/ LAPPEENRANTA
“ UNIVERSITY OF TECHNOLOGY

Ossi Taipale

OBSERVATIONS ON SOFTWARE TESTING
PRACTICE

Thesis for the degree of Doctor of Science (Technology) to
be presented with due permission for public examination and
criticism in the Auditorium of the Student Union House at
Lappeenranta University of Technology, Lappeenranta,
Finland, on the 26th of October, 2007, at noon.

Acta Universitatis
Lappeenrantaensis
276

Supervisors Professor Kari Smolander
Laboratory of Information Processing
Department of Information Technology
Lappeenranta University of Technology
Finland

Professor Heikki Kélvidinen
Laboratory of Information Processing
Department of Information Technology
Lappeenranta University of Technology
Finland

Reviewers Dr Ita Richardson
Department of Computer Science and Information Systems
University of Limerick
Ireland

Professor Markku Tukiainen

Department of Computer Science and Statistics
University of Joensuu

Finland

Opponent Professor Per Runeson
Department of Communication Systems
Lund University
Sweden

ISBN 978-952-214-428-7
ISBN 978-952-214-429-4 (PDF)
ISSN 1456-4491

Lappeenrannan teknillinen yliopisto
Digipaino 2007

Abstract

Ossi Taipale

Observations on Software Testing Practice
Lappeenranta, 2007

81 p.

Acta Universitatis Lappeenrantaensis 276

Diss. Lappeenranta University of Technology

ISBN 978-952-214-428-7, ISBN 978-952-214-429-4 (PDF)
ISSN 1456-4491

This thesis investigates factors that affect software testing practice. The thesis consists
of empirical studies, in which the affecting factors were analyzed and interpreted
using quantitative and qualitative methods.

First, the Delphi method was used to specify the scope of the thesis. Secondly, for the
quantitative analysis 40 industry experts from 30 organizational units (OUs) were
interviewed. The survey method was used to explore factors that affect software
testing practice. Conclusions were derived using correlation and regression analysis.
Thirdly, from these 30 OUs, five were further selected for an in-depth case study. The
data was collected through 41 semi-structured interviews. The affecting factors and
their relationships were interpreted with qualitative analysis using grounded theory
as the research method. The practice of software testing was analyzed from the
process improvement and knowledge management viewpoints. The qualitative and
quantitative results were triangulated to increase the validity of the thesis.

Results suggested that testing ought to be adjusted according to the business
orientation of the OU; the business orientation affects the testing organization and
knowledge management strategy, and the business orientation and the knowledge
management strategy affect outsourcing. As a special case, the complex relationship
between testing schedules and knowledge transfer is discussed. The results of this
thesis can be used in improving testing processes and knowledge management in
software testing.

Keywords: software testing, process improvement, knowledge management, survey
method, grounded theory method.

UDC 004.415.53 : 65.012.1 : 005.94

Acknowledgements

It has been a privilege to work with great people, companies, and research institutes. I
will try to express my gratitude to those people and organizations that have
supported me during these years.

Most of all, I want to thank my financers, Tekes (the Finnish Funding Agency for
Technology and Innovation, project numbers 40155/04, 40191/05, and 40120/06) and its
employees Pekka Yrj6ld and Eero Silvennoinen, the companies ABB, Capricode, Delta
Enterprise, Metso Automation, Outokumpu, Siemens, and SoftaTest, and the research
institutes Helsinki University of Technology, Lappeenranta University of Technology,
Tampere University of Technology, and VTT. Without the financial support of Tekes,
the participating companies, and the research institutes, this research project would
not have been possible.

My supervisors (Professors Kari Smolander and Heikki Kalvidinen) have not spared
their efforts. I thank you Kari for your professional guidance, inspiration, and
friendship. I thank you Heikki for providing reliable project management, useful
advice, and a good working environment.

I want to thank my research team (Olli Himalédinen, Katja Karhu, Minna Perttula, and
Tiina Repo). I am grateful to you for your contribution to this research.

The work of the external reviewers of this thesis, Dr Ita Richardson and Professor
Markku Tukiainen, is gratefully acknowledged.

I would also like to thank the steering group of this research project. I appreciate Tiina
Kauranen for her professional help in editing the language of this thesis.

Many thanks to my nearest colleagues Sami Jantunen and Uolevi Nikula.

Thank you, my wife Liisa and my children Paula and Olli, for supporting me during
this work.

Lappeenranta, 8 May, 2007

Ossi Taipale

List of publications

II.

II1.

Iv.

VL

VIIL

VIIL

Taipale, O., K. Smolander, H. Kalvidinen (2005). “Finding and Ranking
Research Directions for Software Testing”, Proceedings of the 12t European
Software Process Improvement and Innovation Conference (EuroSPI), 9-11
November 2005, Budapest, Hungary, Lecture Notes on Computer Science
3792, Springer Verlag, pp. 39-48.

Taipale, O., K. Smolander, H. Kélvidinen (2006). “Cost Reduction and Quality
Improvement in Software Testing”, Proceedings of the Software Quality
Management Conference (SQM), 10-12 April 2006, Southampton, UK, BCS.

Taipale, O., K. Smolander, H. Kalvidinen (2006). “A Survey on Software
Testing”, Proceedings of the 6th International SPICE Conference on Process
Assessment and Improvement (SPICE), 4-5 May 2006, Luxembourg, SPICE
User Group, pp. 69-85.

Taipale, O., K. Smolander, H. Kélvidinen (2006). "Factors Affecting Software
Testing Time Schedule”, Proceedings of the Australian Software Engineering
Conference (ASWEC), 18-21 April 2006, Sydney, Australia, Australian
Computer Society, IEEE, pp. 283-291.

Taipale, O., K. Smolander (2006). “Improving Software Testing by Observing
Practice”, Proceedings of the 5% ACM-IEEE International Symposium on
Empirical Software Engineering (ISESE), 21-22 September 2006, Rio de
Janeiro, Brazil, IEEE, pp. 262-271.

Taipale, O., K. Karhu, K. Smolander (2007). “Observing Software Testing
Practice from the Viewpoint of Organizations and Knowledge Management”,
Proceedings of the 1st International Symposium on Empirical Software
Engineering and Measurement (ESEM), 20-21 September, 2007, Madrid,
Spain, IEEE.

Taipale, O., K. Karhu, K. Smolander (2007). “Triangulating Testing Schedule
Over-runs from Knowledge Transfer Viewpoint”, Lappeenranta University of
Technology, Research Report 104, Finland, pp. 1-35.

K. Karhu, O. Taipale, K. Smolander (2007). “Outsourcing and Knowledge
Management in Software Testing”, Proceedings of the 11th International

Conference on Evaluation and Assessment in Software Engineering (EASE), 2-
3 April 2007, Keele University, Staffordshire, UK, BCS.

In this thesis, these publications are referred as Publication I, Publication 11, Publication
III, Publication IV, Publication V, Publication VI, Publication VII, and Publication VIII.

Symbols and abbreviations

Agile
AHP
alpha
AM
ANSI
ANTI
ASD
ATLAS.ti
CASE
CBD
CBSE
CMM
COBOL
COTS
Delphi
df
DSDM

Excel

FDD

Agile software development
Analytic-hierarchy-process

Cronbach’s coefficient alpha

Agile Modeling

American National Standards Institute
Name of the research project

Adaptive Software Development

Name of the qualitative analysis software
Computer-Aided Software Engineering
Component-Based Software Development
Component-Based Software Engineering
Capability Maturity Model

Common Business-Oriented Language
Commercial Off-The-Self

Name of the research method

Degree of freedom

Dynamic Systems Development Method
Name of the spreadsheet software

F-test

Feature-Drive Development

Fortran
GAAP
ICT
IEC
IEEE
ISD
ISO
LB
Likert
MDD
MES
N
NATO
0/0)
OOD
Oou
PCA

PP

QA

R2
RAD
R&D

SEI

Formula Translation/Translator

Generally Accepted Accounting Principles
Information and Communications Technologies
International Electrotechnical Commission
Institute of Electrical & Electronics Engineers
Internet-Speed Development

International Organization for Standardization
Like Best technique

Likert scale

Model-Driven Development

Manufacturing Execution Systems

Number of

North Atlantic Treaty Organization
Object-oriented

Object-oriented Design

Organizational Unit

Principal Component Analysis

Pragmatic Programming

Quality Assurance

Coefficient of multiple correlation
Coefficient of determination

Rapid Application Development

Research and Development

Software Engineering Institute

Sig. Significance

SME Small or Medium-sized Enterprise
Sp Structured Programming
SPI Software Process Improvement

SPICE Software Process Improvement and Capability

dEtermination
SPL Software Product Line
SPSS Statistical Package for the Social Sciences
SQA Software Quality Assurance
SUT System Under Test
t t-test

Tekes Finnish Funding Agency for Technology and
Innovation

T™MM Testing Maturity Model

TPI Test Process Improvement

TTCN Testing and Test Control Notation

UML Unified Modeling Language

U Model Software Development Technologies testing model
VoIP Voice over Internet Protocol

XP eXtreme Programming

Contents

1 Introduction...... 13
2 Software testing and the viewpoints of the thesisceccevrrnevevcccncncnrnrnnnnes 16
2.1 What is software testing?ccccevrriiiericciiirrrreeee e 17
2.1.1 Verification and validation............cccoviiinninininii 18

2.2 The viewpoints of this thesisccccoeeiiiiiiiiiii, 19

2.3 The history of software testing...........c.ccceceeueiiininnnrnicccccceceeenes 23

24 SUIMMATY cooiiiiiiiiiiiici bbb 29

3 Research goal and methodology 30
3.1 The research problem ... 31

3.2 Research subject and the selection of the research methods........................... 32
3.2.1 The research SUbJECtcccoouiuiiiiiiiiiiiiiccccc s 33

3.2.2 The selection of the research methods.........cccccovviviiiiiiiiniii, 33

3.3 Research process........ccciicicieiciiccccie e 35
3.3.1 Delphi method in the preliminary phase of the thesis............cccccce....... 36

3.3.2 Survey method in the quantitative study..........ccccccoeeivnnnnniicciicne 38

3.3.3 Grounded theory method in the qualitative study.......c.cccoceeeueccincncne. 42

3.3.4 Finishing and reporting the thesisc.cccocecceeiiiinnnnnrcccccccccne 47

34 SUMIMATY oottt bbbt 49

4 Overview of the publications 50
4.1 Publication I: Finding and Ranking Research Directions for Software Testing
... 51

4.1.1 Research obJectiVes.........cccoviiiiiiiiiiiiiiii 51

T2 RESUIES oottt ettt e et e ettt e e s st e e seaateeesraeesesaseessaneeeeaas 51

41.3 Relation to the Wholeccccciiiiiinies 51
42 Publication II: Cost Reduction and Quality Improvement in Software

TOSHNG e 52
421 Research objectives.........coooueiiiiiirieieiiccce e, 52
422 ReSUILS ..ot 52
423 Relation to the Whole...........cccoiiiiiinini e, 53
4.3 Publication III: A Survey on Software Testingccccccceueeeeeennnnreecuenenee 53
4.3.1 Research obJectiVes.........cocoviiiiiiiiiiiniiii 53
4.3.2 ReSUItS ..ot 54
433 Relation to the Whole...........ccccooiiiiiiiiiii e, 54
44 Publication IV: Factors Affecting Software Testing Time Schedule............... 55
441 Research ODJECHIVES.........ceucucuiuiuiiiirrreee s 55
442 ReSULLS ..o 55
4.4.3 Relation to the Wholecccccciiiiinniii 56
4.5 Publication V: Improving Software Testing by Observing Practice.............. 56
451 Research ObJECHIVES........ccoucucueuiuiiiiirrreee s 56
452 ReSULLS ..o 56
4.5.3 Relation to the Wholecccccceiiiiiiniiii 57
4.6 Publication VI: Observing Software Testing Practice from the Viewpoint of
Organizations and Knowledge Management............ccccccovvnnririciiccicnnes 58
4.6.1 Research ObJECHIVES.........coeucuiuiuiiiiirrreee s 58
4.6.2 ReSULLS ..o 58
4.6.3 Relation to the Wholecccccciiiiiiniiii 59
4.7 Publication VII: Triangulating Testing Schedule Over-runs from Knowledge
Transfer VIEWPOINL ... 59
4.7.1 Research ODJECHIVES.........ccoucucuiuiiiiirrreie e 59
472 ReSULLS ..o 59
4.7.3 Relation to the Wholeccccccciiiiiiniiiiii 61
4.8 Publication VIII: Outsourcing and Knowledge Management in Software
TESHIE. c.vivviviiiiieiici 61
4.8.1 Research obJectiVes........ccocoviviiiiiiiiiiiiiiiii 61
4.8.2 ReSULLS ..ot 61
4.8.3 Relation to the Wholeccccccviiiininiiiii 62
4.9 About the joint publicationscccccoeiuiiiiiiiniiree 62
Implications of the results 63
51 Implications for practice.........ccocooeiiioiiioiiiceee 63
52 Implications for further research...........ccocooooiiiiiiinii, 66
Conclusions 68
6.1 Derived cONCIUSIONS.......c.covviimrieiiiiiicic s 68

6.2 Limitations of this theSiS........cccuiiiiiiiiiiiiceeeeee e 70

6.3 Future research tOPiCs.........cocouvrruiiiiiiiiiiiiininciccececc s

References.....eeeeeesneessveesnens

Appendix I: Publications
Appendix II: Survey instrument

Appendix III: Theme-based questions for the interviews

1 Introduction

Applications of information and communications technologies (ICT) have penetrated
many areas of industry and every day life. The created systems are larger and more
critical than ever before. The size and the criticality of the systems among other things
emphasize software testing. Kit (1995) states that the systems we build are even more
complex and critical, and more than 50% of development efforts is frequently focused
on testing.

The research problem of this thesis was derived from Osterweil’s (1997) key objectives
of software engineering: “software engineering has as two of its key objectives the
reduction of costs and the improvement of the quality of products”. Software testing
as a part of software engineering (ACM et al. 2004) also strives for the reduction of the
costs and the improvement of the quality of the products. This thesis studies the
question of how to concurrently reduce testing costs and improve software quality.
This requires that we first analyze factors that affect the practice of software testing.
Understanding the affecting factors and their relationships enables us to develop
improvement hypotheses for software testing.

In this thesis the practice of software testing is empirically analyzed from the process
improvement and knowledge management viewpoints. Sommerville et al. (1999)
introduce the concept of viewpoints to software processes meaning that the observed
process is subject to each person’s interpretation, or viewpoint. In this thesis the
viewpoints are used in a wider context, meaning that software testing is observed and
interpreted from the above-mentioned viewpoints. Process improvement and
knowledge management were selected as the viewpoints based on the results of the
preliminary study. In the preliminary study, experts from industry and research

13

institutes ranked research issues in software testing. The results of the preliminary
study, Publication I, showed that the viewpoints process improvement and knowledge
management could contain important factors that affect concurrent testing cost
reduction and software quality improvement.

Osterweil (1997) writes that processes play a key role in concurrent cost reduction and
quality improvement. He emphasizes concurrent cost reduction and quality
improvement. Software process improvement (SPI) is considered as one of the central
means to make both development and testing processes more effective (Osterweil
1997).

On the other hand, SPI is not free of problems. SPI activities result in organizational
changes, which are difficult to implement. Abrahamsson (2001) notes that two-thirds
of all organizational change efforts have failed or fallen short of expectations. He
emphasizes commitment from all organizational levels because without commitment
to SPI, the initiative will most likely fail. Human aspects are important in seeking
development and testing efficiency. Osterweil (2003) suggests that the development of
a software product is actually the execution of a process by a collection of agents some
of which are human, and some of which are tools. Cohen et al. (2004) emphasize that
the result of testing ultimately depends on the interpersonal interactions of the people
producing the software.

John et al. (2005) state that human and social factors have a very strong impact on
software development endeavors and the resulting system. This is in line with the
study of Argote and Ingram (2000), who state that there is a growing agreement that
organizational knowledge explains the performance of organizations. According to
Nonaka (1994), organizational knowledge is created through a continuous dialogue
between tacit and explicit knowledge. Tacit knowledge is, for example, embedded in
employees. Explicit knowledge is documented and transferable. Knowledge
management is regarded as the main source of competitive advantage for
organizations (Argote & Ingram 2000; Aurum et al. 1998; Spender & Grant 1996).

Knowledge transfer between development and testing, especially in the earlier phases
of the software life cycle, is seen to increase efficiency. Both Graham (2002) and
Harrold (2000) emphasize the need to integrate earlier phases of the development
process with the testing process. In the same way, modern software development
methods (e.g. agile software development) integrate software development and
testing. Knowledge transfer is a part of knowledge management. Argote and Ingram
(2000) define knowledge transfer in organizations as the process through which one
unit (e.g. group, department, or division) is affected by the experience of another. The
transfer of knowledge (i.e. routine or best practices) can be observed through changes
in the knowledge or performance of recipient units. According to Szulanski (1996), the
transfer of organizational knowledge can be quite difficult to achieve. This is because

14

knowledge resides in organizational members, tools, tasks, and their sub-networks
and, as Nonaka and Takeuchi (1995) show, much knowledge in organizations is tacit
or hard to articulate.

The special objective of this thesis is to understand the factors that affect concurrent
testing cost reduction and software quality improvement. The practice of software
testing is described by affecting factors and their relationships. This understanding
enables us to generate improvement hypotheses from selected viewpoints.

In this thesis, both quantitative and qualitative methods were applied and the
empirical results were triangulated to improve the validity of the thesis. High
abstraction level constructs were used because using detailed level constructs might
have led to too complicated a description of the practice of software testing. According
to the results of the preliminary study, the affecting factors and their relationships
were analyzed from the process improvement and the knowledge management
viewpoints. Describing the practice of software testing at a high abstraction level is
important because, for example, comparing methods, tools and techniques of software
testing requires a framework for testing.

The thesis is divided into two parts, an introduction and an appendix including eight
scientific publications. In the introduction, the research area, the research problem,
and the methods used during the research process are introduced. The appendix
contains eight publications. Seven of them have gone through a scientific referee
process and Publication VII is in the process. The detailed results are given in the
publications.

The first part (introduction) contains six chapters. Chapter 2 introduces software
testing, viewpoints of the thesis, and describes the history of software testing. Chapter
3 describes the research problem and subject, the selection of the research methods,
and the research process. In Chapter 4, the included publications are summarized.
Chapter 5 combines the implications of this thesis for the practice and research.
Finally, Chapter 6 of the introduction summarizes the whole thesis, lists its
contributions, identifies possible limitations, and suggests topics for further research.

15

2 Software testing and the viewpoints of the thesis

The definition of software testing used in this thesis was adopted from Kit (1995).
According to him, software testing consists of verification and validation. By testing,
we try to answer two questions: are we building the product right and are we building
the right product?

The research problem can be evaluated from different viewpoints. The research work
started with the selection of the viewpoints for this thesis. Process improvement and
knowledge management were selected as the viewpoints according to the results of
the preliminary study. This selection enabled us to concentrate research resources on
the issues that respondents evaluated as important.

Software testing and software development are closely related because, for example,
approaches, methods, tools, technologies, processes, knowledge, and automation of
software development affect testing and vice versa. The 1960s can be regarded as the
birth of modern software engineering, when the NATO Science Committee organized
software engineering conferences in 1968 and 1969 (Naur & Randell 1969). The 1970s
can be regarded as the birth of modern software testing, when Myers published the
book, “The Art of Software Testing” (Myers 1976).

The history of software testing offers many examples on, for example, how new
development approaches, methods etc. have affected testing. Software testing and its
relation to software development is discussed, among others, by Boehm (2006), Jones
(2000), Pyhsajarvi et al. (2003), Wheeler & Duggins (1998), Whittaker & Voas (2002),
and Whittaker (2000).

16

2.1 What is software testing?

The literature contains many definitions of software testing. According to Heiser
(1997), testing is any technique of checking software including the execution of test
cases and program proving. In IEEE/ANSI standards, software testing is defined as:

(1) The process of operating a system or component under specified
conditions, observing or recording the results, and making an evaluation
of some aspect of the system or component, IEEE standard 610.12-1990
(1990).

(2) The process of analyzing a software item to detect the difference between
existing and required conditions (that is, bugs) and to evaluate the
features of the software items, IEEE standard 829-1983 (1983).

Further, the IEEE/ANSI 610.12-1990 standard (1990) gives a specification for a test:

(1) An activity in which a system or component is executed under specified
conditions, the results are observed or recorded, and an evaluation is made of
some aspect of the system or component.

(2) To conduct an activity as in (1).
(3) IEEE standard 829-1983 (1983): A set of one or more test cases, or
(4) IEEE standard 829-1983 (1983): A set of one or more test procedures, or

(5) IEEE standard 829-1983 (1983): A set of one or more test cases and
procedures.

The definitions use the term “test case” that is specified as a set of inputs,
execution conditions, and expected results developed for a particular
objective, such as to exercise a particular program path or to verify
compliance with a specified requirement, IEEE standard 610.12-1990 (1990).

The definition of software testing used in this thesis was adopted from (Kit 1995):
Testing is verification and validation.

Software testing was defined in this thesis by verification and validation because the
definition links software testing neither to any specific software development method
nor to a specific life cycle model. Also verification and validation are defined in
standards, detectable in the software testing practice, and specified in many quality
systems. Verification and validation contain many of the activities of Software Quality

17

Assurance (SQA) (Pressman 2001). In the following, the contents of verification and
validation are discussed.

2.1.1 Verification and validation

Verification ensures that software correctly implements a specific function and it
answers the question: are we building the product right? The IEEE standard 610.12-
1990 (1990) gives a definition for verification:

Verification is the process of evaluating a system or component to determine
whether the products of a given development phase satisfy the conditions
imposed at the start of that phase.

Basic verification methods include inspections, walkthroughs, and technical reviews.
Checklists are used as the tools of verification. Checklists consist, for example, of
requirements, functional design, technical design, code, and document verification
checklists. Aurum el al. (2002) describe software inspection methods. Runeson and
Thelin (2003) introduce Sample-Driven Inspections. The idea is to select a subset of
documents to inspect.

Validation ensures that software that has been built is traceable to customer
requirements. It answers the question: are we building the right product? The IEEE
standard 610.12-1990 (1990) defines validation:

Validation is the process of evaluating a system or component during or at the
end of the development process to determine whether it satisfies specified
requirements.

Validation consists of (1) developing tests that will determine whether the product
satisfies the users’ requirements, as stated in the requirements specification and (2)
developing tests that will determine whether the product’s behavior matches the
desired behavior as described in the functional specification. Validation activities can
be divided into unit testing, integration testing, usability testing, function testing,
system testing, and acceptance testing. Runeson (2006) notes that the practices of unit
testing vary between companies. In this thesis, unit testing is understood as testing of
the smallest unit or units and it is done by developers (Runeson 2006).

Testing methods can be divided into black-box and white-box testing methods.
Requirement-based and function-based tests use black-box testing, and technical
specification-based tests use white-box testing. In black-box testing, the test cases are
derived from the requirements and the functions of the system. The internal structure
of the software does not affect test cases. White-box testing is used when the test cases
are derived from the internal structure of the software. Validation contains both black-

18

box and white-box testing methods. Runeson et al. (2006) analyzed existing empirical
studies on defect detection methods. Their recommendation is to use inspections for
requirements and design defects, and to use validation methods for code.

According to Kit (1995), black-box testing methods for requirements and function-
based tests include, for example, equivalence partitioning (identification of
equivalence classes and test cases), boundary-value analysis (special case of
equivalence partitioning, special interest in boundaries), error guessing (guessing
based on intuition and experience), cause-effect graphing (systematic approach to
transform a natural-language specification to a formal-language specification), syntax
testing (systematic method to generate valid and invalid input to a program), state
transition testing (an analytical method using finite-state machines to design tests for
programs), and a graph matrix (a representation of a graph to organize the data).
White-box testing methods for technical specification-based tests include, for example,
statement coverage (each statement is executed at least once), decision (branch)
coverage (each decision takes on all possible outcomes at least once), condition
coverage (each condition in a decision takes on all possible outcomes at least once),
and path coverage (all possible combinations of condition outcomes in each decision
occur at least once) (Kit 1995).

Testing can be categorized as functional or structural. In functional testing, test cases
are being formed on the basis of specification, and black-box testing is applied. In
structural testing, test cases are based on implementation, and white-box testing is
applied. Testing can also be categorized as static or dynamic. Static testing includes
reviews, walkthroughs, inspections, audits, program proving, symbolic evaluation,
and anomaly analysis. Dynamic testing includes any technique that involves
executing the software (Heiser 1997).

2.2 The viewpoints of this thesis

Process improvement and knowledge management were selected as the viewpoints of
this thesis to concentrate research resources on the issues which experts in the
preliminary study evaluated as the most important. Osterweil (1997) defines software
processes: “Software processes are software too, suggest that software processes are
themselves a form of software and that there are considerable benefits that will derive
from basing a discipline of software process development on the more traditional
discipline of application software development. Processes and applications are both
executed, they both address requirements that need to be understood, both benefit
from being modeled by a variety of sorts of models, both must evolve guided by
measurement, and so forth.”

19

Processes are modeled by identifying affecting factors and their relationships.
Karlstrom et al. (2002) use the “analytic-hierarchy process” (AHP) method in rating
SPI factors. Factors were identified by a qualitative study and the relationships
between factors were also identified. In this chapter, affecting factors that are collected
from literature are discussed. Factors affecting testing processes include, for example,
the involvement of testing in the development process, the influence of complexity on
the testing processes, risk-based testing, testing of software components, outsourcing
in testing, and the business orientation of an organizational unit (OU).

Graham (2002) emphasizes the early involvement of testing in the development
process, such as testers developing tests for requirements that developers analyze. The
involvement of testing in the development process is a complicated issue because the
processes glide in parallel. Baskerville et al. (2001) have noticed that software
developers run their testing or quality assurance in parallel with other development
phases, which results in mutually adjusted processes.

The complexity of testing increases as a function of the complexity of the system
under test (SUT). Recent changes in software development include, for example, that
systems are larger, they operate on various platforms, and include third-party
software components and Commercial Off-The-Self (COTS) software. Increasing
complexity of SUTs affects testing processes. Salminen et al. (2000) discuss the
strategic management of complexity and divide complexity into four components:
environmental, organizational, product, and process complexity.

A trade-off between the scope and schedule of testing affects testing processes and the
contents of testing. For example, the risk-based testing approach defines the contents
of testing especially in the case of a shortage of resources. The idea of risk-based
testing is to focus testing and spend more time on critical functions (Amland 2000).

Component-based development and testing emphasize reuse, and this affects testing
processes. Families of similar systems that are differentiated by features are called
Product Lines (Northrop 2006). Northrop (2006) addresses strategic reuse as a part of
the Software Product Line (SPL) architecture. Torkar and Mankefors (2003) surveyed
reuse and testing in different types of communities and organizations. They found
that 60% of developers claimed that verification and validation were the first to be
neglected in cases of time shortage during a project. This finding on reuse shows that
the testing of software components, COTS software, and third party software must be
improved before component-based software systems can become the next generation
mainstream software systems.

Both design and testing can be outsourced, which affects testing processes. The
literature of software testing expresses both advantages and disadvantages of
outsourcing (Kaner et al. 1999). Dibbern et al. (2004) have conducted a comprehensive
outsourcing survey and an analysis of the literature.

20

The business orientation and business practices of an organization may cause
variation in testing processes. Sommerville (1995) classifies software producers into
two broad classes according to their software products: producers of generic products
and producers of customized products. In this thesis, Sommerville’s (1995)
classification was complemented and widened with a finer granulation, and we added
a purely service-oriented dimension “consulting and subcontracting” at the other end.
In general, OUs can be positioned along a continuum that starts from a purely service
oriented OU and ends at a purely product oriented OU, as illustrated in Figure 1.

Service oriented OU
Product oriented OU

d
<

v

Generic products Customized products ~ Subcontracting ~ Consulting

Figure 1. Business orientation

Knowledge management was selected as another viewpoint of the thesis. Nonaka and
Takeuchi (1995) state that knowledge and its creation widely affect the
competitiveness of an organization. Knowledge is recognized as the principal source
of economic rent and competitive advantage (Argote & Ingram 2000; Spender & Grant
1996). According to Edwards (2003), knowledge is central in software engineering and
knowledge management is connected to different tasks of software engineering.

Knowledge can further be divided into explicit and tacit knowledge. The objective of
knowledge management is to ensure that the right people have the right knowledge at
the right time (Aurum et al. 1998). According to Hansen et al. (1999), knowledge
management strategies consist of codification and personalization strategies, as
illustrated in Figure 2. In a codification strategy, knowledge is codified (explicit) and
available in, for example, databases. In a personalization strategy, knowledge is tacit
and embedded in employees.

Codification Personalization

A

v

Explicit knowledge Tacit knowledge

Figure 2. Codification and personalization

21

Knowledge is further associated with knowledge transfer, which is discussed in the
literature, for example by (Becker & Knudsen 2003; Cohen et al. 2004; Conradi & Dyba
2001; Szulanski 1996). Becker and Knudsen (2003) discuss barriers to and enablers of
knowledge transfer and divide knowledge transfer into intra-firm and inter-firm
transfer. According to them, intra-firm knowledge flows take place within an
organization from management to employees (vertical) or between colleagues
(horizontal). Inter-firm knowledge flows may lead to downstream (with customers) or
upstream (with suppliers, universities and other organizations) knowledge flows
(vertical or horizontal), that is, between organizations in competitive interaction.

Szulanski (1996) explored the internal stickiness of knowledge transfer and found that
the major barriers to internal knowledge transfer were knowledge-related factors such
as the recipient’s lack of absorptive capacity, causal ambiguity, and an arduous
relationship between the source and the recipient. Conradi and Dyba (2001) studied
formal routines to transfer knowledge and experience and concluded that formal
routines must be supplemented by collaborative, social processes to promote effective
dissemination and organizational learning. Cohen et al. (2004) have noticed that the
physical distance between development and testing may create new challenges for
knowledge transfer. They found in exploring the organizational structure that testers
and developers ought to co-locate. When testers and developers worked in separate
locations, communication, as well as personal relationships, was impaired, unlike
when both groups worked in close proximity.

The knowledge management strategy affects knowledge transfer. Knowledge is
transferred in a personalization strategy through personal interaction. If the
knowledge has many tacit elements, transferring it may need many transactions
(Nonaka 1994). Codified information is reusable, but creating codified knowledge is
expensive because of codification methods and tools (Foray 2004). According to Foray
(2004), it is no longer necessary to develop knowledge internally, for it can be bought;
this effect is at the root of the growing trend toward outsourcing in many industries.

Testing tasks can be divided into scripted testing and exploratory testing. Scripted
testing consists, for example, of running test cases and reporting (Tinkham & Kaner
2003). Extreme scripted testing enables testing automation. In exploratory testing, a
tester actively controls test planning, runs the tests, and uses the gained information in
planning better tests (Bach 2003). According to Tinkham and Kaner (2003), all testers
use exploratory testing to a certain extent. Scripted testing emphasizes explicit
knowledge and exploratory testing emphasizes tacit knowledge, as illustrated in
Figure 3.

22

Scripted testing Exploratory testing

\ 4

<&
<«

Explicit knowledge Tacit knowledge

Figure 3. Scripted and exploratory testing

2.3 The history of software testing

The history of software testing connected with the history of software engineering
helps to understand how the practice of testing has evolved. In the following, the
events that have affected testing are highlighted.

In the 1950s, testing was regarded as debugging that was performed by developers.
Testing focused on hardware. Program checkout, debugging, and testing were seen as
one and the same. In the late 1950s, software testing was distinguished from
debugging and became regarded as detecting the bugs in the software (Kit 1995). The
phrases “make sure the program runs” and “make sure the program solves the
problem” described software testing in late fifties (Hetzel & Gelperin 1988).

During the 1960s, testing became more significant because the number, cost, and
complexity of computer applications grew (Boehm 2006). Programming languages
became more powerful. Compiling programs was difficult and time consuming
because of the lack of personal compilers (Whittaker & Voas 2002). The code and fix
approach became common (Boehm 2006). Faulty programs were released if there was
no time to fix them. “If you can't fix the errors, ignore them” (Baber 1982). During this
era, the infrastructure of development and testing was improved because of powerful
mainframe operating systems, utilities, and mature higher-order languages such as
Fortran and COBOL (Boehm 2006).

The era from 1970 to 1979 can be regarded as the birth of modern software testing.
During this era, coding became better organized and requirements engineering and
design were applied (Boehm 2006). The Structured Programming (SP) movement
emerged. The “Formal methods” branch of Structured Programming focused on
program correctness, either by mathematical proof or by construction via a
“programming calculus” (Boehm 2006). Myers (1976) defined testing as the process of
executing a program with the intent of finding errors. Cases of “fully tried and tested”
software were found to be unusable (Baber 1982). The focus of testing was more code-
centric than quality centric (Whittaker & Voas 2002).

23

During the 1980s, Computer-Aided Software Engineering (CASE) tools, development
of standardization, capability maturity models (CMM), SPI, and object-oriented (OO)
methods affected the development of software testing. The idea of CASE tools was to
create better software with the aid of computer assisted tools (Whittaker & Voas 2002).
This development led to testing tools and automation (Berner et al. 2005; Dustin et al.
1999; Poston 1996) and improved software testing techniques (Beizer 1990). Testing
tools and automatic testing appeared during the decade (Mantere 2003).

During the 1980s, various standards and capability maturity models were created. The
Software Engineering Institute (SEI) developed software CMM (Paulk et al. 1995). The
software CMM content was largely method-independent, although some strong
sequential waterfall-model reinforcement remained (Boehm 2006). A similar
International Organization for Standardization (ISO) ISO-9001 standard for quality
practices applicable to software was concurrently developed, largely under European
leadership (Boehm 2006). Quality systems were created based on capability maturity
models and standards. Quality systems defined SQA and further testing. IEEE/ANSI
standards were published for software test documentation, IEEE standard 829-1983
(1983), and for software unit testing, IEEE standard 1012-1986 (1986) (Hetzel &
Gelperin 1988). Osterweil’s paper “Software Processes are Software Too” (Osterweil
1987) directed the focus on SPL. SPI improved productivity by reducing rework
(Boehm 2006). The SPI approach connected development and testing processes.
During the 1980s, the way of thinking changed in software testing. The purpose of
testing was no longer to show that the program has no faults but to show that the
program has faults (Hetzel & Gelperin 1988).

During the 1990s, the most influential factors included OO methods, SPI, capability
maturity models, standards, and automatic testing tools. According to Boehm (2006),
OO methods were strengthened through such advances as design patterns, software
architectures and architecture design languages, and the development of the Unified
Modeling Language (UML) (Jacobson et al. 1999). Dai et al. (2004) explain, for
example, how to proceed from design to testing using UML description.

OO methods, SPL architecture (Northrop 2006), reusable components etc. caused a
transition from the waterfall model to models providing more concurrency, such as
evolutionary (spiral) models. Concurrent processes were emphasized during the 1990s
because OO methods and evolutionary software life cycle models required concurrent
processes and the sequential processes of the waterfall model were no longer
applicable (Boehm 2006). According to Whittaker and Voas (2002), better technical
practices improved software processes: OO methods, evolutionary life cycle models,
open source development, SPL architecture etc. motivated reuse-intensive and COTS
software development. During the 1990s emerged Component-Based Software
Engineering (CBSE) and COTS components (Whittaker & Voas 2002). The evolution of

24

software engineering emphasized testing of OO systems and components, and
regression testing because of repetitive testing tasks. The application of CMM led to
developing a Testing Maturity Model (TMM) (Burnstein et al. 1996). TMM described
an organization’s capability and maturity levels in testing. Testing was recognized as
more important, which led to the development of testing tools (Kit 1995). The
automatic completion of test cases was an important issue because of the growing
number of needed test cases (Katara 2005).

OO systems introduced new fault hazards and affected testing. The testing methods of
procedural programming are almost all applicable when testing OO systems, but the
testing of OO systems creates new challenges (Binder 2001). New fault hazards of OO
languages are listed in Table 1.

Table 1. New fault hazards of OO languages according to Binder (2001)

Dynamic binding and complex inheritance structures create many opportunities for faults due
to unanticipated bindings or misinterpretation of correct usage.

Interface programming errors are a leading cause of faults in procedural languages. OO
programs typically have many small components and therefore more interfaces. Interface
errors are more likely, other things being equal.

Objects preserve state, but state control (the acceptable sequence of events) is typically
distributed over an entire program. State control errors are likely.

In the 21st century, agile methods have formed the prevailing trend in software
development. The continuation of the trend toward Rapid Application Development
(RAD) and the acceleration of the pace of changes in information technology (internet
related software development), in organizations (mergers, acquisitions, startups), in
competitive countermeasures (national security), and in the environment
(globalization, consumer demand patterns) have caused frustration with heavyweight
plans, specifications, and documentation and emphasized agile software development
(Boehm 2006). Agile methods have offered solutions for light-weight software
development (Whittaker & Voas 2002).

According to Abrahamsson et al. (2003), the driving force to apply agile methods
comes from business requirements, such as lighter-weightiness, fast reaction time, and
tight schedules. Software development projects that apply agile methods react fast to
changes in business and technology. Agile methods fit especially small and fast
reacting software development teams and projects where the schedule is short,
requirements change often, the criticality of the products is under average, and when
it is important to publish the product before competitors.

Agile software development emphasizes value-prioritized increments of software.
According to Boehm (2006), the value-based approach (Value-Based Software

25

Engineering (VBSE) also provides a framework for determining which low-risk,
dynamic parts of a project are better addressed by more lightweight agile methods
and which high-risk, more stabilized parts are better addressed by plan-driven
methods. Such syntheses are becoming more important as software becomes more
product-critical or mission-critical while software organizations continue to optimize
on time-to-market (Boehm 2006).

The comparison of traditional and agile software development is derived from Nerur
et al. (2005). The comparison is summarized in Table 2.

Table 2. Traditional versus agile software development according to Nerur et al.
(2005)

Traditional Agile

Fundamental Assumptions | Systems are fully specifiable,

predictable, and can be built

High-quality, adaptive
software can be developed by

through meticulous and | small teams using the
extensive planning. principles of continuous
design improvement and
testing based on rapid
feedback and change.
Control Process centric People centric
Management Style Command-and-control Leadership-and-collaboration

Knowledge Management

Explicit

Tacit

Role Assignment

Individual - favors

Self-organizing teams —

specialization. encourages role
interchangeability.
Communication Formal Informal
Customer’s Role Important Critical
Project Cycle Guided by tasks or activities. | Guided by product features.
Development Model Life cycle model (waterfall, | The evolutionary-delivery
spiral, or some variation) model
Desired Organizational | Mechanistic (bureaucratic | Organic (flexible and
Form/Structure with high formalization) participative encouraging
cooperative social action)
Technology No restriction Favors OO technology

Agile methods contain numerous methods and the knowledge of their suitability and
usability is insufficient. Agile methods include, for example, Adaptive Software
Development (ASD) (Highsmith 2000), Agile Modeling (AM) (Ambler 2002), the
Crystal Family (Cockburn 2000), the Dynamic Systems Development Method (DSDM)
(Stapleton 1997), Extreme Programming (XP) (Beck 2000), Feature-Drive Development
(FDD) (Palmer & Felsing 2002), Internet-Speed Development (ISD) (Baskerville et al.

26

2001; Cusumano & Yoffie 1999), Pragmatic Programming (PP) (Hunt & Thomas 2000),
and Scrum (Schwaber & Beedle 2002).

The applicability of agile and plan-driven methods depends on the nature of the
project and the development environment. Boehm and Turner (2003) have developed
a polar chart that distinguishes between agile methods and plan-driven methods
(Figure 4). The five axes of the polar chart represent factors (personnel, dynamism,
culture, size, and criticality) that according to them make a difference between these
two approaches.

Personnel competence (%level 1B)

(% level 2 and 3)1
40 —— 15
30—— 20
Criticality
20—— 25 D i
(Loss due to impact of defects) ynamism
10—— 30 (% requirements
Single lif h th
ingle life Discretionaryo change/month)
funds]
Many lives
Essential
funds Comfort

Plan-

70 driven

300

Size

(% thriving on chaos versus order)

(Number of personnel)

1Levels 1B, 2, and 3 describe Cockburn’s Three Levels of Software Understanding. The higher levels 2 and 3
express expertise. Cockburn’s scale is relative to the application’s complexity. A developer might be a Level
2 in an organization developing simple applications, but a Level 1A in an organization developing high
complexity applications.

Figure 4. Agile versus plan-driven methods (Boehm & Turner 2003)

27

According to Nerur et al. (2005), agile methods favor OO technology, tacit knowledge
management, and informal communication. Agile software development affects
testing processes and knowledge management. For example, the XP method (Beck
2000) contains a process where acceptance test cases are implemented before
programming. Also XP requires an automated testing environment.

After the turn of the millennium, Component-Based Software Development (CBD)
and reuse have formed another trend in software development. The objective of the
CBD is to save development time and costs, and produce higher quality software
because of tested components. A central point is work avoidance through reuse
(Boehm 2006). Components consist, for example, of COTS, third party, and open
source components. Components include, for example, methods, classes, objects,
functions, modules, executables, tasks, subsystems, and application subsystems. CBD
is expanding rapidly. It is commonly claimed (e.g. Cai et al. 2005) that component-
based software systems are the next generation mainstream software systems. The use
of components is expected to shorten development time (Brown 2000).

COTS and open source software components support the rapid development of
products in a short time. The availability of COTS systems is increasing (Boehm 2006;
Whittaker & Voas 2002). The COTS integration and testing challenges increase because
COTS vendors differentiate their products. Enterprise architectures and Model-Driven
Development (MDD) offer prospects of improving the compatibility of COTS by
increasing pressure on COTS vendors to align with architectures and participate in
MDD (Boehm 2006).

Testing products of MDD leads to model-based testing (Katara 2005). MDD and
model-based testing offer tools to improve the quality and compatibility of
component-based systems. Model-based testing is discussed, among others, by
Pretschner et al. (2005). The growing use of COTS, open source, and third party
components emphasizes testing of, for example, components, interfaces and
integrations. The use and testing of components is discussed, for example, by Cai et al.
(2005) and Voas (1998). Testing of component-based systems is challenging. Boehm
(2006) notes that components are opaque and difficult to debug. They are often
incompatible with each other due to the need for competitive differentiation. They are
uncontrollably evolving, averaging about 10 months between new releases, and
generally unsupported by their vendors after 3 subsequent releases.

28

2.4 Summary

In this thesis, software testing, i.e. verification and validation, is evaluated from the
process improvement and knowledge management viewpoints. According to the
history of software testing, the evolution of testing has followed the pace of changes in
software engineering. This is natural because software testing is a part of software
engineering. Component-based software systems (e.g. Cai et al. 2005) and agile
software development seem to be rising trends in software development. In testing,
this evolution means testing of component-based systems and testing with agile
software development in addition to testing systems based on plan-driven methods.
Both CBSE and agile software development emphasize the development of testing
processes and knowledge management because they affect the testing process
contents and knowledge management. CBSE requires, for example, testing of
components. Agile software development requires, for example, the implementation
of test cases before programming and emphasizes tacit knowledge (Nerur et al. 2005).

29

3 Research goal and methodology

To approach the research problem, how to concurrently reduce testing costs and
improve software quality, it was further decomposed into sub-problems and discussed
in respective publications. The objective of the first sub-problem was to specify the
viewpoints of the thesis. The objective of the other sub-problems was to identify
affecting factors and derive improvement hypotheses by analyzing the research
subject from selected viewpoints with quantitative and qualitative methods.

Software testing and related software development in organizations formed the
research subject. The standards ISO/IEC 12207, Software Life Cycle Processes (2001),
ISO/IEC 15504-5, An Exemplar Process Assessment Model (2004), and ISO/IEC 15504-
1, Concepts and Vocabulary (2002) explained how we initially understood the research
subject. In this thesis, we use the terms software development and testing. The process
contents of these terms were adopted from the ISO/IEC 12207 (2001) and 15504 (2004)
standards. The objective was to select internationally accepted standards that explain
the state-of-the-art of software development and testing. The research process
consisted of three phases: preliminary study (viewpoints of the thesis), quantitative
studies, and qualitative studies.

In the selection of the research methods, the objective was to find the best method to
approach the research subject. For the preliminary phase of the thesis, we selected a
Delphi derivative research method (Schmidt 1997). The survey method (Fink &
Kosecoff 1985) was used as the research method in the quantitative phase of the thesis
and the grounded theory method (Strauss & Corbin 1990) served as the research
method in the qualitative phase of the thesis.

30

3.1 The research problem

The research problem arose from author’s own observations in the software
development projects and that according to literature more than 50 % of development
efforts is frequently focused on testing (Kit 1995). The research problem, how to
concurrently reduce testing costs and improve quality, was decomposed into sub-
problems. The specification of the viewpoints of the thesis (sub-problem 1) was
needed to specify the scope of the thesis. Sub-problems 2 and 3 were used in the
quantitative analysis of the software testing practice. Sub-problems 4 (quantitative
analysis) and 7 (qualitative analysis) concerned the emergent special question of how
testing schedule over-runs are associated with knowledge transfer between
development and testing. Sub-problems 5, 6, and 8 were used in the qualitative
analysis of the software testing practice. Objectives of the individual studies in this
thesis were derived from the specified sub-problems. Sub-problems, objectives of the

studies, and the respective publications are listed in Table 3.

Table 3. Decomposition of the research problem

Sub-problem

Objective of the study

Publication

1. Which are the viewpoints of the
thesis?

Specification of the viewpoints of
the thesis.

Publication 1

2. Which factors reduce testing costs | Identification and decomposition | Publication II
and improve software quality? of factors that affect testing cost

reduction and software quality

improvement.
3. What are the cross-sectional | Current situation and | Publication III
situation and improvement needs in | improvement needs in software
software testing? testing.
4. How is knowledge transfer between | Statistical analysis of the factors | Publication IV

development and testing associated
with testing schedule
(emergent special question)

over-runs?

affecting the software testing time
schedule.

5. How to improve software testing
efficiency from the SPI viewpoint?

Analysis of the practice of software
testing from the process
improvement viewpoint.

Publication V

6. How to improve software testing
from the knowledge
management viewpoint?

efficiency

Analysis of the practice of software
testing from the knowledge
management viewpoint.

Publication VI

7. How is knowledge transfer between
development and testing associated
with testing
(emergent special question)

schedule over-runs?

Analysis of the factors affecting the
software testing time schedule.

Publication VII

8. What is the association between
testing outsourcing and knowledge
management?

Analysis of the associations
between testing outsourcing and

knowledge management.

Publication VIII

31

3.2 Research subject and the selection of the research
methods

This thesis uses a mixed methods approach consisting of quantitative and qualitative
analyses. Combining quantitative and qualitative analyses is based on methodological
pluralism. Methodological pluralism means that there is no one “correct” method of
science but many possible methods (Hirschheim 1985). In the following, the
background that led to the selection of methodological pluralism is explained.

According to Hirschheim (1985), systems that consist of computers and users are,
fundamentally, social rather than technical. Thus, the scientific paradigm adopted by
the natural sciences is appropriate to such systems only insofar as it is appropriate for
the social sciences (Hirschheim 1985). In the selection of the research methodology
and paradigm, the above sentence from Hirschheim was used. In this thesis, both
technical and social aspects are considered, but without emphasizing the technical or
social aspect of the systems. According to Punch (1998), the term “social science”
refers to the scientific study of human behavior. “Social” refers to people and their
behavior, and to the fact that so much of that behavior occurs in a social context.
“Science” refers to the way that people and their behavior are studied.

In methodological pluralism, no single scientific method is placed above other
methods, but different scientific methods are used to increase the validity of the study.
In this thesis, the scientific methods used consisted of the Delphi, survey, and
grounded theory methods. Understanding and interpretation used in the qualitative
phase of the thesis included features from hermeneutics. In hermeneutics,
understanding and interpretation are essential. Hermeneutical thinking has the same
philosophical base as phenomenology, which attempts to capture the essence of
things. Positivism and phenomenology are often presented as opposite research
philosophies. Positivism is often associated with quantitative study, and
phenomenology with qualitative study. Pather and Remenyi (2004) state that
positivism or logical positivism, interpretivism or qualitative research, and critical
research form the three principal tenets of dominant methodological paradigms in
research. According to Jarvinen (1999), positivism tends to explain and predict what
happens in the social reality by searching for regularities and causal relations between
the factors of phenomena. According to interpretivism, the social world can be
understood only through the point of view of those individuals who participated in
the activities being studied. The critical perspective assumes that knowledge is based
on social and historical practices.

Pather and Remenyi (2004) describe critical realism as a combination of positivism,
interpretivism, and critical research. According to them, it has become increasingly

32

obvious that none of these approaches is superior to the others and the best results are
achieved by a combination of all of these.

3.21 The research subject

In this thesis, the ISO/IEC 12207 and 15504 standards describe how we initially
understood and approached the research subject, software testing and related
software development in organizations. The ISO/IEC standards were selected because
they offered both process and assessment models. The Process Assessment Model
15504-5 (ISO/IEC 2004) uses ISO/IEC 12207 (ISO/IEC 2001) as the Process Reference
Model. Also, the ISO/IEC 15504-5 standard (ISO/IEC 2004) was under preparation and
we had the possibility to use it afresh.

The life cycle model was derived from the standard ISO/IEC 12207, Software Life
Cycle Processes (2001). The assessment model was derived from the standard ISO/IEC
15504-5, An Exemplar Process Assessment Model (2004). The organizational unit (OU)
was selected as an assessment unit and it was derived from the standard ISO/IEC
15504-1, Concepts and Vocabulary (2002). The standard ISO/IEC 15504-1 (2002)
specifies an OU as a part of an organization that is the subject of an assessment. An
OU deploys one or more processes that have a coherent process context and operates
within a coherent set of business goals. An OU is typically part of a larger
organization, although in a small organization, the OU may constitute the whole
organization. The reason to use an OU instead of a company as an assessment unit
was that we wanted to normalize the effect of the company size to get comparable
data. Another reason to use an OU as an assessment unit was that in a larger company
OUs can have different process contents and different business goals.

3.2.2 The selection of the research methods

A Delphi derivative research method (Schmidt 1997) was selected as the research
method in the preliminary phase of the thesis because the Delphi method can be used
in finding good arguments about an ongoing process. Collecting arguments was the
motivation to use the Delphi method in this study. Also, the method generated
insights into why respondents view certain issues as being more important than
others.

The survey method described by Fink and Kosecoff (1985) was selected as the research
method in the quantitative phase of the thesis because a method for gathering
information from interviewees was needed, and a survey is a method of collecting
information from people about their feelings and beliefs. Surveys are most
appropriate when information should come directly from people (Fink & Kosecoff
1985). In a survey, information is collected in a standardized form from a group of
persons. According to Pfleeger and Kitchenham (2001) a survey is a comprehensive

33

system for collecting information to describe, compare or explain knowledge,
attitudes and behavior.

The grounded theory research method outlined by Glaser and Strauss (1967) and later
extended by Strauss and Corbin (1990) was selected for the qualitative phase of the
thesis. Grounded theory was selected because of its ability to uncover the issues from
the practice under observation that may not have been identified in earlier literature
(Glaser & Strauss 1967).

In a case study, detailed information is collected from a single case or from a small
group of related cases. According to Eisenhardt (1989), the theory built from a case
study is often novel, testable, and empirically valid. According to Strauss and Corbin
(1990), the grounded theory method uses a systematic set of procedures to develop an
inductively derived grounded theory about a phenomenon.

The results of the quantitative and qualitative analyses were triangulated to increase
the validity of the thesis. The principle of triangulation means that more than one
method, observer or data set is used in a study to complement each other and to verify
the findings (Denzin 1978). According to Seaman (1999), the combination of
quantitative and qualitative methods is usually more fruitful than either in isolation,
because statistical relationships found between the quantitative variables can also be
checked against qualitative data and vice versa. Paré and Elam (1997) emphasize the
mixed method study and write about method triangulation that qualitative data can
be used to develop or suggest theoretical arguments which could then be
strengthened (or weakened) by quantitative support.

The philosophical baselines can be joined to the empirical study as illustrated in
Figure 5. The description is adopted from Hirsjérvi et al. (1997), and our selections are
added.

34

Ontology

Research
philosophy

Epistemology

Selection of
»| Beliefs of the standards and
essence of constructs: ISO/IEC
phenomena 12207 and 15504
}mder_ . standards
investigation
Empirical study
Background
assumptions
) Concrete selections
Beliefs of of the study: Delphi,
the suitable survey, and
method grounded theory
methods

Figure 5. Research philosophy in empirical study according to Hirsjdrvi et al. (1997)
with our selections

3.3 Research process

The research process was divided into three phases. In the preliminary phase of the
thesis, a Delphi derivative method was applied, the quantitative phase of the thesis
used the survey method, and the grounded theory method was applied in the
qualitative phase of the thesis. The research process together with the phases of the

thesis is expressed in Figure 6.

35

Preliminary phase of the thesis
Steering group, expert group, Publication I, Delphi method.

Quantitative phase of the thesis
Sample (30 OUs), probability sampling, structured questionnaire, survey method.
Publications II- IV, frequencies, correlation and regression analysis.

\ 4

Qualitative phase of the thesis

Initial sample (26 interviews), 5 case OUs (15 interviews), theoretical (polar points) and
snowball sampling.

Publications V-VIII, initial data analysis, open and axial coding, identification of
categories and dimensions, selective coding, grounded theory method.

Figure 6. Research process and phases
3.3.1 Delphi method in the preliminary phase of the thesis

During the preliminary phase of the thesis, experts evaluated the relative importance
of research directions in software testing using the Delphi method (Schmidt 1997). The
objective of the preliminary phase of the thesis was to specify the viewpoints of the
thesis. The research process and the results of the preliminary phase of the thesis are
reported in Publication I.

The phases of the preliminary study were adopted from the Delphi derivative survey
method developed by Schmidt (1997). The original Delphi method (Dalkey 1969;
Dalkey & Helmer 1963) was developed at the Rand Corporation in the 1950s. The
objective of the Delphi method is to achieve the most reliable consensus of opinion of
a group of experts. This is accomplished via a series of questionnaires and controlled
opinion feedback. Dalkey and Helmer (1963) claim the Delphi method to be more
conducive to independent thought than some more conventional uses of experts.

The Delphi method was selected to this study because it is suitable for group
decisions, and the objective here was to identify important issues in software testing
from experts working together in group meetings. Successful experiences with
Schmidt’s Delphi derivate method contributed to our choice to apply the Delphi
method. Schmidt’s Delphi derivative method was successfully used in a study of
identifying software project risks performed by Keil & al. (1998). In this study,
experienced software project managers identified and ranked the most important risks

36

in software projects. Not only the risk factors and their relative importance were
identified, but also new insights into why some risks are seen as more important than
others were gained. Ranking rounds were repeated until either the panelists reached a
strong consensus or the consensus did not change from one round to the next. The
Delphi survey is designed to elicit opinions from a panel of experts through iterative,
controlled feedback. According to Schmidt (1997), in order to help the reader to
determine the degree of confidence to place in the findings, the total number of issues
generated in the beginning and the strength of their support should be reported, the
panel of experts must be well described, and the number of panelists for each round
must be reported.

Data collection and analysis in the preliminary phase

The Delphi derivative method applied requires a panel for ranking the issues. The
steering group of the research project formed the panel where the important issues of
software testing were ranked. The panel (steering group) consisted of representatives
of the participating industry and research institutes. In addition, an expert group was
assembled.

Schmidt (1997) mentions three phases of data collection in the Delphi method: the
discovery of issues, determining the most important issues, and ranking the issues. In
the preliminary study, Schmidt’s “consolidating the data” was added as a separate
phase.

In the first phase (discovering the issues), the data was collected from literature and
expert interviews in order to capture as many issues as possible. According to Schmidt
(1997), this maximizes the chance to discover the most important issues.

The second phase — consolidating the list — was conducted in three steps. Firstly, larger
entities were formed from the issues of the list by researchers. Then this list was
introduced to the first panel. New issues were also accepted onto the list. Finally,
corrections were made based on the feedback from the first panel. In consolidation the
list was compressed from 22 to 9 issues.

In the third phase, the list was given to an expert group for rating to determine the
most important issues. The expert group consisted of experts who deal with problems
of testing daily. The expert group represented a wider cross-section of the software
engineering industry than the steering group. The objective of the expert group was to
generate information for the panel by rating the issues of software testing. The experts
were independently asked to rate the issues on the list on the Likert scale of 1 to 5 and
the results were summed up. This process was similar to the one described by Morris
et al. (1998).

37

The fourth phase (ranking the research issues) consisted of a panel which voted the
three most important issues on the list, eliminating the rest. The paring method was
adopted from Keil et al. (1998). The panel reached a consensus and selected the
winning issue.

3.3.2 Survey method in the quantitative study

In the quantitative phase of this thesis, the survey method (Fink 2003; Fink & Kosecoff
1985) was used. The survey method is used to gather information about feelings,
motivations, plans, beliefs, and personal, educational, and financial background. Tools
for gathering such information are usually questionnaires or interviews (Fink &
Kosecoff 1985). The results of the quantitative analyses are published in Publications 11-
Iv.

The survey method was selected as the quantitative research method in identification
and decomposition of factors that affect testing cost reduction and software quality
improvement (Publication II) because open-ended questions offered an insight into
why people believe what they do (Fink & Kosecoff 1985). The current situation and
improvement needs in software testing were described in Publication IIl. The survey
was the natural choice as the research method, because this study explores the cross-
sectional situation in software testing. Exploring the cross-sectional situation is the
basic form of a survey study (Fink & Kosecoff 1985). The statistical analysis of the
factors affecting the software testing schedule was described in Publication IV. The
survey method offered an efficient tool for data collection. Also successful experiences
with software testing surveys, for example, (Ng et al. 2004; Torkar & Mankefors 2003)
contributed to our choice to apply the survey as the quantitative research method.

According to Pfleeger and Kitchenham (2001), activities of the survey process include:

—_

Setting specific, measurable objectives.

Planning and scheduling the survey.

Ensuring that appropriate resources are available.
Designing the survey.

Preparing the data collection instrument.
Validating the instrument.

Selecting participants.

Administering and scoring the instrument.

R S

Analyzing the data.

10. Reporting the results.

38

Interviews can be categorized as structured, theme-based, or open interviews. In the
quantitative analysis, structured interviews were used. They were based on a
questionnaire consisting of scale-based, multiple choice, and open (open-ended)
questions.

The survey questions can be categorized into scale-based questions (e.g. the Likert
scale), multiple choice questions, and open questions. The instrument consisted of
structured and open questions, instructions, and a database. Multiple choice questions
and scale-based questions (Likert scale) were statistically analyzed. According to Fink
(2003), answers to open questions may be difficult to compare and interpret but they
can provide more detailed information than closed questions.

The reliability and validity of the survey instrument ought to be ensured (Litwin
1995). Fink (2003) writes that a reliable survey instrument is consistent and a valid one
is accurate. Fink (2003) emphasizes piloting; a pilot test is an opportunity to try out an
instrument well before it is made final. The questionnaire was piloted with three OUs
and four private persons. In addition, the members of the project’s steering group
commented on the form. According to Fink (2003), a survey’s internal consistency, or
homogeneity, is the extent to which all the items or questions assess the same skill,
characteristic, or quality. Internal consistency or homogeneity of multi-item questions
was measured by using Cronbach’s coefficient alpha (Cronbach 1951), the average of
all the correlations between each item and the total score. It was calculated to
determine the extent of homogeneity.

According to Fink (2003), a sample is a portion or subset of a larger group called a
population. A good sample is a miniature version of the population of which it is a
part — just like it, only smaller. The population of this study consisted of OUs that
develop and test technical software for automation or telecommunication domains.
We applied the standard ISO/IEC 15504-1 (ISO/IEC 2002) to guarantee that the
processes are comparable. The standard specifies a process as a set of interrelated
activities, which transform inputs into outputs. We judged the comparability of
processes by process outputs. We selected OUs of a high technical level producing real
time software, the criticality of which was above average.

Sampling methods can be divided into probability sampling and nonprobability
sampling. According to Fink (Fink 2003), probability sampling provides a statistical
basis for saying that a sample is representative of the study or target population. One
form of probability sampling is systematic sampling where, for example, every other
or every third item from the population list is selected for the sample.

39

Data collection

In the quantitative phase of the thesis, a validated survey instrument for data
collection and analysis was needed, but such an instrument was not available in the
literature. The questionnaire (Appendix II) was based on the process assessment and
improvement models, the Software Process Improvement and Capability
dEtermination (SPICE) (Emam et al. 1998) described in the ISO/IEC 15504-5 standard,
Information Technology — Process Assessment, an Exemplar Process Assessment
Model (ISO/IEC 2004) and Test Process Improvement (TPI) (Koomen & Pol 1999),
which is a model for testing process assessment and improvement. The TPI model was
used as a reference that describes the best practices. Standards ISO/IEC 12207,
Information Technology — Software Life Cycle Processes (ISO/IEC 2001) and ISO/IEC
15504 served as the basis for developing the research instrument. The constructs of the
instrument were derived from the ISO/IEC 12207 and ISO/IEC 15504 standards,
excluding business orientation that was derived from Sommerville (1995), items of
communication and interaction (knowledge transfer) that were derived from Suchman
(1989), and problems of the testing environment that were taken from software project
risks analyses (Boehm 1991; Keil et al. 1998; Standish 1994; Wallace & Keil 2004) and
modified to the testing environment. The terms “communication and interaction” and
“knowledge transfer” have been used as synonyms in this thesis. The term
communication and interaction (Publications I to V) was changed to knowledge
transfer (Publications VI to VIII) because the term knowledge transfer is more compact
and more widely used in the literature. Further, knowledge transfer and know-how
are discussed as a part of knowledge management.

The sample contained 40 industry experts from 30 OUs. The survey instrument
consisted of a structured questionnaire. Respondents were interviewed face-to-face. A
few open questions were placed at the end of the questionnaire. The classification of
the open answers was planned in advance by creating initial classes. The
questionnaire was planned to be answered during the interview to avoid missing
answers because they make the data analysis complicated. All the interviews were
tape-recorded. The selection from the population to the sample was based on
probability sampling. The OUs were in random order in our database and every
second organization was selected. Baruch (1999) states that the average response rate
for self-assisted questionnaires is 55.6%, and when the survey involves top
management or organizational representatives the response rate is 36.1%. In this case,
a self-assisted, mailed questionnaire would have led to a small sample. For these
reasons, it was rejected and personal interviews were selected.

One person did all of the interviews to minimize the bias caused by different
interviewers. Only two OUs refused to give an interview. This was because they felt
that the questions concerned classified information. In addition, three OUs were

40

rejected because they did not fit the population criteria in spite of the source
information, and three OUs were excluded because it was impossible to fit the
interview into the respondent’s schedule. Therefore, the response rate was all in all
79%.

Data analysis

The survey instrument was built by using Excel spreadsheet software. The answers of
the interviewees were directly collected into Excel tables and further transformed to
SPSS software (2004) format. Statistical analysis was implemented by using SPSS
software. The statistical analysis included the calculation of frequencies including
basic statistics (e.g. number of occurrences, mean, geometric mean, median, mode,
and standard deviation), visual representation of statistics, estimation of the reliability
of the multi-item constructs, and correlation and regression analyses.

The objective of the first part of the quantitative phase of the thesis (Publication 1I) was
to evaluate from the testing point of view the factors that affect cost reduction and
software quality improvement. Both the format of the open-ended questions and the
classification of the answers were based on the like best (LB) technique adopted from
Fink & Kosecoff (1985). According to the LB technique, respondents were asked to list
at least one but no more than three points they considered the most efficient. The
results revealed the relative importance of factors that affect software testing efficiency
and the decomposition of the affecting factors.

The objective of the second part of the quantitative phase of the thesis (Publication III)
was to reveal the current situation and improvement needs in software testing. The
statistical analysis included the calculation of frequencies (e.g. number of occurrences,
mean, geometric mean, median, mode, and standard deviation) and visual
representation (e.g. XY scatter, line, column, and bar graphs, and pie and radar
charts). In this study we used the mean as the measure of the “central tendency”
because the data was collected using an interval scale (Fink & Kosecoff 1985) and it
obeyed normal distribution.

The objective of the third part of the quantitative phase of the thesis (Publication 1V)
was to identify and model constructs associated with over-runs in software testing
schedules. Constructs concerning communication and interaction were measured as
multi-item constructs. The reliability of the multi-item constructs was estimated by
using the Cronbach alpha (1951). This process was similar to the one described by
Dyba (2000). The Cronbach coefficient alpha expresses the degree to which items in a
scale are homogeneous. The calculation was performed using the SPSS software
(2004). The alpha expresses the mean reliability coefficient estimate for all possible
ways of splitting a set of items in two (Cronbach 1951). Nunnally (1978) states that the
coefficient alpha sets an upper limit to the reliability of tests constructed in terms of a

41

domain-sampling model. If it proves to be very low, either the test is too short or the
items have very little in common. The data of the items was collected using an interval
scale. The constructs were calculated as the means of the four items which still
improved the normal distribution of the constructs.

In the correlation and regression analysis, a Pearson correlation matrix was first
calculated between the variables to estimate the constructs associated with testing
schedule over-runs. The significance of correlations was calculated at levels 0.05 and
0.01 (2-tailed). In the regression model, the independent variable groups consisted of
communication and interaction constructs, product orientation, and problems of the
testing environment (control variables). Keeping the testing schedule was selected as
the dependent variable. In the regression analysis, stepwise linear regression was used
as the variable selection method. R Square statistics were used to express the
proportion of the variance of the dependent variable explained by the independent
variables. The statistical significance of the model was estimated by the analysis of the
variance. Regression coefficients and the significance of the effect of the independent
variables on the dependent variable were calculated. The collinearity analysis revealed
that the variables were independent. The tolerance values were above 0.2 for all
variables, which means that there is no evidence of multicollinearity between the
variables.

3.3.3 Grounded theory method in the qualitative study

In the qualitative phase of this thesis, grounded theory (Strauss & Corbin 1990) was
used. The baseline in the qualitative research is to describe real life. The research
subject is studied as comprehensively as possible. The objective of a qualitative study
is rather to find or reveal facts than to prove existing theorems. Strauss and Corbin
(1990) define qualitative research as any kind of research that produces findings not
arrived at by means of statistical procedures or other means of quantification. Tesch
(1990) divides qualitative research methods into four main groups concerning the
research interest: the characteristics of language, the discovery of regularities, the
comprehension of the meaning of text/action, and reflection. The results of the
qualitative analyses are published in Publications V-VIII.

Tesch (1990) categorizes grounded theory in the field where the research interest is in
the discovery of regularities. The grounded theory among the types of qualitative
research is described in Figure 7.

42

The discovery of regularities

Identification (and categorization)
of elements, and exploration of
their connections

Transcen: Event Grounded
dental structure theory
realism analysis

Ethnographic Ecological

content analysis psychology

Discerning of patterns

In
conceptualization As culture
As
As deficiencies, socialization
ideologies
Phenome-
nograph L.
graphy Holistic
Qualitative ethnography
evaluation,
action research,
collaborative
h, .
re'sc?arc . Educational
critical/emanci-
) h ethnography,
patory researc naturalistic
inquiry

Figure 7. Grounded theory among the types of qualitative research according to

Tesch (1990)

In analyzing the practice of software testing (Publications V, VI, and VIII) and in
analyzing factors that affect the software testing schedule (Publication VII), grounded
theory was selected as the qualitative research method because it enables the
identification of affecting factors and their relationships by grounding observations on
the data. Successful experiences with the grounded theory method (Carter & Dresner
2001; Paré & Elam 1997; Smolander et al. 2005) contributed to our choice to apply the

method.

43

Data collection

The beginning of a qualitative (interpretive) study includes the definition of a research
problem, possible a priori constructs, the selection of cases, and the crafting of
instruments and protocols for data collection (Eisenhardt 1989). The quantitative
analysis preceded the qualitative analysis meaning that some candidates or a priori
constructs, such as business orientation, were available. According to Eisenhardt
(1989), a priori constructs can help to shape the initial design of the research. Inductive
theory building research should, however, have no theory and no hypotheses to test.

For the case study, we selected five OUs from among the thirty OUs interviewed
during the quantitative phase of the thesis. The sampling was theoretical (Paré & Elam
1997) and the cases were chosen to provide examples of polar types (Eisenhardt 1989),
which means that the cases represent different types of OUs, such as different line of
business, different size of the company, and different operation. Theoretical sampling
(Glaser & Strauss 1967) describes the process of choosing research cases to compare
with other cases. The goal of theoretical sampling is not the same as with probabilistic
sampling. The researcher’s goal is not a representative sample of all possible
variations, but gaining a deeper understanding of the analyzed cases and identifying
concepts and their relationships. Theme-based questionnaires (Appendix III) served as
the instruments for data collection.

The study included four theme-based interview rounds. We personally visited
companies and carried out 41 tape-recorded interviews. The interviews were
conducted by two researchers. The duration of the interviews varied between one and
one and a half hours and they were all tape-recorded and transcribed. A memo
containing the emphasized issues was written on each interview.

The first interview round that was completed during the quantitative analysis served
also as the first interview round for the qualitative analysis. The first interview round
contained both structured and semi-structured (open) questions. The objective of this
interview round was to understand the basic practice of testing, identify case OUs
(representative polar points) for the next round, and identify problems and
improvement proposals. The interviewees were managers of development or testing
or both. In some interviews, there was more than one interviewee present, for example
a manager of development and a manager of testing. Such interviews usually lasted
more than one hour. The questions of the first round concerned general information
on the OU, processes, communication and interaction between development and
testing, and the development environment of the OU.

The interviewees of the second round were managers of testing. In some interviews,
managers of development were also present. The duration of the interviews varied
between one and one and a half hours. The objective of the second interview round

44

was to achieve a deeper understanding of the software testing practice. The questions
were theme-based and concerned problems in testing, the utilization of software
components, the influence of the business orientation, communication and interaction,
schedules, organization and know-how, testing automation, and economy.

The interviewees of the third round were testers and the interviewees of the fourth
round were systems analysts. The interviews in these rounds were also theme-based
and concerned the work of the interviewees, problems in testing, the utilization of
software components, the influence of the business orientation, communication and
interaction, schedules, organization and know-how, and testing automation. The
interviews lasted about one hour.

The themes of the interview rounds remained similar, but the questions evolved from
general to detailed. Before proceeding to the next interview round, all interviews were
scripted and coded because new ideas emerged in the coding. These new ideas were
reflected on the next interview rounds.

Managers of development and testing, testers, and systems analysts were selected as
interviewees because these stakeholders face the daily problems of software testing.
The data collection process of all 41 interviews generated a transcription of 946 pages.

Data analysis

The objective of the qualitative studies (Publications V, VI and VIII) was to understand
the practice of software testing from the points of view of process improvement
(Publication V), organization and knowledge management (Publication VI), and
outsourcing and knowledge management (Publication VIII). The objective of
Publication VII was to investigate the emergent special question: the relationship
between software testing schedule over-runs and knowledge transfer.

The analysis in grounded theory consists of three types of coding: open coding, where
categories of the study are extracted from the data; axial coding, where connections
between the categories are identified; and selective coding, where the core category is
identified and described (Strauss & Corbin 1990). In practice, these steps overlap and
merge because the theory development process proceeds iteratively. The theory was
derived inductively from and grounded on the data.

The objective of the open coding was to classify the data into categories and identify
leads in the data. The process of grouping concepts that seem to pertain to the same
phenomena is called categorizing, and it is done to reduce the number of units to
work with (Strauss & Corbin 1990). The open coding of the interviews was carried out
using the ATLAS.ti software (ATLAS.ti - The Knowledge Workbench 2005). The open
coding process started with “seed categories” (Miles & Huberman 1994) that
contained essential stakeholders, phenomena, and problems. Seed categories formed

45

the initial set of affecting factors. The ISO/IEC standards 12207 (2001) and 15504 (2004)
were used in identifying the seed categories. Seaman (1999) notes that the initial set of
codes (seed categories) comes from the goals of the study, the research problems, and
predefined variables of interest. In the open coding, new categories appeared and
existing categories were merged, because especially in the beginning of the coding,
new information sprang up. The open coding of all 41 interviews yielded 196 codes
which were classified in axial coding into categories according to the viewpoints of the
study.

The objective of the axial coding was to further develop categories, their properties
and dimensions, and causal conditions or any kinds of connections between the
categories. The categories were further developed by defining their properties and
dimensions. The dimensions represent the locations of the property or the attribute of
a category along a continuum (Strauss & Corbin 1990). The phenomenon represented
by a category was given a conceptual name (Strauss & Corbin 1990). Our inductive
data analysis of the categories included Within-Case Analysis and Cross-Case-
Analysis, as explained by Eisenhardt (1989). We used the tactic of selecting
dimensions and properties, and looking for within-group similarities coupled with
intergroup differences (Eisenhardt 1989). Each chain of evidence in this interpretation
was established by having sufficient citations in the case transcriptions.

The objective of the selective coding was to identify the core category (Strauss &
Corbin 1990), a central phenomenon, systematically relate it to other categories, and
generate the theory. Strauss and Corbin (1990) write that sometimes the core category
is one of the existing categories, and at other times no single category is broad enough
to cover the central phenomenon. In that case, the central phenomenon must be given
a name. In this study, the creation of the core category meant the identification of the
affecting factors (categories) and finding the relationships between these categories.

The general rule in grounded theory is to sample until theoretical saturation is
reached. This means until (1) no new or relevant data seems to emerge regarding a
category; (2) the category development is dense, insofar as all of the paradigm
elements are accounted for, along with variation and process; (3) the relationships
between categories are well established and validated (Strauss & Corbin 1990). The
theoretical saturation was reached during the fourth interview round because new
categories did not appear, categories were not merged, shared, or removed, the
attributes or attribute values of the categories did not change, and relationships
between categories were stable, i.e. the already described phenomena recurred in the
data.

46

3.3.4 Finishing and reporting the thesis

Pfleeger and Kitchenham (2001) list “reporting the results” as the final phase of the
survey process. Results of each quantitative analysis were compared with available
software testing survey results. Eisenhardt (1989) defines “enfolding literature” and
“reaching closure” as the last phases of the qualitative analysis. Generated hypotheses
were compared with hypotheses found in the literature.

Each phase of the thesis answered for its part the research problem, but also raised
new questions. In the preliminary phase, the scope of the thesis was delimited to
process improvement and knowledge management, Publication I.

In the quantitative analysis, respondents evaluated which are the most important
factors that affect concurrent cost reduction and quality improvement. Factors
affecting efficiency were further decomposed according to respondents’” answers into
detailed issues (Publication 1I). Respondents evaluated the current situation and
improvement needs in software testing, Publication III. The quantitative analysis also
raised new questions. Findings included that testing had over-run its schedule
(Publication III) and the correlation and regression analysis revealed that increased
knowledge transfer in the design phase between development and testing was
associated with schedule over-runs (Publication IV). In the quantitative phase, a
qualitative analysis was proposed as the research method for the next phase of the
thesis because statistical analysis could not reveal root causes.

In the qualitative phase of the thesis, the factors affecting software testing practice
were evaluated from the viewpoints of testing process improvement (Publication V),
organizations and knowledge management (Publication VI), and outsourcing
(Publication VIII). The statistical analysis together with the qualitative analysis
revealed the association between knowledge transfer and testing schedules
(Publication VII). The progress of the thesis and the relationships between the studies
are described in Figure 8.

47

Preliminary
study

Quantitative
studies

Qualitative
studies

Viewpoints of
the study,
Publication 1.

A 4
Factors that Current Factors
reduce testing situation and affecting the
costs and improvement software
improve needs in p| testing
software software schedule,
quality, testing, Publication
Publication 1. Publication I11. Iv.

A 4 \ 4

A 4 A 4 A 4 A 4
Software Software Associations Factors
testing practice testing practice between testing affecting the
from the from outsourcing software
process knowledge and knowledge testing
improvement management management, schedule,
viewpoint, viewpoint, Publication VIII. Publication

Publication V.

Publication VI.

VIL

Figure 8. Products and progress of the thesis

48

3.4 Summary

The research phases and their essential methodical details are summarized in Table 4.

Table 4. The research phases

Phase

Preliminary phase
of the thesis

Quantitative phase
of the thesis

Qualitative phase of
the thesis

Research problem How to | How to | How to concurrently
concurrently concurrently reduce testing costs
reduce testing | reduce testing costs | and improve software
costs and improve | and improve | quality? Affecting
software quality? | software quality? | factors and their
Viewpoints of the | Affecting factors | relationships.
thesis. and their

relationships.

A priori constructs Viewpoints of the | Viewpoints of the
thesis, software | thesis, software
process process improvement
improvement and | and knowledge
knowledge management. Seed
management. categories from the

quantitative study.

Case Steering group, | 30 OUs 30 OUs and 5 case

selection/interviewees expert group OUs

Instruments and Literature review, | Interviews, Interviews, semi-

protocols for data interviews structured structured questions

collection questionnaire

Data analysis Panels, rating, Statistical analysis Qualitative analysis

ranking with SPSS software. | with ATLAS.ti
software.

Reporting Publication I Publications 1I-1IV Publications V-VIII

49

4 Overview of the publications

The results of this research are presented in detail in the appendix consisting of eight
publications. These publications have been published separately in scientific
conferences, excluding Publication VII that is still in the publication process. In this
chapter, each of these publications, their objectives, results, and relation to the whole,
are discussed. The contents of these publications can be condensed with the following
objectives of the studies:

Publication I: Specification of the viewpoints of the thesis.

Publication II: Identification and decomposition of the factors that affect testing
cost reduction and software quality improvement.

Publication III: Current situation and improvement needs in software testing.

Publication IV: Statistical analysis of the factors affecting the software testing
schedule (emergent special question).

Publication V: Analysis of the practice of software testing from the process
improvement viewpoint.

Publication VI: Analysis of the practice of software testing from the knowledge
management viewpoint.

Publication VII: Analysis of the factors affecting the software testing schedule
(emergent special question).

50

e Publication VIII: Analysis of the associations between testing outsourcing and
knowledge management.

In the following, the publications are summarized.

4.1 Publication I: Finding and Ranking Research
Directions for Software Testing

411 Research objectives

The objective of this Delphi derivative (Dalkey 1969; Dalkey & Helmer 1963; Schmidt
1997) study was to reveal and rank important testing research issues and generate
insights into why respondents evaluate certain issues as more important than others.

41.2 Results

As the result, the panel (steering group) reached a consensus and selected process
improvement as the most important issue in software testing research. According to
the panel, process improvement increases knowledge transfer between software
development and testing. Problems in knowledge transfer between software
development and testing may increase both development work and testing work.
According to panelists, the software engineering process is under continuous change
and this change creates problems in knowledge transfer. Experts explained in the
interviews that this on-going change means, for example, minimizing new
programming in a company by extensive reuse of software components and by the
use of COTS or third party software. An analysis of the knowledge transfer between
development and testing processes can reveal important information that can be used
in improving the total efficiency of both software testing and development.

4.1.3 Relation to the whole

The results of the preliminary study defined the scope of the thesis by specifying
software process improvement and knowledge management as the viewpoints of the
thesis. Osterweil (1997) emphasizes process improvement and writes that SPI is
considered as one of the central means to make both development and testing
processes more effective. On the other hand, the influence of knowledge is essential in
economics and competition (Argote & Ingram 2000; Spender & Grant 1996). Edwards
(2003) emphasizes knowledge and knowledge management as central in software
engineering.

51

Other viewpoints that emerged, such as testing automation and testing tools, were
delimited outside the scope of this thesis. The panel justified this exclusion by stating
that testing automation is efficient in repetitive situations (e.g. regression testing) and
automation makes it possible to adapt to the demand for the testing capacity. The
problem is that automation does not solve the problems of earlier phases in the
development process. Quite a deal of research exists in this area and there is not much
potential for novel ideas. Also, testing tools for testing automation has been developed
since 1980s. To clarify the cross-sectional situation between software development and
testing and to get a deeper insight into the problems, an explorative survey of
software testing was proposed.

4.2 Publication II: Cost Reduction and Quality
Improvement in Software Testing

421 Research objectives

The objective of this industry survey (Fink & Kosecoff 1985) was to evaluate from the
testing point of view the factors that affect cost reduction and quality improvement.
To do this, the respondents were first asked to evaluate the cost structure of software
testing. Secondly, respondents were asked to evaluate the affecting factors. Thirdly, the
affecting factors were further decomposed according to the respondents” answers.

422 Results

Firstly, the respondents evaluated personnel costs as the highest cost item in testing.
Testing automation costs formed another significant cost item group. Other cost items
were marginal compared to these two. Osterweil (1997) reports similar results when
examining software engineering as a whole. Osterweil suggests cost reduction by
reducing labor costs. The reduction of the labor costs often leads to an increase in
automation costs. According to our study, the reduction of personnel costs is efficient
because they are the highest cost item.

Secondly, the respondents evaluated how to reduce costs and improve software
quality. According to our study, the affecting factors included development and
testing process improvement, the development of testing automation, the
development of testing know-how, the development of testing strategies, the
utilization of standards, testing outsourcing, and the utilization of software
components.

Thirdly, the affecting factors were decomposed. Respondents emphasized in process
improvement the early involvement of testing, integration of quality into the

52

development process, and process measurements. In the development of testing
automation, respondents listed testing tools, the rationalization of the automation on
the cost basis, and reuse. The development of testing know-how contained the
development of professional skills and know-how on the operating environment.
Issues emphasized in the development of testing strategies consisted of methods and
avoiding unnecessary design and testing. The utilization of standards included, for
example, the standardization of architectures and software solutions and standardized
product platforms. Testing outsourcing contained, for example, off-shore testing in a
country with a lower price level and co-operation in testing outsourcing. The
utilization of software components consisted of, for example, duplicating the same
tested solution to many products and modular components to produce product
variants.

423 Relation to the whole

The results of the survey confirmed the findings of the preliminary study. The
viewpoints selected for the thesis — process improvement and knowledge
management — appeared also here as the first and the third most important affecting
factors.

This exploratory survey revealed factors that affect concurrent cost reduction and
quality improvement in testing and related processes. These factors were also
decomposed into detailed issues according to the respondents’ emphasis. The
affecting factors and their decomposition formed the first part of the quantitative
analysis. The quantitative analysis continued with a cross-sectional survey of the
current situation and improvement needs in software testing and a statistical analysis
of the affecting factors. To get a deeper insight, a qualitative analysis of the affecting
factors was proposed.

4.3 Publication III: A Survey on Software Testing

43.1 Research objectives

The objective of this survey was to clarify the status of testing in the studied
organizations and to find improvement needs in the development and testing
processes. Special attention was paid to knowledge transfer between development and
testing processes. The viewpoints were adopted from the preliminary study:.

53

43.2 Results

The questionnaire was divided into four sections: general information on the OU,
processes, knowledge transfer between development and testing processes, and the
development environment. The survey revealed that the total effort focused on testing
(28.9%) was less than expected. The total effort focused on testing (28.9%) was smaller
than the 50% that is often mentioned in the literature (Kit 1995). The comparatively
low percentage may indicate that that the resources needed for software testing are
underestimated.

The assessment of testing indicated that testing tasks have over-run the time reserved
and that there have been difficulties in requirements testing. Schedule over-runs may
be associated with, for example, underestimated testing resources, knowledge transfer
between development and testing processes, insufficient testing tools, and a lack of
testing know-how. Also, testing schedules were continuously adjusted.

Respondents emphasized the need to improve knowledge transfer between testing
and processes of acquisition, configuration control, and reuse. The results suggested
that knowledge transfer should be improved between testing and earlier life cycle
processes (e.g. preliminary study, system analysis, and design). Osterweil et al. (1996)
and Harrold (2000) emphasize similar issues, i.e. the early involvement of testing.
Harter and Slaughter (2000) write that software quality is designed into products
rather than incorporated through testing. Respondents evaluated that insufficient
testing tools and a lack of testing know-how hinder testing development.

4.3.3 Relation to the whole

The survey clarified the status of testing in the studied organizations, but also raised a
special question: why testing tasks have over-run the schedule reserved. For the next
phase of the project, a statistical modeling of the schedule over-runs was proposed.
The objective of the statistical model was to reveal relationships between schedule
over-runs and, for example, knowledge transfer between development and testing
processes, insufficient testing tools, a lack of testing know-how and other explanatory
variables.

54

4.4 Publication IV: Factors Affecting Software Testing
Time Schedule

44.1 Research objectives

The objective of this study was to identify and model constructs that explain the over-
runs of testing schedules.

4.4.2 Results

The analysis of correlation revealed that there was a significant negative correlation
between success in keeping the testing schedule and knowledge transfer in the earlier
life cycle phases (the preliminary phase, the analysis phase, and the design phase).
This rather unexpected correlation between the schedule and knowledge transfer
could be analogous to what Baskerville et al. (2001) have observed about adjusted
processes. Baskerville et al. (2001) state that processes are adjusted because companies
regularly trade off among feature slip, time to market, and quality. Also problems in
the availability of human resources and the lack of testing know-how correlated
negatively. The variable product orientation correlated negatively with keeping the
testing schedule, but the correlation was not statistically significant.

The model developed with the stepwise regression algorithm was highly significant
(0.000). The independent variables explained 54.8% of the variance of the dependent
variable. R Square statistics allowed conclusions on the success in keeping the testing
schedule, but there were also variables missing. The identification of these missing
variables could be a topic for further research.

The regression model revealed a negative association (-0.409) between the lack of
testing know-how and keeping the testing schedule. An increase of one unit in the
lack of testing know-how was associated with a decrease of 0.409 in keeping the
testing schedule. The negative effect of the variable, the lack of testing know-how, on
keeping the testing schedule is apparent. More complicated is the negative association
(-0.435) of the construct knowledge transfer between development and testing in the
design phase. The correlation analysis also showed significant negative correlations
between keeping the testing schedule and knowledge transfer in the preliminary
phase, the analysis phase, and the design phase. The results gave a hint that either
knowledge transfer is increased in the earlier life cycle phases, expanding and making
testing deeper, which leads to schedule over-runs, or the testing schedule is adjusted
under project pressure, which means that the resources needed for software testing
are underestimated.

55

4.4.3 Relation to the whole

This exploratory study showed that knowledge transfer is associated with the testing
schedule, but in quite an unexpected way. For the next phase, a qualitative analysis of
knowledge transfer and other affecting factors was proposed. Qualitative analysis
enables the identification of affecting factors and their relationships. Statistical data
cannot reveal these kinds of root causes. Instead, the situation of each OU needs to be
analyzed separately to explain the variation of reasons for the negative correlation.

4.5 Publication V: Improving Software Testing by
Observing Practice

45.1 Research objectives

The objective of this qualitative study was to understand the complex practice of
software testing, and based on this knowledge, to develop process improvement
hypotheses that could be used in concurrent testing cost reduction and software
quality improvement. The practice of software testing was observed from the
viewpoint of process improvement and described by affecting factors and their
relationships.

45.2 Results

The process improvement hypotheses included adjusting testing according to the
business orientation of the OU, enhanced testability of software components, efficient
knowledge transfer between development and testing, early involvement of testing,
and use of risk-based testing. The business orientation of an OU proved to be the
central affecting factor around which the other factors were integrated. The
hypotheses are summarized in Table 5.

56

Table 5. Testing process improvement hypotheses

1. Testing ought to be adjusted according to the business orientation of the OU. 1A: Product
oriented organizations should adopt a formal planned testing process. 1B: Service oriented
organizations should adopt a flexible testing process that allows appropriate coordination
with their clients.

2. Enhanced testability of software components. 2A: Consider testability as an important
factor in the selection of components. 2B: Review the testing process of your suppliers.

3. Efficient communication and interaction between development and testing seems to
reduce costs and improve software quality. Product oriented OUs could develop
straightforward processes because knowledge transfer is predictable. Service oriented OUs
could develop innovative solutions because knowledge transfer varies according to the
customer.

4. The early involvement of testing seems to reduce costs and improve quality. The
planning of testing is more straightforward in product oriented than in service oriented
OUs.

5. The risk-based testing strategy helps in avoiding ad hoc decisions on testing, because the
decision of what to test is based on a predefined testing strategy.

According to this study, the business orientation and testing processes were tightly
interconnected. The business orientation therefore determines the kinds of
improvement efforts that are viable.

Enhanced testability of software components included better documentation and
interfaces of the components. Utilization of software components, COTS software, and
third-party software seems to be increasing. Efficient knowledge transfer between
development and testing seems to improve both testing and development. Knowledge
transfer seems to depend on the business orientation of the OU. The early
involvement of testing seems to shorten the testing time by enabling better planning
of testing, improve the design, and increase the influence of testers. The risk-based
testing strategy helped in defining the contents of testing in case of a shortage of
resources.

45.3 Relation to the whole

The results of this qualitative study described the software testing practice and
answered the research question from the process improvement point of view. OUs can
apply hypotheses according to their business orientation in concurrent cost reduction
and software quality improvement. To answer the research problem from the
knowledge management viewpoint, we decided to continue our qualitative analysis
from the above-mentioned viewpoint, Publications VI and VIII.

57

4.6 Publication VI: Observing Software Testing Practice
from the Viewpoint of Organizations and Knowledge
Management

4.6.1 Research objectives

The objective of this qualitative study was the same as in Publication V, but the practice
of software testing was observed from the viewpoint of organizations and knowledge
management. The practice of software testing was described by affecting factors and
their relationships.

4.6.2 Results

The hypotheses included that the business orientation of an OU affects the testing
organization, knowledge management strategy, and outsourcing of testing. Further,
identifying and avoiding barriers and using enablers improve knowledge transfer
between development and testing. The hypotheses are summarized in Table 6.

Table 6. Improvement hypotheses for knowledge management and organizations

1. Business orientation affects the testing organization. In product oriented OUs, the
organization model ought to support repetitive testing tasks that enable development of a
deeper expertise. In service oriented OUs, the organization model ought to support
adaptation to the processes of the customers that demand broader expertise.

2. Business orientation affects the knowledge management strategy. OUs ought to adjust the
knowledge management strategy according to the business orientation.

3. Business orientation and the knowledge management strategy affect outsourcing.
Codification of knowledge enables testing outsourcing,.

4. Identifying and avoiding barriers and using enablers improve knowledge transfer.

The results suggested that the business orientation affects the testing organization and
knowledge management strategy, but we cannot suggest that organizations should
select a fixed knowledge management strategy according to their business orientation.
Hansen et al. (1999) view that the company should focus on only one of the
knowledge management strategies. Independent testing agencies made an exception.
Even though the independent testing agencies were service oriented, their knowledge
management strategy was more inclined towards codification. This does not seem to
directly fit the description that companies providing services should focus only on the
personalization strategy. According to our study, the business orientation of an OU is
not stable because many product oriented OUs strive to develop services, and service
oriented OUs strive to develop products.

58

Product oriented OUs used more outsourced testing resources than service oriented
OUs. Because product oriented OUs codify more knowledge, the development and
testing processes are more repetitive and outsourcing is easier. OUs strived for
efficient knowledge transfer by identifying and avoiding barriers such as the distance
between design and testing locations, the lack of absorptive capacity of the persons,
the lack of planned and formal meetings, and customer control of the knowledge
transfer and using enablers such as contact persons to improve knowledge transfer.

4.6.3 Relation to the whole

The results of this qualitative study described the software testing practice and
answered the research problem from the organization and knowledge management
point of view. The derived hypotheses can be applied in concurrent cost reduction and
software quality improvement.

4.7 Publication VII: Triangulating Testing Schedule Over-
runs from Knowledge Transfer Viewpoint

471 Research objectives

The objective of this study was to explain how software testing schedule over-runs are
associated with the knowledge transfer between development and testing processes.
The quantitative study (Publication 1II: A Survey on Software Testing) raised a special
question: which factors affect software testing schedule over-runs? The question was
statistically analyzed in Publication IV: Factors Affecting Software Testing Time
Schedule. The statistical analysis showed that knowledge transfer between
development and testing is associated with the testing schedule, but in a quite
unexpected way: increased knowledge transfer between development and testing was
associated with testing schedule over-runs.

4.7.2 Results

OUs strived to reach optimal conditions where testing schedules are not over-run, the
scope of testing is comprehensive, and the knowledge transfer is efficient, but the
trade-off between the schedule and the scope of testing seemed to occur more
frequently in practice, leading to two typical scenarios. These two typical scenarios
that explain the negative association between knowledge transfer and schedule over-
runs are listed in Table 7.

59

Table 7. Two typical scenarios explaining the negative association between
knowledge transfer and testing schedules

Business Scope of | Schedule Knowledge transfer Explanation
orientation | testing of testing between development
and testing
Product- Fixed Adjusts May be high and Adjusting schedules and
oriented efficient efficient KT - negative
association
Service- Adjusts Fixed Efficiency may suffer Fixed schedules and
oriented from several barriers inefficient KT >
negative association

According to the scenarios, a product-oriented OU prefers the scope of testing instead
of the schedule, its knowledge transfer has fewer barriers than in service-oriented
OUs, and therefore, knowledge may be transferred efficiently. This leads to adjusting
schedules and efficient knowledge transfer and thus to a negative association.

In contrast, a service-oriented OU prefers the schedule instead of the scope, it has
more barriers than product-oriented OUs, and this results in fixed schedules and
inefficient knowledge transfer. Therefore, again, the association is negative.

OUs can avoid barriers and use enablers to improve knowledge transfer between
development and testing processes. Szulanski (1996) lists as barriers to internal
knowledge transfer factors such as the recipient’s lack of absorptive capacity, causal
ambiguity, and an arduous (laborious and distant) relationship between the source
and the recipient. We observed several factors in case OUs that weakened the
efficiency of knowledge transfer. These factors included distance, knowledge transfer
control by customers, and difficulties of the persons involved to understand each
other. The lack of absorptive capacity was two-fold in our observations. We observed
that in some cases testers were unable to understand the technical vocabulary of the
developers, and the use of a foreign language as the documentation language also
caused difficulties.

It was widely understood in the case OUs that the codification of knowledge should
increase efficiency. According to Nonaka (1994), if the knowledge has tacit
components, the knowledge transfer may require numerous individual exchanges. On
the other hand, the codification strategy may not be suitable for all tasks, especially if
the codified knowledge cannot be reused (Conradi & Dyba 2001; Hansen et al. 1999).

60

4.7.3 Relation to the whole

The two typical scenarios explained the root cause for the negative association
between knowledge transfer and testing schedule over-runs and answered the
emergent special question. This result confirms the findings of Baskerville et al. (2001)
that processes adjust under project pressure, but the central result was that the
business orientation of an OU affects the trade-off between the testing schedule and
the scope of testing, leading to two typical scenarios.

4.8 Publication VIII: Outsourcing and Knowledge
Management in Software Testing

4.8.1 Research objectives

The objective of this qualitative study was to explore outsourcing in software testing
and shape hypotheses that describe the relationship between outsourcing and
knowledge management.

48.2 Results

The hypotheses included that the business orientation and the knowledge
management strategy of an OU affect testing outsourcing, the knowledge
management strategy of an OU depends on the OU’s business orientation, the
efficiency of outsourcing depends on the domain knowledge of an independent
testing agency, and outsourcing verification tasks is difficult. The hypotheses are
summarized in Table 8.

Table 8. Hypotheses describing the relationship between outsourcing and
knowledge management

1. The business orientation of an OU and the knowledge management strategy affect testing
outsourcing. The product oriented OUs have more possibilities of using outsourced testing
than the OUs developing customized systems. Codification and explicit knowledge enable
outsourcing.

2. OUs ought to adjust their knowledge management strategy according to the business
orientation.

3. Outsourcing seems to be more effective when independent testing agencies have enough
domain knowledge.
4. Outsourcing verification tasks is more difficult than outsourcing validation tasks.

61

4.8.3 Relation to the whole

The results of this study described the relationship between testing outsourcing and
knowledge management. Outsourcing and knowledge management are very much
interconnected. Osterloh and Frey (2000) note that outsourcing necessitates making
knowledge explicit. Also, when knowledge is codified it becomes transferable,
independently of people in whom tacit knowledge is embedded (Foray 2004). When
making decisions about testing outsourcing, also issues related to knowledge
management should be taken into account. Cowan et al. (2000) state that codification
will provide high benefits in 1) stable systems characterized by specific requirements
of knowledge transfer and communication, such as delocalization and externalization,
i.e. outsourcing., 2) stable systems where advances and novelties mainly proceed from
recombination, reuse and cumulativeness, i.e. standardized systems, and 3) systems
that require extensive memory and retrieval capabilities (e.g. firms and organizations
that have long product or process development cycles or high rates of personnel
turnover). Beath and Walker (1998) state that outsourcing is most effective when the
supplier’s existing knowledge is adequate to the tasks implied by the project.

Verification tasks require more knowledge transfer between the customer and the
independent testing agency because artifacts needed in verification include, for
example, source code and design documents. This may pose a potential risk to the
customer. Teece (1986) notes that while codified knowledge is easier to transmit and
receive, it is more exposed to industrial espionage and the like.

4.9 About the joint publications

For Publication 1, the author collected and analyzed the data, wrote the major part of
the publication, and presented it.

For Publications II-1V, the author designed and implemented the survey instrument,
collected and analyzed the data, wrote the major part of the publications, and
presented them.

For Publications V and VI, the author designed the research approach, participated in
collecting and analyzing the data, wrote the major part of the publications, and
presented them.

For Publication VII, the author designed the research approach, participated in
collecting and analyzing the data, and wrote the major part of the publication.

For Publication VIII, the author designed the research approach, participated in
collecting and analyzing the data, and in writing the publication.

62

5 Implications of the results

In this chapter, the implications of the research results are extracted from the
publications and presented as a summary. The research problem and the original
objective of the thesis remained unchanged during the studies, but the research
problem was divided into sub-questions and answered in respective publications. The
objective of this thesis was not to produce a method, tool or other artifact of software
testing but to identify and understand the factors that affect concurrent testing cost
reduction and software quality improvement, and through that understanding,
generate improvement hypotheses from the selected process improvement and
knowledge management viewpoints. This was done by analyzing affecting factors and
their relationships with quantitative and qualitative methods.

5.1 Implications for practice

The viewpoints of the thesis — process improvement and knowledge management —
were selected in the preliminary phase of the thesis (Publication I). Experts in the
preliminary study evaluated process improvement with knowledge transfer as the
most important research issue, the second in ranking was testing automation and
testing tools, and standardization was ranked third. Based on these results, we
concluded that the selected viewpoints represent an important area of software testing
and specify the scope of the thesis. The selected viewpoints of this thesis cover many
important issues of software testing practice, but also important issues are delimited
outside the scope of this thesis. Other viewpoints, such as testing automation and
testing tools, standardization, etc., will be discussed in future research topics.

63

The factors that affect testing cost reduction and software quality improvement were
identified and decomposed in Publication II. Firstly, the respondents evaluated
personnel costs as the highest and testing automation costs as the second highest cost
item. Other cost items were marginal compared to these two. According to the results,
finding the right balance between labor and automation costs can improve the cost
structure of software testing.

Secondly, the respondents evaluated how to concurrently reduce costs and improve
software quality in development and testing. According to our study, affecting factors
included development and testing process improvement, the development of testing
automation, the development of testing know-how, the development of testing
strategies, the utilization of software components, the utilization of standards, and the
outsourcing of testing. Interviewees in the quantitative study, Publication II, evaluated
“process improvement” as the most important factor and “testing know-how” as the
third most important factor in concurrent cost reduction and software quality
improvement. These findings confirmed the selection of the scope of the thesis made
during preliminary study. Three viewpoints seem to rise above others in achieving
cost reductions and software quality improvement: process improvement, knowledge
management, and testing automation.

In Publication III, the current situation and improvement needs in software testing
were analyzed. The survey described the cross-sectional situation in software testing
among 30 OUs and suggested improved knowledge transfer between testing and
earlier life cycle processes of software development. In evaluating knowledge transfer
between testing and the process groups (ISO/IEC 2004), the respondents emphasized
the need to improve knowledge transfer especially between testing and processes of
acquisition, configuration control, and reuse!. The results offer basic statistics of 30
OUs, processes, communication and interaction, and the development environment.

Other findings in Publication 1II included that testing tasks have over-run their
schedule. Schedule over-runs were evaluated to be associated with, for example,
underestimated testing resources, knowledge transfer between development and
testing, insufficient testing tools, and a lack of testing know-how. Also, testing
schedules were continuously adjusted. These findings raised a special question, how
the knowledge transfer between development and testing and testing schedule over-
runs are associated. This special question that emerged was discussed in Publications
IV and VII. The correlation and regression analyses in Publication IV revealed that
increased knowledge transfer in the design phase between development and testing

!'In the current version of the 15504-5 standard (ISO/IEC 2006) the configuration control and
quality assurance process groups have been merged as the support process group.

64

was associated with testing schedule over-runs. The result gave a hint that either
knowledge transfer in the earlier life cycle phases is increased, expanding and making
testing deeper, which leads to time schedule over-runs, or the testing schedule is
adjusted under project pressure, which means that the resources needed for software
testing are underestimated. Finally, in Publication VII the negative association was
explained with two typical scenarios that explain the root causes for this negative
association. The central result was that the business orientation of an OU affects the
trade-off between the testing schedule and the scope of testing, leading to two typical
scenarios: Product oriented OUs emphasize the scope of testing, and their knowledge
transfer may be more efficient because they have fewer barriers to knowledge transfer
than service-oriented OUs. In contrast, service-oriented OUs prefer the schedule
instead of the scope, and their knowledge transfer may be inefficient because they
have more barriers than product-oriented OUs. The results explain how the business
orientation of an OU affects the trade-off between the testing schedule and the scope
of testing and barriers to knowledge transfer. The results can be used in balancing the
trade-off between the testing schedule and the scope of testing according to the
business orientation of an OU and in avoiding barriers to knowledge transfer. This can
be further applied in improving knowledge transfer and in avoiding schedule over-
runs.

In Publication V the practice of software testing was analyzed from the process
improvement viewpoint. The analysis yielded testing process improvement
hypotheses. The central result was that testing processes ought to be adjusted
according to the business orientation of the OU. Product oriented organizations
should adopt a formal planned testing process. Service oriented organizations should
adopt a flexible testing process that allows appropriate coordination with their clients.
The result can be applied in developing testing processes. Further, enhanced
testability of software components, efficient communication and interaction between
development and testing, and the early involvement of testing seem to reduce testing
costs and improve software quality. Also, a risk-based testing strategy helps in
avoiding ad hoc decisions on testing.

In Publication VI, the practice of software testing was analyzed from the knowledge
management viewpoint. The analysis yielded improvement hypotheses. The central
result was that the business orientation affects the testing organization and knowledge
management strategy. The results suggest that the testing organization and
knowledge management strategy ought to be developed according to the business
orientation of the OU. An important finding was also that the business orientation of
an OU is not stable because product oriented OUs develop services and service
oriented OUs develop products. Further, the business orientation and the knowledge
management strategy affect testing outsourcing. OUs also strive for efficient

65

knowledge transfer. Identifying and avoiding barriers and using enablers improve
knowledge transfer.

In Publication VIII, the association between testing outsourcing and knowledge
management was analyzed. The analysis yielded improvement hypotheses.
According to this study, the business orientation of an OU affected testing
outsourcing. The product oriented OUs seem to have more possibilities of using
outsourced testing than the OUs developing customized systems. In OUs developing
customized systems, early involvement with software development seems to be more
important. Outsourcing seems to be more effective when independent testing agencies
have enough domain knowledge. Independent testing agencies do not necessarily
have an adequate amount of domain knowledge, which is tacit and context-dependent
by nature, therefore making it difficult to transfer and codify.

Outsourcing verification tasks seems to be more difficult than outsourcing validation
tasks. Independent testing agencies usually focus on system testing, and are not
concerned with the software’s internal processing (Dustin et al. 1999). System testing
consists mainly of validation tasks. Verification is also more closely involved in many
stages of software development, and requires close co-operation with several instances
inside the organization. It is therefore harder to define verification as an independent
and separate function, which can then be given as a task to an independent testing
agency.

5.2 Implications for further research

The selected research methods describe my opinion on which methodology is the best
fit for approaching the subject of the research. This mixed method research showed
that the combination of quantitative and qualitative methods can reveal root causes
that may be difficult to uncover when the methods are used in isolation.

The scope of the thesis was delimited by selecting the viewpoints of the thesis. The
viewpoints delimited outside the scope of this thesis, such as testing automation and
testing tools and standardization, ought to be analyzed in further research because
analysis from these viewpoints can reveal important affecting factors, their
relationships, and improvement hypotheses.

We selected both in the quantitative and in the qualitative analysis constructs of a high
abstraction level. Now that the analysis of the high abstraction level constructs is
available, the further analysis could concentrate on the lower abstraction level
constructs. The decomposition of affecting factors (Publication II) could serve as the
starting point for the analysis. A detailed analysis could be carried out from, for

66

example, the testing automation and standardization viewpoints as a new analysis
and from the viewpoints of this thesis as a continuation of this work.

According to the results of this thesis, the effect of the business orientation of an OU
was central in software testing. Runeson et al. (2006) studied defect detection methods.
Their analysis of existing empirical studies showed no clear-cut answer to the question
of which defect detection method to choose. This and the results of this thesis suggest
that there exist higher level factors, such as business orientation, that affect, for
example, processes, automation, and knowledge management, and further, defect
detection.

67

6 Conclusions

6.1 Derived conclusions

This thesis describes a research project consisting of a preliminary study, quantitative
studies, and qualitative studies. Each of the phases offered results and empirical
observations on the practice of software testing.

This thesis makes four contributions. Firstly, in the preliminary phase the scope of the
thesis was specified as the viewpoints process improvement and knowledge
management. Other viewpoints of software testing are proposed as future research
topics. Secondly, it shows by quantitative studies factors that affect software testing
practice and that knowledge transfer is associated with testing schedules (emergent
special question). Thirdly, it explains with a mixed methods analysis the negative
association between testing schedules and knowledge transfer. Fourthly, it explores by
qualitative analyses factors that affect testing costs and software quality from the
selected viewpoints and produces improvement hypotheses.

According to this thesis, the business orientation of an OU is the central affecting
factor in software testing practice. The results and observations created scenarios and
improvement hypotheses for both practitioners and researchers:

1. Two typical scenarios that explain the negative association between the testing
schedule and knowledge transfer (emergent special question):

e A negative association between the testing schedule and knowledge transfer
existed if the OU selected a comprehensive scope of testing instead of keeping

68

the testing schedule and if the knowledge transfer between development and
testing processes was efficient.

e A negative association between the testing schedule and knowledge transfer
existed if an OU selected a reduced scope of testing to keep the testing
schedule and there were barriers to knowledge transfer, most probably
because of service-orientation and its consequences, between development
and testing processes.

2. Improvement hypotheses from the process improvement viewpoint:

e Testing ought to be adjusted according to the business orientation of the OU.
Product oriented organizations should adopt a formal planned testing
process. Service oriented organizations should adopt a flexible testing process
that allows appropriate coordination with their clients.

e Enhanced testability of software components. Consider testability as an
important factor in the selection of components. Review the testing process of
your suppliers.

e Efficient communication and interaction between development and testing
seems to reduce costs and improve quality. Product oriented OUs could
develop straightforward processes because knowledge transfer is predictable.
Service oriented OUs could develop innovative solutions because knowledge
transfer varies according to the customer.

e The early involvement of testing seems to reduce costs and improve quality.
The planning of testing is more straightforward in product oriented than in
service oriented OUs.

e The risk-based testing strategy helps in avoiding ad hoc decisions on testing,
because the decision on what to test is based on a predefined testing strategy.

3. Improvement hypotheses from the knowledge management viewpoint:

¢ Business orientation affects the testing organization. In product oriented OUs,
the organization model ought to support repetitive testing tasks that enable
development of a deeper expertise. In service oriented OUs, the organization
model ought to support adaptation to the processes of the customers that
demand broader expertise.

e Business orientation affects the knowledge management strategy. OUs ought
to adjust their knowledge management strategy according to the business
orientation.

69

e Business orientation and the knowledge management strategy affect
outsourcing. Codification of knowledge enables testing outsourcing.

e Identifying and avoiding barriers and using enablers improve knowledge
transfer.

4. Associations between testing outsourcing and knowledge management:

e Outsourcing seems to be more effective when independent testing
agencies have enough domain knowledge.

e Outsourcing verification tasks is more difficult than outsourcing
validation tasks.

To summarize, the business orientation of an OU has a strong role in the practice of
software testing. An analysis of affecting factors from different viewpoints can offer
more improvement hypotheses. Empirical research can provide more knowledge and
evidence necessary for the development of more advanced tools and methods for
software testing.

6.2 Limitations of this thesis

All projects have their shortcomings and limitations, and several can be identified in
this one, as well. The research problem delimited this thesis, because we were
interested only in factors that affect concurrent testing cost reduction and software
quality improvement. Based on the formulation of the research problem, our target
was to describe the practice of software testing. The scope of the thesis was delimited
in the preliminary phase by adopting process improvement and knowledge
management as the viewpoints of the thesis and by abandoning other viewpoints. To
get a more comprehensive understanding of software testing, an analysis from the
abandoned viewpoints is recommendable. When considering the validity of the thesis,
we must look separately at the quantitative and qualitative parts, but it is also possible
to point out the benefits of methodological triangulation and how it increases the
validity and trustworthiness of the entire thesis.

A possible limitation of the preliminary study is that the results can be applied only to
similar environments. The informants of this study represented organizations that
produce technically highly advanced products and applications in the
telecommunication and automation domains. The criticality of their products is above
average and the products are used in real time environments. It is possible that the
rankings in other kinds of applications may have a different order and selection of
issues.

70

A limitation of the quantitative part of the thesis is the tight specification of the
population and the sample. The results can only be directly generalized when
discussing comparable OUs2 In spite of this limitation, we believe that the results
have a wider significance because the selected OUs were from companies that were at
an advanced technological level and their produced applications demanded high
technological sophistication. In addition, the respondents of this study had extensive
experience in the field (on an average more than 13 years), and therefore, we think
that the reliability of their answers is high.

The limitation of the qualitative study was the number of case OUs. It is obvious that
increasing the number of cases in qualitative analyses could reveal more details, and it
is possible that some polar point cases could even formulate a new explanatory factor.
However, our target was not to create a comprehensive list of the factors that affect the
practice of software testing, but to cover the most important factors from the point of
view of our case OUs.

The purpose of the qualitative part of the thesis was to understand the testing practice
in five case OUs. This kind of effort requires interpretation and exploration. Robson
(2002) lists three threats to validity in this kind of research: reactivity (the interference
of the researcher’s presence), researcher bias, and respondent bias and seven strategies
that reduce these threats. We have used Robson’s strategies in the following way.

The research has lasted three years and consisted of several phases and data collection
rounds. All four types of triangulation presented by Denzin (1978) have been used:
data, observer, methodological, and theory triangulation. The research has consisted
of regular meetings with research participants from several research institutions
where the preliminary results have been presented and discussed. The interpretation
of the data has been confirmed by presenting the results to company participants in
the research project. An example of a negative case in our study was case D, which
was a purely product oriented OU. This, however, did not disconfirm our theoretical
understanding. Instead, it complemented it and provided more ingredients. All
interviews have been recorded and transcribed. The notes and memos of the study
have been preserved, and preliminary data coding and analysis results are available
through the analysis tool used, ATLAS ti.

The strongest method for ensuring the overall validity of the thesis has been the
triangulation. To reduce the bias caused by researchers, we used observer
triangulation. The bias caused by the method was minimized using methodological
triangulation, and the bias caused by data using data triangulation. In addition, the

2 In fact, this is a limitation of any survey, regardless of the sample size (see, for example, Lee &
Baskerville (2003)).

71

Publications I-VIII of this thesis have approached the phenomenon from different
viewpoints, and therefore, they enforce theory triangulation.

Methodological triangulation means that multiple research methods are used and
their results are compared to each other. In this thesis, methodological triangulation
consisted of the combination of statistical methods and qualitative analysis with the
grounded theory method. In addition, the preliminary study was completed using the
Delphi method.

In observer triangulation, researchers with different backgrounds and experiences
study the same research topic and participate in the data collection. In this thesis, the
quantitative analysis was carried out by one researcher and the qualitative analysis by
four researchers, whose interpretations completed each other, and therefore, made the
study more trustworthy.

Data triangulation means the use of multiple data collection methods that provide
stronger substantiation of constructs and hypotheses (Eisenhardt 1989). The primary
data collection method in this thesis was interviews. The interviews in the first round,
based on the survey method, were performed by one researcher, and the interviews in
the following rounds by two researchers. In addition to the interview data, we used
field notes.

6.3 Future research topics

Many research implications were mentioned in section 5.2, and the results of this
thesis might be extended and deepened into many directions. In the following, three
of them are described.

First, the research approach used in exploring the association between knowledge
transfer and testing schedule over-runs could be continued at a more detailed level
and also used in explaining other complicated relationships in testing, such as testing
schedules versus testing automation. Secondly, software testing and also other areas of
software engineering could be explored repeating iteratively respective quantitative
(as described in Publications 1I-IV) and qualitative (as described in Publications V-VIII)
phases. Concurrently the abstraction level of the constructs used could be changed
into a more detailed form. Thirdly, the results of this thesis have crated a basis for a
testing assessment model. Analyzing software testing practice from new viewpoints,
such as testing automation, standardization, etc., produces new affecting factors and
further hypotheses. At the same time, the abstraction level can be changed into a more
detailed form using the decomposition of affecting factors (Publication I1I). The
assessment of software testing with the model gives an OU important information for

72

developing testing processes, knowledge management, and testing automation while
simultaneously optimizing the software testing costs and the software quality.

The assessment could contain four phases: First, an OU is selected. Secondly, the OU is
positioned according to its business orientation and the criticality of its end products.
Thirdly, the OU is assessed according to its business orientation from the viewpoints
of process improvement, knowledge management, and testing automation at a
detailed level. Finally, as the result of the assessment, improvement proposals are
generated.

73

References

Abrahamsson, P. (2001), 'Commitment development in software process improvement:
critical misconceptions', paper presented to the International Conference on
Software Engineering (ICSE 2001). Proceedings of the 23rd International
Conference on Software Engineering, Toronto, Canada, pp. 71-80.

Abrahamsson, P., Warsta, J., Siponen, M. and Ronkainen, J. (2003), 'New Directions on
Agile Methods: A Comparative Analysis', paper presented to 25th International
Conference on Software Engineering.

ACM, AIS and IEEE-CS (2004), Computing Curricula 2004.

Ambler, S. (2002), Agile Modeling: Effective Practices for Extreme Programming and the
Unified Process, John Wiley & Sons, New York.

Amland, S. (2000), 'Risk Based Testing and Metrics: Risk analysis fundamentals and
metrics for software testing including a financial application case study’, The
Journal of Systems and Software, vol. 53, pp. 287-295.

Argote, L. and Ingram, P. (2000), 'Knowledge Transfer: A Basis for Competitive
Advantage in Firms', Organizational Behavior and Human Decision Processes, vol.
82, no. 1, pp. 150-169.

ATLAS.ti - The Knowledge Workbench (2005), Scientific Software Development.

Aurum, A., Jeffery, R. and Wohlin, C. (1998), Managing Software Engineering Knowledge,
Springer Verlag, New York.

74

Aurum, A, Petersson, H. and Wohlin, C. (2002), 'State-of-the-Art: Software Inspections
after 25 Years', Software Testing, Verification, and Reliability, vol. 12, no. 3, pp. 133-
154.

Baber, R. L. (1982), Software reflected, North-Holland publishing company.

Bach, J. (2003), Explotary Testing Explained, viewed 05.08.2006 2003,
<http://www.satisfice.com/articles/et-article.pdf>.

Baruch, Y. (1999), 'Response Rate in Academic Studies - A Comparative Analysis',
Human Relations, vol. 52, no. 4, pp. 421-438.

Baskerville, R., Levine, L., Pries-Heje, J., Ramesh, B. and Slaughter, S. (2001), 'How
Internet Software Companies Negotiate Quality', Computer, vol. 34, no. 5, pp. 51-
57.

Beath, C. M. and Walker, G. (1998), 'Outsourcing of Application Software: A
Knowledge Management Perspective', paper presented to Thirty-First Annual
Hawaii International Conference on System Sciences.

Beck, K. (2000), Extreme Programming Explained: Embrace Change.

Becker, M. C. and Knudsen, M. P. (2003), 'Barriers and managerial challenges to
knowledge transfer processes', paper presented to DRUID Summer Conference
on Creating, Sharing and Transferring Knowledge, Copenhagen.

Beizer, B. (1990), Software testing techniques, Van Nostrand Reinhold, New York.

Berner, S., Weber, R. and Keller, R. K. (2005), 'Observations and lessons learned from
automated testing', paper presented to The 27th International Conference on
Software Engineering, St. Louis, MO, USA, pp. 571-579.

Binder, R. V. (2001), Testing Object-Oriented Systems, Addison Wesley, Boston.

Boehm, B. (1991), 'Software Risk Management: Principles and Practices', I[EEE Software,
vol. §, no. 1, pp. 32-41.

Boehm, B. (2006), 'A view of 20th and 21st century software engineering’, paper
presented to International Conference on Software Engineering, Shanghai,
China, pp. 12-29.

Boehm, B. and Turner, R. (2003), 'Using Risk to Balance Agile and Plan-Driven
Methods', Computer, vol. June, pp. 57-66.

Brown, A. W. (2000), Large-Scale, Component-Based Development, Prentice Hall.

Burnstein, 1., Suwanassart, T. and Carlson, R. (1996), 'Developing a testing maturity
model for software test process evaluation and improvement', paper presented
to International test conference, pp. 581-589.

Cai, K.-Y,, Chen, T. Y, Li, Y.-C., Ning, W.-Y. and Yu, Y. T. (2005), 'Adaptive Testing of
Software Components', paper presented to the Symposium on Applied
Computing, Proceedings of the 2005 ACM symposium on Applied computing,
Santa Fe, New Mexico, pp. 1463 - 1469.

Carter, C. R. and Dresner, M. (2001), 'Purchaser's role in environmental management:
Cross-functional development of grounded theory', Journal of Supply Chain
Management, vol. 37, no. 3, pp. 12-28.

75

Cockburn, A. (2000), Writing Effective Use Cases, The Crystal Collection for Software
Professionals, Addison Wesley.

Cohen, C. F, Birkin, S. J., Garfield, M. J. and Webb, H. W. (2004), 'Managing Conflict in
Software Testing', Communications of the ACM, vol. 47, no. 1.

Conradi, R. and Dyb4, T. (2001), 'An empirical study on the utility of formal routines
to transfer knowledge and experience', paper presented to the 8th European
software engineering conference held jointly with 9th ACM SIGSOFT
international symposium on Foundations of software engineering, Vienna,
Austria, pp. 268-276.

Cowan, R., David, P. A. and Foray, D. (2000), 'The Explicit Economics of Knowledge
Codification and Tacitness', Industrial and Corporate Change, vol. 9, no. 2, pp. 211-
253.

Cronbach, L. J. (1951), 'Coefficient Alpha and the Internal Structure of Tests',
Psychometrika, vol. 16, no. 3, pp. 279-334.

Cusumano, M. A. and Yoffie, D. B. (1999), 'Software development on Internet time',
IEEE Computer, vol. 32, pp. 60-69.

Dai, Z. R., Grabowski, J., Neukirchen, H. and Pals, H. (2004), 'From Design to Test with
UML), paper presented to 16th IFIP International Conference, TestCom 2004,
Testing of Communicating Systems, Oxford, UK, pp. 33-49.

Dalkey, N. C. (1969), The Delphi method: An experimental study of group opinion, RAND
Corporation, Santa Monica, CA.

Dalkey, N. C. and Helmer, O. (1963), 'An experimental application of the Delphi
method to the use of experts', Management Science, vol. 9, pp. 458-467.

Denzin, N. K. (1978), The research act: A theoretical introduction to sociological methods,
McGraw-Hill.

Dibbern, J., Goles, T., Hirschheim, R. and Jayatilaka, B. (2004), 'Information systems
outsourcing: a survey and analysis of the literature', ACM SIGMIS Database, vol.
35, no. 4.

Dustin, E., Rashka, J. and Paul, J. (1999), Automated software testing: introduction,
management, and performance, Addison-Wesley, Boston.

Dyba, T. (2000), 'An Instrument for Measuring the Key Factors of Success in Software
Process Improvement', Empirical Software Engineering, vol. 5, pp. 357-390.

Edwards, J. S. (2003), 'Managing Software Engineers and Their Knowledge', in A.
Aurum, R. Jeffery, C. Wohlin and M. Handzic (eds), Managing Software
Engineering Knowledge, Springer, New York, p. 375.

Eisenhardt, K. M. (1989), 'Building Theories from Case Study Research', Academy of
Management Review, vol. 14, no. 4, pp. 532-550.

Emam, K. E., Drouin, J.-N. and Melo, W. (1998), SPICE The Theory and Practice of
Software Process Improvement and Capability Determination, IEEE Computer
Society Press, Los Alamitos, CA.

Fink, A. (2003), The Survey Handbook, SAGE Publications, Inc.

76

Fink, A. and Kosecoff, J. (1985), How to conduct surveys A Step-by-Step Guide, SAGE
Publications, Inc., Newbury Park, CA.

Foray, D. (2004), The Economics of Knowledge, The MIT Press, Cambridge, MA.

Glaser, B. and Strauss, A. L. (1967), The Discovery of Grounded Theory: Strategies for
Qualitative Research, Aldine, Chicago.

Graham, D. (2002), 'Requirements and testing: Seven missing-link myths', [IEEE
Software, vol. 19, no. 5, pp. 15-17.

Hansen, M. T., Nohria, N. and Tierney, T. (1999), 'What's Your Strategy for Managing
Knowledge?' Harvard Business Review, vol. 77, no. 2, pp. 106-116.

Harrold, M. J. (2000), 'Testing: A Roadmap', paper presented to the International
Conference on Software Engineering, Limerick, Ireland, pp. 61-72.

Harter, D. E. and Slaughter, S. A. (2000), 'Process maturity and software quality: a field
study', paper presented to the International Conference on Information
Systems, Brisbane, Australia, pp. 407-411.

Heiser, J. E. (1997), 'An Overview of Software Testing', paper presented to Autotestcon
'97.1997 IEEE Autotestcon Proceedings, Anaheim, CA, USA, pp. 204-211.
Hetzel, B. and Gelperin, D. (1988), "The growth of software testing', Communications of

the ACM, vol. 31, no. 6, pp. 687-695.

Highsmith, J. A. (2000), Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems, Dorset House Publishing, New York.

Hirschheim, R. A. (1985), 'Information systems epistemology: an historical
perspective’, in R. H. E Mumford, G Fitzgerald, T Wood-Harper (ed.), Research
Methods in Information Systems, North-Holland, Amsterdam.

Hirsjarvi, S., Remes, P. and Sajavaara, P. (1997), Tutki ja kirjoita, Dark Oy, Vantaa.

Hunt, A. and Thomas, D. (2000), The Pragmatic Programmer, Addison Wesley.

IEEE/ANSI (1983), IEEE Standard for Software Test Documentation, 829-1983.

IEEE/ANSI (1986), IEEE/ANSI Standard for Software Verification and Validation Plans,
Reaff. 1992, 1012-1986.

IEEE/ANSI (1990), IEEE Standard Glossary of Software Engineering Terminology, 610.12-
1990.

ISO/IEC (2001), ISO/IEC 12207:1995/FDAM Information technology-Software life cycle
processes.

ISO/IEC (2002), ISO/IEC 15504-1, Information Technology - Process Assessment - Part 1:
Concepts and Vocabulary.

ISO/IEC (2004), ISO/IEC CD 15504-5 Information Technology-Process Assessment-Part 5:
An exemplar Process Assessment Model.

ISO/IEC (2006), ISO/IEC 15504-5 Information technology - Process Assessment - Part 5: An
exemplar Process Assessment Model, ISO/IEC.

Jacobson, L., Booch, G. and Rumbaugh, J. (1999), The Unified Software Development
Process, Addison Wesley, Reading.

77

John, M., Maurer, F. and Tessem, B. (2005), 'Human and Social Factors of Software
Engineering - Workshop Summary', ACM SIGSOFT Software Engineering Notes,
vol. 30, no. 4, pp. 1-6.

Jones, E. L. (2000), 'Software testing in the computer science curriculum -- a holistic
approach', paper presented to Proceedings of the Australasian conference on
Computing education, Melbourne, Australia, pp. 153-157.

Jarvinen, P. (1999), On Research Methods, Tampereen Yliopistopaino Oy, Tampere.

Kaner, C,, Falk, J. and Nguyen, H. Q. (1999), Testing Computer Software, 2 edn, Wiley,
New York.

Karlstrom, D., Runeson, P. and Wohlin, C. (2002), 'Aggregating viewpoints for
strategic software process improvement - a method and a case study’, Software
IEE Proceedings, vol. 149, no. 5, pp. 143-152.

Katara, M. (2005), 'Testauksen ty6vilineet nyt ja tulevaisuudessa - akateeminen
nakemys', Systeemityd, vol. 1, pp. 15-17.

Keil, M., Cule, P. E.,, Lyytinen, K. and Schmidt, R. C. (1998), 'A Framework for
Identifying Software Project Risks', Communications of the ACM, vol. 41, no. 11.

Kit, E. (1995), Software Testing in the Real World: Improving the Process, Addison-Wesley,
Reading, MA.

Koomen, T. and Pol, M. (1999), Test Process Improvement: a Practical Step-by-Step Guide to
Structured Testing, Addison-Wesley.

Lee, A. S. and Baskerville, R. L. (2003), 'Generalizing Generalizability in Information
Systems Research', Information Systems Research, vol. 14, no. 3, pp. 221-243.

Litwin, M. S. (1995), How to Measure Survey Reliability and Validity, Sage Publications,
Thousand Oaks, CA.

Mantere, T. (2003), Automatic Software Testing by Genetic Algorithms. Dissertation., vol.
112, Universitas Wasaensis, Vaasa.

Miles, M. B. and Huberman, A. M. (1994), Qualitative Data Analysis, SAGE
Publications, Thousand Oaks, CA.

Morris, P., Masera, M. and Wilikens, M. (1998), 'Requirements Engineering and
Industrial Uptake', Requirements Engineering, vol. 3, pp. 79-83.

Myers, G.]. (1976), The Art of Software Testing, John Wiley & Sons, NY.

Naur, P. and Randell, B. (1969), 'Software Engineering: Report on a Conference
Sponsored by the NATO Science Committee', Garmisch, Germany, 7-11 Oct.

Nerur, S., Mahapatra, R. and Mangalaraj, G. (2005), 'Challenges of Migrating to Agile
Methodologies', Communications of the ACM, vol. 48, no. 5, pp. 72-78.

Ng, S. P, Murnane, T, Reed, K., Grant, D. and Chen, T. Y. (2004), 'A preliminary
survey on software testing practices in Australia', paper presented to the 2004
Australian Software Engineering Conference. 2004: 116-25, Melbourne.

Nonaka, I. (1994), 'A Dynamic Theory of Organizational Knowledge Creation’,
Organization Science, vol. 5, no. 1, pp. 14-37.

Nonaka, I. and Takeuchi, H. (1995), The Knowledge-Creating Company, Oxford
University Press, New York.

78

Northrop, L. (2006), 'Software Product Lines: Reuse That Makes Business Sense', paper
presented to ASWEC 2006.

Nunnally, J. C. (1978), Psychometric theory, McGraw-Hill, New York.

Osterloh, M. and Frey, B. S. (2000), 'Motivation, Knowledge Transfer, and
Organizational Forms', Organization Science, vol. 11, no. 5, pp. 538-550.

Osterweil, L., Clarke, L. A., DeMillo, R. A., Feldman, S. I., McKeeman, B., Salasin, E. F.
M., Jackson, D., Wallace, D. and Harrold, M. J. (1996), 'Strategic Directions in
Software Quality', ACM Computing Surveys, vol. 28, no. 4, pp. 738-750.

Osterweil, L. J. (1987), 'Software Processes are Software Too', paper presented to the
9th International Conference on Software Engineering, Monterey, CA, pp. 2-13.

Osterweil, L. J. (1997), 'Software processes are software too, revisited: an invited talk
on the most influential paper of ICSE 9', paper presented to the International
Conference on Software Engineering, Proceedings of the 19th International
Conference on Software Engineering, Boston, pp. 540-548.

Osterweil, L. J. (2003), 'Understanding Process and the Quest for Deeper Questions in
Software Engineering Research’, paper presented to Foundations of Software
Engineering. Proceedings of the 9th European Software Engineering Conference
held jointly with the 11th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Helsinki, Finland, pp. 6-14.

Palmer, S. R. and Felsing, J. M. (2002), A Practical Guide to Feature-Driven Development.

Paré, G. and Elam,].]J. (1997), 'Using Case Study Research to Build Theories of IT
Implementation’, paper presented to the IFIP TC8 WG International Conference
on Information Systems and Qualitative Research, Philadelphia, USA.

Pather, S. and Remenyi, D. (2004), 'Some of the philosophical issues underpinning
research in information systems: from positivism to critical realism', paper
presented to SAICSIT, Stellenbosch, Western Cape, South Africa, pp. 141-146.

Paulk, M. C., Weber, C. V., Curtis, B. and Chrissis, M. B. (1995), The Capability Maturity
Model: Guidelines for Improving the Software Process, Addison-Wesley, Boston.

Pfleeger, S. L. and Kitchenham, B. A. (2001), Principles of Survey Research Part 1:
Turning Lemons to Lemonade’, Software Engineering Notes, vol. 26, no. 6, pp. 16-
18.

Poston, R. M. (ed.) 1996, Automating specification-based software testing, IEEE Computer
Society Press, Los Alamitos, CA.

Pressman, R. S. (2001), Software engineering: a practitioner’s approach, McGraw-Hill, NY.

Pretschner, A., Prenninger, W., Wagner, S., Kuhnel, C., Baumgartner, M., Sostawa, B.,
Zolch, R. and Stauner, T. (2005), 'One Evaluation of Model-Based Testing and its
Automation', paper presented to the International Conference on Software
Engineering (ICSE 2005), St. Louis, Missouri, USA, pp. 392-401.

Punch, K. F. (1998), Introduction to Social Research, SAGE Publications.

Pyhajarvi, M., Rautiainen, K. and Itkonen,]. (2003), 'Increasing Understanding of the
Modern Testing Perspective in Software Product Development Projects’, paper

79

presented to 36th Hawaii International Conference on Systems Sciences,
Hawaii.

Robson, C. (2002), Real World Research, Second Edition, Blackwell Publishing.

Runeson, P. (2006), 'A Survey of Unit Testing Practices’, IEEE Software, vol. 23, no. 4,
pp- 22-29.

Runeson, P.,, Andersson, C., Thelin, T., Andrews, A. and Berling, T. (2006), 'What Do
We Know about Defect Detection Methods', IEEE Software, vol. 23, no. 3, pp. 82-
90.

Runeson, P. and Thelin, T. (2003), 'A Case Study Using Sampling to Improve Software
Inspection Effectiveness', paper presented to International Symposium on
Empirical Software Engineering (ISESE'03), Rome.

Salminen, V., Yassine, A. and Riitahuhta, A. (2000), 'Strategic Management of
Complexity in Distributed Product Development', paper presented to
NordDesign 2000, Copenhagen.

Schmidt, R. C. (1997), 'Managing Delphi surveys using nonparametric statistical
techniques', Decision Sciences, vol. 28, no. 3, pp. 763-774.

Schwaber, K. and Beedle, M. (2002), Agile Software Development with Scrum, Prentice -
Hall, Upper Saddle River, NJ.

Seaman, C. B. (1999), 'Qualitative Methods in Empirical Studies of Software
Engineering', IEEE Transactions on Software Engineering, vol. 25, no. 4, pp. 557-
572.

Smolander, K., Rossi, M. and Purao, S. (2005), 'Going beyond the Blueprint:
Unraveling the Complex Reality of Software Architectures', paper presented to
the 13th European Conference on Information Systems: Information Systems in
a Rapidly Changing Economy, Ragensburg, Germany.

Sommerville, 1. (1995), Software Engineering, Addison Wesley, Essex, England.

Sommerville, 1., Sawyer, P. and Viller, S. (1999), 'Managing process inconsistencies
using viewpoints.' IEEE Transactions on Software Engineering, vol. 25, no. 6, pp.
784-799.

Spender,].-C. and Grant, R. M. (1996), 'Knowledge and the Firm: Overview', Strategic
Management Journal, vol. 17, no. Winter Special Issue, pp. 5-9.

SPSS 12.0 for Windows (2004), SPSS Inc.

Standish (1994), The CHAOS Report. The Standish Group,
<http://www.projectsmart.co.uk/docs/chaos_report.pdf>.

Stapleton, J. (1997), Dynamic systems development method - The method in practice,
Addison Wesley.

Strauss, A. and Corbin, J. (1990), Basics of Qualitative Research: Grounded Theory
Procedures and Techniques, SAGE Publications, Newbury Park, CA.

Suchman, L. (1989), Notes on Computer Support for Cooperative Work, University of
Jyvéskyld, Department of Computer Science, Jyvaskyla.

80

Szulanski, G. (1996), 'Exploring internal stickiness: Impediments to the transfer of best
practice within the firm', Strategic Management Journal, vol. 17, no. Winter
Special Issue, pp. 27-43.

Teece, D. J. (1986), 'Profiting from technological innovation: Implications for
integration, collaboration, licensing, and public policy', Research Policy, vol. 15,
no. 6, pp. 285-305.

Tesch, R. (1990), Qualitative Research: Analysis Types and Software Tools, The Falmer
Press.

Tinkham, A. and Kaner, C. (2003), 'Exploring Exploratory Testing', paper presented to
Software Testing Analysis & Review Conference (STAR) East, Orlando, FL.

Torkar, R. and Mankefors, S. (2003), 'A survey on testing and reuse', paper presented
to the IEEE International Conference on Software - Science, Technology and
Engineering (SWSTE'03), Herzlia, Israel.

Wallace, L. and Keil, M. (2004), 'Software Project Risks and Their Effect on Outcomes’,
Communications of the ACM, vol. 47, no. 4, pp. 68-73.

Wheeler, S. and Duggins, S. (1998), 'Improving software quality’, paper presented to
the ACM Southeast Regional Conference, USA, pp. 300-309.

Whittaker, J. and Voas, J. (2002), '50 Years of Software: Key Principles for Quality’, IT
Pro, vol. November December 2002, pp. 28-35.

Whittaker, J. A. (2000), 'What is software testing? And why is it so hard?' [EEE
Software, vol. 17, no. 1, pp. 70-79.

Voas, J. (1998), 'COTS software: the economical choice?' IEEE Software, vol. 15, no. 2,
pp- 16-19.

81

