sends any buffered event messages to the client after receiving the location
update. This mechanism needs also additional signaling between clients and the gateway.
Gateway-supported mobility in the pub/sub domain needs also to take any existing intra-
domain protocols into account.

A trivial solution for inter-domain mobility is to subscribe the same information in both
domains using respective mechanisms, receive information only from one domain at a
time, and perform duplicate detection in the application. This technique does not require
the presence of a gateway at all. The benefit of using a gateway in the inter-domain
mobility scenario is that it can perform queue management on behalf of the client. Even if
the gateway is used the client needs to support both SIP and the pub/sub API.

5.5 Implementation
We have developed a prototype implementation of the gateway using the JAIN SIP stack
(Sun 2003) and the Fuego event system, which are both Java-based systems. We used the
NIST open source SIP stack that implements the JAIN SIP API (NIST 2005). The
SIP/Fuego event gateway supports the forwarding of event messages across the domains.
The current implementation does not support buffering for the pub/sub domain and
filtering at the gateway. Filtering is supported at the pub/sub domain, so a SIP client may
publish an event that is filtered at the pub/sub domain. Filtering support is relatively easy
to add for the SIP domain if the same filtering language is used in both domains.
Supporting conversion between different filtering languages is more difficult and, for
example, the CORBA Notification Service / JMS interworking bridge does not support
filters (OMG 2004).

Buffering is required at the gateway if a requested client is not reachable. In the SIP
stack implementation, the proxy retransmits the request to the client and drops it on
repeated failures. If the retransmission of a subscription request does not succeed, the SIP
57
57
notifier removes the subscriber from the subscribers list. The SIP subscriber has to send a
new subscription request. The SIP Uniform Resource Identifier (URI) addressing scheme
is used to deliver pub/sub messages to the proper SIP clients. Since filtering support is not
implemented, the gateway maps events from the pub/sub domain to SIP clients using a
specific attribute in the event message. The value of this attribute is the name of the SIP
client. The other direction does not require specific mapping, because the pub/sub domain
routes messages based on their content or header.

Experimentation with the implemented gateway has concentrated mainly on the
scalability and performance of the gateway component. The gateway component was
tested by generating and sending a number of subscription and notification messages
across the Fuego and SIP event domains. We implemented a simple application that uses
the SIP presence package. One version of the application runs in the SIP domain and
another version in the Fuego domain. In the experimental scenario the gateway forwards
presence updates between the domains.
6. CONCLUSIONS
Interworking between different event systems is required to support communication in
heterogeneous environments and gain access to information provided in different
technology domains. The challenges of event interworking are differences in semantics,
APIs, and the expressiveness of the notification model. In this paper, we have presented
the design and implementation of a gateway for interworking SIP event domains with
domains using a generic pub/sub API. The SIP event notification differs from the pub/sub
model, because it is intended for entity-to-entity communication and it does not support
filtering.

The gateway is motivated by the emergence of SIP-enabled devices and the need to
access heterogeneous information. The gateway facilitates, for example, the tracking of
people and entities from a SIP-enabled device and pushing filtering into the pub/sub
domain. In this kind of design, the content-based routing network is the information
backbone and SIP is the delivery and control mechanism. The gateway has a simple
design, it supports scalability through partitioning, and it may be extended with filtering.
Future work includes adding filtering and load balancing support to the gateway system.
REFERENCES
Berger, S. et al, 2003. Ubiquitous Computing Using SIP. In ACM NOSSDAV 2003, Monterey, California, USA.
Caporuscio, M. et al, 2003. Design and evaluation of a support service for mobile, wireless publish/subscribe
applications. Technical Report CU-CS-944-03, Department of Computer Science, University of Colorado.
Colouris, G. et al, 1994. Distributed Systems: Concepts and Design (2nd edition). Addison-Wesley, Boston,
Massachusetts.
Eugster, P. T. et al, 2003. The many faces of publish/subscribe. In ACM Computing Surveys (CSUR), 35(2), 114 – 131.
IETF, 2005. SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE) working group. Available at:
http://www.ietf.org/html.charters/simple-charter.html
58
58
Khartabil, H. et al, 2004a. An Extensible Markup Language (XML) Based Format for Event Notification Filtering, draft-
ietf-simple-filter-format-03. Internet Engineering Task Force.
Khartabil, H. et al, 2004b. Functional Description of Event Notification Filtering, draft-ietf-simple-event-filter-funct-03.
Internet Engineering Task Force.
Mühl, G. et al, 2004. Disseminating information to mobile clients using publish/subscribe. IEEE Internet Computing,
8(3), 46–53.
NIST, 2005. Open Source SIP stack. National Institute of Standards and Technology. Available at:
http://snad.ncsl.nist.gov/proj/iptel/
OMG, 2001. CORBA Notification Service Specification v.1.0. Object Management Group.
OMG, 2004. Notification / Java Messaging Service (JMS) Interworking Specification v.1.0. Object Management Group.
Roach, A., 2002. Session Initiation Protocol (SIP)-specific Event Notification (RFC 3265). Internet Engineering Task
Force.
Rosenberg, J. et al, 2002. Session Initiation Protocol (RFC 3261). Internet Engineering Task Force.
Schulzrinne, H., et al., 2000. Application-layer mobility using SIP. Mobile Computing and Communications Review,
1(2).
Sun Microsystems, 2003. JSR-000032 JAIN SIP Specification.
Tarkoma, S.,et al., 2005. A data structure for content-based routing. In Proceedings of EuroIMSA’05. Grindelwald,
Switzerland.
Tarkoma, S. et al, 2003. Client mobility in rendezvous-notify. In Intl. Workshop on Distributed Event-Based Systems
(DEBS’03).

59
59

60
60
Call for Papers

4th Workshop on Applications of Wireless Communications (WAWC'06),
August 2-4, 2006 – Lappeenranta, Finland

in conjunction with the 15th Summer School on Telecommunications
at the Lappeenranta University of Technology, Finland

Important dates
Abstract submission deadline: January 20, 2006
Paper submission deadline: February 20, 2006
Notification of acceptance: March 31, 2006
Revised papers due: May 1, 2006

Overview
WAWC'06 will highlight the latest research and developments in the wireless communication
technologies with major emphasis on the applications and services of the wireless
communications. This workshop is intended for researchers and professionals interested in the
applicability of the wireless communications. This will be a one-day workshop featuring invited
presentations and refereed paper presentations. It will be held in conjunction with the 15th
Summer School on Telecommunications that concentrates on Cross-Technical issues of the
Wireless World. The program also includes a 24h programming event, Code Camp.

Scope/Topics
Applications and Services on wireless communication should concentrate at one of the
following topics.
• Personal Mobility
• Personalization
• Security, Trust and Privacy
• Semantic Interoperability
• Context related issues
• Adaptation
• Generic Service Elements
• Orchestration
• Composability
• Management
• Ambient Awareness
• Pervasive Communications
• Ubiquitous Communications
• Wireless applications and services
• Conceptualization issues of
Applications
• Open Platforms
• User-Centric Approaches

WAWC'06 is NOT an appropriate forum for research focused narrowly on the physical, link or
network layers. All papers are supposed to be related to the applications and services of the
given topics.
61
Please feel free to contact the program chair at WAWC@lut.fi to determine the appropriateness
of the topic. By sending abstract the program committee can control the appropriateness of the
topics to be submitted as full papers or posters.

What to submit
Submission takes place in two phases; at first an abstract is submitted and the program
committee will inform the sender the appropriateness of the topic of sent abstract. After the
appropriateness is validated, the submission can be either full paper (maximum of 10
single-spaced A4 pages, including figures, tables and references using point 12 font) or poster
(maximum of 5 single-spaced A4 pages, including figures, tables and references using point 12
font).

A good paper demonstrates that
• Application area presented is or will be of greater interest of majority
• Wireless communication has a significant role in the solution
• The realization of the application presents a new way of doing things

Papers may be selected as:
• Full papers (max. 10 pages) or Posters (max. 5 pages)

WAWC’06 among most conferences and journals requires that papers must be original and
published only in this conference. Proceedings will be published in the Acta Universitatis
Lappeenrantaensis series of Lappeenranta University of Technology.

All selected papers must be paid in advance and presented in the conference.

How to submit
All submissions for WAWC'06 will be electronic, in PDF format. Please, submit papers by
sending them to WAWC@lut.fi. Authors will be notified of the receipt of submission via email.
If you do not receive notification, contact WAWC@lut.fi.

Registration
Complete program and registration information will be available in May 2006 on the Workshop
Web site http://www.it.lut.fi/WAWC. The information will be in both html and a printable PDF
file formats.

Questions
Inquiries concerning the workshop to WAWC@lut.fi.
Organized by the Laboratory of Communications Engineering Lappeenranta University of
Technology.
62
ACTA UNIVERSITATIS LAPPEENRANTAENSIS

168. LI, XIAOYAN. Effect of mechanical and geometric mismatching on fatigue and damage of
welded joints. 2003. U.s. Diss.

169. OJANEN, VILLE. R&D performance analysis: case studies on the challenges and promotion
of the evaluation and measurement of R&D. 2003. U.s. Diss.

170. PÖLLÄNEN, RIKU. Converter-flux-based current control of voltage source PWM rectifiers –
analysis and implementation. 2003. 165 s. Diss.

171. FRANK, LAURI. Mobile communications within the European Union: the role of location in the
evolution and forecasting of the diffusion process. 2003. U.s. Diss.

172. KOISTINEN, PETRI. Development and use of organizational memory in close and long-term
cooperation between organizations. 2003. 170 s. Diss.

173. HALLIKAS, JUKKA. Managing risk in supplier networks: case studies in inter-firm
collaboration. 2003. U.s. Diss.

174. LINDH, TUOMO. On the condition monitoring of induction machines. 2003. 146 s. Diss.

175. NIKKANEN, MARKKU. Railcarrier in intermodal freight transportation network. 2003. 217 s.
Diss.

176. HUISKONEN, JANNE. Supply chain integration: studies on linking customer responsiveness
and operational efficiency in logistics policy planning. 2004. 151 s. Diss.

177. KUISMA, MIKKO. Minimizing conducted RF-emissions in switch mode power supplies using
spread-spectrum techniques. 2004. 190 s. Diss.

178. SOPANEN, JUSSI. Studies of rotor dynamics using a multibody simulation approach. 2004.
91 s. Diss.

179. On the edge of fuzziness. Studies in honor of Jorma K. Mattila on his sixtieth birthday. Editors
Vesa A. Niskanen and Jari Kortelainen. 2004. 132 s.

180. VÄISÄNEN, PASI. Characterisation of clean and fouled polymeric membrane materials. 2004.
U.s. Diss.

181. IKÄVALKO, MINNA. Pas de deux of art and business: a study of commitment in art
sponsorship relationships. 2004. 277 s. Diss.

182. ENQVIST, YUKO. Comprehensive study of crystal growth from solution. 2004. U.s . Diss.

183. JÄPPINEN, PEKKA. ME – mobile electronic personality. 2004. U.s. Diss.

184. HALME, TAPANI. Novel techniques and applications in generalised beam theory. 2004. 101
s. Diss.

185. LOISA, ANTTI. Studies on integrating kinematic design method with mechanical systems
simulation techniques. 2004. 143 s., liitt. Diss.

186. 2nd Workshop on Applications of Wireless Communications. 2004. 74 s.

187. LI, XIAONING. Conflict-based method for conceptual process synthesis. 2004. U.s. Diss.

188. LAURILA, LASSE. Analysis of torque and speed ripple producing non-idealities of frequency
converters in electric drives. 2004. 124 s. Diss.

189. NIKULA, UOLEVI. Introducing basic systematic requirements engineering practices in small
organizations with an easy to adopt method. 2004. 207 s., liitt. Diss.
 63
190. TANNINEN, JUKKA. Importance of charge in nanofiltration. 2004. U.s. Diss.

191. VIHTONEN, TIINA. Tuote- vai liiketoimintaosaamista? Pienten ja keskisuurten leipomoalan
yritysten strategiset valinnat, liikkeenjohdon käytännöt ja menestyminen. 2004. 238 s. Diss.

192. TURUNEN-SAARESTI, TEEMU. Computational and experimental analysis of flow field in the
diffusers of centrifugal compressors. 2004. 103 s. Diss.

193. SOLEYMANI, AZITA. Advanced topics in deformation and flow of dense gas-particle mixtures.
2004. U.s. Diss.

194. SALLINEN, PETRI. Modeling dynamic behavior in tilting pad gas journal bearings. 2004. 157
s. Diss.

195. HEILMANN, PIA. Careers of managers, comparison between ICT and paper business sectors.
2004. 262 s. Diss.

196. AHMED, MOHAMMAD. Sliding mode control for switched mode power supplies. 2004. U.s.
Diss.

197. HUPPUNEN, JUSSI. High-speed solid-rotor induction machine – electromagnetic calculation
and design. 2004. 168 s. Diss.

198. SALMINEN, PIA. Fractional slot permanent magnet synchronous motors for low speed
applications. 2004. 150 s. Diss.

199. VARIS, JARI. Partner selection in knowledge intensive firms. 2004. U.s. Diss.

200. PÖYHÖNEN, AINO. Modeling and measuring organizational renewal capability. 2004. U.s.
Diss.

201. RATAMÄKI, KATJA. Product platform development from the product lines´ perspective: case
of switching platform. 2004. 218 s. Diss.

202. VIRTANEN, PERTTU. Database rights in safe European home: the path to more rigorous
protection of information. 2005. 425 s. Diss.

203. Säädöksiä, systematiikkaa vai ihmisoikeuksia? Oikeustieteen päivät 19. – 21.8.2003. Toim.
Marjut Heikkilä. 2004. 350 s.

204. PANTSAR, HENRIKKI. Models for diode laser transformation hardening of steels. 2005. 134
s., liitt. Diss.

205. LOHJALA, JUHA. Haja-asutusalueiden sähkönjakelujärjestelmien kehittäminen – erityisesti
1000 V jakelujännitteen käyttömahdollisuudet. 2005. 201 s., liitt. Diss.

206. TARKIAINEN, ANTTI. Power quality improving with virtual flux-based voltage source line
converter. 2005. U.s. Diss.

207. HEIKKINEN, KARI. Conceptualization of user-centric personalization management. 2005.
136 s. Diss.

208. PARVIAINEN, ASKO. Design of axial-flux permanent-magnet low-speed machines and
performance comparison between radial-flux and axial-flux machines. 2005. 153 s. Diss.

209. FORSMAN, HELENA. Business development efforts and performance improvements in
SMEs. Case study of business development projects implemented in SMEs. 2005. 209 s.
Diss.

210. KOSONEN, LEENA. Vaarinpidosta virtuaaliaikaan. Sata vuotta suomalaista tilintarkastusta.
2005. 275 s. Diss.
64
oikea
ISBN 952-214-057-0
ISBN 952-214-058-9 (PDF)
ISSN 1456-4491
Lappeenranta 2005
Lappeenrannan teknillinen yliopisto
Lappeenranta University of Technology
Acta Universitatis
Lappeenrantaensis
211
The proceedings of the 3rd Workshop on Applications of Wireless
Communications
3RD WORKSHOP ON APPLICATIONS OF WIRELESS
COMMUNICATIONS
 Edited by Jouni Ikonen, Jari Porras and Pekka Jäppinen

