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Abstract  
Heikki Kurttila 

Isentropic Exergy and Pressure of the Shock Wave  
Caused by the Explosion of a Pressure Vessel 
 
Lappeenranta, 2003 
Acta Universitatis Lappeenrantaensis 164 
Diss. Lappeenranta University of Technology 
 
ISBN 951-764-813-8, ISBN 951-764-819-7 (PDF) 
ISSN 1456-4491 
  
   An accidental burst of a pressure vessel is an uncontrollable and explosion-like batch 
process. In this study it is called an explosion. The destructive effect of a pressure vessel 
explosion is relative to the amount of energy released in it. However, in the field of pressure 
vessel safety, a mutual understanding concerning the definition of explosion energy has not 
yet been achieved.  
   In this study the definition of isentropic exergy is presented. Isentropic exergy is the greatest 
possible destructive energy which can be obtained from a pressure vessel explosion when its 
state changes in an isentropic way from the initial to the final state. Finally, after the change 
process, the gas has similar pressure and flow velocity as the environment. Isentropic exergy 
differs from common exergy in that the process is assumed to be isentropic and the final gas 
temperature usually differs from the ambient temperature. The explosion process is so fast 
that there is no time for the significant heat exchange needed for the common exergy. 
Therefore an explosion is better characterized by isentropic exergy. 
   Isentropic exergy is a characteristic of a pressure vessel and it is simple to calculate. 
Isentropic exergy can be defined also for any thermodynamic system, such as the shock wave 
system developing around an exploding pressure vessel. At the beginning of the explosion 
process the shock wave system has the same isentropic exergy as the pressure vessel. When 
the system expands to the environment, its isentropic exergy decreases because of the increase 
of entropy in the shock wave. The shock wave system contains the pressure vessel gas and a 
growing amount of ambient gas.     
   The destructive effect of the shock wave on the ambient structures decreases when its 
distance from the starting point increases. This arises firstly from the fact that the shock wave 
system is distributed to a larger space. Secondly, the increase of entropy in the shock waves 
reduces the amount of isentropic exergy. Equations concerning the change of isentropic 
exergy in shock waves are derived. 
   By means of isentropic exergy and the known flow theories, equations illustrating the 
pressure of the shock wave as a function of distance are derived. A method is proposed as an 
application of the equations. The method is applicable for all shapes of pressure vessels in 
general use, such as spheres, cylinders and tubes. The results of this method are compared to 
measurements made by various researchers and to accident reports on pressure vessel 
explosions. The test measurements are found to be analogous with the proposed method and 
the findings in the accident reports are not controversial to it. 
 
Keywords:  Burst, energy, exergy, explosion, pressure vessel, shock wave 
UDC 533.6.011.7 : 536.7 : 621.772 : 614.832 
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Symbols 

 

Symbol Description    Dimension 

Latin alphabets 

a sound velocity   m/s 

B exergy    J 

C constant factor   - 

c specific heat capacity    J/kgK 

E isentropic exergy   J 

H enthalpy    J 

h specific enthalpy   J/kg 

k compressibility   1/Pa 

L  length    m 

m mass    kg 

n  exponent    - 

  relative overpressure by Baker  - 

p pressure    Pa 

r  radius    m 

 relative starting distance by Baker  - 

S entropy    J/K 

s specific entropy   J/kgK 

T temperature    K 

t time    s 

Tr transition point   - 

U internal energy   J 

u specific internal energy   J/kg 

u wave velocity   m/s 

V volume    m3 

W work    J 

w flow velocity    m/s 

x  distance    m 

x  parameter    -   



 

y  function    -  

 

Greek alphabets 

ε loss ratio of isentropic exergy  - 

κ adiabatic factor   - 

ρ density    kg/m3 

 

Sub-indexes 

a ambience 

ac ambient gas captured into the shock wave system 

L pressurized part of the shock tube 

M mega-system 

p constant pressure 

r reflected wave 

s steady flow or system  

T table  

t change of time 

u unsteady flow 

V constant volume 

x transition point or difference between the ends of a gas element  

0 equilibrium state with the ambience 

1 beginning, starting point or state 

2 end or state 

 

Differentials and differences 

D differential of shock wave 

d differential 

δ partial differential 

∆ difference or change 
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1 Introduction 
 

1.1 Background 

 
  There are many kinds of pressure vessels operating in the world, used for several purposes 

such as gas bottles, power plants, process industry, etc. An operating pressure vessel has 

contents with overpressure in proportion to the environment. That is why there are remarkable 

tensions concentrated on the wall structures of the vessel. The pressure vessels are designed 

and built so that they can carry the intended overpressure. Usually, pressure vessels contain a 

major force and a huge amount of energy. Practical experiences have shown that this fact 

cannot be detected by human senses. 

  The main risk concerning a pressure vessel is that, for some reason or other, the structure of 

the pressure vessel fails and the content discharges violently out of the vessel. The discharge 

is usually an explosion-like process causing destruction to the environment. There are many 

causes to make a pressure vessel explosion possible, such as exceeding the highest allowable 

pressure, corrosion, fatigue, etc. In order to avoid the hazards the pressure vessels are subject 

to close safety orders and inspections. 

  The definition of a risk of an accident is its probability multiplied by its impact. In this study 

the impacts are discussed. It is necessary to know the magnitude of the consequences of the 

pressure vessel explosion to be able to evaluate and manage the risks on the environment.  

  The accidental burst of a pressure vessel is an uncontrollable and explosion-like batch 

process. It is an unsteady process in which a huge amount of energy is released in a very short 

time (one second at the most). The characteristics of an explosion can be observed with the 

help of the theories of thermodynamics and compressible flow.  

  The explosion of a pressure vessel is somehow similar to that of an explosive. The main 

destructive effects of the explosion are shock waves, missiles and shaking. The explosion of a 

pressure vessel containing combustible liquid gas causes additionally fatal heat radiation and 

fire. 

  The factors of the shock wave affecting the magnitude of the destruction are overpressure 

and its impulse. An impulse is a time integral of the overpressure caused by an explosion. 

Also the negative pressure and its impulse are significant. According to reports, a building 

will break down only when both the pressure and the impulse of the shock wave exceed the 
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allowable levels [1]. If only one exceeds the level, the damages will not be significant. The 

pressure and the impulse decrease when the distance from the explosion point increases. The 

energy inside a pressure vessel is the essential factor in the effect of an explosion [2]. 

 

1.2 Objectives of the study 

 
  In this study the shock wave phenomena are discussed, but the missiles and the shaking are 

excluded. In the shock wave the overpressure is discussed but the impulse is excluded. The 

study concentrates on the pressure of the main shock wave as a function of the distance from 

the starting point in a hemispherically symmetric system. The problem is regarded to be three-

dimensional or rather quasi-one-dimensional. 

  Many theories concerning the energy of pressure vessel explosion have been published in 

the field of pressure vessel safety [2]. In this work the theory of "isentropic exergy " will be 

found to be the best among the theories. Isentropic exergy is the greatest amount of 

mechanical energy which can be obtained from a system when its state changes isentropically 

into the state with the ambient pressure. 

  The idea of isentropic exergy seems to be poorly accepted in the field of pressure vessel 

safety [2]. However, although the idea of isentropic exergy seems to be generally known in 

the field of thermodynamics [3], the definition itself is new. 

  Isentropic exergy can be regarded as the property of a pressure vessel, and its amount is 

simple to calculate. However, isentropic exergy can also be applied to other thermodynamic 

systems, such as a shock wave system. 

  The aim of this study is to show the advantage of isentropic exergy in evaluating the 

pressure of a shock wave as a function of distance in a hemispherically symmetric system. 

The advantage of isentropic exergy is that with its help the pressure of a shock wave as a 

function of distance can be evaluated for pressure vessels of any shape in general use. 

Nowadays, even the most advanced theories evaluate the problem only for hemispherical 

pressure vessels, although, in general, they do not exist [2], [4]. 

  The argument of this work is the following: During an accidental explosion, an expanding 

shock wave system develops outside the pressure vessel. The pressure vessel and the 

surrounding gas in the shock wave together produce a new expanding system. The system has 

obtained the initial isentropic exergy from the pressure vessel. However, the system loses 
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parts of its isentropic exergy all the time because of the increase of entropy in the shock 

waves. Finally, there is no isentropic exergy left, and the explosion is over. It is possible to 

picture an ideal explosion in which all the initial isentropic exergy will be lost in the shock 

waves and no destruction will occur. An example of this idea is illustrated in Figure 1.1. 

  In chapter 2 the basics of the explosion phenomena are discussed. The principal energy 

theories are presented and compared to each other. The isentropic exergy is chosen from the 

energy theories. The Rankine-Hugoniot equations and some of their consequences, such as 

the increases in post-shock temperature and entropy, are discussed. The one-dimensional 

shock tube theory is discussed, especially the state of the simple flow. It is essential to 

perceive the dual nature of the shock wave in a shock tube, the simple- and the non-simple 

states and the transition point between them. It is assumed in later chapters (3, 4 and 5) that 

the shock wave in the three dimensional case is of the same dual nature as in the shock tube. 

In chapter 2 the innovations are the calculated values of the isentropic exergy of pressure 

vessels and the derived equations concerning the loss of isentropic exergy in the shock waves. 

  In chapter 3 the equations concerning the pressure of the main shock wave as a function of 

the distance in a hemispherically symmetric system are derived. The equations are presented 

both for the simple and the non-simple states. For the simple state the equation is derived by 

applying the theories of thermodynamics, unsteady compressible flow and the Rankine-

Hugoniot equations. The values of the shock wave pressure, the distance and the loss of 

isentropic exergy are presented in a table form. For the non-simple state the equation is 

derived by applying a simple self-similarity principle. This innovation accounts for the whole 

chapter 3. 

  In chapter 4 a method for the evaluation of the shock wave pressure as a function of distance 

in a hemispherically symmetric system is introduced. The method contains the equations 

derived in chapter 3. The transition point between the two above mentioned states is defined 

by comparing the results of the equations to the results of Baker's theory and the GRP-theory 

(GRP = Generalized Riemann Problem), which are the most advanced theories in the field [2], 

[4], [25]. These theories have been applied to spherical (in the air) or hemispherical (on the 

ground) pressure vessels. With the help of the method the function concerning the shock wave 

pressure as a function of the distance can be made also for a cylindrical pressure vessel.    
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   In chapter 5 the proposed theory is compared with the test results of pressure vessel 

explosions carried out by three different researchers. The proposed theory is also compared 

with the findings in two different explosion accidents of pressure vessels. 

  The position of the transition point in a shock tube is discussed more closely in the appendix  

of this paper. 

 

 

 
Fig. 1.1. Expansion of the shock wave caused by a pressure vessel explosion. The pressure  
vessel and a part of the ambient gas produce together a mega-system surrounded by a control 
surface. At the time t0 the isentropic exergy in the pressure vessel is Es and the entropy of the  
mega-system is SM. At the time t1 the developed shock wave system has the isentropic exergy  
Es1 and the entropy of the mega-system is SM1. At the time t2 the developed shock wave  
system has the isentropic exergy Es2 and the entropy of the mega-system is SM2…  
The entropy is increasing and the isentropic exergy is decreasing so that SM < SM1 < SM2 and 
Es > Es1 >Es2. 
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2 Explosion theories 

 

2.1 Energy in pressure vessel explosion 
 

  Although the principal thermodynamic properties of pressure vessel explosion are generally 

known, there are differences in the theories of its energy. The main alternative theories are 

presented below. 
 
2.1.1 Growth of internal energy caused by pressurization  

 

  The oldest theory is the growth of internal energy caused by pressurization in a constant 

volume. [2]. The pressurization is considered to happen by heating of the vessel gas from the 

outside or by combustion of the gas inside the pressure vessel. Brode has presented an 

equation on the change of the internal energy of a pressure vessel containing perfect gas [2]: 

 

 ( )
1

11

−
−

=∆
κ

VppU a    (2.1.1) 

where   

∆U = change of internal energy caused by the pressurization, 

p1 = pressure after the pressurization, 

pa = ambient pressure, 

V1 = volume of the pressure vessel, 

κ   = adiabatic constant of the gas. 

 

  This theory is very simple to apply. We only need to know the combustible energy of the gas 

or the heat energy from the outside. However, this theory does not express the effect of the 

explosion. Nevertheless, in very high values of pressure p1 the energy result approximates 

with other theories. Baker has applied the theory for the calculation of the shock wave as a 

function of distance caused by a pressure vessel explosion [2]. The pressurization process and 

the increase of the internal energy are illustrated in a pV – diagram in Figure 2.1. As it can be 

seen in Figure 2.1, this theory does not express the effect of the explosion. 
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Fig. 2.1. Growth of internal energy by pressurization by heating the pressure vessel gas at  
constant volume. The arrow shows the direction of the process. 
 
 
 2.1.2 Work  

 

  When the gas with overpressure pushes a piston ahead it performs work. Equally, an 

explosion performs work outwards. The amount of work the expansive gas does can be 

presented as in the following equation: 

 

 ∫=
2

1

V

V

pdVW     (2.1.2) 

where   

W = work, 

p = pressure, 

V1 = volume in the beginning, 

 V2 = volume in the end. 

 

  This theory is the most popular in the field of pressure vessel safety [5], [6], [7], [8], [9], 

[10], [11]. It is normal to imagine that the explosion energy is simply the work done by the 

isentropically expanding gas from a burst pressure vessel. However, all the work is not spent 

in the destruction caused by the explosion. Part of this work pushes the environmental 

atmosphere aside. All the work done by the expanding gas cannot be classified as explosion 
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energy, as then the theory would be in contradiction with the second law of thermodynamics. 

The work done by the pressure vessel gas is illustrated in Figure 2.2. 

 

   
 
Fig. 2.2. Work done by the pressure vessel gas. The amount of work is coloured grey. The  
arrow shows the direction of the process. 
 
 
2.1.3 Exergy 

 

  Exergy is the maximum amount of mechanical energy or an equivalent, such as electric 

energy, which can be obtained from a system while it changes from its initial state to the state 

in equilibrium with the environment. Exergy depends both on the state of the system and on 

the state of the environment. The equation for the exergy of a system in a batch process is: 

 

 ( ) ( )010101 SSTVVpUUB aa −−−+−=   (2.1.3) 

where  

B = exergy, 

U1 = initial internal energy, 

U0 = internal energy in the equilibrium state with the environment, 

V1 = initial volume, 

V0 = volume in the equilibrium state with the environment, 

S1 = initial entropy, 

S0 = entropy in the equilibrium state with the environment, 

pa = ambient pressure, 
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Ta = ambient temperature. 

 

  In an exergic process the disequilibrium of the initial state of the system compared to the 

environment is changed to mechanical energy in the maximal way. Then the end values of the 

system gas become similar to those of the environment, as to the pressure and the 

temperature. The process where the exergy is achieved is illustrated in a pV –diagram in 

Figure 2.3. 

 

   
 
Fig. 2.3. Process where exergy is achieved. The amount of exergy is coloured grey.  
The arrow shows the direction of the process. 
 
   Crowl (1992) has suggested that exergy can be applied to explosions, as well [12]. 

However, exergy is an ideal theory of the maximum obtainable mechanical energy, and in 

order to approach it even close, extremely effective heat exchangers and sometimes advanced 

thermodynamic machines would be needed. An accidental explosion is an uncontrollable and 

fast process, however, and no significant heat exchange may occur. That is why the theory of 

exergy is not applicable in an explosion case. Here a theory describing a simpler process is 

needed. 

 
 
2.1.4 Isentropic exergy 

 

  Isentropic exergy is the maximum amount of mechanical energy that can be obtained from a 

system while it changes isentropically from its original state to the state with the ambient 

pressure. This idea is commonly accepted in the field of thermodynamics [3]. In the field of 
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process safety this kind of idea has been presented by Baum and Fullard [13], [14], [15] and 

the present writer [16].  

 

 ( )1221 VVpUUE a −−−=    (2.1.4) 

where  

E = isentropic exergy, 

U1 = internal energy in the beginning, 

U2 = internal energy in the end, 

V1 = volume in the beginning, 

V2 = volume in the end, 

pa = ambient pressure. 

 

   Because the process is considered isentropic and no heat exchange is assumed, equation 

(2.1.4) differs from equation (2.1.3). In equation (2.1.4) the part with the entropy values and 

the ambient temperature is eliminated because its value is null. Usually the final temperature 

of the gas differs from the ambient one. The final state of the gas is marked as U2 and V2. A 

process where the isentropic exergy is achieved is illustrated in a pV –diagram in Figure 2.4. 

 

   
 
Fig. 2.4. Process where isentropic exergy is achieved. The amount of isentropic exergy is  
coloured grey. The arrow shows the direction of the process. 
 
 Equation (2.1.4) can be expressed also with the help of the enthalpies as follows: 

 

 ( )appVHHE −−−= 1121    (2.1.5) 
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where   

H1 = enthalpy in the beginning, 

H2 = enthalpy in the end. 

 

The practical form is in the specific values: 

  

 ( ) ( )appVhh
v
VE −−−= 1121

1

1    (2.1.6)  

where  

h1 = specific enthalpy in the beginning, 

h2 = specific enthalpy in the end. 

v1 = specific volume in the beginning. 

 

In the case of ideal gas the equation can be expressed as: 

 

 ( )aa ppV
p
pVpE −−

























−

−
=

−

11

1

1
11 1

1

κ
κ

κ
κ   (2.1.7) 

where   

κ = adiabatic constant of the gas. 

 

The equation of isentropic exergy (2.1.7) can also be expressed in an integral form as follows: 

 

 ( )∫ −=
2

1

dVppE a    (2.1.8) 

 

Isentropic exergy can also be applied into weakly compressible liquids, such as water: 

 

 ( )211½ appkVE −=    (2.1.9) 

where  

k = compressibility (for water k = 4.591x10-10 1/Pa) [17]. 
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   The values of the isentropic exergy per volume in some pressure vessels as a function of 

overpressure are presented in Figure 2.5. The calculations of saturated liquids and steams 

have been carried out with the help equation (2.1.6) and Mollier-tables [18], [19]. For 

pressure vessels containing air the calculations have been done with equation (2.1.7) by using 

the adiabatic factor value κ = 1.4. For pressure vessels containing water with temperature 

below 100 oC the calculations have been done with equation (2.1.9) by using the 

compressibility k = 4.591x10-10 1/Pa. 

 

 

2.1.5 Comparison of the energy theories 

 

   In very high explosion pressures the amounts of energies become close to each other. 

However, in small overpressures the differences between the theories are significant. The 

theories are compared in Figure 2.6.  
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Fig. 2.5. Isentropic exergy per volume of a pressure vessel as a function of overpressure 
A) Saturated liquid water from equation (2.1.6),    
B) Saturated liquid ammonia from equation (2.1.6),    
C) Saturated liquid propane from equation (2.1.6), 
D) Saturated steams of water, ammonia and propane from equation (2.1.6), 
E) Air from equation (2.1.7) 
F) Water with temperature below 100 oC from equation (2.1.9). 
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Fig. 2.6 Comparison of the results of different theories as functions of the overpressure ratio,  
p1/pa-1: Isentropic exergy is E, work is W and change of internal energy is ∆U.  
Here the contents of the pressure vessels were chosen to be ideal gas with the adiabatic factor  
κ = 1.4. 
 

 

2.2 Characteristics of the shock wave 

 

2.2.1 Rankine-Hugoniot equations 

 

   Rankine and Hugoniot have independently derived equations for a shock wave in perfect 

gas [20], [21]. The equation for the density ratio in a shock wave is: 

 

 ( ) ( )
( ) ( ) a

a

a pp
pp

11
11

1

11

++−
−++

=
κκ
κκ

ρ
ρ    (2.2.1) 

where  

ρ1 = density in the shock wave, 

ρa = ambient density, 

p1 = pressure in the shock wave, 

pa = ambient pressure, 

κ = adiabatic factor. 
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   The Rankine-Hugoniot equation for the velocity of the shock wave in a stagnant ambient 

gas u is: 

 

 ( ) ( )
a

appu
ρ
κκ

2
11 1 −++

=        (2.2.2) 

 

The corresponding Rankine-Hugoniot equation for the velocity of the gas in the shock wave 

w is: 

 

 ( ) ( )[ ]( )a
aa

pp
pp

w −
−++

= 1
1 11
2

κκρ
     (2.2.3) 

 

 

2.2.2 Post-shock temperature 

 

When a shock wave reaches the part of ambient air the temperature ratio becomes the 

following: 

 

 
1

11

ρ
ρ

a

a

a p
p

T
T

=          (2.2.4) 

where   

T1 = temperature in the shock wave, 

Ta = ambient temperature. 

 

   By substituting the Rankine-Hugoniot equation (2.2.1) into (2.2.4) we get the temperature 

ratio in the shock wave: 

 

 ( ) ( )
( ) ( ) aa

a

a p
p

pp
pp

T
T 1

1

11

11
11

⋅
−++
++−

=
κκ
κκ        (2.2.5) 

 

   If there are no more shock waves the pressure of the air decreases eventually back to the 

ambient pressure in an isentropic way. Lord Rayleigh (1910) has indicated that the pressure of 
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the gas passing the shock front can only increase but never decrease [22]. The decrease of the 

pressure is essentially isentropic. Then the temperature ratio in the process of decreasing 

pressure becomes: 

 

 
κ
κ 1

11

2

−









=
p
p

T
T a          (2.2.6) 

where   

T2 = post-shock temperature at the ambient pressure. 

 

   After substituting equation (2.2.5) by (2.2.6) and editing the post shock temperature 

equation (2.2.7) can be achieved: 

 

 ( ) ( )
( ) ( )

κ

κκ
κκ

1

1

1

12

11
11









⋅

−++
++−

=
aa

a

a p
p

pp
pp

T
T       (2.2.7) 

 

  Kinney has earlier presented an equation like (2.2.7) [5]. A shock wave process with an 

isentropic process into the post-shock state is illustrated in Ts -diagram in Figure 2.7. 

 

   
Fig. 2.7. States of ambient gas caused by a shock wave. a = ambient state, 1 = shock wave 
state, 2 = post-shock state, pa = ambient pressure, T = temperature, s = specific entropy. 
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2.2.3 Change of entropy in a shock wave  

 

   Because the ambient temperature Ta and the post shock temperature T2 take place at the 

same pressure pa, the increase of the specific entropy s1 - sa can be obtained from the basic 

equation of thermodynamics. For a finite process in a perfect gas the specific entropy changes 

as [21]: 

 

 
a

pa T
Tcss 2

1 ln=−         (2.2.8) 

where  

sa = specific entropy of the ambient gas, 

s1 = specific entropy after the shock wave, 

Ta = ambient temperature, 

T2 = post-shock temperature, 

cp = specific heat capacity at constant pressure. 

 

  By substituting equation (2.2.7) into (2.2.8), a formula for the specific entropy of perfect gas 

in a shock wave can be obtained: 
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2.3 Change of isentropic exergy in a shock wave  

 
2.3.1 Shock wave system 

 

  In this chapter equations concerning the change of isentropic exergy in shock waves are 

derived. Isentropic batch processes can roughly be divided into two classes: with shock waves 

and without them. 
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   A batch process may be so slow that a shock wave is not developed. An example of this 

could be of a process where a cylinder with pressurized gas is pushing a piston ahead. The bar 

of the piston drives a dynamo, and electric energy is produced in it by the isentropic exergy of 

the cylinder gas. This arrangement is illustrated in Figure 2.8. In a process without a shock 

wave the isentropic exergy moves usually out from the system doing mechanical work into 

the environment. The process is schematically illustrated from the viewpoint of the system 

gas in Figure 2.9. 

   
Fig. 2.8. Expansion process without a shock wave.  
Isentropic exergy of a system producing electric energy.  
 

   
Fig. 2.9. Schematic diagram of a relatively slow isentropic expansion process. No shock wave  
exists. The interface of the system gas works as an expanding piston. The system including  
isentropic exergy is coloured grey. E = isentropic exergy, U = internal energy, V = volume,  
S = entropy, m = mass, pa = ambient pressure, U2 = final internal energy, V2 = final volume,  
H2 = final enthalpy. 
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  On the other hand, an explosion process is usually so fast that it develops a shock wave 

around the system. The produced shock wave system can also give parts of its isentropic 

exergy to the environment causing mechanical work, such as destruction. However, in order 

to treat the shock wave problem theoretically, it is necessary to presume an ideal explosion 

process where no destructive work exists. The ideal shock wave system can be considered to 

keep its isentropic exergy to itself. The purpose is to study what will happen to isentropic 

exergy in this case. 

  In chapter 2.1.4 equation (2.1.4) concerning the isentropic exergy of a pressure vessel was 

obtained:  

 

 ( )2121 VVpUUE a −+−=        (2.1.4) 

where  

E = isentropic exergy of the pressure vessel, 

U1 = initial internal energy, 

V1 = initial volume, 

U2 = final internal energy, 

V2 = final volume, 

pa = ambient pressure. 

  

  Here U1 and V1 are substituted by temporary values of U and V. Here E means the actual 

value of the isentropic exergy. 

   Before the explosion process the pressure vessel gas is usually in a state of stagnation. After 

the process the gas reaches the final stagnation state, but between the stagnation states the 

system is in a dynamic state. It has also kinetic energy, when the internal energy U is regarded 

as the sum of the potential pressure energy and the kinetic energy. Usually, a shock wave 

system is not uniform. There exist distributions of specific internal energy u and flow velocity 

w. That is why the internal energy should be expressed with its specific values in an integral 

form: 

 

 ∫ 
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where   

m = mass of the system, 

u = specific internal energy of a gas element, 

w = velocity of a gas element. 

 

  In the final state the system gas has reached the ambient pressure pa and there is no kinetic 

energy left. The final state of the system is usually not uniform. Usually, there are at least two 

types of gases: the system gas and the ambient gas. The final temperatures differ from each 

other, forming a distribution in the atmosphere. So, the final internal energy U2 should be 

expressed in an integral form as: 

 

 ∫=
m

dmuU
0

22          (2.3.2) 

where   

u2 = specific internal energy in the final state. 

 

   The shock wave system is assumed to keep the isentropic exergy to itself. However, the 

system is losing part of its isentropic exergy all the time because of the increase of entropy. 

Schematic diagrams of the process are given in Figure 1.1 in the introductory chapter and in 

Figure 2.10 in this chapter. A region of the ambient gas in the stagnant state around the 

system is presumed. The shock wave system and the ambient region together produce a mega-

system surrounded by the control surface. No heat or mass transfer is presumed to cross the 

control surface. No heat transfer between the parts of the mega-system is presumed either. 

The volume of the mega-system is constant at the observed time. 

   The isentropic exergy EM of the mega-system is similar to the shock wave system E and it 

can be expressed as: 

 

 ( ) ( ) ( ) ( )[ ]aaaaa VVVVpUUUUE +−+++−+= 22     (2.3.4) 

where   

Ua = internal energy of the chosen ambient gas, 

Va = volume of the chosen ambient gas. 
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Fig. 2.10. Schematic diagram of an ideal shock wave system expanding into the environment.  
The expanding process takes place without any destructive work. The shock wave system is  
coloured grey. A region of the ambient volume is around the system surrounded by a control  
surface. The system and the ambient volume together produce a mega-system. The values of  
the shock wave system are isentropic exergy E, entropy S, internal energy U, volume V, post-  
shock enthalpy H2. Corresponding values of the ambient gas are Ea (= 0), Sa, Ua, Va, enthalpy  
Ha and pressure pa. Corresponding values of the mega-system are: EM (= E), SM, UM, VM and  
HM2. Values of the ambient gas captured into the shock wave system are ∆Sac, ∆Uac, ∆Vac and  
∆Hac Changes in the process are isentropic exergy ∆E, entropy ∆S and post-shock enthalpies  
∆H2 and ∆Ha. 
 

  A change of the isentropic exergy ∆E can be presumed as the sum of all the changes as 

follows: 

 

 ( ) ( ) ( ) ( )[ ]aaaaa VVVVpUUUUE +∆−+∆++∆−+∆=∆ 22    (2.3.5) 
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   Because here the mega-system is assumed to be adiabatically insulated without a change of 

mass, mechanical energy or heat, we obtain: 

 

 0)( =+∆ aUU         (2.3.6) 

 

  During the observation time the mega-system volume stays constant: 

 

 0)( =+∆ aVV          (2.3.7) 

 

  By substituting equations (2.3.6) and (2.3.7) into (2.3.5) we obtain: 

 

 ( ) ( )aaa VVpUUE +∆−+∆−=∆ 22       (2.3.8) 

 

  The basic definition of enthalpy, H, is: 

 

 pVUH +=          (2.3.9) 

 

   Thus equation (2.3.8) can be expressed through the changes of the post-shock enthalpy:  

 

 aHHE ∆−∆−=∆ 2         (2.3.10) 

where   

∆H2 = change of post-shock enthalpy in the initial shock wave system, 

∆Ha = change of post-shock enthalpy in the part of the ambient gas come into the shock wave 

system, 

   The isentropic exergy decreases as much as the post-shock enthalpy increases, as can be 

seen in equation (2.3.10). This fact is in harmony with the principle of the conservation law of 

energy.  

   After the shock process illustrated in Figure 2.10 the volume of the mega-system can be 

presumed to expand in an isentropic way, reaching the ambient pressure in all parts. In fact, 

the volume of the shock wave system only expands, because the pressures in it differ from the 
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ambient pressure. For the same reason the volume of the ambient part stays constant. All the 

changes in the gas values occur in the shock wave system only. 

 

2.3.2 Effect of the main shock wave  

 

   The shock wave system is separated from the ambient gas by the main shock wave. 

Moreover, there exist other shock waves inside the system. This will be discussed further in 

chapter 2.3.4. 

   In this chapter the main shock wave on the outer surface is studied. Moreover, the greatest 

interest in this whole study is focuses on the main shock wave. It expands into the stagnant 

environment so that part of the ambient gas is captured by the shock wave system. Changes of 

isentropic exergy and post-shock enthalpy occur in the ambient gas simultaneously, when it 

comes into the shock wave system. The derivation is started by applying equation (2.3.10) as 

follows: 

 

 aHE ∆−=∆           (2.3.11) 

 

   In equation (2.3.11) the effects of other shock waves, ∆H2, are neglected. 

   A differential small ambient gas element is assumed to be uniform. It is worth expressing 

the changes at a differential small form, as follows: 

 

 adHdE −=          (2.3.12) 

 

   In the case of ideal gas, equation (2.3.12) can be formulated into the form: 

 

 ( ) aap dmTTcdE −−=          (2.3.13) 

where  

cp = specific heat capacity at constant pressure, 

T = post-shock temperature, 

Ta = ambient temperature, 

dma = mass element of the ambient gas. 
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In basic thermodynamics the specific heat capacity in constant pressure cp is defined as: 

 

 
T
pcp ρκ

κ
1−

=          (2.3.14) 

 

where  

p = pressure 

ρ = density, 

κ = adiabatic constant of the ambient gas. 

 

   By substituting equation (2.3.14) into (2.3.13) and by formulating it, equation (2.3.15) is 

obtained: 
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   In chapter 2.2 the post-shock temperature was presented in equation (2.2.7): 
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   Here T2 is the same as T in equation (2.3.15). By substituting equation (2.2.7) into (2.3.15) 

the change of the isentropic exergy caused by a shock wave can be obtained:  

 

 ( ) ( )
( ) ( ) a

aa

a
a dV

p
p

pp
pppdE
















−








⋅

−++
++−

−
−= 1

11
11

1

1
κ

κκ
κκ

κ
κ     (2.3.16) 

 

   The change of isentropic exergy depends effectively on the overpressure of the shock wave 

as presented in Figure 2.11. 

 



 36

   
Fig. 2.11. Influence of the overpressure ratio of a shock wave to the change of isentropic  
exergy in two-atomic perfect gas. dE = change of isentropic exergy, p = pressure of the shock  
wave, pa = ambient pressure, dVa = volume expansion of the shock wave. 
 

 

2.3.3 Cylinder and piston – one shock wave 

 

   In this chapter the change of isentropic exergy are verified again. A system is imagined  

to contain a cylinder and a piston moving with constant velocity in it. Perfect gas with a  

shock front is moving ahead the piston. At the same time there develops a vacuum state  

behind the piston. The cylinder-piston system is illustrated in Figure 2.12. 
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Fig. 2.12. Cylinder with a piston moving at constant velocity. pa = ambient pressure,  
p1 = shock wave pressure, pv = pressure in the vacuum region (= 0), w = velocity of the piston 
and the gas, u = velocity of the shock wave, A = area of the cross section, t = time. 
 

   In the system the isentropic exergy includes isentropic pressure-exergy, work and kinetic 

energy. The balance of the changes in the isentropic exergy as a function of time difference dt 

can be expressed as follows: 

   

 0=+++−− kppv dEdEdEdWdE       (2.3.17) 

where   

dE = change of the isentropic exergy, 

dW  = differential work done by the piston, 

dEpv = change of the isentropic exergy of the vacuum volume, 

dEp = change of the isentropic pressure-exergy of the shock wave gas, 

dEk  = change of the kinetic energy of the shock wave gas. 

 

   If equation (2.3.17) is valid, then equation (2.3.16) concerning the change of isentropic 

exergy caused by a single shock wave is ratified. The application of equation (2.3.16) is the 

following: 
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   With the help of the Rankine-Hugoniot equations (2.2.1), (2.2.2) and (2.2.3), equation 

(2.3.18) can be formulated into a more practical form as follows:  
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The work done by the piston is: 

 

 wAdtpdW 1=          (2.3.20) 

 

 The isentropic exergy of the pressure vessel including perfect gas was presented in equation 

(2.1.7): 
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For the change of the isentropic pressure-exergy of the shock wave, equation (2.1.7) can be 

formulated into: 
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The isentropic pressure-exergy of the vacuum volume can be expressed with equation 

(2.3.21): 

 

 wAdtpdE apv
=         (2.3.22) 

 

The kinetic energy of the shock wave can be obtained as follows: 

 

 ( )AdtwuwdEk −=
2

2
1ρ        (2.3.23) 
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where  

ρ1 = density of the gas in the shock wave.  

 

   With the help of equations (2.2.1), (2.2.2) and (2.2.3) equation (2.3.23) can be formulated 

into the form:  

 

 ( )wAdtppdE ak −= 1½        (2.3.24) 

 

   By substituting equations (2.3.18), (2.3.19), (2.3.20), (2.3.21), (2.3.22), (2.3.23) and (2.3.24) 

into (2.3.17), the balance equation can be formed: 
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By simplifying and formulating, equation (2.3.25) can be presented as: 
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According to the Rankine-Hugoniot equations (2.2.2) and (2.2.3) the following can be 

obtained: 
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By substituting equation (2.3.27) into (2.3.26), the following is obtained: 

 

( )( ) ( ) ( )[ ] ( )( ) ( ) ( )[ ] 0111111 11111 =−+++−−−−+++−+− aaaaa pppppppppp κκκκκκ  

           (2.3.28) 
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By simplifying equation (2.3.28,) we obtain: 

 

 00 =           (2.3.29) 

Thus equation (2.3.16) is proved. 

 

 

2.3.4 Effect of other shock waves 

 

   Usually, a shock wave system has also other shock waves besides the main one. Let us next 

observe a shock wave meeting the gas at a pressure differing from the ambient pressure. The 

process is illustrated in a T,s – diagram in Figure 2.13. To derive the equation concerning the 

change of isentropic exergy caused by an observed shock wave, equation (2.3.9) can be 

applied as follows: 

 

  ( )dmTTcdE aap 1212 −−=         (2.3.30) 

where   

dE12 = change of isentropic exergy, 

cp = specific heat capacity at constant pressure, 

Ta1 = post-shock temperature at the ambient pressure without the observed shock wave, 

Ta2 = post-shock temperature at the ambient pressure after the observed shock wave, 

dm = mass element. 

 

Equation (2.3.30) can be formulated into the form: 
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where   

pa = ambient pressure, 

dVa1= post-shock volume element without the observed shock wave. 
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   A gas system at a pressure differing from the ambient pressure is usually moving. So, the 

expansion velocity of the shock wave can be regarded as relative to the gas movement. Here 

the relative expansion volume of the shock wave dV11 in the gas at pressure p1 is interesting. 

The volume element dVa1 at the ambient pressure is substituted by volume element dV11. As 

the post-shock processes are essentially isentropic, we get: 
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pdVdV         (2.3.32) 

where  

dV11 = volume element before the observed shock wave at pressure p1, 

p1   = pressure where the observed shock wave meets the gas, 

pa = ambient pressure, 

κ   = adiabatic factor. 

 

Because of the isentropic post-processes we get also: 

 

 
11

12

1

2

T
T

T
T

a

a =          (2.3.33) 

 

where   

T11 = temperature before the observed shock wave at pressure p1, 

T12 = post-shock temperature after the observed shock wave at pressure p1. 

 

Here equation (2.2.7) concerning the post-shock temperature can be applied as follows: 
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where  

p2 = pressure of the observed shock wave. 
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After substituting equations (2.3.32), (2.3.33) and (2.3.34) into (2.3.31), we get the intended 

equation.  
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Equation (2.3.35) concerns the change of isentropic exergy caused by a shock wave meeting 

the gas at a pressure differing from the ambient pressure. 

 

   
Fig. 2.13. A shock wave meeting the gas at the pressure differing from the ambient pressure.  
pa = ambient pressure, p1 = meeting pressure, 11 = meeting point, 2 = shock wave point,  
12 = post-shock point at the meeting pressure, a2 = post-shock point at the ambient pressure,  
a1 = point after the virtual isentropic process at the ambient pressure without the shock wave  
in question. 
 

 

2.4 Shock tube theory 
 

2.4.1 Common theory 

 

   The theory of one-dimensional unsteady isentropic flow in a shock tube has been presented  

in several research papers [21]. The tube is divided into two parts by a wall between them: the  

first part has overpressure and the second part ambient pressure. Both parts contain perfect  
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gas in an equilibrium state. The overpressurized part of the tube represents the system. 

Suddenly the wall between the parts disappears and the gases begin to move due to the  

difference of the pressures. A shock wave starts at the point of the disappeared wall. The  

shock wave obeys the Rankine-Hugoniot equations, the velocity of the shock wave according  

to equation (2.2.2) and the gas flow velocity according to equation (2.2.3). The flow direction  

of the shock wave is towards the environmental part of the tube. At the same time a  

rarefaction wave develops in the system gas. The direction of the movement of the rarefaction  

wave movement is the opposite of the shock wave. The wave velocity of the top of the  

rarefaction wave is the same as the initial sound velocity -as. 

 

2.4.2 Simple state 

 

   At first the rarefaction wave is in the simple state. This means that only one rarefaction 

wave exists there. The rarefaction wave has a distribution of sound velocity and flow velocity. 

The local flow velocity w depends on the local sound velocity a as follows: 

 

 ( )aaw s
s

−
−

=
1

2
κ

        (2.4.1) 

where  

as = initial sound velocity, 

κs = adiabatic factor of the gas. 

 

The wave part having constant values of a and w has constant wave velocity u: 

 

 awu −=          (2.4.2) 

 

At the time t the wave part has reached position z: 

 

 ( )tawutz −==         (2.4.3) 

 

The positions of the rarefaction waves in the simple state are schematically illustrated in 

Figure 2.14.  
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Fig. 2.14. Schematic diagram of the positions of a simple rarefaction wave at different times in a  
shock tube case. as = original sound velocity, as1 = sound velocity equivalent with the shock wave  
pressure, t1 and t2 = times, κ = adiabatic constant, L = length of the pressurized part of the tube. 
 

   
 

Fig. 2.15. Change of the sound velocity and the position of a gas element in the simple rarefaction  
wave in a shock tube. a = sound velocity, da = change of sound velocity, w = flow velocity,  
t = time, dt = change of time, z = position at the time t, z + wdt = position at the time t + dt.  
  

   When the length of a flowing gas element is chosen to be adt, then as shown in Figure 2.15 the 

change of the sound velocity at the time dt can be expressed as: 

 

 aada xt δδ ==         (2.4.4) 
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where  

δta = change of the sound velocity in the gas element at time dt, 

δxa = difference of the sound velocity between the ends of the element, adt. 

 

Because the flow is isentropic, the equivalent changes of the pressure can be obtained as: 

 

 ppdp xt δδ ==         (2.4.5) 

 

Correspondingly, the equivalent changes of the flow velocity can be obtained as: 

 

 wwdw xt δδ ==          (2.4.6) 

  

 

2.4.3 Starting pressure of the shock wave 

 

   Immediately after the burst of a pressure vessel, a shock wave develops at the burst point. The 

shock wave consists of both the system gas and the ambient gas. At the starting point of the shock 

wave the pressure and the velocity of the gases are similar. The starting pressure of the shock wave 

is derived from the theories of shock tube, equation (2.4.1) and shock wave, equation (2.2.3). The 

derived equation is [1], [7]:  
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where   

ps = initial pressure of the system, 

p1 = starting pressure of the shock wave, 

pa = ambient pressure, 

as = sound velocity of the system gas in stagnation state, 

aa = ambient sound velocity, 

κs = adiabatic factor of the system gas, 

κ = adiabatic factor of the ambient gas. 



 46

 

The starting pressure of the shock wave, p1, can be iterated from equation (2.4.7). Although the 

equation of the starting pressure has been derived with the help of the one-dimensional theory, it is 

valid in multi-dimensional cases, as well. The reason for this is that the flow dimensions in the 

starting point are small.  

 

 

2.4.4 Dual nature of the shock wave 

 

   In the beginning of the shock tube process the propagated shock wave flows away from the cut 

point with the velocity u, as shown in equation (2.2.2). At the same time the rarefaction wave is 

induced into the opposite direction. Its top has the same velocity as the initial sound velocity but its 

value is negative, -as. The top of the induced rarefaction wave meets the end wall of the tube at time 

tL, which can be obtained as: 

 

 
s

L a
Lt =          (2.4.8) 

where  

L = length of the pressurized part of the tube.        

 

   After meeting the end wall the rarefaction wave is reflected back toward to the latter part of the 

induced wave. The reflected wave has accelerating velocity ur: 

 

 awur +=          (2.4.9) 

where 

w = local flow velocity in the induced wave, 

a = local sound velocity in the induced wave. 

 

The reflected wave velocity ur accelerates to faster speed than the shock wave velocity u. Finally 

the reflected rarefaction wave reaches the shock wave. In this study the point where it occurs is 

called the transition point, x.  
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   Before the meeting the shock wave has constant pressure and flow velocity, and it is in the simple 

state. When passing the transition point, the shock wave changes to a non-simple state where it has 

decreasing pressure and flow velocity. Gradually, the overpressure and the flow velocity become 

closer to null.  

   This is evident, because before the process the shock tube had a limited amount of isentropic 

exergy. However, it decreases in the shock wave according to equation (2.3.17). That is why the 

pressure of the shock wave cannot be constant forever. The behaviour of the gases in a shock tube is 

illustrated in Figure 2.16. 

   The position of the transition point in a shock tube is discussed in the appendix, where it is shown 

that in low overpressures of the shock waves (p/pa-1 is below 0.2…0.5) the values of the loss ratio 

of the isentropic exergy in the simple state seem to be relatively constant. This finding suggests that 

the value of the loss ratio in the simple state may be constant in three-dimensional cases, as well. 

 

   
 

Fig. 2.16. Waves in a shock tube process. 1 = shock wave, 2 = interface of the system gas and the 
ambient gas, 3 = tail of the region where the pressure and the flow velocity are constant, 4 = top of 
the induced rarefaction wave, 5 = top of the reflected rarefaction wave, L = length of the 
pressurized part of the tube, x = transition point, tL = time when the top of the induced rarefaction 
wave meets the back wall, ps = initial pressure of the system, p1 = pressure of the shock wave at the 
simple state. 
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3 Shock wave pressure as a function of distance in a 
hemispherically symmetric system 
 

3.1 Simple state 

 
   In chapter 2 the one-dimensional shock tube theory was introduced. In the simple state the 

shock wave pressure was constant in the shock tube. In this chapter the shock wave pressure 

as a function of the distance in the simple state will be derived in space-angle-symmetric 

flow. The flow comes radially out from the origin as a quasi-one-dimensional flow.  

   In Figure 3.1 an element of perfect gas flowing away from the origin is illustrated in a radial 

duct with a space angleϕ . The gas element is observed during the time difference dt. When 

the velocity of the element is w, its travel distance during the observing time dt is wdt. The 

acoustic velocity in the gas element is a. Here the thickness of the element has been chosen to 

be adt, which will prove to be useful later on. 

   At the observed moment t the values in the back side of the gas element are: radius r, 

pressure p, density ρ, sound velocity a, and flow velocity w. The corresponding values in the 

front side are: radius r + adt, pressure p + δxp, density ρ + δxρ, sound velocity a + δxa and flow 

velocity w +δxw. 

   At the observed moment t + dt, the values at the back of the gas element are: radius r + wdt, 

pressure p + δtp, density ρ + δt ρ, sound velocity a + δta, and flow velocity w + δtw. The 

thickness of the gas element is (a + δxw)dt. 

 

  
Fig. 3.1 Gas element in a radial flow 
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   The flow is assumed to be isentropic. The derivation is made with the help of the 

conservation laws of mass and momentum. 

 

 

3.1.1 Conservation law of mass 

 

   When moving in the duct the mass of the gas element stays constant: 

 

( )( )
( )( ) ( )dtwawdtadtr

adtadtr

xtx

x

δρδρδρϕ

ρδρϕ

+++++=

++
2

2

½½

½½
    (3.1.1) 

 

By simplifying, the equation can be presented in the form: 

 

 02 =++
r
wdt

a
wxt δ

ρ
ρδ

       (3.1.2) 

 

Because of the isentropic flow we obtain: 

 

  
ρδ

δ

t

t pa =2          (3.1.3) 

 

By substituting equation (3.1.3) into (3.1.2), it follows that: 

 

 022 =++
r
wdt

a
w

a
p xt δ

ρ
δ        (3.1.4) 

 

By formulating equation (3.1.4), we obtain: 

 

 02 2 =++
r
wdtawap xt ρδρδ        (3.1.5) 
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3.1.2 Conservation law of momentum 

 

   With the help of Figure 3.1, the momentum equation can be constructed as: 

 

( )
( )( ) ( )dtwwardtwdtadtrppp

awdtrdtwdtadtrpp

txt

t

δϕρδδϕ

ϕρδϕ

++++++=

++++
22

22

½½

)½(½
   (3.1.6) 

 

By simplifying equation (3.1.6), it can be presented in the form: 

 

 0=+ wap tx δρδ         (3.1.7) 

 

 

3.1.3 Dividing the flow into steady and unsteady components 

 

   The flow changes can be regarded as combinations of steady flow and unsteady flow:  

 

 ppp tutst δδδ +=         (3.1.8)  

 

 ppp xuxsx δδδ +=         (3.1.9)  

 

 www tutst δδδ +=         (3.1.10) 

 

 www xuxsx δδδ +=         (3.1.11) 

 

Here sub-index s means steady flow and u means unsteady flow.  
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3.1.4 Steady flow  

 

   In a steady isentropic flow the changes in the gas are caused only by the change of the cross 

section in the duct. As the thickness of the gas element was chosen to be adt, the following 

equation is valid in the steady flow: 

 

 
w
w

p
p

a
w

xs

ts

xs

ts

δ
δ

δ
δ

==         (3.1.12) 

 

By substituting equation (3.1.12) into (3.1.5), the following form can be obtained: 

 

 02 2
2

=++
r
wdtaw

w
ap tsts ρδρδ       (3.1.13) 

 

Also equation (3.1.7) can be presented in the following form: 

 

 0=+ wap
w
a

tsts δρδ         (3.1.14) 

 

Equation (3.1.14) can be formulated as: 

 

 0
2

2

2

=+ w
w
ap

w
a

tsts δρδ        (3.1.15) 

 

By separating equation (3.1.15) from (3.1.13), we obtain:   

 

 02 2
2

2

=+−
r
wdtap

w
ap tsts ρδδ       (3.1.16) 

 

By simplifying equation (3.1.16) we obtain: 

  

 
r
wdt

aw
wapts 22

2
22

−
−= ρδ        (3.1.17) 
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   Equation (3.1.17) presents the pressure difference in a steady flow in the case where the 

observed length equals to the gas flow distance at time difference dt. In the case where the 

observed length equals to the chosen gas element, the pressure difference can be derived with 

the help of equations (3.1.5), (3.1.7) and (3.1.12) in the same way as equation (3.1.17): 

 

 
r
adt

aw
wapxs 22

2
22

−
−= ρδ        (3.1.18) 

 

   As well as the equations (3.1.17) and (3.1.18), the equations concerning the gas velocity 

differences can be derived with the help of equations (3.1.5), (3.1.6) and (3.1.12). The 

following equations can be obtained: 

 

 
r
wdt

aw
wawts 22

2

2
−

=δ         (3.1.19) 

 

 
r
adt

aw
wawxs 22

2

2
−

=δ         (3.1.20) 

 

 

3.1.5 Unsteady flow  

 

   When a gas is in an imbalance state caused by pressure differences in its parts, it propagates 

an unsteady flow. Here the difference in the cross section of the flow has no influence on the 

unsteady flow component. It can be regarded as one-dimensional flow. In the shock tube 

theory, equations (2.4.5) and (2.4.6) concerning unsteady flow in a simple state were 

presented. Because the gas element was chosen to be adt, the following equations are in force 

in the simple state: 

 

 pp tuxu δδ =          (3.1.21) 

 

 ww tuxu δδ =           (3.1.22) 
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The sub-index u means that an unsteady flow is in question.  

 

 
3.1.6 Pressure as a function of distance 

   

   By substituting equation (3.1.11) into (3.1.5), it can be presented in the form: 

 

 ( ) 02 2 =+++
r
wdtawwap xuxst ρδδρδ      (3.1.23) 

 

By substituting the flow components from equation (3.1.10) into (3.1.7), it can be obtained as: 

 

 ( ) 0=++ wwap tutsx δδρδ        (3.1.24) 

 

By decreasing equation (3.1.23) by (3.1.24) it follows that: 

 

 ( ) 02 2 =+−−++−
r
wdtawwwwapp tutsxuxsxt ρδδδδρδδ    (3.1.25) 

 

Because of equation (3.1.22) we can simplify (3.1.25) into the form: 

 

 ( ) 02 2 =+−+−
r
wdtawwapp tsxsxt ρδδρδδ      (3.1.26) 

 

By substituting equations of steady flow (3.1.19) and (3.1.20) into (3.1.26) it follows that: 

 

 0222 2
22

2

22

2

=+
−

−
−

+−
r
wdta

r
wdt

aw
waa

r
adt

aw
waapp xt ρρρδδ   (3.1.27) 

 

By simplifying equation (3.1.27), we obtained: 

 

 
r
wdt

wa
wapp xt +

−=− 22ρδδ       (3.1.28) 
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By substituting the flow components from equation (3.1.8) into (3.1.5), it can be presented in 

the form: 

  

 02 2 =+++
r
wdtawapp xtuts ρδρδδ       (3.1.29) 

 

By substituting the flow components from equation (3.1.9) into (3.1.7), it can be presented as: 

 

 0=++ wapp txuxs δρδδ        (3.1.30) 

 

By decreasing equation (3.1.29) by (3.1.30) it follows that: 

 

 ( ) 02 2 =+−−−−+
r
wdtawwapppp xtxuxstuts ρδδρδδδδ    (3.1.31) 

 

By substituting equation (3.1.21) into (3.1.31), it can be simplified into the form: 

 

 ( ) 02 2 =+−−−
r
wdtawwapp xtxsts ρδδρδδ      (3.1.32) 

 

By substituting the equations of steady flow (3.1.17) and (3.1.18) into (3.1.32) it follows that: 

 

( ) 0222 2
22

2
2

22

2
2 =+−−

−
+

−
−

r
wdtawwa

r
adt

aw
wa

r
wdt

aw
wa xt ρδδρρρ   (3.1.33) 

 

By simplifying it, we obtain: 

 

 
r
wdt

wa
waww xt +

=−
2

2δδ        (3.1.34) 

 

   Equations (3.1.28) and (3.1.34) are connected with the shock wave equations. The pressure 

states of the gas element are presented in Figure 3.2. The element is touched by the shock 
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front. Dp is the pressure difference in the shock wave at the time dt. The following linear 

relationship between the pressure differences is explained in Figure 3.2: 

 

 p
a
wupDp xt δδ −

+=         (3.1.35) 

 

The corresponding difference of the gas velocity Dw is:   

 

 w
a
wuwDw xt δδ −

+=        (3.1.36) 

 

    
Fig. 3.2. Pressures in the gas element and the shock wave. 

 

By substituting equations (3.1.35) and (3.1.36) into (3.1.5), it is obtained as: 

 

 02 2
22

=+
−

−
−

+
−

−
r
wdtaw

wu
aDw

wu
ap

a
wuDp tx ρδρρδ    (3.1.37) 

 

By substituting equation (3.1.7) into (3.1.37), it can be presented as: 
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 02 2
22

=+
−

−
−

+
−

+
r
wdtaw

wu
aDw

wu
aw

a
wuaDp tt ρδρρδρ    (3.1.38) 

 

By formulating it, we obtain: 

 

 ( ) 02 2
222

=+
−

−−
+

−
+

r
wdtaw

wu
awuDw

wu
aDp t ρρδρ     (3.1.39) 

 

By substituting equation (3.1.35) into (3.1.28) it can be presented in the form: 

 

 
r
wdt

wa
wapp

a
wuDp xx +

−=−
−

− 22ρδδ      (3.1.40) 

 

By formulating we get: 

 

 
r
wdt

wa
wap

a
wuaDp x +

−=
−+

− 22ρδ      (3.1.41) 

 

By substituting (3.1.7) we get: 

 

 
r
wdt

wa
wawa

a
wuaDp t +

−=
−+

+ 22ρδρ      (3.1.42) 

 

Equation (3.1.42) can be formulated as: 

 

 ( ) ( )( ) r
wdt

wuawa
wa

wua
Dpwt −++

−
−+

−=
22

ρ
δ     (3.1.43) 

 

By substituting equation (3.1.43) into (3.1.39), the term δtw can be eliminated: 
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           (3.1.44) 

By simplifying equation (3.1.44), it can be presented in the form: 

 

 02 2 =
+

++
r
udt

wa
waaDwDp ρρ       (3.1.45) 

 

The definition of udt can be expressed by the distance difference of the shock wave Dr as: 

 

 
r
Dr

r
udt

=          (3.1.46) 

 

The sound velocity in perfect gas is defined as: 

 

 pa κρ =2          (3.1.47) 

 

By substituting equations (3.1.46) and (3.1.47) into (3.1.45), it can be put into the form: 

 

 02 =
+

++
r
Dr

aw
wpaDwDp κρ       (3.1.48) 

 

In order to eliminate the difference of gas velocity Dw, it is necessary to use the Rankine-

Hugoniot equation (2.2.3) of gas velocity in the shock wave: 

 

 ( )
( ) ( )[ ]aa

a

pp
ppw

112
2

−++
−

=
κκρ

      (2.2.3) 

 

The differential form of the gas velocity can be obtained by derivation as follows: 

 

 ( ) ( )
( ) ( )[ ] ( ) ( )[ ]Dppppp

ppDw
aaa

a

11112
131

−++−++
−++

=
κκκκρ

κκ    (3.1.49) 

 

The Rankine-Hugoniot equation (2.2.1) concerning the density in the shock wave is: 
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 ( ) ( )
( ) ( ) a

a
a pp

pp
11
11

++−
−++

=
κκ
κκρρ        (2.2.1) 

 

By substituting equation (2.2.1) into (3.1.49), it can be written in the form: 

 

 ( ) ( )
( ) ( )[ ] ( ) ( )[ ]Dppppp

ppDw
aa

a

11112
131

−++++−
−++

=
κκκκρ

κκ    (3.1.50) 

 

A part of equation (3.1.48) can be formulated into: 

 

( ) ( )
( ) ( )[ ] ( ) ( )[ ]Dppppp

pppDpaDwDp
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a

11112
131

−++++−
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κκκκρ
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By simplifying it, we obtain: 
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The rest of equation (3.1.48) can be given in the form: 
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By substituting equations (3.1.52) and (3.1.53) into (3.1.48), it can be presented as: 
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           (3.1.54) 
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   In the one-dimensional shock tube case the pressure of the shock wave is constant in the 

simple state. In the hemispherically symmetric case the pressure of the shock wave is variable 

according to equation (3.1.54). 

 

 
3.1.7 Results 

 

   Usually, a shock wave moves in air where the value of the adiabatic factor κ is 1.4. In this 

case, equation (3.1.54) can be written in a simpler form: 
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Equation (3.1.55) can be expressed in an integral form as: 
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As the solution we get: 
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where  

r = distance from the origin of the hemisphere, 

rs = radius of the pressure vessel, 

p = pressure, 

p1 = starting pressure of the shock wave, 

pa = ambient pressure. 

 

The solution of equation (3.1.57) has been calculated with the help of the Mathcad –program 

[29]. The results are presented in Figure 3.3 and in the table in Appendix 2. 
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Fig. 3.3. Shock wave pressure as a function of distance in the simple state in air. p/pa–1 is the  
overpressure ratio and RT is the distance presented in the table in Appendix 2. 
 

   The table distance RT and the cumulative loss of isentropic exergy ET/pa as a function of 

shock wave pressure p/pa in air are presented in the table in Appendix 2, in which the 

explosion of a semi-spherical pressure vessel on the ground is assumed. The relative starting 

pressure of the explosion is chosen to be 101. The radius of the pressure vessel is chosen as 1 

m. This is also the first value in the table in Appendix 2. 

   The cumulative loss ratio of the isentropic exergy per ambient pressure ET/pa should be 

calculated from equation (3.1.58), but in practice the values have been calculated by using the 

numerical integration method. 
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where  

RT = table value of the distance, 

p/pa = pressure ratio. 

 

 

 

3.2 Non-simple state 

 

3.2.1 System 

 

   In the case of the simple state discussed in chapter 3.1, isentropic exergy had no influence 

on the development of the shock wave pressure. However, in the case of the non-simple state 

the idea of isentropic exergy is extremely essential. 

   It was assumed in chapter 2.3.2 that all isentropic exergy will be lost in the main shock 

wave. During the explosion process, parts of the isentropic exergy take temporarily the form 

of kinetic energy. Then the isentropic exergy E contains potential pressure energy and kinetic 

energy. 

   The decrease of isentropic exergy is caused by the increase in the value in entropy in the 

shock waves. The loss process is assumed to occur in the main shock wave only. The part of 

the system flowing behind the main shock wave is assumed to move isentropically. During 

the process a gas element gives/gets isentropic exergy to/from the other elements in the 

system because of the changes in the pressures and the flow velocities. In the end, the shock 

wave system has expanded to the extreme and lost all the initial isentropic exergy. The loss of 

the isentropic exergy of a system caused by the main shock wave is illustrated in Figure 3.4. 
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Fig. 3.4. Loss of the isentropic exergy of a system caused by the main shock wave.  
Es = initial isentropic exergy of the pressure vessel, Vs = volume of the pressure vessel,  
Vx = transition volume, pa = ambient pressure, Ta = ambient temperature, T = post-shock 
temperature, κ = adiabatic factor, ε = isentropic exergy ratio. 
 

 

3.2.2 Change of isentropic exergy in a shock wave 

 

   A shock wave system produced as the result of a pressure vessel explosion gets the 

isentropic exergy from the vessel. The developing system loses its isentropic exergy gradually 

because of the progressive shock fronts, as equation (2.3.15) shows:  

 

 a
a

a dV
T
TpdE 








−

−
−= 1

1κ
κ        (2.3.15) 

where   

T = post-shock temperature, 

Ta = ambient temperature 

dVa = volume change of the shock wave system. 

 

In the non-simple state the isentropic exergy E decreases because of the expansion of the 

shock wave: 
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Equation (3.2.1) can be expressed with the volume ratio as: 
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When the shock wave system expands into infinity, the isentropic exergy of the system closes 

in null: 
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3.2.3 Self similarity 

 

   When a process is too complicated to be studied analytically, a simple estimation theory, 

such as the self-similarity theory may be worth turning to. Many natural subjects obey the 

self-similarity principle, which means that in many cases the proportions between the parts of 

a system stay similar even if its dimensions change. When a system is losing its power (here 

isentropic exergy), its values usually approach null asymptotically. The type of the process 

must be known. A simple equation of self-similarity is the following [24]: 

 

 nCxy =          (3.2.4) 

where   

y = function, 

x = parameter, 

C = constant factor, 

n = constant exponent. 
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In equation (3.2.4) function y is closing in null asymptotically while parameter x grows into 

infinity if the value of the exponent n is negative. 

 

 

3.2.4 Application of self-similarity in shock waves 

 

An application equation can be produced according the self similarity equation (3.2.4) as: 
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−=− 11        (3.2.5) 

where   

T = post-shock temperature, 

Tx = post-shock temperature in the transition point, 

n = exponent. 

  

By substituting equation (3.2.5) into (3.2.3), it can be written as: 
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In the extremely large volume V the term (V/Vx)n approaches null. This fact is caused by the 

negative value of exponent n. The value below null of exponent n can be seen in Figure 3.4. 

Thus the solution of the integral equation (3.2.6) is: 
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Exponent n can be obtained by formulating equation (3.2.7) as: 
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In a (hemi-) spherically symmetric system equation (3.2.5) can be expressed with radius r and 

rx: 
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The post shock temperature can be obtained from equation (2.2.7) as: 
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By substituting equation (2.2.7) into (3.2.9), it can be presented as: 
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           (3.2.10) 

 

In a hemispherically symmetric system the transition volume Vx is: 
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Then exponent n can be obtained as: 
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This theory will be applied in chapters 4 and 5. 
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4 Proposed method for defining the pressure of the shock wave as 
a function of the distance 
 

4.1 Method 
 

4.1.1 Basics 

 

   In this chapter the method for calculating the pressure of a shock wave as a function of the 

distance is developed. The method is proposed because all the details cannot be proved and 

uncertain assumptions have to be made, such as: a hemispherically symmetric shock wave, 

fast and large opening of the defect, neglecting the density of the opening pressure vessel 

wall, and inadequately proved value of ε. In fact, the proposed method just shows a possibility 

of how to apply the idea of isentropic exergy for evaluating the pressure of the shock wave as 

a function of the distance. 

   The pressure vessel is assumed to be situated on the ground and its shape can be anything in 

practical use, e.g. a sphere, cylinder or tube. The explosion is assumed to begin 

simultaneously and in a hemispherically symmetric way around a point in the cylinder axis of 

the pressure vessel. In the case of a cylinder or tube the explosion can be assumed to start at 

the most risky part of the cylinder. 

   The following data from the pressure vessel is needed for completely specifying the 

behaviour of the shock wave pressure as a function of the distance: the isentropic exergy of 

the pressure vessel Es, the inner radius of the cylinder (or the sphere) rs and the starting 

pressure of the shock wave p1. 

   The shape of the pressure vessel is simulated by a hemispherical pressure vessel. It has the 

same inner radius as the cylinder or the sphere of the real pressure vessel. The initial values of 

the gas are similar in the virtual pressure vessel and the real one. The amount of the isentropic 

exergy in the virtual pressure vessel is presumed to be the same as in the real pressure vessel.  

   In the explosion process the shock wave is assumed to occur in two steps. The first step is 

the simple state and the second step is the non-simple state. Three particular points exist in the 

shock wave. In fact, they are hemispherical surfaces but are called points here. The initial 

point has the inner radius of the pressure vessel and the burst pressure ps. The starting point 

has the same radius as the initial point, but its pressure is lower, starting pressure p1. The 
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transition point separates the simple and non-simple states from each other. Actually, the 

transition point is virtual and in reality a smoother transition region may exist instead of it. 

The states and the points are depicted in Figure 4.1. 

 

   
Fig. 4.1. Schematic diagram of the states and the points of the main shock wave caused by the  
explosion of a pressure vessel. The shape of the shock wave is hemispherical. p = pressure, 
pa = ambient pressure, ps = initial pressure, p1 = starting pressure, px = transition pressure, 
r = distance, rs = inner radius of the pressure vessel cylinder (or of the sphere if in question), 
rx = transition distance. 
 

 

4.1.2 Starting point 

 

At first the starting pressure ratio of the explosion must be obtained. The starting pressure p1 

was presented in chapter 2.4.3 in equation (2.4.7): 
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where   

ps = initial pressure in the pressure vessel, 

p1 = starting pressure of the shock wave, 

as = initial sound velocity of the pressure vessel gas, 

aa = sound velocity of ambient gas, 

κs = adiabatic factor of the pressure vessel gas, 

κ = adiabatic factor of ambient gas. 

 

 

4.1.3 Simple state 

 

   The shock wave pressure as a function of distance in the simple state was derived in chapter 

3.1, where equation (3.1.58) and Appendix table 2 were obtained. It is simpler to obtain the 

shock wave pressures and the distances by using the table in Appendix 2. With the help of the 

calculated starting pressure ratio p1/pa, the corresponding starting distance RT1 can be 

interpolated from the table. The real distance r can be obtained by the following equation: 

 

 
1T

T
s R
Rrr =          (4.1.1) 

where  

RT = table distance with pressure ratio p/pa, 

RT1 = table distance at the starting point, 

rs = inner radius of the pressure vessel cylinder (or sphere). 

 

 

4.1.4 Transition point 

 

   In order to define the transition point, the cumulative loss of the isentropic exergy in the  

simple state -∆Ex must be defined. The loss ratio of the isentropic exergy in the simple state  

can be marked by ε, which can be obtained from: 
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s

x
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E∆−

=ε          (4.1.2) 

 

   The value of ε will be discussed in chapter 4.2. The values of the transition point can be 

calculated with the help of the table in Appendix 2. Because of geometry, the table value of 

the cumulative loss of the isentropic exergy at the simple state ETx can be obtained from 

equation: 
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where  

ET1 = table value of the cumulative loss of isentropic exergy at the starting distance. 

 

The values on the transition point as px/pa and RTx can be interpolated with ETx from the table 

in Appendix 2. The real transition distance can be obtained from equation: 
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4.1.5 Non-simple state 

 

   The equations for the non-simple state were discussed in chapter 3.2.4, where equations 

(3.2.10) and (3.2.12) were derived. The equation concerning the pressure of the shock wave 

as a function of the distance in the non-simple state was obtained as: 
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The corresponding exponent n was obtained as: 
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4.2 ε – value and comparison with other theories  
  

   The loss ratio of the isentropic exergy in the simple state ε is considered to have a constant 

value in all cases. The idea of the constant value of ε is discussed in Appendix 1. In this 

chapter the idea of the constant value of ε is applied to three-dimensional shock waves, as 

well. It is sufficient to present the ε -value with one decimal, in this case. 

   The value of ε is chosen so that the theory presented here will be in harmony with other 

related theories. Comparisons are done for hemispherically symmetric pressure vessels on the 

ground and a spherically symmetric pressure vessel in the air. 

   After choosing the ε –value, a crude assumption will be made that the value of ε for 

defining the transition point is applicable to cylindrical pressure vessels, as well. This 

assumption will be tested by comparisons with the results of some real explosion tests. 

 

 

4.2.1 Comparison with Baker’s theory 

 

   Baker’s theory was developed for hemispherical pressure vessels situated on the ground and 

containing perfect gas [2]. The theory is mentioned to be the most advanced theory in the 

field. It is reasonable for the ε -value to be based on Baker’s theory, particularly when the 

shape of the pressure vessel is hemispherical. 

 

   Baker’s theory is based on the diagram illustrated in Figure 4.3. There the relative starting 

distanceR  is defined with the explosion energy ∆UV as: 
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rs = radius of the hemispherical pressure vessel, 

pa = ambient pressure, 

∆UV = increase of internal energy caused by pressurization as equation (2.1.1) shows. 

 

   At first the starting pressure of the shock wave must be defined from equation (2.4.7), just 

as in the proposed method. Baker has marked the ratio of the starting over-pressure with 1P . 

With the help of 1P  and 1R the line can be chosen from Figure 4.2. 

   Here the proposed theory is compared with Baker’s theory and an adequate value of ε is 

chosen. Four examples of hemispherical pressure vessels have been calculated. The pressure 

vessels have the radius of 1 m and contain air. The initial over pressure ratios ps/pa – 1 have 

been chosen to be 10 and 100. The initial sound velocity ratios as/aa have bee chosen to be 1 

and 2. The values have been calculated as presented in chapter 4.1. The results of the 

proposed theory with ε-values of 0.05, 0.07 and 0.10 have been compared with the 

corresponding results of Baker. The results are presented in Figures 4.3, 4.4, 4.5 and 4.6. 
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Fig. 4.2. Relative overpressure of shock wave P  as function of relative distance R  caused by  
a pressure vessel explosion according to Baker. 1/ −= appP  [2]. 
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Fig. 4.3. Comparison with Baker's theory. The shock wave was caused by the burst of a  
hemispherical air vessel with 1 m radius. Baker's curve is coloured grey.  
ps/pa –1 = 100, as/aa = 1.  
 

 

 
Fig. 4.4. Comparison with Baker's theory. The shock wave was caused by the burst of a  
hemispherical air vessel with 1 m radius. Baker's curve is painted with grey colour.  
ps/pa –1 = 100, as/aa = 2. 
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Fig. 4.5. Comparison with Baker's theory. The shock wave was caused by the burst of a  
hemispherical air vessel with 1 m radius. Baker's curve is painted with grey colour.  
 ps/pa –1 = 10, as/aa = 1. 
 

   
Fig. 4.6. Comparison with Baker's theory. The shock wave was caused by the burst of a  
hemispherical air vessel with 1 m radius. Baker's curve is painted with grey colour.  
ps/pa –1 = 10, as/aa = 2. 
 

   It can be seen in figures 4.3, 4.4, 4.5 and 4.6 that ε = 0.07 is a satisfying estimation where 

the theory equals Baker's theory in the semi-sphere case. In this proposed theory, as well, a 

rough assumption can be made that the same ε-value (ε = 0.07) works in the other cases as in 

the spherical and cylindrical cases. 

 

 



 75

4.2.2 Comparison with a case of the GRP –method 

 

   The most advanced estimation method is the Generalized Riemann Problem method (GRP). 

With the GRP it is possible to estimate the distribution of density, flow velocity and pressure 

in the explosion process as functions of distance and time [4]. 

   Saito and Glass (1984) have made a computational simulation on an example of an 

exploding helium sphere surrounded by air [25], where the basic data were: sphere radius rs = 

2.54 cm, pressure ratio ps/pa= 18.25, relative helium density ρs/ρa = 2.523, adiabatic factor of 

helium κs = 1.667, and ambient adiabatic factor κa = 1.4. The starting pressure ratio of the 

explosion was calculated as 6.497. The values of the theory were calculated as presented in 

chapter 4.1. The transition point was chosen with ε = 0.07.  

   The simulation results are presented in Figures 4.7 and 4.8. Comparison with the proposed 

theory is illustrated in Figure 4.9. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7. First part of the results of a GRP-simulation with a helium bubble by Saito and Glass  
(1984) [25]. The pressure-distance profiles were simulated at different times. 
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Fig 4.8. Second part of the results of a GRP-simulation with the helium bubble by Saito and  
Glass (1984) [25]. The pressure-distance profiles at different times were simulated. 
 

   The results of pressure and distance were measured graphically from Figure 4.7 and Figure 

4.8. Only the main shock waves were taken into account. The results of the main shock wave 

are compared with the proposed theory in Figure 4.9. 
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Fig. 4.9. Comparison of the proposed theory with the results of the GRP-simulation with the  
helium bubble by Saito and Glass (1984). 
 

 

4.2.3 Application of ε-value into cylinders 

 

   A rough assumption is made that the value ε = 0.07 would be applicable also in the case of 

cylindrical pressure vessels. The transition distance in a cylindrical case seems to be much 

greater than in the corresponding hemispherical case, which is illustrated in Figure 4.10. 

   A transition point is situated on the shock wave curve in the simple state and its position on 

the curve depends on the ε –value. Alternative positions of the transition points and shock 

wave curves of the non-simple states are illustrated in a pr –diagram in Figure 4.11. It 

concerns a burst test carried out for a cylindrical pressure vessel [28]. The test was made by 

Langley et al. and will be discussed more closely in chapter 5.1.2.  

   In Figure 4.11 the positions of the transition points are compared to the test results. Five test 

points were measured. All the test points seem to be situated in the simple state. Figure 4.11 

shows that the ε –value must be at least 0.04. On the other hand, when the ε –value grows 

close to 0.1, the problem loses its relevance because the curve of the non-simple state nears 

the curve of the simple state. Figure 4.11 shows that also the ε -value 0.07 is quite adequate. 
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   The curves of the shock wave pressure as a function of the distance for five pressure vessels 

are presented in Figure 4.12. Each pressure vessel contains air with the ratio of burst 

overpressure 100 and volume 1 m3. The sound velocity ratios are aa/as = 0.5. The pressure 

vessel types are three cylinders L/D = 10, 5 and 2, one sphere and one hemisphere. (L = 

length of cylinder, D = diameter). 

   It can be noticed in Figure 4.12 that the position of the transition point depends on the shape 

of the pressure vessel. It can also be noticed that the longer and narrower the pressure vessel 

is, the farther the transition point is situated. In the case of long tubes the transition point is 

situated at an infinite distance and only the simple state becomes significant. The shock wave 

curves of the non-simple state are united at the distance when the initial values of the pressure 

vessels are similar, although the shapes differ. 

 

   
Fig. 4.10. Relative transition distance rx/rs as a function of isentropic exergy ratio ε. The shape  
of the pressure vessel is a) hemisphere, b) cylinder with L/D = 10. Points with ε = 0.07 are  
circled. L = length of the cylinder, D = diameter of the cylinder. 
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Fig 4.11. Positions of the transition points depending on the ε –values in the case of a burst  
test of a cylindrical pressure vessel done by Langley et al [28]. The points were set on the  
shock wave curve of the simple state defined by the test values. The alternative transition  
points and the shock wave curves in the non-simple states were compared with the test results. 
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Fig. 4.12. Curves of shock wave pressure as a function of distance caused by bursts of five air  
containers having similar volumes and gas values. The volume Vs = 1 m3, burst overpressure  
ratio ps/pa –1 = 100 and the ratio of the sound velocity aa/as = 0.5.  
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5 Comparisons 
 

5.1 Test results 

 

5.1.1 Spherical pressure vessels  

 

    Seven spherical pressure vessels containing argon gas were made to burst by Pohto (1978) 

at pressures 15000 psi (103.4 MPa), 30000 psi (206.8 MPa) and 50000 psi (344.7 MPa) [27]. 

The test temperatures in the vessels were 17 oC (ambient temperature) and 1750 oC. The 

volume of the vessels was 29 litres and the inner radius was 190.5 mm. The vessels were 

situated in a concrete box as illustrated in Figure 5.1. The pressures of the main shock wave 

were measured at different distances and angles in the tests. The highest pressure values 

existed in the front of the open side of the box. 

 

 

 
 

 

Fig. 5.1. Arrangement of the bursting tests made by Pohto (1978). The pressure vessel was  
situated in a concrete box. [27] 
 

   Six tests are discussed here. The chosen pressure results were measured in the front of the 

box opening. 

   The calculations according to the proposed theory concerning the test with overpressure 

15000 psi (130.4 MPa) and ambient temperature 17 oC are presented. At first the ratio of 

sound velocity must be calculated. It is obtained from the equation: 
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TRaa
κ
κ

=         (5.1.1) 

where 

aa/as = sound velocity ratio, 

Rs = gas constant of argon = 208.2 J/kgK, 

Ra = gas constant of air = 287.0 J/kgK, 

κs = adiabatic factor of argon = 1.667, 

κa = adiabatic factor of air = 1.4, 

Ts = temperature of argon = 17 + 273.15 K, 

Ta = ambient temperature = 17 +273.15 K. 

 

By substituting the values into equation (5.1.1) we get: 
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Secondly, the relative starting pressure of the shock wave must be calculated. It can be 

iterated from equation (2.4.7): 
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where  

ps = burst pressure = 130.4 MPa (relative burst pressure = 1021), 

p1 = starting pressure of the shock wave, 

pa = ambient pressure = 0.101325 MPa (relative ambient pressure = 1). 

 

By iteration from equation (2.4.7) we get the relative starting pressure, p1/pa = 7.151. 
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   With the help of the starting pressure ratio, p1/pa = 7.151, the table distance of the starting 

point RT1 = 31.69 m and isentropic exergy ET1/pa =77987 m3 are obtained from the table in 

Appendix 2. The actual starting distance is the inner radius of the vessel, rs = 0.1905 m. The 

overpressure ratio as a function of the distance in the simple state is obtained from Appendix 

table 2. 

   In order to define the transition point, the data of the isentropic exergy of the pressure vessel 

is needed. It is obtained from equation (2.1.7): 
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where   

p1 = burst pressure of the vessel, which is the same as ps here, 

V1 = volume of the pressure vessel = 0.02896 m3. 

 

By substituting the values into equation (2.1.7) we can get the relative value, Es/pa: 
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           (2.1.7) 

 

The transition point can be obtained with the help of equation (4.1.3): 
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where  

RT1 = table distance = 31.69 m, 

rs =  radius of the pressure vessel = 0.1905 m, 

ETx/pa = loss of the isentropic exergy in the simple state, 
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ET1/pa = cumulative loss ratio of the isentropic exergy at the starting point from the table in 

Appendix 2, ET1/pa = 77987 m3, 

ε = loss ratio of the isentropic exergy in the simple state, ε = 0.07, 

Es/pa = isentropic exergy ratio of the pressure vessel, Es/pa = 39.76 m3. 

 

By substituting the values into equation (4.1.3) we can obtain the table value of the isentropic 

exergy at the transition point: 

 

 7798776.3907.0
1905.0

69.31 3
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=aTx pE  = 12890260   (4.1.3) 

 

With the help of the data ETx/pa = 23106213, the corresponding pressure ratio pTx/pa = 1.2887 

and distance RTx = 1016 m can be obtained from the table in Appendix 2. 

 

The real transition distance rx can be obtained from equation (4.1.4): 
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After this it is necessary to produce the function of the non-simple state. In chapter 3.2.4, 

equation (3.2.10) was obtained: 
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Also equation (3.2.12) for the exponent n was obtained: 
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By substituting the values and by taking into account that κ = 1.4, the exponent can be 

calculated: 
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The function can be calculated as follows: 
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By simplifying we get: 
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   In the same way as presented above, the tests in pressures 30000 psi (206.8 MPa) and 50000 

psi (344.7 MPa) can be calculated. The starting values and the calculated values are as 

follows: 

30000 psi (206.8 MPa) ambient temperature: 

Ratio of sound velocity: aa/as = 1.076 

Burst pressure ratio: ps/pa = 2042 

Ratio of the starting pressure of the shock wave: p1/pa = 7.877 

Table value of the starting distance: RT1 = 27.70 m 

Table value of the isentropic exergy loss at the starting point: ET1/pa = 59416 m3 

Isentropic exergy ratio of the pressure vessel: Es/pa = 81.72 m3 

Table value of the transition distance: RTx = 1507 m 

Actual transition distance: rx = 10.36 m 

Ratio of the transition pressure: px/pa = 1.1983 

Exponent in the non-simple state: n = -1.019 
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50000 psi (344.7 MPa) ambient temperature: 

Ratio of sound velocity: aa/as = 1.076 

Burst pressure ratio: ps/pa = 3403 

Ratio of the starting pressure of the shock wave: p1/pa = 8.391 

Table value of the starting distance: RT1 = 25.44 m 

Table value of the isentropic exergy loss at the starting point: ET1/pa = 50073 m3 

Isentropic exergy ratio of the pressure vessel: Es/pa = 138.32 m3 

Table value of the transition distance: RTx = 2230 m 

Actual transition distance: rx =16.70 m 

Ratio of the transition pressure: px/pa = 1.1361 

Exponent in the non-simple state: n = -1.019 

 

   The test results and the calculated values according to the proposed theory are presented in 

Figure 5.2. Pohto has drawn all the three test results on one line because the results were so 

close to each other. The full line represents the measured results and the dotted line the 

evaluations. The figure reveals a notable difference between the results of the tests and the 

theory. Probably there is something wrong in the basic data because the starting pressure 

differs essentially from the theory. The equation (2.4.7) concerning the starting pressure of a 

shock wave is well known and it has also been applied in earlier theories. 
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Fig 5.2. Comparison of the proposed theory with Pohto’s burst test with argon gas at over- 
pressures 15000 psi (103.4 MPa), 30000 psi (206.8 MPa) and 50000 psi (344.7 MPa) and 
ambient temperature 17 oC. The complete line represents the measured results, the dotted 
lines the evaluations by the researcher. 

 

   Tests were also made with the burst temperature of 1750 oC in the pressure vessels. In this 

temperature, comparisons between the results of the tests and the proposed theory were made 

as above. 

15000 psi (103.4 MPa), 1750 oC: 

Ratio of sound velocity: aa/as = 0.4075 

Burst pressure ratio: ps/pa = 1021 

Ratio of the starting pressure of the shock wave: p1/pa = 26.55 

Table value of the starting distance: RT1 = 5.537 m 

Table value of the isentropic exergy loss at the starting point: ET1/pa = 1824 m3 

Isentropic exergy ratio of the pressure vessel: Es/pa = 39.76 m3 

Table value of the transition distance: RTx = 30.01 m 

Actual transition distance: rx = 1.032 m 

Ratio of the transition pressure: px/pa = 7.457 

Exponent in the non-simple state: n = -1.081 

The results are presented in Figure 5.3. 
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Fig. 5.3. Comparison of the proposed theory with Pohto’s burst test with argon gas at  
pressure 15000 psig (103.4 MPa) and temperature 1750 oC. The complete line represents the 
measured results, the dotted lines the evaluations by the researcher. 

 
30000 psi (206.8 MPa), 1750 oC: 

Ratio of sound velocity: aa/as = 0.4075 

Burst pressure ratio: ps/pa = 2042 

Ratio of the starting pressure of the shock wave: p1/pa = 31.48 

Table value of the starting distance: RT1 = 4.452 m 

Table value of the isentropic exergy loss at the starting point: ET1/pa = 1104 m3 

Isentropic exergy ratio of the pressure vessel: Es/pa = 81.72 m3 

Table value of the transition distance: RTx = 30.86 m 

Actual transition distance: rx = 1.320 m 

Ratio of the transition pressure: px/pa = 7.302 

Exponent in the non-simple state: n = -1.051 

The results are presented in Figure 5.4. 
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Fig. 5.4. Comparison of the proposed theory with Pohto’s burst test with argon gas at  
pressure 30000 psig (206.8 MPa) and temperature 1750 oC. The complete line represents the 
measured results, the dotted lines the evaluations by the researcher. 
 

50000 psi (344.7 MPa), 1750 oC: 

Ratio of sound velocity: aa/as = 0.4075 

Burst pressure ratio: ps/pa = 3403 

Ratio of the starting pressure of the shock wave: p1/pa = 34.90 

Table value of the starting distance: RT1 = 3.910 m 

Table value of the isentropic exergy loss at the starting point: ET1/pa = 818.1 m3 

Isentropic exergy ratio of the pressure vessel: Es/pa = 138.32 m3 

Table value of the transition distance: RTx = 33.00 m 

Actual transition distance: rx =1.608 m 

Ratio of the transition pressure: px/pa = 6.939 

Exponent in the non-simple state: n = -1.050 

The results are presented in Figure 5.5. 
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Fig. 5.5. Comparison of the proposed theory with Pohto’s burst test with argon gas at pressure  
50000 psig (344.3 MPa) and temperature 1750 oC. The complete line represents the measured  
results, the dotted lines the evaluations by the tester. 
 

   In the low values of the overpressure ratio (below 1), the theoretical results show higher 

values than those of the researcher. There are two possible reasons: Firstly, the tested pressure 

vessels were sited in a concrete box which probably caused a remarkable disturbance to the 

measurements. Strong reflected shock waves may have developed in the box walls, which 

may have decreased the isentropic exergy and the pressure of the main shock wave 

effectively. Secondly, in the low values of the overpressure the issued values were not 

measured, only evaluated. 

 

 

5.1.2 Cylindrical pressure vessel 

 

   Langley et al. issued a commercial computer program PVHAZARD dealing with the risks 

of pressure vessel explosions in 1996 [28]. One of their aims was to test how well the 

program can evaluate the pressure of a shock wave as a function of distance. In that context 

Langley et al. have published the results of an explosion test of a pressure vessel. 



 91

   The tested horizontal pressure vessel cylinder was sited on the ground. A large defect was 

made in the middle of the cylinder side. The vessel including nitrogen at ambient temperature 

was let burst by an overpressure. The shock wave pressures and impulses were measured at 

different distances and angles. A schematic test arrangement is presented in Figure 5.6. 

 

   

   
Fig. 5.6. Test arrangement of Langley et al. [28] 
 

The initial values of the pressure vessel were: 

Type of pressure vessel:  Longitudinal cylinder 

Content:    Nitrogen 

Pressure:    4700 PSIG   325 bar ps/pa = 320.8 

Gas temperature:   124 oF    51.11 oC 

Ambient temperature:     60 oF    15.56  oC 

Length of cylinder:   19 ft   5.79 m 

Inner radius of cylinder  0.93 ft   0.2835 m 

 

The maximum values of the shock wave pressure were obtained at normal angle, here 90o. 

The measured test results at 90o angle were as follows:  

Distance from the cylinder axis (m) 3.35 4.88 6.71 10.7  15.6 

Ratio of overpressure p/pa –1 1.14 0.826 0.598 0.409 0.290 

   

From the data of the pressure vessel, also the following can be obtained: 
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Volume of the pressure vessel,   Vs =1.5 m3 

Isentropic exergy ratio of the pressure  

vessel from equation (2.1.7)   Es/pa = 881 m3 

Gas constant of nitrogen   Rs = 296.8 J/kgK 

Gas constant of air    Ra = 287.0 J/kgK 

Adiabatic factor of nitrogen   κs = 1.4 

Adiabatic factor of air    κa = 1.4 

 

In order to define the starting pressure of the shock wave p1, the ratio of sound velocity aa/as 

must be obtained. Here aa is the ambient sound velocity and as is the initial sound velocity in 

the pressure vessel gas. The ratio of sound velocity can be obtained from equation (5.1.1): 

  

 
sss

aaa
sa TR

TRaa
κ
κ

=         (5.1.1) 

where   

Ts = initial gas temperature in the vessel, = 51.11 oC, 

Ta = ambient temperature, = 15.56 oC. 

 

By substitution we get: 

 

( )
( ) 9279.0

15.27311.518.2964.1
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+⋅⋅
+⋅⋅
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The ratio of the starting pressure of the explosion can be obtained by iteration from equation 

(2.4.7): 
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By substitution we get: 
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  (2.4.7) 

  

By iterating from equation (2.4.7) the ratio of starting pressure can be obtained as p1/pa = 

9.607. From the table in Appendix 2 the following values can be obtained with the starting 

pressure ratio 9.607 as starting distance RT1 = 21.14 m and loss of isentropic exergy ratio 

ET1/pa = 34113 m3. The table value of loss of isentropic exergy ratio at the transition point 

ETx/pa can be obtained from equation (4.1.3) as: 

 

 aTas
T

aTx pEpE
r
RpE /// 1

3

1

1 +







= ε       (4.1.3) 

where  

ε is the ratio of the loss of isentropic exergy in the simple state (ε = 0.07).  

 

By substituting the values into (4.1.3) we get: 

 

 3411388107.0
305.0
14.21/

3

+⋅⋅





=aTx pE  = 20568861 m3   (4.1.3) 

 

From the table in Appendix 2 we get the values of the transition point with the help of  

ETx/pa = 20568861 m3 as pressure ratio pTr/pa = 1.1613 and table distance RTr = 1869 m. The 

real transition distance can be obtained from equation (4.1.4): 

 

 06.252835.0
14.21

1869

1

=⋅== s
T

Tx
x r
R
Rr m     (4.1.4) 

          

   Because all the test distances were below 25.06 m, there is no need to handle the non-simple 

state here. The proposed theory is compared with the test results and PVHAZARD-program 

in Figure 5.7.  
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Fig. 5.7. Comparison of the test results of Langley et al. with the theory. The test results were  
measured at 90 o angle where the pressure values were the highest. 
 

   If ε = 0.07, the transition point moves outside the test range. Besides that, all the test points 

seem to be situated at the simple state. The test results do not negate the assumption that  

ε = 0.07 is applicable in a cylindrical case. 
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5.1.3 Tubes 

 

   Baum made tests on tube-shaped pressure vessels of steel in 1977 [26]. He made a long 

axial crack on the upper side of the cylinder wall. Causing an overpressure inside the vessels 

with air he broke them. By detectors at different distances above the pressure vessel he 

measured the pressure values of the shock wave. His aim was to study the effect of the 

velocity of the opening crack growth on the shock wave pressures. In his report Baum issued 

results of 7 tests. The pressure vessels contained air at ambient temperature. The test 

arrangement is illustrated in Figure 5.8. 

 

  
Fig 5.8. Baum’s test arrangement [26] 
 

   The test results are presented below. The ratio of the starting pressure was calculated by the 

writer with equation (2.4.7). In this chapter the ambient pressure pa is assumed to be 0.101325 

MPa. 

 

Test number 1 

Pipe outside diameter (mm):    304 

Wall thickness (mm):        6  

Failure pressure (bars):    70  

Distance from detector (mm):    300 600 1200 

Over-pressure of shock wave (bars):   4.6 4.1 0.7 
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Ratio of starting pressure from equation (2.4.7): 5.707 

 

Test number 2 

Pipe outside diameter (mm):    152 

Wall thickness (mm):        6  

Failure pressure (bars):    92  

Distance from detector (mm):    150 300 2100 

Over-pressure of shock wave (bars):   5.2 3.7 0.22 

Ratio of starting pressure from equation (2.4.7): 6.210 

 

Test number 3 

Pipe outside diameter (mm):    168 

Wall thickness (mm):        8  

Failure pressure (bars):    45  

Distance from detector (mm):    150 300 2100 

Over-pressure of shock wave (bars):   3.4 1.3 0.2 

Ratio of starting pressure from equation (2.4.7): 4.944   

 

Test number 4 

Pipe outside diameter (mm):    152 

Wall thickness (mm):        6  

Failure pressure (bars):    46.3  

Distance from detector (mm):    150 300 450 1400 

Over-pressure of shock wave (bars):   2.2 1.3 0.4 2.2 

Ratio of starting pressure from equation (2.4.7): 5.991     

    

Test number 5 

Pipe outside diameter (mm):    152 

Wall thickness (mm):        6  

Failure pressure (bars):    92.6  

Distance from detector (mm):    600  

Over-pressure of shock wave (bars):   1.45 
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Ratio of starting pressure from equation (2.4.7): 6.222  

 

Test number 6 

Pipe outside diameter (mm):    101 

Wall thickness (mm):       1.6  

Failure pressure (bars):     48.3  

Distance from detector (mm):    340  

Over-pressure of shock wave (bars):   2.0 

Ratio of starting pressure from equation (2.4.7): 5.062 

 

Test number 7 

Pipe outside diameter (mm):    101 

Wall thickness (mm):       1.6  

Failure pressure (bars):    38.6  

Distance from detector (mm):    340  

Over-pressure of shock wave (bars):   2.0 

Ratio of starting pressure from equation (2.4.7): 4.694 

 

   Baum did not express the exact volumes of the cylinders, and the cylinders were relatively 

long. The transition points were in the distance. That is why the test results are observed in 

the simple state only. The test results are presented in Figure 5.9, where the ratio of the 

overpressure p/pa -1 and the distance of a detector for the cylinder axis r are stated. The test 

results are compared to the function in the simple state. Because in the simple state the shape 

of the function is permanent in all dimensions, the test results can be presented in the same 

figure. The starting points for the tests were chosen so that the points meet the actual starting 

pressure from the illustrated function. 

   A very interesting phenomenon can be discovered in Figure 5.9. In the beginning the 

pressure values of the main shock waves seem to be much higher than the function implies. 

The interesting behaviour may be caused by the relatively slow opening of the explosion slot. 

There may exist a jet flow outside the opening, and the cross section of its flow does not 

expand as much as the function distance implies. Later, the pressure values seem to become 

below the values of the function. The reason may be that the flow begins to reach the 
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hemispherically symmetric shape. At the transition region the type of the flow changes from 

jet to hemispherically symmetric. Then the flow may become wrinkled so that the flow cross 

section of the shock wave is temporarily larger than the function distance implies. Finally the 

pressure values seem to get close to the function. 

 

   
Fig. 5.9. Baum’s test results collected in the same function of the simple state. The relative  
distance was chosen so that each test result meets the function at its starting pressure. 
 
 
 
5.2 Accident analysis 

 

5.2.1 Explosion of a steam generator of 150 litres 

 

   In February 1991 a steam generator exploded in a microbiology laboratory in Helsinki [30]. 

The volume of the generator was 150 litres and the highest allowed overpressure was 3 bars. 

The generator contained water in liquid and steam phases, 75 litres of each, in saturated states. 

The generator was heated by electricity and it produced steam for a sterilizing autoclave. 

   The reason for the accident was the contactor of the electric pressostat, which failed so that 

the overpressure rose to 30…40 bar, when the highest allowed overpressure was 3 bar. The 

safety valve failed as well. The isentropic exergy was evaluated to be 6 MJ. 

   The straight end of the generator came off and was thrown towards the external wall, which  

expanded. The generator collapsed towards an elevator shaft behind it which was broken. The  

shock wave pressure lifted the second floor of the building so that all the vertical tubes in the  
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room were cut off. A total chaos took place in the room. Doors and panels collapsed to the  

lobby, fourteen windows were broken, etc. Two persons in the lobby went into shock and  

were taken to a hospital. Fortunately nobody was present in the room and no casualties  

occurred. The consequences of the accident from one view are presented in Figure 5.10. 

   Let us observe the explosion accident with the proposed theory. At first the basic data must  

be defined: 

Inner radius of the vessel:  rs = 0.225 m 

Burst pressure:   ps = 3.1 MPa, ps/pa = 30.59 

Adiabatic factor of the steam:  κs = 1.319 [23] 

Density of the steam:   ρs = 15.50 kg/m3 

Isentropic exergy:   Es = 6 MJ, 

Air temperature in the room:  Ta = 20 oC, 

Gas constant of air:   Ra = 287 J/kgK [23] 

Adiabatic factor of air:  κa = 1.4 

 

The ratio of the sound velocities is obtained from: 
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The starting point p1 is obtained from equation (2.4.7): 
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Fig. 5.10. The lobby of the laboratory after the explosion of a steam generator, which  
occurred in the room in the back. The isentropic exergy was about 6 MJ [30]. 
 

By substituting the values into equation (2.4.7) we get: 

 

 ( )( )
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1319.1
319.12
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   The starting pressure ratio is obtained as p1/pa = 6.375. The dimensions of the room were 

about 5x5x3 m3, where the height was about 3 meters. The distances from the ceiling and the 
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walls to the pressure vessel were 2…4 meters. The transition distance is obtained as 8 meters. 

So the observed region is in the simple state only. The results obtained from Appendix table 2 

are shown in the calculated data below and in Figure 5.11.  

 

Starting distance in the table:   RT1 = 37.48 m, p1/pa = 6.375, 

Loss of the isentropic exergy per 

ambient pressure at the starting point  

in the table:      ET1/pa = 109506 m3 

Isentropic exergy:    Es/pa = 59.2 m3 

Loss of the isentropic exergy per 

ambient pressure at the simple region  

in the table:     ETx/pa = 16027270 m3 

Transition distance in the table:  RTx = 1701 m 

Transition distance:    rx = 10.21 m 

Transition pressure ratio:   px/pa = 1.1765 

Exponent:     n = -1.0177 

 

   Stephens (1970) has described four damage level zones based on the overpressure of the 

main shock wave [2]: 

> 83 kPa:  Total destruction. A building is totally destroyed if it is damaged beyond 

economical repair.  

> 35 kPa:  Severe damage suggests partial collapse or failure of some bearing members. 

> 17 kPa:  Moderate damage. A building is still usable, but structural repairs are required.  

> 3.5 kPa:  Light damage: Consists of shattered window panes, light cracks in walls, and 

damage to wall panels and roofs. 
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Fig. 5.11. Comparison of the proposed theory with the findings in the accident investigation  
and with the issued damage zones. 
 

 

5.2.2 Explosion of a steam accumulator of 10 m3 

 

   In February 1993 a pressure vessel explosion accident occurred at a plastic box factory in 

the village of Muurla in Southern Finland [31]. The pressure vessel was a steam accumulator 

with the volume of 10 m3, placed inside a boiler house. In the explosion the boiler house was 

completely destroyed. The shock wave penetrated into the production building next to the 

boiler house and caused damages in it by moving walls, throwing objects, breaking down the 

lights etc. Parts of the windows and wall panels were thrown to the nearby road. Moreover, 

the shock wave ruined the nearby corner of the storage wing. A map and a view from the 

accident place are presented in Figures 5.12, 5.13 and 5.14. 

   The accumulator was broken in three pieces. A half of the vessel was thrown about 15 m 

behind the store building. The shell part was thrown 25 m towards the transformer building. 

One end was left in the ruins of the boiler house. 

   The reason for the accident was corrosion fatigue. It was a consequence of variable pressure 

in a corrosive environment, such as water. The explosion occurred seventeen minutes before 
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the working day would have begun. Fortunately nobody was present and no human casualties 

occurred. Neighbouring private houses are at about 200 m distance from the burst vessel but 

no damages occured. Even the windows remained unbroken. 

 

 
Fig. 5.12. Map over the accident area [31]. 
a) The destroyed boiler house. The starting point of the explosion was here. 
b) A corner of the storage wing collapsed 
c) The shock wave rushed in the production room causing damages. 
d) Neighbours at 200 m distance were saved without damages. 
e) The cylinder part of the vessel was thrown towards to a transformator. 
f) A half of the vessel was thrown behind a storage building. 
g) Pieces were flown to the road distance.  
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Fig. 5.13. View from the south direction [31]. The destroyed boiler house with the declined  
chimney is on the background. The collapsed storage wing is on the left. 
 

The basic data of the burst accumulator are: 

Volume:     Vs = 10 m3 

Water volume:    7.5 m3 

Steam volume:   2.5 m3 

Inner radius:     rs = 0.99 m 

The highest allowed overpressure: 1 MPa 

Assumed explosion overpressure: ps = 0.7 MPa 

Assumed isentropic exergy:  Es = 150 MJ 
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Fig 5.14. View from the same direction as in Fig. 5.13. The people give the scale [31]. 

 

The following values of the saturated steam can be obtained: 

Adiabatic factor:    κs = 1.324 [23] 

Pressure ratio:    ps/pa  = 7.895 

Density:     ρs = 4.161 kg/m3 

Sound velocity:   as = 504.4 m/s 

Ambient sound velocity:  aa = 343.2 m/s 

Ratio of sound velocity:  aa/as = 0.680 

 



 106

Ratio of starting pressure  

of the shock wave:    p1/pa = 3.242 

Isentropic exergy per  

ambient pressure:    E/pa = 1500 m3, 

Starting distance in the table:   RT1 = 104.2 m, 

Starting ratio of isentropic exergy 

in the table of Appendix 2  ET1/pa = 702200 m3, 

Transition energy in the table:  ETx/pa > 71360000 (out of range). 

 

   As the transition point went out of the range of the observed region, the shock wave is 

illustrated in the simple state. The findings are compared with the theory in Figure 5.15. Also 

the effects of the shock wave pressure according to the literature [2] are compared.   

 

 
Fig. 5.1. Findings compared with the theory 
 

   The damages in the buildings seemed to be greater than the proposed method implies. The 

reason may be that the structures of the buildings were lighter than average. 
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6 Discussion 

 

The destructive impacts of a pressure vessel burst or explosion can best be described by 

isentropic exergy. It differs from complete exergy so that the process of pressure drop into the 

ambient pressure is essentially isentropic. Usually the post-process temperature differs from 

the ambient one. That is why the value of isentropic exergy is usually smaller than that of 

complete exergy. The values are similar just in the special case when the post-process 

temperature is the same as the ambient one. In that case the entropy of the system is also the 

same as in its complete equilibrium state with the environment. 

   Although the word "isentropic exergy" seems to be new, the idea itself is well known 

especially in the field of thermodynamics. Baum has applied this idea for defining the 

explosion energy of pressure vessels.  

   The advantages of the concept of isentropic exergy are the following: 

1) It describes the released energy of an explosion process in contrast to the increase in 

internal energy caused by pressurization. 

2) It is in harmony with the second law of thermodynamics in contrast to the work 

specification.  

3) It describes the fast nature of explosion without essential heat transfer in contrast to the 

exergy. 

4) It can be applied to many thermodynamic systems with a batch process. 

5) Its changes can be defined in a shock wave. 

6) It offers a possibility to make a simple method for evaluating the shock wave pressure as a 

function of the distance caused by a pressure vessel explosion. This method is applicable to 

all shapes of pressure vessels in general use in contrast to the other theories. 

   The shock wave system is developed in an explosion process. The system contains the 

pressure vessel contents and the ambient gas. In the explosion process the developing shock 

wave system gets the initial isentropic exergy from the pressure vessel. Immediately after the 

start of the explosion process the shock wave system begins to lose its isentropic exergy. The 

losses are caused by the increase of the entropy in the shock fronts. In the end, the shock wave 

system has lost all of its isentropic exergy and the process is over. 

   In the shock tube theory it was noticed that the shock wave has a dual nature. At first the 

shock wave is in the simple state where its pressure is constant. When meeting the reflected 
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rarefaction wave, the type of the shock wave changes into a non-simple state when its 

pressure begins to decrease. The meeting point of the waves can be called the transition point 

and it separates the mentioned states. It was proved here that a similar dual nature exists also 

in hemispherically symmetric shock waves.  

   The proposed method for evaluating the shock wave pressure as a function of distance 

caused by a pressure vessel placed on land was developed. Equations concerning the changes 

of the isentropic exergy caused by a shock wave were derived. In the estimations, only the 

main shock wave was taken into account. The other existing shock waves were neglected. 

This principle gives a small over-estimation and therefore the theory is conservative. The 

method gives the highest estimation of the shock wave pressure at some distance.  

   The method presented in this study contains some assumptions and limitations: 

1) The exploding pressure vessel is placed on the ground.  

2) The ruptured opening area of the pressure vessel is fully open already at the beginning of 

the explosion process. This approximation repairs itself at a distance. 

3) There exist no missiles, the shock wave only. The mass of the pressure vessel walls is 

neglected. 

4) The shape of the shock wave is hemispherically symmetric. Although the shock wave is 

usually highly directional in the pressure vessel explosion, the estimation of hemispherical 

symmetry simulates the situation in front of the ruptured opening. Particularly this is the fact 

at a distance from the pressure vessel. Test results prove this argument. 

6) The explosion is idealized so that all the losses of the isentropic exergy take place in the 

main shock front. The change processes are isentropic except in the main shock front. 

Chemical reactions and heat transfer are neglected. There are no ambient structures or 

destructions. Reflected shock waves are not assumed.  

7) At the beginning of the explosion process the shock wave system is in the simple state. 

Then equation (3.1.57) or the table in Appendix 2 is applied. In the simple state the inner 

radius of the pressure vessel cylinder, the starting pressure of the shock wave and the distance 

are significant, but not the isentropic exergy. 

8) Later the shock wave system is in the non-simple state. Then equations (3.2.10) and 

(3.2.12) are applied. The shock wave pressure in the non-simple state seems to be too 

complicated to handle analytically. On the other hand, the application of the idea of isentropic 

exergy is interesting. That is why equations (3.2.10) and (3.2.12) are derived with the self 
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similarity principle. In the non-simple state the isentropic exergy, the values in the transition 

point, and the distance are significant. 

9) The transition point between the states is defined so that 7 percent of the initial isentropic 

exergy of the pressure vessel is lost in the simple state. Here the table in Appendix 2 was 

applied.  

   Several assumptions have been made in the method. Many of them are quite rough but the 

test results support these assumptions moderately at least at a distance. It is worth noting that 

the most interesting overpressure levels of the shock wave are about 1…10 kPa. These are the 

normal levels of the construction pressure in building structures. Normally, such pressures of 

a shock wave exist at the distances where this method gives its best estimations. 

   The innovations presented in this study are the following: 

1) Isentropic exergy was discovered as explosion energy of a pressure vessel and its values 

were calculated. 

2) Isentropic exergy was discovered to be an essential property of a shock wave system. 

3) Equations concerning the loss of isentropic exergy in shock waves were derived. 

4) Equations concerning shock wave pressure as a function of distance in the simple and the 

non-simple states were derived. The derivations were carried out with thermodynamics, flow 

theories and the concept of isentropic exergy. 

5) A proposed method for calculating the shock wave pressure as a function of distance 

caused by an explosion of a pressure vessel was presented. The method is applicable for 

pressure vessels in all shapes in general use. 

    The proposed theory was compared with the results of three test series and the findings in 

two accident investigations. The comparisons confirm the results, or they do not contradict 

them. 

   Isentropic exergy is an essential safety property of a pressure vessel. Furthermore, it gives a 

new viewpoint and possibility for evaluating the pressure of a shock wave.  It enables also an 

improved evaluation of the explosion risks in pressure vessels. 
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7 Conclusions 
 

The concept of isentropic exergy offers a new perspective for evaluating the pressure of the 

shock wave caused by a pressure vessel explosion as a function of distance. The isentropic 

exergy in a pressure vessel and its losses in a shock wave, as well, can be calculated. The 

evaluations of the shock wave pressure as a function the distance can be carried out for 

pressure vessels in any shape in practical use. 

   There is a need for further studies to make this theory more precise and applicable, e.g. in 

the cases where the opening of the defect is taken into account or where the shock wave is 

highly directional. Also, pressure vessels with contents in two-phase state remain to be further 

studied.   
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Appendix 1  
Transition point in a shock tube 
 

   In this appendix the position of the transition point in a shock tube is derived. The purpose 

is to find simple conformity to the law of the shock tube theory, as a constant value. In a 

transition point the type of the shock wave transforms from a simple state into a non-simple 

state. In the simple state the pressure and the velocity of the shock wave are constant. At the 

non-simple state the values decrease. The transition point is also the meeting point of the 

shock wave and the rarefaction wave reflected from the back wall of the tube. The situation is 

illustrated in Figure A1.1. 

 

  
Fig. A1.1. Waves in a shock tube process. 
1 = shock wave, 
2 = interface of the system gas and the ambient gas, 
3 = tail of the region where the pressure is constant, 
4 = top of the induced rarefaction wave, 
5 = top of the reflected rarefaction wave, 
L = length of the pressurized part of the tube, 
x = transition point, 
tL = arrival time of the induced rarefaction wave top into the back wall. 
 

   In the beginning of the shock tube process the propagated shock wave flows away from the 

cut point with constant pressure and velocity. At the same time the rarefaction wave is 

induced into the opposite direction. The top of the induced rarefaction wave reaches the end 

wall of the shock tube at the arrival time tL: 
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s

s
L a
Lt =      (A1) 

where  
Ls = length of the pressurized part of the tube, 
as = initial sound velocity. 
 
   After meeting the end wall the rarefaction wave reflects back toward the latter parts of itself. 

When the induced rarefaction wave has not yet met the reflected one, the wave is called to be 

in the simple state. After meeting the reflected wave it is called to be at the non-simple state 

[21].  

   The position xat, where the gas having a sound velocity a exists at time t, can be obtained 

with the help of equation (2.4.1) as follows: 

 

 taax sat 
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1
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κ
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κ
    (A2) 

 

The differential equation of the position can be obtained as: 

 

 t
da
dx

1
1

−
+

−=
κ
κ     (A3) 

 

The velocity of the top of the reflected rarefaction wave is uk:  

 

 awuk +=      (A4) 

 

According to equation (2.3.2) and the one above we get the relative velocity: 

 

 auu ak 2=−      (A5) 

 

The relative change of the place of the top reflected wave at the time dt is: 

 

 adtdx 2=      (A6) 
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By substituting this equation into (A3) we obtain: 

 

 t
da
adt

1
12

−
+

−=
κ
κ     (A7) 

 

By formulating, it follows that: 

 

 ( ) a
da

t
dt

12
1
−
+

−=
κ
κ     (A8) 

 

By integrating equation (A8) we get the time tk1 when the top of the reflected rarefaction 

wave reaches the pressure of the shock wave: 

 

 ( ) ∫∫ −
+

−=
11

12
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tL a
da

t
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κ
κ     (A9) 

 

Here as1 is the sound velocity of the system gas in the shock wave pressure p1. At the moment 

the shock wave pressure stays constant. By solving equation (A9) we obtain: 
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By formulating the above equation we get: 
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The place where that happens is xs1: 

 

 ( ) 1111 kss tawx −=     (A12) 
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The following important moment is t1 when the top of the reflected wave reaches the interface 

of the system gas and of the ambient gas. This can be obtained from equation: 

 

 ( )( ) 1111111 twttwax kss =−++    (A13) 

 

By substituting equation (A12) into (A13) we get: 

 

 ( ) ( )( ) 111111111 twttwataw ksks =−++−    (A14) 

 

By simplifying we get: 

 

 11 2 ktt =      (A15) 

 

The place w1 where the top of the reflected rarefaction wave meets the interface is then: 

 

 111 twx =      (A16) 

 

The moment, t2, when the top of the reflected rarefaction wave meets the shock wave can be 

derived from: 

 

 ( )( ) 21121111 tuttwatw =−++    (A17) 

 

Here a1 is the sound velocity of the ambient gas in the shock wave and u1 is the velocity of the 

shock wave. By solving the equation we get: 

 

 1
111

1
2 t

uwa
at
−+

=     (A18) 

 

The transition point, x, where the reflected rarefaction wave meets the shock front can be 

determined as:  
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 1
111

11 t
uwa

uax
−+

=     (A19) 

 

By substituting equations (A1), (A11) and (A15) into (A19) we get: 
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With the help of equation (2.4.7) we can get: 
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By substituting equation (A21) into (A20) we get: 
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With the help of the Rankine-Hugoniot equations, equation (A22) can be formulated as a 

function of the pressure p1 as follows: 
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      (A23) 

 

   The transition distance ratio x/Ls depends on the shock wave pressure p1, on the adiabatic 

factor of the system gas κs, and on the ratio of the sound velocity aa/as. The transition distance 

ratio x/Ls as a function of the overpressure ratio p1/pa-1 is illustrated in Figure A1.2. It can be 

noticed that the transition distance is not constant. 
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Fig. A1.2. Meeting point ratio x/Ls as a function of the relative starting pressure of the explo 
sion p1/pa-1 on different values of the sound velocity ratio aa/as in a shock tube. The system  
gas and the ambient gas have a similar adiabatic factor κ = 1.4. 
 

Next, the possibilities of the concept of isentropic exergy are examined. The isentropic exergy 

of a shock tube before the explosion process can be defined by the application of equation 

(2.1.7) as: 
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where  
ps = pressure in the shock tube, 
κs = adiabatic factor of the pressurized gas, 
A = transverse area of the shock tube, 
Ls = length of the pressurized part of the shock tube. 
 

The loss of isentropic exergy at the simple state caused by the shock wave can be obtained by 

application of equation (2.3.16) as: 
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where  

∆E = change of the isentropic exergy in the simple state, 

p1 = shock wave pressure, 

x = transition distance. 

 

The ratio of loss of the isentropic exergy in the simple state ε can be obtained from equation: 

 

 
E
E∆−

=ε      (A26) 

 

   With the help of equations (A23), (A24), (A25) and (A26) the values of ε as a function of  

the overpressure ratio p/pa-1 are illustrated below. The function is illustrated for two-atomic 

gases in Figure A1.3, for one-atomic gases in Figure A1.4 and for water steam in Fig A1.5. In 

the figures the functions are drawn with the values of sound velocity ratios of aa/as = 0.5, 1 

and 2. 

In Figures A1.3, A1.4 and A1.5 it can be seen that in low overpressures of the shock waves 

the values of the loss ratio of isentropic exergy in the simple state ε are relatively constant. 

The ε-values seem to be 0.28…0.33. 

 

This finding suggests that as the ε-value is quite constant in one-dimensional cases, it may be 

constant in the three-dimensional cases, as well. 
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Fig. A1.3. Shock tube with air content. Shock wave pressure ratio p1/pa – 1 as functions of the  
loss ratio of isentropic exergy ε in the simple state by the transition point.  
The system gas is two-atomic when κs = 1.4. The ambient gas is two-atomic when κ = 1.4. 
 

  
Fig. A1.4. The system gas is one-atomic when κs = 1.667. The ambient gas is two-atomic 
when κ = 1.4. 
 

 



 9

 
  

Fig. A1.5. The system gas is three-atomic (water steam) when κs = 1.303. The ambient gas is 
two-atomic when κ = 1.4. 
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Appendix 2 
 
Table of the simple state 

 

This table concerns the character of a hemispherically symmetric shock wave in the simple 

state. The symbols are:  

p/pa = relative pressure of the shock wave, 

RT = table distance, 

ET/pa = cumulative loss of isentropic exergy per ambient pressure in the main shock wave. 

 

p/pa   RT [m]   ET/pa [m3] 

101   1.000              - 
91   1.142            12.93 
81   1.325            33.08 
71   1.567            66.05 
61   1.902          124.14 
51   2.391          236.6 
41   3.163          485.2 
36   3.736          726.2 
31   4.528       1,144 
29   4.934       1,396 
27   5.410       1,725 
25   5.975       2,163 
23   6.656       2,763 
21   7.490       3,603 
20   7.980       4,150 
19   8.531       4,814 
18   9.154       5,627 
17   9.864       6,633 
16   10.68       7,894 
15   11.62       9,497 
14   12.73     11,570 
13   14.04     14,290 
12   15.62     17,930 
11   17.54     22,950 
10   19.94     30,030 
9   22.99     40,420 
8   27.02     56,270 
7   32.52     81,850 
6   40.45   126,100 
5   52.74   210,700 
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p/pa   RT [m]   ET/pa [m3] 

4.5   61.76        281,700 
4.0   74.04        390,800 
3.8   80.28        450,200 
3.6   87.54        522,800 
3.4   96.11        612,800 
32   106.3        726,000 
3.0   118.8        870,600 
2.9   126.0        957,800 
2.8   134.1     1,058,000 
2.7   143.2     1,173,000 
2.6   153.5     1,307,000 
2.5   165.3     1,463,000 
2.4   178.9     1,646,000 
2.3   194.6     1,864,000 
2.2   213.1     2,125,000 
2.1   235.1     2,441,000 
2.0   261.7     2,829,000 
1.9   294.5     3,312,000 
1.8   335.8     3,924,000 
1.7   389.3     4,717,000 
1.6   461.3     5,771,000 
1.5   562.8     7,226,000 
1.4   716.3     9,338,000 
1.35   826.5   10,710,000 
1.30   974.0   12,440,000 
1.28   1,048   13,240,000 
1.26   1,133   14,120,000 
1.24   1,233   15,120,000 
1.22   1,351   16,250,000 
1.20   1,493   17,530,000 
1.19   1,575   18,230,000 
1.18   1,666   18,980,000 
1.17   1,769   19,800,000 
1.16   1,884   20,680,000 
1.15   2,014   21,630,000 
1.14   2,163   22,670,000 
1.13   2,335   23,800,000 
1.12   2,536   25,060,000 
1.11   2,773   26,440,000 
1.10   3,058   28,000,000 
1.09   3,407   29,760,000 
1.08   3,842   31,770,000 
1.07   4,403   34,120,000 
1.06   5,150   36,890,000 
1.05   6,197   40,300,000 
1.04   7,767   44,640,000 
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p/pa   RT [m]   ET/pa [m3] 

1.035   8,889   47,170,000 
1.030   10,380   50,130,000 
1.028   11,130   51,430,000 
1.026   12,000   52,850,000 
1.024   13,000   54,360,000 
1.022   14,190   56,030,000 
1.020   15,620   57,870,000 
1.019   16,450   58,860,000 
1.018   17,360   59,890,000 
1.017   18,390   60,990,000 
1.016   19,550   62,170,000 
1.015   20,860   63,420,000 
1.014   22,350   64,760,000 
1.013   24,080   66,210,000 
1.012   26,090   67,770,000 
1.011   28,470   69,480,000 
1.010   31,330   71,360,000 
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