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Abstract 

Pöllänen Kati 

Monitoring of crystallization processes by using infrared spectroscopy and multivariate 
methods 

Lappeenranta 2006 

118 p. 

Acta Universitatis Lappeenrantaensis  243 

Diss. Lappeenranta University of Technology 

ISBN 952-214-234-4, ISBN 952-214-235-2  (PDF), ISSN 1456-4491 

Batch cooling crystallization is an important purification unit operation in the pharmaceutical 
industry. The quality and further usability of the crystalline product depend on the size, shape, 
size distribution and purity such as the polymorphic form. Product properties can be controlled 
by controlling the cooling and mixing conditions and the way in how the first crystals are 
introduced into the crystallization system. To succesfully control the process, the phenomena 
inside the crystallizer leading to certain product properties should be understood. Therefore, 
crystallization process should be monitored in real time and the properties of crystalline product 
should be reliably characterized. Aiming to that the U.S. Food and Drug Administration (FDA) 
(2004) has addressed an initiative of process analytical technology (PAT), which states that new 
efficient process monitoring and product quality evaluation tools should be developed to 
maintain or improve the current level of product quality assurance. Modern analyzers in 
monitoring as well as multivariate methods to treat the data are recommended to be applied in 
development of PAT tools. 

In this thesis, the application of in-situ attenuated total reflection Fourier transform infrared 
(ATR-FTIR) spectroscopy and multivariate data analysis methods are applied to study different 
phenomena during the crystallization process. Partial least scuares (PLS) modeling is applied 
for prediction of the solute concentration and further the driving force, supersaturation, in the 
crystallization process. The concentration measurement results are correlated to the quality of 
the obtained product. Multivariate statistical process control (MSPC) tools are used to monitor 
the on-set, i.e., primary nucleation of the crystallization process, which provides a new tool for 
alarming approaching nucleation and and exploring the chemical state prior to nucleation. 
Parallel factor analysis (PARAFAC) is tested for studying batch-to-batch variations in the 
crystallization processes. By monitoring crystallization processes using spectroscopic 
techniques and applying different multivariate methods a wide range of different kinds of 
information on the phenomena inside the crystallizer can be investigated.  

In this thesis the methods to characterize the polymorphic composition using diffuse reflectance 
Fourier transform infra red (DRIFT-IR) spectroscopy together with multivariate data analysis 
tools such as PLS, principal component analysis (PCA) and soft independent modeling of class 
analogy (SIMCA) are tested. The DRIFT-IR method is combined with multivariate methods to 
provide a tool to rapidly estimate the polymorphic composition of the crystalline product. 

 

Keywords: attenuated total reflection, diffuse reflectance, infra red spectroscopy, batch cooling 
crystallization, sulfathiazole, process analytical technology, multivariate methods, 
chemometrics, PLS, MSPC, PCA, SIMCA, PARAFAC, OSC 

UDC 543.42 : 665.662.5 : 519.237 
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A  total number of principal components extracted from the data 
matrix in modeling, [-] 
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Abs measured absorbance, [-]  
APAR  loading matrix for the first mode of three dimensional data matrix 

(n×A), [-] 
a number of principal component, [-] 
BPAR loading matrix for the second mode of three dimensional data 

matrix (m×A), [-] 
b vector of regression coefficients (1×m), [-] 
b0  regression coefficient of the zero intercept, [-] 
CPAR  loading matrix for the third mode of three dimensional data matrix 

(k×A), [-] 
ContrT

2 T2 variable contribution, [-] 
ContrQ Q variable contribution, [-] 
c  concentration, [mol/dm3] or [g solute/100 g solvent] 
c*  equilibrium concentration, [mol/dm3] or [g solute/100 g solvent] 
∆c  supersaturation, [mol/dm3] or [g solute/100 g solvent] 
Dk  diagonal matrix of the kth row of C in three dimensional data 

matrix (k×A) 
d  coefficient for the selected confidence limit level, [-] 
dp  depth of penetration of the radiation into the sample, [m]  
dQcontr,lim  difference between 95% confidence limits of Q contributions of 

calibration stage and prediction stage of the model, [-] 
dT2

contr,lim  difference between 95% confidence limits of T2 contributions of 
calibration stage and prediction stage of the model, [-] 

E  residual matrix of X decomposition (n×m), [-] 
EOSC data matrix from which the OSC component(s) are extracted (n×m), 

[-] 
e  residual from the model or score value from non-retained 

eigenvectors for single sample and single variable, [-] 
F   residual matrix of Y decomposition (n×q), [-] 
f  residual vector of y decomposition (n×1), [-] 
Fcrit  tabulated one-sided value for (A*-A) and (A*-A)(n-A-1) degrees of 

freedom, [-] 
hX  leverage vector for X space (n×1), [-] 
hXY  leverage value for XY space (n×1), [-] 
I0  intensity of incident energy transmitted, [-]  
I  intensity of transmitted light, [-] 
IPAR total number of variables in the first mode of three way array, [-] 
i  object/sample number, [-] 
iPAR the sample number in the first mode of three way array, [-] 
JPAR total number of samples in the second mode of three way array, [-] 
j  variable number, [-] 
jPAR the sample number in the second mode of three way array, [-] 
KPAR total number of samples in the third mode of three way array, [-] 
kPAR the sample number in the third mode of three way array, [-] 
l  path length, [m] 
m number of descriptive variables, [-] 



 14
n number of objects or measured samples, [-]  
n1 refractive indice of the ATR-element, [-] 
n2 refractive indice of the sample, [-] 
P  loading matrix of X data (A×m), [-] 
pa loading vector of X data for the component a (1×m), [-] 
pOSC  loading vector of OSC component (1×m), [-] 
qa  loading vector of Y data for the component a (1×q), [-] 
q number of response variables, [-] 
qa  chemical loading  
Q  squared perpendicular distance of a multivariate observation from 

the projection space, [-] 
Qcv

2 cross validated coefficient of determination, [-] 

R  ratio of the sample diffuse reflectance spectrum and a non-
absorbent reference sample, [-] 

R2 coefficient of determination, [-] 
ri  studentized residual, [-] 
S  diagonal matrix with diagonal elements equal to eigenvalues, [-] 
S  relative supersaturation , [-] 
s standard deviation, [-] 
s  vector of standard deviations (n×1), [-] 
scrit  confidence limit for distance to the model, [-] 

2
ats

  estimated variance of the score vector ta , [-] 
T  score matrix from X decomposition (n×A), [-] 
t   time, [s] 
ta score vector for component a from  X decomposition (n×1), [-] 
tOSC OSC component  score vector (n×1), [-] 
T temperature, [K] or [°C] 
T2  distance from the multivariate mean to the operating point on the 

PC plane, [-] 
T0 initial temperature, [K] or [°C] 
Tf final temperature, [K] or [°C] 
Tr  transmittance, [%] 
ua  score vector for component a from Y decomposition, [-] 
wOSC  OSC component weight vector (1×m), [-] 
X  matrix of descriptive variables (n×m), [-] 
x vector of descriptive variables of one sample (n×1), [-] 
x̂  modeled variation of variables of one sample (n×1), [-] 
x  mean of the population variable, [-] 
Y  matrix of response variables (n×q), [-] 
y  vector of response variables (n×1), [-] 
yi measured response value of sample i, [-] 

iŷ  predicted response value of sample i, [-] 
y    mean of measured response values, [-] 

w  weight vector from X decomposition, [1×m] 
 
Greek letters 
λ wavelength of the incident radiation, [nm] 
∆ν  
ε molar extinction coefficient 
θ angle off incidence of the reflected radiation, [°] 
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τ batch time, [s] 
 
Subscripts 
hom homogenous nucleation 
het heterogenous nucleation 
lim limit 
contr contribution 
met metastable zone width 
surf surface nucleation 
 
Abbreviations 
ATR attenuated total reflection 
CSD crystal size distribution 
DRIFT-IR diffuse reflectance Fourier transform infra red 
DSC differential scanning calorimetry 
FDA U.S. Food and Drug Administration 
FTIR Fourier transform infra red 
IRE internal reflecting element 
MSPC multivariate statistical process control  
MSC multiplicative scatter correction  
NIR near infra red  
OSC orthogonal signal correction 
PARAFAC parallel factor analysis 
PAT process analytical technology 
PCA principal component analysis 
PCR principal component regression 
PLS partial least squares 
PRESS predicted residual error of sum of squares   
QSAR quantitative structure activity analysis  
RMSEC root mean squared error of calibration 
RMSEP root mean squared error of prediction 
SIMCA soft independent modeling of class analogy  
SNR signal to noise ratio 
SNV standard normal variate filtering 
SPEx  squared prediction errors from X-phase decomposition 
TG thermal gravimetry 
XRD X-Ray diffraction 
XRPD X-Ray powder diffraction 
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1 INTRODUCTION 

Nowadays, more and more effort is directed to the use of on-line process monitoring and 

control in pharmaceutical manufacturing processes in order to enhance the understanding of the 

unit operations and also to ensure high quality product and small batch-to-batch variations (Yu 

et al., 2004). The U.S. Food and Drug Administration (FDA) has recently addressed an 

initiative of Process Analytical Technology (PAT), which states that the  new efficient tools that 

can be used during pharmaceutical manufacturing and quality control are to be developed and 

implemented while maintaining or improving the current level of product quality assurance 

(FDA, 2004). The tools to be utilized can be divided into four groups: 

I) Multivariate data acquisition and analysis tools 

II) Modern process analyzers or process analytical chemistry tools 

III) Endpoint monitoring and process control tools 

IV) Knowledge management tools 

The use of some or all of these tools is either applicable to a single unit operation or to an entire 

manufacturing process and its quality assurance (Yu et al., 2004). The use of PAT should lead 

to :  

I) Better process understanding and fewer process failures 

II) Ensurance of the product quality using optimal design, continuous monitoring and 

feedback control 

III) Reduction in the cycle time, which further improves manufacturing efficiency 

IV) Identification for the reasons for deviations within the processes 

V) Better process knowledge and scientifically based risk assessment 

(FDA, 2004; Yu et al, 2004).  

The pharmaceutical manufacturing process of solid state drugs includes several unit operations, 

which are synthesis, crystallization, mixing, granulation, tabletting and coating. Crystallization 

is an important purification unit operation within the pharmaceutical industry, and the quality of 

the crystallized product: size, size distribution, shape and purity all influence on the further 

processability and usability of the product. It is an essential issue that the desired product 

quality can be obtained. Traditionally, the pharmaceutical crystallization processes have been 

followed by laboratory testing and analysis to verify the product quality (Yu et al., 2004). In 

addition, rather large batch-to-batch variations in the crystallization processes have resulted. 

Understanding and the control of crystallization processes has not been sufficient. Novel 

monitoring as well as data management tools are of great importance in enhancing the 

controllability of the crystallization process and resulting crystalline product. 
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The concepts within the crystallization process where PAT tools could be applied and what 

could be obtained using these tools are illustrated in Figure 1. 

Figure 1 The PAT tools that can be applied in monitoring the crystallization process and the information 
that can be obtained 

Figure 1 shows that a wide range of the different phenomena could be obtained by applying the 

modern real-time analyzers to collect information from the crystallizer. The obtained 

information should lead to both a better understanding of the process via the ability of 

monitoring and visualizing the true transient phenomena inside the crystallizer. Also the ability 

of monitoring, e.g., the solute concentration and chemical as well as physical changes inside the 

crystallizer should enhance the control possibilities of the crystallization processes. For 

example, when the solute concentration can be measured in real time, this leads to the 

possibility of feedback control of the crystallizer. Also the knowledge of the process can be 

enhanced via batch-to-batch variation analysis derived from measured data. 

PAT tools can and should also be applied to off-line characterization of crystalline samples: 

Modern image analyzers produce high quality size and shape data, but the full utilization 

requires proper data treatment methods. The polymorphic composition of the product can be 
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evaluated using various different analytical techniques. To obtain qualitative and quantitative 

information from different kind of analytical data multivariate methods can be applied. 

The utilized tools to monitor crystallization processes will lead to a deeper understanding of the 

phenomena in the crystallization process, which further improves the crystallization process 

design. The utilization of the tools is also economical in the long run, as a better monitored and 

controlled processes will lead to reduced process failiors and batch-to-batch variations. 

2 AIM OF THE STUDY 

The aim of the study is to enhance the understanding of batch cooling crystallization processes 

and improve the product quality by  

1) Developing and evaluating methods based on attenuated total reflection Fourier transform 

infra red (ATR-FTIR) spectroscopy and multivariate analysis techniques for in-situ monitoring 

of the solution phase in a batch cooling crystallization process 

2) Developing methods based on difffuse reflectance Fourier transform infra red (DRIFT-IR) 

spectroscopy and multivariate analysis technicues for product quality evaluation. 

3 OUTLINE 

The thesis is divided into theory and experimental parts. In the theory part, the fundamentals of 

batch cooling crystallization processes are presented concentrating on the issues which are of 

importance to crystallizaiton process monitoring and crystalline product quality 

characterization. The basic principles of spectroscopic techniques used in this particular study 

are introduced, and the focus of a discussion lies on the special issues related to crystallization 

monitoring using vibrational spectroscopy. The multivariate methods applied within this study 

are introduced shortly and, again, concentration relies on the use of multivariate methods in 

spectral data treatment, which is the application in this study. 

In the experimental part, the experiments presented in the publications I-VI are shortly 

explained and the main results obtained and published in I-VI are summarized. In addition to 

the results presented in publications I-VI the batch-to-batch variation analysis of the batch 

cooling crystallization process is included in the experimental section as new results. 
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4 BATCH COOLING CRYSTALLIZATION PROCESS AS A PURIFICATION 
UNIT OPERATION IN THE PHARMACEUTICAL INDUSTRY 

4.1 Quality of the crystalline product 

The crystalline product quality is usually defined by the size, crystal size distribution (CSD), 

habit, polymorphic form and purity of the product (Jones, 2002; Mersmann, 1995) Usually, a 

certain mean size and narrow size distribution as well as high polymorphic purity is desired. 

The requirements for the crystal properties are strongly application dependent. However, the 

mean crystal size, CSD and habit affect the downstream processes of the pharmaceutical 

crystalline substance such as filtration, drying, milling, blending, granulation and tabletting 

(Barret et al., 2005). Usually an attempt is made to avoid fines generation, since fines can 

remarkably retard the filtration process (Barret et al., 2005).  

Polymorphism is defined as the ability for a substance to exist as two or more crystalline 

phases, that have different molecular arrangements (Brittain, 1999). The different polymorphic 

forms differ from each other by several physical properties (Brittain, 1999):  

I) Packing properties: e.g., molar volume and density, hygroscopicity 

II) Thermodynamic properties: e.g., thermodynamic activity, solubility 

III) Spectroscopic properties: e.g. vibrational transitions 

IV) Kinetic properties: e.g., dissolution rate, sates of solid state reactions, stability 

V) Surface properties: e.g., surface free energy, interfacial tensions, habit 

VI) Mechanical properties, e.g., hardness, tensile strength, compactibility, tabletting, 

handling, flow and blending 

Obviously differences in these properties cause differences in further processability in 

downstream processes. In addition to this the pharmaceutical performance of the crystalline 

product, for instance, dissolution, stability and usability in the final dosage form can be 

different for different polymorphic forms. Usually, the lowest energy crystalline polymorph, 

stable form, is chosen for development (Singhal and Curatolo, 2004). There are some 

exceptions to that rule: If the most stable form has insufficient solubility to have desired healing 

effect or drugs for quick relief are developed, the more soluble metastable form can be selected 

for further development. In addition, the ease of manufacturing or economical reasons can be a 

reason for developing a metastable polymorph (Singhal and Curatolo, 2004).  

The product quality in the crystallization process is affected by processes of nucleation, growth, 

attrition, breakage and agglomeration. The operating conditions, the type of the crystallizer and 

the material properties of the liquid and solid phases influence in the product quality 

(Mersmann, 1995). The factors that may have an effect on the polymorphic form of the crystals 
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include: solvent composition, degree of supersaturation, the temperature range used, additives, 

seeding, agitation (Brittain, 1999).  

4.2 Supersaturation 

The fundamendal driving force of the crystallization process is the change in the chemical 

potential between the prevailing and equilibrium state (Jones, 2002). Chemical potential is not 

easy to measure, therefore, the concentration of the solute in excess solubility is commonly used 

to refer driving force of crystallization process  

 *ccc −=∆   (1) 

where ∆c is the supersaturation also called as the concentration driving force (Figure 2), c is the 

concentration present in the crystallizer, c* is the equilibrium concentration at a certain 

temperature. In addition, the relative supersaturation in the isothermal system (S) is commonly 

used: 

*c
cS =  (2) 

Typically the concentration is expressed in molar units but also mass concentration or mass 

ratios can be used (Jones, 2002). The supersaturated state in solution is generated differently 

depending on the crystallization process used. These different processes include cooling, 

evaporation, drowning out or a chemical reaction (Mersmann, 1995), of which the cooling 

crystallization is considered in this study.  

Figure 2 The schematic illustration of a solubility curve, concentration profile during the crystallization 
and different imaginary metastable regions 
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In the cooling crystallization systems, the solubility of the solute in used solvent increases as the 

temperature increases. When this solubility concentration is obtained the system is said to be 

under equilibrium. The supersaturated stage is achieved when the system under equilibrium is 

cooled down. The supersaturated stage can be divided into two groups: the metastable region, 

where the solute molecules tend to transfer onto existing crystals and the labile region where in 

addition to mass transfer onto crystals, new nuclei are formed spontaneously. Basically, the 

solute to be crystallized is dissolved into the solvent at a certain, elevated temperature. Then the 

clear solution is cooled down and the supersaturated system is obtained. First crystals are 

introduced to the system (onset of crystallization) by adding seed crystals or exceeding the 

metastable limit. As the first crystals are introduced, the solute molecules in excess solubility 

tend to move onto crystals to release the supersaturation and attempt to go for equilibrium. By 

further cooling, however, the solution is kept supersaturated, which further causes the existing 

crystals to grow and/or new nuclei to be formed. 

The supersaturation level influences on the different mechanisms in the cooling crystallization 

process: nucleation,  growth, agglomeration and aggregation as well as polymorph transitions 

which are considered in the following four chapters. The supersaturation level can be controlled 

by controlling the crystallization process conditions, which is dealt with in Chapter 4.3.  

4.2.1 Metastable zone width and nucleation processes 

The nucleation processes and metastable zone width have clear correlation. In a simplified 

manner said, exceeding the metastable limit causes the system is under labile region, where new 

nuclei can be formed (Figure 2). Thermodynamic and kinetic equations for nucleation processes 

exist in literature (e.g. Mersmann, 1996; Mullin, 2001; Jones, 2001; Myerson, 1993). The 

concept of metastable zone limit is not well defined neither kinetically nor thermodynamically 

(Ulrich and Strege, 2002).  

Several different kinds of nucleation processes exist. Different nucleation processes dominate at 

different supersaturation levels. A commonly used classification is to present three different 

metastable zones (Ulrich and Strege, 2002; Mersmann, 1996), example of which Figure 2 

illustrates. The limit of homogenous nucleation ( *hommet,hommet, ccc −=∆ ) in Figure 2 is the 

limit where spontaneous nucleation can occur from clear solution without a solid phase present. 

The limit for heterogeneous nucleation ( *hetmet,hetmet, ccc −=∆ ) is the limit above which the 

surface nuclei can be formed on possibly existing foreign particles or rough surfaces in the 

crystallizer. Homogenous and heterogeneous nucleation processes refer to primary nucleation 

processes and these can take place without any crystalline material present (Ulrich and Strege, 

2002; Mersmann, 1996).  
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The primary nucleation influences on the mean particle size. The higher the supersaturation is at 

the moment of primary nucleation, the larger is the number of nuclei formed resulting in smaller 

mean size of the product  (Ulrich and Strege, 2002; Mohameed, 2002). The nucleation process 

affects essentially on the polymorphic form of the product crystals.  

Surface nucleation can occur when corresponding metastable zone limit 

( *surfmet,surfmet, ccc −=∆ ) is exceeded. New nuclei form onto of existing crystals. Attrition and 

breakage of existing crystals refer to the fourth nucleation type, which unlike the other 

nucleation types is not concentration dependent. Attrition occurs due to collisions of crystals 

with each other as well as to crystallizer walls or to impeller (Mersmann, 1996; Ulrich and 

Strege, 2002). The impeller configuration, impeller speed, crystallizer configuration, as well as 

properties of the solid and liquid phase influence strongly on the degree breakage of crystals 

and attrition nucleation. In order to these attrition fragments to grow to nuclei and crystals, the 

supersaturated stage is required. Attrition nucleation is often the dominating nucleation mode in 

crystallizations from solution (Virone et al., 2005). Surface nucleation and attrition nucleation 

are referred to as secondary nucleation processes since those are due to the existing crystals in 

the system.  

CSD and mean crystal size of the product crystals are strongly dependent on the degree of the 

secondary nucleation processes. Theoretically, the level of surface nucleation during a 

crystallization process could be avoided by controlling the supersaturation level to the stage 

where no nucleation processes exist. Consequently, this should lead to narrow CSD. In practice, 

as the defining the metastable limits unambiguously are not possible, the avoidance of 

nucleation during ongoing crystallization is difficult to do. The secondary surface nucleation 

and heterogeneous nucleation can cause also variations in the polymorphic composition due to 

different solubilities of the polymorphs in different stages of crystallization. The attrition 

nucleation is not dependent on supersaturation level, but the fragments grow differently at 

different supersaturation levels: at relatively high supersaturations, larger fragments grow faster 

than smaller fragments and at low supersaturations, zero growth and fragments can dissolve  

partially or totally (Virone et al., 2005). 

In practice, different nucleation processes, especially, heterogeneous, surface and attrition 

nucleation can be simultaneously present. Mersmann, 1996, Kim, and Mersmann, 2001 

presented equations for theoretically predict metastable zone width. The width of the metastable 

limit depends on several different factors, e.g., temperature level, cooling rate and mixing 

conditions (Tähti et al., 1999; Ulrich and Strege, 2002). Increasing the cooling rate broadens the 

metastable zone. Presence of impurities narrows the metastable zone width. The concentration 
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limit, where certain nucleation processes begin cannot be unambiguously experimentally 

determined (Mersmann, 1996).  

4.2.2 Nucleation and polymorphs 

The nucleation process is the most critical in forming polymorphs (Brittain, 1999). In the 

nucleation of polymorphs the Ostwald’s step rule is assumed to apply. By that rule the 

polymorph with the highest Gibbs’ free energy is the least stable and forms first. Under certain 

thermodynamical conditions, however, a solution phase mediated  fast polymorph conversions 

from less stable to more stable form can take place which is the principle of the Ostwald’s step 

rule (Brittain, 1999). In that process, the less stable polymorph nuclei first dissolves and after 

that the more stable polymorph crystallizes out. This rule is not a thermodynamic law, and it is 

not always obeyed, however. The supersaturation level effect on the nucleating polymorphs can 

be thought of as follows: the supersaturation level that is present at the primary nucleation can 

affect the rate of which the Oswald’s step rule is taking place. 

The nucleation of polymorphs can be also understood when considering, what happens in the 

process of primary nucleation. As the supersaturation level in a clear solution approaches the 

homogenous metastable limit, the solute molecules tend to move closer to each other and can 

form aggregates, which is an attempt to further reduce the Gibbs energy (Brittain, 1999). 

Different orientation of aggregates likely causes a different polymorphic form to be nucleated. 

It is assumed that the polymorphic form of nuclei dictates the polymorphic form of the product 

crystals. Several different aggregates can be present in the solutions simultaneously. It is 

assumed that the aggregate which has the highest concentration or for which the critical 

activation energy is the lowest will form the first nucleus leading to the crystallization of this 

particular polymorph (Brittain, 1999). It is also possible that more than one polymorph may 

nucleate and, as a consequence, a mixture of polymorphs is obtained as product. The different 

polymorphs may nucleate during the course of crystallization thorough secondary surface 

nucleation. The polymorphic form of that is nuclei at this stage can be different than the ones 

that have been formed in the early stage of crystallization.  

Factors, besides supersaturation that may influence on the nucleating polymorphic form and 

purity of the crystals in addition to supersaturation include, e.g., solvent selection, temperature 

range of crystallization process and seed crystals. It is not well understood, which of these 

factors dominate, however.  
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4.2.3 Crystal growth 

The growth of crystals in a supersaturated solution is a very complex process. In general, an 

increase in supersaturation increases the crystal growth rate, but at the same time the secondary 

nucleation processes are increased (Ulrich and Strege, 2002; Paul et al., 2005). The balance 

between the growth and nucleation is a critical issue regarding the product quality  (Paul et al., 

2005). In order to minimize the width of the CSD, growth should be dominating process over 

secondary surface nucleation. This can in principle be obtained by maintaining a very low 

supersaturation level thoroughout the crystallization process. This can, however, lead to the 

uneconomical operation of the crystallizer. The crystal growth rate is particle size dependent 

(Mersmann, 1996; Myerson, 1993) and, in practice, the growth rate decreases as the crystal 

sizes increases. To obtain economical operation  of the crystallizer, the optimization of the 

equal growth in the dynamic transient state process should be considered. Different growth rate 

can also lead to different crystal shapes (Ulrich and Strege, 2002). In industrial mixed tank 

crystallizers, crystal breakage due to collisions with each other, with the walls of the crystallizer 

and to the impeller can be to a great scale. Therefore, in practice the true product outcome in 

terms of size or habit cannot be evaluated simply by crystal growth rates or directions, or 

supersaturation level, but it can strongly be altered by mixing conditions. 

4.2.4 Crystal agglomeration 

Agglomeration is the process where two or more crystals attach to each other by as a result of 

malgrowth crystals or crystal crystal collisions in supersaturated solutions. Agglomeration is a 

dominating process for the very small particles in the submicron and micron range and neglible 

for large particles (Mersmann, 1996). Agglomeration should avoided because it causes reduced 

affective surface area (Paul et al., 2005).  

The agglomeration level depends on the movement of primary particles and liquid as well as the 

number of collisions in the supersaturated solution. As the very small particles tend to 

agglomerate, the rate of nucleation should be neglible in order for agglomeration to be 

prevented, thus the crystallization process should be run within the metastable zone. In a 

primary nucleation process the number of crystals is related to the supersaturation level, and at 

low supresaturation level agglomeration is less probable than at high supersaturation levels 

(Paul et al., 2005).  

4.3 Control of cooling crystallization systems 

The aim of the control of the batch unit operation is to obtain quality product economically and 

reliably with negligible batch-to-batch variations. The controllable factors in cooling 

crystallization process include the crystallization phenomena influencing the operating 
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conditions: the way of carrying out the on-set of the crystallization, what type of cooling mode 

and rate is used, what are the mixing conditions, and the solvent selection.  

4.3.1 On-set of the crystallization process 

 The on-set of the crystallization process occurs by introducing the first crystals/nuclei into the 

supersaturated clear solution. The onset of the crystallization process is important since it 

defines the number of the primary nuclei in the system and most likely, the polymorphic form 

of the crystals, since the nuclei define the lattice towards which the growth is oriented (Brittain, 

1991). There are two approaches for on-set of crystallization: unseeded and seeded.  

In unseeded crystallizations, primary crystal nuclei form spontaneously from solution when the 

supersaturation level exceeds the either limit of primary nucleation (Figure 2). Consequently, 

drastic decrease in concentration level decrease drastically. This can be considered as an 

uncontrolled way of starting the crystallization process, because the homogenous nucleation is 

stochastic process (Davey and Garside, 2000; Ulrich and Strege, 2002). However, the number 

of nuclei formed and polymorphic form that nucleates depend on controllable process 

parameters: cooling rate, nucleation temperature, and mixing conditions. The key into 

understanding the primary nucleation of the polymorphs, especially the supersaturation level 

impacts on it, is to be able to monitor the system and to see different aggregates priori to 

nucleation.  

In a seeded crystallization process, crystallization stage begins by introducing a small amount of 

seed crystals to the metastable system within the metastable range, which causes the 

supersaturation release on the surfaces of the added seed crystals and the crystallization process 

begins. This traditionally refers to a controlled way of crystallization onset (Davey and Garside, 

2000). The quality of the seeds: amount, mean size, and CSD of seed crystals affect strongly on 

the crystalline product obtained from batch (Kubota et al., 2001; Doki et al. 2004). The target of 

seeding is that only the seed crystals grow causing a narrow CSD for the product, and no 

secondary nucleation occurring. This would require seeding such that the supersaturation level 

after seeding would not increase dramatically, but the supersaturation release onto seeds only. 

Kubota et al. (2001) demonstrated that optimization of the amount of seed crystals can prevent 

secondary nucleation. In the concept of mean, size of the seed crystals Mersmann (1995) states 

that to obtain the large surface of the seed crystals, which is favorable for growth small seed 

particles are advantageous over large coarse particles. Presumable, the narrow CSD of the seed 

crystals would be favorable in order to those have equal growth rate and result in even sized 

crystals. Introducing the seed crystals into the surely saturated system prevents dissolving of the 

seeds or presence of the nuclei before seeding (Mersmann, 1995). Real time monitoring of the 
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change in the state from undersaturated thorough to saturate into supersaturated and 

distinguishing the correct seeding moment would increase the knowledge and controllability of 

seeded crystallization processes.  

Polymorphic form of the seed crystals strongly influences the polymorphic form of the resulting 

product (Kitamura, 2004, Beckmann, 2000). In order to obtain a pure polymorphic form seed 

crystals should be pure polymorphs. The product presumably exhibits the same polymorph as 

seeds, but to be sure, the operator must be sure that the seed crystals do not dissolve and that 

secondary surface nucleation is negligible. To obtain product of the pure polymorph 

understanding of the polymorphism of the whole system is required and process conditions 

controlled to avoid formation of undesired polymorphic forms. 

4.3.2 Cooling modes 

The level of supersaturation in the cooling crystallization processes is usually manipulated by 

changing the cooling policy in the crystallizer. When the cooling rate is very low, the mass 

transfer of the solute molecules on the surface of existing crystals is fast enough to release most 

of the supersaturation and consequently the supersaturation level remains low. When the 

cooling rate increases, the solubility decrease with decreasing temperature becomes greater than 

the mass transfer rate onto the crystals, which causes the supersaturation level to increase and 

remain high. The supersaturation level increases as the system cools down faster than is the 

mass transfer of the solute molecules from the solution onto the crystals (Mersmann, 1995). The 

constant cooling rate do not necessarily cause the constant supersaturation level throughout the 

process, because as the crystallization process proceeds the solid phase increases which causes 

changes in mass transfer rate. 

Different cooling modes in the cooling crystallization processes can be divided into three 

different main categories: natural cooling, constant cooling and programmed cooling rates. The 

schematic representation of these is presented in Figure 3. 
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Figure 3 Schematic presentation of different cooling policies usually applied in cooling crystallization 
processes 

In natural cooling, the system is cooled down using a constant temperature coolant. This results 

in typically very high cooling rates at the beginning of the batch (Figure 3). This further means 

that it is possible that the system is supersaturated faster than is the desupersaturation due to 

growth of the crystals. This can cause the metastable limit to be exceeded and a considerable 

spontaneous nucleation process to take place. This can result in very large number of crystals 

which are rather small and irregularly shaped.  

The constant cooling rate is predetermined constant cooling rate applied throughout the process. 

If the constant cooling rate is too high, the possibility of exceeding the metastable limit 

repeatedly throughout the crystallization process and the high level of uncontrolled secondary 

nucleation can be resulted. Basically, the lower the cooling rate is the more unlikely is to exceed 

any metastable limit, this principle can, however, lead to uneconomically long batch times. 

Therefore, the cooling rate should be optimized. The linear cooling rate does not take into 

account the transient state of the solid phase and thus, the increased mass transfer rate from the 

liquid phase to solid phase as the process proceeds. 

Programmed cooling mode has been developed in order to find the theoretical optimal cooling 

mode for the transient crystallization system. The objective of such cooling modes is to ensure 

that the rate of the supersaturation generation is always the same as is the mass transfer onto the 

growing crystals. This means that when a small amount and/or small crystals exist the cooling 

rate will be small and as the crystallization process proceeds the solid surface will increase, the 

cooling will be increased as well. A theoretical equation for ideal cooling in seeded 

crystallization processes with constant nucleation and growth rates was derived by Mullin and 
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Nyvlt (1971). This equation was very difficult to apply in practice, since it contains several 

terms that are time dependent such as the mean seed size at a certain time during the 

crystallization. Therefore, simplifications of this equation have been proposed (Mullin and 

Nyvlt, 1971; Jones and Mullin, 1974). The simplified cooling curve in order to maintain 

constant supersaturation during the whole crystallization process can be presented as follows: 
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where t is time, τ is the total batch time, T0 is the initial solution temperature, T is the solution 

temperature at time t and Tf is the final solution temperature. The Equation 3 is for an unseeded 

crystallization process where the assumption is that the solubility has linear dependence on 

temperature. This controlled cooling should therefore favor the growth over nucleation and thus 

lead to a narrower CSD (Choong and Smith, 2004; Costa et al, 2005; Mullin, 2001). However, 

results indicating that the optimal cooling probably could not be achieved using proposed 

cooling profile also exist (Kubota et al., 2001; Pöllänen et al., 2005 b, 2006) 

Recently, the development of a closed loop control for crystallization systems has become to a 

hot topic. (Fujiwara et al., 2002; 2005; Grön et al., 2003; Liotta and Sabesan, 2004) The 

objective of such control procedures is usually to maintain the desired supersaturation level 

throughout the process by first measuring the supersaturation level and based on that control the 

cooling of the system. There are two possible approaches to this type of feedback control 

approaches: measurement based or model based. In the measurement based applications online 

measurement of the concentration and temperature is used to calculate the control effect on 

temperature. In the model based control the mathematical model of the crystallization process 

including heat and mass balances is used as the basis, and the model parameters are updated 

based on the measurement (Grön et al., 2003). 

4.3.3 Mixing conditions 

Mixing conditions are essential issues when discussing the control of a batch crystallizer. 

Sometimes the wrong mixing conditions can overrule the otherwise intelligent control of 

supersaturation and the on-set of the crystallization process. Changes in the mixing intensity 

and different impeller types cause different levels of breakage of the crystals, which changes the 

properties of the solid phase in terms of the number of crystals present and the specific area of 

the solid phase available to grow (Yu et al., 2004). The increasing mixing rate increases the 

number of possible collisions in the crystallization, which can increase the possibility of two or 

more crystals to agglomerate.  
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Good mixing usually refers to similar mixing conditions throughout the reactor and the 

enhancement of the mass transfer between the solution and solid phase due to the smaller 

boundary layer thickness (Virone et al., 2005). The mixing condition effects divide into 

macroscopic scale effects and microscopic scale effects. The macro mixing means the overall 

performance of the mixing in the reactor and correspondingly the micro mixing refers to the 

turbulent mixing on the molecular level (Jones, 2002). Different impeller types give different 

macro vs. micro mixing distributions and different attrition and breakage levels (Shimizu et al., 

1998). Mersmann and Löffelmann (2000), suggest that the final product size can be strongly 

determined by the attrition for crystals above 100 µm. It can also be further speculated that the 

largest crystals are likely to suffer most from attrition, because they have the higher collisional 

probabilities due to their larger area and mass (Matthews and Rawlings, 1998). Davey and 

Garside (2000) have stated that it is currently recognized that attrition nucleation is the most 

significant nucleation mechanism in crystallizers for materials with high or moderate solubility. 

4.3.4 Solvent selection 

The solvent selection is one way to control crystallization process. For example, the solvent can 

be the dominating factor, e.g., to changes in the polymorphic form. (Bladgen, 2001; Bladgen et 

al, 1998a, Bladgen et al., 1998b) Some solvents seem to favor the formation of certain 

polymorphic forms, because these can selectively adsorb to certain faces of some polymorphs 

and the nucleation or growth of those is inhibited or retarded, which is the advantage for the 

nucleation or growth of other polymorphs (Brittain, 1999). In addition to this, the solvent can 

alter the relative solubilities of the polymorphs; therefore, the solvent selection can alter the 

polymorph nucleation processes (Brittain, 1999). The differences in solution viscosity, density, 

and diffusivity as well as changes in the solid-liquid interfacial energy cause changes in the 

growth rate and habit of the crystals (Myerson et al., 1986). In addition to this, the solubility of 

the solute can be remarkably different in different solvents, which can influence on the 

variability in nucleation and crystal growth. Solvent is traditionally selected been based on 

experience, analogy and experimental testing (Kolár et al., 2001). There are also proposals for 

systematic ways to select solvents. (Kolár et al., 2001; Myerson et al, 1986)  

4.3.5 Summary of the crystallization process scheme 

The summary of the crystalline product quality measures, different phenomena present in the 

crystallization process affecting on the product quality and the controllable process parameters 

are compiled in Figure 4.  
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Figure 4 The crystallization process system: Controllable process parameters, processes inside the 
crystallizer and crystalline product quality measures. 

To obtain the desired product quality all the different processes inside the crystallizer should be 

under control and the correct settings for the process parameters driving the process conditions 

should be defined. To produce a full monitoring scheme for the crystallization process, the 

transient phenomena inside the crystallizer should be monitored, i.e., the evolvation of the 

supersaturation level and the changes in the solid phase should be evaluated real time. The 

quality of the product should be evaluated fast and reliably. In addition, to enhance the 

knowledge of the crystallization process in practice, the factors causing batch-to-batch 

variations should be explored and explained. 
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5 APPLICATIONS OF MONITORING CRYSTALLIZATION PROCESS AND 

CRYSTALLINE PRODUCT 

The full scale monitoring of the crystallization process and the outcome require different 

techniques for different purposes, and no single technique to monitor all important phenomena 

inside the crystallizer exist. In following chapters, the state-of-art of applications used in 

crystallization process and product monitoring is briefly reviewed. Applications in vibrational 

spectroscopy together with multivariate methods in the crystallization process and product 

monitoring is more deeply outlined. 

5.1 Process monitoring 

5.1.1 Solution phase 

Solution phase measurement includes the metastable zone width, on-set of the crystallization 

and supersaturation measurements. There are several methods tested for on-line measurement of 

supersaturation. Supersaturation can be determined from the density of a crystal free solution 

(Gutwald and Mersman, 1990; Qui and Rasmuson, 1994). Density measurements are not 

accurate in the case of industrial organic solutions where various concentrations of impurities 

are involved. In addition, the technique requires an external sampling loop, which may cause 

operating difficulties. Concentration of a crystallizing solution can be determined by measuring 

the electrical conductivity of the solution (Löffelmann and Mersmann, 2002). This application 

does not require external sampling, but there exist several limitations in use of conductivity 

measurement techniques: Organic systems are not usually conductors, undesirable 

crystallization might occur in the conductivity cell and the results are temperature dependent 

and sensitive to possible impurities. Calorimetric measurement can be considered as an indirect 

technique for supersaturation on-line measurements (Févotte and Klein, 1996a, b; Löffelmann 

and Mersmann, 2002). The heat flow can be associated with a chemical reaction by measuring 

the temperature change it produces. However, the thermal effects are typically weak and off-

line computations are required for reliable results.  

Vibrational spectroscopy provides a technique for in-situ crystallization process monitoring 

using immersion probes. Vibrational spectrum contains lot of information and the phenomena 

present in crystallization process can be monitored from measured spectral data. Attenuated 

total reflection Fourier transform infra red spectroscopy (ATR-FTIR) and Raman spectroscopy 

have proven to be reliable technique for solution phase monitoring (Uusi-Penttilä and Berglund, 

1996; Dunuwila and Berglund, 1997; Togkalidou et al., 2001; Lewiner et al., 2001a; Lewiner et 

al., 2001b; Grön and Roberts, 2001; Fevotte, 2002; Grön et al., 2003; Fujiwara et al., 2002; 

Doki et al., 2004; Profir et al., 2002; Grön and Roberts, 2004; Feng and Berglund, 2002; Liotta 
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and Sabesan, 2004; Qu et al., 2004; Pöllänen et al., 2006; Pöllänen et al., 2005a, 2005b). In 

addition to that applications of in-situ Raman spectroscopy in crystallization monitoring have 

been proposed (Schwartz and Berglund, 1999; Schwartz and Berglund, 2000; Starbuck et al., 

2002; Ono et al., 2004; Hu et al., 2005; Falcon and Berglund, 2004;  Tamagawa et al., 2002a; 

Tamagawa et al., 2002b). 

The advantages and disadvantages of vibrational spectroscopy in in-situ monitoring of 

crystallization process is presented in Table 1.  

Table 1 Advantages and disadvantages of the use of vibrational spectroscopy in in-situ monitoring of a 
crystallization process. 

Advantages Disadvantages 

No external sampling methods are 
required 

Requires (complex) mathematical methods 
to be used in order to obtain quantitative 
information: Requires calibration and 
extensive calibration measurements 

Techniques are widely applicable for 
various solute solvent systems 

Sensitive to mechanical changes, e.g., 
concussions directed to the probe, changes 
the performance of the probe 

Simultaneous measurement of several 
species, e.g., impurities 

Temperature changes affect on the 
obtained spectrum 

The monitoring of the primary nucleation 
process can be performed 

Non-uniformity in the chemical 
atmosphere around the probe, e.g., due to 
imperfect mixing can cause erroneous 
results 

Possibility to build a closed-loop control 
of the crystallization process 

Immersion probe produces an additional 
flow resistance inside the crystallizer 

Forming crystals do not interfere with the 
measurement of the solution phase 
(ATR-FTIR) 

The strongly aggressive chemical 
environment can cause the detoration of 
the probe, e.g., oxidation of the probe 

Measurement of transformation of 
polymorphs during the crystallization 
process is possible (Raman) 

The crystals or air bubbles can attach to 
the surface of the probe, which gives an 
erroneous result 

Can be used in aqueous media (Raman 
has very weak water responses and ATR-
FTIR can be used due to fixed path-
lengths which limits the absorbance to 
the sample) 

Long term drifting causes the need to 
update calibrations periodically 

 Fluoresence problems can ruin the 
measurement (Raman). 
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The ATR-FTIR technique has proved to be a suitable technique for monitoring crystallization 

processes due to its wide applicability to different systems, since most compounds absorb 

radiation in the mid-IR range. In addition, the measurement takes place at the interface between 

the ATR element and a sample and therefore the existing crystals are assumed to not disturb the 

measurements. However, transformation of the spectral data to concentration information is a 

critical issue in order to obtain reliable results. 

Traditionally solute concentration predictions from spectral data measured from crystallization 

process have been done by correlating the height or area of the specific band to the solute 

concentration by regular linear regression (Uusi-Penttilä and Berglund, 1996, Dunuwila and 

Berglund, 1997, Fevotte, 2002, Lewiner et al., 2001a, 2001b, 2002; Ono et al., 2004; Hu et al., 

2005). Multivariate calibration for solute concentration prediction from batch cooling 

crystallization processes using either principal component regression (PCR) or partial least 

squares (PLS) methods have been proposed by, e.g., Togkalidou et al., 2001; Profir et al., 2002; 

Liotta and Sabesan, 2004; Pöllänen et al., 2005c; Starbuck et al., 2002; Schwartz and Berglund, 

1999; Schwartz and Berglund, 2002; Tamagawa et al., 2002a; Tamagawa et al., 2002b.  

ATR-FTIR spectroscopy  has been applied in monitoring of the purity of the racemic compound 

(Profir et al., 2002), the certain polymorphic form (Doki et al., 2004) and the of the level of the 

specified impurity simultaneously with the solute concentration measurement (Derdour et al., 

2003).  

The information on the concentration of crystallizing substance allows the possibility of 

investigating the effects of the driving force changes on the obtained product morphology and 

CSD. Consequently, the process conditions can be optimized to meet the desired product 

properties. The results from the studies in which ATR-FTIR was used for concentration 

measurement during the crystallization experiments using different constant cooling rates 

showed that the metastable range increased with the cooling rate and also with the overall 

concentration level, as was expected theoretically. The overall concentration level increased by 

seeding as well (Fevotte 2002,  Lewiner et al., 2001a, 2001b, 2002). The average size of the 

product was observed to be largest when seeding was used (Lewiner et al., 2001a) and the 

number of crystals was found to increase with the cooling rate (Lewiner et al., 2001b).  The 

variations in crystal shape in terms of length-to-width ratio were found to be reduced when 

seeding was applied (Lewiner et al., 2001b).  

An application of the closed loop feedback control based on ATR-FTIR concentration 

measurements has been  considered. (Fujiwara et al., 2002; Grön et al., 2003; Liotta and 

Sabesan, 2004).  The results from crystallizations using closed loop control have shown that by 
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maintaining the concentration level under the metastable limit, larger and more uniform product 

crystals can be obtained than when the metastable limit is exceeded (Fujiwara et al., 2002). 

Controlled crystallization processes with constant supersaturation levels have been compared to 

uncontrolled crystallizations in previous studies (Grön et al., 2003, Liotta and Sabesan, 2004). 

Crystallization with feedback control with constant supersaturation was found to provide larger 

crystal sizes than crystallization with a constant cooling rate (Liotta and Sabesan, 2004).  

The nucleation process can potentially be studied using vibrational techniques. However, only a 

few attempts to in predicting nucleation have been published. Falcon and Berglund, 2004 used 

PCA analysis to track subtle changes in the Raman spectra which could have been used as a 

warning for the onset of  crystallization. They found that by monitoring the loading values of 

PCA analysis, the systematic changes in a certain spectral variable indicated the upcoming 

nucleation. Vibrational spectra contain peaks that are characteristics of some of the 

intermolecular interactions, e.g., hydrogen bondings, thus the molecular clustering could 

possibly be monitored. 

The data obtained from the ATR-FTIR or Raman measurement together with multivariate 

methods could be used for evaluation of the batch-to-batch variations of crystallization process. 

Such studies are seldom presented, however. Kourti et al., (1995), used multiblock and 

multiway PLS methods to analyze batch-to-batch variations. Falcon and Berglund, 2004 used 

PCA analysis to study batch-to-batch variations in antisolvent crystallization processes. They 

propose, that the score plots of the PCA analysis were well suited for detecting differences in 

the batches.  

5.1.2 Solid phase 

The solid phase measurements include different nucleation processes, agglomeration, growth, 

breakage and attrition. Ultrasonic spectroscopy has been applied for the on-line measurement of 

particle size (Mougin et al., 2003). Laser diffraction techniques have been applied for in-situ 

monitoring of particle size during a crystallization process (Yamamoto et al., 2002; Ma et al., 

2000; Ma et al., 2001; Qu et al., 2004). High-speed on-line digital imaging sensors are 

becoming more popular in the investigation of particle size and especially particle shape 

(Barret, 2003; Barret and Glennon, 2002; Calderon De Anda et al., 2005a; 2005b, 2005c). UV 

measurement has been applied for at-line monitoring of the particle size with mean size of 200 

nm (Taavitsainen, 2001). The discussion of these techniques are beyond the scope of this thesis, 

but the successful simultaneous application of solid phase measurement and solution 

concentration monitoring would provide complete monitoring scheme of the crystallization 

process. However, solid phase measurement techniques still have many challenges to overcome 
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before they can be considered reliable and accurate enough techniques for real-time monitoring 

of solid phase monitoring in crystallization process (Yamamoto et al., 2002; Ma et al., 2000; 

Ma et al., 2001; Calderon De Anda, 2005). These challenges are currently gaining a lot of 

attention and should be considered more deeply in the future.   

5.2 Off-line characterization of the product 

5.2.1 Size and shape 

In addition to the in time analysis of the process, also the end product should be characterized. 

The characterization of the product includes the size characterization, which traditionally has 

been done by sieving or laser diffraction based techniques. Several applications of image 

analysis techniques for characterizing crystalline solids has been recently reported, for example, 

by Lewiner et al. 2001a, 2001b, 2002; Bernard-Michel et al., 2002; Pons et al., 2002; Ålander et 

al., 2003; Faria et al., 2003; Hurley et al. 2005; Ferreira et al. 2005; Pöllänen et al., 2006. Image 

analysis is the only way to define size and shape simultaneously. Manual image analysis is time 

consuming, and its drawback is that the operator bias can affect considerably on the result. The 

application of automated image analysis provides an opportunity for relatively rapid analysis 

and eliminates the operator bias. (Pöllänen et al., 2006).  

5.2.2 Polymorphic form of the product 

The polymorphic form and purity of the product is an important factor expecially in the 

production of pharmaceuticals. Traditional methods applied are X-Ray diffraction (XRD), 

thermal gravimetry (TG), differential scanning calorimetry (DSC) and vibrational spectroscopic 

techniques, e.g., Raman, near infra red (NIR) and FTIR. From these techniques, XRD alone 

measure truly the structural information, which is therefore the only method which directly 

measures the fact whether the samples are structurally different (Brittain, 1991). Other 

techniques can be considered as an additional method to characterize the composition of the 

product. Vibrational spectroscopy provides a tool for rapid screening of the polymorphic 

composition, and also the possibility of quantitatively characterizing the product composition, 

when multivariate calibration methods are included. In addition NIR and FTIR devices are 

economical to purchase and to use and available in almost all of the laboratories. The 

drawbacks of vibrational spectroscopy in solid state characterization include the differences in 

the spectra caused by the size distribution of the product. The DRIFT-IR, ATR-FTIR, NIR and 

Raman methods together with PCR and PLS calibration as well as lazy learning algorithms and 

neural networks have been succesfully used in quantitative characterization of the polymorphic 

composition of powder samples (Kipouros et al, 2005; Agatonovic-Kustrin et al., 2001; Salari et 

al, 1998 Helmy et al., 2003; Blanco et al., 2000; Auer et al. 2003). 
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6 SPECTROSCOPIC METHODS 

6.1 Fourier transform infra red (FTIR) spectroscopy 

Fourier transform spectrometers are mainly based on the Michelson interferometer (Griffiths, 

1986). The broadband source transmits the radiation to the beam splitter, which sends part of 

the radiation to a fixed mirror and other part to a movable mirror (Figure 5). The movable 

mirror moves in the direction perpendicular to its plane (Griffiths, 1986). The beams reflect 

from the mirrors and return to the beam splitter. The path length difference between the fixed 

mirror and moving mirror causes interference between the returning beams, as these beams split 

into two the first half to a detector and the another half to a light source.  

Figure 5 The optical configuration of the Michelson interferometer (modified from the Griffiths, 1986; 
Workman, 1997) 

The intensity of those beams depends on the path length difference, which gives the spectral 

information in the form of an interferogram (Griffiths, 1986; Workman, 1997). The 

interferogram is presented in the form of intensity as a function of time or position of the 

moving mirror. The interferogram is then turned into a spectrum using Fourier transformation. 

After Fourier transformation, the spectrum intensity is presented as a function of wave number 

or wavelength (Griffiths, 1986).  

The radiation can be transmitted thorough the sample to the detector or it can be reflected from 

the sample and this reflected light is then transmitted to the detector. The used method depends 

on the sample/process type, e.g. for a translucent samples transmission methods are suitable 

whilst for opaque samples reflection methods apply the best. Different accessories are 

manufactured for both transmission and reflection measurements for different sample types. 

Two reflection methods applied in experimental part of this thesis are considered in the 

following two chapters.  

Light source

Fixed mirror

Movable mirror
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Detector
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IR spectroscopy measures the amplitude of the molecular vibrations, which are caused by the 

change in the dipole moment of the molecule. Several different types of molecular vibrations 

exist. The two main categories include stretching and bending vibrations, which form different 

subgroups. In addition to this, vibrational coupling can exist, which means interactions between 

vibrations for example those for different bonds attached to the same atom. (Colthup et al., 

1975) Vibrational spectra shows not only molecular structure and functional groups but also 

inter- and intramolecular features such as hydrogen bonding between molecules as these forces 

influence on molecular bonds (Wülfert et al., 1998)  

The physical changes in the sample and its environment, i.e., pressure, temperature and 

viscosity changes cause also variations to the vibrational spectra. Intermolecular forces, e.g., 

hydrogen bonding, is affected by the physical conditions such as temperature and pressure and 

can cause, therefore, changes in the vibrational spectra (Wülfert et al.; 1998). The temperature 

changes influence in the spectrum especially to the bands from the functional groups that 

contain –H bonding (Czarnecki et al., 1994; Ozaki et al., 1997; Finch and Lippincott, 1956; 

Finch and Lippincott, 1957; DeBraekeleer, 1998; Noda et al., 1995; Wülfert et al., 1998). For 

example, for the stretch mode of hydrogen bonded –OH groups, raising the temperature 

decreases the average cluster size and relative absorbance of the free groups (Noda et al., 1995; 

Wülfert et al., 1998). In addition to this, the peak shifts and broadening of the bands occur 

especially for the functional groups with H-bonding (Wülfert et al., 2000). 

There is always noise present in the spectroscopic measurements. In the spectroscopic 

measurements the level of noise, termed as a signal-to-noise ratio (SNR) is related to the 

spectrometer and measurement parameters: measurement time, resolution, throughput, and 

mirror velocity and detector size.  

To optimize the quality of the spectrum and the robustness of the measurement, requires a 

compromise between these parameters, and in practice, the parameters that are usually changed 

are measurement time, resolution and throughput (Griffiths, 1986). 

The SNR value of a spectrum measured with a certain resolution is increased proportional to the 

square root of measurement time (Griffiths, 1986). Measurement time depends on the number 

of consecutively measured averaged spectra. With slow scanning interferometers, also the scan 

speed is variable (Griffiths, 1986). The number of spectra averaged is always the compromise 

between the robustness of the measurements and the quality of the spectra. If the off-line 

samples are measured for example in the quality control of bulk powder the number of 

averaging scans are defined by obtaining reasonably high quality spectrum in a reasonable time, 

i.e., increasing the number of averaging scans does not significantly improve the SNR. If the 
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reaction kinetics is measured, the measurement of one spectrum should not take longer than the 

changes in the process kinetics. If too many averaging scans are included, the acquisition time 

of a spectrum is too slow to observe instantaneous changes in the system. In addition, resulting 

averaged spectrum is not representing the one instantaneous moment in a system but the 

averaged spectrum includes all the changes present in the process during the time the scans of 

this spectrum are measured. Therefore, in kinetics measurements the robustness of the 

measurements is a key issue. 

Resolution means the capability of a spectrometer to separate bands that are some distance from 

each other (Workman, 1997). Resolution used in the measurements can be expressed as the 

increment of wave numbers (cm-1) ∆ν on which the resolution is measured, i.e., smaller 

increments cause better separation of bands close to each other and, thus, the better resolution. 

An improvement in the resolution increases the measurement time, since retardation is slower 

with smaller wave number increments. In addition, SNR is halved when the measurement 

increment is halved. This means that in order to obtain same SNR with higher resolution the 

number of scans has to be increased, which again increases the measurement time needed. 

Increasing resolution leads to a better separation of lines (Griffiths, 1986). The rule of thumb 

says that one should select the lowest possible resolution that is enough to separate the relevant 

bands. This ensures the most robust measurement possible.  

Throughput is defined as the power received at a detector through an optical system (Griffiths, 

1986), in terms of effectiveness of an optical system to transmit light relative to amount of light 

introduced to the system (Workman, 1986). 

IR regions include the near-IR (NIR) 12800-4000 cm-1 (700-2500 nm), mid-IR 4000-200 cm-1 

(2500-5⋅104 nm) and very seldom-used far-IR region 200-10 cm-1 (5⋅104-106 nm). In this study, 

the mid-IR region is used. The advantage and sometimes the disadvantage of the mid-IR region 

is that almost everything, all of the organics and many inorganic compounds absorb within the 

mid-IR region. IR spectroscopy is widely usable but the obtained spectrum from mixtures can 

be rather complex. In addition, the bands obtained can include interactions between different 

species or the peaks from different constituents can overlap each other. Some strong absorbent 

can totally cover up the smaller peaks. Therefore, the interpretation of the IR-spectrum or 

qualitative or quantitative analyses on samples from IR spectrum is not a straightforward task. 

The basis of the quantitative analysis in spectroscopic measurements is Beer’s law 
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where Abs is a measured absorbance I0 is the intensity of incident energy transmitted, I is the 

intensity of transmitted light, Tr is the transmittance, ε is the molar absorptivity, c is the 

concentration and l is the path length. Assumption is that the relationship between absorbance 

and concentration is linear (Workman, 1997). Ideally, the height of a certain peak in the 

absorption spectrum (absorption in y-axis) related to the constituent in interest could be linearly 

related to the concentration of this constituent. However, this is usually complex task when 

measuring the mixtures of different species due to aspects already discussed in the previous 

paragraphs: random noise can cause variation to the spectrum, small peak shifts can occur due 

to different mechanical and physical reasons, changes in the physical environment, e.g., 

temperature, or pressure changes while measuring. When measuring mixtures of complex 

species, the interactions between the species cause interaction peaks and the peaks from 

different species can overlap each other, and therefore, the absorbance of a certain peak is not 

always due to the constituent of interest. 

6.2 Attenuated total reflection (ATR)  

ATR accessories are widely used in FTIR spectrophotometers especially in the measurement of 

liquids and thin films. ATR is also called Internal Reflectance (Workman, 1997). The principle 

of ATR spectroscopy is illustrated in Figure 6. 

Figure 6 The principle of attenuated total reflection  IRE=Internal reflecting element, n1=refractive indice 
of the ATR-element, n2=refractive indice of the sample, dp=depth of the penetration of the beam into the 
sample, θ= angle of incidence of the reflected and propagating radiation 

The radiation from the light source is transmitted thorough an internal reflecting element (IRE) 

at a certain angle of incidence (θ) that causes the light to undergo internal reflection at the 

interface of the IRE and sample. Total reflection occurs at the transition from an optically dense 

IRE element with high refractive index (n1) and optically less dense sample with much lower 

refractive index (n2) than the IRE element. The beam is penetrated into the sample by fixed 

depth (dp). The internally reflected radiation is attenuated by the absorption of the sample and 

the reflected light is a function of this absorption at a certain wavelength. As a result the 
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reflected light that is transmitted to the detector reveals an absorption spectrum. (Workman, 

1997)   

The depth of the penetration (dp) of the radiation into the sample at constant wavelength (λ) and 

angle can be calculated by 

( )( ) 2
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(Harrick, 1979). Intensity in the different wavelengths changes as the radiation penetrates to 

different depths (Workman, 1997). For typical samples the order of approximate depth of 

penetration is in one or two micrometers, thus ATR can be considered essentially as surface 

measurement technique in a macro scale measurements (Workman, 1997). In addition, as the 

radiation does not penetrate deep into the sample, also the samples containing strong IR 

absorbents, such as water, can be measured using the ATR technique (Workman, 1997). The 

sample and the IRE has to be in inherent contact in order for the  measurement to be 

representative. Any contamination in the surface of the element causes the measurement to be 

taken from this contaminate, not the sample. In addition to this, any scratches or the chemical 

deterioration on the IRE cause the measurement to be inappropriate and any mechanical 

distraction can cause misalignment of the element, which further cause absorptivity decrease 

due to losses in the energy transmitted thorough the IRE (Workman, 1997).   

The radiation can undergo one or multiple reflections. The number of reflections that occur 

depends on the geometry of the IRE (Workman, 1997). The conical element presented in Figure 

6, causes the beam to undergo two internal reflections before being passed to a detector. The 

number of reflections is meaningful, because of the fact that the surface covered by sampling is 

a product of the number of reflections and the depth of penetration (Workman, 1997). 

Therefore, two reflections can be considered to cover twice the area as one reflection.  

The conical type element shown in Figure 6 is ideal for mounting to a probe and placing in a 

reactor, and this can therefore be applied for in-situ monitoring. There are also several other 

types of element geometries that can be mounted to probes, for those references the reader is 

asked to look for instructions from probe manufacturers. Selection of the geometry depends on 

the application: circle or tunnel cells are widely applied for volatile liquids, constant pressure 

horizontal ATR-elements are typically used for thin films etc. (e.g. Workman, 1997; Harrick, 

1979; Griffiths and de Haseth, 1986). With some IRE geometries, the angle of incidence can be 

changed, and this property be used to have measurements from different depths of the sample 

(Workman, 1997). For the element geometry represented in Figure 6 the angle if incidence is 

fixed to 45°. 
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There are several different IRE materials available commercially, which have different 

chemical and mechanical resistancies and different samples/process conditions require different 

IRE material (Table 1). In addition, these materials have different usable spectral ranges as can 

be seen in Table 2. 

Table 2 Properties of the most common IREs used in immersion probes (1Workman, 1997; 
2Axiom Analytical, 2005) 

Material 1Spectral 
range (cm-1) 

2Hardness 
(KNOOP) 

1Refractive 
Index at 

1000 cm-1 

2Special 
considerations 

Zinc sulfide (ZnS) 17 000-833 250 2.2 Sensitive to some 
acids and strong 

oxidizers 
Zinc selenide (ZnSe)  20 000-460 120 2.4 Sensitive to acids 

and oxidizers 
AMTIR (Infrared 
glass made from 

germanium, arsenic 
and selenium) 

11 000-625 170 2.5 Sensitive to 
strong alkalis 

Silicon 8 300-660 1500 3.4 Sensitive to HF, 
HNO3, NaOH 

Germanium (Ge) 5 500-600 780 4.0 Sensitive to hot 
sulphuric acid 

 
Therefore, the selection of the IRE material is always a compromise between a desired 

measurement range, the chemical and mechanical conditions where IRE is used and the price of 

the IRE. The properties presented in Table 1 are of course estimates and source dependent, and 

cannot be considered as exact values. In addition to the use of these materials alone, there are 

applications of IRE, where the element itself is produced from one material which is then 

coated with another, more resistant one, usually with diamond to enhance chemical and 

mechanical resistance. 

6.3 Diffuse reflectance Fourier transform infra red (DRIFT-IR) spectroscopy 

In the DRIFT-IR technique the light transmitted is imposed on the surface of the sample. From 

that surface the light is reflected over a range of  angles and part of the radiation is transmitted 

into the sample or reflected from the sample. Reflected light has two components: specular and 

diffuse. The diffuse component consists basically of the chemical information. “The diffuse 

reflected light emergs from random reflections, refractions and scatter inside the sample. 

Further, more transmission and absorption may occur at the other interfaces” (Workman, 1997). 

Together these phenomena cause the spectral composition of the reflected radiation transmitted 

to the detector. As a result reflection spectrum is obtained. 

The particle size can affect the reflectance signal. Reduction of particle size by grinding may 

improve the quality of the spectra. In addition to this, a narrow size distribution and equal shape 
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is beneficial. Also the properties of the surface affect on the obtained result. If there is strong 

surface reflections present, the sample might have to be diluted with IR-radiation nonabsorbing 

media such as KBr (Workman, 1997) to reduce the reflection intensity.  

The spectrum obtained from a diffuse reflectance measurement does not have linear relationship 

between the reflected intensity and composition, i.e., Beer’s law does not apply (Workman, 

1997). To correct the diffuse reflectance spectrum and to obtain the linearized spectrum the 

Kubelka-Munk function is used (Workman, 1997; Spragg, 1998; Clark and Roush, 1984) 
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where f(R) is the corrected spectrum R is the ratio of the sample diffuse reflectance spectrum 

and a reference sample that is non-absorbent, e.g., KBr in mid-IR region (Workman, 1997). 

Alternatively the spectrum is linearized using log(1/R), which corresponds to the absorption 

units (relationship similar to that between the transmission and absorption)  (Settle, 1997; Clark 

and Roush, 1984). However, it is hard to distinguish based on literary which method is 

preferable and why. Both techniques are reported not to perform true linearization of the data. 

K-M amplifies strong bands and it is said to be suitable for cases where the absorption level is 

relatively low and low specular reflectivity is sufficient (Garbassi et al., 1993; Tremblay and 

Gagné, 2002). Kubelka-Munk has successfully been used in several applications (Tremblay and 

Gagné, 2002; Greene et al., 2004; Park et al., 2000). Also the R units have been reported to be 

succesfully used (Kipouros et al., 2005). The unit log(1/R) has widely been used in several 

applications (Agatonovic-Kustrin et al., 2001; Blanco et al., 2000; Pöllänen et al. 2005a; 

Pöllänen et al. 2005c;Andrés and Bona, 2005). 
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7 MULTIVARIATE TOOLS TO EXTRACT INFORMATION FROM SPECTRAL 
DATA 

The measured data, e.g., spectra from the process or analytical samples form the data matrix of 

explanatory variables X by size is n×m where n is the number of objects or samples and m is the 

number of measured variables. The matrix of the response variables is called Y, and its size is 

n×q where q is the number of response variables. If q=1 Y is a vector and is then denoted as y. 

X data can be explored by itself or correlations between X and Y can be explored and models 

for predicting Y from X can be developed using the multivariate methods.  

There are number of  different ways to look at spectral data and the application to be used 

depends strongly on the purpose of the analysis:  

• Seeking the similarities and differences between the samples, e.g., use of clustering 

methods in purity analysis.  

• Process faults and drifts measured in time.  

• Prediction of a certain property, e.g., the concentration of the constituent in interest.  

• Batch-to-batch variation analysis. 

To obtain reliable results by multivariate modeling, several steps are required: Detection of the 

quality of the samples and removing possible outliers, data preprocessing, model building and 

model validation. In the following chapters, some commonly used multivariate methods for data 

preprocessing, classifying samples, statistical process control, multivariate calibration and also 

batch-to-batch variation analysis are introduced. In addition to this, methods for data quality 

analysis and outlier detection, as well as model validation are briefly discussed. 

7.1 Preprocessing methods 

7.1.1 Mean centering 

Mean centering refers to an operation where the average value for each variable is calculated 

and these average values are subtracted from each data object. Thus the variance of all the 

variables have a mean value of zero. Mean centering is done practically in every multivariate 

analysis.  

7.1.2 Scaling 

Sometimes the variables exhibit very different numerical ranges. In multivariate methods such 

as in principal component analysis (PCA) and PLS methods the results are not independent for 

the units of variables. Therefore, the variables with high numerical values and variance can 

exhibit a too strong weights in the model whereas the weight of the variables with very small 

numerical values and variance can be underestimated. Therefore, the variables are often scaled 
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to unit variance. For each variable, the standard deviation is calculated and the inverse standard 

deviation for each variable is used to multiply each column, i.e., the variable vector in the X 

matrix. After that treatment each scaled variable has equal unit variance. 

Scaling of the spectral data cause the bands from specific constituents and the baseline to be 

equally weighted, which further results in an unnecessary increase in the noise level. The most 

meaningful variables, i.e., spectral bands related to modeled phenomena actually should have 

larger meaning and larger scale variation than do the baseline points. Therefore, scaling all the 

variables to equal meaning might not be beneficial in this case. 

7.1.3 Variable selection 

The data used in modeling defines the need of variable selection and the way how it should be 

performed. All the variables are not automatically equally important in modeling. For instance, 

the bands in the spectrum that are due to a different phenomena than the modeled ones, can 

actually be harmful in the modeling since these cannot be related to the modeled phenomenon. 

In addition, including the baseline does not necessarily give additional value to the modeling 

procedure. Therefore, it may be beneficial to select certain relevant variables to the model and 

exclude the variables that do not improve the model (Brereton, 2002). The selection of variables 

from the spectral data should be based on priori knowledge of the variables. When the spectral 

data is used in the modeling, the important issue is: what spectral regions reflect the modeled 

phenomena. However, reducing the number of variables too drastically can cause problems in 

terms of reduced dimensions in the multivariate matrices (Brereton, 2002).  

The in addition the type of the data also the purpose of the modeling define the need and the 

level of variable selection. If the objective of the model is to obtain the best possible momentary 

predictions, removing of the variables not related to modeled variable might be beneficial. 

However, for process monitoring purposes it might be advantageous to include as many of the 

X variables as possible in the modeling. For example, the occurrence of the new phenomena in 

process can occur in different variables than the usual process variation. 

Several methods are proposed to find the optimal number of variables to be included into the 

model. Different filters to remove irrelevant variables are presented, e.g., in Brereton, 2002 and 

Höskuldsson, 1996. The variables can be put into order based on their mean, standard deviation, 

or variance. (Brereton, 2002) The selection of the variables can also be based on an increase in 

the correlation coefficient (R2) value or the variable set which gives the best predictions of the 

calibration set, i.e., the smallest errors in the predictions of the calibration and/or test sets are 

obtained, which can be written  ii yy ˆmin −Σ . In addition, e.g., cross validation, squared 

covariance and H-error criteria can be used in the selection of variables (Höskuldsson, 1996). 
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7.1.4 Multiplicative scatter correction (MSC) 

The MSC method attempts to remove the effects of scattering and most of the random variance. 

In this method each spectrum is linearized to the “ideal” spectrum of the sample (Workman, 

1998). “Ideal” spectrum is calculated as an average spectrum of all samples. Each spectrum is 

then corrected by first calculating a linear regression against the corresponding points in the 

ideal spectrum. Then the slope from linear regression is subtracted from the original spectrum, 

and the result of the subtraction is divided with the intercept from the linear regression 

(Workman, 1998).  

The MSC is only applicable when spectral responses are at least fairly linearly dependent on the 

concentration of the constituents of interest. However, if there is a large variability in the 

sample composition and thus in resulting spectra, the mean spectrum does not represent the 

ideal spectrum. In this case, the MSC filtering can worsen the spectra to be used in further 

modeling purposes (Workman, 1998).  

7.1.5 Standard normal variate (SNV) 

The SNV method also tries to remove the different scattering effects. In SNV method each 

spectrum is normalized by the standard deviation of the responses within the whole spectral 

range (Workman, 1998). The SNV correction is often followed by detrending, which attempts 

to remove the baseline shifts and different trends in the baseline. These effects are typical 

especially for diffuse reflectance spectra (Workman, 1998). A linear least squares regression is 

used to fit a polynomial to the spectral responses and the curve is subtracted from the spectrum 

(Workman, 1998). 

 The method is applicable to the spcetra which responses are linearly dependent on 

concentration. However, SNV is more widely applicable and more variation in the data can be 

present than in MSC method, as each spectrum is corrected independently not by using the 

average of all spectra (Workman, 1998). 

7.1.6 Orthogonal signal correction (OSC) 

The MSC and SNV methods may remove also information relevant to the predicted variable; 

hence, those are applied to the X matrix. These methods thus ignore the variation within y. 

Wold et al. (1998) introduced the orthogonal signal correction (OSC) filters, which are based on 

the principle that variation, which is unrelated to the predicted variable is eliminated from the 

data matrix by ensuring that the removed data is mathematically orthogonal to predicted 

variable. In addition, the vector to be removed, i.e., OSC component should be of maximal size, 

which causes that the maximal amount of y independent variation is removed with one OSC 

component. Single component OSC model is derived as follows 
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where tOSC (n×1) , pOSC (1×m) and wOSC (1×m) are score, weight and loading vectors of the 

OSC component as are the PLS model components defined later. In the OSC model the score 

vectors (tOSC) are orthogonal to y. Matrix EOSC is one OSC component filtered data matrix. For 

more OSC components, filtering is applied to EOSC. Eventually EOSC is the filtered matrix to be 

used, e.g., in the PLS calibration.  

Several authors have derived OSC methods that differ from each other by the way the 

orthogonal score vectors are found, and how the orthogonality between score vector and y is 

ensured (Andersson, 1999; Fearn, 2000; Höskuldsson, 2001; Feudale et al., 2002; Trygg and 

Wold, 2002; Trygg, 2002; Westerhuis, 2001). Different OSC approaches do not necessarily lead 

to the same result. Developed OSC filters can be divided in two main groups: In indirect 

approach the score vector orthogonal to Y is found by an internal iteration procedure while in 

direct approach the Y orthogonal matrix is directly derived from the data matrices.  

The filtering should enhance the modeling performance. In predictive models, this usually 

means that the model should be simpler and better predictions should be obtained. However, it 

has been argued that usually equal total number of components both in PLS and OSC-PLS are 

needed in the optimal model. In addition, it has been presented, that the most optimal form of 

OSC would not give any better predictions than does the regular PLS when same total number 

of components is used (e.g., Goicoechea and. Olivieri, 2001). It is also possible to investigate 

the nature of the Y orthogonal components by OSC and possibly evaluate where this variation 

arises. 

7.2 Principal component analysis (PCA) 

PCA is a one way to reduce the dimensions of the data. In PCA, the data matrix X of size n×m 

is decomposed as follows 

ETPX += '  (8) 

where T (size n×A) is the score matrix, P is the loading matrix (size A×m) and E is the residual 

matrix of size n×m. A refers to a number of principal components extracted from the data 

matrix.  

The first principal component is the linear projection of original (preprocessed) variables onto 

line which maximizes the covariance in the data. The second principal component is similarly 

derived from the data, which is left after extracting the first component. The principal 

components are orthogonal to each other thus they are independent. The detailed description of 

the PCA is presented by, e.g., Wold, (1987),  Martens and Naes, (1993) and Jackson, (1991). 
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The scores (T) describe the samples and loadings (P) describe the variables in the derived 

decomposition. Ideally the score and loading matrices contain all linear systematic variation 

present from the data and the random variation, noise, is left in the residual matrix. The scores 

are usually plotted against the sample number or one component scores against another 

component scores (scatter plot) in order to evaluate the quality of the samples within the data. 

The samples can form clusters in the scatter plots, where the samples that can be considered 

similar are located in one cluster. The similar plots are derived from the loadings in order to 

identify the original variables causing the grouping and clustering found by using the scores 

(Vandeginste et al. 1998; Eriksson et al. 2001). 

The number of components selected in a PCA model depends on the purpose, where the model 

is to be used. The first two or three principal components extracted from the data contain 

usually most of the systematic variation present in the data. Therefore, the scores and loadings 

of the first two or three components of the model are often used for interpretation of the main 

phenomena in the data. For process monitoring purposes, one tries to select the number of 

components of the PCA model so that the linear systematic variation would be included in the 

model and the random variation would form the residual matrix. If too few components are 

extracted, the residual matrix usually contains also systematic variation and correspondingly 

extracting too many components causes random variation to be included in the last components 

scores and loadings of the derived model.  There are several different methods to select the 

correct number of principal components in the model. One possible method to  select the 

number of principal components is a cross-validation (CV), which is more closely discussed in 

Chapter 7.7. 

7.3 Multivariate statistical process control (MSPC) 

Typically, in process monitoring, the variables should be monitored over time. Traditionally 

each variable is monitored separately over a time by univariate process monitoring. In many 

circumstances, however, the number of measured variables is too large to be successfully 

visualized with univariate methods. In addition, the measured variables are seldom independent 

from each other (Kourti and MacGregor, 1995). There are typically only a few driving 

phenomena present in the process, and all the measurements have different ways of representing 

these phenomena (Kourti and MacGregor, 1995). The spectral data is the special case of this 

type of multivariate measurement: Single measurement results in hundreds sometimes even 

thousands of correlated variables. Multivariate methods are capable of treating all of the data 

simultaneously and look at how all the variables are behaving relative to each other.  
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MSPC charts are based on the PCA models. Kresta et al. 1991 presented the principle of these 

techniques. Typically, Hotelling’s T2 statistics calculated from the scores of a PCA model is 

used: 
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where 2
ats  is the estimated variance of the score vector ta. T2 is a distance from the multivariate 

mean to the operating point on the PC plane (Wise and Gallagher, 1996), and will detect 

whether or not the variation in the quality variables in the plane of the first A PCs is greater than 

can be explained by common cause (Kourti and MacGregor, 1995 and MacGregor and Kourti, 

1995). 

If a very new type of event occurs during the process, which is not present in the reference data 

set used for building the PCA model, the new sample will be out of plane (Kourti and 

MacGregor, 1995). To detect this type of variation the Q statistics can be calculated (Jackson, 

1991) 
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Q statistics refers also to the squared prediction errors of the calibration set (SPEx), because it 

practically is the squared perpendicular distance of a multivariate observation from the 

projection space. Q statistics is a measure of the variation in the data not included in the model.  

If the new phenomenon is appearing to the system, this should be able to detect using T2 and Q 

statistics. It is possible to detect the gradual drifting of the process slowly from a certain level to 

from T2 and Q statistics. To obtain a proper process-monitoring scheme, both statistics should 

be included simultaneously. (Kourti and MacGregor, 1995 and MacGregor and Kourti, 1995) 

By T2 and Q statistics, abnormal samples can be detected, but it is often very important to 

distinguish what changes in the measured data and more precisely what variables cause the 

samples to exceed the confidence limits. MacGregor et al. (1994) developed contribution plots 

for visualization of the variables in the process-monitoring scheme.  

The contributions of each process variables to the T2 statistics of the measured samples are 

'PStContr 1
T2

−=  (11) 

In which the matrix S is a diagonal matrix equal to the eigenvalues of X and it normalizes the 

score values. The contributions of each process variable to the Q statistics of measured samples 

can be calculated as 
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)ˆ( XXContrQ −= . (12) 

To decide whether the sample is an abnormal sample in either T2 or Q statistics or which are the 

acceptable limits for the variation of the variable contributions, and to have, e.g., a limit for the 

alarm for abnormal sample, the confidence limits can be calculated. There are several different 

approaches for calculating the confidence limits. It depends on the dataset which confidence 

limits should be used. Calculation of the confidence limits based on different types of 

distributions and when certain confidence limits are applicable are presented in the literature, 

e.g., in Massart et al., (1997). 

According to Massart et al., (1997), sample size n is large (n>30), the standard deviation s can 

be estimated by 

( ) ( )∑ −−=
i

i nxxs 1/  (13) 

where xi and x  are descriptor variable i and mean of the descriptor variables, respectively. For 

large sample sizes, the confidence intervals can be estimated based on normal distribution 

n
sdxµ ⋅±=  (14) 

where d is the coefficient for the selected confidence limit level, which for standardized normal 

distribution is, e.g., 1.645 and 1.96 for 90% and 95% confidence limits, respectively.  

As the new samples are projected onto the PCA model of the reference samples, the T2 and Q 

statistics for the new samples are calculated and those values compared to calculated confidence 

limits, the sample quality can be evaluated.  

Confidence levels for the variable contributions can also be calculated using Eq. 13. When the 

variable contributions of an abnormal sample are reflected to the confidence limits of the 

contributions, the variables which cause this particular sample to be abnormal by the T2 or Q 

statistics exceed the confidence limits. Thus, the reasons which cause the sample to have been 

found to be an abnormal one can be detected and a detailed evaluation on the reasons for 

different faults can be done. This illustration is very practical in spectral data analysis. For 

example, if there appears a clearly new band in the spectrum during the process, the position of 

the band will give an indication on the chemical nature of the new phenomenon appearing in the 

process, and as a consequence the possible contaminant or undesired product can be possibly 

detected. 
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The higher the confidence limit the less sensitive is the system alarming the fault or 

abnormality, but on the other hand, a too sensitive system may lead to unacceptable number of 

false alarms can be detected (Ramaker et al., 2004). To avoid a false alarm, the correct 

confidence level should be found and both Q and T2 statistics applied simultaneously. The 

number of components selected in the PCA model and the size of the reference set, affect on the 

performance of the MSPC in terms of false alarms. Ramaker et al. (2004) found that overfitting 

causes a greater false alarm rate, but underfitting does not have such problems, if the size of the 

reference data set is sufficient.  A too small dataset causes more false alarms than a large dataset 

as the model stability is lower (Ramaker et al., 2004). The size of a proper dataset is case 

dependent, however. To find the correct number of components included in the model and to 

ensure the stability of the model in terms of sufficient amount of data used in the modelig, some 

validation procedure, e.g., cross validation procedures should be included. 

MSPC charts can also be used in outlier detection. The samples exceeding the confidence limits 

can be considered to represent something different from rest of the samples in the set. The 

decision whether the sample is an extreme sample representing true variation present and which 

should actually be included in the model or totally an outlier can be done by looking at the 

contribution charts. In batch processes, Y state is often not available during the batch. In these 

circumstances, MSPC analysis is only performed in the X-space. In this case MSPC does not 

give an indication about the samples which might have been measured inaccurately, i.e., the 

problems in the, e.g., calibration model in the XY-space cannot be detected. The sensitivity 

analysis techniques applied for the derived model described in Chapter 7.6 serve this purpose. 

However, if the Y-space is measured throughout the batch, MSPC charts for Y-space can be 

derived and used  for outlier detection. 

7.4 Soft independent modeling of class analogy (SIMCA) 

The qualitative analysis of the data involves the purity analysis of the samples. From spectral 

data it can often be difficult to see whether or not one particular sample is significantly different 

from an other sample and if this sample is acceptable or not. This is because there is always 

noise present in the spectra and the differences in the spectra due to, e.g., a small amount of 

contaminate can be significant. Therefore,  statistical methods where the ranges for accepted 

sample quality are defined and new, unknown samples are reflected can be used for fast quality 

evaluation of samples.  

Soft independent modeling of class analogy (SIMCA) is one of the earliest classification 

methods proposed in chemometrics by Wold (1976), and this method one of the methods which 

can be used for qualitative analysis of the samples. The first step of SIMCA analysis is to build 
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a PCA model and decide on the number of components needed to describe the structure of the 

data. Each class has a separate principal component model. There are several different statistical 

criteria which can be used to define the limit for the class. Sharaf et al., (1986) applied the F-

statistics for calculating the confidence limits for each class from the standard deviations of the 

samples. Also the T2 and Q statistics and the confidence limits for these, which were introduced 

in Chapter 7.3, can be used in defining the limits for the classes. 

One of the traditional ways to illustrate the SIMCA model is so called  Coomans plot, first 

introduced by Coomans et al., (1984).  In the Coomans plot the confidence limits of two 

different classes are plotted in the same figure. If the sample lies within the confidence limit of 

either class this sample belongs to that class. If the specific sample is within the confidence 

limits of both of the classes it belongs to both classes. If the sample exceeds both of the 

confidence limits, it is not part of either of modeled class but it is an outlier. The correct number 

of components selected to the model is a critical issue for obtaining reliable classification of the 

samples.  

7.5 Partial least squares (PLS) 

Measured data can be used to predict a quantitative amount of a certain property, e.g., the 

concentration of the constituent of interest from spectral data. Traditional regression methods 

should not be applied to correlated variables, which the spectral variables typically represent. In 

complex chemical systems, the bands in the IR spectrum from different constituents often 

overlap each other, the absorbencies of specific compounds of interest can be low and, 

consequently, no single peak can be found to correlate reliably with the concentration. In 

addition, random variation is always present in the spectra, and for this reason a single peak 

signal to noise ratio can be extremely low and this can provide inaccurate estimates of the 

concentration level. Multivariate methods, e.g., PLS regression and PCR calibration models can 

be applied to overcome these problems. PLS enables the linear modeling of the correlated 

variables. The collinearity between variables stabilizes the model which can be considered an 

advantage rather than a problem (Wold et al., 1983). Typically the use of the multivariate 

methods can lower the noise level (Kourti and MacGregor, 1995). 

PLS is a method where the relationship between Y and X data matrices is derived by a linear 

multivariate model (Höskuldsson, 1996; Wold et al., 1983). The PLS model applications 

include a multivariate calibration, process monitoring and optimization and quantitative 

structure activity analysis (QSAR). (Eriksson et al., 2001)  There are two different types of PLS 

algorithms: PLS1 for the system where there is only one Y variable, i.e., the Y matrix is 

actually a vector and PLS2 for the system where there are two or more Y variables and these are 
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modeled simultaneously with one model. Generally, separate PLS1 models for each Y variable 

give better predictions for both calibration and test sets than does one PLS2 model for all Y 

variables unless the Y variables are strongly correlated (Höskuldsson, 1996). Algorithms for the 

two different PLS versions are presented in, e.g., Martens and Naes, (1989).  

In PLS modeling the predictor variable matrix X and the response variable matrix Y are 

decomposed into the structure and noise parts by latent variables as follows: 
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where pa and qa are the loading vectors, ta and ua are the scores for the component a and 

matrices E and F are the residual terms of the X and Y decompositions respectively. A is the 

number of PLS components used in the decomposition. The maximal squared covariance of the 

score vectors for each component is seeked as follows: 

qpXpYqtu 22 == for)''max()'max(  (17)  

There are several different ways to find the PLS solution (Martens and Naes, 1989; 

Höskuldsson, 1996; Vandeginste et al., 1998).   

As an interpration of PLS model scores t and u describe the samples in X space and Y space 

respectively. The similarities and dissilmilarities of the samples within the X and Y spaces can 

be explored from the score vectors. Correspondingly the loadings p and q and weights w 

describe the variables. The loading vectors are found similarly than in PCA model and the 

weight vector is rotated such that it gives the best possible correlation with Y when the 

covariance between t and u is maximized. Basically, it can be seen from the weight vector 

which variables have the most effect , i.e., have the highest weight in interpreting the u.  

In practice, a building the calibration model is a multistep procedure which starts with the 

evaluation of the quality of the samples. Then a proper pretreatment method should be selected 

and data evaluated after preprocessing. The number of components in the model should be 

decided based on some validation criterion. The decision of the correct number of components, 

i.e., the complexity of the model should be carried out by using appropriate validation method. 

Too few components in the model means that all the variation within X explaining Y has not 

been included in the model and predictions of the new samples are not as good as they could be. 

Too many components in the model mean that irrelevant variation that does not predict Y is 

included in the model, which can result in overfitting problems. Too complex model can be 

unstable, and calibration samples can fit very well to the model, but if new samples are 

predicted using the derived model, the predictions of new samples are not accurate. 
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Calibration samples should be evaluated with sensitivity analysis after building the PLS model 

to find out possible new outliers in the XY space. Some sensitivity analysis methods are 

described in Chapter 7.6. If outliers are found, they should be left out from the model. A new 

model should be built from the data where the outlier was removed. Finally, the model should 

be validated using the proper validation criterion, e.g., using an external test set (Chapter 7.7).  

7.6 Outlier detection 

Outliers are the samples that exhibit somehow different structure from other samples in the 

modeled data. PCA and MSPC analyses can be used to evaluate the sample quality in the X 

space (Chapters 7.2 and 7.3). Sensitivity analysis describes how the results of the modeling 

depend on the data used and those methods can be used for pointing out possible outliers from 

the calibration set. (Höskuldsson, 1996) It is possible that some samples that are appropriate 

within the X space can be considered as outliers within the XY space. There are number of 

different criteria for sensitivity analysis (Vandeginste et al., 1998). Two sensitivity analysis 

criteria applied in this thesis, leverages and studentized residuals, are introduced in the 

following two paragraphs.  

Object leverages can be considered as measure of the influence of a point (observation) on the 

PLS-model. Samples with high leverage values have large influence on the model, and those 

can be different from other samples to some extent. (Eriksson et al., 2001) There are typically 

two reasons for high leverage values: either the sample exhibits somehow an extreme sample in 

the group of samples or it is an erroneous measurement, and thus an outlier. Leverage values 

can be calculated in X space and in XY space. The leverage value for object i for in the X space 

and in XY space denoted as hX and hXY respectively can be calculated for centered data as 

follows: 
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(Höskuldsson, 1996; Eriksson et al., 2001). The leverage in the Y space is thus calculated as the 

squared error of prediction of the calibration set. 

Studentized residuals  are defined as follows  

iXiii h1syyr −−= /)ˆ(  (20) 

The confidence limits for the leverages and studentized residuals can be calculated as presented 

in Eq. 13. The leverages of X space and XY space can be studied simultaneously with 
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studentized residuals. These criteria offer good measures for detecting possible outliers that 

may affect on the regression parameters of the model. Detailed explanation on the sensitivity 

analysis criteria is presented in, e.g., Höskuldsson (1996). 

7.7 Model validation 

Validation procedures include the data quality evaluation, model complexity selection and 

analyzing the performance of the model in the true purpose where the model is to be used. 

Model validation procedures are used to define the correct number of components in the model 

and to test that the model works properly. There are several different statistics available to 

define the number of components needed in the model and these methods are described, e.g., in 

Höskuldsson (1996). In this study the cross validation (CV) method is used to define correct 

number of components used to obtain stabile PCA or PLS model. An validation using external 

independent test set is considered to test the predictive ability of the model. 

CV is an internal validation method, where calibration procedure is repaeated several times by 

leaving one or more samples out of the calibration, building the calibration without those 

samples and predicting the excluded samples. In full cross validation this procedure is repeated 

until all the samples have been left out from the model and predicted once and only once 

(Martens and Naes, 1993 ). 

The measures defined by cross validation include the cross validated coefficient of 

determination Qcv
2, which corresponds to the captured variance in cross validation and is 

defined as 
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where yi is the response in cross validation, ŷ  is CV predicted value of y, y   is the mean value 

of the ys. The validity of the CV criterion depends on the calibration data. The CV criterion, 

especially leave-one-out validation, can give over-optimistic estimation on the model validity. 

In addition, for the autocorrelated data the commonly used random selection of the samples for 

partial CV is not appropriate. 

To obtain the true evaluation of the model performance, it should be tested that all the variation 

that will be present in future samples is included in the calibration set. Internal validation cannot 

estimate how good the model is predicting unknown samples. Therefore, as a validation of the 

true performance of the model root means squared error of prediction (RMSEP) value of an 

external test set is suggested.  
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PRESS refers to a predicted residual error of sum of squares. In practice test samples are 

brought into the model as new samples and the responses are predicted using the derived model 

and, e.g., the RMSEP value is calculated. In practice, it one should evaluate carefully whether 

the additional component enhances RMSEP value significantly or just nominally. To obtain a 

reliable predictions of the test set these external samples must not be autocorrelated to the 

calibration samples in any way. External validation is extremely important especially, when the 

predictive model is to be used very close to its range and also in the cases where there is the 

possibility that some extrapolation is needed in predictions of true crystallization measurement 

points. If extrapolation is needed, it would be beneficial to have an external test set having 

responses close to true values to be predicted. 

7.8 Parallel factor analysis (PARAFAC) 

In PARAFAC analysis the data is decomposed into trilinear components based on alternating 

least squares estimation principle. This decomposition is a generalization of bilinear PCA. In 

regular PCA the data is divided into scores and loadings, but the decomposition obtained from 

the PARAFAC consists of one score vector and two loading vectors. However, these vectors are 

often all called loading vectors since those are treated numerically in a similar manner, i.e., 

treatment of different modes (directions)  in modeling is equal. Another difference between the 

PARAFAC and PCA is that in the PARAFAC model orthogonality between the components is 

not required as is the case with PCA model. (Bro, 1998) 

The axes of PARAFAC model are unique, which means that no other post processing is needed, 

because there is no other model with the same fit in the least squares solution. However, this 

does not necessarily mean that the solution is true: Number of components selected has to be 

correct, the global minimum should be found, the data must be trilinear, and trilinear model 

itself should be the correct way of estimating the solution (Bro, 1998). There is not rotational 

freedom in the PARAFAC model.  

The matrix notation of PARAFAC can be written as  

PARPARkPARkPARk Kk
PARPARPAR

,...,1, =+= EBDAX T  (24) 

where KPAR is the number of variables in the third mode, kPAR is the frontal slab under 

consideration (shaded with gray in Figure 7).  APAR and BPAR are loading matrices of directions 

presented in Figure 7 and Dk is a diagonal matrix of which values are the kth row of CPAR, 
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which is the loading vector of the third mode (Figure 7). E is the matrix of residuals. (Bro, 

1998) 

In practice, for each kPAR  slab (shaded with gray in Figure 7) bilinear model is derived. For 

different kPARs, the model parameters APAR and BPAR will be similar but they they will differ 

thorough the diagonal matrix 
PARkD , which is different for different k’s. (Bro, 1998) Detailed 

mathematical background of PARAFAC model decomposition is presented in Bro, 1998. In 

PARAFAC analysis the data is assumed to exhibit a trilinear structure. 

Figure 7  Three way data matrix.  

Preprocessing of multi way data is not a straightforward task. Regular preprocessing methods, 

such as centering and scaling can be applied to multiway data. Centering can be performed 

against all the modes, but it must be done one mode at a time. However, sometimes centering 

results in some artifacts in the data, which are not easy to explain with the PARAFAC model. In 

this case, centering does not simplify the model as would be expected. Scaling has to be done 

for the whole slabs or submatrices directly; it is not appropriate to unfold the data prior to 

scaling. It has to be kept in mind, that scaling and centering are interdependent, and the scaling 

within one mode disturbs the centering across this mode. Therefore, centering should be 

performed after scaling (Bro, 1998). 

To validate the model, different validation criteria can be calculated, and the model validity 

analyzed thorough these criteria. Validation from a statistical point of view distinguishes how 

well the properties of the data fit the assumptions of the model. Probably the most important 

validation procedure in practical applications  is to answer the question: How well the model 
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explains, generalizes or predicts the real problem it is aimed at describing. Different validation 

methods for N-Way model validation are widely explained in Bro (1998).  

The decision of the number of components included in the model can be done using several 

criteria: rank analysis, split half analysis, residual analysis. In the case of PARAFAC modeling 

the core consistency diagnostics is  a one way to define the number of components needed in 

the model, and the mathematical background of this method is explained in detail in Bro (1998).  

Different constraints can be set up priori to the PARAFAC modeling. Constraints can be 

helpful, e.g., in avoiding degewneracy and numerical problems or enable the quantitative 

analysis from qualitative data. (Bro, 1998) Non-negativity constraint is often used within the 

spectral data as the spectral parameters typically are positive. (Bro, 1998) 

The applications of the PARAFAC models include the exploratory analysis, where the 

interrelationships between the variables and objects are studied. In addition, the PARAFAC 

models can be used for determining, e.g., a spectra of pure analytes from the spectra measured 

from mixtures of analytes. (Bro, 1998) 

The loadings of the PARAFAC models are used to visualize the features the modeled 

phenomena. The loadings of  certain mode represent the phenomena present in the data towards 

that mode. In addition, the residuals of the model and contributions of specific variables can be 

explored to evaluate the batches. 

7.8.1 Analysis of batch-to-batch variation 

Seeking batch-to-batch variations requires similar data to be gathered from different runs. When 

this data is gathered over time, and in, e.g., spectral data there are hundreds of variables 

measured at one time point. The data gathered from one batch exhibits a two dimensional 

structure. When several batches are evaluated, this causes the data to be a three way array, and 

special methods are required for analyzing the multiway data. From batch-to-batch variation 

analysis it should be possible to distinguish the batches which are different from the others and 

also, perhaps, to evaluate the causes for these differences, e.g., the time where different 

phenomena in the batch occur and also the variables which cause these variations in a particular 

batch.  

There are several different methods applied to track changes between the batches. These 

methods differ from each other by the structure of the model. Geladi (2002) and Geladi and 

Åberg (2001) applied PARAFAC modeling to analyze batches from NIR data and could explain 

the reaction pattern using this method. In addition, Storgrange et al. 2004 applied PARAFAC to 

analyze batches from simulated spectral datasets and they could detect the major variation in the 
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data, evaluate the quality differences between the batches and the addition of the reagent could 

be pointed out. Other applied methods to study batch-to-batch variation include, e.g., multiway 

principal component analysis (MPCA) (e.g. Nomikos and MacGregor, 1992, 1994, 1995 a, b; 

Flores-Cerillo and MacGregor, 2004), structuration des tableauz a truas indices dela statistique 

(STATIS) (Gourvenec et al., 2005) and Tucker3 (Storgrange, 2004) models. The use of 

multiblock methods (MBPCA/MBPLS) in batch process analysis has been applied by Kourti et 

al. (1995, 1996) and Lopes et al. (2002). Boque and Smilde (1999) used PARAFAC based 

multiway covariates models to analyze batch process. In addition, if the quality measurements 

are available multiway PLS can also be applied to study batch-to-batch variations (Nomikos 

and MacGregor, 1995). Multiway PLS is proposed by Wold, 1987 and in this method the 

multiway data is unfolded to two dimensional structure and regular two dimensional PLS is 

performed. There exist a N-Way PLS proposed by Bro (1996) which generalizes the two-way 

PLS algorithm to the data of higher orders using multilinear PARAFAC-type structure. 

Explanation of these methods is beyond the scope of this thesis, and the reader is advised to 

look for references mentioned for more information.  

Smilde (2001) stated that the practice always has to show, which model works best for the 

present case. In addition the goal of the empirical process model defines also, which 

multivariate model performs the best. It has been argued that the PARAFAC in analyzing the 

batch data is would be unsuitable method. If there are several on-line process measurements 

included in the data, the data does not have trilinear structure, and this restricts the applicability 

of PARAFAC method since trilinearity is assumed in PARAFAC. Spectral data is a special case 

of the process data and  it consists of a linear combination of each absorbing species according 

to Beer-Lambert law, while regular process data (temperature, pressure and flow rate) can often 

exhibit strongly non-linear structure (Gurden et al., 2002). Therefore, when spectroscopic 

measurement is used to measure composition with time, and it is the only type of data, 

PARAFAC could be considered as an suitable method to analyze batches. 
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8 EXPERIMENTAL 

8.1 Materials and methods 

The crystallized material was pharmaceutical grade (European Pharmacopoeia/United States 

Pharmacopoeia) sulfathiazole (Industrias GMB S.A., Castellbisbal, Barcelona, Spain) and the 

solvent components were deionized water and 1-propanol [purity min. 99.7 % (w/w); Aspokem 

Oy, Helsinki, Finland] in Papers I-III,V,VI. The another crystallized material in Papers I and IV 

was organic ingredient C15 and the solvent used was toluene. 

8.2 Crystallization experiments 

The process conditions applied in sulfathiazole and C15 crystallizations are presented in Table 

3. All the process condition combinations in Table 3 for sulfathiazole have not been reported in 

this study, but the combinations reported are as follows: The batch to batch variations in the 

crystallizations due to different impeller configurations and impeller speeds was studied using 

the data gathered from the crystallizations using a 50/50 w-% mixture of water and 1-propanol 

and a constant cooling rate of 9.2°C/h, which results in number of batches being 27 and this is 

reported as new results in Chapter 9.2. The effect of solvent composition on the outcome of the 

crystals in Papers II and VI as well as the on-set of crystallization process in Paper V were 

studied using different solvents, at different constant cooling rates using a curved blade turbine 

impeller with an impeller speed of 400 rpm. The different cooling modes and cooling rates were 

studied using a constant solvent composition of 50/50 w-%, and a curved blade turbine impeller 

with an impeller speed of 400 rpm in Paper  III.  
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Table 3. Process conditions applied in sulfathiazole crystallizations 
 Sulfathiazole (Papers I, III, V, VI) C15 (Papers I, IV) 
Reactor: 4 dm3 jacketed glass reactor 1 dm3 jacketed glass 

reactor 
Baffles: 4 baffles 4 baffles 
Impeller types 
and speeds: 

Pitched blade turbine: 250 rpm, 400 rpm, 
550 rpm 
Anchor impeller: 100 rpm, 175 rpm, 250 
rpm 
Bar turbine: 900 rpm, 1200 rpm, 1500 rpm 
Curved blade turbine: 250 rpm, 400 rpm, 
550 rpm 

Pitched blade turbine: 500 
rpm 

Thermostat: LAUDA RK 8 KP LAUDA RK 8 KP 
Temperature 
measurement: 

Pt100 Pt100 

Solvent: Water 
1-propanol 
25/75 w-% water/1-propanol 
50/50 w-% water/1-propanol 
75/25 w-% water/1-propanol 

Toluene 

Amount of 
dissolved solid: 

0.9 g stz/100 g water 
2.2 g stz/100 g 1-propanol 
10.9 g stz/100 g 25/75 w-% water/1-
propanol 
20.7 g stz/100 g 50/50 w-% water/1-
propanol 
15.8 g stz/100 g 75/25 w-% water/1-
propanol 

35 g C15/100 g toluene 

Solubility 
temperature: 

80°C 75°C 

Initial 
temperature: 

85°C 80°C 

Final 
temperature: 

25°C 25°C 

Seeding: Unseeded Unseeded 
1 w-%, 2 w-%, and 3 w-% 
loads of seed crystals. 
Seeding was done at 
74.5°C 
 

Cooling modes 
(batch time): 

3.9°C/h (14 h), 5.5°C/h (10 h),  
9.2°C/h (6 h), 27.5°C/h (2 h) 
Programmed cooling (6 h) 
Natural cooling (6 h) 

10°C/h (5 h) 
Programmed cooling (5 h) 
Step mode 1 (5 h) 
Step mode 2 (5 h)  

Initialization 
moment of the 
programmed, 
natural and 
step cooling 
modes: 

75°C (1°C above the observed nucleation 
in the crystallization experiment with 
9.2°C/h cooling rate) 

75°C (at the solubility 
temperature) 
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The solution was kept at 85°C in sulfathiazole crystallization and at 80°C in C15 

crystallizations for one hour to make sure that all of the added solute was dissolved before the 

beginning of the cooling stage.  The system was thus undersaturated for the first 5°C in the 

cooling stage and supersaturated for rest of the process for both crystallization processes. The 

duration of the crystallization experiments presented in brackets in Table 3 with constant 

cooling rates used correspond to the cooling in the supersaturated stage, because supersaturation 

is the prerequisite for the crystallization process to occur.  

For programmed and natural cooling, the duration of the experiment presented in the brackets in 

Table 2 refers for the cooling in the supersaturated stage. The duration of the experiments was 

fixed similar than that of the linear cooling (one of the linear cooling rates in sulfathiazole case) 

in order to compare the results with the experiments carried at constant cooling rate. The 

different cooling modes are illustrated in Figure 3. The programmed cooling was defined using 

Eq. 3. The experiments with the natural cooling in sulfathiazole crystallizations were performed 

by rapidly changing the temperature of the cooling medium to a constant temperature of 25°C. 

The final temperature of the batch, 25°C, was reached approximately in 1.5 hours. The crystals 

were maintained in the stirred solution at a constant temperature of 25°C for the remaining 4.5 

hours.  

The stepwise modes in C15 crystallizations resembled somehow natural cooling in the 

sulfathiazole case, but those were performed by setting the thermostat cooling water 

temperature to a constant value, and letting the system cool down. Also the set point of the 

coolant was set to the final temperature of the batch right after the system was supersaturated. 

Two different stepwise processes were used: In the first case the cooling water temperature was 

set to 40°C and after the system was cooled to that temperature linear cooling from 40°C to 

25°C was performed so that the total batch time was 5 h (Step mode 1). In the second case the 

temperature of the cooling water was set straight to the final value 25°C (Step mode 2). 

Crystallizations with linear and controlled modes were performed as unseeded and by using 1 

w-%, 2 w-% and 3 w-% load of seed crystals. Step mode 1 was done without seed crystals and 

using 2 w-% seed crystals and step mode 2 was only performed as an unseeded process. The 

seed crystals were obtained by sieving, and the fraction under 50µm was used as the seed 

crystals. 

The detailed explanation of the sulfathiazole and C15 experiments is presented in Papers III and 

IV respectively. 
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8.3 In-situ ATR-FTIR measurements 

ATR-FTIR measurements were taken using an ABB BOMEM MB155S spectrophotometer 

equipped with a Dipper 210 ATR immersion probe with a conical ZnSe element (in 

Sulfathiazole measurements Papers I, III, V, VI) or AMTIR element (in C15 measurements 

I,IV). The probe was placed inside the crystallizer. The probe was manufactured by Axiom 

Analytical Inc.. The shape of the element causes the light beam to undergo two internal 

reflections at the interface of the sample and the element before the attenuated reflection 

proceeds to the detector. Grams32 software was used to collect the spectra. The mid-IR 

spectrum from 4000 to 750 cm-1 was collected. As a compromise between the quality of the 

spectrum and the robustness of the measurements, the spectral resolution of 16 cm-1 was used 

and each spectrum consisted on average of 20 consecutive scans. Water at 25°C was used as a 

background spectrum in sulfathiazole measurements (Papers I,III, V, VI) and toluene at 25°C in 

C15 measurements (Papers I, IV). The measured spectrum was thus actually, the background 

subtracted spectrum, which is in this study referred to as “raw spectrum” or “measured 

spectrum”. 

8.3.1 Calibration measurements 

It is important that the calibration routine covers the range of variation where the actual 

measurements take place, and therefore the design of the calibration measurements is an 

essential issue. However, in cooling crystallization applications, the concentration measurement 

range in the calibration measurement is restricted by the solute solubility in the solvent and the 

calibration measurement with known concentration has to be made in an undersaturated state, to 

be able to have the exact concentration points for the calibration measurements. True process 

condition measurements in crystallization processes take place in the supersaturated state, 

which is unstable and reliable calibration measurements are not possible in that state since any 

distraction can cause the nucleation to begin and the solution concentration to be erroneous. In 

addition, changing the temperature and possibly changing the solvent composition cause 

variation in the absorption spectrum. This variation should also be covered in the calibration 

measurements. 

The calibration measurement plan for the sulfathiazole concentration measurement is presented 

in Figure 8. Calibration set was measured in the same vessel using similar mixing conditions for 

the true process conditions. The single sample was measured by weighing the corresponding 

amount of solute in the solvent, letting that dissolve, and after all the solute had dissolved, the 

absorption spectrum was collected. In practice, the time needed for dissolving was two hours at 

maximum. Several separate calibration measurement runs were performed and separate 
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calibration and test sets were measured. The test set was used to select the proper calibration 

model. A detailed explanation on calibration measurements is presented in Papers I and III. 

Figure 8 The calibration measurement points (x) and the solubilities of sulfathiazole in different w-
fraction mixtures of water and 1-propanol (-). 

The calibration measurements were performed from clear solution and in an undersaturated 

state. As mentioned, the true measurements take place mainly in the system where both liquid 

and solid phases are present and in supersaturated conditions. Therefore, an additional testing 

procedure was performed, i.e., where the solubility of the solute in the solvent was measured 

using ATR-FTIR from the system by introducing more solute to the solvent than would 

dissolve at any conditions within the process. The results were compared to the gravimetrically 

measured solubilities, which are described in Paper III. This caused the solid and liquid phases 

to be present during the whole measurement, which was not the case in calibration 

measurements. The suspension was kept at a constant temperature until the saturated solution 

was obtained which took approximately two hours and then the absorption spectrum was 

measured. This was done for the whole temperature range. Descriptions of the solubility 

measurement are provided in Papers I, III and IV. 

8.3.2 ATR-FTIR measurements from the crystallization process 

The absorption spectra were measured throughout the whole crystallization process with a time 

increment of 1 min. The concentration of dissolved solute in the solvent was predicted using the 

derived PLS model. In addition, the spectral data gathered from the sulfathiazole 

crystallizations were used to predict the nucleation moment and analyzing the batch-to-batch 
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variations in different sulfathiazole crystallizations. The description of the measurement 

procedure is presented also in Papers III and IV. 

8.4 In-situ measurement of the crystal size distribution (IV) 

In-situ measurement of the crystal size distribution in C15 crystallizations in Paper IV was done 

using a MTS PSyA Laser Reflection Analyzer. The system is equipped with an immersion 

probe placed inside the crystallizer. The measurement procedure in this application is presented 

in Paper IV. 

8.5 Off-line analysis of the polymorphic composition of product crystals 

8.5.1 DRIFT-IR measurements 

The sulfathiazole samples were measured using a Perkin Elmer IR spectrophotometer 

accompanied by a diffuse reflectance accessory. The accessorry was conical in shape, and the 

diameter of the top of the accessory was 9 mm. The measurements were done with spectral 

resolution of  8 cm-1 and collecting 10 averaging scans to one spectrum. The ground KBr 

powder was used as the background in the measurements. The measured wave number range 

was from 4000 to 450 cm-1. To avoid measurement errors due to effects from the wide particle 

size distribution and to make samples more homogenous the samples were ground before 

measurement and the measurement from one sample was repeated two to five times. A detailed 

description on the DRIFT-IR measurements are presented in Papers II and VI.  

8.5.2 X-Ray powder diffraction (XRPD) measurements  

The structure of the obtained sulfathiazole crystals was measured using an X-Ray Powder 

Diffractometer Bruker axs D8. The samples were ground priori to the measurement to reduce 

the preferred orientation of the crystals and to make them more homogenous. The XRPD 

experiments were performed in a symmetrical reflection mode with CuKα radiation (1.54 Å) 

using Göbel Mirror bent gradient multilayer optics. The scattered intensities were measured 

using a scintillation counter. The angular range was from 5o to 40o with steps of 0.05o and a 

measuring time of 1 s/step. A description of the XRPD measurements are presented in Papers II 

and VI. The XRPD measurements and the estimation of the polymorphic composition from 

diffractograms were performed in Helsinki University Faculty of Pharmaceutics and the results 

obtained were the approximate polymorphic composition of the measured samples. 

8.6 Off-line analysis of size and shape of the product crystals 

The final product size was characterized in C15 crystallization experiments using a Coulter LS 

130 laser diffraction analyzer. The description of the measurement procedure is presented in 

Paper IV. 
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The automated image analysis PharmaVision 830, Malvern Instruments, Ltd. was used to 

characterize the size and shape of produced sulfathiazole crystals. The description of automated 

image analysis technique, and measurement procedure are presented in Paper III. The size and 

shape of the crystals by crystal length and roundness were described. The crystal length refers 

to the largest projection of the crystal, whereas the roundness is a measure of the length to width 

ratio. For a perfect circle, the roundness equals 1, and for a needle shaped crystal, the value of 

roundness approaches 0. These parameters were readily provided by the PharmaVision-

software. 

8.7 Data analyses 

Several different types of data analyses were applied to the measured spectral data. All the data 

analyses were done using Matlab ver. 6.5 or 7.0.1. by MathWorks Inc. In two-way analyses 

Matlab algorithms originally copyright from Eigenvector research were used. Part of the 

algorithms have been updated to be suitable for newer Matlab versions and also some parameter 

calculations added by S.-P. Reinikainen. N-Way data analyses were performed using the PLS 

Toolbox 3.5 by Eigenvector Research Inc.. 

8.7.1 Analysis of the batch-to-batch variations 

The objective of the PARAFAC modeling was to test, whether or not the similarities and 

dissimilarities beween the batches could be pointed out, and reasons for possible dissimilarities 

between batches evaluated.  In addition, the aim was that the phenomena in the batches in the 

time scale and spectral variable scale could be distinguished and identified. 

PARAFAC analysis was made for the spectral data gathered from sulfathiazole crystallizations 

to evaluate the batch-to-batch variations in the crystallization experiments. For the validation of 

the model Core Consistency diagnostics was applied. The model validity was also estimated by 

examination of how well the model reflected what was already known from the problem. 

The obtained spectral data matrices were arranged in the three-way matrix, which represented 

therefore the structure illustrated in Figure 7. In this study, Mode 1 represented different batches 

(loading notation APAR), Mode 2 represented time (temperature) (loading notation BPAR) and 

Mode 3 measured spectral points, i.e., wave numbers (loading notation CPAR). Also other 

arrangements for the Mode orders were tested, but the abovementioned arrangement was found 

to give the most reasonable results. 

Raw data was used since centering or baselining did not improve the modeling. Also no 

restrictions were used since as, e.g. non-negativity  for  different modes separately was tested.  
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8.7.2 In-situ monitoring of the onset of the crystallization and forming polymorph 

The objective of this analysis was to monitor the crystallization system prior to the onset of the 

actual crystallization. A dynamically built PCA model together with MSPC charts were applied 

to the methodology for real time prediction of the on-set of a crystallization process from ATR-

FTIR data gathered from sulfathiazole crystallizations. The alarm system for approaching 

nucleation was proposed. For this purpose, a two-stage procedure was proposed: 1) The PCA 

model was derived dynamically from the beginning of the process where the system was 

unsaturated and the MSPC statistics and 95% confidence limits were calculated for that model. 

2) The sampled measured under the supersaturated state were predicted using the model derived 

in stage 1. In addition, MSPC statistics was calculated. As alarm criteria the 95% confidence 

limits of T2 and Q statistics were used.  

In addition the pseudocolor images of the T2 and Q contributions of the spectral variables are a 

function of the temperature (time). They were used to illustrate the changes in the process 

which can be seen from spectral variation as the nucleation approaches, and to see whether or 

not this variation can be linked to the polymorphic form of forming crystals. To visualize the 

small contribution changes from one measurement to another, the difference between the 95% 

limit of the contributions from the last measured data point and 95% limit of the contributions 

of the model derived in the calibration stage are calculated and are denoted as dT2
lim and dQlim. 

A description of the proposed methodology is presented in Paper V.  

8.7.3 The calibration routine for concentration prediction 

In the building of the calibration model for solute concentration prediction from 1) in-situ ATR-

FTIR measurements and 2) for the quantification of the polymorphic composition of the 

sulfathiazole bulk material from the off-line DRIFT-IR measurement a multistep calibration 

routine was applied. Calibration measurements for solute concentration prediction using ATR-

FTIR are presented in Chapter 7.3.1 and in Papers I and III.   The calibration and test samples 

for calibration of the off-line powder samples using DRIFT-IR was simply done by measuring 

the samples obtained from crystallizations with XRPD and DRIFT-IR. The quantification of the 

polymorphic composition of the sulfathiazole samples from XRPD patterns was done by 

assuming that measured XRPD pattern is a linear combination of XRPD patterns of the pure 

polymorph components.  The results from XRPD quantification were used as descriptive 

variables when building the PLS model for the polymorph composition prediction of the 

powder samples using the DRIFT-IR technique. This procedure is explained in Papers II and 

VI.  
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The calibration routine is closely presented in I and the steps and corresponding multivariate 

methods used are listed below: The data was centered. The MSPC and sensitivity analyses were 

applied to evaluate the quality of the samples. Improvement in R2 value and in error of 

prediction of the calibration and test sets were applied for variable selection. Primary analysis 

on the spectral knowledge on the importance of the variables was also one main criterion to 

select the important spectral ranges for multivariate modeling.  

OSC filtering methods were applied to preprocess the data. The OSC filtering was selected 

because its ability of removing Y independent variation from the data. In the studied process 

conditions Y independent variation can be assumed to exsist, e.g., due to solvent or temperature 

(solute concentration measurements using ATR-FTIR) or variation related to the particle 

orientation or size distribution (polymorphic composition measurements using DRIFT-IR). 

Therefore, the OSC filtering was an obvious option as an pretreatment method.  The predictive 

PLS model was built and the number of components included in the model was selected based 

on the RMSEP value of an external test set. An additional validation procedure to validate the 

PLS model for in-situ solute concentration prediction using ATR-FTIR was applied. Solubility  

was measured using ATR-FTIR and cthe result is compared to gravimetrically measured 

solubilities  in corresponding solute-solvent system. (Chapter 7.3.1 and Papers I, III, IV) 

8.7.4 Off-line classification of crystalline samples 

In addition to the quantitative characterization of the samples measured from the sulfathiazole 

crystalline product based on the off-line DRIFT-IR measurements the multivariate qualitative 

classification methods were applied. The principle method used was PCA, but also the PCA 

derived methods SIMCA and MSPC statistics were tested for classification of crystalline bulk 

samples. The description of the use of these methods are applied in Papers II and VI. 
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9 RESULTS AND DISCUSSION 

9.1 Obtained spectral data 

9.1.1 ATR-FTIR data  

The example spectra from the calibration measurements for solute concentration prediction 

using ATR-FTIR data are presented in Figure 9. 

Figure 9 Background subtracted spectra from the solute concentration measurements using ATR-FTIR. 
Background was water at 25°C. a) and b): C15 measurements.Toluene at 25°C was used as background 
spectrum and as solvent. a) Toluene spectrum at 25°C b) spectra of different concentrations of C15 
dissolved into toluene measured within the temperature range from 25°C to 75°C c) and d): sulfathiazole 
measurements. Water at 25°C was a background spectrum. c) Spectra of the solvents used d) spectra of 
different concentrations of sulfathiazole dissolved in different solvents within the temperature range from 
25°C to 80°C 

Figure 9 clearly shows that for the C15 case the responses are practically due to the dissolved 

solid, as the pure toluene, which was used as the solvent was used as background. In the 

sulfathiazole case, however, different solvent compositions cause major effects to the measured 

spectra when pure water is used as background. When the pure water is used as a background 

spectrum the spectra of the mixture sample can contain negative values as the absorption from 

the mixture in certain wave number range is lower than water absorption in that range. The 

overall absorbance level is ove ten times higher for the C15 system than for the sulfathiazole 

system. The responses in the spectra due to dissolved sulfathiazole are clearly of a minor scale. 
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Variation due to sulfathiazole is mainly located within the wave number range from 1000 to 

1700 cm-1. This variation can not be seen by the naked eye in Figure 9. 

In addition the C15 sysem is binary and the sulfathiazole system is ternary. The C15 

crystallization system was the only two-component system C15 and toluene. In the sulfathiazole 

system, there were two solvent components: water and 1-propanol and the solute sulfathiazole. 

The C15 system can therefore be considered simpler than the sulfathiazole system. As was 

discussed in Chapter 6.1 the temperature changes can cause variation in the measured spectra. 

The solvent spectra for both example cases measured  are presented in Figure 10. 
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Figure 10 ATR-FTIR spectra of the solvents at different temperatures a) toluene (background: toluene at 
25°C), b) water (background: water at 25°C) c)  50/50 w-% mixture water and 1-propanol (background: 
water at 25°C) 

To evaluate the importance of the temperature effect on both cases, the y-axes in Figure 10 are 

scaled to the maximum variation in the solute or different solvents in the corresponding case 

b) 

c) 

  
a) 

b) 

c) 



 76
presented in Figure 9. It can be seen that for C15 the temperature effect on the solvent spectrum 

(absorption variation from -0.03 to 0.03) is minor compared to the responses from the dissolved 

C15. For the sulfathiazole case the temperature effect is relatively larger than for the C15 case. 

Especially –OH vibration range from 3200 to 3700 cm-1 is temperature sensitive. C15 system 

has lower temperature effects than does sulfathiazole system. 

9.1.2 DRIFT-IR data 

An example of DRIFT-IR spectra measured from the powdered sulfathiazole samples is 

presented in Figure 11. 

Figure 11 Raw DRIFT-IR spectra measured from powdered sulfathiazole samples. Background spectrum 
measured from powdered KBr sample. 

It can be seen from raw measured spectra in Figure 11 that the responses from the spectral 

range from 600 to 1500 cm-1 are noisy. The variation in the baseline is rather large. There are 

also clear bands in the range from 3200 to 3600 cm-1.  

9.2 PARAFAC modeling 

Based on the core consistency diagnostics and  the evaluation of how well the model describes 

what is known from the process, the 2 component PARAFAC model was derived. Core 

consistency value was 99.96 and the loadings clearly represented true phenomena within the 

process. Adding a  third component caused the core consistency value to crash down (-155,26), 

which is obviously a sign of the model having too many components. The non-negativity 

restriction was tested, but that did not improve the model. In fact, non-negativity restriction 

made interpretation more difficult. This is obviously because in this case, also large number of 

negative values existed in the measured data as was explained in Chapter 9.1.1. 
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The PARAFAC model derived for the sulfathiazole crystallizations for a batch time of 6 h with 

different cooling modes, different solvents and different impeller types illustrates how the 

different process conditions can be visualized by PARAFAC. The loadings for the different 

modes are presented in Figure 12. Mode 1 represents different runs, Mode 2 time/temperature 

during the run and Mode 3 represents the wave numbers. 
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Figure 12 Loadings of the two-component PARAFAC model from sulfathiazole crystallization data. Total 
batch time 6 h. Different solvent compositions, different cooling modes and different impeller 
configurations. The squared areas in the up most figure correspond following experiments: I) solvent 
50/50 w-% mixture of water and 1-propanol, constant cooling rate, different mixers; II) solvent 50/50 w-% 
mixture of water and 1-propanol, experiments 13 and 15 with programmed cooling and experiments 14 
and 16 with natural cooling, III) solvent 75/25 w-% mixture of water and 1-propanol, IV) solvent 25/75 w-
% mixture of water and 1-propanol 
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Loadings for Mode 1 illustrated in the way as in Figure 12 do not provide a thorough 

information on the samples. However, the first component seems to separate crystallizations 

done with different cooling rates. The second component seems to separate the crystallizations 

done using  50/50 w-% mixture of water and 1-propanol as solvent and constant cooling rate 

from rest of the crystallizations.   

Loadings for Mode 2 represent different aspects of variation that occur as the crystallization 

process proceeds: The first component reflects the “mean” temperature and may reflect some of 

the concentration profile. The “mean” here means that both temperature and concentration 

profiles vary in different runs, and therefore the profile seen here is a combination of those 

different profiles. However, the number of crystallizations with constant cooling rate is 

remarkably higher than is the number of crystallizations using programmed or natural cooling, 

and these can dominate the loadings in Mode 2, as the loadings represent an almost linear 

structure. There is also a step in Mode 2 loadings for a 2nd component at 70 min which 

corresponds the the moment of primary nucleation, i.e., the onset of crystallization in every run. 

As was described earlier, the batches are cooled down from 85°C to the moment of nucleation 

with a constant cooling rate of 9.2°C/h, this leads to the fact that at 70 min the temperature is 

thus approximately 74°C, i.e., the temperature where the nucleation is observed. The second 

component separates clearly the two stages of the crystallization process: low loadings are 

before nucleation, from 0 to 70 min (from 85°C to 74°C) and high loadings for the part where 

the crystals grow. The sample separation in the Mode 1 can not be explained by the loading 

structure in the Mode 2.  

Loadings for Mode 3 represent the part of the spectrum that is extracted by that specific 

component. The first component loadings of the resemble an approximate mirror image of the 

raw spectral data (Figure 9). The highest loadings in the variable range from 3230 to 3600 cm-1 

are caused by –OH stretching. This range is sensitive of course to the type of solvent but also to 

temperature changes. This also explains why the first component separates the samples in Mode 

1 based on different solvents, because the most sensitive bands in the first component loadings 

in Mode 3 are also sensitive to solvent composition  changes. Another high loadings in the 1st 

component are located in the variables from 2230 to 2380 cm-1 and where the absorption of CO2 

occurs in the IR spectrum. Variation in this peak exists due to temperature and also other 

conditions, e.g., different mixing can cause differences in CO2 absorption. Loadings for the 

second component for Mode 3 resemble somehow the peaks that are related to the sulfathiazole 

concentration in the variable range from 1380 to 1700 cm-1 but there is also another range in the 

end of the spectrum variables from 3300  to 3800 cm-1 which seem to have an impact on Mode 

3 loadings in the second component. The latter range can be related to intramolecular vibrations 
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(Silverstein et al., 1991), and thus the variation in this range can be due to differently arranged 

molecules/clusters in the system. This range could thus be sensitive for separating the 

differences due to different impellers used in crystallizations, but the separation due to different 

crystallizations could not be seen explicitly from the second component loadings of the Mode 1. 

Another way of investigating the PARAFAC model is to visualize one component against 

another by scatter plot. The 2nd loading against the 1st loading for all three modes in a derived 

PARAFAC model are illustrated in Figure 13. 
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Figure 13 Scatter plots for the modes of a two-component PARAFAC model from sulfathiazole 
crystallization data. Total batch time of 6 h. Different solvent compositions, different cooling modes and 
different impeller configurations. The graph on top has been divided into three parts that representing 
solvent system used in experiments: I) 25/75 w-%, II) 50/50 w-% and III) 75/25 w-% mixture of water and 
1-propanol. 
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The scatter plot for Mode 1 illustrates how the samples are clustered horizontally based on the 

solvent used (different regions separated with a line in Figure 13 for Mode 1). As the amount of 

1-propanol increases the samples are located towards the right in the scatter plot. This result is 

expected since the 1-propanol concentration has a big impact on spectrum especially in the 

ranges that represent high loadings in Mode 3 in Figure 12. An further investigation of the 

scatter plot for Mode 1, it can be seen that inside the specific solvent, the samples cluster based 

on the cooling profile used, which is also an expected result, since different cooling profiles 

exhibit different concentration profiles after the nucleation has occurred. In addition, the 

crystallization with a 50/50 w-% mixture of water and 1-propanol using a linear cooling rate 

and different mixers form a group of their own.  

A scatter plot for the Mode 2 differentiates the situation before and after the nucleation, and the 

scatter plot for Mode 3 represents the loadings for spectral variables where it seems that the 

meaning of the –OH stretching group increases towards the right where the samples 75/25 w-% 

mixture of water and propanol are located. This is a reasonable result since as the 1-propanol 

concentration decreases the depth of the –OH stretching “absorption dip” increases (Figure 9). 

This can be seen on the loadings for Mode 3 in Figure 13. Correspondingly, the bands sensitive 

to 1-propanol concentration in the range from 1000 to 1100 cm-1 are located in the very right of 

the scatter plot which corresponds to increasing 1-propanol concentration in the system. The 

end of the spectrum from 3700 to 4000 cm-1 seems to be sensitive to cooling conditions such 

that the samples with programmed or natural cooling tend to settle in the upper part of the 

scatter plot of Mode 1, which corresponds to the high loadings in the range from 3700 to 4000 

cm-1. The scatter plot for the Mode 2 simply gives the variation with time of the first component 

(x-axis direction) and the second component separates the time before nucleation and the time 

after the nucleation process ( y-axis direction).   

The model presented above shows how the different process conditions in the batches can be 

seen in the PARAFAC model derived from the spectral data gathered from the batch processes. 

Some of the differences in the process conditions, such as differences in the solvent 

composition cause remarkable changes in the measured spectrum and it is therefore obvious 

that these effects dominate in the model. It can be argued, therefore, that Figure 13 is not very 

informative since, for example, the differentiation of different solvent compositions is not 

clearly very interesting from a practical point of view. Because there was a huge variation 

present in the experiments, truly interesting small scale variation could not be observed from 

this set of data.  

To truly investigate the subtle variation between batches, the variation in the crystallization 

experiments should be remarkably smaller than in the experiments presented above. Therefore, 
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an another model was derived from the experiments done using a fixed solvent 50/50 w-% 

mixture of water and 1-propanol and using a linear cooling rate but different mixing conditions. 

Different mixing conditions change the physics in the systems due to the different levels of 

micro and macro scale mixing. The physical changes can also cause differences in the spectrum 

as was discussed earlier. Different physical conditions can alter the baseline behaviour and 

cause differences in position or widths of the bands. To evaluate the possibility of extracting the 

different mixing conditions from the measured spectra the two component PARAFAC model 

was derived  from the batches where the solvent composition was 50/50 w-% water and 1-

propanol and the linear cooling with 9.2°C/h was used, but the impeller types and mixing 

intensities varied. The results of this model are illustrated  as scatter plot in Figure 14. 
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Figure 14 Loadings for two-component PARAFAC model from sulfathiazole crystallization data. Total 
batch time of 6 h. Solvent composition: 50/50 w-% mixture of water and 1-propanol, constant cooling rate 
of 9.2°C/h. Different impeller configurations: pitched blade turbine, anchor impeller and bar turbine   

Scatter plots of the Figure 14 show that the samples with different mixing conditions cluster 

into groups in Mode 1. The batches produced using different mixers are mainly clustered 

together. There are three samples located in the the bottom-left of Figure 14 for Mode 1. These 
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samples are clearly separated from the other samples. When refletcing on the scatter plots of 

Mode 1 to the scatter plot of the Mode 3, it can be seen that this horizontal movement is clearly 

related to the bands of 1-propanol sensitive range and –OH vibrations (Figure 14). This was 

also seen earlier when the crystallizations using different solvents were used. The vertical 

position on the other hand is related to the peaks sensitive to sulfathiazole concentration.  It is 

possible, therefore, that the solution composition is slightly different in those three samples in 

the bottom left of the Mode 1 scatter plot in Figure 14 than in the other samples. Most of the 

samples, however, show a profile that is linearly decreasing and the samples are clustered based 

on the impeller used.  

The scatter plot for the Mode 3 (Figure 14) shows that the vertical changes in the samples 

(referring to the 2nd component in the model) are due to the end of the spectrum from 3700 cm-

1, in this part there are not clear bands in the spectrum that indicate clearly the concentration 

species of interest in the system, this change can be caused by the –OH bonds arranging 

differently in the alcohol molecule or beween alcohol and water molecule since this range refers 

to alcohol intra- intermolecular bondings. (Silverstein et al., 1991) This change can be due to 

the fact that different mixers mix the system differently in the micro scale and therefore the 

solute and solvent molecules can be blended differently. There is also a slight trend in the 

baseline in the scatter plot in Mode 3. 

It can be concluded from PARAFAC modeling results that the runs with different process 

conditions could be separated and pointed out. Especially when the chemical composition of the 

mother liquor and, consequently, the amount of dissolved solute was different the batches could 

be separated and the spectral ranges which were different in these batches could be pointed out. 

This result is expected, since the spectra measured from the system where different solvent 

mixtures are used have major differences in several wave number ranges. Therefore, this result 

could not be considered very interesting. In addition, the differences in cooling mode and 

impeller type caused the samples cluster into their own groups. The spectral ranges where the 

changes due to different cooling modes and impellers possibly occur in the measured data could 

be pointed out.  

In the time scale, only the most drastic occurrence, nucleation, could be explicitly separated 

from the rest of the process. Otherwise, the time scale loadings represented either the “mean” 

concentration and/or temperature profiles. From the data under investigation and using this 

PARAFAC method it was not possible to observe the possible differences in the dynamics of 

different processes, which would have been a very interesting issue to be investigated. The 

contribution plots for each experiments were compared, but they did not show sufficient 
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sensitivity to estimate possible differences in the dynamics of the different experiments from 

this type of data.  

It is possible, that from other types of data, e.g., data from crystal phase monitoring or by 

combining two or more monitoring methods, the differences in the dynamics of the process 

could be evaluated. In that case, PARAFAC may not be the best suitable technique for this type 

of analysis as has been argued in the literature and was discussed also in  Chapter 7.8. In 

addition, truly industrially interesting batch-to-batch variation analysis would require large 

number of batches done with constant process conditions and those to be analyzed using a 

suitable exploratory analyzing method. 

9.3 Prediction of the nucleation and of the forming polymorph 

The results of the MSPC analysis of the ATR-FTIR spectra measured from sulfathiazole 

crystallization processes for monitoring the assumed solute molecule clustering prior to 

nucleation (described in Chapters 4.2.1 and 4.3.1) are presented in Paper V. The objective of the 

MSPC charts was to monitor small changes in the solution phase as the nucleation approaches. 

The PLS modeling derived for solute concentration prediction (Chapter 9.4) is not capable of 

detecting the approaching nucleation, because the solute concentration should be constant prior 

the primary nucleation. 

9.3.1 Prediction of nucleation 

The PCA results presented in Paper V showed that there clearly exists a systematical variation 

in the measured IR spectrum as the nucleation approaches. The nucleation moment come out 

clearly from the PCA results made from in-situ measured IR spectra. Thus, the basis for using a 

PCA derived method for predicting nucleation and creating an alarm system for approaching 

nucleation exists.  

The alarm criterion of the approaching nucleation was set up. It was found that for setting up 

the alarm criterion only one sample exceeding either the 95% confidence limits of T2 or/and Q 

statistics was not sufficient, because the alarm was obtained too early in many tested 

crystallization experiments and the alarm time was not constant for different tested 

crystallization processes. Therefore, alarm was set as three subsequent samples 95% exceeded 

the confidence limit for both T2 and Q statistics. This criterion performed well leading to the 

alarm of approaching nucleation 1.5±0.2 ºC before the nucleation was detected.  

Possible drawbacks of the proposed alarming methodology can be that the number of samples 

measured in the undersaturated stage and thus included in the PCA model can be too small for 

deriving a stable model. In this study, the number of samples measured for the calibration set, 
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33, and with this amount of samples, the model seemed to perform adequately. However, the 

number of samples cannot be very much smaller than used 33 and actually greater number of 

samples measured in the undersaturated stage would be beneficial. This would require more 

frequent sampling in the process system, which is recommended in future applications.  

Besides the drawbacks, the proposed methodology proved to be easily applicable in an 

automated form. The proposed methodology provides a new way to monitor a crystallization 

process and enhance the possibilities for crystallization process control. The nucleation 

prediction scheme could be included to the crystallization process-monitoring scheme. As was 

mentioned in Chapter 5.1.1, the development of a closed loop control of the crystallization 

process is an important topic in crystallization process research. To control crystallization 

processes successfully, information on the nucleation, the most chaotic part of the 

crystallization process should be obtained in real time. In addition, nucleation monitoring also 

provides the tool to observe possible faults in nucleation process, e.g., premature nucleation, 

real time. This enhances the possibility of taking correcting actions in the process control during 

the batch to prevent bad product quality. 

9.3.2 Predicting the polymorphic form of the forming crystals 

The contribution charts were used to evaluate the spectral variables and especially the change in 

the spectral variables as the nucleation approaches. Especially pseudo color image presentation 

was a useful way of showing the variation within the spectral variables. The method used in 

Paper V was to visualize the change in the 95% confidence limits with time. By this way the 

spectral ranges that undergo time dependent changes as the nucleation proceeds could be 

emphasized. When different polymorphs were resulted, the spectral ranges, that gradually 

changed prior to nucleation were different. 

Observed changes in the spectra can be due to several reasons. The clustering of the solute 

molecules can change the spectral responses, illustration of such changes was main objective in 

the study presented in Paper V. However, the temperature changes can cause variation to 

spectral responses as discussed in Chapter 6.1. In addition, the solvent composition gives its 

contribution to the spectral responses. The spectrum is, thus, always the combination of the 

components and also conditions of the system. To minimize the effects from other sources than 

solute molecules careful variable selection was performed. Several different spectral ranges 

were tested and the spectral range from 1000 to 1700 cm-1 was found to give the most apparent 

systematic change in the responses as the nucleation proceeded.  This spectral range exhibits the 

responses from sulfathiazole and 1-propanol concentration but have neglible temperature 

effects.  
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In this case the different polymorphs were resulted from crystallization from different solvent 

compositions. As was presented in the Chapter 8.3 water was used as an background in 

sulfathiazole crystallization experiments and also in the results presented in Paper V. Thus, 

different solvent compositions can give different contributions to the measured spectra and  

influence of the solvent composition cannot totally be excluded. If we assume, that the solvent 

composition gave a response to the spectrum and did not have interations with other 

components in the system, the effect of solvent could be excluded by subtracting the solvent 

spectrum from the spectra measured from the process. This assumption is not exactly true since 

there usually is responses from the interactions present in the spectrum. However, by 

subtracting the solvent spectrum from the measured spectrum, it can, at least, be estimated 

whether or not responses from solvent itself result in a major effect on the result.  Subtracting 

the solvent spectrum from the data did not considerably change the result in this case, however. 

At least, it can be said, that the solvent component solely did not cause the systematic change 

observed in this dynamic system, but also the other ingredients were involved in these changes. 

This technique could be used in the controlling of the polymorph formation, an issue which is 

currently of great interest within PAT. If the nascent polymorph could be predicted before 

nucleation, cooling conditions could be changes in order to drive the process in the direction of 

the desired product structure and thus prevent the formation of the undesired polymorph. 

The results presented here can only be considered as preliminary, and testing of the method 

with different solute-solvent systems is needed to prove the wide applicability for the 

polymorphic form prediction. A system where different polymorphs were crystallized from one 

solvent using different cooling conditions would be beneficial. The experiments presented in 

this study did not result in clearly different polymorphs from one solvent by changing the 

cooling mode as will be presented in Chapter 9.7.2. In addition, the samples should be taken 

from the solid phase right after the nucleation process to truly evaluate the structure of the 

crystals formed in primary nucleation.  

ATR-FTIR might not be the best possible technique for this type of analysis, as the 

measurement area is rather small and restricted to immediate interface of the ATR accessory 

and the sample. In addition, the phenomenon which is measured, i.e., the differences in the 

solute molecule clustering might not be the primary information obtained from the IR spectra. 

In-situ Raman spectroscopy would perhaps be a better suited technique, since the clustering of 

the molecules can affect to the scattering effects and also the result is obtained from deeper in 

the sample than what is possible using the ATR-FTIR technique. Raman spectroscopy has 

already been tested to some extent as discussed in  5.1.1 for monitoring polymorphic systems, 

but the data was not evaluated using the MSPC technique. 
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9.4 Calibration modeling routine for predictive models: solute concentration prediction 

using ATR-FTIR and polymorphic composition prediction from powders using 
DRIFT-IR 

9.4.1 Variable selection 

Variable selection improved the calibration model in terms of increased R2 value and decreased 

the error of prediction of the calibration and the test sets in C15 concentration prediction model. 

The wave number range from 1000 to 2000 cm-1 gave the best predictions of the calibration and 

test sets in this case. The RMSEP value for the test set decreased 15% when the selected subset 

was used instead of total measured spectrum in C15 system. For the model derived for 

sulfathiazole concentration prediction, there was not clear improvement in R2, RMSEC, and 

RMSEP values by variable selection. (Paper I). There can be several possible reasons for this 

result. The C15 system is simpler than the sulfathiazole system in many ways as was explained 

in Chapter 9.1.1. Therefore, the obtained spectrum is less complex for the C15 system than for 

sulfathiazole system. Therefore, the correlation of the spectral variables to the solution 

concentration is clearer in C15 case than in sulfathiazole case.  

Secondly, for the C15-toluene system, the responses appearing from the solute C15 were more 

intense and precise than for the sulfathiazole-water-1-propanol system, which Figure 9 clearly 

shows. Figure 9 shows that these responses are sensitive for the C15 concentration, which 

appears in the wave number range selected to the calibration model from (1000 to 2000 cm-1). 

When the spectral responses, which correlate to the modeled variable, are intense and precise, 

these variables can most likely produce a stable and precise model. For the sulfathiazole system, 

such intense and precise bands indicating the sulfathiazole concentration do not exist and in this 

case, it was not possible to find a small set of variables, which properly explain the variation in 

y.  

The temperature was included in the X variables and in addition, for sulfathiazole the solvent 

composition variable was included. The temperature and solvent composition variables were 

centered and variance was scaled to the level of spectral responses. However, including the 

temperature variable in the X matrix did not significantly improve the model performance. 

Actually, OSC filtering seemed to remove at least some of the temperature induced spectral 

variation (Chapter 9.4.3).  

When PLS calibration models were derived to predict the polymorphic composition of 

powdered sulfathiazole samples in Papers II and VI, the model performance was clearly 

improved when the proper subset of the variables was selected. Selecting the wave number 

range from 3500 to 2500 cm-1 resulted in 13% smaller RMSEP values than when the model was 

derived using the whole spectral range. This wave number range selection from 3500 to 3250 
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cm-1 was obvious as there was a visible variation in the spectrum due to different polymorphs 

(Figure 11). 

9.4.2 MSPC charts and sensitivity analysis in data quality evaluation 

In this study, MSPC charts were found useful in evaluating the quality of the measurement data 

e.g. calibration data. MSPC analysis was applied to all of the samples in order to have 

preliminary evaluation on the sample quality for outlier detection. (Papers I, IV, VI) 

The results revealed that abnormal or extreme samples within the model space could be pointed 

out from T2 chart and those in the residual space from Q chart. Contribution charts provided 

information on the variables that cause the particular sample to an outlier. There are several 

possible reasons for judging the sample as an abnormal one. Figure 15 shows example MSPC 

charts of the sulfathiazole calibration measurements done with ATR-FTIR. This example 

presented in Figure 15 is from the calibration set of sulfathiazole concentration measurement 

using ATR-FTIR. Corresponding MSPC charts for C15 calibration measurements using ATR-

FTIR are presented in Paper I and MSPC charts for the polymorphic composition of the 

powdered sulfathiazole samples using DRIFT-IR is presented in Papers II and VI.  

Figure 15 MSPC charts for the ATR-FTIR calibration measurements of sulfathiazole. a) T2 chart, b) T2 
contributions, c) Q chart, d) Q contributions. The horizontal lines in a) and c) represent  95% confidence 
limit for the T2 and Q values and the dashed lines in b) and d) represent the 95% confidence interval. 
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Baseline problems can cause samples to be abnormal in MSPC charts and these are observed 

several different ways: The baseline can exhibit otherwise normal baseline at the wrong level. 

Paper I presents an example of this behavior. Another alternative is that the baseline exhibits a 

different shape than it should do as presented in Paper I and in a small scale in Figure 15. In 

these cases, the baseline of an abnormal sample exhibits a linearly increasing trend. In Paper II, 

the baseline of an abnormal sample resembles a shape of a parabola. 

The abnormality can exist by the contamination of the sample, and in this case, additional bands 

appear in the spectrum. The contribution charts can be applied to detect contamination of the 

samples. An illustrative example on such detection is in Paper I, where abnormally high CO2 

level together with abnormal baseline caused the sample to be an outlier and it shows in the 

contribution charts. An exceptionally high noise level can also cause the sample to exhibit a 

different structure than the other samples. MSPC charts are, therefore, powerful in determining 

also possible errors within the measurement procedure.  

The samples illustrated in Figure 15 exhibit extreme samples and these have high T2 

contribution values in the wave number range where the bands related to sulfathiazole 

concentration appear. These samples should not be removed, since they are actually essential 

samples that should be included in the model to ensure that the whole range of variation is 

included in the calibration. Therefore, previous knowledge on the data, i.e., temperature, 

dissolved solute concentration, and solvent composition of a particular sample, is essential in 

deciding whether the sample is an outlier rather than an extreme sample in the data space.  

MSPC charts were also found suitable for testing that the new samples represent similar 

structure to the samples used in the calibration (Papers I, II, VII). It is also important to make 

sure that the structural part of the data does not significantly change when preprocessing 

methods are applied. This also could be done by analyzing the filtered data using MSPC to 

compare the structure of the filtered data to the structure of non-filtered data (Papers I, II, VII).  

As was mentioned in Chapter 7.3, only the X space can be evaluated using MSPC charts, and 

therefore, this method cannot point out the samples that have, e.g., in the y space as long as the 

variation in X is similar to the rest of the data and is within the range of variation. Studentized 

residuals together with leverage values were used to evaluate the samples in XY space. Figure 

16 shows the studentized residuals and leverage values for the same data set as was used in the 

previous MSPC analysis. The sample numbers in MSPC analysis result in Figure 15 correspond 

to these presented in Figure 16. 
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Figure 16 Studentized residuals and leverage values for the PLS model for sulfathiazole concentration 
prediction from ATR-FTIR data. Vertical lines in the upper image represent 95% confidence limits for 
studentized residuals. Circles in the upper image represent the leverage values in X space and x’s represent 
leverages in the XY-space. 

The PLS model from which the studentized residuals and leverage values were calculated and 

illustrated in Figure 16 was derived from the same data used for the MSPC charts in Figure 15. 

The same samples, which exceeded the 95% confidence limit in the T2 chart, exist as outliers in 

the sensitivity analysis charts. The samples 429 and 476 show high leverage values in the X 

space and those increase significantly, when Y space is included. There are also some samples, 

e.g. 420 and 419 exceeding the 95% confidence limit in the Studentized residuals, which did not 

exceed the 95% confidence limits in T2. Studentized residual- and leverage analyses point out 

also the errors in Y space, such as weighing errors or other probable inaccuracies in the sample 

composition. Therefore, both X space analysis and XY space analysis are required for analyzing 

the measured data and its usability for modeling purposes. 

9.4.3 OSC filtering 

The number of the OSC components and number of the PLS components were selected using 

RMSEP values of the external test set, thus the dimensionality of the model was evaluated 

based on the true performance of the model. The summary of the results for the different 

models derived from non-filtered, OSCSW and OSCAH filtered data are presented in Table 5. The 

detailed description of the results and for solute concentration prediction models using ATR-

FTIR are presented in Paper I.  
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Table 4 The PLS models derived from raw spectral data and OSCAH and OSCSW filtered data 

R2Y for one 
component PLS 
model 

Number of components 
selected into final model 
(OSC/PLS) 

R2Y for the selected 
model 

RMSEP for the 
selected model 

Calibration 
model 
(material/ 
technique) Raw 

data 
OSC 
SW 

OSC 
AH 

Raw 
data 

OSC 
SW 

OSC 
AH 

Raw 
data 

OSC 
SW 

OSC 
AH 

Raw 
data 

OSC 
SW 

OSC 
AH 

Stz/  
ATR-FTIR  
 

42.0 91.7 59.6 - / 5 2 / 2 3 / 2 99.7 99.9 99.8 0.57 0.55 0.55 

C15 / 
ATR-FTIR 

66.4 99.9 94.7 - / 5 2 / 2 3 / 4 99.9 99.9 99.9 0.79 0.42 0.33 

SUTHAZ 
01/  
DRIFT-IR 
(II) 

56.9 76.4 70.4 - / 3 1 / 2 2 / 2 79.8 86.3 84.8 0.06 0.06 0.07 

SUTHAZ 
02/  
DRIFT-IR 
(II) 

46.7 76.7 62.9 - / 3 2 / 2 3 / 2 78.8 99.8 89.7 0.07 0.06 0.08 

 

For the polymorphic composition prediction for powdered material from DRIFT-IR data, two 

different models were derived to predict SUTHAZ01 and SUTHAZ02 concentrations with 

separate models, of which the detailed discussion of the results is presented in II.  Two separate 

models gave better predictions of the calibration and test sets overall than did the single model 

predicting both concentrations. This result is in line with the commonly suggested opinion 

presented in the literature that usually separate models perform better than one single model 

predicting several ys. Separate models probably performed better than the single model, 

because the y-variables were not fully correlated and also other than modeled variation was 

present in the spectra. In addition to that OSC filtering could not have successfully performed 

with several ys. 

The number of components used in the final models differs from those presented in Paper I, 

where number of OSCAH components included in the sulfathiazole model was 6 and in the C15 

model 5 while number of PLS components in both models from OSCAH filtered data was 2 in 

that case. It is true that RMSEP values for those models were slightly better than corresponding 

ones presented in Table 5, being 0.32 and 0.51 for C15 and sulfathiazole respectively.  

Experience showed, however, that simpler models presented in Table 5 performed better in the 

long run. The sulfathiazole model presented in Table 5 was used in calculation of the results of 

Papers III and VI. Overall, making model more complex and including more OSC and/or PLS 

components into the model could slightly improve further RMSEP values, but the improvement 

is just on the nominal scale and is not significant for the true prediction of the new unknown 

samples. In addition, a very complex model can suffer from over fitting problems. Therefore, 

one should select the simplest possible model which gives the predictions for the test set, which 

are not improved significantly by adding more OSC or PLS components into the model. The 
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models presented in Table 5 were selected based on this principle and thus do not represent 

minimum RMSEP values, but the best possible combination.  

The effect of filtering can be observed when one component PLS models are derived from non-

filtered and filtered data. However, the total number of components when data are filtered is 

actually two. Therefore, the performances of the models in terms of complexity cannot be 

evaluated. However, it can be seen whether the filtering removes unnecessary variation. 

RMSEP value for one PLS component model decreased clearly by OSC filtering. For PLS 

model with one component R2Y value was increased by OSC filtering in the reported cases 

presented in Table 5. Therefore, OSC filtering clearly removed redundant variation from the 

data. However, the overall complexity of the model did not decrease by filtering because the 

included OSC components also increase the complexity of the model. The R2Y value of the 

final models increased clearly by OSC-filtering, but the effect on the RMSEP value was of 

minor scale. Improvement in the predictions was therefore not significant, and, thus, need for 

OSC filtering cannot be justified from the prediction point of view. These results are in 

correspondence with the previous studies presented in literature as mentioned in chapter 7.1.6. 

On comparison of the two OSC methods used, the first OSCSW component removes more 

variation than does the first OSCAH component, which results in higher R2Y values after the first 

PLS component for the model for OSCSW filtered data than those for the model from OSCAH 

filtered data. To perform appropriate filtering number of OSCSW components needed in filtering 

was lower than number of OSCAH components needed for filtering. Based on the root mean 

squared error of calibration (RMSEC) values, which were calculated for the calibration set, the 

models derived from OSCSW data showed clearly lower values than the models from OSCAH 

filtered data. The slightly best model in terms of predictive ability was the model derived from 

OSCAH filtered data for solute concentration prediction models (ATR-FTIR data) and OSCSW 

for polymorphic composition prediction (DRIFT-IR data). Differences in the RMSEP values for 

differently treated models were of a nominal scale, however. For DRIFT-IR, the OSC filtering 

method performed better than did the tested MSC and SNV methods. 

When comparing the two solute concentrations prediction models the R2Y value increased more 

after the first component for the C15 model than for sulfathiazole model. In addition, the 

number of OSCAH components needed in the model was smaller for the C15 model than the 

sulfathiazole model. RMSEP values overall were lower for the C15 model, than for the 

sulfathiazole model, even if the concentration range measured was almost the same. These 

differences can be because the C15 system and obtained spectral data was clearly simpler than 

for the sulfathiazole system. These differences in the complexities are closely described in 

Chapter 9.4.1. In sulfathiazole case, the y correlates to very small-scale variation within the 
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spectra, and therefore, it was self-evident that first two components did not explain a lot of 

variation in y. In the case of C15, the variation in the spectra was mostly due to the C15 

concentration.  

Figure 17 illustrates the effects of OSCSW filtering in the C15 system and in the sulfathiazole 

system. 

Figure 17 Effect of OSCSW filtering on the measured ATR-FTIR spectrum. a) C15 dissolved in toluene, b) 
sulfathiazole dissolved in 50/50 w-% mixture of water and 1-propanol. Filtering included 2 OSCSW 
components in both example cases 

Figure 17 shows that for C15 case, only a small amount of data was removed by filtering and 

the filtered spectrum is quite similar with the centered spectrum. In sulfathiazole case, on the 

other hand, TOSCP’OSC, i.e., the data removed from centered spectrum resembles very much the 

centered spectrum. Resulting filtered spectrum in sulfathiazole case has very small-scale 

variation throughout the measured spectral range. These results are in line with the knowledge 

on the nature of the data, which was discussed closely in Chapter 9.1.1. Simply, the most 

variation in C15 spectrum result from the variation in the C15 concentration, i.e., this is 

correlated to y. In addition, the temperature effects on the spectrum in C15 case were of very 
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minor scale. Consequently, in C15 case there should not be very much y orthogonal variation to 

be removed by OSC filtering. In the sulfathiazole case, the most variation in the spectrum is due 

to the solvent composition changes and temperature effects, and only a very small variation 

appears from the sulfathiazole, i.e., modeled y. Thus, there should be a major amount of y 

independent variation present in sulfathiazole case. The variation removed (TOSCP’OSC) from the 

centered spectrum in sulfathiazole case shows clearly the spectral ranges where the most 

variation due to solvent composition and temperature changes were observed to be shown in 

Chapter 9.1.1.  

Based on results in Figure 17, it seems that OSC filtering would be beneficial in the 

sulfathiazole case, since there is a lot of y orthogonal variation present. In the C15 case, 

however, the amount of y orthogonal variation in the spectrum is so small that it is questionable 

whether the use of OSC filtering is justified or not. The final selection of the modeling 

procedure: regular PLS or PLS+OSC, should be based on the true performance of the model, 

i.e., the complexity and true predictive ability. 

Filtering removed the baseline effects and filtering emphasized the relevant bands of the 

modeled phenomenon, especially in the sulfathiazole case where the small bands in the spectral 

range from 1000 to 1500 cm-1 still exist in the filtered data while other intense bands were 

almost completely removed by filtering. Magnitude of the regression coefficients of the models 

derived with and without OSC treatments presented in Paper I show which variables are the 

most important in the model. The most relevant regression coefficients in all different models 

derived from differently pretreated data are in accordance with the spectroscopic knowledge of 

the modeled variables. 

For selecting the best combination of OSC and PLS components or the issue whether OSC 

filtering is needed or not, the automated routine to calculate all the possible and sensible model 

combinations and the  criteria for the selection of best performing model is needed. RMSEP 

value of an external test set was found to be an appropriate way of selecting the complexity of 

the model. 

9.4.4 Model performance validation using solubility measurements 

An additional validation with solubility measurement provided a tool to evaluate the flexibility 

of the solute concentration prediction model to be used for supersaturation predictions from 

crystallization process. Solubility measurements done using ATR-FTIR were in good 

agreement with gravimetric solubility measurements and gave an indication. The RMSEP for 

the solubility measurements between the ATR-FTIR result and gravimetric result was 1.2 and 
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1.4 for C15 and sulfathiazole cases respectively, when the best performing model based on 

RMSEP value was used in predictions of new unknown samples.  

The solubility concentration agreement between these two methods was poorer for the 

solubilities at the highest and the lowest ends of temperature scales. In principle, the ATR-FTIR 

measurement   gave higher solubility concentrations at the low end of the temperature range and 

lower solubilities at the high end of temperature range than did the gravimetric method. The 

error is a result from both analytical methods used in solubility measurements. (Paper I) 

9.5 PLS model performance for solute concentration prediction using ATR-FTIR 

The mean RMSEP value for the derived models was 0.33 for C15 model and 0.55 for 

sulfathiazole model as presented in Table 5.  

There are several different aspects to be considered when evaluating the performance of the 

spectroscopic measurements and quantitative multivariate analysis. In the spectroscopic 

measurements there are questions of the limit of detection, resolution in the y-direction and 

short term and even more importantly long term stability of the spectrometer and accessory, 

which affect the reliability of the measurements and the performance of the derived model. Also 

mechanical changes in the measurement accessory can alter the performance of the 

measurement. The process state changes from the conditions where the calibration set have 

been measured can naturally cause the predictions of unknown samples to be inaccurate, if the 

model is not derived properly. 

The changes in the process conditions can also affect the model usability for the measurements. 

When the highest cooling rate of 27.5°C/h  was used in the case of sulfathiazole, the predicted 

concentration level seemed exceptionally high. The crystallizing system was probably in the 

labile region thoroughout the process, thus new nuclei could have been formed constantly. In 

addition, the concentration level was probably too far away from the conditions where the 

calibration measurements were done.  

For the sulfathiazole crystallizations different impellers were used, and it was found that the 

model gave unreliable predictions of the samples measured from process when the 

measurements were conducted under clearly different mixing conditions than the mixing 

conditions used in the calibration measurements. These problems could have possibly been 

overcome by applying appropriate calibration transfer methods, which are suggested to be 

tested in future studies. 

The disturbances caused by the solid material or bubbles attaching onto the probe were not 

observed significantly. However, if the mixing intensity was very low, some bubbles tended to 
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attach onto the probe and they were not wiped out by the stream caused by mixing, as seemed 

to be case when higher mixing intensities were used. 

The spectra measured from the system, where there was a very small amount of sulfathiazole 

dissolved were evaluated to estimate the limit of detection. It was found that in the sulfathiazole 

case reliable detections were obtained above concentrations of 1 g solute/100 g solvent. For the 

sulfathiazole system, the measurements from the solvents in which the solubility of 

sulfathiazole was extremely low, especially water and 1-propanol (the solubilities at 85° 1.22 g 

solute/100 g solvent and 2.86 g solute/100 g solvent respectively), reliable concentration 

measurements during the crystallization processes could be done. For C15 the measurements 

below a concentration of 1 g solute/100 g solvent were not attempted. 

The short term repeatability could be evaluated from the repeated measurements. Stability of 

the measurement device could be evaluated from prediction errors in the calibration 

measurements, more precisely from the errors in a test set, which was around 0.3-0.6 depending 

on the system in question (Table 5). The concentration range measured was from 1g solute/100 

g solvent  to 30g solute/ 100g solvent. When the crystallization measurements were repeated, 

there was always differences in the performed batch present, which did not imply only the 

performance of the predictive model, but also repeatability of the batches.  

The long term repeatability cannot be explicitly defined, but the crystallization experiments of 

sulfathiazole were performed and concentration levels measured during a 10 month period. 

During this period 37 experiments were monitored. Appropriate concentration predictions from 

crystallization process were obtained if the process conditions used were similar as were used in 

the calibration measurements or the solvents into which the solubility of sulfathiazole was 

reasonable. Any mechanical disturbance, e.g., change in the probe position caused also 

possibility for inaccuracies in predictions of the new samples . The throughput from the light 

source via the ATR-probe to the detector was lowered slightly, approximately 7%, during the 

ten month measurement period of sulfathiazole crystallizations. 

9.6 PLS model performance and other multivariate methods for the characterization of 
the polymorphic composition using DRIFT-IR 

The DRIFT-IR provided a rapid way to analyze the powdered samples. However, sample 

preparation was needed. In order to minimize the CSD and shape effects, the samples had to be 

grinded. Non-grinded samples resulted in bad quality spectra, which were not proper for 

multivariate analysis. On the other hand, samples for XRPD analysis had to be grinded as well. 

The specific area in the DRIFT-IR measurement is rather low, which reduces representativity of 

the sampling. 
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The PLS models for predicting the polymorphic composition of two sulfathiazole polymorphs 

SUTHAZ01 and SUTHAZ02 reported in Paper II gave satisfactory results with a RMSEP value 

around 0.06-0.07 (Table 5) depending on which polymorph was modeled and what 

preprocessing method was used. The concentration range measured was in weight fraction units 

and varied from 0.1 to 0.8.  

The uncertainty level of the quantification results from XRPD measurements were up to ±10%. 

When XRPD results were used as response variables, the predictive ability suffered from high 

uncertainty in measured y values and not very certain predictions of the unknown samples from 

derived PLS model could not be expected. Preparation of the physical calibration set is strongly 

suggested when pure polymorphs are available. The PLS model derived this way without a true 

physical calibration set can only be considered as a method which confirms the results obtained 

from the XRPD measurement. Another reason for the inaccuracies in the predictions of the test 

set can be that the log (1/R) transformation does not represent truly linearized spectrum. This 

issue as was discussed in Chapter 6.3.  

The qualitative analysis methods reported in Papers II and VI summarize that the scatter plots 

from PCA well separated the samples representing mainly different polymorphs. In addition, 

PCA derived MSPC charts visualize samples that represented different structure from the other 

samples. The samples representing undesired polymorphic purity could be pointed out. The 

contribution plots could serve the purpose of detecting what is the reason for a particular sample 

being different from the calibration set. In this study, the SIMCA analysis was found as the best 

way of classifying the samples. It was especially useful to use Cooman’s plot to classify 

samples representing either of the two polymorphs either of which the samples mainly 

consisted. However, it was also possible to identify the samples that did not belong to either of 

the groups. 

9.7 Supersaturation measurement results and supersaturation effect to product quality 

9.7.1 Nucleation moment 

For the unseeded crystallization process of sulfathiazole, different cooling conditions affected 

the nucleation process as the width of the metastable zone increased with increasing cooling 

rate, which is illustrated for sulfathiazole crystallizations in Figure 18. The width of the 

metastable zone became wider as the cooling rate increased being at its narrowest at 5°C (80-75 

ºC) with a 3.9ºC/h cooling rate and widest at 8.5ºC (80-71.5ºC) with a 27.5ºC/h cooling rate. 

The concentration level remains higher after nucleation as the cooling rate increases. These 

results are in correspondence with previously reported results by other research groups as was 

discussed in Chapter 4.2.1. 
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Figure 18 Concentration profiles from sulfathiazole crystallization from 50/50 w-% mixture of water and 
1-propanol using different constant cooling rates. Supersaturated state prior to nucleation and the 
nucleation moment are presented. 

Also different cooling modes cause the nucleation process to proceed differently in 

sulfathiazole crystallizations as illustrated in Figures 19 and 20. Figure 19 shows that the 

nucleation seems to occur at different temperatures when different cooling modes are applied. 

The different cooling modes were switched on at the temperature where the nucleation was 

observed using 9.2°C/h linear cooling rate as was described in Chapter 8.2 and in Paper III. 

 Figure 19 Concentration profiles from sulfathiazole crystallization from 50/50 w-% mixture of water and 
1-propanol using different cooling modes. Supersaturated state prior nucleation and nucleation moment. 

Thus, the nucleation should have occurred right after switching on the specific cooling mode, 

which actually is seen in Figure 20. With programmed cooling the temperature decreases very 

slowly and with natural cooling the temperature decreases rapidly, which causes the differences 

in the observed nucleation temperature even though the nucleation occurs at same time. 
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Figure 20 Concentration profiles from sulfathiazole crystallization from 50/50 w-% mixture of water and 
1-propanol using different cooling modes. Supersaturated state prior nucleation and nucleation moment 
are presented. 

The concentration profiles after nucleation are different with different cooling modes. As the 

temperature decreases rapidly with the natural cooling mode, the nucleation process is drastic 

and thus the concentration decreases fast. With programmed cooling, the temperature decreases 

very slowly in the beginning, and thus the nucleation moment is less drastic than with natural 

cooling and the concentration rate decreases slower than with the natural cooling rate. The 

concentration profile right after the nucleation from the linear cooling mode is in between of 

those of the other two cooling modes. 

Figures 21 and 22 illustrate the nucleation processes with different cooling modes in the C15 

case. 

Figure 21 Concentration profiles as a function of temperature from C15 crystallization toluene using 
different cooling modes. Step modes 1 and 2 refer to the situation where the temperature of the coolant 
was set to 40°C and 25°C respectively. Supersaturated state prior to nucleation and the nucleation moment 
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Figure 22 Concentration profiles as a function of time from C15 crystallization toluene using different 
cooling modes. Step modes 1 and 2 refer to the situation where the temperature of the coolant was set to 
40°C and 25°C respectively. Supersaturated state prior to nucleation and the nucleation moment. 

The nucleation moment occurs at a different time in the C15 experiments performed with 

different cooling modes. In this case, the specific cooling mode was switched on right after the 

supersaturated state was reached. Therefore, the nucleation moment was driven by the 

instantaneous cooling rate of the specific cooling mode. For example, in stepwise cooling mode, 

the cooling rate in the beginning of the process was extremely high, and thus the nucleation 

takes place at lower temperatures. In the programmed cooling on the other hand, the cooling 

rate was extremely slow in the beginning of the batch and thus the nucleation occurred at the 

higher temperature than with other cooling modes applied in C15 crystallizations. This result is 

also in correspondence with a previously presented result, which shows that increase in the 

cooling rate increases the width of the metastable zone. In time scale, the nucleation process 

occurred first with the step mode and last with the programmed cooling. Figure 22 illustrates 

also, that the true crystallization process starts up almost 2 hours before in stepwise process than 

in programmed cooling experiment. 

The seeding caused the nucleation to occur immediately after applying the seed crystals into the 

system regardless of the cooling mode. Therefore, with seeding, the supersaturation level 

remained very low also at the nucleation moment and the nucleation occurred exactly at the 

same moment and at the same temperature in all seeded experiments with different cooling 

modes. 

9.7.2 Cooling mode effect on supersaturation level and product crystals 
 
The cooling mode effect on the supersaturation level and quality of the product crystals in 

sulfathiazole crystallizations is described in Papers III and VI and the result are briefly 

summarized in this Chapter. The overall concentration level increased when the cooling rate 
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was increased. This is an expected and logical result and can be explained by the mass transfer 

rates of the solute molecules from solution phase on existing crystals (Chapter 4.3.2)  

Cooling rate  

With the highest cooling rate, 27.5ºC/h, the predicted supersaturation was extremely high. The 

process conditions differed both chemically (the highest supersaturation) and physically (new 

crystals forming throughout the process) from the calibration measurements when the highest, 

27.5ºC/h, cooling rate in sulfathiazole crystallizations was used. Therefore, the predictions from 

that crystallization experiment were the most uncertain of all crystallizations. The concentration 

level was high enough to exceed the metastable limit throughout the crystallization with a 

27.5ºC/h cooling rate. This caused the solution to cool down faster than the solute could transfer 

onto existing crystals, and consequently the spontaneous nucleation took place throughout the 

process. The level of primary nucleation during the crystallization was most likely small with 

cooling rates from 9.2 to 3.9ºC/h.  

The differences in the concentration levels resulted in changes in the outcome of product 

crystals. The widest size distribution and the most irregularly shaped crystals were obtained 

with the highest cooling rate, which implies that the massive nucleation occurred throughout the 

crystallization process. With slower cooling rates the resulting size distributions of the product 

crystals became slightly narrower, but overall the size distributions were rather wide. The 

largest size found in all samples was approximately equal. Therefore, it seems, that attrition 

nucleation in crystallization of sulfathiazole had a considerable effect. Similar results and 

actually the concept of maximum obtainable crystal size have been introduced previously in 

literature and are referred to in Chapter 4.3.3. As the cooling rate was lower than 27.5°C/h, 

produced crystal shapes changed significantly. The larger crystals were mostly long and thin 

plates. Small crystals were mostly more rounded than the larger ones. The differences between 

the shapes of the crystals produced with different the roundness increased slightly with 

decreasing cooling rate. These results could be explained by the breakage of the large crystals, 

which was caused by the mixing during crystallization.  

Cooling mode 

The supersaturation level changed remarkably, when applying different cooling modes. For 

sulfathiazole crystallizations, the programmed cooling caused a very low supersaturation level 

at the beginning of the crystallization process, and high supersaturation towards the end of the 

process. The programmed cooling did not maintain a constant supersaturation level, which has 

been an objective of that cooling mode. Thus, the simplifying assumptions made to obtain the 

equation for the programmed cooling profile were not appropriate for the case of sulfathiazole. 
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Concentration profiles from crystallization with natural cooling show that the concentration 

level decreased rapidly at the very moment the temperature of the cooling medium was set to a 

constant value of 25°C. The suspension cooled down rapidly (in 1.5 h) and practically all the 

crystals were formed in a few minutes. For the rest of the process (for 4.5 h) the system was 

only mixed in constant temperature and practically no crystal growth existed. 

Only small scale differences could be observed in the size distributions between the different 

samples obtained from the sulfathiazole crystallizations the using different cooling modes. The 

narrowest size distribution was obtained when the crystallization was carried out using natural 

cooling and the widest distribution results from the experiments with the linear cooling profile. 

The crystals obtained from natural cooling mode experiments suffered probably from two 

processes, which made the size distribution narrower: mixing for 4.5 hours at constant 

temperature caused significant attrition of the large crystals and simultaneously the Ostwald’s 

ripening caused dissolving of the very small crystals. The size distribution of the crystals 

obtained by the programmed cooling profile is positioned in the middle of the distributions 

obtained by the other two cooling modes. As the programmed cooling did not maintain the 

supersaturation constant throughout the process, the programmed cooling did not result in the 

narrowest size distribution. There was relatively large amount of small crystals in samples from 

programmed cooling experiments, which probably nucleated in the end of the batch where the 

concentration level was rather high. The crystals produced with the programmed cooling profile 

were clearly more elongated than the crystals obtained by linear or natural cooling. The 

elongated shape crystals from controlled cooling experiments were probably formed in the final 

parts of the batch and they did not suffer from attrition The crystals produced by natural cooling 

had the largest roundness values, which could have been due to the mixing which grinds the 

crystal edges smoother.  

The different cooling modes in the C15 crystallizations (Paper IV) the step modes resulted in 

very high initial supersaturations, which rapidly decreased after nucleation and reached the 

equilibrium within the 1 h after the nucleation, while the total batch time was 5 h. Linear 

cooling resulted in the moderate supersaturation level throughout the process. In the controlled 

cooling, the nucleation took place after two hours of experiments. There was an increase in the 

supersaturation level in the very end of the batch with programmed cooling was used. The 

seeding caused the overall supersaturation level slightly to decrease in all C15 crystallizations 

compared to the unseeded crystallizations, but the most effective change was the differences in 

the onset processes of the crystallization experiments. The narrower size distributions of C15 

were obtained when seeding was used, as can be expected by the results presented in the 

literature. With controlled and linear cooling modes, a relatively large amount of fines could 
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have been produced by the secondary surface nucleation at the end of the batch, as the 

supersaturation level was found to increase in crystallization with controlled and linear cooling 

modes towards the end of the batch. 

Polymorphic form 

Theoretically, the level of supersaturation could influence on the polymorphic outcome of the 

crystals because the solubilities of the specific polymorphs to a particular solvent are different. 

In principle, if the cooling takes place at a concentration level that lies between the solubility of 

two polymorphs, the polymorph with the lower solubility should appear. The results reported in 

Paper VI show, that the polymorphic composition of the product sulfathiazole crystals seemed 

not to depend on the cooling rate used although the concentration levels in the crystallization 

processes were remarkably different. One possible reason for this could be that the relative 

differences in the solubilities of the different sulfathiazole polymorphs for in the solvents used 

are rather small. In addition, there can be several other things in the crystallization process, 

which can drive the polymorphic composition of the product crystals, one being the solvent 

composition, which seemed to be the dominant one in this study. In addition, according to the 

Ostwald’s law, metastable polymorphs can undergo solution mediated phase changes from a 

less stable polymorph to a more stable one. 
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10 CONCLUSIONS AND FUTURE WORK SUGGESTIONS 

The aim of the work was to explore different ways to utilize IR spectroscopy together with 

multivariate data analysis tools in real time monitoring of the solution phase in the batch 

cooling crystallization process and in off-line characterization of the polymorphic purity from 

crystalline samples. 

The three main approaches in real time monitoring of the solution phase using IR-spectroscopy 

and different multivariate methods include: 1) Batch-to-batch variation analysis from a cooling 

crystallization process using PARAFAC. 2) Multivariate monitoring of the on-set of the 

unseeded crystallization process using MSPC charts. The on-set of the crystallization is 

important in terms of the number of primary crystals in the system and in the polymorphic form 

of the product crystals. 3) Calibration model building for prediction of the solute concentration 

and supersaturation level within the crystallization process. The supersaturation level is the 

driving force of the crystallization and thus a very important process parameter affecting the 

product quality.  

Polymorphic composition is an essential quality property of the product affecting further the 

processability and usability of the crystalline product. Off-line characterization of the 

polymorphic composition of crystalline samples was done using DRIFT-IR technique. PCA, 

MSPC, and SIMCA methods were tested in qualitative analysis of the crystalline samples. The 

quantification of the polymorphic composition from crystalline samples using a predictive PLS 

model was derived.  

Analysis of the batch-to-batch variation using a PARAFAC model provided an interesting 

insight into the phenomena that can be viewed from in-situ measured spectral data. Not only the 

differences in chemical state but also some changes in the physical conditions inside the 

crystallizer could be visualized with PARAFAC modeling. To evaluate the causes of the batch-

to-batch variation requires expertise knowledge on the spectral analysis; however, interpretation 

is not a straightforward task. Different types of data should be measured and the data processed 

using N-Way methods for obtaining a deeper insight of the crystallization process. In order to 

evaluate the crystallization batches applicability of different N-Way modeling approaches and 

diagnostics should be tested. 

Monitoring the state prior to nucleation and during the nucleation from ATR-FTIR together 

with MSPC charts provided a new way of observing the changes in the system where the 

concentration of the solute remains constant, but the molecules are arranging to be nucleated. 

The approaching nucleation could be predicted and an alarm criterion to be set up, which 

further enhances the control of the crystallization in the very beginning of the process. On the 
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other hand, the chemical state prior to nucleation could be evaluated, which opens up the 

potential possibility to predict a forming polymorph. If this is possible, perhaps the 

crystallization process could be controlled in such a way that the desired polymorph could 

always be obtained, which would reduce the number batches of unsatisfactory quality. 

However, the method requires that the number of samples measured in the beginning of the 

batch to be large enough to produce a stable model, and to obtain information from the truly 

transient state, the sampling interval should be therefore as short as possible. This is restricted 

by the fact that the average of several scans is needed in order to obtain a satisfactory signal to 

noise ratio of resulting spectra. In the future, more studies on predicting the formation of the 

polymorphs from various different solute-solvent systems will provide an insight whether this 

technique is widely applicable in control of polymorphic systems. In future studies, experiments 

where the crystalline samples are collected and analyzed immediately after the nucleation 

occurs would provide additional information on the relationship between spectral information 

obtained prior to nucleation and the polymorphic form of the formed crystals. In addition, the 

use of Raman spectroscopy for this purpose instead of ATR-FTIR would perhaps provide an 

even more powerful tool to predict the forming polymorph. The specific area of the 

measurement with the Raman technique can be significantly larger than with the ATR-FTIR 

technique, and simultaneous measurement of the solution and solute phases is possible. 

Several different research groups have previously proved that the solute concentration 

measurement using ATR-FTIR and PLS modeling is a versatile technique. In this research, the 

calibration procedure including the data quality evaluation with MSPC and sensitivity analyses, 

data pre-processing using OSC filtering and variable selection, modeling, and model validation 

steps using RMSEP criterion was proposed. This routine resulted in reliable and stable 

calibration models for real prediction of the unknown samples. OSC filtering can be used for 

pre-processing of ATR-FTIR, as it seems to remove redundant variation from the measured 

data. OSC filtering did not significantly enhance the predictive ability of the model, however. 

The drawback of the calibration routine derived for this particular purpose is that the solute 

measurement from the crystallization takes place slightly out of the range of the calibration 

measurements: concentrations slightly higher and the solid phase present. Therefore, an 

additional validation using solubility measurements from suspension with ATR-FTIR to test the 

applicability of the model in true process conditions is recommended. The drawback of the 

method includes that even small changes in the process conditions, e.g., in mixing conditions 

seem to result in the calibration model not being adequate, and thus the model needs to be 

updated frequently. Especially, the suitability of the calibration transfer methods in updating the 

calibration models should be explored. In addition, the sampling issue should be carefully 
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considered in order to optimize the number of calibration samples needed for the stable 

calibration model. These improvements would make the calibration procedure more 

economical. Results showed that by measuring the driving force of the crystallization processes, 

evaluation of the process condition effects on the obtained product quality was possible. 

Therefore, a deeper understanding of the factors driving the quality of the resulting product was 

achieved.  

All the applied methods, PCA, MSPC, PLS, PARAFAC were capable of detecting the on-set of 

the crystallization process. However, only the dynamic PCA derived MSPC diagnostics 

provided a tool to predict truly the nucleation moment and to evaluate the chemical changes in 

the solution phase prior nucleation. From the concentration predictions using PLS, observation 

of the differences in supersaturation profile due to different cooling policies were possible. 

Thorough the concentration profile the proceeding crystallization process could be evaluated 

and different batches compared which was not possible to this extent using the other tested 

multivariate tools. PARAFAC modeling on the other hand provided a method to evaluate the 

spectral ranges which differentiate the batches where the process conditions, e.g., solvent, 

cooling mode or impeller type changed. Process dynamics could not be evaluated using 

PARAFAC model. 

ATR-FTIR technique together with multivariate methods proved, thus, to be a versatile 

technique for monitoring the solution phase. To obtain a full crystallization-monitoring scheme 

the different in-situ measurement techniques should be compiled. These additional techniques 

should include the method for monitoring size and shape of the crystals throughout the process 

using probes developed for that purpose. Additional chemical information from both solution 

and solid phase could be obtained, e.g., by using Raman spectroscopy. All these additional 

methods separately and especially when combined together would benefit from the use of 

multivariate methods to extract the relevant information from the enormous amount of data. In 

addition, the measurement based closed loop control of a crystallization process, which already 

has been proposed by few research groups, could well provide an enhancement to the control of 

crystallization processes. Overall, a combination of the analytical and data analysis techniques 

proposed here would well improve the control of a crystallization process and increase the 

understanding of the phenomena present in crystallization, which are the main objectives of 

PAT. 

DRIFT-IR technique together with multivariate methods for characterization of the 

polymorphic composition of solid samples provides an additional technique to evaluate the 

purity of the crystalline samples by clustering the samples representing the different 

composition to different classes. The samples could be classified easily and rapidly based on 
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their quality. However, the technique cannot be used as the only technique to evaluate the 

polymorphic composition of the samples. In addition, to obtain truly quantitative information, 

i.e., the distribution of the polymorphs in a specific sample, the preparation of a calibration set 

from pure samples is strongly recommended. This does not only hold for the quantification of 

DRIFT-IR measurements, but also for other techniques used to measure the polymorphic 

composition of powdered samples.  
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