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ABSTRACT

Savolainen Pekka
Modeling of non-isothermal vapor membrane separation with thermodynamic models and
generalized mass transfer equations
Lappeenranta 2002
179 p.
Acta Universitatis Lappeenrantaensis 125
Diss. Lappeenranta University of Technology
ISBN 951-764-647-X
ISSN 1456-4491

A rigorous unit operation model is developed for vapor membrane separation. The new model
is able to describe temperature, pressure, and concentration dependent permeation as well real
fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric
membranes.

The permeation through the membrane is described by a separate treatment of sorption and
diffusion within the membrane. The chemical engineering thermodynamics is used to describe
the equilibrium sorption of vapors and gases in rubbery membranes with equation of state
models for polymeric systems. Also a new modification of the UNIFAC model is proposed
for this purpose. Various thermodynamic models are extensively compared in order to verify
the models’ ability to predict and correlate experimental vapor-liquid equilibrium data. The
penetrant transport through the selective layer of the membrane is described with the
generalized Maxwell–Stefan equations, which are able to account for the bulk flux
contribution as well as the diffusive coupling effect. A method is described to compute and
correlate binary penetrant–membrane diffusion coefficients from the experimental
permeability coefficients at different temperatures and pressures. A fluid flow model for
spiral-wound modules is derived from the conservation equation of mass, momentum, and
energy. The conservation equations are presented in a discretized form by using the control
volume approach. A combination of the permeation model and the fluid flow model yields the
desired rigorous model for vapor membrane separation. The model is implemented into an in-
house process simulator and so vapor membrane separation may be evaluated as an integral
part of a process flowsheet.

Keywords: modeling, vapor separation, membrane, permeation, sorption, diffusion, polymer,
equation of state, UNIFAC, Maxwell–Stefan equations, control volume method, spiral-wound
module

UDC 66.071.6.001.57 : 66.081 : 533.15
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1 INTRODUCTION

The Loeb and Sourirajan (1963) invention of the phase-inverted reverse osmosis membranes

was a breakthrough for the development of feasible membrane separation processes. These

asymmetric membranes, which consisted of a thin dense skin and a porous support layer,

provided reasonable fluxes for many membrane separation applications. Since then the

development in membranes and membrane processes has been vigorous so that the current list

of commercial membrane processes is long, including reverse osmosis, nanofiltration,

ultrafiltration, microfiltration, electrodialysis, pervaporation, and gas separation.

Gas separation uses dense polymeric, porous ceramic, or porous carbon membranes.

Polymeric membranes are either glassy or rubbery membranes. However, most modern

applications make use of dense glassy polymeric membranes such as PRISMÒ polysulfone

membranes that were launched by Monsanto Co. in 1980 (MacLean and Graham, 1980; Henis

and Tripodi, 1980). Glassy polymeric membranes are nowadays separating hydrogen from

nitrogen, hydrogen from hydrocarbons, hydrogen from carbon dioxide, hydrogen from carbon

monoxide, carbon dioxide from methane, nitrogen from air, and water from compressed air.

Rubbery polymeric membranes found their commericial use in vapor membrane separation at

the end of the 80’s (Behling et al., 1989; Wijmans and Helm, 1989; Katoh et al., 1989). Since

then rubbery membranes has been successfully utilized for hydrocarbon vapor separation and

recovery from various gas streams (Ohlrogge et al., 1990; Baker et al., 1996) and for

monomer separation and recovery from polyolefin resin degassing (Baker and Jacobs, 1996).

The latter application not only introduced a decade increase in the feed capacity of the vapor

membrane separation process but also a substantial value of the recovered monomer.

The number of vapor separation applications is expected to increase rapidly, partly due to

continuous tightening of local authority regulations on the emission control of volatile organic

compounds (VOCs) and hazardous air pollutants (HAPs). In addition, new potential

applications for hydrocarbon selective membranes are expected to be found in the refinery

and petrochemical processes. Therefore, this dissertation centers on vapor separation with

hydrocarbon selective rubbery membranes with deep insight into the transport phenomena

involved therein.
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1.1 SCOPE OF THE WORK

Membrane separation processes have conventionally been used as end-of-pipe installations.

Recent developments (Baker and Jacobs, 1996) have introduced vapor membrane separation

also as an integral part of a production process with recycle streams. In such cases, the

evaluation of the process configuration is preferably performed with flowsheet simulation,

which is nowadays an essential tool in the process development, design, and optimization.

However, commercial process simulators do not contain models for gas and vapor membrane

separation.

The final goal in this work is to develop a theoretically rigorous unit operation model for

vapor membrane separation with rubbery spiral-wound membrane modules. The new model is

then implemented into a flowsheet process simulator, FLOWBAT (2001), that allows the

studying of the vapor membrane separation with the existing unit operation models, such as

distillation and various reactor models. Non-commercial user models of different theoretical

levels have already been incorporated into commercial and non-commercial process

simulators (Rautenbach et al. 1996; Hoting et al., 1997; Tessendorf, 1998).

Mathematical models for spiral-wound modules exist for binary (Pan and Habgood, 1974)

and multicomponent gas mixtures (Pan and Habgood, 1978; Shindo et al., 1985; Hickey and

Gooding, 1994; Qi and Henson, 1997; Tessendorf et al., 1999). However, these models utilize

such assumptions that may lead to an overestimation of the performance of vapor membrane

separation process. These assumptions include constant permeability, species permeation as a

single species in a mixture, isothermal operation, a negligible pressure drop on the retentate

side, and, except for the models of Hickey and Gooding (1994) and Qi and Henson (1997), a

negligible pressure drop on the permeate side.

The assumption of constant permeability holds for noncondensable components, such as

hydrogen and nitrogen, but not for the condensable components in a mixture. The assumption

of species permeation as a single species neglects the diffusive coupling and the bulk flux

contribution. The latter effect has been recognized for the organic liquid permeation in

homogenous solvent swollen membranes (Paul and Ebra-Lima, 1970; Paul, 1973) and for the

gas permeation in glassy membranes (McCandless, 1972; Koros et al. 1981). Kamaruddin and

Koros (1997) revealed that the bulk flux contribution cannot be neglected either at a low

sorption level when penetrants have relative large differences in the individual fluxes.
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The assumption of an isothermal operation is erroneous in the thermodynamic sense. Gorissen

(1987) has pointed out that enthalpy changes do occur in gas and vapor membrane separation

due to changes in the pressure and in the composition of the local product flows. The

permeated fraction may be internally cooled or heated within the membrane, since the

pressure change may result in a positive or negative temperature change for a real gas.

Internal cooling may be expected in vapor membrane separation, since most gases, except for

hydrogen, cool on expansion at ordinary temperatures. According to Baker and Lokhandwala

(1998), retentate and permeate products exit at about the same temperature or the retentate is

the colder stream. As a consequence, local temperature differences may be formed over the

membrane and heat is transferred over the thin composite membrane. These non-isothermal

effects have been taken into account in recent dissertations (Tessendorf, 1998; Thundyil,

1998).

The assumption of the negligible pressure drop on the retentate side is acceptable for a

properly designed process. The flow velocity and the required pressure drop for the flow on

the retentate side decreases along the flow due to the permeation of the fluid into the permeate

side. However, on the permeate side the flow velocity increases along the flow and so the

pressure drop must be carefully verified.

A rigorous modeling approach in this work utilizes thermodynamic models for polymeric

systems, multicomponent mass transport theories, transport theories in polymeric systems,

and techniques from computational fluid dynamics, CFD. The outline of this work is as

follows.

Chapter 2 provides the reader with the background information of vapor membrane

separation. In chapter 3, the basic model equations of mass, momentum, and energy are

derived for the fluid flow in spiral-wound membrane modules. The flow fields of the bulk

retentate and permeate are treated as separate but interlinked flow fields due to local mass and

energy flow through the membrane. The basic model equations are discretized in chapter 4.

The method of discretization follows the control volume approach by Patankar (1980) that

results in discrete model equations, which are able to fulfill the integral conservation of mass,

momentum, and energy within a spiral-wound module.
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Chapter 5 is devoted to the gas and vapor transport in rubbery membranes. The sorption

equilibrium in the membrane is treated by using the classical chemical engineering

thermodynamics. The transport equations within the membrane will be derived from the

generalized Maxwell–Stefan equations (Taylor and Krishna, 1993). The effect of the

membrane swelling on sorption is also considered. Diffusion coefficients are treated as

experimental quantities that are obtained from the pure component permeability

measurements at different temperatures and pressures. These diffusion coefficients will be

used to create a diffusivity correlation and to form a predictive description of permeation in a

multicomponent system. When the items above are combined, the model is able to describe

the temperature, pressure, and composition dependent permeation through the infinitesimal

membrane element.

Chapter 6 introduces equation of state models for polymeric systems. These models are the

Sanchez–Lacombe equation of state (Sanchez and Lacombe, 1976; Lacombe and Sanchez,

1976), the perturbed hard-sphere-chain equation of state (Song et al., 1996), and the combined

Soave-Redlich–Kwong equation of state–predictive excess Gibbs energy model with the

MHV2 mixing rule (Dahl and Michelsen, 1990). UNIFAC-FV (Oishi and Prausnitz, 1978)

and a new modification of the UNIFAC model, the exponential UNIFAC, provide the excess

Gibbs energy expression for the mixing rule. The latter is developed in this work and may be

applied for the estimation of the activity coefficients of gases in polymeric liquid mixtures. In

this work, the equation of state models are used to describe the sorption equilibrium at the

fluid–membrane interface and the non-ideality of the polymer phase in the transport

equations. Therefore, the main part of chapter 7 is devoted to the comparison of the models’

ability to predict and correlate binary solvent–polymer vapor–liquid equilibrium in order to

find the suitable thermodynamic model for vapor membrane separation. Other subjects of

chapter 7 deal with the correlation of pure component diffusion coefficients in a PDMS

membrane and the modeling of multicomponent permeation in a laboratory test cell. The

detailed solution algorithm for the model equations of mass, momentum, and energy are

provided in chapter 8 with industrially relevant example simulations. The final conclusions

are then drawn in chapter 9.
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2 VAPOR MEMBRANE SEPARATION

Vapor membrane separation may be distinguished as a subsection of gas membrane

separation. It has become common practice in the membrane separation literature to deal with

vapor and gas membrane separation as separate subjects. Basically, feed, retentate, and

permeate are vapors in vapor membrane separation and gases in gas membrane separation. In

a thermodynamic sense, the difference between vapor and gas is that vapor may be liquefied

by increasing the pressure or decreasing the volume at constant temperature while gas may

not. However, vapor membrane separation in this work is associated with a membrane process

that treats a vapor laden gas stream and preferentially separates at least a part of the vapor to

the permeate product stream. The correct term should then be vapor and gas separation but, in

brief, vapor separation is used instead.

An organic vapor contaminated gas stream is formed when a gaseous stream, e.g. air, passes

through or over a free surface of evaporating liquid. Vapor compounds may be partially

recovered from the gas by compression, condensation, absorption, adsorption, or membrane

separation. Alternatively, vapor compounds may be destroyed by thermal or catalytic

oxidation, i.e. incineration. The choice of the method depends on economical considerations,

the vapor concentration level, and the total flow rate. According to Baker (2000, p. 329),

vapor membrane separation is economically favorable at the region of 1-10 vol-% of organic

vapor.

Vapor membrane separation alone is not able to fulfil simultaneous high-efficiency separation

and the enrichment of the desired component in a single separation stage. Better process

performance and economics are obtained when membrane separation is combined with

another separation process to form a hybrid process. Thus far vapor membrane separation has

been combined with compression–condensation (Kaschemekat et al., 1993), absorption

(Katoh et al., 1989), adsorption, and catalytic oxidation (Ohlrogge et al., 1990 and 1993).

This introductory chapter provides with the basic information relevant to the topic of this

dissertation. Vapor separation membranes and membrane materials are introduced in section

2.1 and the construction of membrane modules in section 2.2. The transport characteristics of

rubbery and glassy polymers are set forth in short in terms of sorption and diffusion in section
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2.3. The prevailing macroscopic model for gas and vapor permeation, the solution–diffusion

model, is presented in section 2.4.

2.1 MEMBRANES AND MEMBRANE MATERIALS

Modern membranes for separation are either asymmetric integrally skinned or flat sheet

composite membranes. Vapor membrane separation utilizes hydrocarbon selective rubbery

membranes in the form of composite flat sheets. This allows for the production of

mechanically strong membranes from materials that have relatively weak mechanical

properties.

Generally, the vapor separation membrane consists of three composite layers as sketched in

Figure 2.1. The topmost layer is a dense selective layer, 0.4-10 mm in thickness, made of a

material that performs the desired separation. Beneath the selective layer, there is a porous

support layer, 40-150 mm in thickness, made of a material that provides the membrane with

the required mechanical strength, and which is also physically compatible with the selective

layer. The undermost layer is a substrate layer, 100-150 mm in thickness, made of a non-

woven fabric, like polyester or polypropylene, that acts as a backing for the membrane.

Selective layer

Support layer

Substrate layer

Figure 2.1 Schematic cross-section of a three-layer composite membrane.

Hydrocarbon selective separation layers may be formed from various rubbery polymers as

listed in the patents by Baker (1985) and Gottschlich and Jacobs (1998). These materials

include nitrile rubber, neoprene, poly(dimethylsiloxane), chlorosulfonated polyethylene,

fluoroelastomer, polyurethane, poly(cis-butadiene), poly(cis-isoprene), and polystyrene-

butadiene copolymers.
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Hydrocarbon selective layers may also be formed from substituted polyacetylenes that are

high permeability glassy polymers (Masuda et al., 1983; Takada et al., 1985; Ichiraku and

Stern, 1987; Masuda et al., 1988; Platé et al., 1991). The most permeable member of this

family is poly[1-(trimethylsilyl)-1-propyne] (PTMSP), which has the highest permeability for

oxygen of the known polymeric materials (Masuda et al., 1983). The high permeability of

PTMSP results from the high free volume (Ichiraku and Stern, 1987) that is between 20 and

27% (Platé et al., 1991). The free volume of the polymer is so large that the free volume

elements of PTMSP membranes may be connected to form a microporous structure (Auvil et

al., 1991; Srinivasan et al., 1994; Pinnau and Toy, 1996). The dominating transport

mechanism is surface diffusion (Auvil et al., 1991), which differs from the conventional

solution–diffusion mechanism. Condensable components preferably adsorb on the surface of

the pores and diffuse through the membrane along the pore wall. At the same time the

adsorbed molecules block the pore from the diffusion of less condensable components that

migrate through the membrane by bulk or by Knudsen diffusion. This mechanism makes the

PTMSP membrane hydrocarbon selective for a mixture of hydrocarbons and non-

condensables. Unfortunately, the permeability of PTMSP deteriorates with time due to aging

(Langsam and Robeson, 1989; Yampol’skii et al., 1993; Nakagawa et al., 1994); however,

PTMSP remains in the group of the most permeable polymeric materials even in the aged

form (Yampol’skii et al., 1993). Contrary to above observations, Pinnau et al. (1997)

discovered in their 47-day-long experiment that the permeability of the PTMSP membrane

was quite stable when the membrane was continuously exposed to n-butane vapor.

Although the number of suitable polymeric materials is large for vapor membrane separation,

a common choice for the selective layer is poly(dimethylsiloxane), PDMS. It is a high

permeability polymer and in fact had the highest permeability for oxygen among the known

polymeric materials until PTMSP was synthesized. PDMS has low oxygen to nitrogen

selectivity, about 2, but it allows hydrocarbons to permeate 10 to 100 times faster than

nitrogen (Behling et al., 1989; Wijmans and Helm, 1989). PDMS is hydrophobic and it has a

low glass transition temperature, about –123°C.

2.2 MEMBRANE MODULES

Flat sheet hydrocarbon selective membranes for vapor separation are packed in spiral-wound

modules (Wijmans and Helm, 1989; Katoh et al., 1989) and in plate-and-frame modules

(Behling et al., 1989; Ohlrogge et al., 1993). Membrane Technology and Research, Inc.
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manufactures spiral-wound modules under the trade name VaporSepÒ. Plate-and-frame

modules for vapor separation were originally developed by GKSS GmbH but nowadays the

manufacturer of these modules is GMT Membrantechnik GmbH. Original equipment

manufacturers, such as Aluminium Rheinfelden GmbH and Sterling SAT (SIHI

Anlagentechnik), apply the GKSS plate-and-frame modules in the membrane-based vapor

recovery units.

2.2.1 Spiral-wound membrane module

Spiral-wound membrane modules consist of multiple flat membrane sheets, feed spacers, and

permeate spacers around the central permeate collection pipe. Spiral-wound modules are

about 1 meter (40 inch) long and typically 10, 20, or 30 cm (4, 8, or 12 inch) in diameter.

According to Baker (1997), a large commercial membrane module may have as many as 30

membrane leaves, each with a membrane area of about 2 m2. The advance of a multileaf

spiral-wound module is the reduced length of the permeate flow path, which effectively

minimizes the pressure drop on the permeate side (Baker, 1997).

A spiral-wound membrane module is formed as follows. The membrane sheet is folded over

the feed spacer to form a membrane envelope. Then the edges of the membrane and spacer are

glued and the leaf end is sealed. The end of a longer permeate spacer sheet is wrapped around

a perforated central tube to form a cover to which other membrane leaves and permeate

spacers are attached (Figure 2.2). The entirety is then wrapped clockwise to form a spiral-

wound assembly. A protective porous cover is wrapped over the surface of the module and

antitelescoping devices are attached to the module ends to prevent module telescoping under

operation.
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Permeate spacer

Membrane envelope Central perforated tube

Feed spacer
Membrane

Figure 2.2 Extended spiral-wound membrane module.

A spiral-wound module is shown in Figure 2.3. The feed is introduced axially into the

membrane module and further into the membrane leaves. Feed spacers provide the flow paths

within the membrane leaves. Part of the feed permeates through the membrane to the low-

pressure side so that the residual is depleted from the fastest permeating species. The depleted

stream exits almost at feed pressure from the module end as the retentate product. The

permeated fraction enters into the low-pressure space between two membrane leaves. In the

low-pressure space, the permeated fraction mixes with the bulk permeate and then flows

perpendicular to the retentate flow. The permeate spacer provides the spiral flow path within

the membrane leaf. At the leaf end, the permeate enters into the central collection tube and

exits from the tube end as the low-pressure permeate product.

Feed

Feed

Retentate

Retentate

Permeate

Permeate spacer Central tube

Feed spacer Membrane

Figure 2.3 Spiral-wound membrane module.
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Spiral-wound modules may be installed in parallel and in series to form a membrane

separation unit with the desired capacity. The serial modules are connected from the central

tubes and may be installed into the same pressure vessel as sketched in Figure 2.4. Then the

retentate flow from the previous module forms the mixed feed flow of the next module. This

eliminates the flow channeling that may occur in a longer membrane module. Due to the

module construction, a membrane replacement in spiral-wound module requires the

replacement of the module as a whole.

Feed

Permeate

Residue / Retentate

Figure 2.4 Multiple spiral-wound modules connected in series in a pressure vessel.

2.2.2 Plate-and-frame module

Plate-and-frame modules consist of stacked feed spacers and membrane envelopes. The

membrane envelopes are formed from the permeate spacer and two round flat sheet

membranes sealed at the cutting edges. A desired membrane area per module is constructed

from a number of membrane envelopes and feed spacers, which are positioned between the

two end plates and along the central permeate tube (Figure 2.5). O-ring gaskets are placed

between the membrane envelopes that seal the feed side from the permeate side. A membrane

stack is tighten with adapter sleeves and tension nuts while the central tube acts as a tension

rod.

The feed is introduced into the module via the upper plate. The baffles inside the module

guide the flow path over the stacked membrane envelopes. Part of the feed permeates through

the membrane into the membrane envelope and flows radially towards the perforated central

tube. The permeate spacer within the membrane envelope provides the flow path for the

permeated fraction. The residue becomes depleted from the fastest permeating species and

finally exits from the module via the lower plate as the retentate product stream. The permeate

is withdrawn from the central tube end or from the both ends of the central tube (Behling et

al., 1989).
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Feed

Permeate

Retentate

Perforated central tube
Tension rod

Baffle Membrane envelope

Permeate spacer

O-ring

Tension nut

Figure 2.5 Plate-and-frame module and membrane envelope. Feed spacers between the
membrane envelopes are omitted for clarity. Adapted from Behling et al. (1989) and
Ohlrogge et al. (1993).

Plate-and-frame modules provide excellent flow patterns for the flows and low permeate side

pressure drop (Behling et al., 1989). The membrane stacks may be constructed so that the

flow velocity on the high-pressure side remains constant over the membrane module, which

may be beneficial to reduce the effect of the concentration polarization. Due to the module

construction, the replacement of individual membrane envelopes is possible in a plate-and-

frame module.

2.3 PENETRANT TRANSPORT IN AMORPHOUS POLYMERS

Modern polymeric membranes are made from amorphous polymers, which are free from

polymer crystallites. Amorphous polymers are classified in two groups based on the glass

transition temperature, namely rubbers and glasses (Figure 2.6). Gas or vapor separation with

a rubbery membrane is based on the solubility differences in the membrane material. Rubbery

membranes sorb more hydrocarbons than permanent gases, like nitrogen, and therefore they

are generally utilized in hydrocarbon vapor separation (Baker et al., 1998). Gas separation
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with a glassy membrane is based on the diffusion rate differences so that a small molecule

generally has a higher diffusion rate through the membrane than a large molecule.

The transport properties of rubbery and glassy polymers are reviewed in short in the following

paragraphs. Although rubbers are the preferred choice in vapor membrane separation, glasses

are included in the following discussion to enlighten the different transport characteristics of

glassy polymers and to give the insight of physical limits of the modeling approach adopted in

this work.

Occupied volume

Liquid / rubber regionGlass region

Tg Tg*

Extrapolated
equilibrium
volume

Temperature

Sp
ec

ifi
c 

vo
lu

m
e

Tg2

Free volumeFaster cooling
Slower cooling

Figure 2.6 Sketch of the volume–temperature behavior of an amorphous polymer. Tg and
Tg

* represent the observed glass transition temperatures on slower and faster cooling
respectively. Adapted from Matsuoka (1981).

2.3.1 Rubbery polymers

At a low pressure the gas or vapor sorption isotherm in a rubbery or melt polymer is linear

with respect to pressure. Then the isotherm follows Henry’s law

111 pkC ,D= , (2.1)

where C1 is the concentration of the gas or solvent in the polymer, usually in units cm3 gas

(STP)/cm3 polymer, and p1 is the partial pressure of the gas. The Henry solubility coefficient

kD is defined as

1

1

01,
1

lim
p
Ck

pD ®
= .

(2.2)
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The sorption isotherm may deviate from a linear form at moderate or high pressures with

components of high solubility (Figure 2.7). Then the isotherm may be described with the

Flory-Huggins theory

( ) ( )211211
1

1 11lnln fcff -+-+=÷÷
ø

ö
çç
è

æ
sp

p
,

(2.3)

where sp1  is the saturation pressure of the solvent, f1 is the volume fraction of the solvent in

the polymer phase, and 12c  is the Flory–Huggins interaction parameter between solvent and

polymer. Alternatively, fugacities may be used instead of pressure.

a)
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n
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b)

Figure 2.7 Sketches of the gas solubility isotherms for rubbery polymers: a) linear isotherm
at low pressure, b) convex isotherm at moderate to high pressure.

Mathematical expressions for molecular diffusion in rubbery or melt polymers base on

empirical and phenomenological free volume theories. Although the concept of free volume is

an artificial quantity, it is usually invoked for the characterization of the physical behavior of

polymers. The free volume is defined as the volume between the observable volume and the

occupied volume (Figure 2.6). The occupied volume is not a measurable quantity; it has

generally been associated with the van der Waals volume, volume of the liquid at zero

temperature, or randomly close packed volume (Bondi, 1968, p. 256).

The concept of free volume was originally introduced in the theory of liquid viscosity by

Doolittle (1951) and in the theory of liquid diffusivity by Cohen and Turnbull (1959). Cohen

and Turnbull (1959) presumed that the total volume in liquid could be divided into the

occupied volume and the free volume. The former is assumed to be inaccessible for diffusing

molecules, whereas the latter is available for molecular transport. Cohen and Turnbull’s

(1959) idealized liquid consists of hard sphere molecules that exist in cavities formed by the

nearest neighbors. The molecule is able to vibrate within its cage but migration is possible
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only when a hole of sufficient size is formed due to natural thermal fluctuations. The

migration results in a successful diffusive step if another molecule occupies the former

position. An individual hole may not be large enough to accommodate a diffusing molecule,

but the co-operative motion of several neighboring molecules may form a hole of sufficient

size.

In polymeric material, the co-operative motion involves of several chain segments (Fujita et

al., 1960). This is described by the theory of Pace and Datyner (1979), where polymer chains

are bending like flexible rods, with a number of backbone bonds undergoing small rotations.

The molecule may move through the polymeric matrix in two ways: along the axis of a

channel formed by the adjacent parallel chains or perpendicular to this axis when two polymer

chains are separating sufficiently to permit the passage of the molecule. The movement along

the axis of a channel is halted whenever the molecule encounters a crosslinking, a crystalline,

or a sufficiently large chain entanglement at either end of its confining channel. After this the

molecule may continue the permeation process through the membrane only by jumping into

an adjoining channel. Pace and Datyner (1979) claimed that the first process occurs at least

three orders of magnitude faster than macroscopically observed diffusion rates. This means

that a molecule will move backward and forward in its confining channel many times before

jumping into an adjacent channel. Molecular dynamic simulations have confirmed diffusion

process of this kind for small molecules in amorphous polymers (Sok et al., 1992; Müller-

Plathe, 1992).

Two widely cited free volume models for polymers are those of Fujita et al. (1960) and

Vrentas and Duda (1977a and b). Fujita et al. (1960) applied the Doolittle (1951) viscosity

relation to describe the temperature and concentration dependence of the penetrant diffusion

in a polymer. Their equation was given in the form

÷÷
ø

ö
çç
è

æ
-

FV

d
d

T B
A

RT
D

f
exp=1, ,

(2.4)

where DT,1 is the thermodynamically corrected diffusion coefficient of the penetrant, R is the

universal gas constant, Ad and Bd are constants depending on the geometry of the penetrant,

and FVf  is the fraction of total free volume at the system temperature, pressure, and

composition. The parameters Ad and Bd have to be determined from the experimental

diffusivity data.
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Vrentas and Duda (1977a) outlined that the total free volume cannot be available for the

molecular diffusion. In their model, the free volume is comprised of the interstitial free

volume, which has large energy for redistribution, and of the hole free volume, which can

redistribute with no energy increase. They stated that the latter is the only free volume

available for molecular transport. This is in accordance with Matsuoka’s (1981) statement that

the occupied volume is considerably greater than the crystalline volume and is comprised of a

molecular volume with a significant amount of vacancies associated with them.

Vrentas and Duda (1977a) stated that the solvent diffusion in the polymer matrix resembles

the Brownian motion in a homogenous medium. Thus, the solvent diffusion may be classified

as self-diffusion, which may be described with the following equation
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(2.5)

where D1 is the self-diffusion coefficient of the solvent, D01 is the pre-exponential factor, w is

the weight fraction, E is the activation energy required for a jumping unit to overcome the

attractive forces of the neighbor molecules, $ *V1  and $ *V2  are the specific hole free volumes for

a solvent and polymer molecule required to jump into a new position, factor g accounts for the

overlap between the free volume elements, $VFH  is the average specific hole free volume of the

polymeric liquid mixture, and x is

x =
$

$

*

*

V M
V M

j

j

1 1

2 2

,
(2.6)

where M1j and M2j are the molecular weights of the jumping units of the solvent and polymer

respectively. Vrentas and Duda (1977a) deduced that the jumping unit for the pure simple

liquid is the entire molecule but for a long chain molecule, a small part of each chain. The

parameters of equation (2.5) are determined from the experimental binary diffusivity data and

from the Williams–Landel–Ferry (WLF) constants for a polymer as described by Vrentas and

Duda (1977b) and Zielinski and Duda (1992). The WLF parameters are already available

from Ferry (1980) or may be determined from the experimental temperature–viscosity data.

The theory of Vrentas and Duda (1977a and b) is completely reviewed by Duda and Zielinski

(1996).
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2.3.2 Glassy polymers

Rubbery chain segments are able to move rapidly in a coordinated fashion, which may be

seen on the rate change of a specific volume isobar with respect to temperature in Figure 2.6.

The motion of individual polymer chains becomes constrained as amorphous rubbers or melts

are cooled through the glass transition. The glass transition of an amorphous polymer is not a

fixed temperature but a temperature region. McKenna (1989) classifies the glass transition as

a kinetic phenomenon with underlying second order thermodynamic transition because of the

Gibbs energy and its first partial derivatives are continuous at the glass transition, whereas the

second partial derivatives with respect to temperature and pressure — heat capacity,

compressibility, and thermal expansion coefficient — are discontinuous at the glass transition.

At the glassy state, polymer chain segments are rigid and movements are merely vibrations

and short-range rotations (Sperling, 1992, p.310). Glassy polymers pose non-equilibrium

features that may be explained with the concept of free volume. The non-equilibrium features

of glassy polymers arise from the excess free volume, which is sketched in Figure 2.6 as the

volume between the observed specific volume and the extrapolated equilibrium volume. The

excess free volume is captured within the polymeric matrix on cooling through the glass

transition (Kovacs, 1958). The faster the cooling rate, the greater the amount of the excess

free volume and the observed specific volume. However, no change of specific volume is

observed in the rubber or melt region when the amorphous sample is reheated through the

glass transition region. Like all non-equilibrium systems, glasses tend to relax towards the

equilibrium. However, the relaxation process is slow so that infinite time is required for a

glass to relax to the (hypothetical) equilibrium volume.

The sorption isotherm in glassy polymers is generally non-linear and concave to the pressure

axis (Figure 2.8a). The sorption isotherm may also behave as in Figure 2.8b, when the

penetrant concentration exceeds the level of the solvent induced glass transition (Chiou et al.,

1985; Chiou and Paul, 1986). After this inflection point, the sorption isotherm responses to

the increase of pressure like rubber.

There are many mathematical expressions for the gas sorption in glassy polymers as can be

noted from the review of Barbari and Conforti (1994). However, the dual-mode sorption

model is widely used and accepted as a viable model to represent the measured sorption

isotherms of non-plasticizing gases in glassy polymers. The sorption isotherms of plasticizing
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gases in glassy polymers may be described by the concentration–temperature superposition

model of Mi et al. (1991).

C
on

ce
nt

ra
tio

n

Pressure
a)

C
on

ce
nt

ra
tio

n

Pressure
b)

Figure 2.8 Sketches of sorption isotherms for glassy polymers: a) normal isotherm, b)
isotherm for plasticizing gas.

The dual-mode sorption model is a phenomenological model, which combines two different

sorption phenomena: Henry’s law sorption of the amorphous polymer regions and the

Langmuir sorption of the microvoids or defects frozen in the polymer matrix at glass

transition. The two distinct sorption populations are assumed to be in local equilibrium. The

concentration of the gas in the polymer is given by equation

11

111
11111 1 pb

pbC
pkCCC

,
,H

,D,H,D +
+=+= ,

(2.7)

where CD is the Henry’s type solubility concentration, CH is the Langmuir type solubility

concentration, ,
HC  is the hole saturation constant, and b is the hole affinity constant. The three

model parameters are determined from the measured sorption isotherm. According to Koros et

al. (1981), the hole saturation constant characterizes the total sorption capacity of the

Langmuir sites for a given penetrant and the hole affinity constant characterizes the tendency

of a given penetrant to sorb in the Langmuir sites. Equation (2.7) may also be written in terms

of fugacities instead of pressure.

Diffusion in glassy polymers does not generally obey Fickian diffusion (Park, 1968; Neogi,

1996) i.e. the fractional mass intake in a sorption experiment is not proportional to the square

root of time. Phenomenological gas diffusion models have been developed based on the dual-

mode sorption model (Vieth and Sladek, 1965; Paul and Koros, 1976). Vieth and Sladek
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(1965) assumed the total immobilization of the Langmuir population and related the diffusion

flux to the population sorbed by amorphous polymer regions. Paul and Koros (1976) assumed

the partial immobilization of the Langmuir population and described the diffusion flux as a

sum of two parallel but separate processes. As a consequence, the model resulted in two

diffusion coefficients for a penetrant diffusion in a glassy polymer.

2.4 THE SOLUTION–DIFFUSION MODEL

The solution–diffusion model (Wijmans and Baker, 1995) is widely used to describe

permeant transport in dense rubbery and glassy membranes. According to this model, the

permeation process occurs in three steps. Penetrants first sorb — or in the terms of usual

interpretation dissolve — in the membrane at the interface of the upstream side, then diffuse

through the membrane, and finally desorb at the interface of the downstream side. The

pressure in the membrane is constant and equal to the pressure on the upstream side. Thus, a

step change in the pressure occurs at the interface of the downstream side.

In mass transport theories, component flux Ni is composed of the diffusion flux Ji relative to

the mixture and the bulk flux with the mixture (Bird et al., 1960, p. 502)

tiii NxJN += , (2.8)

where ix  is the mole fraction of species i. The bulk flux contribution is generally neglected in

the modeling of membrane separation processes. In the solution–diffusion model this means

that the sorption level has to be so low that xi approaches zero. Further, when the chemical

potential gradient in the membrane is expressed only in terms of the concentration gradient,

the transport equations may be written in the form

( )IIimIim
m

i
i xx

D
RT
pJ ,, -=

d
,

(2.9)

where Ji  is the molar diffusion flux of species i, p is pressure, R is the universal gas constant,

T is temperature, Di is the Fick’s diffusion coefficient of species i, dm is the thickness of the

selective layer of the membrane, xim,I and xim,II are the mole fractions of species i in the

membrane at interfaces I and II (Figure 2.9).

The mole fraction of the gas in the membrane may be described in terms of the partial

pressure of the gas
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iiim pSx = , (2.10)

where Si is the solubility coefficient. The same solubility coefficient may be applied both at

the high-pressure and low-pressure membrane interface when the Henry’s law equation (2.2)

applies. Then equation (2.9) may be written in terms of the partial pressures

( )iViL
m

ii
i pp

SD
RT

J -=
d

1 (2.11)

and further

( )iViL
m

i
i pp

P
RT

J -=
d

1 ,
(2.12)

where Pi is the permeability coefficient for component i

iii SDP = . (2.13)
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Figure 2.9 Schematic picture of permeation through the dense membrane.

Equation (2.12) is more familiar in terms of the volume flux, V
iJ :

( )iViL
m

iV
i pp

P
J -=

d
.

(2.14)

As equation (2.13) indicates, the permeability coefficient is composed of the diffusivity

(kinetic) term and the solubility (thermodynamic) term. The diffusion and solubility

coefficients in a polymer solution are generally concentration dependent. Then, in principle,

equation (2.14) should be written as

( )iViL
m

iV
i ppPJ -=

d
,

(2.15)

where Pi  is the mean permeability coefficient of component i. The temperature dependence of

the permeability coefficient may be described by the Arrhenius type relation
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where 0
iP  is the pre-exponential factor and EP,i is the activation energy for permeation. The

pressure dependence of the pure component permeability at a constant temperature may be

described by relation (Stern et al., 1972)

( ) ( )iii pmPP D= exp0 , (2.17)

where ( )0iP  is the hypothetical permeability coefficient at zero pressure difference over the

membrane and m is the slope of the change of ( )iPln  with respect to the pressure difference

over the membrane, ipD .

Equation (2.15) may be used to obtain the pure component permeability coefficients from the

permeability experiments when the membrane sample area and thickness are known.

Equations (2.16) and (2.17) may be used to correlate the temperature and pressure dependence

of the experimental permeability coefficients when the experiments are performed at various

temperatures and pressures. The pure component permeability coefficients may also be used

in multicomponent systems when the diffusion within the membrane is assumed to take place

at the infinite dilution region and the effect of other components on the sorption equilibrium

and on the diffusion process within the membrane is neglected.
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3 BASIC MODEL EQUATIONS

Membrane separation process usually consist of multiple membrane modules connected in

series and in parallel. Parallel modules may be assumed to operate similarly when the feed is

divided equally among the parallel membrane modules and membrane modules are of the

same size and type. Then the permeation and the fluid flow have to be modeled only in the

serial membrane modules. The division may be taken even further: when all leaves in a

membrane module operate similarly, a membrane leaf and a central tube describe an entire

spiral-wound module.

The description of a multicomponent non-isothermal fluid flow in a membrane leaf requires

the equations of continuity, motion, and energy. In this chapter, these basic equations are

derived  from the general transport equations (Bird et al., 1960; Deen, 1998) and are then

discretized in chapter 4 by the control-volume approach of Patankar (1980). The derivation of

the basic model equations for a flow scheme in Figure 3.1 are made by using the following

definitions and assumptions:

· The module operates at a steady state and no chemical reactions take place.

· The feed is uniformly distributed along the feed side of a membrane leaf.

· Within the membrane leaf and between the membrane leaves, fluids flow in channels

formed by parallel plates with wall spacing of 2B, filled with a permeable medium

(spacer).

· Retentate flow within the membrane leaf occurs in z direction, permeate flow between the

membrane leaves in x direction, local permeation through the membrane in y direction,

and permeate flow in a central tube in z direction.

· The flow is in a laminar region and fluids are described as incompressible Newtonian

fluids.

· The gravitational force is the only external force acting on the species in a mixture and is

considered negligible.

· Edge effects and entrance effects are ignored.

· Axial and transverse mixing are ignored.

The description of the gas flow as an incompressible Newtonian fluid is erroneous in a

thermodynamic sense but the effect of the pressure on density is negligible over the control

volume elements applied in this work. Also the assumption of laminar flow in the retentate
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channel and in the central tube may not be valid in the real operation. However, the model

equations may first be developed for the laminar flow and then be extended to the turbulent

flow by changing the velocity, pressure, density, and temperature with the corresponding

time-averaged values and fluctuations around the time-averaged values (Bird et al., 1960, pp.

158-159, 377-378).

Feed

Retentate

Local permeate Mixed permeate

z

y

y

x

x

z

2BL

2BV

Figure 3.1 Flow scheme in an extended membrane leaf and in a permeate spacer.

3.1 EQUATIONS OF CONTINUITY

The equation of continuity represents the conservation of mass. In multicomponent systems

the equation of continuity may be written for each species in the fluid as

( ) ncir
t iii

i ,,2,1, K==×Ñ+
¶
¶ vr
r

,
(3.1)

where ir  is the mass density of species i, vi is the velocity vector of component i, nc is the

number of components, and ir  is the net rate of production of species i per unit volume by the

chemical reaction. The equation of continuity for the mixture is obtained when all nc

equations (3.1) are summed up. As a result, the equations of the continuity for the retentate,

permeate, and local permeate within the membrane are written as
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(3.3)
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t
r

r .
(3.4)

In equations (3.2), (3.3), and (3.4) r  is the fluid density, v is the retentate velocity vector, u

is the permeate velocity vector, and w is the local permeate velocity vector within the

membrane. Subscripts L, V, and M denote the retentate, permeate, and membrane fluid

property respectively.

The fluid flow in the spiral-wound module is two-dimensional since we have decided to

ignore the transverse mixing so that 0== zx uv . Then equations (3.2) and (3.3) are written

for the steady fluid flow as
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(3.6)

The fluid flow within the membrane is one-dimensional, so that equation (3.4) becomes

( ) 0=
¶
¶

yM w
y

r .
(3.7)

The bulk permeate from the membrane leaves is assumed to be evenly distributed to the

periphery of the central tube so that 0=qu  and there is no angular dependence. Then the

permeate flow in a central tube is two-dimensional in cylindrical co-ordinates and equation

(3.3) becomes

( ) ( ) 01
=+ zVrV u

z
ru

rr
r

¶
¶r

¶
¶ .

(3.8)

3.2 EQUATIONS OF MOTION

The equation of motion represents the conservation of momentum in terms of density,

viscosity and flow velocity. The equation of motion is presented in the form of the Navier–

Stokes equation for a system of constant density and viscosity

grmr +Ñ+-Ñ= vv 2p
Dt
D ,

(3.9)
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where m is the viscosity of the fluid, and g is the gravitational acceleration vector. The

operator DtD /  is the substantial time derivative,

Ñ×+
¶
¶

= v
tDt

D ,
(3.10)

the derivative following the fluid motion. Based on equation (3.5), the conservation of the

momentum in the retentate flow requires the z and y components of (3.9):
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Similarly, based on equation (3.6), the conservation of the momentum in the permeate flow

between the membrane leaves requires the x and y components of (3.9):
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Due to the fluid flow in a narrow channel, the pressure in the y direction may safely be

assumed constant so that 0/ =ypL ¶¶  and 0/ =ypV ¶¶ . Also the velocity change in the main

flow direction may be assumed to be much smaller than the velocity change in the y direction,

because of the no-slip condition at the plate wall, so that 2222 // yvzv zz ¶¶¶¶ <<  and
2222 // yuxu xx ¶¶¶¶ << .

The classical lubrication approximation (Deen, 1998, pp. 270-275) may be introduced when

the inertial terms of the main flow direction are negligible. According to Deen (1998, p. 274),

the requirement is fulfilled in membrane separation when the Reynolds number based on the y

component velocity at the channel wall is much smaller than one. Then
22 // yvzvv zLzzL ¶¶<<¶¶ mr  and 22 // yuxuu xVxxV ¶¶<<¶¶ mr , and the Navier-Stokes

equations (3.11) and (3.13) are reduced to
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As a result, the main flow direction is the only significant velocity component for the

conservation of momentum in a parallel plate channel.

Equations (3.15) and (3.16) are valid for a fluid flow in an empty channel. However, the

channels in spiral-wound modules are filled with spacers and each spacer type has its own

characteristic resistance for the fluid flow. The above derivation is presented in order to show

that the flow in a membrane leaf is adequately described as one-dimensional, for which

empirical equations may be applied. One such equation is the Darcy law with empirical spacer

permeability, b . Then the velocities of the retentate flow and the permeate flow are given by

the following equations:

dz
dpv L

L

L
z m

b
-=  and

(3.17)

dx
dp

u V

V

V
x m

b
-= .

(3.18)

Alternatively, we may apply the empirical Fanning friction factors. Then the velocities of the

laminar retentate and the laminar permeate flow in parallel plate channels are given by

dz
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f
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z r
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(3.19)
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x r

2
-= ,

(3.20)

where f is the Fanning friction factor, BL is the half distance of the parallel plates in the

retentate channel and BV is the half distance of the parallel plates in the permeate channel.

Equations (3.19) and (3.20) are obtained from the analytical solution for the parallel plates.

The hydraulic diameter approach (Bird et al., 1960, pp. 188, 401) is used for the turbulent

flow in the retentate channel with 2BL as the hydraulic diameter. Then the velocity of the

retentate flow is given by

dz
dp

f
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L
z r

1
-= .

(3.21)

One-dimensional empirical equations are not applicable for the central tube due to the fluid

flow through the tube wall. The permeate flow in the central tube is essentially two-

dimensional and thus the conservation of momentum requires both the r and the z components

of (3.9):
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The pressure gradient may be assumed negligible in the radial direction. In the central tube

the fluid flow velocity zu  is zero at z = 0 but increases with z due to the permeate flow

through the perforated tube wall. The radial velocity component at the wall is largest at z = 0

and then slightly decreases with z due to the decrease in the local permeation rate. As a

consequence, the flow situation is quite complex, extending from the developing laminar to

the developing turbulent flow. A fully developed velocity profile will never be attained due to

a continuous increase in the mass and the fluid velocity along the axial (main flow) direction.

The flow problem resembles the entry region in a tube flow where the viscous effects are less

important than in the fully developed region. Then we are allowed to raise the inviscid flow

assumption (Deen, 1998, p. 246) to get
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3.3 EQUATIONS OF ENERGY

The equation of energy describes the conservation of energy within a volume element. It may

be written in terms of the internal and kinetic energy

( ) å
=

×+Ñ+×Ñ-×-Ñ=÷
ø
ö

ç
è
æ +

nc

i
iipU

Dt
D

1

2 :
2
1ˆ gjτq vvvr ,

(3.26)

where Û  is the specific internal energy, q is the heat flux vector, τ  is the stress tensor, ji is

the diffusive flux vector of species i, and gi is the external body force per unit mass of species

i. The term 2½v  represents the kinetic energy associated with the observable fluid motion

(Bird et al., 1960, p. 311). The term ( )v×Ñp  represents the rate of the reversible conversion

of mechanical energy to thermal energy and may be positive or negative for a real fluid. The

term vÑ:τ  is known as the viscous dissipation and it represents the rate of irreversible

conversion of mechanical energy to thermal energy, which is always positive for Newtonian

fluids (Bird et al., 1960, p. 82). The sign convention of the stress tensor components adopted

above describes the force per unit area on the surface exerted by the fluid to the outward
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normal direction. This convention follows that of Deen (1998, p. 6) and that used in CFD

literature, e.g. Tannehill et al. (1997, p. 252) and Ferziger and Perić (1997, p. 5).

The viscous dissipation is clearly unimportant in membrane separation and thus the term

vÑ:τ  may be dropped. The term å ×
i

ii gj  becomes zero since the gravitational force is the

only external force. Then equation (3.26) becomes

( )v×Ñ-×-Ñ=÷
ø
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1vr .

(3.27)

Equation (3.27) is more convenient in terms of the specific enthalpy Ĥ
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which reduces to the form
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(3.29)

at a steady state. The kinetic energy term and the term pÑ×v  are negligible for the fluid flow

within the membrane leaf and between the membrane leaves when compared to the energy

flux. Then equation (3.29) is written as
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for the retentate flow within the membrane leaf and
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for the permeate flow between the membrane leaves. The permeated fraction within the

membrane will be exposed to a large pressure gradient due to a pressure difference over the

membrane. Then the term pÑ×v  serves as a heat source in the equation of energy and the

heat flux through the membrane is no longer independent of y. Thus, the equation of energy

for the local permeate within the membrane is

( )
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¶
¶ ,ˆr .

(3.32)

In a central tube, the kinetic energy term plays an important role since the velocity at the tube

end at z = 0 is zero, but increases along the flow towards the open tube end due to the

permeate flow through the tube wall. The term pÑ×v  is again negligible and so equation

(3.29) for the permeate flow in the central tube becomes
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uĤ
z

uuĤ
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Equations (3.30), (3.31), (3.32), and (3.33) may also be written in terms of molar densities, c,

and partial molar enthalpies, iH . Then the equations of energy for the retentate flow within

the membrane leaf, the permeate flow between the membrane leaves, the local permeate flow

within the membrane, and the permeate flow in the central tube yield the following

expressions
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The equations (3.34), (3.35), (3.36), and (3.37) provide the equations of energy in the

preferred form.
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4 DISCRETIZATION OF BASIC MODEL EQUATIONS

The differential equations derived in chapter 3 are integrated over the extended membrane

leaf (Figure 4.1) at discrete grid points. The solution for the entire leaf is computed in

conjunction with the following known boundary conditions:

nciFzFx FizLi ,,2,1,
0

K==
=

, (4.1)

FzL TT =
=0

, (4.2)

FzL pp =
=0

, and (4.3)

nc,,,i,Fy
xVi K210

0
==

=
. (4.4)

In the above boundary condition equations, FF is the feed molar flow rate, FL is the retentate

molar flow rate, FV is the permeate molar flow rate, TF is the feed temperature, TL is the local

retentate temperature, pF is the feed pressure, pL is the local retentate pressure, zi is the mole

fraction of component i in the feed, xi is the mole fraction of component i in the retentate, and

yi is the mole fraction of component i in the permeate. The boundary conditions are fully

determined only at the feed side boundary: the permeate temperature, pressure, and

composition at the closed leaf end (x = 0) are unknown. Thus the balance equations on the

permeate side represent a boundary value problem. The boundary value problem of the

equation of motion may be converted into the initial value problem by defining the permeate

pressure at the permeate outlet as a predetermined (fixed) variable

VzxV pp =
== 1,1

, (4.5)

where pV is the permeate pressure.

In the control volume approach (Patankar, 1980), a membrane leaf is divided into non-

overlapping control volumes. The main grid points are located at the geometric center of each

control volume and staggered grid points at the control volume boundaries. The main grid

points contain the discrete flow properties, such as density, pressure, temperature,

composition, and in the case of membrane separation, the local permeate fluxes of each

species in a mixture. The staggered grid points contain the velocity components, which are

supposed to govern the whole boundary. The grid density does not have to be the same in the

retentate and permeate flow directions and so a grid mesh of m times n may be formed.
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z
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FF zi
TF pF

FL xi
TL pL

FV yi
TV pV

Figure 4.1 Extended membrane leaf with control volumes and main grid points. Grid lines
in the permeate flow direction are extended over the central tube to form cylindrical control
volumes for the central tube flow.

The grid point formulation for the half of the retentate channel is shown in Figure 4.2. A point

P is bounded by a west side face w, east side face e, the flow channel centerline and the

membrane. A west neighbor point W is located at a distance ( )wzd  upstream and an east

neighbor point E at a distance ( )ezd  downstream. A top neighbor point T is located at a

distance BL upwards and a bottom neighbor point B at a distance BL / 2 downwards. The top

neighbor point T is a symmetry point for P and thus the top control volume boundary is a

symmetry plane where the temperature gradient is zero. The bottom neighbor point B is a

boundary point at the membrane–fluid interface within a zero-size control volume.

The grid point formulation for one half of the permeate channel is shown in Figure 4.3. The

description for the grid formulation in the permeate channel is similar to the retentate channel

with the exception of the bulk flow from south (S) to north (N) and reversed symmetry and

membrane boundary points.

The grid point formulation for the permeate flow in a central tube is shown in Figure 4.4. The

system is represented in cylindrical co-ordinates with the bulk flow from west (W) to east (E)

and the permeate flow from the periphery into the tube.
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z

Figure 4.2 Grid point formulation in the retentate flow channel for the bulk flow in the z
direction and for the local permeate flow through the membrane out of the control volume.
The length of the third dimension is Dx. A south point S is located towards and a north point N
away from the viewer.
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y
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T

Figure 4.3 Grid point formulation in the permeate flow channel for the bulk flow in the x
direction and for the local permeate flow through the membrane into the control volume. The
length of the third dimension is Dz. An east point E is located towards and a west point W
away from the viewer.

w

e

r
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P
W

E

Dz
(dz)e

(dz)w

Figure 4.4 Grid point formulation in the central tube for the bulk flow in the z direction
and for the local permeate flow through the tube wall into the control volume. All dimensions
in the z direction are equal to the grid point formulation in the retentate flow channel.
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The discrete balance equations are formed for each central point P to obtain approximations

to the integral conservation equations. The flow properties between the main grid points are

evaluated by using an interpolation formula or a profile assumption. The staggered grid

arrangement guarantees that the velocities at adjacent staggered grid points describe the

continuity equation and the pressures at adjacent main grid points determine the pressure

gradient for the fluid flow. The resulting solution to the discretized equations then satisfies the

integral conservation of mass, momentum, and energy over any group of control volumes and

for any number of grid points (Patankar, 1980, pp. 30-31). A specialized discretization form is

required when both bulk flow and diffusion terms are included in the balance equations;

otherwise, macroscopic balance equations are obtained for a control volume. It should be

noted that the current control volume formulation is not able to fulfill the condition of zero

velocity at the solid surfaces and hence velocities have to be seen as average velocities.

4.1 EXTENDED MEMBRANE LEAF

In the modeling of the membrane leaf, the conservation of mass is taken care of through the

species balances. It is assumed that convection dominates along the direction of the bulk flow

— the z direction in the retentate channel and the x direction in the permeate channel — so

that the mass diffusion fluxes of the mixture components may be ignored and all species have

equal velocity. Another non-vanishing velocity component of the equation of continuity is the

velocity of the finite wall flux. This velocity is different and unique for each species due to

the selective permeation through the membrane. As a consequence, less readily permeating

species are rejected at the membrane interface so that concentration gradients are formed. The

rejected species then diffuse back to the bulk fluid as described by the mass balance equations

given in paragraph 4.1.1. The conservation of momentum is taken care of through the

momentum balances in paragraph 4.1.2. These balance equations provide the required

pressure drop for the given velocity field, which is computed from the molar flow rates, molar

volumes, and specified cross-sectional area for the flow. The conservation of energy is then

taken care of through the enthalpy balances in paragraph 4.1.3.

4.1.1 Mass balance

The integration of equation (3.5) for each species i over the retentate side control volume in

Figure 4.2 results in the following species balance equations

( ) ( ) ( ) nc,,,i,zjvBvBv
by,iLyiLw,LwziLe,LeziL K210 ==D++- rrr , (4.6)
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where BL is half of the retentate channel height, ij  is the mass diffusion flux, and subscript e

denotes properties at control volume interface e, subscript w properties at the control volume

interface w, and b the properties at control volume interface b. Similarly, the species balances

over the permeate side control volume in Figure 4.3 are given by

( ) ( ) ( ) nc,,,i,xjuBuBu
ty,iVyiVs,VsxiVn,VnxiV K210 ==D+-- rrr , (4.7)

where BV is half of the permeate channel height and subscript t denotes properties at the

control volume interface t. At the closed leaf end, 0=xu  and so equations (4.7) is reduced to

( ) ( ) nc,,,i,xjuBu
ty,iVyiVn,VnxiV K210 ==D+- rr . (4.8)

The local permeate flux of species i, ni, is constant within the membrane although the bulk

flux and the species diffusion fluxes vary along the flow. Then the species balances within the

membrane are described by equation

( ) ( ) nc,,,i,jwjw
ty,iMyiMby,iMyiM K210 ==+-+ rr . (4.9)

The species balances must also hold at the fluid membrane interfaces. Then the species

balances of the retentate and permeate sides are interlinked with equations

( ) ( ) nc,,,i,jujvn
ty,iVyiVby,iLyiLi K21=+=+= rr . (4.10)

The species balance equations in terms of molar fluxes are written similarly, but the mass

density is replaced by the molar density, c, so that (4.6), (4.7), (4.8), and (4.9) become

( ) ( ) ( ) nc,,,i,zJvcBvcBvc
by,iLyiLw,LwziLe,LeziL K210 ==D++- , (4.11)

for the retentate flow,

( ) ( ) ( ) nc,,,i,xJucBucBuc
ty,iVyiVs,VsxiVn,VnxiV K210 ==D+-- , (4.12)

for the permeate flow,

( ) ( ) nc,,,i,xJucBuc
ty,iVyiVn,VnxiV K210 ==D+- , (4.13)

for the permeate flow at the closed leaf end, and

( ) ( ) nc,,,i,JwcJwc
ty,iMyiMby,iMyiM K210 ==+-+ , (4.14)

for the local permeate flow within the membrane.

Molar flow rates, F, through the control volume faces are obtained when the fluxes are

multiplied by zD  or xD  to obtain the corresponding cross-section areas

( ) nc,,,i,xBvcF e,LeziLe,iL K21=D= , (4.15)

( ) nc,,,i,xBvcF w,LwziLw,iL K21=D= , (4.16)

( ) nc,,,i,zBucF n,VnxiVn,iV K21=D= , and (4.17)
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( ) nc,,,i,zBucF s,VsxiVs,iV K21=D= . (4.18)

Then the species balance equations may respectively be written as

nciANFF bLbiwiLeiL ,,2,1,0,,,, K==+- , (4.19)

nciANFF tVtisiVniV ,,2,1,0,,,, K==-- , (4.20)

nciANF tVtiniV ,,2,1,0,,, K==- , and (4.21)

nciNN tibi ,,2,1,0,, K==- , (4.22)

where

xzAA t,Lb,L DD== . (4.23)

Total balance equations are obtained when the corresponding species balance equations are

summed up. As a result:
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In the above forms, the mass and molar densities, as well the local permeate fluxes Ni through

the membrane, are the properties of the central point P, whereas the velocities are the

properties of the corresponding staggered grid points. Any suitable model may be applied to

represent the values of the local permeate fluxes Ni in terms of the membrane transport

properties and local fluid properties.

4.1.2 Momentum balance

The integration of the equation of motion is performed over each control volumes around the

staggered grid points that are located at the main control volume interfaces, e.g. at w and e in

Figure 4.2, and at s and n in Figure 4.3.

We have two choices to represent the equation of motion for the fluid flow in a spacer filled

channel: the Darcy law, equations (3.17) and (3.18), and the friction factor approach,

equations (3.19), (3.20), and (3.21). Both approaches are one-dimensional and they cannot
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fulfill the condition of zero velocity on solid surfaces. However, they provide the pressure

gradient required for the fluid flow in a porous media in terms of the fluid properties, the

geometry of the medium, and the fluid velocity.

The pressure difference between adjacent grid points is obtained by integrating the equation

of motion (3.17), (3.19), or (3.21) for the retentate flow and equations (3.18) or (3.20) for the

permeate flow over the corresponding staggered grid point. The Darcy law equations result in

the following equations for the retentate and permeate flows:

( ) ( )
L

wwzL
P,LW,L

zv
pp

b
dm

=- , and
(4.28)

( ) ( )
V

ssxV
P,VS,V

xu
pp

b
dm

=- .
(4.29)

The friction factor approach results in the following form for the laminar retentate flow

( ) ( )
L

wL
wzLP,LW,L B

zf
vpp

d
r 2

2
1

=-
(4.30)

and for the turbulent retentate flow

( ) ( )
L

wL
wzLP,LW,L B

zf
vpp

d
r 2=- .

(4.31)

The friction factor fL has to be determined from an appropriate equation based on the flow

conditions. Correspondingly, the friction factor approach for the laminar permeate flow

results in

( ) ( )
V

sV
sxVP,VS,V B

xf
upp

d
r 2

2
1

=- .
(4.32)

The friction factor is proportional to the inverse of the Reynolds number for the laminar flow

fCf =Re , (4.33)

where Cf is a constant characterizing the pressure drop for the steady fluid flow and Re is the

Reynolds number

m
rvB2Re =

(4.34)

for a flow in a parallel plate channel. The analytical solution of the Navier-Stokes equation

yields Cf = 12 for parallel plates. In the case of a spacer-filled channel, the constant Cf has to

be determined experimentally.
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Although not specially indicated, velocity, pressure, and density in equation (4.31) are the

corresponding time-averaged values. In the turbulent region for relatively smooth tubes, the

proportionality of the Fanning friction factor is no longer linear to the inverse of the Reynolds

number but

f
n Cf =Re . (4.35)

In the other extreme for relatively coarse tubes, the friction factor becomes independent of the

Reynolds number. With n = 0.25 and Cf = 0.0791, equation (4.35) becomes the famous

Blasius equation that is valid in the range of 2100< Re <105. In the case of a spacer-filled

channel, constants n and Cf should be determined experimentally. However, the pressure drop

plays a less important role in the high-pressure retentate channel since the amount of flowing

fluid decreases along the flow due to permeation. Thereby, the bulk fluid velocity and the

required pressure gradient decrease along the flow.

4.1.3 Energy balance

The integration of the equation of energy is performed over the control volumes surrounding

the main grid points. The equation of energy for the retentate may be reduced to a two-

dimensional equation when the transverse heat conduction is ignored. This is allowed since

negligible temperature gradients are expected in the transverse direction. Then equation (3.34)

for the retentate flow may be written as

0,, =
¶
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+
¶

¶

z
e

y
e zLyL ,

(4.36)

where eL,y and eL,z are the multicomponent energy fluxes over the control volume faces:
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(4.38)

and where Ni is the molar flux of component i

iii JcN += v . (4.39)

The heat transfer coefficient Lh  is introduced in equation (4.37) for the interfacial heat

transfer on the retentate side.

The energy equation for the permeate is three-dimensional. Equation (3.35) may be written in

terms of multicomponent energy fluxes as
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z
Tke V

VzV ¶
¶

-=, .
(4.43)

The heat transfer coefficient Vh  is introduced in equation (4.42) for the interfacial heat

transfer on the permeate side. The integration of equations (4.36) and (4.40) over the

corresponding control volumes and the multiplying of the resulting equations by zD  or xD  to

obtain the corresponding cross-section areas give

0,,,,,, =+- bLbLwLwLeLeL AeAeAe  and (4.44)

0,,,,,,,,,, =--+- tVtVwVwVeVeVsVsVnVnV AeAeAeAeAe . (4.45)

The heat transfer coefficients hL and hV are given by the Nusselt number, which is defined for

the parallel plates as

k
Bh 2Nu = .

(4.46)

The Nusselt number is constant for a laminar flow and depends only on the boundary

conditions. The two limiting cases for the heat transfer through the solid wall are the constant

wall temperature and the constant wall heat flux. For a laminar flow in parallel plates, the

corresponding limiting values are 7.541 and 8.235 respectively (Shah and London, 1978).

The Nusselt number for a turbulent flow is obtained from a tube flow correlation with the

hydraulic diameter approach (Bird et al., 1960, pp. 188, 401). Gnielinski (1976) has proposed

the following equation for the developing turbulent and developed turbulent flow in the

region of 2300< Re<106
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where Pr is the Prandtl number and P,Lf  is the friction factor for a hydraulically smooth

channel, which in this work is obtained from the Blasius equation, from (4.35) with n = 0.25

and Cf = 0.0791. The Prandtl number is defined as
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where pĈ  is the specific heat capacity at constant pressure.

The energy equations of the retentate and permeate flows are coupled by the energy flux

through the membrane. The equation of energy within the membrane, equation (3.36), may be

written as
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where MV is the total molar volume of the flowing fluid within the membrane and yMe ,  is the

multicomponent energy flux within the membrane
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The heat convection and the conduction are not constant through the membrane due to the

source term on the right hand side of equation (4.49). The source term becomes non-zero

under a pressure gradient and for a finite fluid flow. Pressure within the dense selective layer

is essentially constant. The permeating fluid is exposed to a pressure gradient at the selective

and support layer interfaces and in the porous support and substrate layers. The pressure

gradient in the support and substrate layer is, however, essentially small as is the amount of

the permeating fluid. Then the source term becomes insignificant at the permeate side

interface and the integration of equation (4.49) results in

0,, =- tVbL ee , (4.51)

which is the necessary link between equations (4.44) and (4.45). Although the above equation

is simple, the evaluation of the boundary fluxes is not since there is a phase change involved.

We will deal with this subject later on in this work in conjunction with the mass transfer

through the membrane.

The special discretization form has to be derived for the equation of energy since both

convection and diffusion terms are included and the evaluation of diffusive energy fluxes

requires temperature, or enthalpy, gradients at the control volume interfaces. By following

Patankar (1980, p. 98), the total balance equations (4.24) and (4.25) are multiplied by the

enthalpy at the corresponding control volume point P. The resulting equation is subtracted



39

from the corresponding energy balance equations (4.44) and (4.45) to yield the following

equations:

( ) ( )

and0,,
1

,,

,,,,,,,,

=ú
û

ù
ê
ë

é
÷
ø

ö
ç
è

æ
-+

---

å
=

PLbL
b

nc

i
ibLbL

PLwLwLwLPLeLeLeL

HANAe

HFAeHFAe (4.52)

( ) ( )

.0,,
1

,,

,,,,,,,,,,,,

=ú
û

ù
ê
ë

é
÷
ø

ö
ç
è

æ
--

-+---

å
=

PVtV
t

nc

i
itVtV

wVwVeVeVPVsVsVsVPVnVnVnV

HANAe

AeAeHFAeHFAe (4.53)

The terms in the above equations may be expressed by the discrete total molar enthalpies as

( ) PLeLeLeLELPLEL HFAeHHa ,,,,,,, -=- , (4.54)

( ) PLwLwLwLPLWLWL HFAeHHa ,,,,,,, -=- , (4.55)
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( ) PVnVnVnVNVPVNV HFAeHHa ,,,,,,, -=- , (4.57)

( ) PVsVsVsVPVSVSV HFAeHHa ,,,,,,, -=- , (4.58)

( ) eVeVEVPVEV AeHHa ,,,,, =- , (4.59)

( ) wVwVPVWVWV AeHHa ,,,,, =- , and (4.60)
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The substitution of equations (4.54)-(4.61) into equations (4.52) and (4.53) results in the

following discrete equations:

( ) BLBLWLWLELELPLBLWLEL HaHaHaHaaa ,,,,,,,,,, ++=++ , and (4.62)
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where multipliers a are given by
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The function ( )PeA  depends on the selected interpolation scheme for the enthalpy and the

enthalpy gradients at the control volume faces. Various interpolation schemes are available

(Patankar, 1980, pp. 81-92; Ferziger and Perić, 1997, pp. 72-76); the power-law scheme

(Patankar, 1980, pp. 90-92) is applied in this work. Then the function ( )PeA  is given by

equation

( ) ( )[ ]5Pe1.01,0maxPe -=A ,
(4.72)

where Pe is the Peclét number, which describes the relative strengths of convection and

diffusion. The Peclét number is defined as

k
CLρ p
ˆ

RePrPe
v

== ,
(4.73)

where L is the characteristic length. Due to the form of equation (4.72), the diffusive terms

become zero at 10Pe ³ . Then the conditions at point P are determined only by the conditions

at the upstream grid points and the flow is convection dominated.

The assumption of a convection dominated flow may safely be adopted for the retentate flow,

so that the coefficient aL,E in equation (4.62) becomes zero and the molar enthalpy at point P

is directly computed from
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where hL is the heat transfer coefficient on the retentate side and coefficient aL,W is given by

equation (4.65).

The discretized energy equations (4.63) along the x directed grid line may be represented in a

matrix form

[ ] ( ) ( )bHa = , (4.75)

where [ ]a  is the coefficient matrix, ( )H  is the vector of the molar enthalpies at the main grid

points, and ( )b  is the vector. The coefficient matrix [ ]a  is a tridiagonal matrix with fringes.

Equations (4.63) are written for the internal main grid points and thus the vector ( )b  contains

the conditions at the leaf boundaries and the contribution of the top grid points. The

tridiagonal matrix with fringes is transformed to a tridiagonal matrix when the contribution of

the west and the east grid points is introduced into the vector ( )b . Then equation (4.75) may

be written as
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where superscript k and n denote the kth and the last internal grid point index respectively,

and aV,P is the sum of the neighbor coefficients

T,VW,VE,VS,VN,VP,V aaaaaa ++++= . (4.77)

The system of equations (4.76) is conveniently solved with the non-symmetric tridiagonal

matrix algorithm (Engeln-Mullges and Uhling, 1996).
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4.2 CENTRAL TUBE

The balance equations for the central tube are formed similarly as in the previous section. It is

again assumed that convection dominates along the direction of the bulk flow so that the mass

diffusion fluxes of the mixture components may be ignored both for the radial and the axial

directions.

The equation of continuity has two non-vanishing velocity components; they are the velocity

of the bulk flow to the z direction and the velocity of the permeated fluid through the

perforated wall. The resulting mass balance equations are given in paragraph 4.2.1, the

momentum balance equation in paragraph 4.2.2, and the energy balance equation in paragraph

4.2.3.

4.2.1 Mass balance

The integration of equation (3.8) for each species i over the control volume in Figure 4.4

results in the following species balance equations for the central tube control volume

( ) ( ) ( ) nc,,,i,zRuRuRu ctrriVctwziVcteziV K210
2
1

2
1 22 ==D-- rrr ,

(4.78)

where Rct is the radius of the central tube. At the closed tube end, at z = 0, 0=zu  and the

species balance equations become

( ) ( ) nc,,,i,zRuRu ctrriVcteziV K210
2
1 2 ==D- rr .

(4.79)

The above equations may be written in terms of molar density as

( ) ( ) ( ) nc,,,i,zRucRucRuc ctrriVctwziVcteziV K210
2
1

2
1 22 ==D--  and

(4.80)

( ) ( ) nc,,,i,zRucRuc ctrriVcteziV K210
2
1 2 ==D- .

(4.81)

Equations (4.80) and (4.81) may be written in terms of molar fluxes when the equations are

multiplied with 2p to yield the corresponding cross-section areas

nc,,,i,FFF r,iVw,iVe,iV K210 ==--  and (4.82)

nc,,,i,FF r,iVe,iV K210 ==- . (4.83)

The summing up of the species balance equations results in the total balance equations

0=-- r,Vw,Ve,V FFF  and (4.84)

0=- r,Ve,V FF , at the closed tube end. (4.85)
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4.2.2 Momentum balance

The radial component (3.24) and the axial component (3.25) of the momentum are required

for the fluid flow in a central tube. The radial component will rapidly become less important

with increasing z so that the radial component may reasonably be assumed negligible. The

axial component of the momentum is further simplified since 0=¶¶ r/u z  for the inviscid

fluid. Then the integration of (3.25) over the staggered grid point in Figure 4.4 yields for the

central tube
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which may be written in terms of molar flow rates and after reorganization as
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where MV is the molecular weight of the permeate mixture. The pressure at the open end of

the central tube is fixed by the predetermined permeate product pressure, 
1,1 == zxVp .

4.2.3 Energy balance

The equation of energy (3.37) contains both the radial and axial components. As in the

retentate channel, convection dominated flow may safely be assumed in the central tube so

that the conductive terms drop out. The radial component of the kinetic energy is small

compared to the enthalpy flow through the perforated wall and may thus be neglected.

The integration of (3.37) over the corresponding control volume results in the following

energy balance in the central tube:
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which may further be written in terms of molar flow rates as
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5 TRANSPORT PROCESSES IN RUBBERY MEMBRANES

The local permeate flux through the membrane has made its appearance as a net flow

component throughout the equations in the previous chapter. Until now we have not discussed

the evaluation of its magnitude; this will be formulated in this chapter.

Gas and vapor transport through the composite membrane is accompanied with various

transport resistances such as the concentration polarization on the feed side boundary layer,

the selective layer resistance, the porous support layer resistance, and the porous substrate

layer resistance. The concentration polarization results form the selective permeation of

components through the membrane as discussed in section 4.1. The usual effect of the

concentration polarization is to increase the permeability of the less permeable component

and to decrease the permeability of the more permeable component. Thus, the effect of the

concentration polarization is to decrease the separation selectivity. This has also been

confirmed experimentally in gas permeation by Mendes et al. (1996) and Lüdtke et al. (1998).

The concentration polarization depends strongly on the component fluxes through the

membrane. Hence, the effect of the concentration polarization may be diminished as the

thickness of the selective layer is increased. Moreover, as the selective layer thickness is

increased, the transport resistances of the support and substrate layers are also diminished due

to lower fluid flow rate through the porous layers. According to Baker et al. (1998), the effect

of the concentration polarization and the resistances of the support and substrate layers are

negligible when the pressure-normalized nitrogen flux is on the order of 1×10-4 cm3(STP) cm-2

s-1 cmHg-1 or lower.

In this work, the selective layer resistance remains the only viable resistance for the vapor and

gas transport through the composite membrane. The transport process may be described

within the selective layer when the sorption equilibrium at the membrane interface is treated

by the classical chemical engineering thermodynamics. The general equilibrium condition in

section 5.2 may be utilized to obtain the concentration levels of permeating components in the

membrane with a suitable thermodynamic model. Some equation of state models for polymers

are presented later in chapter 6. Alternatively, Henry’s law coefficients may be applied to

express the equilibrium condition especially at low pressures. The derivation of the Henry’s

law coefficient from the general equilibrium condition is presented in section 5.3.
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A well-founded theory is required when the diffusive coupling and the convective

contribution are accounted for in vapor membrane separation. The generalized Maxwell–

Stefan equations (Taylor and Krishna, 1993; Krishna and Wesselingh, 1997) have been used

to describe transport in non-ideal gas and liquid mixtures as well as in electrolyte solutions

and solid media. Mason and Viehland (1978) derived equations for the transport through open

membranes from the statistical-mechanics. These equations include the generalized diffusion,

viscous, and inertial term, and result in the form of the generalized Maxwell–Stefan diffusion

equations when the last two terms are neglected. Bitter (1991) applied the generalized

Maxwell–Stefan equations for liquid and gas permeation in dense membranes, however,

without the bulk flux contribution. Heintz and Stephan (1994a and 1994b) used the

generalized Maxwell–Stefan equations for the pervaporation of water–organic mixtures. In

their work the diffusion coupling was accounted with an adjustable cross-coefficient.

The generalized Maxwell–Stefan equations are also used in this work to describe the

penetrant transport within the membrane with equations derived in section 5.4. The transport

equations are conveniently solved with the film theory (Taylor and Krishna, 1993, pp. 152-

219). The natural choice for the film thickness is the thickness of the selective layer. In

principle, the selective layer thickness is a measurable quantity. However, the thickness is

different from the dry membrane thickness due to swelling and has to be estimated as

discussed in section 5.5.

The transport equations require the diffusion coefficients that have to be treated as

experimental quantities. They are obtained from the measured pure component permeability

coefficients at different pressures and temperatures as described in section 5.6. Temperature

changes are also involved in vapor membrane separation, which results in a combined heat

and mass transfer through the membrane. The boundary balances provide the additional

equations that are required to solve the combined heat and mass transfer problem. These

balances are presented in section 5.7.

Before entering the above subjects, the molecular weight and molecular weight distribution

are discussed in short in section 5.1, since these are relevant and characteristic properties of

polymeric materials and have an effect on transport processes to a certain extent.
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5.1 MOLECULAR WEIGHT AND MOLECULAR WEIGHT DISTRIBUTION

Polymers are high molecular weight mixtures of chemically similar chains of different

lengths. Simple molecules are characterized by a single and definite molecular weight value

but different molecular weight averages are needed in the case of polymers. The most

common molecular weight averages are the number average molecular weight, Mn
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where ni is the number of molecules i, Mi is the molecular weight of molecules i, and wi is the

weight fraction of molecules i. The number average molecular weight yields the lowest

molecular weight value, whereas the weight average molecular weight gives more weight on

heavier units. The ratio of M w  to Mn  is the polydispersity index, which describes the width

of the molecular weight distribution. Generally, a high molecular weight and a narrow

molecular weight distribution are desirable properties for a polymer due to resulting better

physical and mechanical properties.

The molecular weight or chain length distribution of the polymeric membrane may be

included in the phase equilibrium calculation either by using pseudocomponents or

continuous thermodynamics (Cotterman and Prausnitz, 1985). The former uses discrete

components and the latter continuous function to describe the polymer chains of different

lengths. The pseudocomponent approach may require a large number of pseudocomponents

for a polymer and the continuous thermodynamics requires a distribution function for a pure

polymer and for each phase considered. In rubbery membranes the polymer chains are

crosslinked to form a polymer network. Therefore, the molecular weight of the membrane

material becomes very large and the membrane may be described by a single molecular

weight value.

The molecular weight and the molecular weight distribution affect also the transport of

penetrants in polymers in low molecular weight region. Tanner (1971) studied solvent

diffusion in polymer matrices of different molecular weights and observed that solvent
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diffusion coefficient is proportional to that of a polymer, when the polymer has a low

molecular weight. At higher molecular weights the diffusion coefficient of the solvent

becomes less sensitive and, finally, independent of the molecular weight of the polymer.

According to Tanner’s (1971) study, the effect of molecular weight and hence the effect of

molecular weight distribution on the solvent diffusion in polymers become insignificant when

the molecular weight of the polymer is higher than 10 000 g/mole. Since rubbery membranes

are post-treated to form high molecular weight polymeric networks, the effect of molecular

weight is insignificant also in this context.

5.2 GENERAL EQUILIBRIUM CONDITION

The equilibrium between two phases a and b  in contact may be expressed in terms of

equality of the component chemical potentials mi

nciii ,,2,1, K== ba mm , (5.3)

or alternatively, in terms of equality of the partial fugacities

nciff ii ,,2,1, K== ba (5.4)

with the constraints
ba TT =  and (5.5)
ba pp = . (5.6)

When the fugacity of the vapor phase is obtained from an equation of state, e.g. the virial

equation, and the non-ideality of the liquid phase is described by the component activities,

equation (5.4) may be written as

( ) ncipp
RT
V

pxpy i
is

i
s
iiiii ,,2,1,exp 0 K=ú

û

ù
ê
ë

é
-= jgj ,

(5.7)

where  yi is the molar fraction of component i in the gas phase, ij  is the fugacity coefficient

of component i in the mixture at the system pressure p, xi is the mole fraction of component i

in the liquid phase, gi is the activity coefficient of component i in the liquid phase, s
ij  is the

pure component fugacity coefficient at the vapor pressure s
ip , and iV  is the partial molar

volume of component i in the liquid phase. At low pressures the exponential term in equation

(5.7) is near unity and may then be neglected to obtain

ncipxpy s
i

s
iiiii ,,2,1, K== jgj . (5.8)

When the equation of state is applicable for the both phases, we simply get
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ncixy iLiiVi ,,2,1, K== jj , (5.9)

where subscripts V and L denote the vapor and liquid phases respectively.

5.3 HENRY’S CONSTANT

The equilibrium condition between a solvent and a non-volatile polymer phase from equation

(5.3) is

121 mm = , (5.10)

where 1m  is the chemical potential of the solvent vapor and 12m  is the chemical potential of

the solvent in the polymer. The equilibrium condition in terms of the solvent fugacities is

obtained from equation (5.4) as

121 ff = , (5.11)

where 1f  is the fugacity of the solvent vapor and 12f  is the partial fugacity of the solvent in

the polymer. When the sorption of the solvent in the polymer is small, the equilibrium

condition can be approximated in terms of Henry’s constants, 12H

12121 xHf = , (5.12)

where x12 is the mole fraction of the solvent in the polymer. Equation (5.11) may be written in

terms of the fugacity coefficients
ss pxp 11121211 jgj = , (5.13)

where 1p  is the pressure of the solvent in the vapor phase. At low and moderate pressures the

fugacity coefficients on both sides of the equation (5.13) are equal, and hence
spxp 112121 g= . (5.14)

Thus, the solvent vapor pressure is proportional to the mole fraction of the dissolved solvent

in the polymer. At low pressures this proportionality is linear and known as Henry’s law.

Then Henry’s constant may be defined in terms of the solvent activity coefficient at infinite

dilution ¥
12g  as

spH 11212
¥= g . (5.15)

The weight fraction based Henry’s constant wH12  is more convenient for polymer solutions. It

is defined as
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where w12 is the weight fraction of the solvent in the polymer phase and ¥W12  is the weight

fraction based activity coefficient of the solvent in the polymer at infinite dilution. The weight

fraction based activity coefficient may be calculated from the mole fraction based activity

coefficient by equation (Danner and High, 1993, p. 47)
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(5.17)

where M1 is the molecular weight of the solvent and M2 is the molecular weight of the

polymer. When the vapor phase is assumed to be ideal, that is 11 =j , the equation (5.16) can

be written in the form
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012
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lim
w
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w

w

®
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(5.18)

5.4 MAXWELL–STEFAN EQUATIONS FOR PERMEATION

According to the famous dusty gas model (Mason and Malinauskas, 1983), a porous

membrane may be considered to consist of giant molecules uniformly distributed in the space.

The transport through the porous membrane occurs by the bulk flow, ordinary diffusion,

Knudsen diffusion, and viscous flow. The latter two modes of transport are suppressed in a

dense membrane where the molecules form a pore-free structure. Then, the membrane is no

longer an inert component in a multicomponent permeation of nc components, but the

(nc+1)th component of the system. The membrane has a zero flux due to the external force

provided by the support layer, which holds the membrane fixed in the space. This external

force does not affect the diffusion of the other nc species. The pressure in the selective layer is

assumed to be equal to the pressure on the high-pressure side in accordance with the solution–

diffusion model.

The Maxwell–Stefan equations may be written for the system of nc+1 components within the

membrane as

nci
Dc

Nx
Dc

NxNx
TR

x

ncitm

imnc
nc

ij
j ijtm

jimijm
impT

im ,,2,1,'
)1(

)1(

1
', K=+

-
=Ñ-

+

+

¹
=
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(5.19)
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where xi is the mole fraction of species i, Ni is the molar flux of species i, ct is the total molar

density, '
ijD  is the Maxwell–Stefan diffusion coefficient that relates the friction between

species i and j, and subscript m denotes the property in the membrane. Equation (5.19) is

inconvenient, since the molar density and the mole fractions are awkward quantities with

polymeric systems. By using the mass density and the weight fractions, steep concentration

profiles can be avoided. Also the assumption of constant density in the selective layer is more

acceptable in terms of the mass density than in terms of the molar density. In terms of the

mass density and the weight fractions equation (5.19) transforms into a form
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where n is the mass flux, w is the weight fraction, rt is the total mass density of the mixture,

and D  is defined as the mass fraction based Maxwell–Stefan diffusion coefficient
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(5.21)

and where M is the molecular weight. Equations (5.20) may be written in an equivalent and

generalized Maxwell–Stefan form as
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(5.22)

The generalized Maxwell–Stefan equations are valid for dense gas and liquid mixtures.

Curtiss and Bird (1996, 1997) derived an equation for polymeric liquids from molecular

theory; the equation resembles the generalized Maxwell–Stefan form but stress tensor appears

in the driving force expression instead of pressure (Curtiss and Bird, 1999).

The transport equations for permeation are conveniently solved by using the film model. A

single component permeation is first considered in paragraph 5.4.1 and multicomponent

systems are then treated in paragraphs 5.4.2 and 5.4.3.

5.4.1 Single component permeation

In a single component permeation, or alternatively, when interaction terms are negligible, the

cross-terms ijD  in equation (5.20) are dropped out. Then the component fluxes may be

written as
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Equation (5.23) may be expressed in terms of the weight fraction gradient,
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where G is the thermodynamic factor
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In equation (5.25) S denotes that the sum of all weight fractions must be unity. For ideal

systems, the thermodynamic factor is unity and then
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In gas and vapor permeation, diffusion is assumed to be one-directional and perpendicular to

the membrane interface. Equation (5.26) may be approximated with the one-dimensional

finite-difference approximation that results in equation
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The relation between the Maxwell–Stefan equation and the solution–diffusion model equation

can be observed easier if the equation is written — despite the discussion above — in the

molar flux form,
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As the solubility coefficient Si  relates the partial pressure of the gas or the vapor on the feed

and the permeate side to the concentration in the membrane, equation (5.28) becomes
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The term ( )mncx/ 11 +  arises from the bulk flux contribution, which is not accounted for in the

solution–diffusion model. For a single component permeation we may define an effective

Maxwell–Stefan diffusion coefficient for species i in the membrane in the form
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and write equations (5.27) and (5.29) as
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Now it may be seen that iMi DD =  but only in ideal systems. The diffusion coefficient Di in

equation (2.11) must also be defined as an effective diffusion coefficient. However, all

diffusion coefficients become equal at the limit of zero penetrant concentration, so that

( ) ( ) inci
'

nciiM DDDD === ++ 11 .

5.4.2 Multicomponent permeation: Matrix method

Equations (5.22) are written in the nc dimensional matrix form as (Taylor and Krishna, 1993,

pp. 163, 209)

[ ] ( ) [ ]( ) ( )f
l

+F=G w
d

wd ,
(5.33)

where [ ]F  is the matrix of rate factors, ( )f  is the vector of rate factors, l is the dimensionless

distance in the film, ( )w  is the vector of mass fractions, and [ ]G  is the matrix of

thermodynamic factors accounting for the system non-ideality. Equation (5.33) represents a

set of nc coupled non-linear differential equations, since the diffusion coefficients and the

thermodynamic factors are composition dependent. Instead of the exact solution, Taylor and

Krishna (1993, p. 209) recommended the Krishna (1977) approximation, where the

thermodynamic factors and the diffusion coefficients are considered constant along the

diffusion path. This approximation expresses equation (5.33) as a linear matrix differential

equation, which may be solved for the nc fluxes as
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where [ ]b  is the bootstrap matrix, [ ]B  is the matrix of inverted diffusion coefficients, [ ]avG  is

the matrix of thermodynamic correction factors defined at the average composition, and [ ]X

is the matrix of high flux correction factors. Both [ ]B  and [ ]X  are evaluated at the film

interface, either at 0=y  or my d= . The matrix [ ]B  has elements given by equations
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Note that the mass fraction based Maxwell–Stefan diffusion coefficients are used in the

equations (5.35) and (5.36). The matrix of thermodynamic factors [ ]avG  has elements given by

equation
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where S denotes that for an infinitesimal change of weight fraction j, the sum of all weight

fractions must be unity. The matrix of high flux correction factors [ ]X  at y = 0 is obtained by

equation

[ ] [ ] [ ] [ ][ ]X Q Q0

1
= -

-
exp I (5.38)

and at y = dm by equation
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where [ ]Q is

[ ] [ ] [ ]Q G F=
-
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1
. (5.40)

Thus, the thermodynamic factors affect directly the matrix of the correction factors [ ]X . The

elements of the matrix of the rate factors [ ]F  are given by the equations
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Generally, the bootstrap matrix is required to define the fluxes in the system, because there

are only nc independent driving forces in the nc+1 component system. Since the membrane

flux is zero, the elements of the bootstrap matrix [ ]b  are (Taylor and Krishna, 1993, p. 148)

mnc

im
ikik w

w

)1( +

+= db ,
(5.43)

where ikd  is the Kronecker delta. Computationally, it is more convenient to calculate first the

nc independent diffusion fluxes as
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the total flux is given by the equation
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and the component fluxes are obtained from

( ) ( ) ( )n j w nt= + . (5.47)

The solution procedure is iterative, since the fluxes are required in the computation of the

matrix of high flux correction factors.

5.4.3 Multicomponent permeation: Simplified explicit method

An alternative solution method for a multicomponent permeation is the simplified explicit

method for the Stefan diffusion by Burghardt and Krupiczka (1975), which yields explicit

expressions for the rate factor F and for the high flux correction factor X. As a consequence,

the component fluxes can be calculated without iteration. The simplified method for the

Stefan diffusion can be generalized for non-ideal fluids by including the matrix of

thermodynamic rate factors [ ]G  (Kubaczka and Bandrowski, 1990; Taylor, 1991). Then the nc

mass fluxes can be written as
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d
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where X is the scalar correction factor and [ ]Aav  is the matrix of inverted diffusion

coefficients evaluated at the arithmetic average composition with elements
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The bootstrap condition is already taken into account in the elements of matrix [A], thus the

matrix [ ] 1-A  corresponds to the matrix multiplication [ ][ ] 1-Bb . The scalar correction factor is

defined as
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( )1exp

1exp
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F=X ,
(5.51)

where the explicit mass transfer rate factor F is defined in terms of the weight fractions at the

film interfaces 0 and dm with
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According to Taylor and Krishna (1993, pp. 199-200), the scalar correction factor X accounts

for the non-linearity of the composition profiles, and gives a clear improvement in the

predicted fluxes.

5.5 FILM THICKNESS

Thus far the membrane thickness md  has been treated as a constant and known parameter.

However, the actual membrane thickness md  is not equal to the dry membrane thickness 0
md

since sorption causes volume dilation. Paul and Ebra-Lima (1970) and Bitter (1984) have

already discussed the effect of swelling on permeation in reverse osmosis and gas separation.

The rate of swelling in the direction of the permeation depends on the mode of swelling, the

rate of sorption, and the volume fraction profile of the polymer. Isotropic and anisotropic

swelling may be identified as two limiting modes of volume dilation. On isotropic swelling,

the volume change in the membrane occurs freely in all dimensions and may be expressed as

(Sperling, 1992, p. 415)
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1
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=
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aaa ,
(5.53)

where xa , ya , and za  are the swelling ratios in the x, y, and z dimensions, and ( )mnc 1+f  is the

volume fraction of the polymer in the membrane phase,
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The partial molar volume of the membrane, ( )mncV 1+ , is defined as
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where S denotes that for an infinitesimal change of the mole fraction of the membrane, the

sum of the mole fractions must be unity.

On isotropic swelling, the swelling ratio ya  in the direction of the permeation is
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On anisotropic swelling, the volume change of the membrane occurs only in the y direction

since the cross-section area of the membrane is fixed to the direction of the permeation. Then

both xa  and za  in equation (5.53) are equal to unity and thus
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(5.57)

However, the volume dilation is not purely isotropic or anisotropic in a real process (Crank

and Park, 1968). A geometric mean of the above limiting modes may be applied and then
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The volume fraction of the polymer is not constant in the direction of the permeation (Paul

and Ebra-Lima, 1970; Bitter, 1984). Therefore, it is convenient to define the average volume

fraction ( )mnc 1+f , which is obtained by integrating the volume fraction profile within the

membrane over the membrane thickness
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(5.59)

where l is the dimensionless distance in the selective layer, y/dm. For simplicity, with an

assumption of constant diffusivity and total mass density, the volume fraction of the polymer

is obtained from equation
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where ( ) 01 ,mnc+f  is the volume fraction of the polymer at y = 0 and ( ) df ,mnc 1+  is the volume

fraction of the polymer at y = dm. The substitution of equation (5.60) into equation (5.59)

yields after integration
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Then the ratio of the actual membrane thickness to the dry membrane thickness 0/ mm dd  is

obtained for isotropic swelling from equation (5.62), for anisotropic swelling from equation

(5.63), and as a geometric mean of the two limiting modes of swelling from equation (5.64).
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5.6 DIFFUSION IN RUBBERY MEMBRANES

Binary diffusion coefficients are required between all possible binary pairs to describe the

effect of species concentration gradients to the species fluxes in the defined mixture. The

binary penetrant–membrane diffusion coefficients are experimental quantities that are

obtained from measured pure component permeability coefficients. In order to correlate the

temperature, pressure, and concentration dependence of binary penetrant–membrane diffusion

coefficients, several permeability measurements are required at different pressures and

temperatures for each penetrant.

The permeability coefficients may be determined from a steady state or a transient permeation

experiment (Crank and Park, 1968). In the steady state method, the permeate flux through a

flat sheet of known thickness is measured at known steady interfacial conditions. A

permeability coefficient may then be calculated from equation (2.14). Since the permeability
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coefficient is generally concentration dependent, an average permeability coefficient is

obtained.

In the transient experiment, the membrane is initially free of a penetrant. Then the upstream

side of the membrane is exposed to the constant pressure of the permeating gas or vapor,

while the downstream side is maintained on the low pressure. At the beginning of the

experiment, both the rate of flow and the concentration in the membrane vary with time and

finally become stabilized at the steady state. The permeated gas or vapor is continuously

removed from the low-pressure side of the membrane into a permeate chamber. The rate of

the pressure increase in the permeate chamber with respect to time is recorded until the steady

state increase in the pressure is reached. A permeability coefficient is related to the

accumulation rate of the permeated gas or vapor at the steady state

dt
dQ

p
P t

F

m
0d

= ,
(5.65)

where Qt is the total amount of the permeated fluid per membrane area, t is time, and Fp  is

the pressure on the upstream side. If the diffusion coefficient of the permeant is constant, i.e.

independent of the concentration, the diffusion coefficient is related to the time lag gt , which

is required to attain the steady state (Crank and Park, 1968)

D
t m

g 6

20d
= .

(5.66)

Thus, the permeability and the diffusion coefficient may be determined from a single transient

experiment. The solubility coefficient may then be calculated from the definition of the

permeability, equation (2.13). For a concentration dependent permeation, an average

permeability coefficient is obtained, but equation (5.66) is not applicable for obtaining an

average diffusion coefficient.

In fact, the term miP d/  in equation (2.12) and (2.14) is the measured quantity. It is the mass

transfer coefficient for permeation that describes the flux with respect to the corresponding

conditions over the membrane. The permeability coefficient may be calculated when the

thickness of the membrane sample is known. However, the membrane swelling is implicitly

included in the experimental permeability coefficient if the dry membrane thickness is applied

in the calculation of the permeability coefficient. The actual permeability coefficient may be

obtained by observing the volume dilation at a steady state or approximately by including the

theoretical swelling correction, equation (5.62), (5.63), or (5.64). An average effective
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diffusion coefficient DiM  may then be evaluated from the experimental permeability

coefficient with equation

0
m

m
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iM S
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d
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G
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(5.67)

where the average solubility coefficient, iS , has to be calculated from the experimental

sorption curve or alternatively, from an appropriate theoretical model.

5.6.1 Diffusion at infinite dilution

The temperature dependence of a penetrant diffusion in polymers above the glass transition is

conveniently described by following the free volume theories (Fujita et al., 1960; Vrentas and

Duda, 1977). By using the approach of Fujita et al. (1960), the temperature dependence of the

binary penetrant–membrane Maxwell–Stefan diffusion coefficients at the limit of zero

penetrant concentration, 0
12D , may be written in terms of the total free volume of a penetrant

free polymer:
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(5.68)

where 0
FVf  is the fractional free volume of the penetrant-free polymer at the system

temperature

( )
( )TV

VTV *

FV 0

0
0 -
=f ,

(5.69)

and where ( )TV 0  is the volume of the pure polymer at the temperature T and at the zero

pressure, and *V  is the occupied volume. The definition of the occupied volume will be given

later on in this work.

5.6.2 Diffusion in concentrated solutions

Penetrant diffusion in a rubbery membrane resembles the diffusion in a liquid mixture. The

diffusion of permanent gases like hydrogen and nitrogen is generally concentration

independent. Then the diffusion coefficient corresponds to the diffusivity 0
12D  from (5.68),

which includes only the free volume contribution of the pure polymer. The diffusion rate of

hydrocarbon vapors increases with concentration since the penetrant molecules increase the

total free volume of the system.
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The generalized Maxwell–Stefan equations utilize the diffusion coefficients for which the

variation with the concentration in binary liquid mixtures is significantly lower than the

variation of the Fick diffusion coefficients (Taylor and Krishna, 1993, pp.69-71). Typically,

the binary Maxwell-Stefan diffusivities 12D  in binary liquid mixtures follow a linear relation

between the limiting diffusivities 0
12D  and 0

21D , the diffusivity of species 1 at infinite dilution

in 2 and the diffusivity of species 2 at infinite dilution in 1. However, in vapor membrane

separation the latter limiting diffusivity is not valid since the concentration of penetrant in the

membrane is limited by the sorption equilibrium. Then the corresponding limiting diffusivity

may be denoted as ¥
12D , the diffusivity at the equilibrium concentration as a result of pure

component sorption at the saturation pressure. The diffusion coefficients 12D  at a constant

temperature may then be assumed to follow a linear relation between the limiting diffusivities
0
12D  and ¥

12D  with respect to the weight fraction

¥
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(5.70)

where ¥
mw1  is the maximum weight fraction of the penetrant in the membrane as a result of the

pure component sorption at a constant temperature and the saturation pressure.

5.6.3 Diffusion in multicomponent systems

In multicomponent systems, the cross-coefficients ijD  between the permeating molecule pairs

of i and j are required in the evaluation of the matrices of the inverted diffusion coefficients

[ ]A  or [ ]B . At the moment there is no solid theory to predict the cross-coefficients in a

polymeric system. At low pressures and with low solubility components, the permeating

molecules in the polymer matrix will be far removed from one another. Then the interactions

between the permeating species are negligible compared to the interactions between the

permeating species and the membrane. In this case, the matrix [ ] 1-B  or [ ] 1-A  becomes a

diagonal matrix and the multicomponent permeation is described in terms of a single

component permeation. The binary penetrant–membrane diffusion coefficient ( )1+nciD  may

then be obtained from equation (5.70) but ¥
mw1 , 0

12D , and ¥
12D  replaced by ¥

imw , ( )
0

1+nciD , and

( )
¥

+1nciD  respectively.
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The possibility of interactions between the permeating species increases with pressure — i.e.

with the total penetrant concentration in the membrane — and especially in systems

containing highly soluble components. According to the free volume theory in paragraph

2.3.1, a hole of a sufficient size is required for a successive diffusive jump. Apparently, a hole

of size x will also accept all molecules smaller than x. Interactions that affect the species

diffusion may occur within the period of formation and destruction of the transient hole, if

there are more than one molecule in the same channel or if adjacent channels have already

accommodated permeating molecules. These interactions either promote or hinder the

diffusion of smaller molecules. The former is possible due to increased local free volume for

the diffusion and the latter in the form of blocking up the diffusive pathway from the fast

moving smaller molecules.

The estimation of multicomponent liquid diffusivities is based on different ways of averaging

the infinite dilution diffusion coefficients of the binary pairs in a mixture (e.g. Kooijman and

Taylor, 1991). A similar averaging process should be possible for multicomponent

diffusivities in a membrane when the mixture of the penetrants and the membrane is

considered to be a liquid mixture. Still, the dominating penetrant–membrane interactions are

involved also in the penetrant–penetrant interactions. Then, for simplicity, the cross-

coefficients ijD  may be assumed to be proportional to the binary penetrant–membrane

diffusion coefficients. The simplest form of the cross-coefficients may be obtained from the

geometric average of the limiting diffusion coefficients. The diffusion coefficients at infinite

dilution ( )
0

1+nciD  give more weight on the cross-coefficients than the diffusion coefficients at a

maximum concentration ( )
¥

+1nciD . The binary interactions become important at higher

concentration levels, so that following Krishna (1990) for surface diffusion, the cross-

coefficients may be chosen to depend on the binary penetrant–membrane diffusion

coefficients at a maximum concentration

( )( ) ( )
( )( ) ( )jijjii ww/w
ncj

ww/w
nciij DDD +¥

+

+¥
+= 11 . (5.71)

Equation (5.71) fulfills the criteria D Dij ji= , but it is an empirical equation, which should be

confirmed by experiments.
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5.7 HEAT TRANSFER THROUGH THE MEMBRANE

The temperature gradient over the selective layer should be known in the evaluation of the

component fluxes through the membrane. However, the resulting temperature gradient is so

small that the thermal diffusion — the Soret effect — is negligible.

The following interfacial energy balance holds at the interface of the retentate fluid and the

membrane (Figure 5.1):

( ) ( ) ( )P,MT,MmP,LB,LL
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i
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=1

.
(5.72)

The term ( )iMiL HH -  describes the enthalpy change involved in gas or vapor sorption.

Similarly, we may write an interfacial energy balance at the interface of the selective layer

and the support layer,
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-+-=-
nc

i
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1

,
(5.73)

where subscript S denotes the support grid point, s denotes the support property, and the term

( )iMiS HH -  describes the enthalpy change involved in the gas or vapor desorption and the

pressure reduction.

The enthalpy change of sorption and desorption is basically obtained from a thermodynamic

model that is suitable both for conventional fluids and polymer solutions. The same model has

to be used throughout the energy balance computations in order to maintain energy

conservation over the spiral-wound module.

The energy balance equations (5.72) and (5.73) may be combined to yield the macroscopic

balance over the selective layer only when the enthalpy change of sorption and desorption is

assumed negligible so that

( ) ( ) ( )P,ST,SsP,LB,LL

nc

i
T,iSB,iLy,i TTkTThHHN -=-+-å

=1

.
(5.74)

Then heat conduction over the retentate side interface is continuous and the term ( )iSiL HH -

describes the enthalpy change involved in the pressure reduction. Equation (5.74) allows the

use of the enthalpy equation derived from the equation of state models for conventional fluids,

such as the Soave-Redlich-Kwong equation of state.
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Figure 5.1 Grid point formulation within the membrane for the local permeate flow in the
y direction. The length of the third dimension is Dz.

The boundary temperatures TL,B and TS,T in (5.74) are not known in advance, but are defined

in terms of local mass and energy flux and local external fluid properties on the retentate side.

The selective layer thickness is about an order of magnitude smaller than the support layer

and at least two orders of magnitudes smaller than the retentate channel height. Then the

temperature gradient over the selective layer must indeed be small and the heat transfer is

very fast through the thin selective layer and, as a consequence, temperatures TL,B and TS,T

become almost equal. In such a case, it would be abnormal to assume a temperature gradient

within the support layer, so equation (5.74) becomes

( ) ( ) 0
1

=-+-å
=

P,LB,LL

nc

i
T,iSB,iLy,i TThHHN .

(5.75)

Thus, the energy transport through the support and substrate layers to the permeate side

occurs only by convection. Then the diffusive term in equation (4.71) becomes zero.
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6 EQUATION OF STATE MODELS FOR POLYMER SOLUTIONS

The equation of state models are able to relate pVT properties of pure substances and

mixtures, and thereby to evaluate important thermodynamic properties, including the

equilibrium condition between the two phases in contact. In the case of polymeric systems,

the equation of state model should be able to relate pVT properties of small solvent molecules

and large chain-like macromolecules. The two-parameter cubic equation of state models for

normal fluids are usually not able to represent phase behavior in polymeric systems.

Therefore, a large number of equation of state models have been specifically developed for

polymers. Such models include the Flory EOS (Flory, 1970), the Sanchez–Lacombe EOS

(Sanchez and Lacombe, 1976; Lacombe and Sanchez, 1976), the Panayiotou–Vera EOS

(Panayiotou and Vera, 1982), the statistical associating fluid theory (SAFT) (Chapman et al.,

1989 and 1990), and the perturbed hard-sphere-chain EOS (PHSC) (Song et al., 1994a).

Several combined equation of state–excess Gibbs energy models are proposed in the literature

for predicting vapor–liquid equilibria and gas solubility for non-polymer solutions

(Heidemann and Khokal, 1990; Michelsen, 1990a,b; Dahl and Michelsen, 1990; Holderbraum

and Gmehling, 1991; Wong and Sandler, 1992; Boukouvalas et al., 1994; Twu et al., 1999).

These mixing rules combine the excess Gibbs energy expression of an accurate or a predictive

activity coefficient model to an equation of state. In the case of polymers, the idea behind the

predictive group-contribution model is attractive, because vapor sorption data for polymers

may be sparse or not available at all. This is why these new mixing rules have also attained

interest in the modeling of polymer–solvent systems (Orbey and Sandler, 1994; Kalospiros

and Tassios, 1995; Bertucco and Mio, 1996; Zhong and Masuoka, 1996; Orbey et al., 1997)

and thus have extended two-parameter cubic equation of state models also for polymeric

systems.

In this chapter, three equation of state models for polymers are presented. The models are the

Sanchez–Lacombe equation of state (Sanchez and Lacombe, 1976; Lacombe and Sanchez,

1976) in section 6.1, the perturbed hard-sphere-chain equation of state (Song et al., 1994a,

Song et al., 1996) in section 6.2, and the combined Soave-Redlich-Kwong equation of state–

group contribution activity coefficient model with the MHV2 mixing rule (Dahl and

Michelsen, 1990) in section 6.3.
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The original MHV2 model by Dahl and Michelsen (1990) combines the Soave–Redlich–

Kwong equation of state with the Lyngby modified UNIFAC by Larsen et al. (1987).

However, the Lyngby modified UNIFAC, reviewed in section 6.5, is not applicable to

polymeric systems, since it greatly overestimates solvent activities in polymer solutions

(Kontogeorgis et al., 1994a). In principle, any activity coefficient model may be utilized to

express the excess Gibbs energy of the mixture. Thus in polymer solutions, the Lyngby

modified UNIFAC should be replaced with the UNIFAC-FV model (Oishi and Prausnitz,

1978), reviewed in section 6.4, or with the exponential UNIFAC modification introduced in

section 6.6. The latter model is a new one and is developed during this work.

6.1 SANCHEZ–LACOMBE EQUATION OF STATE

The Sanchez-Lacombe equation of state has two model versions: the original lattice fluid

model (Sanchez and Lacombe, 1976; Lacombe and Sanchez, 1976), and the non-lattice model

development (Sanchez, 1987). Although the equation of state is the same for the models, the

multicomponent chemical potentials yield different expressions. This is why both model

versions are considered in this work.

The Sanchez-Lacombe equation of state for pure fluids and mixtures is (Sanchez and

Lacombe, 1976; Lacombe and Sanchez, 1976):

( ) 0~11~1ln~~~ 2 =ú
û

ù
ê
ë

é
÷
ø
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ç
è
æ -+-++ rrr

r
TP ,

(6.1)

where r is the number of effective segments of the molecule, or the molecular size parameter,
~T , ~P, and ~r  are the reduced temperature, pressure, and density respectively. The reduced

properties are defined by equations

~
*T T

T
= ,

(6.2)

~
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p
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1
r

,
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where T is the temperature, p is the pressure, V is the total volume, V* is the close packed

volume, ~v  is the reduced volume, and T * , P* , and *r are the characteristic equation of state

parameters.

For a high molecular weight polymer, the number of effective segments is large and hence the

term 1/r becomes negligible. Then the equation of state becomes

[ ]~ ~ ~ ln ( ~) ~r r r2 1 0+ + - + =P T . (6.6)

The roots of the equation of state have to be solved numerically. In general, there are three

solutions to the equation of state: the greatest and the smallest real root corresponds to the

minimum in the Gibbs energy and the intermediate real solution corresponds to the maximum

in the Gibbs energy. The high-density minimum corresponds to a liquid root solution and the

lower density minimum to a gas root solution.

6.1.1 Lattice fluid model

A real lattice fluid is completely characterized by the equation of state parameters T * , P* ,

and *r  or by the molecular parameters e* , v* , and r, the total interaction energy per mer, the

close packed volume per mer, and the number of effective segments respectively. The

equation of state parameters and molecular parameters are related with each other by the

following equations (Sanchez and Lacombe, 1978)
** TkB=e , (6.7)

*

*
*

P
Tkv B= , and

(6.8)

****

*

v
M

Tk
MPr
B rr

== ,
(6.9)

where kB is the Boltzmann constant and M is the molecular weight. For polymers, the number

average molecular weight is used.

Lacombe and Sanchez (1976) assumed that the close packed molecular volume of each

component is conserved, that is, the number of occupied sites in the pure state ri
0  is different

from the number of occupied sites in the mixture ri. Later, Sanchez and Lacombe (1978)

introduced a more general assumption that the molecule occupies the same number of lattice

sites ri in the mixture as in the pure state. The close packed volume of the mixture, V* is then

given by equation
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*** vrrvV
i

ii nn == å , (6.10)

where v* is the average close packed mer volume in the mixture and ni is the number of

molecules of component i. The average close packed mer volume in the mixture is obtained

from a linear mixing rule

å=
i

ii vv ** f , (6.11)

where fi is the close packed volume fraction
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(6.12)

and vi
*  is the pure component close packed mer volume. In equation (6.12), wi is the mass

fraction of component i, and ri
*  is the scaling density of the pure component i.

The total volume of the mixture is the sum of occupied and empty lattice sites. Since the filled

sites and holes have the same size, the total volume of the mixture may be written as

vVvrV ~)( **
0 =+= nn , (6.13)

where r is the number of segments in the mixture

r x ri i
i

=å (6.14)

and n0 is the number of empty lattice sites. The number fraction xi is defined as

å
=

j
j

i
ix

n
n

.
(6.15)

The total fraction of occupied sites is equal to the reduced density ~r

0

~
nn

nr
+

=
r

r .
(6.16)

In close packed mixtures, the interaction energies are obtained from the combining rule

(Lacombe and Sanchez, 1976)

e f f e* *= åå i j ij
ji

,
(6.17)

where e ij
*  is the cross-term between i and j

( ) ( )e e eij i j ijk* * * ½
= -1 (6.18)
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and where kij is the binary energy interaction parameter. The characteristic temperature of the

mixture can then be calculated from equation (6.7). The close packed mass density of the

mixture is obtained from equation

åå
å

==

i i

i
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iii

i
ii

wvr
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*
* 1

r
n

n
r .

(6.19)

The chemical potential of species i in a mixture is obtained from the partial differential of the

Gibbs energy with respect to the number of lattice sites occupied by species i
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Lacombe and Sanchez (1976) derived the following expression for the intensive Gibbs energy
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where wi is the number of configurations available to a molecule in the close packed pure

state and depends on the molecule size ri and flexibility. The chemical potentials may be

written in the form of the partial differential equations
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/ ,
(6.22)

where

( )
i

i
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(6.23)

Since the intensive Gibbs energy is a function of temperature, pressure, and composition,

( )nc,,,,p,Tg
r
G fff
n

K21= ,
(6.24)

the following chain rule may be used in deriving the intensive Gibbs energy with respect to

the number of lattice sites occupied by species i:
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where
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As (6.26) and (6.27) are inserted into equation (6.25), and the resulting equation is substituted

into equation (6.22) with (6.23), the partial differential equations become
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The final form of the chemical potentials are obtained when equation (6.28) is derived with

the lattice fluid mixing and combining rules
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where
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=  and

(6.30)

~
*P

p
Pi

i
= .

(6.31)

6.1.2 Non-lattice fluid model

In the lattice fluid version, the filled sites and holes of the lattice mixture have the same size.

In the non-lattice version, Sanchez (1987) allowed holes to have an adjustable size. This

modification explicitly demonstrates that holes have an entropy-like character.

The model parameters in the non-lattice fluid have different definitions from the lattice fluid.

Characteristic temperature *T  is now related to the hole volume v0
*  by the equation

*
0

** vPTkB = . (6.32)

The molecular size parameter, r, is defined as volume ratio

*

**

*
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where *v  is the hard-core molecular volume. The reduced density ~r of the mixture is

( )
~

*

*r =
+

V
V V0

,
(6.34)
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where

å=
i

ii vV ** n  and
(6.35)

*
000 vV n= , (6.36)

are the total hard-core volume and the free volume respectively. Although the choice of the

hole volume is arbitrary, the molecular hole volume for the mixture may be calculated by

using the reciprocal addition rule
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The characteristic pressure *P  corresponds to the cohesive energy density of the mixture. It is

calculated from the pure component characteristic pressures

P Pi j ij
ji

* *= åå f f ,
(6.38)

where

( ) ( )P P P kij i j ij
* * *

½
= -1 , (6.39)

and where kij is the binary interaction parameter between species i and j.

Since the physical picture in the non-lattice fluid version is different from the lattice fluid

version, the chemical potentials also have different expressions. The Gibbs energy density for

the non-lattice fluid is (Sanchez and Panayiotou, 1994)
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After a similar manipulation as in paragraph 6.1.1, the partial differential expression of the

non-lattice fluid chemical potentials may be written as
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and the analytical expression of the non-lattice fluid chemical potentials as
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6.2 PERTURBED HARD-SPHERE-CHAIN EQUATION OF STATE

A hard-sphere-chain model is based on athermal — zero excess enthalpy — hard-sphere

chains, where a chain molecule is modeled by a series of freely jointed tangent hard spheres.

According to Song et al. (1994a), these models take into account some significant features of

real chain-like fluids, like excluded volume effects and chain connectivity.

Total pressure, p, of hard-sphere chains system consists of three parts: a nonbonding

contribution of hard-sphere mixtures prior to bonding, a bonding contribution due to chain

formation, and van der Waals attractive forces between non-bonded hard-spheres. Song et al.

(1994b) derived the following perturbed hard-sphere-chain equation of state for the mixtures
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where p is the pressure, T is the absolute temperature, r is the number density, kB is the

Boltzmann constant, r is the number of segments or effective hard spheres per molecule, xi is

the number fraction of component i, b is the second virial coefficient of non-bonded hard-

spheres or van der Waals co-volume per segment, ( )g dij ij
+  is the radial distribution function of

hard-sphere mixtures at contact, and aij reflects the attractive forces between two non-bonded

segments. The number density is defined as

V
i

iå
=

n
r ,

(6.44)

where ni is the number of molecules of species i in volume V. The roots of the equation of

state have to be solved numerically, since mixing rules are density dependent as will be seen

later on. Topliss et al. (1988) present a solution procedure for such equation of states.

The analytical expression for the radial distribution function ( )g dij ij
+ is unknown. Song et al.

(1994c) recommend the Carnahan–Starling equation for pure fluids
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1
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and the Boublik–Mansoori–Carnahan–Starling (BMCS) equation for mixtures in the form
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where h is the packing factor of hard-sphere mixtures,
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and xij is given by
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Alternatively, the equation of state can be expressed in terms of segment fractions fi:

( ) ( )

,

111

åå

ååå

-

÷÷
ø

ö
çç
è

æ
--+= ++

i j
ijji

B

r

iiii
ii

i
i j

ijijijjir
Br

a
Tk

dg
r

dgb
Tk

p

ff
r

fffr
r

(6.49)

where rr is the segment density defined as
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and where nr the total number of segments in the mixture. The segment fraction is related to

the number fraction by
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The cross terms aij and bij are obtained from equations

aijijij FTa es 3
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(6.52)

bijij Fπ)T(b 3

3
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(6.53)

where eij is the non-bonded pair interaction energy between segments i and j, sij is the

segment size, Fa and Fb are the temperature dependent universal functions. The cross terms eij

and sij are obtained from

( ) ( )ijjiij k-= 12/1eee  and (6.54)
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where kij and lij are adjustable binary energy interaction and size correction parameters. In the

simplified PHSC equation of state (Song et al., 1996) the universal functions Fa and Fb are

given by equations
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For a pressure explicit equation of state, the chemical potential of component k is obtained

from the total Helmholtz energy by partial differentiation
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According to Song et al. (1994b), the Helmholtz energy of the mixture is given by the

equation

,ln

11

0

ååå

åå å

å

÷÷
ø

ö
çç
è

æ
+

-÷÷
ø

ö
çç
è

æ
--

+=

i
Br

i

i

i

i

i j
ijji

B

r

i j i
ii

i
iijijjir

i Bii

i
i

Br

Tk
rr

a
Tk

Q
r

Wb

Tkr
A

Tk
A

r
ff

ff
r

fffr

n
f

n

(6.59)

where Ai
0 is the Helmholtz energy of pure component i as an ideal gas at temperature T. Wij

and Qii are given by:
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where
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Thus, the chemical potential of component k is (Song et al., 1994b)
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where mk
0 is the chemical potential of pure component k as an ideal gas at temperature T and
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6.3 THE MHV2 MODEL

The MHV2 mixing rule by Dahl and Michelsen (1990) is the second-order approximation of

the modified Huron-Vidal (MHV1) mixing rule by Michelsen (1990b). It combines the

Soave–Redlich–Kwong equation of state with the group-contribution activity coefficient

model with the MHV2 mixing rule.

The Soave–Redlich–Kwong (SRK) equation of state is a cubic equation of state

 ( ) ( )bvv
a

bv
RTp

+
-

-
= ,

(6.69)

where p is pressure, T is temperature, v is the molar volume, a is the energy and b the co-

volume parameter of the mixture. The mixture co-volume is obtained from the corresponding

pure component values

å=
i

iibxb , (6.70)

where xi is the mole fraction. The pure component co-volume is obtained from the component

critical pressure and temperature, pc and Tc:
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The pure component energy parameter, ai, is obtained from
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(6.72)

where

( )bi i r im T= + -1 1 ,
(6.73)

and where irT ,  is the reduced temperature and im  is a function of the acentric factor of

component i

mi i i= + -0 48 1574 0176 2. . .w w . (6.74)

Instead of equation (6.73), Mathias and Copeman (1983) parameters may be used
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where C1,i, C2,i, and C3,i are pure component parameters. A list of Mathias–Copeman

parameters for the SRK are given by Dahl et al. (1991).

The excess Gibbs energy model is introduced into the mixing rule through the excess

Helmholtz energy of mixing, AE
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(6.76)

where n is the total number of moles. The excess Gibbs energy and the excess Helmholtz

energy are equal at zero and infinite pressures. The equation of state is forced to reproduce the

behavior of the excess Gibbs energy model by setting the EOS mixture parameter a at a

reference pressure with equation

g
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ø
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(6.77)

where gE is the molar excess Gibbs energy, and subscripts EOS and AM denote gE expression

of the equation of state and the activity coefficient model respectively. The zero pressure

approach is applied in the MHV2 model and then the molar excess Gibbs energy from the

equation of state can be written
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where
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a

bRT
and

(6.79)

( )Q u
u

u
( ) ln lna a= - - - -

+æ
èç

ö
ø÷1 1

1
,

(6.80)

and where u is the solution obtained from the equation of state, v/b, at zero pressure

( )[ ]u = - - - +
1
2

1 6 12a a a .
(6.81)

The mixture parameter a is given implicitly at zero pressure by equation
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which can be approximated according to Dahl and Michelsen (1990) MHV2 as

Q q q q( )a a a= + +0 1 2
2 , (6.83)

where the values of q0, q1, and q2 for the SRK are 0, -0.478, and -0.0047 respectively. The

substitution of the above approximation to equation (6.82) results in the MHV2 mixing rule

(Dahl and Michelsen, 1990)
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The fugacity coefficient, j i , both for vapor and liquid is given by
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The composition derivative ( )
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where g i  is the activity coefficient of component i in the mixture.
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6.4 UNIFAC AND UNIFAC-FV

Fredenslund et al. (1975) introduced the UNIFAC group-contribution model to predict liquid

phase activity coefficients. The activity coefficient of a solvent in a solution is formed from

combinatorial and residual contributions to the activity coefficient gi

ln ln lng g gi i
C

i
R= + , (6.87)

where superscripts C and R stand for the combinatorial and residual contributions

respectively.

Polymer chains in a mixture reduce the free volume of the system. This reduction is not

explicitly taken into account in the UNIFAC model, and hence predicted solvent activities

tend to be lower than experimentally observed values. The predictions were improved when

Oishi and Prausnitz (1978) included the free volume contribution to the solvent activity

ln ln ln lng g g gi i
C

i
R

i
FV= + + , (6.88)

where superscript FV stands for free volume contribution. This model is known as the

UNIFAC-FV model.

6.4.1 Combinatorial contribution

 The Staverman–Guggenheim combinatorial part accounts for size and shape differences and

uses only pure component properties
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(6.89)

where xi is the mole fraction of component i in the solution, qi is the surface area parameter of

component i, li is a parameter for component i, qi  is the molecular area fraction of component

i, and z is the coordination number, usually z = 10. The molecular volume fraction fi is given

by

å
=

j
jj

ii
i

xr

xr
f ,

(6.90)

where ri is the volume parameter for component i

r Ri k
i

k
k

=ån ( ) , (6.91)
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and where Rk is the group volume parameter for group k, n k
i( )  is the number of groups of type

k in molecule i, and subscript k is the group index. The molecular area fraction qi for

component i is given by

å
=

j
jj

ii
i

xq

xq
q

(6.92)

and the parameter li

l
z

r q ri i i i= - - -
2

1( ) ( ) .
(6.93)

The surface area parameter qi is determined by

q Qi k
i

k
k

=ån ( ) , (6.94)

where Qk is the group area parameter for group k. The group parameters, Rk and Qk are

obtained from the van der Waals group volume and surface areas, Vwk and Awk, as given by

Bondi (1968, pp. 450-452)

R
V

k
wk=

1517.
 and

(6.95)

Q
A

k
wk=
×2 5 109.

,
(6.96)

where the normalization factors, 15.17 and 2.5×109, are determined by the volume and the

external surface area of the CH2 unit in polyethylene. The original UNIFAC group volume

and surface area parameters are available by Fredenslund et al. (1975) and Hansen et al.

(1991).

6.4.2 Residual contribution

The residual activity coefficient contribution accounts for group interactions and is given by

[ ]å G-G=
k

i
kk

i
k

R
i

)()( lnlnln ng ,
(6.97)

where Gk is the residual activity coefficient of group k in the defined solution at the given

temperature and Gk
i( )  is the residual activity coefficient of group k in the reference solution

containing pure component i at the given temperature. The residual activity coefficient of

group k both in the defined solution and in the reference solution is given by equation
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where ng is the number of groups in the solution, ymk is the group interaction parameter

between groups m and k, and qm is the group surface area fraction of group m in the given

solution
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(6.99)

and where Xm is the mole fraction of group m in the solution
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The group interaction parameter function ymn is determined for each possible binary group

pair m and n by the equation

( )ymn mna T= -exp / , (6.101)

where amn is the group interaction parameter resulting from the interaction of main groups m

and n, and T is the temperature in Kelvin. The interaction parameter is not usually symmetric,

so that nmmn aa ¹ . The original UNIFAC group interaction parameters are available by

Fredenslund et al. (1975) and Hansen et al. (1991).

6.4.3 Free volume contribution

The free volume contribution to the activity of component i is obtained by using the Flory

equation of state with the simplification that the Flory interaction parameter, cij, is zero (Oishi

and Prausnitz, 1978)
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where iJ  is the external degree of freedom parameter for solvents (=1.1). The reduced

volume, ~vi , is given by
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where vi is the molar volume of component i in units of cm3/mol and c is the proportionality

factor. Oishi and Prausnitz (1978) found the best agreement on calculated activities with

experimental activities for solvents in polymer solutions with c = 1.28. The reduced volume

of the mixture is obtained from equation
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6.5 LYNGBY MODIFIED UNIFAC

Kikic et al. (1980) modified the Staverman–Guggenheim combinatorial term, equation (6.89),

and proposed a new form

ln ln ln'
'

g f
f f

q
f
qi

c
i

i

i
i

i

i

i

ix
z

q= + - -
æ
è
ç
ö
ø
÷ + -

é

ë
ê

ù

û
ú1

2
1 ,

(6.105)

where f  and q  are the volume and surface area fractions, as in the original UNIFAC, and fi
'

is given by
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(6.106)

Kikic et al. (1980) chose the volume exponent of 2/3 on the basis of comparison with

experimental results for a large number of mixtures of aliphatic hydrocarbons. The

combinatorial term, equation (6.105), can be seen as a combination of the modified Flory–

Huggins combinatorial of Donohue and Prausnitz (1975) and the Staverman–Guggenheim

correction. According to Kikic et al. (1980), the modification resulted in improved predictions

of activity coefficients in mixtures containing saturated hydrocarbons. Physically reasonable

UNIFAC group interaction parameters for olefins and benzene were also obtained and the fit

to experimental data was somewhat improved. Furthermore, the modification introduced no

adverse effects for mixtures containing strongly interacting functional groups.

Larsen et al. (1987) adapted the combinatorial part of Kikic et al. (1980) into the Lyngby

modified UNIFAC in the form
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Thus, the combinatorial activity coefficient is then given without the Staverman–Guggenheim

correction. The residual part is calculated as in the original UNIFAC by Fredenslund et al.

(1975), except that the interaction parameters are temperature dependent (Larsen et al., 1987)
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where amn,1, amn,2, and amn,3 are the interaction parameter coefficients and T0 is the reference

temperature. The Lyngby modified UNIFAC is used in the MHV2 model with the gas groups

extension by Dahl et al. (1991). As in the UNIFAC model, the interaction parameters are

generally not symmetric, so that 11 ,nm,mn aa ¹ , 22 ,nm,mn aa ¹ , and 33 ,nm,mn aa ¹ .

6.6 EXPONENTIAL UNIFAC FOR POLYMERS

Donohue and Prausnitz (1975) proposed the idea of the exponential volume fraction in the

form

å
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(6.109)

and included it into the combinatorial Flory–Huggins entropy expression in order to combine

the ideal solution and Flory–Huggins expressions into one form. Donohue and Prausnitz

(1975) stated that the exponent z is a function of the ratio of the external surface area q to

volume r and it is a measure of the molecules’ shape. For a monomer, the exponent is one and

when the volume becomes very large, it approaches the value of 2/3 for a linear chain and

zero for a sphere. If the exponent in the volume fraction is allowed to lie between zero and

one, the combinatorial excess Gibbs energy g E C,  from equation (6.107)

g
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ii
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ln=å f (6.110)

has theoretical limits of the ideal solution and the Flory–Huggins combinatorial expression.

Polymer solutions are strongly non-ideal, but the Flory–Huggins expression tends to

underestimate the solvent activity coefficient in a solution, since the free volume effects are

not included due to incompressibility of the lattice vacancies. Thus, the actual combinatorial

excess Gibbs energy lies between the ideal solution and the Flory–Huggins expressions.
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In polymer–solvent systems, the polymer molecules gain freedom to exercise their rotational

and vibrational motions, whereas the solvent molecules partially loose such freedom (Reid et

al., 1987). The Lyngby modified UNIFAC is successful for solutions of small molecules, but

the model overestimates the solvent activity coefficients in polymer solutions. In order to

include the free volume effects in the modified Flory–Huggins combinatorial term properly, a

system dependent exponent is required. Previously, Kontogeorgis et al. (1994a) and Voutsas

et al. (1995) proposed such models. Kontogeorgis et al. (1994a) used the Flory–Huggins

combinatorial and proposed a system dependent exponent in the form

large

small

r
r

-= 1z .
(6.111)

Voutsas et al. (1995) used the Staverman–Guggenheim combinatorial with
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where smallr  and larger  are the pure component volume parameters of the short-chain and long-

chain components of the binary mixture respectively. Equations (6.111) and (6.112) may be

applied for binary mixtures.

A new exponential form may be proposed by following the original idea of Donohue and

Prausnitz (1975) with
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where subscript min denotes the minimum q/r ratio that is used to scale ri/qi ratios of the

system components. We may assume that a molecule with the lowest q/r ratio is the largest

molecule of the system, which defines the packing of the molecules in the lattice. The largest

molecule will then have a scaled ri/qi ratio equal to one and other molecules will have scaled

ri/qi ratio smaller than one. As the exponent z is formed from the arithmetic average of the

scaled pure component ii qr /  ratios, the free volume effect is introduced into the

combinatorial excess Gibbs energy expression and further on the component activities.

Different weighting is obtained with the geometric average form
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Equations (6.113) and (6.114) may be used both for binary and multicomponent mixtures.

Composition dependent exponent z for multicomponent mixtures is excluded, since such

exponential form of the combinatorial term does not obey the Gibbs–Duhem relation (Voutsas

and Tassios, 1997).
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7 MODEL PARAMETERIZATION AND VERIFICATION

The previous chapters provide the theoretical building blocks that form the basis for a unit

operation model for vapor membrane separation with rubbery membranes. In this chapter, the

individual model parts are verified against the experimental data. The equation of state

models from chapter 6 are compared in the prediction and the correlation of binary solvent–

liquid polymer equilibrium data and in the prediction of pure component sorption in a PDMS

membrane in section 7.1. The diffusion coefficient equations from section 5.6 are used for the

correlation of pure component diffusivities in a PDMS membrane in section 7.2. The

transport equations for permeation from section 5.4 are then used with thermodynamic models

to predict isothermal multicomponent permeation in a laboratory test cell in section 7.3.

7.1 MODELING OF BINARY SOLVENT–POLYMER EQUILIBRIUM

The binary equilibrium data by Covitz and King (1972), Schreiber et al. (1973), Lichtenthaler

et al. (1974), Liu and Prausnitz (1977), Roth and Novak (1986), and Wohlfarth (1994) at

infinite dilution is used as reference data for the prediction of Henry’s law coefficients. The

vapor sorption data by Noda et al. (1984) and Iwai and Arai (1989) is used for the evaluation

of the equation of state models’ capability to predict and correlate binary vapor–liquid

equilibrium data. The gas and vapor sorption data in a PDMS membrane by De Angelis et al.

(1999) is used for the evaluation of the models’ capability to predict the experimental sorption

curves without the binary interaction parameters. Table 7.1 characterizes the polymers in the

reference systems; De Angelis et al. (1999) did not provide molecular weight data and hence

the molecular weight of PDMS is not reported in Table 7.1.

The lattice and nonlattice fluid versions of the Sanchez–Lacombe equation of state, the

perturbed hard-sphere-chain equation of state, and the routines to compute vapor sorption

equilibrium at infinite dilution and finite concentrations were coded in Fortran. The models

were incorporated into the in-house process simulator (FLOWBAT, 2001). The combined

SRK–group-contribution activity coefficient models were obtained by modifying the source

codes of the MHV2 and the original UNIFAC in the FLOWBAT simulator.

Table A.1 presents the equation of state parameters for the Sanchez–Lacombe EOS and Table

A.2 for the perturbed hard-sphere-chain EOS. Both tables are found in appendix I. Most of the

parameters were collected from the literature. The missing EOS parameters for normal
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components were determined by minimizing the sum of squares of the relative deviation

between the calculated and the experimental saturation vapor pressure and liquid density data

from the DIPPR databank (Danner and Gess, 1990). The parameters of the perturbed hard-

sphere-chain equation of state for the PDMS were determined from the pVT data (Danner and

High, 1993) by minimizing the sum of squares of the relative deviation between the calculated

and experimental specific density for the different molecular weight samples.

Table 7.1 Molecular weights of polymers in the reference systems.

nM ,
g/mol

wM ,
g/mol

Ref.

HDPE - 105 000 Schreiber et al. (1973)
LDPE - 82 000 Schreiber et al. (1973)

PP 94 100 461 000 Wohlfarth (1994)
PVAC 83 400 - Liu and Prausnitz (1977)
PDMS 20 700 95 300 Roth and Novak (1986)

PIB - 53 000a) Lichtenthaler et al. (1974)
PS 63 000

53 700
96 200

-
247 000
97 600

Noda et al. (1984)
Iwai and Arai (1989)

Covitz and King (1972)
PcB - 200 000-300 000 Iwai and Arai (1989)

a) Viscosity average molecular weight.

The Sanchez–Lacombe and the PHSC are three-parameter equation of state models but only

two residual functions may be formed with the saturation vapor pressure and the liquid

density data. In order to find the global optimum for the three equation of state parameters, a

set of equation of state parameters in local optimum were searched for a number of constant r-

values in a bounded range. The optimization was then continued from the point of the lowest

residual for a number of new r-values. The densification of the bounded range was repeated

until the chance in the r-value became insignificant. For the Sanchez–Lacombe equation of

state, the constant r-value fixes the relation between the equation of state parameters via

equation (6.9). Then the two equation of state parameters to be optimized were *
iT  and *

iP  for

the Sanchez–Lacombe equation of state and Bi k/e  and is  for the perturbed hard-sphere-

chain equation of state. In the parameterization of the Sanchez–Lacombe equation of state,

two sets of EOS parameters were determined for ethane, propane, and propylene. One set was

determined from the low-pressure experimental data and the another from the high-pressure

experimental data, because all predictions of the Sanchez–Lacombe equation of state are

sensitive to the equation of state parameters of the solvent (Hariharan et al., 1993).
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The parameterization of the perturbed hard-sphere-chain equation of state for hydrogen was

extremely difficult. The parameterization resulted in an average relative deviation of 7.9% for

the saturated liquid density and 20.5% for the saturation pressure. Far better results were

obtained in the parameterization of other components. For example, the parameterization of

the PHSC for nitrogen resulted in an average relative deviation of 0.9% for the saturated

liquid density and 0.6% for the saturation pressure. The large residuals indicate that PHSC did

not completely fit in the experimental data for hydrogen.

FLOWBAT includes routines to calculate the physical properties of process flows from the

flowsheet. These routines may be invoked via a namelist, “FYSPRO”. A new property option,

“GSISOT”, was created for the calculation of gas and vapor sorption isotherms in polymers.

For the new property option, the user has to define the polymer name, the molecular weight,

the molecular weight distribution, and the thermodynamic model to be used in the property

calculation. The UNIFAC groups and equation of state parameters for a number of common

polymers were hard-coded into the model, and hence the polymer parameters are retrieved

based on the user given polymer specification. Only the solvent functional groups for the

UNIFAC models have to be given in the FYSPRO namelist.

The SRK equation of state parameters for normal components were determined from the

critical properties obtained from the FLOWBAT (2001) databank. Polymers do not have

critical properties, and hence the EOS parameters for polymers were determined from the

volumetric data following Kontogeorgis et al. (1994b). The SRK equation of state parameters

for each polymer were determined from polymer molar volumes v1 and v2 at temperatures T1

and T2 with equations
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where T has units in Kelvin and b and v have units in cubic meters per mole. The required

specific volumes of polymers at two different temperatures in the vicinity of each

experimental temperature point were obtained from the Tait equation with parameters given

by Rodgers (1993). The exponential form of the Tait equation (Rodgers, 1993) can be used to

extrapolate beyond the temperature limits of the experimental data, when the thermal

expansion coefficient for the polymer is assumed to be constant in a wide temperature range.
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Such extrapolation using the polynomial form may be dangerous. Therefore, the perturbed

hard-sphere-chain equation of state (Song et al., 1994a) was used with the parameters given in

Table A.2 in appendix I when the temperature limits of the polynomial Tait equation were

exceeded. The number average molecular weight was used to convert the specific volumes to

molar volumes. Table 7.2 presents examples of polymer parameters for the SRK equation of

state.

Table 7.2 SRK equation of state parameters for polymers and examples of a values.
Polymer T

K
a

J m3/mol2
b

m3/mol
a
-

HDPE 418.55 2203.9 0.05414 11.698
LDPE 393.15 877.8 0.03485 7.706

PP 448.25 4895.9 0.10221 12.853
PVAC 393.15 2032.4 0.05891 10.554
PDMS 313.15 512.1 0.01731 11.363

PIB 348.15 1051.9 0.02519 14.426
PS 396.45 3736.6 0.08040 14.099

PcB 296.65 2201.7 0.06167 14.475

The SRK energy parameter a for the polymer–solvent mixture was obtained from the MHV2

mixing rule as described in section 6.3. The required excess Gibbs energy expression was

calculated from the UNIFAC-FV model (section 6.4) and from the proposed exponential

UNIFAC model (section 6.6). These combinations are denoted by SRK1 and SRK2

respectively. The solvent liquid molar volumes for the UNIFAC-FV model were calculated

from the Racket equation (Reid et al., 1987, p. 67) with parameters from the FLOWBAT

databank. The solvent liquid molar volumes are not needed in the exponential UNIFAC

model. The exponent z of the volume fraction expression in the exponential UNIFAC model

was calculated by using the arithmetic average of the scaled pure component ii qr /  ratios,

equation (6.113).

The polymer–solvent systems were considered to be athermal mixtures so that the residual

excess Gibbs energy becomes zero and no interaction parameters are required. This

assumption was used for all polymer–solvent systems considered, since the combinatorial

contribution and the free volume contribution mainly describe the solvent activity at infinite

dilution. The UNIFAC-FV provides activity coefficients that increase with temperature due to

the free volume contribution, whereas the proposed exponential UNIFAC modification

provides temperature independent activity coefficients.
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The Newton-Raphson method was used to compute the polymer phase composition at known

p and T. Equation (5.10) was used to determine the equilibrium condition between the

polymer and the solvent phases with the Sanchez–Lacombe and the PHSC equation of states.

The species-specific constants wi cancel, when the lattice fluid chemical potentials from

(6.29) are equilibrated with (5.10). Therefore, it is not needed to specify the value of wi for the

equilibrium calculation. The equilibrium condition (5.11) was applied for the SRK equation

of state.

Most of the infinite dilution equilibrium data in paragraph 7.1.1 were reported in terms of

experimental specific retention volumes Vg
0 . In these cases, the weight fraction based Henry’s

constants were calculated from the specific retention volumes by equation

1
0

0

MV
TRH

g

w
.exp = ,

(7.3)

where T 0  is the normal temperature 273.15 K, and M1 is the molecular weight of the solvent.

The predicted weight fraction based Henry’s constants were calculated from equation (5.18).

The deviation between the calculated and experimental Henry’s coefficients was then

evaluated from the average absolute deviation for each polymer–solvent system

å
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DP

AAD
1 .exp,

.exp,.,1 ,
(7.4)

where DP is the number of data points. An example of a simulation input file is given in

appendix III.

The simulation results for the vapor sorption in paragraph 7.1.2 were obtained by fitting a

binary interaction parameter for each polymer–solvent pair at one temperature by minimizing

the absolute average deviation between the experimental and the calculated solvent weight

fraction in the polymer phase. The fitted binary parameters were then used at other

temperatures to study the models’ capability to describe the temperature dependence of the

phase behavior. The PHSC model has two adjustable binary parameters: the energy

interaction parameter kij and the size correction parameter lij, equations (6.54) and (6.55).

However, either the energy interaction or the size correction parameter was used; the one with

the best fit was chosen in each case. The SRK models were further utilized as predictive

models with the assumption of athermal polymer–solvent solutions. Therefore, the SRK1 and

the SRK2 models are expected to provide reasonable predictions only for systems containing
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similar segment structures. An example of a simulation input file for the vapor sorption

computation is provided in appendix IV.

The concentration of gases and hydrocarbon vapors in the PDMS membrane in paragraph

7.1.3 was calculated with the Sanchez–Lacombe equation of state and the perturbed hard-

sphere-chain equation of state, as described in section 5.2, with the parameters given in Table

A.1 and Table A.2. No binary interaction parameters were used in these calculations. The

high-pressure range parameters were used for the Sanchez–Lacombe equation of state. The

equilibrium concentration in the units of volume of ideal gas sorbed per unit volume of

polymer was computed from the solvent weight fraction by equation

21

12
0

0

1 wM
w

p
RTC r

= ,
(7.5)

where 0T  and 0p  are the normal temperature and pressure respectively. An example of a

simulation input file for the calculation of gas and vapor sorption in the PDMS membrane is

given in appendix V.

7.1.1 Sorption at infinite dilution

Tables 7.3-7.9 provide the absolute average percentage deviations between the calculated and

the experimental weight fraction based Henry’s constants for solvents in polymers. In these

tables, SLLF denotes the lattice fluid version and SLNLF the non-lattice fluid version of the

Sanchez–Lacombe equation of state. PHSC is used as an abbreviation for the perturbed hard-

sphere-chain equation of state, SRK1 for the combined SRK–UNIFAC-FV model, and SRK2

for the combined SRK–exponential UNIFAC modification with equation (6.113). Some of the

experimental Henry’s constants are corrected for the carrier gas sorption, while some are not.

According to Liu and Prausnitz (1977), the correction is necessary only for low sorption

gases, such as ethane and ethylene. The effect of the correction lies within the experimental

error for hydrocarbons of a higher sorption level.

As a summary, the mean values of the average AAD values from tables 7.3-7.9 are calculated

into Table 7.10. The mean values are calculated separately for the solvent vapors and the

gases in order to observe the differences between the models’ predictions. There is no

calculated mean value for the gases with SRK1 since the original UNIFAC model does not

have groups for the gases.
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Table 7.3 Results of vapor sorption predictions at infinite dilution in HDPE at temperature
range 418.55-426.45 K. Henry’s constants calculated from the specific retention volumes
reported by Schreiber et al. (1973) are not corrected for the carrier gas sorption.

Solvent DP AAD, %
SLLF

AAD, %
SLNLF

AAD, %
PHSC

AAD, %
SRK1

AAD, %
SRK2

Decane 2a 5.2 25.4 322.3 28.7 23.9
Dodecane 2a 11.1 35.3 391.8 29.3 26.2
Ethylbenzene 2b 10.0 18.6 38.2 23.4 21.7
Nonane 2b 3.7 17.2 305.3 24.4 23.5
Octane 2b 2.4 16.0 277.5 17.6 22.0
Toluene 2b 14.3 20.4 21.6 20.4 20.3
m-xylene 2b 18.3 21.1 40.7 22.6 18.0
p-xylene 2b 16.2 18.4 43.4 20.0 15.8
Total average 10.1 21.6 180.1 23.3 21.4

a) Temperatures 418.45 and 426.45 K.
b) Temperatures 418.45 and 425.45 K.

Table 7.4 Results of vapor sorption predictions at infinite dilution in LDPE at temperature
range 393.15-418.35 K. Henry’s constants calculated from the specific retention volumes
reported by Schreiber et al. (1973) are not corrected for the carrier gas sorption.

Solvent DP AAD, %
SLLF

AAD, %
SLNLF

AAD, %
PHSC

AAD, %
SRK1

AAD, %
SRK2

Decane 2 10.0 2.1 548.2 31.3 27.2
Dodecane 2 2.4 1.3 690.9 33.0 29.7
Ethylbenzene 2 1.0 12.9 51.5 27.6 26.4
Nonane 2 12.8 4.5 498.4 27.2 26.8
Octane 2 19.0 3.6 431.4 21.4 25.9
Toluene 2 4.3 13.3 32.3 23.8 24.1
m-xylene 2 9.4 17.3 58.0 26.0 21.9
p-xylene 2 8.9 16.9 53.6 24.9 21.2
Total average 8.5 9.0 295.5 26.9 25.4

Table 7.5 Results of vapor and gas sorption predictions at infinite dilution in PP at
temperature range 448.2-523.2 K. Henry’s constants from the Wohlfarth (1994) data
collection are corrected for the carrier gas sorption.

Solvent DP AAD, %
SLLF

AAD, %
SLNLF

AAD, %
PHSC

AAD, %
SRK1

AAD, %
SRK2

Pentane 4 166.4 38.2 49.3 31.4 (1)b 21.9
Hexane 4 99.0 16.9 48.3 23.5 (3)b 11.3
Heptane 4 117.9 26.5 44.2 19.9 9.0
Octane 4 112.1 26.1 35.1 11.6 4.8
Cyclohexane 4 119.0 60.9 25.0 29.1 3.9
Benzene 4 36.9 32.9 19.8 5.9 4.7
Ethylbenzene 4 60.5 43.0 10.0 5.1 3.4
Nitrogen 4 1792.1 94.2 41.6 - 71.1c

Propane 3a 233.9 40.4 40.9 - 39.8c

Propylene 3a 239.9 42.3 24.1 - 33.1c

Butane 3a 251.9 55.5 49.1 - 28.4c

Vapors average
Gases average
Total average

101.7
629.4
293.6

34.9
58.1
43.4

33.1
38.9
35.2

18.1
-

18.1

8.4
43.1
21.1

a) Maximum temperature 498.2 K.
b) Calculated data points in parenthesis.
c) MHV2 group volume and area parameters were divided by two.
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Table 7.6 Results of vapor sorption predictions at infinite dilution in PDMS at temperature
range 313.15-353.15 K. Henry’s constants calculated from the specific retention volumes
reported by Roth and Novak (1986) are not corrected for the carrier gas sorption.

Solvent DP AAD, %
SLLF

AAD, %
SLNLF

AAD, %
PHSC

AAD, %
SRK1

AAD, %
SRK2

Pentane 5 27.5 28.3 4.5 11.5 6.7
Hexane 5 30.6 30.6 3.8 19.0 12.8
Heptane 5 36.5 36.5 10.6 25.7 19.2
Octane 5 37.7 38.2 19.5 32.1 26.0
Cyclohexane 5 36.1 27.0 31.6 33.4 23.6
Average 33.7 32.1 14.0 24.3 17.7

Table 7.7 Results of vapor sorption predictions at infinite dilution in PS at temperature
range 396.45-447.45 K. Henry’s constants calculated from the weight fraction activity
coefficients reported by Covitz and King (1972) are not corrected for the carrier gas sorption.

Solvent DP AAD, %
SLLF

AAD, %
SLNLF

AAD, %
PHSC

AAD, %
SRK1

AAD, %
SRK2

Carbon
tetrachloride

3 9.1 23.7 114.3 33.7 22.5

Chlorobenzene 3 3.5 4.3 90.3 7.5 -a

o-xylene 3 6.7 10.5 167.6 6.7 5.4
m-xylene 3 8.9 12.5 198.7 4.9 5.7
p-xylene 3 10.4 11.3 217.0 5.0 3.4
Styrene 3 - - 133.0 1.9 3.2
Benzene 3 30.0 5.1 102.0 17.1 5.0
Toluene 3 25.6 2.4 156.8 10.8 3.3
Ethylbenzene 3 36.4 4.5 215.5 6.8 3.2
MEK 3 11.2 30.8 42.2 15.3 8.0
1,4-dioxane 3 24.2 21.2 - 8.1 14.1
Propylbenzene 3 - - 282.6 3.9 8.0
Total average 16.6 12.6 156.4 10.1 7.4

a) Groups not available.

Table 7.8 Results of vapor and gas sorption predictions at infinite dilution in PVAC at
temperature range 393.15-473.15 K. Henry’s constants from Liu and Prausnitz (1977) are
corrected for the carrier gas sorption.

Solvent DP AAD, %
SLLF

AAD, %
SLNLF

AAD, %
PHSC

AAD, %
SRK1

AAD, %
SRK2

Acetone 4 8.4 15.4 39.0 11.4 2.7
MEK 4 18.5 19.0 64.4 4.3 4.2
Methyl chloride 4 5.6 13.3 42.9 -a -a

Vinyl acetate 4 - - - 5.0 30.4
Ethylene 4 73.3 3.7 77.4 -a 22.9b

Ethane 4 22.9 40.7 31.1 -a 44.3b

Carbon dioxide 4 69.3 5.7 6.5 -a 33.2b

Vapors average
Gases average
Total average

10.8
55.2
33.0

15.9
16.7
16.3

48.7
38.3
43.5

6.9
-

6.9

12.4
33.5
22.9

a) Groups not available.
b) MHV2 group volume and area parameters were divided by two.
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Table 7.9 Results of vapor sorption predictions at infinite dilution in PIB at temperature
range 348.15-398.15 K. Henry’s constants calculated from the specific retention volumes
reported by Lichtenthaler et al. (1974) are not corrected for the carrier gas sorption.

Solvent DP AAD, %
SLLF

AAD, %
SLNLF

AAD, %
PHSC

AAD, %
SRK1

AAD, %
SRK2

Hexane 3 12.6 26.7 503.0 1.0 50.0
Cyclohexane 3 6.3 21.6 160.1 1.1 36.6
Benzene 3 39.0 39.1 22.4 19.4 46.0
Total average 19.3 29.2 228.5 7.2 44.2

For solvent vapors in polymers, SRK1 has the best prediction ability as may be seen from

Table 7.10. The performance of SRK1 is generally better than SRK2 because the former is

able to account for the temperature effect through the free volume contribution. However, a

comparison of the AAD values in tables 7.3-7.9 reveals the variation in the models’

performance from system to system. For example, SRK2 yields better predictions than SRK1

in the solvent–PP systems but the situation is reversed in the solvent–PIB and solvent–PVAC

systems. SLNLF yields comparable results with SRK1 and SRK2 in HDPE but in LDPE the

predictions of SLNLF are far better than the predictions of SRK1 and SRK2.

The poor performance of the lattice Sanchez–Lacombe EOS in the solvent–PP systems is

somewhat peculiar when it is compared to the performance of the non-lattice Sanchez–

Lacombe equation of state. The only explanation to this is the difference in the development

picture, since a calculation of both models converged normally and both models use the same

equation of state parameters. PHSC yields generally the poorest results, however, the

predictions in the solvent–PDMS systems show better agreement than the other models.

Table 7.10 Mean values of the average AAD values for the thermodynamic models in the
polymer–solvent systems.

DP Mean AAD, %
SLLF

Mean AAD, %
SLNLF

Mean AAD, %
PHSC

Mean AAD, %
SRK1

Mean AAD, %
SRK2

Vapors 146 28.7 22.2 136.6 16.7 19.6
Gases 25 342.3 37.4 38.6 - 38.3
All 171 59.3 23.5 136.2 16.7 22.9

Earlier studies with non-polymer solutions have revealed that the performance of the MHV2

model becomes poorer as the asymmetry of the system increases (Boukouvalas et al., 1994;

Voutsas et al., 1996). Since the MHV2 coefficients are selected to provide particularly

accurate approximations in the a value range of 10-13, Michelsen (1996) associates the

failure of the MHV2 model to a values that considerably exceed the above mentioned limits

of a. Some a values for polymers in Table 7.2 fall outside the limits for accurate
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approximations. Table 7.11 presents percentage AAD values between the experimental and

the computed weight fraction based activity coefficients for solvents in polystyrene. The

Lyngby modified UNIFAC gives unrealistically high weight fraction based activity

coefficients, as already observed by Kontogeorgis et al. (1994a). The MHV2 model is not

applicable for polymeric systems as such. The UNIFAC-FV model and the proposed

exponential UNIFAC provide more realistic solvent activities in polymer solutions.

Table 7.11 Average absolute percentage deviation between the experimental and predicted
weight fraction activity coefficients for solvents in PS at 396.45 K. The experimental weight
fraction activity coefficients were used as reported by Covitz and King (1972).

Solvent AAD, %
Lyngby mod. UNIFAC

AAD, %
UNIFAC-FV

AAD, %
Exponential UNIFAC

eq. (6.113)
Carbon tetrachloride 397.8 0.7 6.8
o-xylene 485.4 16.6 17.0
m-xylene 474.5 14.3 18.5
p-xylene 492.9 10.9 15.9
Styrene 564.5 6.7 9.2
Benzene 563.0 2.7 18.3
Toluene 531.6 6.4 15.8
Ethylbenzene 497.0 9.1 14.3
MEK 323.3 10.4 14.4
1,4-dioxane 470.8 11.1 5.0
Propylbenzene 434.1 15.2 18.7
Average 475.9 9.5 14.0

In gas sorption predictions, the models can be compared only in the PP and PVAC systems.

Based on Table 7.10, SLNLF, PHSC, and SRK2 seem to produce gas sorption predictions

with equal accuracy but again a comparison of the AAD values in the individual binary

systems reveals the variation in the models’ performance. Liu and Prausnitz (1977) reported

an experimental error of 37% for the ethane sorption in PVAC at 200°C without the carrier

gas correction and 15% with the carrier gas correction. Thus, the gas sorption predictions in

Table 7.5 and Table 7.8 are mainly beyond the experimental error.

The gas sorption predictions with SRK2 were not successful with the original MHV2-

UNIFAC group volume and area parameters by Dahl et al. (1991). For example, the AAD

value for the nitrogen sorption in PP was 229% with the original MHV2-UNIFAC

parameters. The predictions were improved when the original MHV2-UNIFAC group volume

and area parameters for the gases were divided by two. This manipulation was performed due

to the contrarious numerical manipulation with the preliminary values of the gas group

volume and area parameters for the MHV2-UNIFAC model (Fredenslund and Soresen, 1994).

The new group volume and area parameters for ethane, ethylene, carbon dioxide, and nitrogen
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were observed to be equal to the group volume and area parameters used in the LCVM model

(Spiliotis et al, 1994). The results for the gas sorption with SRK2 in Table 7.5 and Table 7.8

are computed with the new group volume and area parameters, and hence, e.g. the AAD value

for nitrogen in PP reduced to 71%. As a comparison, the AAD values for the gas sorption in

PP and PVAC were over 1000% with the MHV2 model of Dahl and Michelsen (1990).

7.1.2 Sorption in concentrated solutions

The correlated and predicted weight fractions of benzene and nonane in polystyrene are

presented in Figures 7.1-7.7, and the weight fractions of ethylbenzene and nonane in poly(1,4-

cis-butadiene) in Figures 7.8-7.13. The fitted parameters for the binary systems, the binary

energy interaction parameter kij for the Sanchez–Lacombe equation of state, and the energy

interaction parameter kij or the size correction parameter lij for the perturbed hard-sphere-

chain equation of state, are presented in Table 7.12.

Table 7.12 The binary interaction parameters for the polymer–solvent systems.
Data from System Model Fitted

parameter
AAD, % DP

Noda et al. (1984) benzene–PS SLLF -0.0106 4.7 7
SLNLF 0.0051 1.2 “
PHSCa) -0.0245c) 5.1 “

Iwai and Arai (1989) nonane–PS SLLF 0.0095 6.9 5
SLNLF 0.0252 6.3 “
PHSCb) -0.0494 11.3 “

Iwai and Arai (1989) ethylbenzene–PcB SLLF 0.0102 1.7 12
SLNLF 0.0096 1.7 “
PHSCa) -0.0275 1.6 “

Iwai and Arai (1989) nonane–PcB SLLF 0.0253 4.3 12
SLNLF 0.0084 4.1 “
PHSCb) -0.0439 6.0 “

a) Size correction parameter
b) Energy interaction parameter
c) Gupta and Prausnitz (1996) reported a value of –0.024.
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Sorption correlation/prediction with SLLF
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Figure 7.1 Correlation and prediction of benzene sorption in PS with the lattice Sanchez–
Lacombe equation of state. The energy interaction parameter (kij = -0.0106) was fitted at
60°C, the same value was used at the other temperatures. The polymer number average
molecular weight is 63 000 g/mole. Data from Noda et al. (1984).

Sorption correlation/prediction with SLNLF
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Figure 7.2 Correlation and prediction of benzene sorption in PS with the non-lattice
Sanchez–Lacombe equation of state. The energy interaction parameter (kij = 0.0051) was
fitted at 60°C, the same value was used at the other temperatures. The polymer number
average molecular weight is 63 000 g/mole. Data from Noda et al. (1984).
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Sorption correlation/prediction with PHSC
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Figure 7.3 Correlation and prediction of benzene sorption in PS with the perturbed hard-
sphere-chain equation of state. The size correction parameter (lij = -0.0245) was fitted at 60°C,
the same value was used at the other temperatures. The polymer number average molecular
weight is 63 000 g/mole. Data from Noda et al. (1984).

Sorption prediction with SRK1/SRK2
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Figure 7.4 Prediction of benzene sorption in PS with SRK1 and SRK2. The polymer
number average molecular weight is 63 000 g/mole. Data from Noda et al. (1984).
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Sorption correlation/prediction with SLLF

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Pressure, MPa

w
 (n

on
an

e)
 in

 P
S,

 -

130°C

150°C

175°C

Figure 7.5 Correlation and prediction of nonane sorption in PS with the lattice Sanchez–
Lacombe equation of state. The energy interaction parameter (kij = 0.0095) was fitted at
130°C, the same value was used at the other temperatures. The polymer number average and
the weight average molecular weights are 53 700 g/mole and 247 000 g/mole respectively.
Data from Iwai and Arai (1989).

Sorption correlation/prediction with SLNLF
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Figure 7.6 Correlation and prediction of nonane sorption in PS with the non-lattice
Sanchez–Lacombe equation of state. The energy interaction parameter (kij = 0.0252) was
fitted at 130°C, the same value was used at the other temperatures. The polymer number
average and the weight average molecular weights are 53 700 g/mole and 247 000 g/mole
respectively. Data from Iwai and Arai (1989).
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Sorption correlation/prediction with PHSC
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Figure 7.7 Correlation and prediction of nonane sorption in PS with the perturbed hard-
sphere-chain equation of state. The energy interaction parameter (kij = -0.0494) was fitted at
130°C, the same value was used at the other temperatures. The polymer number average and
the weight average molecular weights are 53 700 g/mole and 247 000 g/mole respectively.
Data from Iwai and Arai (1989).
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0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.00 0.01 0.02 0.03 0.04 0.05

Pressure, MPa

w
 (e

th
yl

be
nz

en
e)

 in
 P

cB
, -

80°C

100°C

130°C

Figure 7.8 Correlation and prediction of ethylbenzene sorption in PcB with the lattice
Sanchez–Lacombe equation of state. The energy interaction parameter (kij = 0.0102) was
fitted at 130°C, the same value was used at the other temperatures. The polymer weight
average molecular weight is 200 000-300 000 g/mole. Data from Iwai and Arai (1989).
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Sorption correlation/prediction with SLNLF
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Figure 7.9 Correlation and prediction of ethylbenzene sorption in PcB with the non-lattice
Sanchez–Lacombe equation of state. The energy interaction parameter (kij = 0.0096) was
fitted at 130°C, the same value was used at the other temperatures. The polymer weight
average molecular weight is 200 000-300 000 g/mole. Data from Iwai and Arai (1989).

Sorption correlation/prediction with PHSC
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Figure 7.10 Correlation and prediction of ethylbenzene sorption in PcB with the perturbed
hard-sphere-chain equation of state. The size correction parameter (lij = -0.0275) was fitted at
130°C, the same value was used at the other temperatures. The polymer weight average
molecular weight is 200 000-300 000 g/mole. Data from Iwai and Arai (1989).
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Sorption correlation/prediction with SLLF
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Figure 7.11 Correlation and prediction of nonane sorption in PcB with the lattice Sanchez–
Lacombe equation of state. The energy interaction parameter (kij = 0.0253) was fitted at
130°C, the same value was used at the other temperatures. The polymer weight average
molecular weight is 200 000-300 000 g/mole. Data from Iwai and Arai (1989).
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Figure 7.12 Correlation and prediction of nonane sorption in PcB with the non-lattice
Sanchez–Lacombe equation of state.  The energy interaction parameter (kij = 0.0084) was
fitted at 130°C, the same value was used at the other temperatures. The polymer weight
average molecular weight is 200 000-300 000 g/mole. Data from Iwai and Arai (1989).
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Sorption correlation/prediction with PHSC
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Figure 7.13 Correlation and prediction of nonane sorption in PcB with the perturbed hard-
sphere-chain equation of state. The energy interaction parameter (kij = -0.0439) was fitted at
130°C, the same value was used at the other temperatures. The polymer weight average
molecular weight is 200 000-300 000 g/mole. Data from Iwai and Arai (1989).

The best results in parameter fitting were obtained with the non-lattice Sanchez–Lacombe

equation of state. The SLNLF model seems to have enough flexibility for an accurate

description of the binary equilibrium data with an adjustable parameter. The performance of

PHSC in the ethylbenzene–PcB system at 130°C is comparable with the performance of the

Sanchez–Lacombe models, but the predictions at the other temperatures become poorer

(Figure 7.10). The perturbed hard-sphere-chain equation of state is a more complicated model

than the Sanchez–Lacombe models and perhaps both the energy interaction and the size

correction parameter are required for accurate phase behavior correlations.

The ability of the Sanchez–Lacombe equation of state to predict and correlate gas and vapor

sorption in polymers has already been observed in earlier studies (Kiszka et al., 1988;

Sanchez and Rodgers, 1990; Pope et al. 1991; Bicerano, 1992; De Angelis et al., 1999).

Earlier studies have applied either the lattice fluid or the non-lattice fluid version. Based on

the above simulation results, the non-lattice version yields slightly better results than the

lattice fluid development.

The combined SRK–group contribution models SRK1 and SRK2 provided reasonable

predictions only in the benzene–polystyrene system (Figure 7.4), where both the solvent and
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the polymer contain similar segmental structures. SRK1 obtains better predictions than SRK2

as the temperature increases, because the UNIFAC-FV accounts for the temperature

dependence through the free volume contribution. Clearly, the temperature effect should be

included at concentrated solutions. Group interaction parameters for the proposed exponential

UNIFAC modification should be determined in order to use the proposed model at

concentrated solutions. The original UNIFAC interaction parameters (Fredenslund et al.,

1975) may be used for the UNIFAC-FV model.

7.1.3 Sorption in PDMS membrane

Thermodynamic model for vapor membrane separation should be able to describe

qualitatively gas and vapor sorption in the membrane material. SRK1 can not be used to

predict gas sorption since the UNIFAC-FV model does not contain the groups for gases. The

application of SRK2 would require a considerable amount of work to determine a new group

interaction parameter table. Since SRK2 is not able to predict gas sorption in a polymer any

better than SLNLF or PHSC, the determination of the new group interaction parameter table

is considered non-profitable for the purposes of this work. Therefore, only the lattice and

nonlattice fluid versions of the Sanchez–Lacombe equation of state and the perturbed hard-

sphere-chain equation of state are used from this point onwards.

Poly(dimethylsiloxane) is still the most important commercial membrane material in vapor

membrane separation. The computed sorption curves for various gases and vapors in a PDMS

membrane are presented in Figures 7.14-7.19. The resulted absolute average deviations

between the experimental and the predicted sorption curves are provided in Table 7.13. All

computations were performed without the binary interaction parameters.

Table 7.13 Absolute average deviations between the experimental sorption curves (De
Angelis et al., 1999) and the equation of state predictions in a PDMS membrane at 35°C.
System DP AAD, %

SLLF
AAD, %
SLNLF

AAD, %
PHSC

Nitrogen 9 62.6 60.7 23.0
Oxygen 9 46.5 60.2 40.4
Carbon dioxide 10 21.4 37.1 333.6
Methane 10 36.3 28.2 13.6
Ethane 7 6.7 29.6 7.0
Propane 7 32.6 53.5 10.0
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N2 sorption in PDMS at 35°C
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Figure 7.14 Nitrogen sorption in the PDMS membrane with the equation of state models
without the binary interaction parameters. Data from De Angelis et al. (1999).
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Figure 7.15 Oxygen sorption in the PDMS membrane with the equation of state models
without the binary interaction parameters. Data from De Angelis et al. (1999).
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CO2 sorption in PDMS at 35°C
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Figure 7.16 Carbon dioxide sorption in the PDMS membrane with the equation of state
models without the binary interaction parameters. Data from De Angelis et al. (1999).
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Figure 7.17 Methane sorption in the PDMS membrane with the equation of state models
without the binary interaction parameters. Data from De Angelis et al. (1999).
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C2H6 sorption in PDMS at 35°C
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Figure 7.18 Ethane sorption in the PDMS membrane with the equation of state models
without the binary interaction parameters. Data from De Angelis et al. (1999).
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Figure 7.19 Propane sorption in the PDMS membrane with the equation of state models
without the binary interaction parameters. Data from De Angelis et al. (1999).

The perturbed hard-sphere-chain equation of state is able to predict sorption curves in the

PDMS membrane better than the versions of the Sanchez–Lacombe equation of state. At least

the AAD value for nitrogen with the PHSC is within the experimental error; this may also be
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the case for hydrocarbons with the PHSC and for ethane with the SLLF. The better

performance of PHSC in the linear alkane–PDMS systems may also be observed in Henry’s

constant predictions in Table 7.6. However, the prediction for polar CO2 sorption is coarsely

overestimated. The perturbed hard-sphere-chain equation of state predicts that the sorption

level of CO2 in a PDMS membrane is of the same order than the sorption level of propane, as

if CO2 molecules appears in the form of a chain-like molecule.

Generally, the lattice fluid model seems to underestimate the sorption curves and the non-

lattice fluid model seems to overestimate the sorption curves. In paragraph 7.1.2, the binary

interaction parameters were determined from the experimental data at one temperature in

order to improve the models’ ability to predict the equilibrium concentration at the other

temperatures. Usually this binary interaction parameter is associated with the energetic

interaction between molecules i and j. The Sanchez–Lacombe models have an energy

interaction parameter, which appears in equation (6.18) for the lattice fluid and in equation

(6.39) for the nonlattice fluid. The perturbed hard-sphere-chain equation of state has two

adjustable parameters: the energy interaction parameter, in equation (6.54), and the size

correction parameter in equation (6.55).

A model is forced to reproduce binary experimental data accurately with an adjustable binary

interaction parameter. Ideally, the same interaction parameter describes the interaction also in

a multicomponent system. However, the binary adjustable parameter also smoothes out

shortcomings in the model’s physical picture. According to Sanchez and Panayiotou (1994),

hole volumes *v  in the lattice fluid model and *
0v  in the non-lattice fluid model are erroneous,

non-physical quantities incorporated to introduce the free volume into the mixture volume.

The hole volume in the lattice fluid model is equal to an occupied lattice size, which is given

by equation (6.11). The hole volume in the non-lattice fluid model, equation (6.37), is in

principle an adjustable quantity. It may be argued that the lattice fluid model underestimates

the total free volume, whereas the non-lattice fluid model overestimates the total free volume.

This error is corrected implicitly in the Sanchez–Lacombe models through the binary

interaction parameter in equations (6.18) and (6.39).

The figures in the previous paragraph clearly show a good generalization ability of the studied

thermodymanic models, which is gained thought the parameter fitting from limited

experimental binary data. The generalization with binary pairs is generally retained in
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multicomponent gas and liquid mixtures. However, it is not clear whether the generalization

will also be retained in multicomponent asymmetric systems, such as encoutered in vapor

membrane separation. Moreover, experimental VLE data for penetrant–membrane binary

pairs are rather limited. Therefore, in this work the equation of state models are preferably

used without an adjustable binary interaction parameter, that is, the models are used in a

predictive mode.

7.2 CORRELATION OF BINARY DIFFUSION DATA IN PDMS MEMBRANE

The mass transport model requires the diffusion coefficients, which have to be treated as

experimental quantities. The binary penetrant–membrane diffusion coefficients are

determined from the experimental permeability data as described in section 5.6.

A large number of experimental permeability coefficient in PDMS membranes can be found

in open literature, but the values of the experimental permeability coefficients may deviate

considerably between different studies (e.g. Jordan et al. 1987; Jordan and Koros, 1990).

These deviations may occur due to differences in membrane compositions and different film

forming procedures that may result in different crosslinking densities in the final membranes.

Therefore, care should be taken when permeability data is combined from the different

sources.

A consistent data for the correlation of pure component diffusion in a membrane is the one

measured with the same membrane in the same device at different temperatures and pressures.

Unfortunately, such consistent data is rare (Barrer and Chio, 1965; Stern et al., 1987;

Thundyil, 1997). Both Barrer and Chio (1965) and Stern et al. (1987) utilized silica reinforced

membrane, which gives rise to the dual-mode sorption (Kamiya et al., 1990), thus restricting

the use of equation of state models as such at high sorption levels. Thundyil (1997) utilized a

crosslinked filler-free membrane and this data for hydrogen, methane, ethane, ethylene,

propane, and propylene is adopted here. Unfortunately, data for other components of interest

have to be search from the different sources. The data of Barrer and Chio (1965) is adopted

for nitrogen and the data of Stern and Bhide (1989) for hydrogen sulfide.

Barrer and Chio (1965) applied two PDMS membrane samples of a different filler content

(5.5 and 18.2 vol-%). This makes it possible to extrapolate the experimental permeabilities of

nitrogen at the same temperature to the zero filler content. This treatment may be inadequate
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to eliminate the space-filling effect of the silica filler, since the filler particles are not always

fully wetted by the polymer (Barrer, 1968) to prevent the penetrant adsorption. However, the

resulting data is adequate for the parameterization of equation (5.68) since the nitrogen

permeability coefficient is concentration independent.

Stern and Bhide (1989) provide the parameters for equation

pmPP D+= )0(loglog 1010 , (7.6)

to compute the hydrogen sulfide permeability coefficients at temperatures of 10, 35, and 55°C

in a silica-filled membrane (4.9 vol-%). This data was used to generate the required

permeability data for the parameterization of equation (5.68) for hydrogen sulfide.

Corrections for the filler effect were not made for the calculated permeability coefficients.

The Maxwell–Stefan diffusion coefficients at different temperatures and pressures for

hydrogen, methane, ethane, ethylene, propane, propylene, nitrogen, and hydrogen sulfide in a

PDMS were calculated from the permeability coefficients by using equation (5.67). The

solubility coefficients and the thermodynamic factors were obtained from the lattice fluid and

the non-lattice fluid models of the Sanchez–Lacombe equation of state with the parameters

given in Table A.1, and from the perturbed hard-sphere-chain equation of state with the

parameters given in Table A.2. Again, the high-pressure parameters were used for the

Sanchez–Lacombe equation of state. The theoretical swelling correction was calculated from

the geometric average of the anisotropic and isotropic swelling, equation (5.64). As an

example, Table 7.14, Table 7.15, and Table 7.16 present the values of the polymer mass or

segment fractions, the Fick diffusion coefficients, the effective Maxwell-Stefan diffusion

coefficients, the solubility coefficients, the thermodynamic factors, and the swelling factors

for hydrogen and propane in the PDMS membrane. The values of the polymer mass or

segment fractions are the averages of the values at the membrane interfaces.

As the thermodynamic models are used without the binary interaction parameters, there is a

systematic deviation in the predicted sorption curves with respect to the experimental data.

The amount and the direction of the deviation depend on the thermodynamic model and the

chemical species involved. Thus, the values of the solubility coefficients S1, the diffusion

coefficients 12D and MD1 , the swelling factors 0
mm dd , and the thermodynamic factors 1Γ  in

tables 7.14 to 7.16 differ from table to table. The resulting error in S1, 12D , and 0
mm dd  equals

to the amount of the deviation in the sorption curve at a specified pressure.
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Table 7.14 The polymer mass fractions, the Fick diffusion coefficients, the effective
Maxwell-Stefan diffusion coefficients, the solubility coefficients, the thermodynamic factors,
and the swelling factors for hydrogen and propane in PDMS. The results are computed with
SLLF at 303.15 K.

p,
MPa

w2,
-

12D ,
10-5 cm2/s

MD1 ,
10-5 cm2/s

S1,
cm3 (STP)/

(cm3 polym. MPa)

G12,
- 0

m

m

d

d
,

-
H2 0.345 1.000 5.460 5.473 0.985 0.998 1.001

0.690 1.000 5.448 5.473 0.984 0.997 1.001
1.379 1.000 5.415 5.463 0.983 0.993 1.002
2.068 1.000 5.382 5.452 0.983 0.990 1.003

C3H8 0.345 0.957 0.458 0.563 103.208 0.870 1.069
0.517 0.935 0.513 0.703 119.935 0.807 1.107
0.690 0.906 0.566 0.895 145.812 0.732 1.157
0.862 0.864 0.571 1.118 194.416 0.631 1.235

Table 7.15 The polymer mass fractions, the Fick diffusion coefficients, the effective
Maxwell-Stefan diffusion coefficients, the solubility coefficients, the thermodynamic factors,
and the swelling factors for hydrogen and propane in PDMS. The results are computed with
SLNLF at 303.15 K.

p,
MPa

w2,
-

12D ,
10-5 cm2/s

MD1 ,
10-5 cm2/s

S1,
cm3 (STP)/

(cm3 polym. MPa)

G12,
- 0

m

m

d

d
,

-
H2 0.345 1.000 6.195 6.208 0.868 0.998 1.001

0.690 1.000 6.183 6.209 0.867 0.997 1.001
1.379 1.000 6.150 6.199 0.866 0.994 1.002
2.068 1.000 6.117 6.189 0.865 0.991 1.003

C3H8 0.345 0.951 0.390 0.490 121.285 0.862 1.083
0.517 0.924 0.428 0.608 143.637 0.796 1.129
0.690 0.889 0.459 0.766 179.790 0.715 1.193
0.862 0.836 0.438 0.938 253.221 0.606 1.297

Table 7.16 The polymer segment fractions, the Fick diffusion coefficients, the effective
Maxwell-Stefan diffusion coefficients, the solubility coefficients, the thermodynamic factors,
and the swelling factors for hydrogen and propane in PDMS. The results are computed with
PHSC at 303.15 K.

p,
MPa

2f ,
-

12D ,
10-5 cm2/s

MD1 ,
10-5 cm2/s

S1,
cm3 (STP)/

(cm3 polym. MPa)

G12,
- 0

m

m

d

d
,

-
H2 0.345 1.000 16.970 16.980 0.317 1.000 1.000

0.690 1.000 16.940 16.960 0.317 0.999 1.000
1.379 1.000 16.870 16.910 0.316 0.998 1.000
2.068 1.000 16.800 16.850 0.315 0.997 1.000

C3H8 0.345 0.958 0.598 0.685 78.981 0.893 1.023
0.517 0.937 0.705 0.866 87.307 0.843 1.035
0.690 0.913 0.815 1.093 101.183 0.784 1.050
0.862 0.880 0.897 1.355 123.760 0.709 1.071
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The experimental solubility coefficient for hydrogen in PDMS is 0.832 cm3 (STP)/(cm3

polym. MPa) at 25°C (Kamiya et al., 1997). The computed solubility coefficients for

hydrogen with SLNLF (Table 7.15) are in good agreement with the experimental value, but

the computed solubility coefficients with PHSC are about three times smaller. In consequence

of the relation (2.13), the computed diffusion coefficients for hydrogen with PHSC are about

three times higher than the computed diffusion coefficients with SLLF or SLNLF. In the case

of propane, PHSC is able to predict the sorption curve well and perhaps within the

experimental error (Table 7.13). Since SLLF and SLNLF overestimate the sorption level of

propane by 30% and 50% respectively, the corresponding deviations are observed also in the

computed diffusion coefficients 12D  and the solubility coefficients S1 with respect to the

values obtained with PHSC. Despite the large deviations in the predicted sorption curves, the

thermodynamic factors 1Γ  for propane differ only by a factor of 1.2 at maximum due to the

fact that 1Γ  is a relative property, cf. equation (5.25).

The calculated binary penetrant–membrane diffusion coefficients were correlated as follows.

The effective binary penetrant–membrane diffusion coefficients MD1  at a constant

temperature were extrapolated to the zero penetrant concentration with respect to the average

values of the penetrant mass or segment fractions to obtain the diffusion coefficients at the

infinite dilution 0
12D . The parameters dA  and dB  were then obtained from the least squares

fits for equation (5.68). Equation (5.69) was used to compute the fractional free volume of a

pure polymer at the system temperature. The occupied volume was defined to be the volume

of the glass at 0 K, for which Seitz (1993) obtained the following correlation:

wVV 42.1* = , (7.7)

where Vw is the van der Waals molecular volume and may be estimated from groups given by

Bondi (1968, pp. 450-452). The van der Waals molecular volume of 0.595 cm3/g was

obtained for a PDMS chain.

The effective binary penetrant–membrane diffusion coefficients MD1  at a constant

temperature were then multiplied by the average values of the polymer mass or segment

fractions to obtain the binary Maxwell–Stefan diffusion coefficients 12D . The mass fraction

based Maxwell–Stefan diffusivities were observed to be of a linear form with respect to the
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retentate pressure at a constant temperature. This temperature dependent behavior was

conveniently captured by a relation

( )
( ) p

RT
EC

TD
TwD d

d ÷
ø
ö

ç
è
æ+= exp1

,
0
12

112 ,
(7.8)

where Cd and Ed are component specific parameters and the latter may be associated with the

energy of the diffusion.

The resulted parameters and the coefficients of determination for equations (5.68) and (7.8)

are presented in Table 7.17, Table 7.18, and Table 7.19 for SLLF, SLNLF, and PHSC

respectively. As an example, Figure 7.20 presents the Maxwell–Stefan diffusion coefficients

for ethylene and Figure 7.21 the Maxwell–Stefan diffusion coefficients for propane in PDMS.

Table 7.17 The parameters of equations (5.68) and (7.8) for the penetrant diffusion in the
PDMS membrane to be used with SLLF.

Ad, 10-3

cm2/s
Bd
 -

Cd, 10-5

MPa-1
Ed / R

K
R2  for
(5.68)

R2 for (7.8)

Nitrogen 1.495 0.5200 - - 0.999 -
Hydrogen sulfide 0.116 0.5534 - - 0.890 -
Hydrogen 0.820 0.4986 - - 0.999 -
Methane 0.531 0.5769 - - 1.000 -
Ethane 0.573 0.8189 3.776 2899.6 0.999 1.000
Ethylene 0.633 0.7615 15.029 2370.5 1.000 0.988
Propane 0.152 0.7193 43.983 2599.2 0.979 0.993
Propylene 0.792 0.9795 2.036 3533.0 0.996 0.996

Table 7.18 The parameters of equations (5.68) and (7.8) for the penetrant diffusion in the
PDMS membrane to be used with SLNLF.

Ad, 10-3

cm2/s
Bd
 -

Cd, 10-5

MPa-1
Ed / R

K
R2  for
(5.68)

R2 for (7.8)

Nitrogen 1.299 0.7667 - - 0.998 -
Hydrogen sulfide 0.172 0.4677 - - 0.863 -
Hydrogen 0.825 0.4766 - - 0.999 -
Methane 0.510 0.6960 - - 1.000 -
Ethane 0.483 0.8341 4.685 2780.9 1.000 1.000
Ethylene 0.572 0.8114 14.756 2327.8 1.000 0.982
Propane 9.340 0.6360 201.570 2059.3 0.955 0.965
Propylene 0.371 0.8383 13.509 2853.6 1.000 1.000

Good coefficients of determination were resulted for the components, except for hydrogen

sulfide. Hydrogen, methane, nitrogen, and hydrogen sulfide are able to diffuse in the PDMS

membrane without the associated energy of activation and thus only equation (5.68) is

required. The activation energy for the diffusion should increase with the molecular size. As

the values of REd /  are examined, the parameters in Table 7.19 follow the correct trend. The
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physically meaningful behavior of REd /  is violated in Table 7.17 and in Table 7.18 due to

the large deviations in the predicted sorption level with the Sanchez–Lacombe models.

Table 7.19 The parameters of equations (5.68) and (7.8) for the penetrant diffusion in the
PDMS membrane to be used with PHSC.

Ad, 10-3

cm2/s
Bd
 -

Cd, 10-5

MPa-1
Ed / R

K
R2  for
(5.68)

R2 for (7.8)

Nitrogen 8.529 1.0340 - - 0.999 -
Hydrogen sulfide 0.350 0.7190 - - 0.926 -
Hydrogen 1.877 0.4410 - - 0.995 -
Methane 1.033 0.7545 - - 0.998 -
Ethane 1.489 0.9926 1.261 3197.6 0.996 0.999
Ethylene 1.384 0.9365 4.908 2670.2 1.000 0.989
Propane 1.489 1.1290 2.094 3599.5 1.000 0.998
Propylene 2.024 1.1360 1.558 3555.5 0.992 0.995

The use of the parameters for equations (5.68) and (7.8) and the thermodynamic models must

be consistent. Only then the model is able to produce a reasonable prediction for the penetrant

transport and the experimental pure component permeability coefficients may be reproduced

within the numerical accuracy. Table 7.20 presents the permeability coefficients that are

calculated with the rearranged equation (5.67) and with the values from Table 7.14, Table

7.15, and Table 7.16.

M-S diffusivities for ethylene in PDMS

0.0

0.5

1.0

1.5

2.0

2.5

0 0.5 1 1.5 2 2.5

Upstream pressure, MPa

D 12
, 1

0-5
 c

m
2 /s

303 K

323 K

343 K

Figure 7.20 Concentration and temperature dependence of the M-S diffusion coefficients
for ethylene in PDMS. The diffusivity data is computed from the permeability coefficient data
of Thundyil (1997). The solid lines are calculated from equations (5.68) and (7.8) with the
parameters given in Table 7.19.
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M-S diffusivities for propane in PDMS

0

0.4

0.8

1.2

1.6

0 0.2 0.4 0.6 0.8 1

Upstream pressure, MPa

D 1
2, 

10
-5
 c

m
2 /s

303 K

323 K

343 K

Figure 7.21 Concentration and temperature dependence of the M-S diffusion coefficient for
propane in PDMS. The diffusivity data is computed from the permeability coefficient data of
Thundyil (1997). The solid lines are computed from equations (5.68) and (7.8) with the
parameters given in Table 7.19.

Table 7.20 The recalculated permeability coefficients for hydrogen and propane in
the PDMS membrane in the units of 10-5 cm3 (STP) cm /(cm2 s MPa).

p,
MPa

SLLF SLNLF PHSC

H2 0.345 5.375 5.373 5.378
0.690 5.362 5.362 5.363
1.379 5.326 5.323 5.327
2.068 5.290 5.290 5.288

C3H8 0.345 47.246 47.249 47.234
0.517 61.499 61.524 61.517
0.690 82.536 82.514 82.524
0.862 111.055 110.983 111.045

7.3 MODELING OF ISOTHERMAL MULTICOMPONENT PERMEATION

A permeation model is formed when the transport equations are combined with an equation of

state model. The unknown variables of the model are the nc component fluxes, the nc + 1

mass fractions at a high-pressure phase interface, and the nc + 1 mass fractions at a low-

pressure phase interface. Hence, the permeation through the membrane has to be computed by

iteration.
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The component fluxes through the rubbery membrane may deviate by orders of magnitude,

which may cause numerical problems. Therefore, the component fluxes are scaled with the

initial fluxes that are obtained from a simplified computation procedure. The penetrant mass

fractions at the high-pressure phase interface are assumed to be equal to the equilibrium

sorption at a local retentate composition, temperature, and pressure as described in section

7.1. The penetrant mass fractions at the low-pressure phase interface are set to zero. The

initial component fluxes through the membrane are then obtained by computing the

component fluxes with the simplified method (paragraph 5.4.3).

During the first iteration the scaled flux value is one for all components. The composition in

the membrane support is equal to the local permeate composition

nci
n
n

w
t

i
IIim ,,2,1,, K== .

(7.9)

The concentration in the membrane at the permeate side interface is then obtained by

computing the equilibrium sorption at the local permeate composition and the applied

permeate pressure. This corresponds to the assumption that there is no chemical potential

gradient over the support layer and the backmixing is negligible in the membrane support

(Rautenbach and Helmus, 1994). The permeation fluxes may then be computed for the known

driving force over the selective layer. This system of the 3nc + 2 unknowns is solved with the

Newton–Raphson method. The 3nc + 2 residual functions are formed from the deviations

between the estimated and computed component fluxes and the chemical potentials at phase

interfaces, and from the natural logarithms of sum of weight fractions at the selective layer

interfaces.

Thundyil (1997) performed a multicomponent permeation experiment in an isothermal

Millipore test cell at 30°C. The test gas mixture contained 10.20% hydrogen, 10.00%

methane, 9.97% ethane, 20.00% propylene, and 49.83% propane. The gas mixture supplier

guaranteed the gas mixture within 2% of the smallest component. The experiment was

conducted with the feed pressure of 411.4 kPa, the permeate pressure of under 6.7 kPa, and

the stage cut of 0.00415. The sum of the reported permeate composition exceeded 100% but

this error was adjusted by re-scaling.

The multicomponent permeation experiment of Thundyil (1997) was simulated with the

transport model equations. The simulations were performed with the simplified explicit
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method and with the matrix method by using the three thermodynamic models. An example

of an input file for a FLOWBAT simulation is given in appendix VI.

The results for the simplified explicit method without the cross-coefficients ijD  are presented

in Table 7.21. The high-pressure parameters were used for the Sanchez–Lacombe equation of

state. The simplified explicit method and the matrix method yielded exactly the same results,

and therefore these results are presented in the same Table 7.22. The cross-coefficients ijD  for

these simulations were determined from equation (5.71). The permeation with PHSC was

calculated with the equations given in chapter 5, except for that the segment fractions (6.51)

and the molar segment density (6.50) were used instead of the weight fractions and the mass

density where ever they appeared.

Table 7.21 Predicted permeate composition with the simplified explicit method (diagonal
matrix [A]).

Exp.
mole-%

SLLF
mole-%

AAD
%

SLNLF
mole-%

AAD
%

PHSC
mole-%

AAD
%

Hydrogen 2.350 3.059 30.2 2.353 0.1 2.699 14.8
Methane 2.809 2.537 9.7 2.704 3.7 3.003 6.9
Ethane 7.618 5.617 26.3 6.063 20.4 6.522 14.4
Propylene 23.283 21.050 9.6 24.684 6.0 24.925 7.1
Propane 63.940 67.737 5.9 64.196 0.4 62.851 1.7
Total av. 16.3 6.1 9.0

Table 7.22 Predicted permeate composition with the simplified explicit method (full
matrix [A]) and the exact method (full matrix [B]).

Exp.
mole-%

SLLF
mole-%

AAD
%

SLNLF
mole-%

AAD
%

PHSC
mole-%

AAD
%

Hydrogen 2.350 2.548 8.4 1.777 24.4 1.745 25.8
Methane 2.809 2.370 15.6 2.605 7.3 3.029 7.8
Ethane 7.618 5.591 26.6 6.053 20.5 6.800 10.7
Propylene 23.283 21.184 9.0 24.815 6.6 25.803 10.8
Propane 63.940 68.307 6.8 64.750 1.3 62.623 2.1
Total av. 13.3 12.0 11.4

The composition of the permeate without the cross-coefficients ijD  was better predicted with

the transport model equations combined with SLNLF. The poorer performance of PHSC

without the cross-coefficients with respect to SLNLF may be associated with the deviation in

the predicted solubility coefficient for hydrogen (section 7.2). When the cross-coefficients ijD

were included to the transport equations, comparable results were obtained with the model

equations combined with PHSC and SLNLF. In all cases, the deviation in ethane mole
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fraction is large. Since the deviation seems to be systematic, this may be due to the

composition accuracy of the feed gas mixture.

Due to the form of equation (5.71), the obvious consequence of including the cross-

coefficients ijD  to the diffusion coefficient matrix [ ]A  or [ ]B  is to decrease the flux of

molecules with lower permeability (high diffusivity, low solubility). As highlighted in the

previous section, the binary Maxwell–Stefan diffusion coefficients were calculated from the

experimental permeability coefficients. When the estimated solubility coefficients deviate

from the experimental solubility coefficients, the deviation is transmitted to the binary

diffusion coefficients, and further to the cross-coefficients ijD  via equation (5.71). Therefore,

the predicted permeate composition became worse with SLNLF and PHSC when the cross-

coefficients were included.

The simplified explicit solution and the matrix solution yielded the same results. The fluxes in

the matrix solution were initialized with the simplified solution and then the matrix solution

converged in one additional iteration loop. According to Taylor and Krishna (1993, p. 204),

the rate factor defined in equation (5.52) is an exact eigenvalue of the matrix [ ]F  for the

Stefan diffusion, and the eigenvalues of [ ]F  characterize the correction factor matrix [ ]X  in

the exact solution. Therefore, we may conclude that the simplified explicit solution method is

adequate for the modeling of multicomponent vapor permeation in rubbery membranes.

In the transport model for pervaporation of binary mixture, Heintz and Stephan (1994b)

applied the cross-coefficient 12D  as an adjustable parameter. However, in multicomponent

systems the cross-coefficients have to be estimated. In this work the estimation was carried

out with equation (5.71) but the form was not successful. Hence, the cross-coefficients are

dropped out from the model of multicomponent permeation. Without the cross-coefficients,

the transport equations should be combined with the non-lattice fluid version of the Sanchez–

Lacombe equation of state or with the perturbed hard-sphere-chain equation of state.
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8 MODELING OF SPIRAL-WOUND MODULES

The model for gas and vapor permeation was qualitatively verified in the previous chapter. In

this chapter, the permeation model is combined with the basic model equations derived from

chapter 3 to form a model for vapor membrane separation with spiral-wound modules. The

model is then implemented into the FLOWBAT process simulator.

FLOWBAT is an in-house process simulator for steady-state processes. It includes various

unit operation models varying from simple short-cut models to unique and very specialized

models. In an input file, the user defines the process flowsheet with suitable unit modules,

connects the modules with material and energy streams, and selects the thermodynamic

models and the estimation methods for the missing thermodynamic properties. For input file

rules and specification, see FLOWBAT user’s instruction manual (2001).

FLOWBAT is used at Neste Engineering Oy and at some universities. It has continuously

been improved and extended with new calculation and estimation methods and new unit

operation models. Recent published improvements have dealt with estimating plate

efficiencies in distillation and reactive distillation (Ilme, 1997; Klemola and Ilme, 1996;

Klemola, 1998), modeling a trickle-bed (Toppinen et al., 1996), and a multiphase stirred tank

reactor (Alopaeus et al., 1999; Alopaeus, 2001). This work is a continuation in this series. The

model for vapor membrane separation is developed and implemented into FLOWBAT that

provides

· access to the databank of over 4000 components for basic thermodynamic properties,

· tested methods of the simulator to compute physical and thermodynamic properties both

for pure components and mixtures, and

· tested solvers of linear and non-linear equations and matrix algorithms.

A new FLOWBAT unit model was created for vapor membrane separation. The unit

specifications are given within a namelist SDGMEM, where the user defines the feeds to the

unit, the product streams from the unit, the permeate product pressure, the total membrane

area, the module specification, the module arrangement, the selection of the thermodynamic

model, the selection of the calculation methods, and the parameters for the diffusion

coefficient correlation. The module specification includes the selective layer material, the

polymer molecular weight and the molecular weight distribution, the selective layer thickness,
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the number of membrane leaves in a module, the leaf length, the flow channel heights, and the

number of grid points.

A membrane separation stage may consist of parallel and serial membrane modules. There

may be l — up to four — serial modules in a separation stage. A membrane leaf is divided

into m times n non-overlapping control volumes as in Figure 4.1. A set of non-linear model

equations is written for each control volume. The equations are non-linear due to composition,

temperature, and pressure dependent transport parameters. The composition of the fluid flow

on the retentate side is continuously changing along the flow due to the selective permeation.

The mass and energy transfer through the membrane is computed by iteration since local

permeate fluxes, local penetrant concentrations at the membrane interfaces, and permeated

fraction temperature at the support layer are the unknown variables. This system of the 3 nc +

3 unknowns is solved with the Newton-Raphson method. The residual functions are formed as

in section 7.3 but equation (5.75) serves as an additional residual function for the permeated

fraction temperature.

The mass and energy transfer through the membrane is basically computed at each control

volume so that there are l m n(3 nc + 3) variables associated with the mass and energy transfer

alone. In addition, there are l m n unknown molar enthalpies and pressures both on the

retentate and permeate side and l n unknown molar enthalpies and pressures in a central tube.

Altogether, 4 l m n + 2 l n variables are associated with the fluid flow problem. For example,

for a system of five components, 50 times 50 grid points per membrane leaf, and two serial

modules, the total number of variables is 110200. It may not be necessary to compute the

mass and energy transfer through the membrane at each control volume. Instead, they may be

computed at the median properties of a grid line along the permeate flow. This reduces the

number of the mass and energy transfer related variables to l m (3 nc + 3) and the total

number of variables to 22000 in the above mentioned case.

Apparently, simultaneous solution of all variables is not feasible. The approximation of one-

way space coordinate on the retentate side introduces the natural solution method for the

entire membrane leaf. The solution starts from the feed inlet boundary and proceeds towards

the retentate exit boundary line-by-line. The model equations are solved by iteration at each x

directed grid line j, the grid line along the permeate flow. Only component fluxes through the

membrane, retentate temperatures, permeate temperatures, and permeated fraction
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temperatures are kept in the memory for all control volumes and membrane leaves. Other

variables and transport parameters allocate memory only for a line j, for which a solution is

searched, and for the neighbor lines j – 1 and j + 1 that are needed to evaluate the gradients at

the control volume interfaces (Figure 8.1). The convergence of the line j is determined from

the residual vector for the local permeate flow field and the convergence of the membrane

leaves from the residual vector for the entire permeate side temperature profile. Iterations to

obtain the solution for the line j are denoted as inner iterations. Iterations to solve the

permeate temperature profile over all membrane leaves are denoted as outer iterations. The

solution procedure is described in detail in section 8.1.
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Figure 8.1 Illustration of a line-by-line solution in a membrane leaf.

The converged flux profiles, the retentate and permeate temperature profiles, and the pressure

profile in a central tube are written into a binary file. The binary file exists during the

flowsheet simulation and is used to initialize the unit model in the following evaluations of

the unit model. An ASCII –format file and an EXCEL readable text file are written from the

binary file when the whole flowsheet simulation is converged. The ASCII file allows the user

to exchange the unit profiles between different simulation runs and the EXCEL file allows the
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user to explore the unit results in graphical form, which is currently not possible within the

FLOWBAT simulator itself.

It is obvious that the computation time required to solve the model equations depends on the

grid density. This is illustrated in section 8.2 with an example simulation of selective removal

of hydrocarbons from hydrogen. Another example simulation, propylene recovery from

polypropylene resin degassing in section 8.3, illustrates the flowsheet solution of a vapor

membrane separation process with recycle streams. Based on these example simulations, the

final combination and legitimate simplifications of the model equations are concluded.

8.1 SOLUTION PROCEDURE

A membrane leaf or membrane leaves connected in series are solved by the line-by-line

relaxation method with the following solution procedure. The flowchart of the solution

procedure is given in Appendix II.

1. Check for an existing binary or ASCII file: if old profiles exist and are appropriate for the

simulation, use them to initialize the flow field. Otherwise, create an initial flow field for a

coarser grid as follows. Divide the number of user given grid points in z and x directions

by two and round upwards to the nearest integer when necessary. Set the temperature and

pressure on the retentate side equal to the feed temperature and pressure. Set the

temperature on the permeate side equal to the feed temperature, but the pressure equal to

the preset permeate product pressure.

2. Step on the first x directed internal grid line and designate it with an index j. On the

retentate side, the previous line j – 1 corresponds to the feed boundary. On the permeate

side, set the gradients at the west side interface of the control volumes to zero by setting

the properties at the edge of the membrane equal to the properties at the line j.

3. Compute the component and energy fluxes through the membrane with the current

properties at the line j. Compute the combined heat and mass transfer along the x directed

grid line at each grid point. Alternatively, compute the heat and mass transfer at the

median grid line properties and then assume the fluxes to be valid over the whole grid line

j. Use the latter at least in the initialization stage. Describe the penetrant transport through

the membrane with the simplified solution method by Burghardt and Krupiczka (1975)

and the penetrant sorption with the non-lattice Sanchez–Lacombe equation of state or with

the perturbed hard-sphere-chain equation of state. Solve the equations with the non-linear
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equation solver as in section 7.3 but now include equation (5.75) for the permeated

fraction temperature.

4. Compute the molar flow rates at the control volume interfaces directly from the computed

permeate fluxes so that the mass conservation equation is fulfilled.

5. Obtain the discrete transport parameters, heat capacities, viscosities, and thermal

conductivities along the line j from the physical property package of FLOWBAT (2001).

6. Discretize the energy equations to the forms of equations (4.74) and (4.76). There is no

fluid and heat flow at the closed leaf end in the permeate channel (x = 0) so that

coefficient 1
S,Va  is zero. The convective contribution may be assumed to dominate at the

outflow boundary of the permeate channel so that coefficient n
N,Va  becomes zero. Then the

discrete equations in the permeate channel are written only for internal control volumes.

Obtain the heat transfer coefficient hL according to the flow conditions at the line j.

Neglect the heat transfer resistance of the selective layer. For the laminar flow, obtain the

heat transfer coefficient hL from the limiting case of the constant wall temperature i.e. Nu

= 7.541. For the turbulent or developing turbulent flow, apply equation (4.47) with

1=B,LP,L / mm .

7. Compute the retentate enthalpies from (4.74). Solve (4.76) along the corresponding

permeate grid line with the non-symmetric tridiagonal matrix algorithm (Engeln-Mullges

and Uhling, 1996).

8. Update the retentate and permeate temperature field from the converged enthalpy field by

the one-variable Newton-Raphson method. Use the polynomial extrapolation (Press et al.,

1999, pp. 102-104) to obtain the exit boundary temperature on the permeate side.

9. If the iteration counter is below or equal to three, obtain the mass and energy fluxes

through the membrane as in step 3. Update the molar flow rates and transport parameters

as in step 4 and 5. If the iteration counter is greater than three, update the fluxes and

transport parameters only on every third iteration count.

10. Return to 6 and repeat until the change in the temperature field along the grid line is below

the preset tolerance, i.e. the absolute average norm of the residual vector is below 0.005 K

or the maximum number of inner iterations is exceeded. Limit the maximum number of

inner iterations to five in the initialization stage.

11. Set the properties and transport parameters at the line j as the properties and transport

parameters at the line j – 1. Move to the next grid line, designate it with an index j and use

the converged solution from the previous grid line j – 1 as the initial guess for the

variables if the old profiles do not exist.
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12. Repeat 3-11 until the leaf end of the last serial module is reached. At the retentate exit

boundary of each module, mix the retentate and determine the flow temperature from the

enthalpy before feeding the retentate into the next module.

13. If the computation was performed for the coarser grid, copy the recent discrete flow field

values at each grid point to the four nearest grid points in the original grid spacing (Figure

8.2). Save the temperature profile on the permeate side for the entire flow field.

14. Repeat 3-12 over the serial membrane leaves to obtain a new temperature profile of the

permeate side over the membrane leaves. Check the convergence and repeat 3-12 until the

average and the maximum changes in the permeate temperature profile are below the

preset tolerances, i.e. the absolute average norm of the residual vector is below 0.01 K and

the maximum norm of the residual vector is below 0.05 K.

15. Solve the pressure and temperature profiles in the central tube fulfilling the balances of

the mass, the momentum, and the energy given in section 4.2. Use the Newton-Raphson

iteration: start from the open tube end where the permeate product pressure is predefined

and proceed step-by-step to the closed tube end. Note that the total permeate flow in the

central tube equals to the permeate flow from a membrane leaf multiplied by the number

of the membrane leaves in a spiral-wound module.

16. Set the permeate pressure profile in the permeate channels between the membrane leaves

equal to the local pressure in the permeate collection tube along the x directed grid line.

Compute the discrete velocity field for the retentate and permeate from the molar flow

rates, molar volumes, and specified cross-section area for the flow. Compute the required

pressure drop for the fluid flow in a membrane leaf and between the membrane leaves

from the equations (4.30), (4.31), and (4.32) with an appropriate friction factor equation.

For the permeate channel, use equation (4.33) with Cf = 48 (Hickey and Gooding, 1994).

Repeat 3-15 for the pressure profile computation, but check the convergence of each grid

line j from the pressure profile and the convergence of the entire membrane leaf from the

permeate temperature profile. Grid line j is solved when the absolute average norm of the

residual vector is below 1 Pa. The membrane leaves are solved when the changes in the

permeate temperature profile are below the preset tolerances, as in step 14.
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Figure 8.2 Information transfer from a coarser grid to a finer grid.

8.2 EXAMPLE SIMULATION: SELECTIVE REMOVAL OF HYDROCARBONS FROM HYDROGEN

The effect of the grid density on the computation time and the stage cut — the fraction of feed

permeating through the membrane — was studied by running several simulations with

different numbers of grid lines. A mixture of hydrogen, methane, ethane, propane, and

hydrogen sulfide was used as a simulation example. Nitrogen and propylene with zero mole

fractions were included in the mixture since a flowsheet model should handle zero

components without convergence problems. Preferentially, hydrocarbons and hydrogen

sulfide permeate through the PDMS membrane over hydrogen, so this simulation example is

called the selective removal of hydrocarbons from hydrogen.

The feed mixture composition and the constant conditions in the simulation runs are given in

Table 8.1. An example of a simulation input file is given in appendix VII, the same

thermodynamic and physical property selections were applied in all simulations. The

component and energy fluxes through the membrane were evaluated at median grid line

properties. For comparison, two additional simulations were performed: one with the fluxes

evaluated at each main grid point and another with an assumption of isothermal separation.

The permeate side pressure drop was included in all the above simulations, but the retentate

side pressure drop was neglected. As a comparison, a third additional simulation run was

carried out without the permeate side pressure drop.

The computation times on Digital AlphaServer 2100 Model 5/375 with four processors are

presented in Table 8.2. The computation of component and energy fluxes through the

membrane requires the greatest computational effort. Therefore, the greatest effect of the grid

density, or the number of control volumes, concerns the computation time and the increase in

the computation time is linear with the increasing number of the grid lines.
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Table 8.1 The feed properties and constant conditions
used in the simulations of the selective removal of
hydrocarbons from hydrogen.
Total feed, kg/h 1000
Composition, mole-%

H2
CH4
C2H6
C3H6
C3H8
H2S
N2

85.0
 7.0
4.0
0.0
2.5
1.5
0.0

Feed pressure, kPa 2750
Feed temperature, °C 40
Permeate pressure, kPa 800
Membrane area, m2 80
Number of parallel modules 2
Number of serial modules 2
Number of membrane leaves in a module 10
Selective layer material PDMS
Selective layer thickness, mm 4
Leaf length, m 0.9
Number of z directed grid lines 50

Table 8.2 also reveals the vast difference between the used thermodynamic models. The

model equations with SLNLF are solved approximately 35 times faster than the model

equations with PHSC, when the fluxes are computed at the median grid line properties, and

approximately 100 times faster in the isothermal system. The composition dependent mixing

and combining rules of SLNLF requires less computational effort than the mixing and

combining rules of PHSC, which depend on the composition, temperature, and density.

Moreover, the mixing and combining rules of SLNLF have to be computed only once, after

which the roots of the equation (6.1) may be solved, whereas the mixing and combining rules

of PHSC have to be computed on each iteration count that is spent to solve the roots of the

equation (6.49).

The computed component and energy fluxes are assumed to be valid over the control volume.

This assumption resembles the numerical integration with constant step size and midpoint

rule. Then, in principle, an increasing of the number of control volumes will provide more

accurate approximation to the profiles of the individual component fluxes through the

membrane over the membrane module. Also the stage cut is approximated more accurately.

However, the effect of the number of control volumes on stage cut is insignificant based on

Figure 8.3. This is due to the selected system that mainly consists of hydrogen and methane,
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for which diffusion in the membrane is concentration independent and the flux through the

membrane is constant over the membrane modules (Figure 8.4 and Figure 8.5). The change in

the stage cut remains insignificant when the component and energy fluxes are computed at

each main grid point, instead of the median properties of the x directed grid lines and, further,

when the permeate side pressure drop is neglected. Changes in the sixth decimal of the stage

cut were observed in the above mentioned cases.

Table 8.2 The effect of the number of x directed grid
lines on computing time on Digital AlphaServer 2100
Model 5/375 with four processors.

No. of x directed grids Model equations
with SLNLF

Model equations
with PHSC

CPU, sec. CPU, sec.
6 10 383
8 15 512

10 13 503
20 25 894
40 44 1510
60 63 2270
80 83 2880

100 103 3550
60a) 505 40700
60b) 17 1760
60c) 68 2250

a) Fluxes computed at each control volume.
b) Isothermal permeation.
c) Pressure drop neglected both on the permeate and retentate sides.

Despite the insignificance of the change in the stage cut, there is an observable trend in the

calculated stage cut values with respect to the grid density. The behavior of the computed

stage cut curves is unstable below 40 x directed grid lines, reflecting an insufficient number of

control volumes. The minimum number of x directed grid lines for this example simulation is

40, since predicted stage cut curves start to decline as the number of grid lines is increased.

Obviously, the decline of the curves would level off when the number of x directed grid lines

is further increased — in theory to infinity.
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Figure 8.3 Change in relative stage cut with respect to number of x directed grid lines.

The simulated permeate and retentate flow properties are given in Table 8.3 and the

separation factors

jViL

jLiV
ij yx

xy
=a

(8.1)

over hydrogen are provided in Table 8.4. This simulation example can be classified as an

isothermal separation since the model equations predicted a temperature decrease of 0.1°C. In

this case, the cooling of hydrocarbons is just balanced with the heating of hydrogen on

expansion.

Hydrocarbon selective membranes could be used to selectively remove enriching hydrocarbon

components from hydrogen rich recycle streams in refinery hydroprocessing units as

described in a recent patent by Lokhandwala and Baker (2001). The PDMS membrane

preferentially permeates hydrocarbons and hydrogen sulfide so that recovered hydrogen is

obtained at high pressure, contrary to hydrogen selective membranes. The predicted

separation selectivity in Table 8.4 is only 3.4-3.5 for hydrogen sulfide and 2.2-2.4 for propane

over hydrogen. Usually, an ideal separation factor 0
ija  is used to characterize the separation

between components i and j
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j

i
ij P

P
=0a ,

(8.2)

where Pi and Pj are the pure component permeabilities of components i and j respectively.

Based on the pure component permeability coefficients in Table 7.20, the ideal separation

factor for propane over hydrogen is 8.8 at 0.345 MPa. For a comparison, a value of 8.5 may

be calculated from the permeability data provided by Bhide and Stern (1991). Due to the

nature of the vapor membrane separation, the real separation factor will be far from the ideal

separation factor and will decrease with the increase of the stage cut.

Despite the low separation factors, the simulated membrane process has clear advantages. The

process will remove about half of hydrogen sulfide and 40% of propane from the feed with a

simultaneous hydrogen loss of about 70 kg/h. When the same amount of hydrogen sulfide or

propane is removed by purging, the hydrogen loss will be about 150 kg/h and about 120 kg/h

respectively.

Table 8.3 Simulation results for the selective removal of hydrocarbons from hydrogen.
The separation was computed with the non-isothermal model equations with 60 x directed
grid lines and 50 z directed grid lines.

Model equations with SLNLF Model equations with PHSC
Permeate Retentate Permeate Retentate

Mass flow, kg/h 314 686 317 683
Molar flow, kmole/h 42.3 134.6 43.7 133.2
Temperature, °C 39.9 39.9 39.9 39.9
Pressure, kPa 800 2750 800 2750
Composition, mole frac.

H2 0.798 0.866 0.803 0.865
CH4 0.069 0.070 0.068 0.070
C2H6 0.058 0.034 0.057 0.034
C3H6 0.000 0.000 0.000 0.000
C3H8 0.043 0.019 0.040 0.020
H2S 0.031 0.010 0.031 0.010
N2 0.000 0.000 0.000 0.000

Component cut, -
H2 0.225 0.775 0.233 0.767
CH4 0.237 0.763 0.242 0.758
C2H6 0.348 0.652 0.352 0.648
C3H6 - - - -
C3H8 0.408 0.592 0.398 0.602
H2S 0.501 0.499 0.509 0.491
N2 - - - -

The individual component flux profiles are provided in Figure 8.4 and Figure 8.5. As already

mentioned, hydrogen and methane flux profiles are nearly constant over the serial membrane

modules. This is due to concentration independent diffusivity within the selective layer and,

to a great extent, due to an almost constant mole fraction of hydrogen and methane in the
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retentate flow (Table 8.3). The mole fractions of ethane, propane, and hydrogen sulfide were

originally low in the feed (Table 8.1). Then the sorption and diffusion within the selective

layer take place at the infinite dilution region and hence the flux profiles are decreasing

linearly along the flow.
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Figure 8.4 Predicted hydrogen flux through the PDMS membrane. The flux profile was
computed from the non-isothermal model equations combined with SLNFL.

Table 8.4 Separation factors for the selective removal of
hydrocarbons.

Model equations with SLNLF Model equations with PHSC

H2 1.000 1.000
CH4 1.073 1.046
C2H6 1.842 1.784
C3H6 - -
C3H8 2.376 2.171
H2S 3.458 3.404
N2 - -
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Figure 8.5 Predicted fluxes of hydrocarbons and hydrogen sulfide through the PDMS
membrane. The flux profiles were computed from the non-isothermal model equations
combined with SLNFL.

8.3 EXAMPLE SIMULATION: PROPYLENE RECOVERY

A membrane separation process of commercial interest is the monomer recovery from the

polypropylene resin degassing (Baker and Jacobs, 1996). The two-stage process shown in

Figure 8.6 is currently in operation at the DSM polypropylene plant in Geleen, the

Netherlands. Baker and Jacobs (1996) provide a design material balance for this process,

which has approximately 50 membrane modules providing an approximately 280 m2 total

membrane area (Filtration and Separation, 1996). Although the material balance by Baker

and Jacobs (1996) is a design material balance, it is used as a quantitative point of comparison

for the simulation results of this section. Basic data for this two-stage process is given in

Table 8.5.

The first separation stage of the two-stage process, ST-1 in Figure 8.6, performs the bulk

separation of hydrocarbons from nitrogen to produce a hydrocarbon lean nitrogen product

stream. The second separation stage, ST-2, is required to enrich the separated hydrocarbon

fraction, stream no. 3, to a hydrocarbon rich product stream that can be recycled directly into

the polypropylene reactor feed. The hydrocarbon depleted retentate stream from the ST-2 (no.

4) is recycled into the feed of the ST-1. The process requires two compressors: one for the

compression of the feed into the unit and another for the compression of the permeate from
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the stripping stage. The feed temperatures to the separation stages were not specified in the

literature; therefore the feed temperatures were set to 20°C in this work.

Table 8.5 Basic data for the two-stage propylene recovery process
(Baker and Jacobs, 1996; Baker et al. 1998).
Feed flow, kg/h (lb/h) 1597 (3520)
Feed pressure, kPa (psia) 103 (15)
Feed composition, vol-%

N2
C2H4 + C2H6
C3H6
C3H8

86.7
0.3

10.0
3.0

Nitrogen product flow, kg/h (lb/h) 1334 (2940)
Nitrogen product pressure, kPa (psia) 1379 (200)
Nitrogen product composition, vol-%

N2
C2H4 + C2H6
C3H6 + C3H8

96.4
0.1
3.5

Hydrocarbon product flow, kg/h (lb/h) 263 (580)
Hydrocarbon product pressure, kPa (psia) 103 (15)
Hydrocarbon product composition, vol-%

N2
C2H4 + C2H6
C3H6 + C3H8

15.5
1.5

83.0

An example of an input file for the two-stage process is given in appendix VIII. The stream

no. 4 was set as a cut stream and, therefore, the initial guesses for the flow rate and the

composition were given in the flow specifications. The membrane modules are specified in

Table 8.6; similar membrane modules were used in the separation stages ST-1 and ST-2. The

module arrangement in the separation stages was searched by trial and error. The first

separation stage was discovered to consist of four serial and 11 parallel modules, providing a

total membrane area of 264 m2. The second separation stage was discovered to consist of two

parallel modules, providing a total membrane area of 12 m2. The ideal gas law was selected

for the calculation method of the vapor specific molar volumes due to the low pressure on the

permeate side and the medium pressure on the retentate side. The method of Aasberg-Petersen

et al. (1991) was specified for the calculation of the vapor viscosity. In these simulations, the

permeate side pressure drop was included but the retentate side pressure drop was neglected.

The process simulations were carried out by computing the membrane separation stage

performances from the model equations combined with SLNLF and PHSC. The resulted

material balances from these simulations are given in Table 8.7 and in Table 8.8 respectively.

In these simulations, the component and energy fluxes through the membrane were computed

at median properties of a grid line. As a comparison, an additional simulation was carried out
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without the permeate side pressure drop. The resulted material balance from this simulation is

presented in Table 8.9.

ST-1

ST-2

1 2

34

5

6

Purge / Feed Nitrogen

Hydrocarbons

Figure 8.6 Two-stage membrane separation process for the propylene recovery from the
polypropylene resin degassing (adapted from Baker and Jacobs, 1996). ST-1 is a stripping
stage and ST-2 is an enriching stage.

Table 8.6 Spiral-wound module specification.
Module membrane area, m2 6.0
Selective layer material PDMS
Selective layer thickness, mm 4.0
No. of leaves in a module 4
Leaf length, m 0.9
Feed channel height, mm 1.3
Permeate channel height, mm 1.0
No. of x directed grid lines 76
No. of z directed grid lines 20

The calculated results correspond rather well with the design material balance by Baker and

Jacobs (1996). A comparison to the design material balance in Table 8.5 reveals that the

smaller amount of nitrogen product, the greater amount of hydrocarbon product, the higher

purity of the nitrogen product, and the higher recovery of the C3 fraction were obtained in the

current material balances. The absolute deviations in the nitrogen product flow rates are 2%

with SLNLF and 2.3% with PHSC. The corresponding absolute deviations in the hydrocarbon

product flow rates are 10.7% and 11.9% respectively.

Table 8.7 and Table 8.9 provide the predicted material balances based on the same model

equations, but in the latter the permeate side pressure drop was neglected. As a result, the

propane recovery increased by 0.1 per cent units and small differences in the flow
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compositions are noted mainly for nitrogen and propane. However, these changes are

negligible: the permeate side pressure drop seems indeed to have an insignificant effect on the

productivity of a multileaf membrane module.

Table 8.7 Predicted material balance for the propylene recovery computed from the
model equations with SLNLF. The resulted propylene recovery is 86.4%, nitrogen recovery
97.8%, and propane recovery 84.0%.

Flow no. 1 2 3 4 5 6
Pressure, kPa 101 1380 150 1385 1380 103
Temperature, °C 25.0 20.0 16.7 17.0 13.8 18.1
Mass flow, kg/h 1587 2966 1663 1379 1303 283
Molar flow, kmol/h 53.1 95.2 49.2 42.1 46.0 7.0
Composition, mole %

Nitrogen 86.70 77.99 59.44 67.00 97.81 14.23
Ethylene 0.15 0.30 0.48 0.49 0.10 0.46
Ethane 0.15 0.13 0.25 0.10 13 ppm 1.12
Propylene 10.00 16.18 29.88 23.99 1.54 65.17
Propane 3.00 5.40 9.95 8.43 0.55 19.01

Table 8.8 Predicted material balance for the propylene recovery computed from the
model equations with PHSC. The resulted propylene recovery is 84.8%, nitrogen recovery
97.2%, and propane recovery 73.7%.

Flow no. 1 2 3 4 5 6
Pressure, kPa 150 1380 150 1385 1380 103
Temperature, °C 25.0 20.0 16.6 17.5 13.5 18.4
Mass flow, kg/h 1587 2966 1850 1570 1307 280
Molar flow, kmol/h 53.1 95.2 55.1 48.1 46.0 7.1
Composition, mole %

Nitrogen 86.70 77.54 61.17 67.42 97.16 18.56
Ethylene 0.15 0.29 0.45 0.44 0.10 0.46
Ethane 0.15 0.29 0.47 0.46 0.09 0.53
Propylene 10.00 16.25 28.35 23.15 1.73 63.82
Propane 3.00 5.63 9.56 8.52 0.91 16.63

Table 8.9 Predicted material balance for the propylene recovery computed from the
model equations with SLNLF. The permeate side pressure drop was neglected. The resulted
propylene recovery is 86.4%, nitrogen recovery 97.8%, and propane recovery 84.1%.

Flow no. 1 2 3 4 5 6
Pressure, kPa 101 1380 150 1385 1380 103
Temperature, °C 25.0 20.0 16.7 17.0 13.8 18.1
Mass flow, kg/h 1587 2966 1663 1379 1303 283
Molar flow, kmol/h 53.1 95.2 49.2 42.1 46.0 7.0
Composition, mole %

Nitrogen 86.70 77.99 59.43 66.98 97.81 14.23
Ethylene 0.15 0.30 0.49 0.49 0.10 0.46
Ethane 0.15 0.13 0.25 0.10 13 ppm 1.12
Propylene 10.00 16.18 29.89 23.99 1.53 65.18
Propane 3.00 5.41 9.95 8.44 0.55 19.02

Non-isothermal separation is clearly present in this simulation example. The retentate product

flow temperature decreases from the feed temperature of 20°C over 6°C in the first stage
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(Figure 8.10) and over 3°C in the second stage (Figure 8.14). The retentate product flow is

noted to exit at a lower temperature than the permeate product flow (Table 8.7, Table 8.8, and

Table 8.9) because energy is continuously removed from the flow element in the retentate

channel to the flow element in the permeate channel. The local permeate flow from the

membrane leaves mixes with the permeate flow in the central tube. Hence the permeate

product temperature is approximately an average of the local permeate temperatures.

The retentate and permeate temperature profiles in the stripping stage (Figure 8.10) are almost

equal. The temperature difference of fluids over the membrane is 0.35°C at the beginning of

the stripping stage, after which it decreases steadily along the distance from the feed inlet to

almost zero at the retentate exit boundary. The temperature profiles stay further apart in the

enriching stage (Figure 8.14) in the range of 0.3-0.4°C due to the lower stage cut and the

lower heat transfer area than in the stripping stage.

The nitrogen flux profile through the membrane in the stripping stage is presented in Figure

8.7 and in the enriching stage in Figure 8.11. As expected, these profiles are quite stable

because the nitrogen diffusivity is concentration independent within the selective layer. The

nitrogen flux through the membrane first increases in the enriching stage due to an increase in

the concentration of the retentate flow, and then starts to decrease in the second serial module

due to an overcome by the effect of the temperature decrease on permeation. The effect of the

temperature decrease is absent in the enriching stage due to a small fraction of feed allowed to

permeate through the membrane.

The ethylene and ethane fluxes through the membrane in the stripping stage are presented in

Figure 8.8 and in the enriching stage in Figure 8.12. The corresponding profiles for propylene

and propane are presented in Figure 8.9 and Figure 8.13. The purpose of the stripping stage is

to recover the maximum amount of propylene from the nitrogen so that the enriching stage is

able to fulfil the product purity and recovery requirements. The recovery in the stripping stage

is achieved by allowing a large fraction of the feed to permeate through the membrane. At the

same time a large quantity of propane is recovered. The flux profiles decay exponentially

along the distance from the feed inlet due to the concentration and temperature dependent

permeation. For example, the propylene flux reduces to a tenth of the initial flux rate. At the

same time ethylene and ethane are recovered from the nitrogen, however, at the lower rate due

to the low concentration of components in the feed.
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The enriching of propylene is achieved by allowing only the richest fraction of the feed to

permeate through the membrane in the enriching stage so that the propylene flux is at its

highest level. This means that a low fraction of the feed is taken to the permeate product and

the amount of the product depends on the purity requirements. Therefore, the flux profiles of

hydrocarbons do not change a great deal in the enriching stage and the ethylene and ethane

concentrations remain essentially constant (Table 8.8).

All simulations required seven iterations for a flowsheet convergence. The computation times

of the various modeling combinations are given in Table 8.10. The computation time interval

is provided for the outer iteration; the smallest correspond to the solution time of the serial

leaves during the final flowsheet iteration and the greatest to the solution time of the serial

leaves just after the initialization stage. The computation time difference between the model

equations with SLNLF and PHSC is again vast. The computation time of the former is

counted in minutes while the computation time of the latter is counted in hours. The

explanation for this is already given in the previous section. Interestingly, the omitting of the

permeate side pressure drop did not decrease the computation time.

Table 8.10 Computation times on Digital AlphaServer 2100 Model 5/375 with four
processors for the propylene recovery simulations.

Initialization
CPU sec.

Outer iteration
CPU sec.

Total simulation
CPU sec.

ST-1 31 39-125Model equations with SLNLF, fluxes
at median grid line properties ST-2 11 19-47 993

ST-1 1174 1439-5280Model equations with PHSC, fluxes
at median grid line properties ST-2 359 834-1512 36745

ST-1 32 52-131Model equations with SLNLF, no
permeate side pressure drop ST-2 12 14-45 1027
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Propylene recovery from PP resin degassing
Nitrogen flux in stripping stage
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Figure 8.7 Nitrogen flux through the PDMS membrane in the stripping stage. The flux
profile is obtained from the model equations combined with PHSC.
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Figure 8.8 Ethylene and ethane fluxes through the PDMS membrane in the stripping
stage. The flux profiles are obtained from the model equations combined with PHSC.
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Propylene recovery from PP resin degassing
C3 fraction fluxes in stripping stage
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Figure 8.9 Propylene and propane fluxes through the PDMS membrane in the stripping
stage. The flux profiles are obtained from the model equations combined with PHSC.
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Figure 8.10 Temperature profiles in the stripping stage.
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Propylene recovery from PP resin degassing
Nitrogen flux in enriching stage
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Figure 8.11 Nitrogen flux through the PDMS membrane in the enriching stage. The flux
profile is obtained from the model equations combined with PHSC.
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Figure 8.12 Ethylene and ethane fluxes through the PDMS membrane in the enriching
stage. The flux profiles are obtained from the model equations combined with PHSC.
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Propylene recovery from PP resin degassing
C3 fraction fluxes in enriching stage
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Figure 8.13 Propylene and propane fluxes through the PDMS membrane in the enriching
stage. The flux profiles are obtained from the model equations combined with PHSC.
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Figure 8.14 Temperature profiles in the enriching stage.
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9 CONCLUSIONS

In this work, a new unit operation model was developed for vapor membrane separation with

rubbery membranes. The new model utilizes thermodynamic models for polymeric systems,

multicomponent mass transport theories, transport theories in polymeric systems, and

techniques from computational fluid dynamics.

Various thermodynamic models were compared in the modeling of vapor and gas sorption in

melt or rubber polymers. These models included equation of state models for polymeric

systems and combined equation of state–excess Gibbs energy models with the MHV2 mixing

rule by Dahl and Michelsen (1990). The group of equation of state models for polymers

included both the lattice and nonlattice fluid development of the Sanchez–Lacombe equation

of state (Sanchez and Lacombe, 1976; Lacombe and Sanchez, 1976; Sanchez, 1987), and the

perturbed hard-sphere-chain equation of state (Song et al., 1994a and 1996). The group of

combined EOS–GE models included the combinations of the Soave–Redlich–Kwong equation

of state with the UNIFAC-FV model by Oishi and Prausnitz (1978) and the exponential

UNIFAC modification proposed in this work. The difference between the two activity

coefficient models is that the UNIFAC-FV model uses solvent liquid molar volumes to

account for the free volume effect in a polymeric system, whereas the exponential UNIFAC

modification accounts for the free volume effect directly in the combinatorial part without any

liquid volume data.

In the thermodynamic model verification, the combined EOS-GE models provided better

Henry’s law coefficient predictions in various solvent–polymer systems than the other

equation of state models. Gas sorption predictions are not possible with the UNIFAC-FV

model, since gas group volume and surface area parameters are not available in the original

UNIFAC model and the free volume contribution requires liquid volume data. Gas sorption

predictions are possible with the exponential UNIFAC model; however, the gas sorption

predictions were not any better than those with SLNLF or PHSC and the determination of the

new group interaction parameter table was considered non-profitable. Therefore, this model

was excluded from any further use in this work. The non-lattice model version of the

Sanchez–Lacombe equation of state (Sanchez, 1987) and the perturbed hard-sphere-chain

equation of state (Song et al., 1996) were found to provide feasible predictions and hence to

be the appropriate models for the purposes of this work. PHSC was found to be very
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appropriate in PDMS systems, but this model should be applied with caution in other

polymeric systems, especially without binary interaction parameters. The computational effort

of PHSC is considerably greater than that of the non-lattice fluid version of the Sanchez–

Lacombe equation of state.

The penetrant transport within the membrane was described with the Maxwell–Stefan based

equations of multicomponent mass transfer. The binary penetrant–membrane diffusion

coefficients for the transport equations are determined from the pure component permeability

coefficients. Experimental permeability data at different temperatures and pressures are

required to capture the temperature and concentration dependent behavior of the binary

penetrant–membrane diffusion coefficients. The binary penetrant–membrane diffusion

coefficients at infinite dilution were conveniently correlated with the classical free volume

theory of Fujita et al. (1960). A new equation was developed for the correlation of the

concentration dependence of the binary penetrant–membrane diffusion coefficients in a

polymeric membrane. This approach captures the behavior of the binary penetrant–membrane

diffusion coefficients very well and provides the basis for the diffusion coefficients in

multicomponent systems.

The transport equations within the membrane were solved by using the film model with the

Krishna (1977) approximation of the exact matrix solution and the simplified solution of

Burghardt and Krupiczka (1975) for the Stefan diffusion. The former is an iterative solution

method, while the latter provides the component fluxes through the membrane without

iteration. The film models were used in the generalized form, i.e. the matrix of

thermodynamic factors was included to account for the system non-ideality. In the transport

equations, the membrane, or to be exact, the chain segments of the polymer, were allowed to

have a finite diffusion flux against the fluxes of penetrant components. This gives rise to the

bulk flux contribution in the permeation.

The Krishna (1977) approximation of the exact matrix solution and the simplified solution of

Burghardt and Krupiczka (1975) for the Stefan diffusion yielded exactly the same results. The

simplified solution is preferred, since it provides component fluxes without iteration. The

cross-coefficients ijD  in the transport equations were computed from the geometric average

of the binary penetrant–membrane diffusion coefficients at maximum penetrant concentration.

The effect of including the cross-coefficients was to suppress the flux of the components of
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high diffusivity — which is the correct effect of flux coupling — but the results without the

cross-coefficients were in better agreement with the low-pressure experimental data.

Therefore, the transport equations were later on used without the cross-coefficients. More

experimental data is required in order to draw any definite conclusions about the effect of the

diffusional coupling in vapor membrane separation.

The permeation model was combined with the model for the fluid flow in multileaf spiral-

wound modules. In the flow model, the operation of a spiral-wound module was described by

a membrane leaf and a central tube. Equations for the discretized flow field were developed

from the basic conservation equations of mass, momentum, and energy. The discretization of

the model equation was performed by following the control volume approach of Patankar

(1980). The non-isothermal operation of spiral-wound modules was expected since a real fluid

is exposed to internal heating or cooling on expansion. This was clearly shown in the example

simulation of the propylene recovery from the polypropylene resin degassing. The example

simulation of the selective removal of hydrocarbons from hydrogen was almost isothermal,

because the effect of internal cooling of hydrocarbons was balanced by the internal heating of

hydrogen on expansion.

A line-by-line solution procedure was provided for solving the combined permeation and

fluid flow model in a membrane leaf or membrane leaves in series. The membrane leaves

have to be solved many times to allow the initial fluid flow field to relax to the final

converged flow field. The control volume method describes the flow field in discrete grid

points and the description becomes more accurate when the grid density is increased. The

optimal grid density is such that the increase in the grid density would not significantly

change the profiles of the component fluxes and the flow temperatures. A routine could have

been created that starts from a coarse grid solution, then finds the solution for a denser grid

spacing, observes the changes in profiles, and repeats the densification until the change in

profiles becomes insignificant so that the optimum solution is found for the flow field.

However, it was decided to use a constant number of control volumes in order to save

computation time. This choice will never be destructive in view of flowsheet simulation,

since, as stated by Patankar (1980, pp. 30-31), the control volume approach satisfies the

integral conservation of mass, momentum, and energy over any group of control volumes and

for any number of grid points.
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A multileaf spiral-wound membrane module provides short permeate flow paths. It was

observed from the example simulations that the resulting pressure drop is insignificant in

terms of the module productivity. As a consequence, the component and energy fluxes

through the membrane do not have to be calculated at each grid point. The evaluation of the

fluxes at the median properties of a grid line provides an adequate description, since the local

permeate fluxes through the membrane remain almost constant along the grid line for the

permeate flow. This diminishes the computation time considerably since the evaluation of the

component and energy fluxes requires the greatest computational effort.

The developed model was implemented into an in-house process simulator (FLOWBAT,

2001) that makes it possible to combine vapor membrane separation with other existing unit

operation models. This implementation is useful in the identification and the evaluation of

potential new applications for vapor membrane separation and it also aids in the designing of

vapor membrane separation processes for optimal performance.

The developed model has its bases on well-founded theoretical equations. Conventional

approaches follow the solution–diffusion model in its simplest form so that the permeation

flux through the membrane is related to the exterior conditions over the membrane by a

permeability coefficient. In this work, the thermodynamic and kinetic contribution to

permeation as well as the real fluid effects were treated with the theoretical models so that the

temperature, pressure, and concentration dependent permeation through the rubbery

membrane can be more profoundly accounted for. The rigorousness and the complexity of the

new model well exceed the level of the previous mathematical models for gas and vapor

membrane separation. However, the reward of this effort is the greater confidence on the

model’s predictions on multicomponent mixture separations especially in regions where

experimental data is not available.
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10 NOMENCLATURE

A Total Helmhotz energy
Flow area

( )PeA Interpolation function, eq. (4.72)

AE Excess Helmholtz energy
dA Penetrant dependent pre-exponential factor in the diffusivity relation

Awk van der Waals surface area of group k
0A Helmholtz energy of pure substance

a Energy parameter
Coefficient in discretized energy equation

amn Group interaction parameter of main groups m and n in the original
UNIFAC

amn,1, amn,2, amn,3 Group interaction parameters of main groups m and n in the modified
UNIFAC

B Half distance of parallel plates
dB Penetrant dependent constant in the diffusivity relation

b Co-volume parameter
Hole affinity constant in (2.7)

CD Henry’s type solubility concentration
Cd Penetrant dependent constant in the diffusivity relation
Cf Constant in the friction factor correlation
CH Langmuir type solubility concentration

'
HC Hole saturation constant

Ci Concentration of penetrant in the membrane at standard temperature and
pressure

Cp Heat capacity at constant pressure
C1, C2, C3 Mathias–Copeman pure component parameters
c Proportionality constant to solvent activity in UNIFAC-FV
ci Molar density
D Fick’s diffusion coefficient

01D Pre-exponential factor in the solvent self-diffusivity relation

1D Solvent self-diffusion coefficient
D Maxwell–Stefan diffusion coefficient in the mass fraction form

iMD Effective M–S diffusion coefficient for binary penetrant–membrane pair

TD Thermodynamically corrected diffusion coefficient
'D Maxwell–Stefan diffusion coefficient in the mole fraction form
0D Binary penetrant–membrane M–S diffusion coefficient at infinite dilution
¥D Binary penetrant–membrane M–S diffusion coefficient at maximum

penetrant weight fraction
DP Number of data points
E Activation energy
Ed Penetrant dependent parameter in the diffusivity relation
EP Activation energy for permeation
e Multicomponent energy flux
Fa Universal function in PHSC for the energy parameter
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Fb Universal function in PHSC for the co-volume parameter
FF Total molar flow rate of feed
FL Total molar flow rate of retentate
FV Total molar flow rate of permeate
f Fugacity

Fanning friction factor
G Total Gibbs energy
g Intensive Gibbs energy

z,y,xg Gravitational force components

g dij ij( )+ Radial distribution function

g E Molar excess Gibbs energy

g E C, Combinatorial molar excess Gibbs energy

iH Molar fraction based Henry’s constant of component i
w
iH Weight fraction based Henry’s constant of component i

H w
exp.

Experimental weight fraction based Henry’s constant

Ĥ Specific enthalpy
H Molar enthalpy
h Heat transfer coefficient
J Molar diffusive flux

VJ Volume diffusive flux
j Mass diffusive flux
k Thermal conductivity

Bk Boltzmann’s constant

Dk Henry law solubility coefficient

ijk Binary interaction parameter
L Characteristic length
l Number of serial modules
lij Binary size correction parameter
M Molecular weight

jM1 Molecular weight of the solvent jumping unit

jM 2 Molecular weight of the polymer jumping unit

nM Number average molecular weight

wM Weight average molecular weight
m Number of grid lines in x direction

iN Molar flux of component i

tN Total molar flux
Nu Nusselt number, kBh /2Nu =
n Total number of moles

Number of grid lines in z direction
in Mass flux of component i

tn Total mass flux
nc Number of components
ng Number of groups
Pi Permeability coefficient of component i
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0
íP Pre-exponential factor

Pe Peclét number, RePrPe =
Pr Prandtl number, kC p /ˆPr m=
~P Reduced pressure
P* Characteristic pressure
p Pressure

icp , Critical pressure of component i
sp Saturation pressure

Qk, Qm Group area parameters of groups k and m
tQ Total amount of permeated fluid per membrane area

qi Surface area parameter of component i
q0, q1, q2 MHV2 parameters
R Gas constant

ctR Radius of the central tube
Rk Group volume parameter of group k
Re Reynolds number, mr /v B2Re =
r Molecular size parameter

Volume parameter in UNIFAC models
Radial co-ordinate

ri Net rate of production of species i per unit volume
Si Solubility coefficient of component i
T Temperature
Tc,i Critical temperature of component i
Tr Reduced temperature, Tr = T / Tc
T0 Reference temperature
~T Reduced temperature, *T/TT~ =
T * Characteristic temperature
t Time

gt Time lag

Û Specific internal energy

z,y,xu Permeate velocity components
V Volume
Vwk van der Waals volume of group k
V * Total close packed volume (lattice fluid)

Total hard-core volume (non-lattice fluid)
Occupied volume

V0 Empty (free) volume
Vg

0 Specific retention volume at standard pressure and temperature

FHV̂ Average specific hole free volume
*

1̂V Required minimum local free volume for a diffusive jump of the solvent
*

2V̂ Required minimum local free volume for a diffusive jump of the polymer
v Molar volume

z,y,xv Retentate velocity components

v* Close packed mer volume (lattice fluid)
Hard-core molecular volume (non-lattice fluid)
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v0
* Hole volume

~v Reduced volume of the mixture
~vi Reduced volume of component i
w Mass fraction

yw Permeate velocity within the membrane
¥w Maximum weight fraction

Xm Molar fraction of group m
x, y, z Mole and number fractions

Cartesian co-ordinates
z Coordination number

Greek

a Mixture a value, eq. (6.79)
a i Pure component a value

zyx aaa ,, Swelling ratios

ija Separation factor of component i over j
0
ija Ideal separation factor of component i over j

b Darcy’s law permeability
c Flory–Huggins interaction parameter
dik Kronecker delta: 

î
í
ì

¹
=

=
ki,
ki,

ik 0
1

d

dm Selective layer thickness
0
md Selective layer thickness of a penetrant free membrane

e ij Non-bonded pair energy interaction between segments i and j

e * Interaction energy per segment
F Explicit mass transfer rate factor
j Fugacity coefficient
f Volume or segment fraction
f ' Exponential volume fraction
G Thermodynamic correction factor
Gk Residual activity coefficient of group k
g Molar fraction activity coefficient
g C Combinatorial contribution to the molar fraction activity coefficient

g FV Free volume contribution to the molar fraction activity coefficient

g R Residual contribution to the molar fraction activity coefficient
¥g Molar fraction activity coefficient at infinite dilution

h Packing factor
l Dimensionless distance in the film or in the selective layer
m Viscosity
mi Chemical potential of species i

0
im Chemical potential of species i at the reference state
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n Number of molecules
rn Number of segments

0n Number of empty lattice sites or holes

n k
i( ) Number of groups k in component i

q Surface area fraction
J External degree of freedom for solvents in UNIFAC-FV
r Mass density

Number density in PHSC
rr Segment density
r * Characteristic density
~r Reduced density, */~ rrr =
s ij Segment size
¥W Weight fraction based activity coefficient at infinite dilution

w Acentric factor, ( )[ ] 17.0log10 -=-= rr Tpw
w i Component specific constant in SLLF
X Explicit high flux correction factor
x Parameter, eq. (2.6)
xij Function, eq. (6.48)

mny Group interaction parameter
z Exponent in volume fraction of the exponential UNIFAC

Abbreviations

AAD Absolute average deviation
AAN Absolute average norm
CV Control volume
EOS Equation of state
HAP Hazardous air pollutant
HDPE High density poly(ethylene)
LCVM Linear combination of the Vidal and Michelsen mixing rules
LDPE Low density poly(ethylene)
MHV1 Modified Huron–Vidal mixing rule
MHV2 Second-order approximation of the Modified Huron-Vidal mixing rule
PcB Poly(cis-1,4-butadiene)
PDMS Poly(dimethylsiloxane)
PHSC Perturbed hard-sphere-chain equation of state
PIB Poly(isobutylene)
PP Poly(propylene)
PS Poly(styrene)
PTMSP Poly[1-(trimetylsilyl)-1-propyne]
PVAC Poly(vinyl acetate)
SLLF Lattice fluid version of the Sanchez–Lacombe equation of state
SLNLF Non-lattice fluid version of the Sanchez–Lacombe equation of state
SRK1 Soave–Redlich–Kwong equation of state with UNIFAC-FV
SRK2 Soave–Redlich–Kwong equation of state with the exponential UNIFAC
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STP Standard temperature and pressure: 273.15 K and 101325 Pa
UNIFAC UNIQUAC functional-group activity coefficient
UNIFAC-FV UNIQUAC fuctional-group activity coefficient with a free volume

correction
UNIQUAC Universal quasi-chemical activity  coefficient
VOC Volatile organic compound

Subscripts and superscripts

av Average property
F Feed property
FV Free volume
i, j, k Component indexes
j, k Grid line indexes
k, m, n Group indexes
L Retentate property
m Membrane or selective layer property
N, S, E, W, T, B Grid point indexes
n, s, e, w Control volume face indexes
o Old value
r, q, z Radial co-ordinate indexes
s Support layer property
t Total property
V Permeate property
x, y, z Rectangular co-ordinate indexes
d Property at the end of the film
l Local property in the film
0 Property at the beginning of the film
1 Solvent
2 Polymer
I Retentate–membrane interface
II Membrane–permeate interface

Matrices and vectors

[ ]A Matrix of inverted diffusion coefficient for Stefan diffusion
[ ]a Matrix of coefficients of discretized energy equations
[ ]B Matrix of inverted diffusion coefficients
( )b Right hand side vector of the discretized energy equations
( )H Vector of molar enthalpies of the discretized energy equations
[ ]I Identity matrix
( )j Vector of mass diffusion fluxes
( )n Vector of mass fluxes
( )w Vector of weight fractions
[ ]b Bootstrap matrix
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[ ]F Matrix of mass transfer rate factors
( )f Vector of rate factors
[ ]G Matrix of thermodynamic correction factors
[ ]Q Matrix of augmented rate factors
[ ]X Matrix of high flux correction factors
g Gravitational acceleration vector
q Conductive heat flux vector
j Mass diffusion vector
τ Stress tensor
v General velocity vector
v Retentate velocity vector
w Local permeate velocity within the membrane
u Permeate velocity vector

Overlines

- Average property, or
partial intensive property

Ù Property per unit mass
~ Reduced property
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APPENDIX I EQUATION OF STATE PARAMETERS

Table A.1 Sanchez–Lacombe EOS parameters for normal components and polymers.
T*, K P*, MPa r*, kg/m3 Ref.

Carbon dioxide 304.6 591.1 1518.0 This work
Nitrogen 137.1 189.5 932.0 “
Oxygen 168.5 278.3 1290.0 “
Hydrogen sulfide 369.4 628.3 1090.0 “
Hydrogen 52.10 32.7 76.13 “
Methane 211.2 245.1 474.4 “
Ethane a) 315.0 327.0 640.0 Sanchez and Panayiotou (1994)
Ethane b) 311.0 328.5 632.8 This work
Ethylene 278.0 340.0 668.0 Pope et al. (1991)
Propane a) 371.0 313.0 690.0 Sanchez and Panayiotou (1994)
Propane b) 364.1 326.4 698.4 This work
Propylene a) 365.0 338.4 728.5 “
Propylene b) 350.7 357.0 729.8 “
Butane 403.0 322.0 736.0 Sanchez and Panayiotou (1994)
Pentane 441.0 310.0 755.0 “
Hexane 476.0 298.0 775.0 “
Heptane 487.0 309.0 800.0 “
Octane 502.0 308.0 815.0 “
Nonane 517.0 307.0 828.0 “
Decane 530.0 304.0 837.0 “
Dodecane 552.0 301.0 854.0 “
o-Xylene 571.0 394.0 965.0 “
m-Xylene 560.0 385.0 952.0 “
p-Xylene 561.0 381.0 949.0 “
Cyclohexane 497.0 383.0 902.0 “
Benzene 523.0 444.0 994.0 “
Ethylbenzene 537.0 403.0 965.0 “
Chlorobenzene 585.0 437.0 1206.0 “
Toluene 543.0 402.0 966.0 “
Acetone 484.0 533.0 917.0 “
Methyl ethyl ketone 513.0 447.0 913.0 “
Methyl chloride 448.0 460.0 1125.0 “
Carbon tetrachloride 535.0 381.0 1788.0 “
1,4-dioxane 519.0 536.0 1163.0 “
HDPE 425.0 649.0 904.0 “
LDPE 359.0 673.0 887.0 “
PP 771.0 281.0 852.0 “
PVAc 590.0 509.0 1283.0 “
PDMS 476.0 302.0 1104.0 “
PIB 354.0 643.0 974.0 “
PS 735.0 357.0 1105.0 “
PcB 552.0 424.0 990.0 “

a) Parameters used in liquid polymer systems
b) Parameters used in PDMS membrane systems
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Table A.2 Perturbed hard-sphere-chain equation of state parameters for normal components
and polymers.

r, -a e/kB, K s, Å Ref.
Carbon dioxide 3.368 140.3 2.574 This work
Nitrogen 1.313 99.4 3.628 “
Oxygen 1.225 127.5 3.489 “
Hydrogen sulfide 1.789 242.9 3.357 “
Hydrogen 0.382 63.4 4.945 “
Methane 1.000 182.1 4.126 Song et al. (1996)
Ethane 1.694 206.3 3.916 “
Ethylene 1.609 196.8 3.839 “
Propane 2.129 219.0 3.998 “
Propylene 2.029 221.9 3.951 “
Butane 2.496 231.3 4.085 “
Pentane 3.149 226.0 3.995 “
Hexane 3.446 235.6 4.084 “
Heptane 4.255 225.9 3.947 “
Octane 5.055 219.6 3.850 “
Nonane 5.748 217.3 3.804 “
Decane 6.616 212.7 3.723 “
Dodecane 7.712 214.8 3.733 “
o-Xylene 3.620 285.4 3.998 “
m-Xylene 3.721 276.4 3.977 “
p-Xylene 3.455 287.9 4.104 “
Cyclohexane 2.723 286.7 4.215 “
Benzene 2.727 291.6 3.958 “
Ethylbenzene 3.607 279.4 4.018 “
Propylbenzene 4.137 270.6 4.007 “
Styrene 3.291 304.3 4.083 “
Chlorobenzene 3.144 305.3 3.975 “
Toluene 3.138 287.0 4.019 “
Acetone 3.164 250.9 3.510 “
Methyl ethyl ketone 3.344 255.8 3.694 “
Methyl chloride 2.018 256.7 3.591 “
Carbon tetrachloride 2.507 301.7 4.187 “
HDPE 0.04938 324.1 3.825 “
LDPE 0.04408 327.2 3.977 “
PP 0.02831 392.1 4.705 “
PVAc 0.05166 292.6 3.364 “
PDMS 0.03680 253.6 3.968 This work
PIB 0.04024 331.9 3.725 Song et al. (1996)
PS 0.03834 385.4 3.899 “
PcB 0.07049 276.6 3.301 “

a)  For polymers r/Mw, mol/g
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APPENDIX II FLOWCHART FOR THE MEMBRANE LEAF COMPUTATION
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APPENDIX III INPUT FILE FOR THE HENRY’S COEFFICIENT ESTIMATION
 $TITLE
  USER = 'PSAVO', PROJEC = 'GKB81', PROBLE = 'Henry coef.',
 $END

! Units in the simulation

 $UNITS
  MODELS = 'IFLASH',
  MAXITE = 100
 $END

! Components in the simulation:
! Nitrogen

 $THERMO
  COMPNU = 31,
  MDATA = 0
  IMACOP = 1             ! Use Mathias-Copeman parameters
  KTYPE = 'IDEAL'        ! Ideal vapor and liquid phase
                         ! => fugacity coefficients and Poynting correction
                         ! set to one, pressure ratio from pure component
                         ! vapor pressure equation (Antoine or equivalent)
  IPRINT(20) = 1         ! Printing indicator
 $END

 $FLOWS
  FNAMES = 'VAP1',       ! Flow name
  PRES = 0.0101325,
  TEMP = 423.15,
  FLOWTO = 1000.0
  FLOWDI = 'MOL'         ! Flow dimensions: mol/h
  FLOWEN = 'NON-COMPUTE' ! Do not compute flow enthalpy
  FLOW1 = 1.0,           ! Flow composition
 $END

! Isothermal flash unit

 $IFLASH
  UNNAME = 'PROPER1',
  FEEDS = 'VAP1'
  PRODUC = 'GAS1', 'LIQ1'  ! Vapor and liquid product
  TEMP = 423.15            ! Flash temperature
  PRES = 0.0101325         ! Flash pressure
 $END

! Physical properties for the flows of the simulation

 $FYSPRO
  IPR = 0
  FLOWNA = 'GAS1', 'GAS1',               ! Flow for which properties
                                         ! are calculated
  PROPER = 'GSISOT', 'GSISOT',           ! Property: Gas sorption isotherm
  POLY = 'PP', 'PP',                     ! Polymer phase: polypropylene
  POLYMW = 94100.0, 94100.0,             ! Polymer number average Mw
  PDIS = 4.9, 4.9,                       ! Polydispersity index
  PTHERM = 'MHV2P', 'MHV2PO',            ! Polymer thermodynamics: MHV2
                                         ! with the exponential UNIFAC,
                                         ! and the Lyngby modified UNIFAC
                                         ! (original MHV2)
  TINIC = 175.05, 175.05,                ! Initial temperature in Celcius
  TFINC = 250.05, 250.05,                ! Final temperature in Celcius
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  DT = 25.0, 25.0,                       ! Temperature step size
  POINTS = 4, 4,                         ! Number of property points
  PINKPA = 0.00101325, 0.00101325,       ! Initial pressure in kPa
  PFIKPA = 0.00101325, 0.00101325,       ! Final pressure in kPa
  VLEMAT(1,48) = 1                       ! N2 functional group of
                                         ! the MHV2-UNIFAC
$END
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APPENDIX IV INPUT FILE FOR THE VAPOR SORPTION CALCULATION
 $TITLE
  USER = 'PSAVO', PROJEC = 'GKB81', PROBLE = 'Isotermitesti',
 $END

! Units in the simulation

 $UNITS
  MODELS = 'IFLASH',
  MAXITE = 100
 $END

! Components in the simulation
! Benzene

 $THERMO
  COMPNU = 254,
  MDATA = 1              ! Read CRDATA input
  KTYPE = 'MHV2'         ! Thermodynamic selection: MHV2
  VLEMAT(1, 10) = 6      ! Vapor-liquid group parameters
  IPRINT(20) = 0         ! Printing indicator
  IMACOP = 1             ! Use the Mathias-Copeman parameters
 $END

! EOS parameters for PHSC and SL EOS

 &CRDATA
  PHSCR = 2.727,
  PHSCE = 291.6,
  PHSCS = 3.958,
  SLPRES = 444.0,
  SLTEMP = 523.0,
  SLDEN = 994.0,
!
! Energy correction factor matrix for SLLF
!
  SLECOR(1,1) = 0.0, -0.0106
  SLECOR(1,2) = -0.0106, 0.0
!
! Size correction factor matrix for PHSC
!
  PHSCSC(1, 1) = 0.0, -0.0245,
  PHSCSC(1, 2) = -0.0245, 0.0,
 &END

 $FLOWS
  FNAMES = 'TESTGAS1',      ! Flow name
  PRES = 0.101325,          ! Pressure
  TEMP = 298.15,            ! Temperature
  FLOWTO = 1000.0,          ! Total flow rate
  FLOWDI = 'MOL',           ! Flow dimensions: mol/h
  FLOWEN = 'NON-COMPUTE',   ! Do not compute the flow enthalpy
  FLOW1 = 1.0,              ! Flow composition
 $END

! Isothermal flash unit

 $IFLASH
  UNNAME = 'PROPER1',
  FEEDS = 'TESTGAS1'
  PRODUC = 'GAS1', 'LIQ1'   ! Vapor and liquid product
  TEMP = 333.15             ! Flash temperature
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  PRES = 0.00101325         ! Flash pressure
 $END

! Physical properties for the flows of the simulation
!
! ***** SLCOR for SLLF: ignore results for SLNLF *****

 $FYSPRO
! Printing indicator
  IPR = 0
! Flows for which properties are calculated
  FLOWNA = 'GAS1', 'GAS1', 'GAS1', 'GAS1',
           'GAS1', 'GAS1', 'GAS1', 'GAS1',
           'GAS1', 'GAS1', 'GAS1', 'GAS1',
           'GAS1', 'GAS1', 'GAS1', 'GAS1',
           'GAS1', 'GAS1', 'GAS1', 'GAS1'
! Gas sorption isotherms
  PROPER = 'GSISOT', 'GSISOT', 'GSISOT',
           'GSISOT', 'GSISOT', 'GSISOT',
           'GSISOT', 'GSISOT', 'GSISOT',
           'GSISOT', 'GSISOT', 'GSISOT',
           'GSISOT', 'GSISOT', 'GSISOT',
           'GSISOT', 'GSISOT', 'GSISOT',
           'GSISOT', 'GSISOT',
! Polymer phase: polystyrene
  POLY = 'PS', 'PS', 'PS', 'PS', 'PS', 'PS', 'PS', 'PS',
         'PS', 'PS', 'PS', 'PS', 'PS', 'PS', 'PS', 'PS',
         'PS', 'PS', 'PS', 'PS'
! Polymer number average Mw
  POLYMW = 63000.0, 63000.0, 63000.0, 63000.0, 63000.0,
           63000.0, 63000.0, 63000.0, 63000.0, 63000.0,
           63000.0, 63000.0, 63000.0, 63000.0, 63000.0,
           63000.0, 63000.0, 63000.0, 63000.0, 63000.0
! Polydispersity index
  PDIS = 3.97, 3.97, 3.97, 3.97, 3.97, 3.97, 3.97, 3.97,
         3.97, 3.97, 3.97, 3.97, 3.97, 3.97, 3.97, 3.97,
         3.97, 3.97, 3.97, 3.97,
! Polymer thermodynamics
  PTHERM = 'PHSC', 'SLLF', 'SLNLF', 'MHV2P',
           'PHSC', 'SLLF', 'SLNLF', 'MHV2P',
           'PHSC', 'SLLF', 'SLNLF', 'MHV2P',
           'PHSC', 'SLLF', 'SLNLF', 'MHV2P', ! Perturbed Hard-sphere-chain
                                             ! EOS, Sanchez-Lacombe lattice
                                             ! fluid EOS, Sanchez-Lacombe
                                             ! non-lattice fluid EOS
                                             ! and MHV2 with the
                                             ! exponential UNIFAC
           'MHV2PO', 'MHV2PO', 'MHV2PO',
           'MHV2PO'                          ! MHV2 with the Lyngby
                                             ! modified UNIFAC (original
                                             ! MHV2)
! Initial temperatures in Celsius
  TINIC = 15.0, 15.0, 15.0, 15.0,
          30.0, 30.0, 30.0, 30.0,
          45.0, 45.0, 45.0, 45.0,
          60.0, 60.0, 60.0, 60.0,
          15.0, 30.0, 45.0, 60.0
! Final temperatures in Celsius
  TFINC = 15.0, 15.0, 15.0, 15.0,
          30.0, 30.0, 30.0, 30.0,
          45.0, 45.0, 45.0, 45.0,
          60.0, 60.0, 60.0, 60.0,
          15.0, 30.0, 45.0, 60.0
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! Initial pressures in kPa
  PINKPA = 4.5, 4.5, 4.5, 4.5,
           9.0, 9.0, 9.0, 9.0,
           18.0, 18.0, 18.0, 18.0,
           32.0, 32.0, 32.0, 32.0,
           4.5, 9.0, 18.0, 32.0
! Final pressures in kPa
  PFIKPA = 7.5, 7.5, 7.5, 7.5,
           15.7, 15.7, 15.7, 15.7,
           29.2, 29.2, 29.2, 29.2,
           50.5, 50.5, 50.5, 50.5,
           7.5, 15.7, 29.2, 50.5
! Number of property points
  POINTS = 10, 10, 10, 10, 10, 10,
           10, 10, 10, 10, 10, 10,
           10, 10, 10, 10, 10, 10,
           10, 10
! Lyngby modified UNIFAC group parameter for benzene
  VLEMAT(1,10)=6
 $END
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APPENDIX V INPUT FILE FOR THE GAS AND VAPOR SORPTION IN PDMS

 $TITLE
  USER = 'PSAVO', PROJEC = 'HUU01', PROBLE = 'Isotermitesti',
 $END

 $UNITS
  MAXITE = 100
 $END

! Components in the simulation
! CO2, N2, O2, H2, CH4, C2H6, C2H4, C3H8, C3H6

 $THERMO
  COMPNU = 50,
           31,
           35,
           20,
           66,
           105,
           93,
           138,
           126,
  MDATA = 1             ! Read CRDATA input
  KTYPE = 'SRK'
 $END

! SL EOS and PHSC EOS parameters

 $CRDATA
  SLTEMP = 304.6, 133.7, 168.5, 53.55, 211.2, 311.0, 287.0, 364.1, 350.7
  SLPRES = 591.1, 195.4, 278.3, 31.7, 245.1, 328.5, 337.7, 326.4, 357.0
  SLDEN = 1518.0, 935.6, 1290.0, 75.27, 474.4, 632.8, 661.0, 698.4, 729.8
  PHSCR = 3.368, 1.313, 1.225, 1.225, 1.000, 1.694, 1.694, 2.129, 2.129
  PHSCE = 140.3, 99.4, 127.5, 127.5, 182.1, 206.3, 206.3, 219.0, 219.0
  PHSCS = 2.574, 3.628, 3.489, 3.489, 4.126, 3.916, 3.916, 3.998, 3.998
 $END

 $FLOWS
  FNAMES = 'GAS1',
           'GAS2',
           'GAS3',
           'GAS4',
           'GAS5',
           'GAS6',
           'GAS7',
           'GAS8',
           'GAS9'
  PRES = 9*0.101325,
  TEMP = 9*308.15,
  FLOWTO = 9*1000.0,           ! Total flow rate
  FLOWDI = 9*'MOL',            ! Flow dimensions: mol/h
  FLOWEN = 9*'COMPUTE',        ! Compute the flow enthalpy
!
! Flow compositions: pure component flows
!
  FLOW1 = 1.0, 8*0.0
  FLOW2 = 0.0, 1.0, 7*0.0
  FLOW3 = 2*0.0, 1.0, 6*0.0
  FLOW4 = 3*0.0, 1.0, 5*0.0
  FLOW5 = 4*0.0, 1.0, 4*0.0
  FLOW6 = 5*0.0, 1.0, 3*0.0
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  FLOW7 = 6*0.0, 1.0, 2*0.0
  FLOW8 = 7*0.0, 1.0, 0.0
  FLOW9 = 8*0.0, 1.0
 $END

! Physical properties for the flows in the simulation

 $FYSPRO
  IPR = 0
  FLOWNA = 'GAS1', 'GAS2', 'GAS3', 'GAS4', 'GAS5',
           'GAS6', 'GAS7', 'GAS8', 'GAS9',
! Gas sorption isotherms
  PROPER = 'GSISOT', 'GSISOT', 'GSISOT', 'GSISOT',
           'GSISOT', 'GSISOT', 'GSISOT', 'GSISOT', 'GSISOT',
! Polymer phase: polydimethylsiloxane
  POLY = 'PDMS', 'PDMS', 'PDMS', 'PDMS', 'PDMS',
         'PDMS', 'PDMS', 'PDMS', 'PDMS'
! Number average Mw
  POLYMW = 1500000.0, 1500000.0, 1500000.0, 1500000.0,
           1500000.0, 1500000.0, 1500000.0, 1500000.0, 1500000.0,
! Polydispersity index
  PDIS = 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
! Polymer thermodynamics
  PTHERM = 'SLNLF', 'SLNLF', 'SLNLF', 'SLNLF', 'SLNLF',
           'SLNLF', 'SLNLF', 'SLNLF', 'SLNLF',
! Initial and final temperatures in Celsius
  TINIC = 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0,
  TFINC = 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0
! Number of points in each isotherm
  POINTS = 20, 20, 20, 20, 20, 20, 20, 20, 20,
! Initial and final pressures in kPa
  PINKPA = 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0,
  PFIKPA = 2500.0, 2500.0, 2500.0, 2500.0, 2800.0, 2500.0,
           6760.0, 400.0, 1000.0,
 $END
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APPENDIX VI INPUT FILE FOR THE ISOTHERMAL PERMEATION
 $TITLE
  USER = 'PSAVO', PROJEC = 'GKB81', PROBLE = 'Testaus',
 $END

 ! Units in the simulation

 $UNITS
  MODELS = 'IFLASH', 'SDGMEM'
  MAXITE = 100
 $END

 ! Components in the simulation
 ! H2, CH4, C2H6, C3H6, C3H8

 $THERMO
  COMPNU = 20,
           66,
           105,
           126,
           138         ! Component numbers in the FLOWBAT databank
  KTYPE = 'SRK-DG'     ! Method to compute the phase equilibrium:
                       ! Daubert and Graboski modification of SRK
  MTHENT = 6,          ! Method to compute the specific enthalpy:
                       ! Pressure correction from SRK-DG
  MTHLSV = 6,          ! Method to compute the liquid specific molar
                       ! volume: Chueh, Prausnitz, Lyckman, Eckert
                       ! saturated liquid
  MVSPVO = 6,          ! Method to compute the vapor specific molar volume:
                       ! SRK-DG
  ISRKSC = 1           ! Use alpha-equations for the supercritical
                       ! components
  MDATA = 1            ! Indicator to read the namelist CRDATA
 $END

 ! EOS parameters for PHSC

 $CRDATA
  PHSCR = 0.382, 1.0, 1.694, 2.029, 2.129,
  PHSCE = 63.4, 182.1, 206.3, 221.9, 219.0,
  PHSCS = 4.945, 4.126, 3.916, 3.951, 3.998,
 $END

 ! Feed flow of the simulation

 $FLOWS
  FNAMES = 'TESTGAS1',
  PRES = 0.101325,         ! Pressure in MPa
  TEMP = 313.15,           ! Temperature in K
  FLOWTO = 1.7D0           ! Total flow rate
  FLOWDI = 'MOL',          ! Flow dimensions moles/h
  FLOWEN = 'NON-COMPUTE',  ! Selection not to compute the feed enthalpy
  FLOW1 = 10.20, 10.0,
          9.97, 20.00,
          49.83            ! Feed flow composition
 $END

 ! Isothermal flash unit

 $IFLASH
  IPR = 0                  ! Output printing suppressed
  UNNAME = 'PROPER1',      ! Block/Unit name
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  FEEDS = 'TESTGAS1',      ! Feed to the unit
  PRODUC = 'GAS1', 'LIQ1'  ! Product flows from the unit
  TEMP = 313.15            ! Block temperature
  PRES = 0.41161           ! Block pressure
 $END

! Gas/vapor membrane separation unit

 $SDGMEM
  IPR = 2                 ! Moderate output printing
  UNNAME = 'TESTCELL'     ! Block/Unit name
  FEEDS = 'GAS1'          ! Feed to the unit
  PRODUC = 'RETE', 'PERM' ! Product flows from the unit
  TEMP = 303.15           ! Block temperature
  PRES = 0.4116169929,    ! Feed/Retentate pressure
  PRESV = 0.06666118      ! Permeate product pressure
  PDROP = 'NO'            ! Do not compute pressure drop
  A = 0.0011400918        ! Membrane area
  DMEM = 195.0D0          ! Membrane thickness in microm.
  MODTYP = 'TC'           ! Module type: flat sheet test cell,
                          ! Cross-flow permeate with 1 control volume
  POLY = 'PDMS'           ! Membrane material
  MWP = 50000.0           ! Polymer molecular weight (number average)
  PDIS = 1.5              ! Polydispersity index
  MASSTR = 'simplified'   ! Method to compute the mass transfer:
                          ! The simplified method used
  DCOEF = 'free'          ! Diffusion coefficients from the free volume
                          ! correlations
  CROSS = 'no'            ! Do not compute the cross coefficients
  SOLVER = 'newton'       ! Selection for the Newton-Raphson
                          ! nonlinear equation solver
  PTHERM = 'phsc'         ! Thermodynamics selection for the polymeric
                          ! system
  !
  ! Parameters for the diffusion coefficient correlation
  !
  AD = 1.8774E-3, 1.0327E-3, 1.4892E-3, 2.0242E-3, 1.4891E-3
  BD = 0.441, 0.7545, 0.9926, 1.136, 1.129
  CD = 0.0, 0.0, 1.26118E-5, 1.55793E-5, 2.09383E-5
  ED = 0.0, 0.0, 3197.643, 3555.543, 3599.526
  ENERGY = 'NO'           ! Exclude energy equations: isothermal system
  MAXITE = 100            ! Maximum number of iterations for
                          ! the nonlinear equation solver
  TOL = 1.0D-8            ! Tolerance for nonlinear equation solver
  TUNITS = 3600.0         ! Time units (seconds/units in the simulation)
 $END
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APPENDIX VII INPUT FILE FOR THE SELECTIVE REMOVAL OF

HYDROCARBONS FROM HYDROGEN
 $TITLE
  USER = 'PSAVO', PROJEC = 'GKB81', PROBLE = 'Testaus',
 $END

 $UNITS
  MODELS = 'IFLASH', 'SDGMEM', 'IFLASH', 'SDGMEM',
  MAXITE = 100
  FLFILE = 'hcpurge.flw'   ! Flow file name of the simulation
  UNFILE(2) = 'memb1.pro'  ! Block/Unit file name for 2 nd block
  UNFILE(4) = 'memb2.pro'  ! Block/Unit file name for 4 th block
$END

 ! Components in the simulation
 ! H2, CH4, C2H6, C3H6, C3H8, H2S, N2

 $THERMO
  COMPNU = 20, 66,
           105, 126,
           138, 22,
           31          ! Component numbers in the FLOWBAT databank
  KTYPE = 'SRK-DG'
  MTHENT = 6,          ! Method to compute the specific enthalpy:
                       ! Pressure correction from SRK-DG
  MTHLSV = 6,          ! Method to compute the liquid specific molar
                       ! volume: Chueh, Prausnitz, Lyckmann,
                       ! Eckert saturated liquid
  MVSPVO = 6           ! Method to compute the vapor specific molar volume:
                       ! SRK-DG
  ISRKSC = 1           ! Use alpha-equations for the supercritical
                       ! components
  MDATA = 1            ! Indicator to read the namelist CRDATA
 $END

! EOS parameters for the SLNLF and the PHSC

 $CRDATA
  SLTEMP = 53.55, 211.2, 311.0, 350.7, 364.1, 369.4, 133.7
  SLPRES = 31.7, 245.1, 328.5, 357.0, 326.4, 628.3, 195.4
  SLDEN = 75.27, 474.4, 632.8, 729.8, 698.4, 1090.0, 935.6
  PHSCR = 0.382, 1.0, 1.694, 2.029, 2.129, 1.789, 1.131
  PHSCE = 63.4, 182.1, 206.3, 221.9, 219.0, 242.9, 99.4
  PHSCS = 4.945, 4.126, 3.916, 3.951, 3.998, 3.357, 3.628
 $END

! Feed flows

 $FLOWS
  FNAMES = 'PG1', 'PG2'
  PRES = 2*2.75,           ! Flow pressures [MPa]
  TEMP = 2*313.15,         ! Flow temperatures [K]
  FLOWTO = 2*176899.73,    ! Total flow rates
  FLOWDI = 2*'MOL',        ! Flow dimensions [mole/h]
  FLOWEN = 2*'COMPUTE',    ! Compute the flow specific enthalpies
  FLOW1 = 85.0, 7.0, 4.0, 0.0, 2.5, 1.5, 0.0
  FLOW2 = 85.0, 7.0, 4.0, 0.0, 2.5, 1.5, 0.0
 $END

! Components in the simulation
! H2, CH4, C2H6, C3H6, C3H8, H2S, N2
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! Isothermal flash unit, models the feed compression and cooling

 $IFLASH
  IPR = 0
  UNNAME = 'FDCOMP1',
  FEEDS = 'PG1',
  PRODUC = 'HPPG1', 'DUMMY-LIQ1'
  TEMP = 313.15
  PRES = 2.75
 $END

! Gas/vapor membrane separation unit

 $SDGMEM
  IPR = 1
  UNNAME = 'MEMB1'        ! Feed flow to the unit
  FEEDS = 'HPPG1'
  PRODUC = 'PURGE1',
           'PERM1'        ! Product flows from the unit
  PRESV = 0.8,            ! Permeate product pressure [MPa]: design spec
  A = 80.0                ! Total membrane area
  POLY = 'PDMS'           ! Selective layer material
  MWP = 50000.0           ! Polymer molecular weight (number average)
  PDIS = 1.5              ! Polydispersity index
  DMEM = 4.0D0            ! Selective layer thickness [microm]
  MODTYP = 'spiral'       ! Module type: spiral-wound
  DTUBE = 0.02921         ! Central tube diameter: 1.15 in
  NMOD = 2                ! Number of parallel modules
  NMODS = 2               ! Number of serial modules
  NLEAF = 10,             ! Number of membrane leaves in a module
  LLEAF = 0.9144,         ! Leaf length
  HFC = 0.0013,           ! Height of the feed/retentate channel
  HPC = 0.001             ! Height of the permeate channel
  INMAX = 20              ! Maximum number of inner iterations
  OUTMAX = 6              ! Maximum number of outer iterations
  MPDROP = 2              ! Method to compute the pressure drop:
                          ! compute from the friction factors
  FANV = 48.0             ! The fanning friction factor constant
                          ! for the permeate side
  NLSECT = 60,            ! Number of x directed grid lines
  NVSECT = 50             ! Number of z directed grid lines
  MAXITE = 100            ! Maximum number of iterations
                          ! for the nonlinear equation solver
  MTHITE = 1              ! Selection for the Newton-Raphson
                          ! nonlinear equation solver
  TOL = 1.0D-8            ! Tolerance for the nonlinear equation solver
  MASSTR = 'simplified'   ! Method to compute the mass transfer:
                          ! The simplified method used
  DCOEF = 'free'          ! Diffusion coefficients from the free volume
                          ! correlation
  CROSS = 'no'            ! Do not compute the cross coefficients
  PTHERM = 'slnlf'        ! Thermodynamics selection for the polymeric
                          ! system
  !
  ! Parameters for the diffusion coefficient correlation
  !
  AD = 8.2533E-4, 5.1042E-4, 4.8253E-4,
       3.7110E-4, 9.3439E-5, 1.7159E-4, 1.2985E-3
  BD = 0.4766, 0.696, 0.8341, 0.8383, 0.636, 0.4677, 0.7667
  CD = 0.0, 0.0, 4.6846E-5, 1.3509E-4, 2.0157E-3, 0.0, 0.0
  ED = 0.0, 0.0, 2780.859, 2853.632, 2059.340, 0.0, 0.0
  TUNITS = 3600.0         ! Time units (seconds/units in the simulation)
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  CVFLUX = 'all'          ! Selection for the control volume flux
                          ! computation:
                          ! Compute fluxes at all control volumes
  ENERGY = 'yes'          ! Include energy equations: non-isothermal system
 $END

! Isothermal flash unit, models the feed compression and cooling

 $IFLASH
  IPR = 0
  UNNAME = 'FDCOMP2',
  FEEDS = 'PG2',
  PRODUC = 'HPPG2', 'DUMMY-LIQ2'
  TEMP = 313.15
  PRES = 2.75
 $END

! Gas/vapor membrane separation unit

 $SDGMEM
  IPR = 1
  UNNAME = 'MEMB2'        ! Feed flow to the unit
  FEEDS = 'HPPG2'
  PRODUC = 'PURGE2',
           'PERM2'        ! Product flows from the unit
  PRESV = 0.8,            ! Permeate product pressure [MPa]: design spec
  A = 80.0                ! Total membrane area
  POLY = 'PDMS'           ! Selective layer material
  MWP = 50000.0           ! Polymer molecular weight (number average)
  PDIS = 1.5              ! Polydispersity index
  DMEM = 4.0D0            ! Selective layer thickness [microm]
  MODTYP = 'spiral'       ! Module type: spiral-wound
  DTUBE = 0.02921         ! Central tube diameter: 1.15 in
  NMOD = 2                ! Number of parallel modules
  NMODS = 2               ! Number of serial modules
  NLEAF = 10,             ! Number of membrane leaves in a module
  LLEAF = 0.9144,           ! Leaf length
  HFC = 0.0013,           ! Height of the feed/retentate channel
  HPC = 0.001             ! Height of the permeate channel
  INMAX = 20              ! Maximum number of inner iterations
  OUTMAX = 6              ! Maximum number of outer iterations
  MPDROP = 2              ! Method to compute the pressure drop:
                          ! compute from the friction factors
  FANV = 48.0             ! The Fanning friction factor constant
                          ! for the permeate side
  NLSECT = 60,            ! Number of x directed grid lines
  NVSECT = 50             ! Number of z directed grid lines
  MAXITE = 100            ! Maximum number of iterations
                          ! for the nonlinear equation solver
  MTHITE = 1              ! Selection for the Newton-Raphson
                          ! nonlinear equation solver
  TOL = 1.0D-8            ! Tolerance for the nonlinear equation solver
  MASSTR = 'simplified'   ! Method to compute the mass transfer:
                          ! The simplified method used
  DCOEF = 'free'          ! Diffusion coefficients from the free volume
                          ! correlation
  CROSS = 'no'            ! Do not compute the cross coefficients
  PTHERM = 'phsc'         ! Thermodynamics selection for the polymeric
                          ! system
  !
  ! Parameters for the diffusion coefficient correlation
  !
  AD = 1.8774E-3, 1.0327E-3, 1.4892E-3,
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       2.0242E-3, 1.4891E-3, 3.4955E-4, 8.5285E-3
  BD = 0.4410, 0.7545 0.9926, 1.1360, 1.1260, 0.7190, 1.0340
  CD = 0.0, 0.0, 1.26118-5, 1.55793E-5, 2.09383E-5, 0.0, 0.0
  ED = 0.0, 0.0, 3197.643211, 3555.543053, 3599.525725, 0.0, 0.0
  TUNITS = 3600.0         ! Time units (seconds/units in the simulation)
  CVFLUX = 'all'          ! Selection for the control volume flux
                          ! computation:
                          ! Compute fluxes at all control volumes
  ENERGY = 'yes'          ! Include energy equations: non-isothermal system
 $END
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APPENDIX VIII INPUT FILE FOR THE PROPYLENE RECOVERY
 $TITLE
  USER = 'PSAVO', PROJEC = 'GKB81', PROBLE = 'Testaus',
 $END

 ! Units in the simulation

 $UNITS
  MODELS = 'IFLASH', 'IFLASH', 'SDGMEM',
          'IFLASH', 'SDGMEM',
  MAXITE = 100
  FLFILE = 'ppmtr.flw'      ! Flow file name of the simulation
  UNFILE(3) = 'memb1.pro',  ! Block/Unit file name for 3 rd block
  UNFILE(5) = 'memb2.pro'   ! Block/Unit file name for 5 th block
 $END

 ! Components in the simulation
 ! N2, C2H4, C2H6, C3H6, C3H8,

 $THERMO
  COMPNU = 31,
           93,
          105,
          126,
          138          ! Component numbers in the FLOWBAT databank
  KTYPE = 'SRK-DG'
  MTHENT = 6,          ! Method to compute the specific enthalpy:
                       ! Pressure correction from SRK-DG
  MTHLSV = 6,          ! Method to compute the liquid specific molar
                       ! volume:
                       ! Chueh, Prausnitz, Lyckman, Eckert saturated liquid
  MVSPVO = 1,          ! Method to compute the vapor specific molar volume:
                       ! ideal gas
  ISRKSC = 1           ! Use alpha-equations for the supercritical
                       ! components
  MVVISC = 2           ! Method to compute the vapor viscosity:
                       ! Aasber-Petersen et al. (1991)
  MDATA = 1            ! Indicator to read the namelist CRDATA
 $END

 ! EOS parameters for the PHSC

 $CRDATA
  PHSCR = 1.131, 1.609, 1.694, 2.029, 2.129
  PHSCE = 99.4, 196.8, 206.3, 221.9, 219.0
  PHSCS = 3.628, 3.839, 3.916, 3.951, 3.998
 $END

 ! Feed flows and initial estimates for the cut flows.

 $FLOWS
  FNAMES = 'PG', 'RECY'      ! Feed and cut flow
  PRES = 0.101325, 1.3       ! Flow pressures
  TEMP = 298.15, 283.15      ! Flow temperatures
  FLOWTO = 53061.61419,
           15172.0           ! Total flow rates
  FLOWDI = 'MOL', 'MOL'      ! Flow dimensions
  FLOWEN = 'COMPUTE',
           'COMPUTE'         ! Compute the flow specific enthalpies
  FLOW1 = 86.7,
          0.15,
          0.15,
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          10.0,
           3.0               ! Feed flow composition,
  FLOW2 = 82.0,
           0.3,
           0.2,
          12.0,
           5.5               ! Cut flow composition
 $END

 ! Isothermal flash unit, models the feed compression and cooling

 $IFLASH
  IPR = 0
  UNNAME = 'FDCOMP',
  FEEDS = 'PG',
  PRODUC = 'HPPG', 'DUMMY-LIQ'
  TEMP = 298.15
  PRES = 1.38
 $END

 ! Isothermal flash unit, models the mixing of the feed
 ! and the recycle flow

 $IFLASH
  IPR = 0
  UNNAME = 'PROPER1',
  FEEDS = 'PG',
  FEEDS = 'HPPG', 'RECY'
  PRODUC = 'ST1-FD', 'DUMMY-L1'
  TEMP = 293.15
  PRES = 1.38
 $END

 ! Gas/vapor membrane separation unit, stripping stage

 $SDGMEM
  IPR = 1
  UNNAME = 'MEMB1'
  FEEDS = 'ST1-FD'        ! Feed flow to the unit
  PRODUC = 'PURGE',
           'PERM'         ! Product flows from the unit
  PRESV = 0.15,           ! Permeate product pressure: design spec
  A = 264.0               ! Total membrane area
  POLY = 'PDMS'           ! Selective layer material
  MWP = 50000.0           ! Polymer molecular weight (number average)
  PDIS = 1.5              ! Polydispersity index
  DMEM = 4.0D0            ! Selective layer thickness [microm]
  MODTYP = 'spiral'       ! Module type: spiral-wound
  DTUBE = 0.02921         ! Central tube diameter: 1.15 in
  NMOD = 11               ! Number of parallel modules
  NMODS = 4               ! Number of serial modules
  NLEAF = 4,              ! Number of membrane leaves in a module
  LLEAF = 0.9144,         ! Leaf length
  HFC = 0.0013,           ! Height of the feed/retentate channel
  HPC = 0.001             ! Height of the permeate channel
  INMAX = 20              ! Maximum number of inner iterations
  OUTMAX = 6              ! Maximum number of outer iterations
  MPDROP = 2              ! Method to compute the pressure drop:
                          ! compute from the friction factors
  FANV = 48.0             ! The Fanning friction factor constant
                          ! for the permeate side
  NLSECT = 75,            ! Number of x directed grid lines
  NVSECT = 20             ! Number of z directed grid lines
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  MAXITE = 100            ! Maximum number of iterations
                          ! for the nonlinear equation solver
  MTHITE = 1              ! Selection for the Newton-Raphson
                          ! nonlinear equation solver
  TOL = 1.0D-6            ! Tolerance for the nonlinear equation solver
  MASSTR = 'simplified'   ! Method to compute the mass transfer:
                          ! The simplified method used
  DCOEF = 'free'          ! Diffusion coefficients from the free volume
                          ! correlation
  CROSS = 'no'            ! Do not compute the cross coefficients
  PTHERM = 'phsc'         ! Thermodynamics selection for the polymeric
                          ! system
  !
  ! Parameters for the diffusion coefficient correlation
  !
  AD = 8.5285E-3, 1.3838E-3, 1.4892E-3, 2.0242E-3, 1.4891E-3
  BD = 1.0340, 0.9365, 0.9926, 1.1360, 1.1290
  CD = 0.0, 4.90811E-5, 1.26118E-5, 1.55793E-5, 2.09383E-5
  ED = 0.0, 2670.212, 3197.643, 3555.543, 3599.526
  TUNITS = 3600.0         ! Time units (seconds/units in the simulation)
  CVFLUX = 'median'       ! Selection for the control volume flux
                          ! computation:
                          ! Compute fluxes at median properties
  ENERGY = 'yes'          ! Include energy equations: non-isothermal system
 $END

 ! Isothermal flash unit, models the compression and cooling of
 ! permeate stream from the striping stage.

 $IFLASH
  IPR = 0
  UNNAME = 'PROPER2',
  FEEDS = 'PERM',
  PRODUC = 'ST2-FD', 'DUMMY-L2'
  TEMP = 293.15
  PRES = 1.385
 $END

 ! Gas/vapor membrane separation unit, enriching stage

 $SDGMEM
  IPR = 1
  UNNAME = 'MEMB2'
  FEEDS = 'ST2-FD'        ! Feed flow to the unit
  PRODUC = 'RECY',
           'HC'           ! Product flows from the unit
  PRESV = 0.103,          ! Permeate product pressure: design spec
  A = 12.0                ! Total membrane area
  POLY = 'PDMS'           ! Selective layer material
  MWP = 50000.0           ! Polymer molecular weight (number average)
  PDIS = 1.5              ! Polydispersity index
  DMEM = 4.0D0            ! Selective layer thickness [microm]
  MODTYP = 'spiral'       ! Module type: spiral-wound
  DTUBE = 0.02921         ! Central tube diameter: 1.15 in
  NMOD = 2                ! Number of parallel modules
  NMODS = 1               ! Number of serial modules
  NLEAF = 4,              ! Number of serial modules
  LLEAF = 0.9144,         ! Leaf length
  HFC = 0.0013,           ! Height of the feed/retentate channel
  HPC = 0.001             ! Height of the permeate channel
  INMAX = 10              ! Maximum number of inner iterations
  OUTMAX = 4              ! Maximum number of outer iterations
  MPDROP = 2              ! Method to compute the pressure drop:
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                          ! compute from the friction factors
  FANV = 48.0             ! The Fanning friction factor constant
                          ! for the permeate side
  NLSECT = 75,            ! Number of x directed grid lines
  NVSECT = 20             ! Number of z directed grid lines
  MAXITE = 100            ! Maximum number of iterations
                          ! for the nonlinear equation solver
  MTHITE = 1              ! Selection for the Newton-Raphson
                          ! nonlinear equation solver
  TOL = 1.0D-6            ! Tolerance for the nonlinear equation solver
  MASSTR = 'simplified'   ! Method to compute the mass transfer:
                          ! The simplified method used
  DCOEF = 'free'          ! Diffusion coefficients from the free volume
                          ! correlations
  CROSS = 'no'            ! Do not compute the cross coefficients
  PTHERM = 'phsc'         ! Thermodynamics selection for the polymeric
                          ! system
  !
  ! Parameters for the diffusion coefficient correlation
  !
  AD = 8.5285E-3, 1.3838E-3, 1.4892E-3, 2.0242E-3, 1.4891E-3
  BD = 1.0340, 0.9365, 0.9926, 1.1360, 1.1290
  CD = 0.0, 4.90811E-5, 1.26118E-5, 1.55793E-5, 2.09383E-5
  ED = 0.0, 2670.212, 3197.643, 3555.543, 3599.526
  TUNITS = 3600.0         ! Time units (seconds/units in the simulation)
  CVFLUX = 'median'       ! Selection for the control volume flux
                          ! computation:
                          ! Compute fluxes at median properties
  ENERGY = 'yes'          ! Include energy equations: non-isothermal system
 $END

 ! Convergence and calculation tolerances

 $SOLVER
  CUTFLO = 'RECY',        ! Cut flow specification
  MAXITE = 100,           ! Maximum number of iterations
 $END
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Errata

Page 28

Equations of energy (3.34), (3.35), and (3.36) in terms of partial molar enthalpies should be

written as
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Page 149

Nomenclature for q  should be “Heat flux vector” instead of “Conductive heat flux vector”.

Page 159

Sanchez–Lacombe equation of state parameters for hydrogen in Table A.1 should be *T =

53.55 K, *P = 31.7 MPa, and *r = 75.27 kg/m3 as used in the example simulations (Appendix

VII).


