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Quality inspection and assurance is a very important step when today’s products are
sold to markets. As products are produced in vast quantities, the interest to automate
quality inspection tasks has increased correspondingly. Quality inspection tasks usually
require the detection of deficiencies, defined as irregularities in this thesis.

Objects containing regular patterns appear quite frequently on certain industries and
science, e.g. half-tone raster patterns in the printing industry, crystal lattice structures
in solid state physics and solder joints and components in the electronics industry. In
this thesis, the problem of regular patterns and irregularities is described in analytical
form and three different detection methods are proposed. All the methods are based on
characteristics of Fourier transform to represent regular information compactly. Fourier
transform enables the separation of regular and irregular parts of an image but the three
methods presented are shown to differ in generality and computational complexity.

Need to detect fine and sparse details is common in quality inspection tasks, e.g., locating
small fractures in components in the electronics industry or detecting tearing from paper
samples in the printing industry. In this thesis, a general definition of such details is
given by defining sufficient statistical properties in the histogram domain. The analytical
definition allows a quantitative comparison of methods designed for detail detection.
Based on the definition, the utilisation of existing thresholding methods is shown to
be well motivated. Comparison of thresholding methods shows that minimum error
thresholding outperforms other standard methods.

The results are successfully applied to a paper printability and runnability inspection
setup. Missing dots from a repeating raster pattern are detected from Heliotest strips
and small surface defects from IGT picking papers.

Keywords: quality inspection, paper industry, regular patterns, thresholding, auto-
mated optical inspection, Fourier transform, machine vision, image pro-
cessing and analysis, Heliotest,
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SYMBOLS AND ABBREVIATIONS

3D

Qy

3 dimensional

Vector a

Discrete Fourier transform
Inverse discrete Fourier transform
Mask filter

Mean

Unit function

Newton

Normal distribution
Coefficient of determination
Standard deviation

Spatial image

Fourier transformation of £(x,y)



CCD Charge-coupled device, imaging sensor

FFT Fast Fourier Transform

H Multiplicative noise function

h Histogram

1SO International Standardisation Organisation

Lxax*xbx Adams Chromatic Value Space

pdf Probability density function
Pa Pressure in pascals

RH Relative humidity (in air)
RGB Red, Green, Blue colour space
S Surface area

T Threshold

u,v position in Fourier domain
X,y position in spatial domain

VVP Velocity viscosity product
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CHAPTER [

Introduction

The purpose of this thesis is to find methods to perform automatic visual quality in-
spection for two quality inspection tasks in the paper and printing industry. Quality
inspection and monitoring are essential steps when today’s products are sold to the mar-
kets. Consistency in the quality inspection process is crucial in order to guarantee that
different production batches meet the required quality criteria. Often, the inspection is
conducted visually by trained personnel, which means that the results can be subjective
for various reasons such as difference in opinions, tiredness and other physiological or
psychological factors.

Machine vision can overcome some of these human deficiencies: Computers do not get
tired and produce repeatable results under standardised inspection conditions. In the
paper and printing industry, these quality inspection problems are encountered when
paper printing quality is assessed. Paper grade quality is determined by printing a test
pattern on a paper and then various measurements are taken and the test paper inspected
visually by laboratory staff with a magnifying class or a microscope.

1.1 Research questions

The specific problems that are addressed in this thesis are the detection of irregularities
from regular patterns and the detection of small and sparse details from a paper surface.
Such problems are inherent in the Heliotest and picking test. The Heliotest is a standard
method in the paper industry to test the smoothness of printing paper. Smoothness is
related to paper printability. The smoother the paper, the better the ink absorbs onto the
paper, resulting in colourful and detailed prints. The picking test measures the surface
strength of a paper. It gives a rough indication of how fast a given paper can be printed
before the paper surface starts to tear due to friction forces affecting the paper surface
during print head and paper interaction.

11



12 1. Introduction

1.1.1 Detecting irregularities from regular patterns

In the Heliotest, half-tone dots are printed on a strip of paper so that the spacing of the
dots stays the same but the size decreases towards the end of the strip. The dots form a
regular raster pattern on the paper surface. Due to roughness of the paper, ink does not
always absorb to the paper resulting in missing or partially missing dots in the regular
pattern. In the paper and printing industries, paper quality is determined by counting
the distance to the 20th missing dot from the start of the printed regular area [36]. This
is the first main research problem in the thesis; the detection of defects from regular
patterns.

An image processing sub-field which contains many similar characteristics to regular
patterns is texture analysis. In texture analysis, however, the most typical problem is
to distinguish between different types of textures, and thus, the proposed approaches
favour between-texture type classification. Irregularity detection, however, needs within-
texture type of classification. Still, there are many useful texture characteristics and
notations that can be used, e.g., half-tone dots can be considered as texture atoms and
their spacing can be represented as the spatial interrelationships between the atoms [28].
Research related to irregularity detection has been conducted in fabric defect detection
(e.g., [12]), but there the problem setting is too loose for missing dot detection: fabric
defect detection is primarily concerned about the location of a possible error, but in
missing dot detection, it is necessary to find what is wrong in the given location. In
other words, one needs to find both the locations where there are irregularities, and what
kind of irregularities are present, e.g., a partly or completely missing dot or a group of
dots. Specific image processing methods for missing half-tone dot detection have been
proposed, e.g., by Langinmaa [53]|, and Heeschen and Smith [31]. Their methods are
based on template matching or binary level processing. According to the authors of both
methods, their weakness is the difficulty of distinguishing the exact number of missing
dots from areas that contain clusters of missing dots.

1.1.2 Detecting small and sparse details from the background

The second research problem in the thesis is the detection of small and sparse details
from a paper surface as is the case in the picking test. The picking test is performed with
a special printing oil that is printed at accelerating speed on a paper surface. At certain
speed, the paper surface starts to tear due to the increasing force affecting its surface. At
first only some fibres start to lift from the paper and then the paper surface starts to tear
up more visibly. These small surfacing fibres are small defects that need to be detected
from the background. In the imaged samples, the proportion of pixels related to defects
is typically very small, making the grey-level histograms almost unimodal. Additionally,
the grey-level values of both the defects and surface overlap significantly. The spatial
distribution of the defects can be considered random, and thus, general thresholding
methods are applicable.

Binary thresholding is one of the most commonly used and essential operations in digital
image processing, and in many applications thresholding is used at some point of the
algorithm. Even though the operation itself is very simple, the problem of selecting an
optimal threshold value is not trivial at all. For a single image, the optimal value can be
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selected manually, but adaptive thresholding methods exist intended to automatically
estimate the optimal value. Due to its importance, adaptive thresholding has been
studied for a few decades, and a wide variety of different methods have been proposed
(see, e.g., [79]). The extensive work in the past should have resulted in a proper method
existing, for any problem. Since the different methods value different properties, method
selection depends on the characteristics of the problem domain.

This thesis assesses the ability of adaptive thresholding to bring up fine and sparse details.
Most methods perform well when the image foreground and background constitute areas
of sufficiently equal sizes, and the grey level values have substantially non-overlapping
distributions [79]. However, when either or both of the above assumptions are not valid,
major difficulties can be encountered. The problem can be solved by defining the nec-
essary statistical properties in the histogram domain and by analysing the performance
of well-known and well-performing general adaptive thresholding methods and methods
specifically applicable to unimodal histograms. Another approach to solve the problem
could be to use techniques widely used in content based image retrieval where the goal
is to locate images of a same object/scene from different angles. These methods often
rely both on colour information and spatial information of the colour to better separate
different images from each other [34]. The basic underlying idea is that instead of using
only colour information, both colour and spatial information is used to better separate
different images from each other. The same idea could be applied to more clearly sep-
arate small and sparse defects from the background. To include spatial information, a
spot filter that emphasises the small bright spots on samples is used in this work due to
its simplicity and ease of use.

1.2 Contributions

The main contributions of this thesis are methods for detecting irregularities from regular
patterns and the study of methods for detecting small and sparse surface defects. The
methods have been created to fulfil the needs of the paper and printing industry, but
they are not limited these particular fields. The methods for detecting irregularities from
regular patterns are robust and can be applied anywhere where regular data is available.
Evaluation of these methods has proven them to be very accurate and relatively simple to
implement, which should make them very attractive for use in quality inspection tasks.

The work presented in this thesis is a part of the larger Papvision project (http://
www.it.lut.fi/project /papvision) investigating machine vision methods for paper quality
inspection. Several people took part in the Papvision project. This thesis is a monograph,
but some of the results have been published in scientific conferences or other scientific
media (in [77, 20] the author participated in development, was one of main authors and
performed the experiments, in [91, 92, 93, 94] the author developed the methods, wrote
the articles and performed the experiments). The author provided software and helped
build the setup introduced in Chapter 5.

1.3 Structure of the thesis

Chapter 2 gives background information about the research area. It gives an overview of
the methods and procedures used today in paper structure analysis and reviews previous
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research in the area.

Chapter 3 describes the first research problem of the thesis, the detection of missing
atoms from repeating patterns. The chapter describes the problem in detail and then
gives a detailed explanation of the methods that were developed during the course of the
research. After presenting theoretical considerations, the experiments are described and
the results given.

Chapter 4 considers the second problem of the thesis, namely the detection of small
and sparse details. The structure of this chapter follows that of Chapter 3. First the
theoretical background for the problem is introduced and then the methods proposed
and their validity are analysed. The methods are then verified with both artificial and
real data.

Chapter 5 presents the application of the proposed methods to experimental test setup.
The setup specifications are shown and a method to detect the measurement area from
input images is presented. The setup is then used at paper mills to perform the Heliotest
and picking test. The measurements obtained by the system and by industrial experts
are given in appendices IT and III.

In Chapter 6 the weaknesses and strengths of the methods introduced in Chapters 3 and
4 are discussed. The discussion also contemplates other possible applications where these
methods could be used.



CHAPTER 11

Paper quality inspection

Inspecting product quality is common in all industries and the paper and printing indus-
try is no exception. Quality inspection can be performed at many stages of the production
cycle, raw materials, end products and intermediates of a manufacturing process can all
be tested. The aim of quality inspection is to numerically describe the most relevant
properties or features of a product or its intermediate or both. Unfortunately inspection
tests do not always measure the exact features of the product in question, e.g., object
density can be determined by measuring its mass and volume. For inspection to be rel-
evant, the feature measured should correlate well with a property of the product under
consideration.

In industry, inspection can have other functions. It can be used to control process condi-
tions or for quality assurance that the end products are consistent, i.e. their properties
do not vary, and they meet set quality criteria. Inspection can also be used to obtain
additional value for marketing purposes. Selecting the proper test for different situations
requires careful consideration.

Nowadays, more and more tests are done on-line during production. This gives the
benefit of being able to adjust production process right away in order to maintain an
efficient and consistent production cycle. Therefore industry wants to perform as many
tests as possible on-line. Unfortunately, not all tests can be performed on-line due to
a lack of proper sensors or methods, and furthermore some tests require strict control
over the measurement environment, which is rarely possible on-line. For some products
customers may also require varying quality inspections on purchased products.

2.1 Paper quality properties

Paper quality is tested just as any other industrial product. According to [55] the ba-
sic questions to ask when conducting inspections are as follows: What are the process
conditions and the variations that are wanted to be monitored with the testing and

15



16 2. Paper quality inspection

what feature or function of the material should the inspection describe. Answering these
questions can identify the relevant tests and analyses.

Process analysis tries to define the control variables of paper making process that allow
it to run smoothly and produce paper with the necessary properties. The first step
in process analysis is defining critical control variables. A control variable is critical
if changing it positively affects one process or product property and at the same time
negatively affects another. These critical control variables can be listed and their effect
on the whole process identified. In order to improve any paper making process, knowing
how it affects on the individual fibres and the pulp is necessary. Measuring single fibre
properties is useful for this purpose.

Paper is a network formed by bonding of fibres and fibre fragments. The properties of
all the components, including fillers and additives, influence the properties of the paper.
Single fibre properties describe statistical properties of fibres such as their fibre length.
Fibres can be classified by given criteria, e.g., classifying them in to early- and late-
wood fibres [32]. Analysis of pulp fibres is an important area of pulp and paper quality
inspection but is beyond the scope of this thesis.

Product analysis defines the properties that relate to the use of paper. Important fea-
tures, requirements and measures concerning the use of a product are required for prod-
uct analysis. This thesis is mainly related to product analysis since the properties of
the end product are measured, i.e., properties related to the printability and runnability
of the paper. An example of a product analysis measurement is paper runnability. A
paper requires sufficient strength so that it does not tear during the printing process.
Product analysis defines the specific strength property to measure, tensile strength or
tear strength. Table 2.1 describes several tests that are used to describe the functional
requirements of paper products.

Many physical properties describe the paper characteristics. The properties can be
grouped as follows [56], of which the most relevant to the thesis are in bold and in-
troduced in the following subchapters:

-Basic properties

-Strength properties

-Stiffness properties

-Structural properties

-Surface properties

-Absorption properties

-Optical properties
A number of methods exist to measure these properties and it is a large topic in itself.
This thesis concentrates only on tests that measure properties in bold in the list. Other

properties are only briefly introduced. Paper properties discussed below are described in
more detail in [56, 83, 90, 1].
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The aim of inspecting a piece of paper or board is often to obtain information about
the properties of a much larger set than that on which the test is made. Therefore it is
essential to perform the test on a sample that best represents all the produced material.
To be representative, each sample has to have an equal statistical probability to be
included into the sample set. In practice this requirement is difficult to fulfil. Paper is
delivered in large rolls and obtaining a sample from the middle or centre of a roll is not
viable. Therefore samples are obtained from many rolls and using the to most frequently
applied principle, the number of rolls sampled should be relative to the square root of
the total number of rolls in the consignment. described in detail in [44].

From each sampled roll, a few sheets of paper are cut with a minimum size of 300 x 450mm
The sheets are combined into one sample set that is randomised by careful mixing. From
these larger sheets, test pieces can be cut based on the specifications of the different
inspection tests.

The next requirement for paper inspection is the testing environment. Wood fibres are
naturally hygroscopic and thus paper easily absorbs moisture from the ambient atmo-
sphere or releases moisture if the atmosphere is drier than the moisture content of the
paper. The moisture content of the paper affects almost all of its physical properties.
Therefore the preferred conditioning climate is 50 £ 2%RH and 23 £+ 1°C' [41]. Other
alternative allowed in tropical countries is 65% and 27°C. The normal conditioning time
for paper is usually 4 hours which is relatively long since the absorption or desorption
rate of moisture from and to paper is quite fast, it happens in the first minutes after
the paper is moved from one atmosphere to another. Temperature is not as crucial a
parameter, although it has been standardised mainly to keep the relative humidity within
acceptable limits.

The most basic properties of any paper or board include moisture content, basis weight,
thickness, density, and filler content. Paper and board trade is based on weight, therefore
basis weight links the paper weight to its surface area. Thickness and density on the other
hand describe the paper structure.

The moisture content of paper is determined simply by weighting the paper before and
after drying at 105 4 2°C as per [40]. Moisture content is expressed as a percentage of
the weight of the moist sample. Basis weight (grammage) is the weight per unit area of
paper and board, expressed in g/m?. This is determined by weighing a piece of paper
with a known area as described in [42]. Thickness is measured in micro meters (um). It is
measured by using a thickness gauge at a paper sheet or sheets of paper compressed with
a given pressure between two parallel plates. Density then is obtained as a ratio between
the basis weight and thickness of the paper. Filler content is obtained by igniting the
paper sample at 900°C' as per [43] or at 525°C, depending on the filler composition.

Stiffness relates to a material’s elastic properties and measures how much the material
resists when it is deformed by an external load. Paper stiffness is usually measured as
tensile stiffness and bending stiffness. Tensile stiffness is measured by subjecting the
paper to a force parallel to the paper surface, the resulting deformation is elongation.
This measure can be obtained at the same time with the tensile strength test. Bending
stiffness measures the paper’s ability to withstand a bending force when one end of the
paper is tied down and the a force applied to free end. Methods for performing the test
vary, but perhaps the simplest way is to use the paper’s own weight and measure how
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much gravity bends the paper from the horizontal level when one end is supported and
the other hangs freely.

Other things to note about paper measures is the direction of fibres in the paper. Most
machine made papers have the fibres aligned in the machine direction of the paper. This
anisotropy is referred to as fibre orientation or paper directionality. Fibre orientation has
a strong influence on paper properties depending on the direction of the paper. When
results are reported, the direction of the test in relation to the paper should always be
given. Depending on the manufacturing technique, the two sides of the paper can also
be different, therefore if necessary, the properties of both sides of the paper should be
measured. A review of different tests for paper coatings are presented in [96], some of
the tests presented in the paper are also applicable for inspecting plain uncoated papers.
Next the different properties of paper are considered.

2.1.1 Strength properties

Tensile strength can be used to describe the general strength of any material. For paper,
it is the maximum force per unit width that a paper strip can resist before it breaks when
the load is applied parallel to the length of the paper strip. Tensile strength is expressed
in kN/m. The measure is dependant on fibre orientation and therefore the measurement
direction should always be mentioned. Zero-span tensile strength measures the strength
of individual fibres instead of that of the paper. It is a special case of tensile strength
testing.

Bursting strength indicates how much pressure the paper can resist without breaking.
The pressure is applied perpendicular to the paper surface. The unit for bursting strength
is kPa. The bursting strength test is an old test for paper strength and it was developed
empirically.

Internal tearing resistance measures the mean strength required to continue paper tearing
from an initial tear in a single sheet of paper. It is very much dependant on the fibre
orientation and therefore the direction in which the measurement is done should always
be mentioned. The unit for expressing tearing strength is newton (N) or millinewton
(mN).

Folding strength measures the paper’s ability to withstand folding without breaking under
a certain load. The load is constant but is usually much lower than the tensile strength
of the paper. The folding strength is expressed directly as the number of double foldings
the paper can withstand. The test is old and has present day uses when measuring paper
aging, also banknotes are subjected to this test.

The surface strength of a paper tells the paper’s ability to resist forces that pull fibre or
fibre bundles from its surface. Low surface strength may cause linting and runnability
problems in rotogravure printing or even destroy the printing result. Linting is a term
that means slow accumulation of loose material, such us fibres from a paper surface, onto
a printing blanket and inking unit in offset printing. It affects how ink transfers from the
printing plate to the paper and causes loss of details in the print. The picking property
is very similar to linting, the main difference is that in linting the material can be totally
detached from its original location whereas in picking, the material such as fibres are at
least partially bonded with the paper. Dusting is a term used to describe loose colour
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pigments on the paper surface and it is closely related to linting and picking. Surface
strength is usually measured with high viscosity, tacky oils or printing inks. The test
sample is printed with at a continuously increasing speed and the speed at which the
picking starts is measured. The product of the speed and print oil or ink viscosity is the
measure of the surface strength.

The Z-directional strength of a paper measures the paper’s ability to resist tensile loading
in a direction perpendicular to the paper surface. After the Z-directional strength limit
of the paper is reached, the paper structure breaks inside the paper but not at its surface.
Essentially the paper is split into two parts so that the paper surface does not get damaged
on either side. This kind of loading of paper happens often in offset printing and certain
converting operations such as corrugating, folding and plastic coating.

2.1.2 Surface properties

The most important surface properties of paper are surface strength, roughness or smooth-
ness, friction and gloss. Surface strength was described earlier in section 2.1.1. Paper
smoothness or roughness describes paper surface topography. Paper smoothness is ob-
tained by measuring airflow between a paper surface and measuring surface or edge.
Information needed for these measures are pressure difference used to create the airflow,
pressure of the measuring head against the paper surface, and the area of the measuring
head. The volume of air flow per time unit is reported as roughness and the time for a
certain air volume to stream out is called smoothness.

Friction has two main measures, static friction and kinetic friction. Static friction can
be measured by attaching one paper to a surface and another to the bottom of a sled of
known weight. Next the sled is placed on top of the paper attached to the surface and
then the sled can be either pulled with an increasing force or the surface inclined until
the sledge starts to move. Kinetic friction can be obtained by pulling the sled over the
paper on the surface at constant speed and by measuring the average friction force over
a specified length of sliding. More variations to the measures are obtained by changing
paper orientations.

Gloss measures the interaction of light and the paper surface. There are four basic ways
how light can interact with paper and usually they all can happen at the same time.
Figure 2.1 shows what can happen when light hits a paper surface. Gloss measures the
paper’s ability to specularly reflect light. High gloss is desirable in high quality paper
with many images. Paper with high gloss has a wider tone range than that of a matte
surface. The downside of high gloss is that it usually impairs the readability of text and
therefore in textbooks it is a highly undesirable property.

Gloss can be measured in many ways but the paper industry has adopted a 75° specular
gloss method. The angle refers to the angle at which the light is projected onto the paper
surface and the angle at which it is viewed. The angle is given from the perpendicular
to the paper surface. This angle was selected because it had the best correlation with
visually perceived gloss. With gloss it is also important that the gloss is as even as
possible, the higher the gloss the easier it is for a human to detect unevenness of gloss.
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Table 2.1: Examples of tests used for describing the functional requirements of
paper products [55]. Tests that relate to the topic of this thesis are in bold.
Required behaviour of paper | Measurable properties
Sufficient strength Tensile strength

Bursting strength

Tearing strength
Z-directional strength
Suitable structure Density

Air permeance

Correct optical properties Brightness

Opacity

Colour

Suitable surface properties Smoothness or roughness
Surface strength

Sufficient stiffness Bending stiffness

Concora medium test

Crush test

Edge crush test

Sprecular reflection Transmission Scattering Absorption
(gloss) (heat)

Figure 2.1: Light interaction with paper
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2.1.3 Absorption properties

Absorption properties are important. In printing it is important to know how well ink or
printing oil can adhere to a given paper type. Water repellency of a paper can obtained by
measuring how much water it can absorb in a certain time period. This kind of measure
is important for example in the production of tissue papers. Another way to measure
absorption properties is to pull a liquid filled nozzle over the sample at varying speeds.
The liquid in the nozzle can be coloured water or printing oil. During the movement the
liquid fill the cavities of the paper and partially absorbs into the paper sample. At each
speed the amount of colour absorbed is measured and in this way the amount absorbed
can be estimated as a function of time.[83].

For printing papers, the absorbency of paper is often measured with printing tests. A
common test used to measure how well ink absorbs to the paper is the ink stain test
where ink is hand-smeared to a paper and then the ink shape is used to estimate the
paper structure and evenness. A problem with this method is that it does not correlate
well with other laboratory tests or with actual printing processes. The main reason is
that the interaction time between the ink and the paper in ink stain test is much longer
than in actual printing.

Rotogravure printing requires a specific test to measure how well ink absorbs to a pa-
per. The greatest problem with rotogravure printing involves the reproduction of light
and medium tones. Defects that appear are missing dots and waving. Waving defects
are elongated density defects with an area about 1mm? perpendicular to the printing
direction [73]. Missing dots are inevitable at 5% half tone but disastrous when occurring
at 20% to 30% half tones [73]. The number of missing dots is a traditional measure of
rotogravure printability of paper. In laboratories, the Heliotest indicates the number of
missing dots. The test pattern is a 110 mm long and 8 mm wide raster where the tone
changes from dark to light. The size of the printed dots decreases towards the end of the
test pattern [53, 13]. The quality of the paper is defined as the distance from the darker
end of the test strip to the 20th missing dot on the strip. The longer the distance, the
better the printing quality. Fig. 2.2 shows a sample image of a Heliotest strip.

w*i‘ﬁ " Region of interest

| & |
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Figure 2.2: Sample Heliotest strip with the measurement area, i.e. the area
where the missing dots are measured, (110mm x8mm) marked on the image.

2.2 Paper printability and runnability

Some of the properties described in the previous section relate to printability and runnabil-
ity of paper. Printability is a quality potential of paper for a certain printing process.
Good printability means that the paper in question is not very sensitive to different
printing process variables and always produces good print quality. Defining printing
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quality is however not absolute. It is dependant on the final use of the printed prod-
uct. Some, but not all, properties that can be used to measure print quality are print
density, resolution and evenness of the printed image. Printability tests depend on the
printing process involved. Some tests are applicable for general printability inspection
while others are dependant on the printing process. Paper absorption and surface prop-
erties relate closely to paper printability. A review of measures related to paper coating
surfaces, paper structures and printability can be found in [13].

Runnability generally means the maximum speed of a printing machine possible without
encountering any problems. Paper strength and surface properties affect the runnability
of paper. Poor runnability is anything that can reduce printing efficiency, and insufficient
runnability of paper can result in web breaks that suddenly stop production. More subtle
ways of encountering runnability problems are cumulative effects such as linting, dusting,
or piling which require processing to be stopped and maintenance cleaning operations to
be performed. Slow drying times also affect the printing speed. Separating the inspection
of printability and runnability can be difficult since printability problems often originate
from runnability problems and vice versa.

Runnability is an essential problem for all printing papers. Runnability problems between
different printing methods, such as rotogravure, flexographic, offset and even digital
printing generally do not differ very much. Relevant differences appear between web
printing and sheet printing. In web fed presses, good runnability means that the paper
will run through the printing machine at planned speeds without problems and with
few complications such as web breaks, stress variations and flapping. In newsprint, for
example, a frequency of less than 2 web breaks per 100 paper rolls printed is desirable.

Other problems in web printing are cracking and blistering. Cracking is a phenomenon
where central pages come off from a book/newspaper due to breaks at staple points.
This property is generally related to paper humidity, and web offset papers are normally
produced to low humidity to avoid blistering in the drying phase of a printing process.
Unfortunately low humidity paper is brittle and can therefore crack during folding and
stapling.

Blistering is a problem where the paper fibre matrix ruptures and blisters when steam
expands inside a paper during the high temperature drying sequence that completes
the web printing process. The main properties that affect blistering are paper moisture
content, porosity of the paper coating layer, internal strength of the paper, ink coverage
of the paper and drying temperature. Due to very rapid heating from ambient to 100°C-
150°C the moisture in the paper evaporates and tries to escape through the coating layer
of the paper or produces blisters if the vapour pressure exceeds the internal bonding
strength of the paper.

In sheet fed printing, each sheet is printed separately. Therefore measuring runnability is
more oriented to different types of feeding, transportation and delivery problems. Paper
curl, poor stiffness and paper surface properties such as friction and static electricity
influence sheet fed press runnability.

Curling means out-of-plane movement of a paper. Curl can result from different fibre
orientation or fibre bonding on different sides of the paper. Fibre swelling and shrinkage
due to moisture variations can also induce curling.
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Static electricity refers to a paper’s capacity to charge itself and the time required to
discharge itself. Highly charged sheets collect dust easily and easily adhere together
which will cause runnability problems.

Some paper properties affect runnability from a certain time after starting to print.
Such time dependant problems occur basically due to interaction between the paper and
printing ink. Linting, picking and piling are typical time dependent runnability problems.

2.3 Machine vision in quality inspection

When talking about computer vision, the topic can be separated into two main fields,
namely computer vision and machine vision. The distinction between the two is a bit
vague, but roughly it can be said that computer vision’s ultimate goal is to emulate
human vision [23] whereas machine vision is merely interested in using sensors attached
to computers in industrial applications in which robustness and simplicity are the main
virtues. Many quality inspection tasks today have been automated using computer-
and camera-based systems. Earlier the computation power required by machine vision
applications has somewhat deterred its use for industrial purposes. Now all is changing,
as the field of science has matured and methods improved. The computational power
of modern desktop computers has increased quite rapidly, which has made it possible to
use methods that were computationally too complex in the past. interest in

The benefits of automation are quite clear. Cameras do not strain like human eyes do
and the results are almost always repeatable, which is another huge benefit over human-
based quality inspection. Repeatability of inspection is very important when it must be
guaranteed that two batches of a product meet the same quality criterions. Sometimes
it is not viable to do the quality inspection by human visual inspection. Such a case can
be, for example, locating defective solder joints on circuit boards. The number of solder
joints on one chip can be in the thousands and using somebody visually inspecting each
solder point repeatedly is not effective [2].

Typical machine vision systems today consist of a single or multiple CCD cameras and
an ordinary desktop computer (see Fig. 2.3). Typical machine vision applications require
constant lighting conditions so that the obtained images remain constant or in order to
ensure that fast moving objects are sufficiently illuminated for high speed cameras. After
the image acquisition, the image is usually preprocessed in order to enhance contrast or
to remove noise [97]. This can be done with special hardware or by computer. Further
processing then allows more sophisticated image manipulation such as edge detection,
contour tracking, thresholding, feature extraction and object recognition. These features
can then be analysed by specially designed software which can then decide whether or
not the imaged object meets the specifications needed and reacts accordingly by marking
the defective part or by removing it from the production line [97]. The benefits of using
simple off the shelf commercial cameras come from upkeep and maintenance. It is rather
easy and usually cheap and fast to obtain spare parts if they can be found in almost
every electric hardware store [60].

Of course there can be more demanding tasks which can require some kind of robot to
inspect places where it is difficult or dangerous for a human to go. An example of such
an application is water pipes inspection [62] or a nuclear plant where the radiation is a
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problem [60]. It is impossible for a human to fit into a small water pipe, but a specific
robot has been developed for just that kind of task [62]. Naturally not all tasks are as
demanding but can still benefit from computer vision based quality inspection systems.
In fact such systems can be found in many industrial areas. Automatic visual quality
inspection is used, for example, for pulp [9, 11], metal [63], print [95], wood [71], textile
[66] and electronic components [2, 97]. A more thorough overview of recent industrial
machine vision systems and applications can be found in [60] and earlier surveys in
[65, 14].

Section 2.1 introduced measures for paper properties. Next some automated methods
for measuring paper properties are introduced. It is good to keep in mind, though, that
most of the tests mentioned in Section 2.1 are still performed manually by laboratory
experts. Special emphasis on this survey is put on methods that have been used for the
Heliotest (introduced in Section 2.1.3) and picking test (Section 2.1.1) since they are the
main topics of this thesis. A brief overview of some methods that are used for quality
monitoring in steps when wood is processed to paper are introduced in order to give
some understanding of what happens during the paper making process.

2.3.1 Paper making process analysis

Computer vision based systems are used quite widely in the paper industry. Wooden
chips that are used for making the pulp are analysed based on the colour of the chips on
the conveyor [85]. Colour information can reveal how much bark and how much wood
the chip flow contains. All measurements are done online during production. As this is
a commercial product, detailed information about the colour analysis is not available.

The composition of pulp can be analysed using machine vision. The speed at which
the pulp moves on the conveyor and the high resolution required dictates that special
arrangements regarding hardware is required. The hardware consists of several CCD
camera lines that shift their electrical charges from one line to the next one in synchro-
nisation with the inspected product movement. This shift procedure is performed in
such a way that an image of each product line is acquired in several positions and the
single acquired images are added to each other by the camera electronics in order to pro-

Computer
Q I Image processing |
! hardware |
e |
Ilumination Q Camera
\
Process control N\

system ~ - - -

Manufacturing line

Figure 2.3: Typical machine vision based industrial system.
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duce a single line-image that has several times more dynamic range than a conventional
linear camera, therefore allowing impurity detection under the appropriate inspection
requirements [9]. The obtained images are sharp, but their lighting is not homogeneous.
Therefore the images can not be thresholded with uniform threshold to detect impurities
but instead a section of image is chosen from each image. Each of these sections have
more even lighting distribution. To further enhance lighting evenness, the darkest and
brightest images are removed from the block image series. After these images have been
removed, the mean and standard deviation of the remaining images are calculated and
this information in turn is then used for setting appropriate threshold [9]. Impurities in
pulp are then detectable by thresholding. A similar system is proposed in [8], where the
paper making process is imaged on-line using a TDI (Time delay integration) camera.
Neural networks are used to train filters which in turn can be used to detect defects from
the on-line images.

A system for detecting a dry line at the wet end of a paper machine is introduced in [7].
The dry line of paper is the location where water disappears from the surface of the pulp
web in the wet end of a paper machine. In the study in [7] a standard CCD-camera was
used with some special lighting arrangements to image the dry line of the paper web.
From the images a dry line edge profile is extracted and it is compared to basis weight
and moisture data. The edge profile data correlates well with basis weight and therefore
the edge profile information near the wet end of the paper machine can be directly used
to control the paper making process. A comparable method is also proposed in [50]. The
contribution of the authors is the way camera is positioned next to the paper machine,
instead of above it. This placement makes camera maintenance easier and the camera is
not subjected to the moisture and hot air above the paper machine.

Performance and suitability of CCD line cameras for paper web inspection is reviewed
in [52]. In the paper CCD line camera performance is analysed regarding its charge
transfer efficiency which in turn affects the imaging response of the camera. Camera
suitability for use in paper web inspection is studied by detecting streaks in the paper
web at different locations of the camera cell.

The application of Fourier transform for examining the dimensions of a paper web is
introduced in [27]. Ways of obtaining non blurry still images from a fast moving paper
web (up to 20 m/s) are also studied. In their earlier paper [26] Hansson and Manneberg
studied the suitability of Fourier transform for measuring paper dimensions and fibre
orientation on a stationary paper.

In [89] 9 different texture feature extraction methods for characterising paper properties
are compared. The aim of the work was to study the suitability of the different texture
features for classifying papers into different grades. The features were classified based
on unsupervised learning. The data was also visualised by using a self-organising map
(SOM) to map the multidimensional feature vectors into a more easily understandable
2-dimensional map. The authors conclude that best clustering results are obtained by
using a local binary pattern to obtain the texture features. They suggest that a SOM
and feature extraction could be used on-line to characterising paper during paper making
process. Based on the paper characteristics, a paper machine could be adjusted on-line
by using the information provided by the SOM and the extracted features.
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2.3.2 Paper product analysis

In [33] Ho and Smith present a way to measure basis weight, width, and moisture content
online. Labelling this as a machine vision application is somewhat questionable since no
pattern recognition is used nor actual images grabbed from the paper. Instead the paper
machine’s own sensor information is used. First, paper mill personnel set limits for
different properties like basis weight. Then, the system colour codes this information
to a quickly understandable form so that the paper machine operators can have a good
overview of the general quality of the paper they are making. Quantisation noise in the
sensor data is reduced by low-pass filtering.

In [18] Don et al. describe a method which produces a 3D image of a paper. The process
is quite straight forward where the paper is sliced with a special purpose machine called a
microtome. Microtomes are designed to cut uniform slices for microscope imaging. After
slicing, a microscopic image is taken from the paper slice on which the analysis is to be
done. The system is meant to analyse paper coating used on high quality papers. The
purpose of the coating is to fill cavities and covets on the paper’s surface. The distinction
between the paper and the coating is based on colour information. Because there are
different coatings, user intervention in the beginning of the process is required. A user
must loosely mark the coating on the first image so that the colour of the coating can be
known. No spatial information is stored. The decision if an image pixel is coating or not
is based on colour information of the current pixel and also pixels adjoining the current
image. After the whole sample is sliced, a 3D image of the sample can be formed with
the coating and paper segmented separately. Naturally this process is time consuming
and it also destroys the sample.

In [6] Bergman et al. use a rather complex colour segmentation technique to evaluate
ink dots on a printed pattern. First, the printed pattern is imaged with a standard CCD
camera. Then the obtained image is converted from RGB colour space to CIE L*a*b*
colour space. This is done to avoid the distance measurement problems inherent in the
RGB colour space. Namely the metrics in RGB colour space do not represent colour
differences on a uniform scale therefore making it difficult to evaluate the similarity of
different colours based on their distance in RGB space. The segmentation is done in
three steps. First, parameters for rough initial segmentation are obtained using a Fuzzy
Kohonen clustering algorithm. After segmentation the resulting image is eroded using a
binary erosion algorithm. Fine refinement of the segmentation is then performed using
a fuzzy cluster volume algorithm to learn the parameters of the refined clusters. Initial
rough segmentation uses only colour information in order to speed up processing, the
final refining segmentation step uses also the pixel’s spatial information. Rough initial
segmentation information is used to obtain balanced training data for the actual refining
final segmentation. The purpose of the erosion operation is to prevent the initial rough
segmentation from selecting uncertain pixels that are located near the edges where colours
change. After final segmentation the shape of the ink dots can be analysed.

A theory for a colour histogram based printing quality assessment method is presented
in [59]. Initially the illumination of the image has to be normalised since histogram
based methods are quite sensitive to illumination changes [59]. This is done based on
a method proposed in [29]. After illumination normalisation the dimensionality of the
colour histogram is reduced by projecting it into RG, GB and BR colour planes. Next
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the three planes are rotated and summed. In order to further reduce dimensionality a
fourth-order moment is calculated for the summed matrix. Finally eigen-values from
the fourth-order moment are calculated and are used in a supervised three layer neural
network for image classification. The proposed system can detect colour differences of
similar images under different lighting conditions, but cannot detect any spatial changes.

In [48] a thermal imaging camera is used for various paper quality property inspection
tasks. According to the study, camera response does not directly measure, for example,
paper curliness right after it has been printed. Instead the variations in thermal image
correlate well with for instance paper curling after the paper has been heated in the
printing machine.

Two prior methods have been proposed for counting the missing dots in gravure printing.
The first method [31] uses morphology to locate the missing dots. The procedure is quite
straightforward. First the input image is converted to a binary image by thresholding,
after which the median of the dot size is calculated. Next a series of dilations are
performed until the area covered by the swelling dots reaches a predefined threshold.
After the dilation step the image contains mostly missing dots and some noise. Noise is
removed based on the estimated size of an actual dot. The size of the missing dot hole is
estimated statistically from the dilated image. Finally, after noise removal, the missing
dots are estimated based on the size of the hole in the dilated binary image. If multiple
missing dots are next to each other, then the “large” missing dot is divided by the size
of the single missing dot in order to separate the multiple missing dots from each other.
This method works quite well if the missing dots are not grouped but with multiple
missing dots near each other the method struggles to differentiate the actual number of
missing dots in the missing dot cluster [31]. Determining the stopping threshold for the
dilations can also be problematic. Numerous missing dots can mean that dilations are
carried on even when the dots have already merged and and after a while actual missing
dot “holes” get covered with the swelling dot area until the threshold is reached.

Another approach to calculate the number of missing dots in gravure printing was pro-
posed in [53]. First the input image is filtered using a combination of median and
minimum filters.

Yij = med(zlv 22,23, 24)

21 = Min(Tij_v,. s Tij-. ., Tijtuv)

Zo = MIN(Ti—y . Tij-- ) Tituv,j) (2.1)
zg3 = MIN(Tity jov,---sTij - Ticp jtv)

zo = MiIn(Ti—y j—v, - Tij s Tito j+v)

where x;; is the grey level pixel value at location 4, j, v is a constant that defines the
region of interest. Med() denotes median of values in parenthesis and min() denotes
minimum of values in parenthesis. The idea of the median/minimum filter is to alleviate
the strong tendency of a minimum filter to expand dark (dot) area. After pre-processing,
the image is filtered using a matching filter that is designed to find dark areas that are
surrounded with white areas. According to the author, several templates were tested but
the exact design seemed to have little significance provided that it is of the right type
[53]. Template matching is implemented by using convolution filtering. The decision
to accept a response as a missing dot is based on the size of the response. Supervised
learning is used to teach a proper threshold value for the size of the response. Due to the
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large size of Heliotest samples, the samples are imaged in parts and a threshold for each
part is taught separately. The problem with this method is the same as in [31], namely
when the missing dots are clustered next to each other, the template matching fails due
to fact that the missing dot area is larger than originally anticipated.

Article [30] introduces an on-line method for detecting missing dots from printed paper.
An optical method for counting missing dots based on optical Fourier analysis is used.
First the method is analysed and the optical Fourier transforms response is derived ana-
lytically. Optical Fourier transform is obtained by using a special imaging arrangement.
Details about the arrangement can be found from the article. In the analytical analysis of
optical Fourier transform, the authors first derive Fourier transform for a perfect screen
dot pattern with dot-to-dot interval a and dot size b. The object is limited by a circular
aperture with diameter D. This limitation of the field of view makes the comparison of
intensities in the Fourier plane possible. The result of this Fourier transformation is a
Fourier pattern with the same kind of symmetry as the original image. Separation of
peaks in the Fourier plane however is inversely proportional to the corresponding dis-
tances in the original spatial screen dot pattern and the width of the peaks is much
smaller than the diameter b of a screen dot. The main result of this transformation is
a Fourier plane with intense central peak surrounded by regular peaks with decreasing
intensities as they progress further from the central peak.

Next dots are randomly removed from the perfect screen dot pattern and a Fourier
plane equation derived for this imperfect screen dot pattern. The imperfect pattern
Timperfect(€,y) can be considered to consist of perfect pattern rperfect(z,y) and of a
defect rqefect(z,y) as follows

Timperfect(za y) = Tperfect (1'7 y) + Tdefect (xa y) (2-2)

The same was deemed to apply in the Fourier plane. The missing dots in the imperfect
dot pattern add light to the central peak in the Fourier plane and remove light from the
other regular peaks. The important result of this phenomenon is that the regular peaks
in the Fourier plane stay in their place but the light transferred from them due to missing
dots spreads between the peaks. The intensity of the peaks does not necessarily diminish
as the number of missing dot increases, but rather oscillates. Therefore the number of
missing dots can be estimated by measuring intensities between the peaks. In practical
experiments the authors confirm that actual measurements are in good agreement with
their theoretical predictions. The method can calculate the number of missing dots
from an image, but it does not return location information about the missing dots and
therefore is not suitable for the Heliotest.

Some commercial applications [21, 38, 51| for paper quality assessment also exist, [38] for
example uses local binary patterns in analysing paper surface. Unfortunately as these
are commercial products, detailed information about these methods is not available.

2.4 Summary

Quality control via automation is gaining popularity as methods in computer vision get
faster, more refined and more accurate. Applications that were possible but not practical
10-20 years ago are very much applicable today as the computing speed of computers
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has increased and cheaper cameras have appeared. Especially in industry, line cameras
are often used. The cameras are fast and simple image processing tasks can be done at a
camera hardware level therefore reducing the processing power required by the computer
software.

In the paper and printing industry, many tests have not yet been automated, e.g., propo-
sitions how to automate the picking test have not been found during the course of the
project. Some of the tests require special arrangements in which automation is not prac-
tical due the necessary user interaction involved. Some tests on the other hand could
benefit from automation: Results would be more repeatable and the likelihood of human
errors would reduce. Examples of such tests are the picking test and the Heliotest. Both
have definite features that are measured and both are straining for humans to perform
for long periods of time.
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CHAPTER III

Printability evaluation by counting missing dots

This chapter describes automatic inspection methods for rotogravure print inspection.
The inspection is conducted by calculating missing dots from rotogravure printed He-
liotest strips. The Heliotest was introduced in Section 2.1.3. In the Heliotest, dots are
printed on a paper. Some of the dots can be missing since, for various reasons, the
ink is not absorbing on to the paper perfectly. The distance from the beginning of the
printed area to the 20th missing dot on the strip is an inspection property widely used
in industry. Fig. 3.1 shows a detailed part of a strip.

Figure 3.1: Part of a Heliotest strip, dots and some missing dots in the image
are visible.

3.1 The Heliotest printability test

As discussed in Section 2.2, printability describes how well a paper reproduces the original
artwork. The test is performed under standard atmosphere 23.04+1.0 °C and 50 £2% rh.
The test print is performed at 1m/s with a special Heliotest ink. A formal description
of how to perform the Heliotest is introduced in [36] as follows:

1. Starting from the side with the largest dots in the variable screen area count
the missing dots until the 20th one.
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2. Measure the distance in mm from the 20th missing dot to the beginning of the
variable screen area.

3. In the case when the distance is very small (only a few millimetres) count the
total number of missing dots in the four dotted lines on both sides of the variable
half tone.

4. Repeat Steps 1 and 2 or 3 for each test strip.

5. Calculate the average and if required the standard deviation. In some cases it
may be useful to mention the highest and lowest value as well.

6. If needed, assess the printing quality visually in the conventional screen area.

The different screen areas of a Heliotest strip are shown in Fig. 3.2 The half-tone area is
produced by a printing disk that contains the dot pattern carved on the surface of the
disk. The diameter of the carved dots remains the same throughout the disk but the
depth changes in order to produce less intensive half tones. Deeper engraves produce
darker tones and larger dots and shallower engraves produce lighter and smaller dots.
The half-tone print produced by the printing disk is the area from which the 20th missing
dot is measured and is therefore the most important part of the print.

A conventional screen area is used for general visual assessment of the printing quality.
Although it is seldom used since it does not provide much information.

Two lines of dots on both sides of the half-tone area are used if the actual half-tone area
contains too many missing dots right from the start. In that case, the total number of
missing dots is calculated from these lines. This can happen if the paper is very rough.
In practice, this information is very rarely used.

The use of this test as a good measure of printability has been called into question since
the results obtained in laboratory tests with the Heliotest have not necessary correlated
well with actual online printing results [73]. Nevertheless, the measure is important for
the paper and printing industry.

3.2 Overall structure of the automated Heliotest method

This section gives an overview of how the missing atom (in the Heliotest images, missing
dots) detection methods work. The first step when performing missing atom detection is
image acquisition. It will be discussed in section 3.3. After the image has been acquired,
it will be converted to grey level. Instead of using a linear conversion, a method based
on Bayesian-decision making is used, resulting in much better contrast in the grey level
image. The method is described in section 3.4.

The grey level image is then subjected to the 3 methods proposed in section 3.5. The
basic idea behind missing atom detection from images comes from the properties of
Fourier transform. The repeating pattern in the spatial image causes repeating peaks in
the Fourier domain. By utilising this information the faultless repeating pattern of the
original image can be obtained which can then be used to detect missing atoms from
the original faulty image. Finally the proposed methods are tested in the experiments
section 3.6.
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3.3 Image acquisition

The requirements for image acquisition in the Heliotest are rather demanding due to
the high resolution required. The diameter of an individual dot in a Heliotest sample is
around 140 pm which dictates that the resolution of the image should be around 1200
dpi (dots per inch). At that resolution, the individual dots will be around 5-15 pixels
in diameter, depending on which part of the Heliotest strip is acquired. The resolution
level means aliasing is avoided since the dots form the highest frequencies in the Heliotest
images and the dots themselves are not very sharp from the edges due to ink spreading
into the paper.

Image enhancement based on colour information is performed in order to distinguish grey
“dirt”, such as dust, from the red printed dots. In laboratory conditions, a sufficiently
accurate flatbed scanner can be used, but in practice, the samples may be wet with
printing ink and therefore contact is not desirable.

3.4 Converting a colour image into a grey level image

After the half-tone screen area has been located from the input image, it is converted
to a grey level image. Linear grey level conversion, however, introduces poor contrast in
the resulting grey level image. So contrast enhancement is required in order to better
distinguish dots from the background and “dirt”. Ordinary conversion from a RGB image
to a grey level, i.e. summing the individual channels and dividing by 3, introduces poor
contrast in the grey level image between the dots and the background which in turn
means that thresholding in later steps of image processing is difficult. Therefore a more
suitable conversion method for the colour image to the grey level is required. This can
be achieved by doing the colour conversion and contrast enhancement simultaneously,
instead of consecutively. Fig. 3.3 demonstrates the difference between ordinary grey level
conversion and the proposed method. If an image contains any unevenness in lighting,
it should be compensated for before applying contrast stretching or colour image to the
grey level image conversion.

The objective of contrast enhancement is to preprocess the image so that relevant in-
formation can be either seen immediately or processed further more reliably. These
techniques are typically applied when the image itself or the device used for image rep-
resentation provides poor visibility and characteristics of different regions of interest in
the image. The reason for the poor representation can be a high dynamic range of pixel
intensities when displays cannot reproduce them, a narrow dynamic range over the the
regions of interest, or even incompatibility with the human observer. The most important
application areas for contrast enhancement are medical imaging [98] and visualisation of
images with a high dynamic range [70]. The enhancement is usually performed to pro-
duce a better representation for a human observer, but properly enhanced images can
also enable more accurate and more reliable results in general image processing tasks,
such as segmentation, due to an enhanced signal-to-noise-ratio.

A reversible and fast contrast enhancement is often preferred, e.g., in medical imaging.
Therefore, the methods typically exploit histograms. The histogram can be multidimen-
sional, such as a 3-D colour histogram, but most methods assume a 1-D histogram is
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Figure 3.2: Detailed description of Heliotest print.
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Figure 3.3: Example of colour enhancement: a) Original RGB image; b) RGB
image converted to grey level image; ¢) Original RGB image in gray level after

contrast enhancement.
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sufficient, resulting in separate processing of the colour components in the enhancement
process. The baseline method for contrast enhancement is histogram equalisation [25, 35],
but the method does not utilise any information about which regions should be empha-
sised. This “blind” equalisation often leads to a representation where image noise is
amplified, and the properties aiding separability of different image regions decline [98].
The amplification of noise may be avoided to some extent by local processing [98], but an
undesired result is the loss of rank order of image intensities. It seems that estimation of
the background and foreground, either manually or automatically, is necessary for suc-
cessful contrast enhancement. Manual estimation would make the solution trivial, but
automatic estimation still remains a challenging problem. Automatic estimation may
be based solely on the intensity information, or it can include also analysis of spatial
relationships.

Actual contrast enhancement is based on stretching the perceivable dynamic range be-
tween the estimated regions (visual enhancement). In visual enhancement, pseudo colour-
ing [82] or multiple images are used to artificially emphasise the contrast [70]. The use of
multidimensional data is, however, difficult for many image processing techniques, such
as frequency- or scale-space methods. Therefore, multi-representation is generally a good
solution only for visualisation purposes.

In this section, colour conversion and enhancement is presented as a method to project N-
dimensional image data to a 1-dimensional (grey-level) image which possesses a maximal
contrast between the foreground and background. The main reason for the grey-level
image representation is to allow the use of standard image processing techniques, even
though it can also be used for visualisation purposes. In the simplest case, the image
is bi-modal, i.e., there are two regions of interest. In this case, the maximal contrast is
achieved by binarisation. Binarisation, however, does not provide optimal contrast due
to the presence of noise. To achieve better contrast, Bayesian inference and posteriori
values are utilised in the enhancement. Similar approaches have been used, for example,
in thresholding [49] and colour segmentation [72]. The proposed colour conversion and
contrast enhancement is analytically studied with simulated data, and the efficiency is
also demonstrated with real images.

3.4.1 Colour to grey conversion and contrast enhancement

Successful contrast enhancement produces an output image where the dynamic range of
output space values is organised to emphasise the separation between regions of seman-
tically different classes. It should be noted that there exists no definition for optimal
contrast enhancement, but the desired result depends on the application. A similar but
more unambiguous problem is image segmentation in which regions of similar character-
istics (texture, colour, etc.) should be automatically labelled with the same label. For
instance, in colour segmentation it is assumed that different colours belong to different
semantic regions. The input space, typically the RGB or HSI colour space, is mapped to
discrete colour labels, and if the assumption holds, desired regions, such as the human
skin may be revealed [72].

An optimal output space for the contrast enhancement cannot be defined either: some
methods, such as histogram equalisation, work on the grey level histogram domain and
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produce a new representation within the same domain, while other methods produce an
index labelled representation (pseudo colouring) or even multiple images.

The next part to be addressed is a specific mapping problem where an N-channel input
image (e.g., N = 1 for grey-level images, N = 3 for RGB images) is mapped to a 1-D
representation where the maximal contrast is optimised between M different regions of
interest. The mapping of M different regions into a single variable is a distinct problem,
and it will be evident that the posteriori contrast, as it will be defined, provides the
minimum error only as biased by the selected mapping method. How the biased error
relates to the true error is an information theoretic problem dealing with how the region
data should be optimally coded into a single variable. The true error can be achieved
only in the bi-modal case (M = 2). is generalisable to any number of regions M, however.

3.4.2 The bi-modal image model

In the bi-modal image model, there are two different regions of interest, wy and wy, in the
image f(x,y) where f : (x,y) — & The output space values ¥ of the two regions vary
with respect to probability distributions p(Z|wp) and p(Z|wi), and the covered area of
the two regions is defined by a priori probabilities P(wg) and P(w;). Since the maximal
contrast can be achieved only by a representation where no ambiguity exists between the
two regions, the maximal contrast for the bi-modal image model corresponds to a binary
representation, e.g.,

~ {o,iffewo 51)

T — . —
1,if 7 € wy

Symbols 0 and 1 are selected here just for convenience — any other two different symbols
agree with the definition. For a bi-modal image, the optimal contrast enhancement would
produce a representation where the pixels belonging to the region wq are denoted by one
symbol, and the pixels belonging to the region w; by another symbol.

It is clear that the maximal contrast can be obtained by using binary thresholding meth-
ods. However, if the distributions of the two classes overlap, thresholding provides also
the maximal error for a single pixel if a wrong decision has been made. Thresholding
does not generally provide the minimum-error maximal contrast.

For image f : (z,y) — & where for all spatial points (x,y) the minimum error for contrast
is obtained by Bayesian inference if the conditional probability density functions of the
classes, p(Z|0) and (Z|1) and a priories of both regions P(0) and P(1) are known as
follows
. {o, if p(2/0) P(0) = plal1) P(1), (3.2)
L, if p(]0)P(0) < p(z[1)P(1)

The Bayesian rule guarantees minimum error in binarisation, and by following this prin-
ciple Kittler and Illingworth defined a method to select the optimal threshold value
assuming normal distributions for p(#|0) and p(Z|1) [49].

If binary representation is assumed, the Kittler and Illingworth method can in this con-
text be referenced as the minimum-error maximal contrast. It is clear that there exists a
confusion factor in the binary Bayesian decision. For example, when the posteriories of
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both regions are 0.5, the decision favouring 0 would not be the optimal decision. Bina-
risation does not allow utilisation of the confidence information, but if the non-maximal
contrast by the real number space is sufficient, the confidence can be embedded into the
contrast description. For values between [0, 1], the minimum-error decision corresponds
directly to the posteriori values [15] as shown below. Since 0 now represents strong cer-
tainty of the region wy and w; of 1, the posteriori of either region can be selected. In
order to maximise the contrast, the value that minimises the error function

argmin error VI (3.3)
V(&)

where error is the expectation of squared error in thresholding defined as
error(Z) = P(0|7)(V — 0)® + P(1]7)(1 — V)? (3.4)

where V and 1 — V are the posteriori values obtained by Bayesian decision. error is
minimised if V' = P(1|Z). By writing the equation into the form

error(f) = V2 4+ (2P(0|7) — 2)V + 1 — P(0|) (3.5)

and differentiating it regarding V' and setting gradient to 0, the result is the minimum
of the error function.
V =1- P(0|Z) = P(1|%) (3.6)

Therefore for a bi-modal image model, the posteriori values provide the true minimum
error contrast in a mean square sense. Since this applies to all pixels in an image, the
mean squared error (MSE) can be computed as

S5 error(Z)

where >>"1 is the number of pixels in an image. The benefit of this methods is that
Ty
unlike in equation 3.2 instead of thresholding an image into crisp 1 or 0, unclear pixels

get a value between [0, 1].

3.4.3 Estimating probability distributions

Before the presented results can be applied, the distributions and their parameters,
p(Z|lw;) and P(w;), for different regions of interest must be estimated. Only one as-
sumption is made, the assumption by Kittler and Illingworth is generalised and it is
assumed that the probability densities p(Z|w;) are multivariate normal distributions. If
no prior knowledge of the distribution type is available, the multivariate normal distri-
bution provides a good general solution playing a predominant role in many areas of
mathematics [86].

The expectation maximisation (EM) algorithm was applied [69] for the estimation of M
normal distributions in N-dimensional input space.
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3.5 Feature extraction and detecting missing dots

As can be seen from Fig. 3.1, Heliotest samples consist of a regular texture pattern. The
three basic ways to describe texture are statistical, structural and spectral [23]. Statistical
properties analyse the statistical properties of the points that comprise a surface in the
image. Typically these point values are computed from grey level values, although colour
information can also be used. The structural approach characterise texture as being
composed of simple primitives called texels that are arranged on the surface according to
some rule. The rule can be formally defined by some grammar. Spectral approaches are
typically used for periodic 2D patterns in an image. The most commonly used spectral
approach is the Fourier transform. Its properties can be used to describe periodicity of
grey levels of a surface by identifying high energy peaks in the spectrum.

Since the Heliotest clearly presents a regular texture pattern, the most promising meth-
ods for detecting this regularity (and consequently irregularity) come from the spectral
approach. Different spectral domain approaches can be, for example, Fourier transform,
cosine transform and Gabor filters [24]. The methods were compared for applicability to
the Heliotest in [76]. Based on those tests, and prior papers [88, 47] about using Fourier
transform for regular pattern detection, Fourier transform was selected for further study.

In the article [30] the use of optical Fourier transform to detect missing dots from a raster
pattern is proposed. In the article, an analytical model for obtaining Fourier transform
from a raster pattern is derived. The model assumes that an image of an infinite size
raster pattern is obtained through an aperture D millimetres wide. Fig. 3.4 compares
magnitudes (absolute values of Fourier spectra) obtained by the analytical model with
results obtained by applying FFT on an image with the same parameters. The difference
in the images originates from the way they are obtained. The analytical model views an
infinite raster pattern through a round aperture with finite size whereas FFT performs
Fourier transformation on a rectangular image with finite dimensions. As can be seen
from the image profiles in Figs. 3.4(d) and 3.4(e), both methods produce distinct peaks
in the Fourier domain. These peaks define the repeating pattern in the spatial domain.

3.5.1 Pattern regularity

It is worthwhile to define terms dot and pattern in this context. A dot is a particular
type of texture atom; an indivisible atom which can be represented for example by a 2-d
Gaussian function. A pattern is a set of spatial coordinates in which dots are reproduced.
When the pattern expresses some degree of periodicity it can be considered as regular.
Similar definitions and results are used in solid state physics and in definitions of crystal
lattice structures [3].

Regularity is a property which means that some mnemonic instances follow predefined
rules. In the spatial domain, regularity typically means that a pattern consists of a
periodic or approximately periodic structure of smaller pattern units or atoms, and thus,
it is worthwhile exploring pattern regularity in terms of periodical functions and especially
via their Fourier transforms. The following is mainly based on definitions in solid state
physics and is related to Bravais lattice formulations: A Bravais lattice is an infinite
array of discrete points with an arrangement and orientation that appears exactly the
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Figure 3.4: Comparison of Fourier transform obtained analytically and by using
FFT. (a) Rater pattern to which Fourier is applied; (b) Analytically obtained
Fourier magnitude in logarithmic scale; (¢) Numerically obtained Fourier magni-
tude in logarithmic scale; (d) Image profile along the dashed line in Fig. 3.4(b);
(e) Image profile along the dashed line in Fig. 3.4(c)
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same from whichever of the points the array is viewed. A two-dimensional (2-d) Bravais
lattice consists of all points with position vectors R of the form

R = 77,15:1 + n262 (38)

where d; and dy are any two linearly independent vectors, and n; and ny range through
all integer values. The vectors a@; are called primitive vectors and are said to generate or
span the lattice. It should be noted that the vectors @; are not unique. Fig. 3.5 shows a
part of a two-dimensional Bravais lattice [3].

o e ®Pr L
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Figure 3.5: A two-dimensional Bravais lattice of no particular symmetry, an
oblique net. All the net points are linear combinations of two primitive vectors
(e.g. P=a+ 252, and Q = —d + 62)

The definition of a Bravais lattice refers to points, but it can also refer to a set of vectors
which represent another structure. A point as an atom can also be replaced with any,
preferably locally concentrated, structure. A region which includes exactly one lattice
point is called a primitive unit cell and @; now defines the spatial relationship of the unit
cells [3]. Unit cells can also be defined as non-primitive but in both cases they must fill
the space without any overlapping. The primitive and non-primitive unit cells are not
unique.

3.5.2 Fourier transform of 2-d periodic functions

Let us consider a function f(7) (where ¥ = (x,y)) in which the spatial domain is a
periodic extension of a unit cell. Periodicity can be formally described. Let M be a 2 x 2
matrix which is invertible and such that

f (M +7) = f () (3.9)

where m is any 2-dimensional integer vector Now, clearly, every point 7 in the space can
be written uniquely as
=M (i+ ) (3.10)

where 77 is a 2-dimensional integer vector and « is a vector where each coordinate satisfies
0 <w; < 1. A unit cell Y (M) is the region in space corresponding to all points M. It
can be shown that the volume of a unit cell is V' = |det M]|.
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The set of all points £ (M) of the form M7 is called the lattice induced by M. A point in
the space corresponds to a point in the unit cell translated by a lattice vector. Note that
a sum of two lattice vectors is a lattice vector and the periodicity of function f implies
that its value is invariant under translations by multiples of the lattice vector. A matrix
M can be obtained by inverting and transposing M

M=MT, (3.11)

For M a new lattice and unit cell can be associated, called the reciprocal lattice £ (M)

and the reciprocal unit cell (M) respectively. If we consider wave number space, each

vector k is written uniquely as
k=M (FS+ {) (3.12)

where K is a 2-dimensional integer vector and gany real vector whose ordinates 0 < §; < 1.
The reciprocal lattice vectors span the lattice points MK.

The fundamental result is that Fourier transform of a periodic function with a unit cell
specified by M has a discrete spectrum, with peaks located at the reciprocal lattice
points specified by M [3]. That is, the wavenumber vectors are constrained to lie at the
reciprocal lattice points. The explicit transform and inverse transform formulas are

fur (E) = |dT1M| o F@ e ENqy () kel (M) (3.13)

and
F@®= > fu (E) L (3.14)

keL(Nn)

The discrete spectrum can be interpreted as a continuous spectrum consisting of Dirac
impulse functions located at the reciprocal lattice points

f(l%') =3 fu (Mr{) 5 (E— MF{) . (3.15)
REZP

3.5.3 Fourier transform of 2-d approximately periodic functions

In a more general case we can take a 2-d image which is only approximately periodic.
Consider a pattern image whose unit cell and lattice structures are specified by M. If this
image is unbounded in all directions and we can consider a function which is periodic (i.e.,
invariant under translation by a lattice vector), then the superposition of waves whose
wavenumber vectors are necessarily precisely lattice vectors in the reciprocal lattice,
specified by M=M"T,

However, a real image has a finite extent and has imperfections (irregularities). The
ideally periodic function is constrained to satisfy certain boundary conditions. The con-
sequences of this is illustrated by considering a situation where the pattern is comprised
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only of a finite number of translates of the unit cell. Let V denote the finite region
occupied by the pattern, and consider the window function wy (7) defined as

wy (7) 0, otherwise (3.16)

q_{l, Fevy

If f () is the ideal, the truly periodic function (with periodicity specified by M) and
fv (7) is the truncated function

), eV

e =w @@ ={ 10 T @)

then fy () has a continuous spectrum given by
o (F) = 32 o (318 i (5 115) 19
REZ?
where 0y, is Fourier transform of wy.

It can be shown that 0y contains a continuous spectrum which has infinite extent but
which fades out with 1/ ‘E‘

The most important result is that approximatively periodic functions have approxima-
tively discrete spectra, with the spectral energy concentrated at points in the reciprocal
lattice.

3.5.4 Pattern irregularity

In terms of function periodicity, pattern irregularity can be defined as an aperiodic func-
tion e(x,y), with spatial energy | e |<| fy |.

Finally, the initial 2-d pattern image can be represented as

v (7)) = wy (7) f(F) + & (7) (3.19)

and the problem is to separate the regular part wy (7) f () and the irregular part e ()
as accurately as possible.

3.5.5 Extracting the regular pattern information

As was described in the previous section, the formation of the model of the ideal regular
part of an image is crucial for irregularity detection; the more accurate the model that
can be established the more accurate and detailed the detection that can be made.

The details level needed for the regular part formation is particularly high, for example,
in Heliotest images [76], and thus, typical texture segmentation methods (e.g. [28]) or
defect detection methods (e.g. [12]) cannot provide sufficient accuracy. The user must
be able to define the minimum deviation from the single ideal unit cell which is classified
as an irregularity.
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One attractive approach to estimate an ideal regular pattern is to derive an analytical
model and to estimate model parameters based on an input image. This approach has
been proposed, for example, in [12], but requires a precise and very accurate analytical
model, in which case the parameter estimation may become very unstable and slow.
Typically, real images do not correspond to analytical models but contain distortions and
noise. For this reason it is motivated to use the analytical model only as a restricting
bias in the regular pattern formation and allow incompleteness by extracting the regular
pattern from an input image itself. This approach has been applied in frequency domain
self-filtering to emphasise regular patterns [4] and will be the case in the approaches
proposed in this thesis as well. Results from the regular lattices and the reciprocal
lattice are applied, but only to estimate appropriate model parameters, while details are
extracted from an input image. Factors which affect to the selection of this approach
will be discussed next.

3.5.6 Spatial modelling limits of accuracy

Before considering how to extract the ideal regular pattern from an input image, it is
important to explain why all parameters of the analytical model cannot be directly esti-
mated. Analytical models would be the most obvious solutions since they are commonly
used in regular dot pattern synthesis, e.g., in digital half-toning [45], and also used for
defect detection (e.g. [12]). In the context of regular dot patterns the analytical expres-
sion in (3.19) can be used, but the limits of accuracy prevent estimation of the model
parameters directly because of practical restrictions due to the discrete image resolution
which cannot be bypassed. For the same reason, the limited available resolution, a half
tone synthesis is not necessarily reversible.

Fig. 3.6(a) shows a simplified model of a regular dot pattern which can also be used to
describe the pattern in Heliotest assessment [73, 76]. Parameters of the model can be
divided in the following classes:

1. Image geometry parameters, i.e., lattice primitive vectors di, ds (see Fig 3.6(a))
and the overall lattice shift vector §.

2. Unit cell model parameters. In the case of the Heliotest it can, for example, be a
2-d Gaussian hat (see Fig 3.6(b)).

Estimation of all the above-mentioned parameters is necessary in order to generate an
accurate ideal regular pattern model which can be used in irregularity detection by
comparing or subtracting it from the observed image. However, the estimation is not
trivial; it can be performed with search or generic optimisation methods where a target
function to be minimised is, for example, energy difference between the observed image
and the model. Unfortunately the number of parameters to be optimised is very high
and they cannot be independently optimised.

The first step in the pattern modelling is estimation of the lattice parameters (a1, a3)
representing periodicity (lattice matrix M). These parameters can be derived using a
number of techniques: using image autocorrelation space, image texture statistics (grey-
level statistics), LBP (local binary pattern [64]), fixed window features, etc. Problems
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Figure 3.6: Simple model of a regular dot pattern (Heliotest): (a) 2-d lattice
structure (a1, a3 - primitive vectors); (b) Gaussian dot model (u, X, A).

may arise, during periodicity estimation such as incorrect period estimation (convergence
to harmonics nM instead of M). A solution for the periodicity ambiguity is a correct
initial period guess. For example, in the Heliotest proper, limits of the search domain for
vectors aj, as must be defined. This approach depends on the input image and further
generalisation seems to meet with low success.

It is also possible to estimate the parameters using statistical tools: the mean lattice ma-
trix M), and lattice matrix deviation My. The question arises, whether the mean lattice
matrix can be used as a model of the ideal lattice. Practical experiments, unfortunately,
showed that it cannot; the observed lattice from an input image is typically not regular
enough and therefore it should be modelled rather as a real world stochastic process.
Also, as the input images are large, over 1500 pixels in length, even a slight parameter
estimation error can divert the estimated lattice points way off near the edges of the
image, even when they are correct at the beginning of the image. The only possible way
of using this modelling approach would be a local refining where each lattice grid point
is adjusted to a corresponding unit cell in the observed image. This in turn would cause
additional computational expenses which would prevent an efficient implementation of
the method. Furthermore, it should be noted that additional model parameters introduce
more uncertainty and more adjustment is then required.

It is evident that it is easy to construct a mathematical model to synthesise regular
dot patterns, but this process is often irreversible in practice due to the limited acquisi-
tion resolution and exhaustive computation needed in the parameter estimation. With
the help of application specific heuristics, a combination of direct estimations and op-
timisation may still succeed, but whether it is accurate and computationally feasible is
questionable. Thus a more general, re-useable, and sufficiently accurate approximation
technique is needed.
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3.5.7 Exploiting Fourier domain

Let us now consider real images which represent regular dot patterns. Such images
are produced by the Heliotest assessment as shown on the left-hand-side of Fig. 3.7.
Next consider Fourier spectra of the given image, i.e., the magnitude spectra. On the
right-hand-side of Fig. 3.7 it is possible to see the distinctive frequency peaks located
at the reciprocal lattice points in Eq. 3.13. Since no special window function is used to
preprocess the original input image, and due to the fact that the images are discrete,
the frequency peaks can leak energy to adjacent frequencies, mostly perpendicular to
the running directions of the spatial patterns. This happens when the pattern does not
continue flawlessly on image edges. This energy leakage gives the peaks a “star like”
shape, visible on the right-hand-side of Fig. 3.7. The leak direction depends on the
amplitude difference on the image edges when they are wrapped around. By windowing
the input image with, e.g., the Hamming window function, this energy leakage would
diminish, but the peaks would also blur, making it more difficult to detect the repeating
peak locations accurately. However, if the number of individual image atoms that form
the regular pattern in the spatial domain is small, then a proper windowing could be
applied to better distinguish separate peaks from Fourier spectra.

) R, .

Figure 3.7: Example of regular dot pattern image (Heliotest) and its Fourier
spectra magnitude.

Tt is clear that by filtering out all the other frequencies except the reciprocal lattice
frequencies it is possible to estimate the faultless periodic component, the ideal regular
pattern, of the input image and by utilising this component also the defect component,
the irregular part. These two parts are now called as the regular and irregular parts of
the image and demonstrated in Fig. 3.8. It should be noted that effects of image borders
in Fig. 3.8 appear since the borders are discontinuity points. Separation of the parts can
be formulated as

(a,y) =T H{E(u,0)} =
— 5 M, v)Z(u,v) + ( (u, ) — M(u, v))E(u,v)} =
= F HM(u,v)2(u,0)} + F~ 1{(1( v) — M(u,v))=E(u, v)} (3.20)

regular part irregular part

u,v
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where £(z,y) is the spatial image, =(u,v) is the Fourier domain image, § and §~! are
forward and inverse discrete Fourier transforms, 9% (u,v) is a mask filter (real valued
function of the same definition domain as Z(u,v)), and I(z,y) is a unit function. The
decomposition in Eq. 3.20 is possible because Fourier transform and its inverse are linear
operators. The mask filter can be of any type suitable for a particular application, i.e.,
accept/reject (binary), notch filter, etc. The only condition for the mask is that it should
include the periodic component while removing other frequencies, i.e., it should have
band-pass on frequencies near the reciprocal peak points.

The effect of white (Gaussian) noise in a spatial image does not have a harmful effect
on the Fourier image, the energy of the noise will spread evenly on all frequency bands,
leaving the repeating peaks still clearly visible, provided that the noise amplitude is not
strong enough to mask the repeating peaks. Random noise in an image has a random
pattern in the Fourier domain and is application dependant. If it is a problem, should
dealt with in the preprocessing steps. Patterned noise in a spatial image, however, has
distinct peaks in Fourier domain, and should be dealt in preprocessing if the noise is a
problem.

Figure 3.8: Examples of regular and irregular image parts (Heliotest).

3.5.8 Spatial domain vs. Frequency domain

Many image processing techniques work well directly in the spatial domain. However,
with repetitive patterns, the choice of frequency domain is obvious. Using the FFT
algorithm, forward and inverse Fourier transforms can be made efficiently and fast. 2-d
periodicity in the spatial domain is given by a lattice matrix M and a 2-d periodic function
in the frequency domain has discrete spectra located at the reciprocal lattice M ~7 points.
For an N x N image the FFT transform is also NV x N with discrete frequencies ranging
from 0 to (N —1)/N (wave numbers 0,..., N — 1). If the input image pattern contains
a large number of unit cell translations, the frequency picture will be sparse, having a
small number of lattice points in it. Consequently, rough estimation of lattice matrix M
through a reciprocal matrix M7 is easier.

Inspecting small details, such as the shape of a single unit cell, is a difficult task in the
Fourier domain, and inverse transform back to the spatial domain is needed in detailed
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analysis. These issues will be discussed in the next section in the description of the
proposed algorithms.

Aliasing can happen during image acquisition if the repeating details are not imaged
with sufficient detail. This problem occurs if the sampling frequency is lower than the
Nyquist sampling rate. Once again this is an application specific problem and if needed,
proper anti-aliasing methods should be applied. After an image has been obtained, no
further aliasing problems can occur. Because the images are finite, they are band limited
in nature and therefore Fourier transformation can not produce higher frequencies than
already apparent in the image.

3.5.9 Method 1: Fourier domain regularity detection and global grey-level
processing in the spatial domain

This method (referred to as Method 1) is based on the fact that the periodic regular
structure provides intensity peaks in the Fourier domain, as demonstrated for the periodic
function f and its reciprocal counterpart f in Egs. 3.9 and 3.15 and shown in Fig. 3.7.
If the mask 97 can be automatically generated by utilising locations of the peaks in
the frequency domain, regular and irregular parts of an image can be extracted using
Eq. 3.20. It is possible to find irregularities from an irregular image by global processing,
i.e., by thresholding a grey-level irregular image and then processing the binary areas
(see the right-hand-side in Fig. 3.8). The following stages are needed:

1. Image preprocessing to eliminate illumination changes and acquisition noise.

2. Extracting the irregular component by forming the mask based on the peak fre-
quencies.

3. Global processing of the irregular image part.

Irregular component extraction

A general approach for irregular component extraction was established by introducing
the theory of reciprocal lattices of periodic patterns in Section 3.5.1 and by the separation
principle in Section 3.5.7. The extraction is described in Algorithm 1.

Algorithm 1 Irregular image extraction
1: Compute magnitude of Fourier transform |Z| of an input image &.
2: Form the reciprocal lattice vectors using locations of magnitude peaks.
3: Create the mask 9 by setting Gaussian band-pass filters to reciprocal lattice points.
4: Extract the irreqular component from & using the mask 9 and the inverse Fourier
transform as per 3.20.

The first and last steps are clear enough, but the other two need more detailed descrip-
tion. The second step actually introduces the problem corresponding to the topic of this
chapter: detection of regularity in regular dot patterns. The reciprocal lattice is defined
by the primitive vectors, which can be estimated within a sub-pixel accuracy using the
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peak locations, but the estimation may be sensitive to the initial guess. The estima-
tion ambiguity occurs due to harmonic components, although it can be prevented by
using a sufficiently accurate initial guess. Another ad hoc solution would be to locate all
frequency peaks, but since the frequency plane is discrete, the harmonic set estimation
based on lower frequencies is not accurate and the peaks need to be adjusted to actual
local maxima. This adjustment is performed by looking for a local maximum in a certain
neighbourhood. This neighbourhood can be defined as a rectangular area with the first
approximation point in the centre and should contain only one local maximum from the
harmonics set. It should be noted that estimation to sub-pixel accuracy is not needed
since the regular pattern is finally extracted from the original image.

Filter mask generation is based on the reciprocal lattice and a band-pass filter suitable
for an application. Without any prior information, the Gaussian succeeds as the general
form. The width of the Gaussian can be estimated from the local peaks but again due
to the use of the original signal in the regularity extraction, a fixed width can be safely
used for efficiency. Two image components are derived from the observed image, one
containing the regular image part and the other containing the irregular part. It should
be noted that the algorithm tolerates arbitrary rotations and scalings.

Processing the irregular image

The irregular image produced by Algorithm 1 must be further processed to locate which
irregularities are significant for the detection. The irregular image may still contain
noise, which can be removed using standard noise removal methods, and following noise
removal, processing of the irregular image can be defined according to Algorithm 2.

Algorithm 2 Detecting irregularities from irregular image

1: Threshold the irreqular image &; using the threshold limit T .
2: Locate foreground areas of a size greater than S.

3: Compute centres of each foreground areas.

4: Return centres as irreqularity coordinates.

There are various methods which can be used to perform the binary processing tasks in
Steps 2 and 3, e.g., areas of size less than S can be removed using the binary opening
procedure [23]. Algorithm 2 requires two parameters to be defined: a threshold value T
and the minimum area S. T can be obtained for example as:

T = mean(&r) + n std(&r) (3.21)

where the mean is used to calculate the mean of the irregular image &; grey level values
and std to calculate standard deviation of irregular image grey level values. The grey
level histogram of &; is assumed to follow Gaussian distribution and therefore parameter
n defines the confidence interval inside which pixels are determined to belong to the
background, i.e., they are not considered as missing dots. The regular image can be
used as a training set to obtain good values for the minimum area S. By thresholding
the regular image £i using for example Otsu’s [68] standard method, the dots can be
segmented and then their average or median size calculated and used to define parameter
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S. A constant value for S can be used if the individual dots in the image are roughly the
same size. For the Heliotest this can be achieved by analysing the image in parts which
contain roughly equal sized dots.

3.5.10 Method 2: Fourier domain self-filtering

Method 2 is based on frequency domain self-filtering [4]. In this approach, the frequency
image itself defines the filter. If Z(u,v) is the Fourier transform of an image £(z,y), the
filter M5 (u,v) is the magnitude of the frequency image, i.e.,

M (u,v) = |Z(u,v)| (3.22)

Depending on the frequency content of the original data, it might be appropriate to
emphasise the high frequencies by applying

M3 (u,v) = Vu? + v2|=(u,v)]| (3.23)

To enhance the relatively smaller peaks at higher frequencies, the following filter can be
used.

My (u,v) = log(1 + vVu? + v3|=(u,v)|) (3.24)
It equalises the relative differences between high peaks at lower frequencies and smaller
peaks at higher frequencies and therefore makes the resulting regular image sharper.

After the given image is filtered in the frequency domain, the regular and irregular image
parts can be converted to the spatial domain by using the inverse Fourier transform.
Thus the regular image part contains the repeating pattern and the irregular image part
contains nothing but the irregularities and some noise. Once the regular and irregular
image parts have been separated, Method 2 proceeds exactly like Method 1: the irregular
image is thresholded, and binary areas larger than S are considered as missing dots.

It should be noted, however, that the method can suffer if proper windowing is not used.
With the rectangular window used in the work, the repeating peaks in the Fourier domain
leak energy to nearby frequencies and can thereby mask the irregular (missing dots)
information that is located between the regular peaks. The most important property
of the method is that it emphasises a pattern that is dominating in an image. For the
Heliotest this is desirable since the most dominant repeating pattern in a Heliotest image
is the ink dot pattern. With a sufficient number of repeating atoms of an input image,
the method performs well enough despite the energy leakage. Because the reciprocal
peaks are much stronger than the background, the method attenuates the reciprocal
peak locations more than their surroundings and therefore emphasises the repeating
pattern in the spatial domain.

3.5.11 Method 3: Fourier domain regularity detection and local grey-level
processing in the spatial domain

This approach (referred to as Method 3) can be divided into the following steps:

1. Regular spatial lattice points estimation.

2. Local classification at spatial lattice points.
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Spatial lattice estimation

Spatial lattice estimation corresponds to the estimation of irregularities in the regular
part, and thus, Algorithms 1 and 2 can also be used to find centroids of the unit cells.
The only difference is that the regular image part is used instead of the irregular one.
When all the centroids of the regular image part have been located, the original image
can be processed and analysed at each unit cell location.

Local classification at spatial lattice points

The locations of the unit cells can be extracted using the regular image and next the
decision whether it is regular or irregular, not missing or missing can be made at the each
location (see Fig. 3.9). First, some kind of feature extraction is needed, e.g., simply the
vector of all grey-level values. After feature extraction, the features are classified using
a classifier. There are a vast number of applicable methods available and for vectors of
grey-level values a principal component subspace classifier was used [67]. The principle
of the classifier is simple. The feature vectors are projected into a subspace so that
the subspace basis vectors are orthonormal. The training features are treated the same
way. Classification is performed by calculating the distance between subspace data of the
features with respect to the training data subspaces. It should be noted that a separate
training set is needed in this approach, but the local processing approach can also provide
detailed information about the type of missing dots.

Figure 3.9: Examples of dots in Heliotest images: (a)-(c) Regular dots; (d)
Regular dot expectation; (e)-(g) Missing dots; (h) Missing dot expectation (note
that not completely missing).
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3.6 Experiments

In the experiments the image enhancement method introduced in Section 3.4 was evalu-
ated and the three proposed methods for detecting irregularities were tested.

3.6.1 Colour image conversion to grey level

To demonstrate the method both quantitatively and visually, RGB colour space was
selected as the image output value . An image is generated by placing two random
points into the 3-D RGB space, assigning every image pixel to one of the points with
respect to fixed a priori values P(0) and P(1), and applying colour space noise based on
fixed normal distributions p(#]0) and p(Z|1) to the pixels. To test the effect of distance
and variance of points in colour space, the points can be repeatedly generated from
uniform distribution with varying distance and variance parameters.

Two images with different parameter values are shown in Fig. 3.10. It should be noted
that the covariance is a diagonal with fixed variance in all dimensions.
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Figure 3.10: Generated bi-modal image data in the spatial domain (left),
generated points in RGB space (middle), and EM-estimated distributions
(right); (a),(b),(c) P(0) = 0.5, P(1) = 0.5, pno = [85,134,191]/256, 1 =
[174,52,126]/256, oo = 20/256, o1 = 20/256; (d),(e),(f) P(0) = 0.2, P(1) = 0.8,
o = [192,87,111]/256,u1 = [159,172,126]/256, oo = 20/256, o1 = 20/256.
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The most popular general method to convert RGB data to a single variable image
(grey-level image) is the standard RGB-to-grey transformation, obtained by (I(,,) =
Riz.y) + G(z,y) + Bzy))/3, and one of the most successful maximum contrast (thresh-
olding) methods is the minimum-error thresholding [49]. To compare the proposed
minimum-error contrast enhancement, where the calculated posteriori values are directly
used as the grey level image, the MSE behaviour of these methods was studied for the
generated data. The results are demonstrated in Fig. 3.11. The MSE is calculated with
respect to the perfect maximal contrast image (binary).

MSE between maximum contrast image and MSE between maximum contrast image and
1 T 1
RGB + enchancement RGB + enchancement
0.9 - - - . RGB2gray 0.9- - - - - RGB2gray
08h RGB2gray + enhancement 08} RGB2gray + enhancement
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Figure 3.11: MSE of different contrast enhancement methods: (a) As function
of cluster distance \/(po — p1)? (P(0) = P(1) = 0.5, 09 = 01 = 20/256); (b) As
functions of cluster variance (+/(po — p1)? = 100, P(0) = P(1) = 0.5).

The different methods shown in the figures are as follows: RGB+enhancement means
that the proposed colour image conversion method is applied to the RGB colour im-
age, RGB2gray is linear RGB to grey conversion, RGB2gray + enhancement shows the
proposed colour image conversion method applied to the grey level image obtained by
the linear RGB to grey conversion. RGB2gray + min.err.th. shows the results when
minimume-error thresholding [49] is applied to the grey level image obtained by the linear
RGB to grey conversion. Based on the results shown in Fig. 3.11, the behaviour of the
different methods is as expected. The standard RGB-to-grey conversion provides the
weakest contrast. The minimum-error thresholding method provides sufficiently good
contrast if the overlap of clusters is not significant. Best contrast representation is ob-
tained by using the proposed contrast enhancement method. It should be noted that
utilising the colour information provides the most accurate results, since it uses all the
colour information available. Other simpler methods can falsely classify noisy background
pixels (e.g. dirt/dust in real Heliotest images) to the foreground and vice versa. The
results are shown in Figs. 3.12 and 3.13. The only difference between the images is the
location of the cluster centres, the cluster distance /(uo — 1) = 100 and noise variance
o9 = 01 = 15/256 are equal.

The actual contrast enhancement method was applied to Heliotest data. To increase
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(d) (e) ®)

Figure 3.12: Examples of contrast enhancement images: (a) Original RGB
image; (b) Maximal contrast image; (¢) RGB to grey converted image
(MSE—=0.4726); (d) Minimum-error thresholding applied to the intensity image
(MSE=0.5); (e) Posteriori contrast enhancement applied to the intensity image
(MSE=0.2628); (f) Posteriori contrast enhancement applied to the RGB image
(MSE=0.0072).
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(d) (e) ®)

Figure 3.13: Examples of contrast enhancement images: (a) Original RGB
image; (b) Maximal contrast image; (¢) RGB to grey converted image
(MSE—=0.4383); (d) Minimum-error thresholding applied to the intensity image
(MSE—0.0308); (e) Posteriori contrast enhancement applied to the intensity im-
age (MSE=0.0466); (f) Posteriori contrast enhancement applied to the RGB image
(MSE=0.0006).
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the successful detection rate, the image contrast can be enhanced to magnify the sepa-
rability of printed dots from the background. In Fig. 3.14, the performance of contrast
enhancement has been demonstrated. The effect on thresholding can be seen in Fig. 3.15,
in which an image is converted to grey level linearly by summing the individual colour
channels and dividing by 3. The original colour image is also converted to grey level
using the proposed method. After both images are in gray level, Method 2 is applied to
both images. Both grey level images were normalised to have values between 0 and 1
in order to make the thresholding comparable. Both images in Figs. 3.15(c) and 3.15(f)
were thresholded by using same threshold determined by visual evaluation of the thresh-
olding result, the resulting thresholded images can be seen in Figs. 3.15(d) 3.15(g). As
can be seen, the missing dot is much more visible in Fig. 3.15(g) with less noise than
in Fig. 3.15(d). If the threshold in Fig. 3.15(d) is lowered, the missing dot area in the
image becomes larger, but the noisy dots also become more numerous and larger.
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Figure 3.14: Partial Heliotest images: (a),(d) Original colour image; (b),(e)
Intensity image; (c),(f) Posteriori contrast enhanced image.

3.6.2 Experiments for irregularity detection
Heliotest images

In the experiments, the three methods were compared by studying their accuracy and
computational efficiency. All methods were implemented using Matlab. The dataset
consisted of 101 Heliotest images scanned from Heliotest samples (for an example, see
Fig. 3.16). The regular pattern in each image was a printed raster pattern which consisted
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Figure 3.15: (a) Original image; (b) Gray level image; (c) Irregular image of
gray level image; (d) Thresholded irregular gray level image; (e) Proposed colour
conversion applied to original image; (f) Irregular image; (g) Thresholded irregular
image.



58 3. Printability evaluation by counting missing dots

of unit atoms with a Gaussian shape and a size of 6-10 pixels in diameter. The accuracy of
each method was determined using the measure used in the paper and printing industry:
the distance from the beginning of the raster pattern to the 20th missing dot in the raster
pattern. This distance gives information about the printability of the tested paper type.
Ground truth data was obtained by visually inspecting the images and by marking the
irregularities, i.e., missing dot locations. Onuly the first 20 missing dots were marked,
each sample could contain a lot more missing dots, but the paper and printing industry
is only interested in the first 20. The results are reported for the proposed methods;
global processing of the irregular image (Method 1), self-filtering (Method 2), and local
processing of the original image (Method 3).

Region of interest

[ee——
e ——

(a) (b)

Figure 3.16: Test sample: (a) The measurement area is marked on the image as
a rectangle; (b) Small part of the measurement area enlarged.

The number of detected missing dots and false alarms as a function of the radius from the
ground truth missing dots are shown in Fig. 3.17 for all methods. The graph indicates how
accurately the different methods are able to detect the missing dots. It can be seen that
local processing (Method 3) more accurately detected missing dots and gave fewer false
alarms. Methods 1 and 2 find all the missing dots, but on average (acceptance radius—4
pixels) they detect 2 more falsely detected missing points than Method 3. Method 3 may
fail to detect one actually missing dot but it detects fewer false positives than Methods
1 and 2. The results are demonstrated in pixels and the mean shortest distance between
two dots was 7.1 pixels (graphs in Fig. 3.17 stop at 4.0 pixels).

The accuracies of all methods compared to the ground truth distance to the 20th missing
dot are shown in Fig. 3.18. Each method was separately used to count the missing dots
from the beginning of each strip and each of them returned the distance estimation
to the location of the 20th automatically detected missing dot from the start of the
print area. In this performance measure, individual false positives and false negatives
contributed only to the final error. Using this industrial error measure, all methods
performed almost equally well. For 95% of the test samples, the error remains under 8.0
mm. The typical distance to the 20th missing dot varies between different paper grades;
with good quality paper the distance is around 80 mm. The average execution times on
a laptop PC (Pentium 4, 3200MHz, 512 Mb) for the methods were as follows: Method
1-7.76 s, Method 2 - 6.66 s and Method 3 - 49.9 s. The difference in execution times
between Method 1 and Method 2 comes from the time needed to process the peaks in the
frequency domain. It takes 0.43 s on average to detect and mask the frequency domain
peaks with Method 1, whereas with Method 2, utilising frequency domain self-filtering,
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the same task requires 0.15 s on average. The methods perform equally well for this
industrial measurement. The advantage of Method 3 over the other methods comes from
its ability to classify, if such functionality is later needed, the types of missing dots that
are detected at the same time when the missing dots are detected.

Examples of the detected missing dots (Method 2) are shown in Fig. 3.19. Figs. 3.19(c)
and 3.19(d) show examples where the method seems to be over-sensitive to detecting
only partly missing dots as missing dots; however in some cases those points were also
considered as missing dots by an expert.

Artificial images

In the second part of the experiments, artificial images were generated to act as controlled
inputs to the methods (see Fig. 3.20). The images were prepared based on acquired
Heliotest samples, and they consisted of a black background and white Gaussian-shaped
peaks with regular intervals between the peaks. To model the uneven background (paper)
and imaging process, each image was degraded by adding Gaussian noise with zero mean
and normalised variance of 0.001. To model the missing portions of print, each image
was further degraded with multiplicative speckle noise. The whole process of image
generation can be formulated as follows:

f(xvy) = H[&ideal(xvy) + 77(%3/)] (325)

where £(z,y) is the generated image, &;4eq is the artificial image with the regular pattern,
7 is the Gaussian noise image, H represents the multiplicative noise function utilising a
uniformly distributed random variable with zero mean and varying variance. Mean square
errors were computed between the images obtained by Methods 1 and 2 and the original
artificial images that contained neither Gaussian nor speckle noise. Irregular images
obtained by Methods 1 and 2 were compared to the image which contained only noise.
This image was obtained by subtracting the original image with the regular pattern from
the generated image. The results of this experiment are shown in Fig. 3.21. To further
elaborate the differences of the approaches, Methods 1 and 2 were used to separate two
different frequencies from each other. The original image is shown in Fig. 3.22(a), and
the resulting regular and irregular images using both methods are shown in Figs. 3.22(b)-
3.22(e).

Near regular images

The previous experiments on Heliotest images quantitatively evaluated the accuracy of
the methods. To demonstrate generality, the proposed methods were also applied to
free form regular textures. Images from the CMU NRT near-regular texture database
(http://graphics.cs.cmu.edu/data/texturedb/gallery/) were used. Method 2 was
applied to several images using the common threshold 7 = 240. Examples of irregularity
detection from near-irregular textures with artificially imposed irregularities are shown
in Fig. 3.23.

It is clear that while the Heliotest assessment appears a straightforward application of
the proposed methods and acted as the original reason for the research, the methods also
provide a more general approach to irregularity detection from regular and near-regular
textures.
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Figure 3.17: Detection accuracies as functions of radius from the ground truth
locations: (a) Correct positives, the faster graph reaches 20, the better the method;
(b) False positives. The faster the graph drops from 20 to 0, the better the method.
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Figure 3.19: Examples of detected missing dots: (a),(b) dot completely missing
(correct positive); (c),(d) dot partly missing (false positive); (e) a group of missing
dots (correct positives).

3.6.3 Discussion

All the presented methods are suitable for detecting irregularities in a regular pattern.
Methods 1 and 2 are accurate in detecting missing dots from a pattern, but they cannot
match the accuracy of Method 3. This is because Method 3 uses a classifier at each unit
cell location to determine whether there is a missing dot or not. The disadvantage of
Method 3 is that it requires more computing time. By using controlled input images, it
is possible to demonstrate that frequency masks designed for each specific image types
(Method 1) provide lower error levels when the results of frequency separation are com-
pared to the ideal regular pattern. Depending on the application, this can be important
in the classification of defects if the original image data is not used for this purpose.

Although Methods 1 and 2 are almost identical in nature, Method 1 has advantages
over Method 2. Method 1 utilises prior knowledge of the Fourier peaks, and thus, can
detect several underlying regular patterns from a given image. For example, if the image
has two repeating patterns that have different frequencies, Method 1 can be used to
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Figure 3.20: An example of an artificial image with highest level of speckle noise.
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Figure 3.21: Mean square errors of regular images from Methods 1 and 2 for a
set of artificial images with different levels of noise. Errors between the irregular
images were identical to the presented ones.
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(b) (c) (d) (e)

Figure 3.22: Two independent patterns appearing at different intervals. (a)
Original image; (b-c) Separation of the regular (b) and irregular (c) part with
Method 1; (d-e) Separation of the parts with Method 2. [(d) regular, (e) irregular].
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Figure 3.23: Near-regular textures from CMU NRT database; (a),(f),(k) Original
image; (b),(g),(1) Artificially generated irregularity; (c),(h),(m) Regular image;
(d),(1),(n) Irregular image; (e),(j),(0) Thresholded irregular image.
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extract either one of the underlying patterns. Another advantage of Methods 1 and 3
is that they do not suffer from energy leakage as much as Method 2 since Methods 1
and 3 only select the repeating peaks from the Fourier plane and use them to build the
regular image. Method 2, utilising frequency domain self-filtering, is unable to extract
two different repeating patterns, but instead locates both patterns. This can be seen
in Fig. 3.22. The advantage of Method 2, on the other hand, is that it needs no prior
knowledge of the spatial properties of the repeating pattern as Methods 1 and 3 do.

From a practical point of view, Method 2 is good for general needs. It is accurate and
its computational efficiency is very good. It does not need any training data and can
perform the missing dot detection well since there is only a single repeating raster pattern
in the Heliotest images. Methods 1 and 3 require parameters for detecting the peaks in
the frequency domain, but Method 2 does not.

The key difference between the methods proposed in this thesis and methods found in
literature [53, 31, 47] is the use of frequency information for detecting missing dots.
The methods found in literature use only spatial information. Therefore the proposed
methods have one major advantage over the other methods suggested in literature [53,
31, 47], namely the ability to detect individual missing dots clustered closely together.
The other methods fail in this respect. They can detect if there are missing dots in an
area, but if there are many missing dots next to each other, then the other methods are
prone to fail. On the other hand, if it can be certain that the image to be analysed does
not contain clusters of missing image atoms, then the methods proposed by [53, 31, 47]
can work well and efficiently. Another benefit of these methods is that they work equally
efficiently on image edges. The methods proposed in this paper can fail to detect missing
dots near image edges because they are blurrier than image centres as can be seen in
Fig.3.8. This happens due to Fourier transform being applied to a discrete image.

The method proposed in [30] is based on the similar Fourier principle proposed in this
thesis. The difference between the methods comes from how the Fourier analysis is
performed. In [30] they use a special imaging arrangement to perform optical Fourier
transformation. The number of missing dots in the imaged area is obtained by measuring
the effect of missing dots on the Fourier spectra, namely the effect on intensity between
repeating peaks in the Fourier plane. Methods proposed in this thesis work very similarly
with the difference being that first the perfectly regular image is obtained based on the
repeating intensity peaks in Fourier plane. Then by subtracting this regular image from
the original image with the missing dots, not only the missing dots can be calculated,
but also their locations. The irregular image, obtained by subtracting the regular image
from the original missing dot image, does, however, contain some noise. Due to the
discreet nature of image processing and simple windowing used, the irregular image
“leaks” some energy from the intensity peaks in the Fourier plane into neighbouring
frequencies, causing some noise into the irregularity information. Method 2 suffers from
this more than Methods 1 and 3. Methods 1 and 3 band pass only the repeating peaks
in the Fourier domain and therefore the energy leakage does not affect the regular image
as much.

The key advantage of method [30] is unquestionably its speed. The optical Fourier
transformation is fast to perform and the results obtained by the system seem quite
reliable. The systems seems very suitable for on-line missing dots measurements from
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printed paper. However when number and locations of missing dots are needed, it is
recommended to use methods proposed in this thesis.

3.7 Summary

In this chapter, three methods for measuring irregularities from a regular pattern was in-
troduced. As an example, the methods were applied to Heliotest samples which consisted
of a regularly printed raster pattern that could have missing dots, i.e. irregularities. The
accuracies and execution times of the methods were compared, and their strengths and
weaknesses discussed. For fast execution and good accuracy, the method based on fre-
quency domain self-filtering (Method 2) was a good choice. However, if the application
is sensitive to changes to the regular or irregular patterns or the image to be assessed
contains more than one repeating pattern, Methods 1 and 3 utilising prior knowledge of
the repeating patterns are more applicable.

An efficient method for enhancing contrast between two dominating colours in an image
was also introduced. The contrast enhancement enabled later image processing steps to
work more reliably.
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CHAPTER IV

Runnability evaluation by detecting surface defects

Paper runnability was introduced in Section 2.2. In short, anything that adversely affects
runnability is undesirable. Small particles that stick to printing heads or obstruct printing
rollers is one part of this problem. Paper surface strength is typically inspected with the
IGT picking test in order to determine how fast the paper can be printed without surface
defects or tearing.

4.1 The IGT picking runnability test

Picking is closely related to linting, introduced in Section 2.2. The greatest difference
between picking and linting is that picking is at least partially attached to paper whereas
linting consists of totally loose particles [83]. The origin for picking can be poor paper
surface strength or fast setting of the printing or both. The IGT picking test is printed by
an IGT picking device that prints a test pattern on a paper sample with increasing speed
using tacky printing oils with known viscosity (standards [39, 84, 78]). The IGT picking
apparatus is a mechanical device which does not produce any image data from samples.
The apparatus consists of an oil applicator and a printing unit in which a printing
cylinder produces a test pattern 200 — 320 mm long and 10 mm or 20 mm wide. The
printing speed increases linearly towards the end of the print. The proportion of visible
defects, e.g., fibre surfacing or coat tearing, is assumed to provide information about the
printing properties of a particular paper type (printability and runnability). The longer
the distance between the print starting point and the beginning of fibre surfacing, the
higher the speed that can be used in the printing process. The speed and the printing
oil viscosity information can be used to calculate the velocity-viscosity product (VVP),
which enables comparisons between paper grades obtained using different printing oils.
The VVP is calculated as follows:

VVP =vg+V (4.1)

where vy is the speed at which the picking started and V is the printing oil viscosity in
Pascals (Pa) at the printing room temperature [37]. Fig. 4.1 shows the different machines
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required for picking inspection.
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Figure 4.1: Equipment for inspecting picking: (a) Machine for making the test
prints; (b) Special lighting system for visually determining the picking start loca-
tion.

A problem in picking test inspection is the determination of the picking start location.
Different experts have different opinions about where the picking should be marked as
starting. Picking can be marked as starting if the defect size is small surfacing fibre or
if 2/3 of the test print area width has torn, or somewhere in between. This criterion
varies between experts. The most prominent problem is naturally eye strain. Due to
these problems, standardisation and automation of the picking print analysis is desir-
able. Fig. 4.2 illustrates this problem well. In Fig. 4.2(a) an expert has few options for
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interpreting where the picking starts, whereas in Fig. 4.2(b) the same type of paper is
printed with different speed settings (speed at the end of print) and the marked picking
start location (dark dots near image edges) lacks consistency.

Figure 4.2: Example of difficulties in determining the picking start location.

Picking start locations are marked with dark dots on the images: (a) “Easy” case;
(b) Inconsistency in the results. Printing speed on the images increases from left
to right.

4.2 Overall structure of the automated IGT picking test

Picking detection starts with image acquisition. Section 4.3 describes the necessary
imaging arrangements required for picking detection. In order to highlight the protruding
fibres on the samples, the samples are illuminated from a large angle with respect to
surface normal.

Section 4.4 introduces the problem of detecting small and sparse details. In the following
subsection 4.4.1 an analytical model for small and sparse details is introduced and how
the defects are visualised. The visual model is used merely for visual comparison of an
artificial image and an actual picking test image.
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Section 4.4.2 reviews the well known thresholding methods that were used for detect-
ing the small and sparse details. First the methods are introduced and in the following
section 4.4.5 their performance for thresholding small and sparse details is determined ex-
perimentally; First with artificially generated data and then with actual picking samples
(section 4.5).

4.3 Image acquisition

The first step is to obtain the sample image. The resolution of the image has to be
high in order to detect small surface defects. A resolution of about 1200 dpi is sufficient
to detect small defects, and the resulting image size is about 1200 x 3000 pixels. The
sample surface should not be touched before the sample is imaged so that any small
fibres that have lift from the paper do not get flattened. In the Heliotest a circular light
source directly above the sample is used but this layout is not suitable for picking test
inspection. In the case of picking test inspection, oblique lighting (front light at very
low angles) is more suitable for detecting surface defects such as bumps, lift fibres and
particles. With the oblique lighting, the surface of the object stays rather dark, but
lift defects appear bright. The reason for this is that light from the flat surface does
not reflect at the camera but lift defects reflect the light to the camera (Fig. 4.3). The
drawback of this lighting arrangement is that surface bumps also reflect the light at the
camera.

Camera

Paper surface

Figure 4.3: Oblique lighting principle.

After an image has been acquired under oblique lighting, the printed area is detected.
Fig. 4.4 displays the different areas of a picking sample. Printed area detection is achieved
using the same method as in the Heliotest in Section 5.2. Edge detection parameters for
picking images have to be selected more carefully since the contrast between the paper
and the printing oil/ink is worse than the contrast between the Heliotest pattern and

paper.
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Print start

Figure 4.4: Different areas of a picking sample. Printed area is marked with a
thick borderline. The start of the printed area contains some picking due to initial
impact of the printing head on the paper.

4.4 Picking detection by thresholding

Thresholding based segmentation can be found at the core of many machine vision based
inspection applications, such as [16, 57, 61]. Several analytically sound and general solu-
tions exist, but in practice, thresholding is often based on application-specific heuristics.
The use of heuristics usually prevents reusability, and the methods become sensitive to
small changes in the problem setting. This study provides a more general solution to
detect adaptively a small number of fine details from a background. This solution is de-
veloped by first defining analytically the appearance of the details and then by studying
the performance of the most well-known adaptive thresholding methods, that is, methods
which do not require any parameters.

Binary thresholding is one of the most commonly used and essential operations in digital
image processing, and in many applications, thresholding is used at some point of the
algorithm. Even though the operation itself is very simple, the problem of selecting an
optimal threshold value is not trivial at all. For a single image, the optimal value can
be selected manually, but adaptive thresholding methods exist intended to automati-
cally estimate the optimal value. Due to its importance, adaptive thresholding has been
studied for a few decades, and a wide variety of different methods have been proposed
[79]. The extensive work in the past should have resulted in a proper method for any
existing problem. Since different methods may value different properties, method se-
lection depends on the characteristics of the problem domain. However, new problem
characteristics are continuously encountered in practical problems, and thus, adaptive
thresholding still remains intensively studied after more than 30 years.

Most methods perform well when the image foreground and background constitute areas
of sufficiently equal sizes, and the grey level values have substantially non-overlapping
distributions [79]. However, when either or both of the above assumptions are not valid,
major difficulties can be encountered. This is the case here, where the motivation origi-
nates from a problem in which small paper surface defects must be automatically detected
[19]. The samples can be imaged into a digital form where low intensity grey-level values
correspond to the paper surface, and high intensity grey-level values correspond to small
defects on the surface. The proportion of pixels related to defects is typically very small,
making the grey-level histograms almost unimodal. Additionally, the grey-level values of
both the defects and surface overlap significantly. The spatial distribution of the defects
can be considered random, although a single defect in an image can consist of a few
neighbouring pixels in the image. This spatial information can be taken into account
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by using a spot detector, which will be introduced in Section 4.5.2. The filter empha-
sises small intensity changes in a small area in the image and therefore encompasses the
spatial information of a single defect. Due to the spatial randomness of the defects, the
application of global thresholding methods is motivated.

This thesis assesses the ability of adaptive thresholding to bring up fine and sparse
details. The problem is solved by defining the necessary statistical properties in the
histogram domain and by analysing the performance of well-known and well-performing
general adaptive thresholding methods and methods specifically applicable to unimodal
histograms.

4.4.1 Fine and sparse details on noisy backgrounds

The motivation for researching methods to detect fine and sparse details and their possible
application areas are explained first. In the particular case discussed here, the problem
was to automatically perform the visual assessment of IGT picking samples. To get the
image data, the paper strips are digitally imaged under oblique lighting (Fig. 4.5(a)).
The grey-level histogram of the strip can be seen in Fig. 4.5(b).

In Fig. 4.5(a), the defects are not clearly visible, and the imaging suffers from the dis-
tortions characteristic of board strips (e.g., cockling). However, after proper image en-
hancement, the defects appear as tiny spots having higher intensity than the surrounding
noisy background (Fig. 4.6). This masking however averages the image and therefore
comparing values of neighbouring pixels after masking is useless. Consequently, a global
processing is used to threshold these defects.

Figure 4.5: Image of a picking sample (coated board) captured under oblique

lighting: (a) The whole strip is divided into 3 pieces for better presentation. The
adjacent pieces from left to right (printing speed increases) are arranged from top
to down; (b) Grey-level histogram of the image.

The separation of image areas into background (paper surface) and foreground (defects) is
more understandable from Fig. 4.6. For further processing, however, a suitable threshold
value at which defects on the paper surface begin to appear in the foreground must
be selected. Based on the set of test samples, it was found that the proportion of
pixels representing the defects was 0.1-5.0% of total image area, and the defect pixels
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partly shared intensity values with the background pixels. Therefore, the background
and foreground are mixed into a nearly unimodal grey-level histogram, making selection
of the threshold value a very difficult problem.

Figure 4.6: Enhanced partial image of picking sample.

The nature of the defects and their presence in the given problem have motivated to
introduce the notion of fine and sparse defects. It should be noted that the terms details
and defects are used interchangeably in this case. The fine and sparse defects are small
(fine) and isolated (sparse) signal patches comprising only a minority of the total image
area. Their intensities are close to or mixed with the background intensity range. To
study the problem more extensively, a statistical model of the defects must be derived
first. Based on the statistical model, the behaviour of different thresholding techniques
can be analysed more analytically since the effect of all model parameters can be studied.

If the spatial relationships are neglected, image pixels can be considered as realizations
of a random variable. For a sufficiently large image, the grey-level histogram corresponds
to the probability density function of the random variable, and thus, it is sufficient to
model the probability density function (pdf) to model the details.

A noisy background can be modelled with a single probability density function, and the
foreground can be treated as a mixture of probability density functions. Finally, the
whole pdf consists of a weighted sum of pdfs for both the foreground and background.

The intensities of background pixels can be modelled by values of a random variable
having the normal distribution N (up, 0p) with the mean value p;, and standard deviation
Op.

A single defect can be modelled by a low probability (low a priori) random variable which
adheres to the normal distribution

, —(z — pa(i))*
N2

Py(i)————c  20a(i) 42

where 14(i) and o4(7) denote the intensity mean value and standard deviation for the
i-th defect, and P;(4) corresponds to the a priori probability of encountering the defect.
However, since a single defect is highly localised (concentrated near to a single spatial
location), Py(7) corresponds to a proportional spatial size of the defect rather than a true
a priori probability. Correspondingly, the proportional spatial size of the background is

Py=1-> Pi). (4.3)
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Now, the resulting histogram of fine and sparse defects on a noisy background depends
solely on the set of parameters {up, op, pa(i), 0qa(i), Pi(i)}. Finally, the composite
probability density function which defines the expected shape of the histogram is

—(z — m)? — (= — pa(i))?
f@) =Pt 29 +Zpd(i)#6 204(1)* . (4.4)

One more consideration is the distributions of p4(¢) and o4(z). The simplest class of
sparse defects has the uniform distribution pg(i) ~ U(a,b) or the normal distribution
pa(i) ~ N(pp,,0pu,), and the standard deviation oq(i) ~ N(ts,,00,) (see Figs. 4.8
and 4.11). It should be noted that the number of defects can also be obtained from
a random distribution, but it does not actually affect the results but only the fore-
ground /background ratio.

Model visualisation

For the visualisation and for comparison of the artificial images with the real ones,
a model in the spatial domain that corresponds to the model in the domain of grey-
level histograms must be defined. This is done because obtaining the foreground and
background distributions from actual picking samples has proved to be very difficult.
The first problem was in determining which pixels in a picking image actually are defects.
The second problem was to actually mark the pixels determined to be defective. When
an image is observed without magnification, the picking locations are somewhat clear,
but when the image is magnified, the difference between the background and defect was
almost impossible to distinguish and in most cases failed.

This model includes the histogram and a mapping from the histogram to the spatial
plane. The spatial model must be consistent with the histogram model and have the
same parameters; the resulting artificial image possesses the same histogram as obtained
via the histogram model.

First, the image background is generated using a random variable with the same distri-
bution and parameters p;, and o, as described for the histogram model. Next, the defects
are randomly seeded on the noisy background. For each defect, the area is derived in
accordance with the total image size, and the proportional defect size Py(7).

Finally, values at each defect area are derived from the corresponding random vari-
able, N (u4(7),04(7)). To vary also area sizes, the proportional areas can be derived from
P;(i) = N(up,,op,). It should be noted, however, that if a certain foreground /background
ratio is required, the proportional sizes P;(¢) must be normalised to achieve the requested
ratio. An example of an artificial image is shown in Fig. 4.7.

The definition of details was carried out in the histogram domain, and thus, methods for
histogram-based global thresholding can be used to separate the background and fore-
ground. In the next section, the methods are discussed, and their detection performance
is studied utilising the defined statistical model.
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4.4.2 Defect segmentation by thresholding

Thresholding methods are based on the assumption that the grey levels of pixels be-
longing to objects (foreground) are substantially different from the grey levels of pixels
belonging to the background. However, the characteristics of the histogram and the
spatial distribution of the objects make some thresholding methods more suitable to a
specific task than others.

Based on the definition of the details, suitable thresholding methods were searched from
literature. First, the most popular and well-performing general-purpose thresholding
methods were considered, several methods designed specially for unimodal histograms
were studied.

4.4.3 Multimodal grey level thresholding methods

General thresholding methods should perform well when (i) the foreground objects and
background constitute proportionally the same sizes in an image, and (ii) the grey-level
values of objects and the background possess substantially distant and non-overlapping
distributions. When these restrictions can be met, one of the most popular methods is
Otsu’s method [68]. Methods by Kittler et al. [49] and Kapur et al. [46] have been
shown to outperform many others in comparisons [79]. Therefore, these methods are
good candidates as general thresholding methods for the given problem. In the following
sections, the three methods will be briefly reviewed.

Otsu’s method

Otsu’s thresholding method is based on the idea of finding a threshold value that min-
imises the within-class variance of the resulting foreground and background classes [68].
Thus, the optimal threshold T is calculated by minimising the criterion function

Pi(T)o3(T) + Po(T)o3(T)

J(T) = (4.5)

g

where o2 is the grey-level total variance estimated from the histogram and P;(T) and
P,(T) are prior probabilities associated to foreground and background.

Figure 4.7: An artificial image with fine and sparse details generated using the
visualisation of the histogram model (up = 0.3, o5 = 0.055, ¢ = 1,...,50, o, =
0.01, o,, = 0.002, foreground/background ratio = 0.015, pup, = 5, op, = 3).
Intensity values scaled for visualisation.
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Otsu’s thresholding is one of the most widely used and cited threshold estimation meth-
ods. The method is very robust, and it provides thresholding results of considerable
quality in a vast variety of cases. Performance is good when the number of pixels in the
foreground and background are close to each other. However, the method usually fails
to find an appropriate threshold value if the number of foreground pixels is less than 5%
of the total image size. With unimodal or nearly unimodal histograms the method tends
to split the only mode in the middle, resulting in a “salt and pepper” binary image [49].

Kapur’s method

A thresholding method based on entropy has been proposed by Kapur et al.[46]. The
method maximises class entropies, which can be interpreted as measures of class com-
pactness and separability. In this case, the criterion function can be given as

T h " h h
M=% s (a) - 3 amee(am)  @o

g=T+1

where n is the maximum length of a histogram h(g) of grey level values g. J(T) is max-
imised to obtain maximum information between the object and background distributions
in the image. The discrete value T', which maximises J(T'), is the threshold value. The
method is suitable for images that have good separation between class entropies. Such
images are, for example, material defect images. Such an image could be taken from, for
instance, a fractured aircraft fuselage. In such a case the defect entropy differentiates
well from the rest of the image even when the difference in the spatial image is hard to
distinguish.

Kittler’s method

Kittler and Illingworth have proposed a thresholding algorithm whose cost function is
optimised based on the Bayesian classification rule [49]. In this method, it is assumed
that components in the bi-modal histogram h(g) in the grey level image are normally
distributed. Normal distributions are defined by their means p;, standard deviations o;,
and a priori probabilities P;. For a case of two different classes (i = 1, 2), the background
and foreground, and given a threshold T parameters can be estimated from the following:

where

i—1 T i—1
a= {O 1 and b= { 1 . (4.8)
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Now, the criterion function can be calculated as

J(T) =1+ 2[P(T)log o1 (T) + Po(T) log o2(T)] (4.9)

= 2[P1(T)log P\(T) + P2(T) log P»(T)] , .
and the minimum error threshold can be computed by minimising the criterion J(T).
The method is suitable for thresholding images that have clearly bi-modal distributions
for the background and foreground. The method can also perform well with histograms
where the number of pixels contributing to the background and foreground distributions
differ significantly or when the distribution between the foreground and background is
nearly unimodal. In such a case the threshold is placed on either side of the mode
resulting in an image where most of the pixels are classified to one class, and the rest to
another.

4.4.4 Unimodal histogram thresholding methods

As already discussed, most thresholding methods work in the general case of bi- or multi-
modal grey-level histograms. In such cases, all modes in the histogram are considered
to represent different objects, or the background. However, the properties of the fine
details, as seen above, can cause the images to have a distribution which is close to
unimodal, therefore, the information available for distinguishing the details is hidden
somewhere that looks like normal background noise. Fortunately, this is not a new
problem in the field of thresholding and several different methods have been proposed.
Some of these methods have a more sound basis while others are more or less ad hoc
solutions. Two unimodal thresholding methods from the literature, Tsai’s method [87]
and Rosin’s method [74], are interesting because of their adaptive nature. These two
should be applicable for the given problem. They are reviewed briefly below.

Tsai’s method

Tsai has introduced two similar approaches to image thresholding using smoothed his-
tograms, one of which is especially intended for unimodal histograms [87]. Both ap-
proaches are introduced here, but the approach intended for unimodal histograms is of
more interest for the given problem area. The method differs from previous methods
such that it evaluates the shape of the histogram whereas the methods reviewed earlier
use various statistical properties of image histograms.

The first approach looks for peaks and valleys in the histogram smoothed with a Gaussian
kernel. The smoothing level is adjusted to make the smoothed histogram contain exactly
the same number of peaks as the desired number of thresholding levels. The valleys
between the peaks are selected as the threshold values. In the case where the number of
peaks is less than the desired number after using the smallest possible Gaussian kernel
for smoothing, additional threshold values are selected as the maximums of curvature of
the histogram.

The second approach utilising curvature is intended especially for unimodal histograms,
and represents a custom case of the first approach. In the case where only one peak can be
found in the histogram, which is the unimodal case, the threshold value is selected as the
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intensity value at which the histogram reaches its maximum curvature. The curvature
values are calculated from [87]

R
1
K = }—% Z |Z/Jt+j - 1/Jt7j‘ (4.10)
j=1
where n
1 hi(t +7) — hi(t = J) N
Y = R; % , he(i),i=1...R (4.11)

are the smoothed histogram values. hy(t) is the number of pixels with grey level ¢ at the
kth iteration. R specifies the region of support, and it is used as a smoothing factor to
compute the mean tangent angle 1, and the mean curvature K; at grey level t. To avoid
over smoothing, a small R (R < 3) is generally used.

The basic idea behind the second approach is that it is assumed that even though the
image histogram is unimodal, there might be some discontinuity at a point where the
background and foreground distributions overlap. By detecting this discontinuity, the
background and foreground of an image can be thresholded. If there are no discontinuities
in an image histogram, then the performance of the method is questionable.

Rosin’s method

Rosin’s thresholding is another method for binary thresholding in the case of unimodal
histograms [74]. This simple algorithm is shown in algorithm 3.

Algorithm 3 Rosin thresholding

1: A line is drawn from the mazimum of the histogram to the last non-zero element of
the histogram:
(argmax h;, max h;) — (argmax [h; = 0 and h;—1 # 0],0), where h; is the i-th ele-
; s p

K3
ment of the histogram.
2: The optimal threshold value is selected as the intensity value which maximises the
perpendicular distance between the line and the histogram.

This method definitely lacks intuitive motivation. Theoretical mathematical analysis
shows that the method is almost insensitive to foreground pixels, and it actually deter-
mines the threshold value using only information about the dominating background [74].
The method is not always applicable, but works as long as the histogram mode is not so
broad as to fill most of the histogram, and the mode is not too strongly peaked.

4.4.5 Evaluation of thresholding methods

The constructed model allows detailed analysis of different methods as functions of the
model parameters since the distributions of both foreground and background are known.
The optimal selection of a method for a specific application can be achieved by resolving
which model parameters correspond to the variation in the acquired data.
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The most important success factors in the evaluation of different adaptive thresholding
methods are the number of not detected foreground pixels (false negatives) and falsely
detected background pixels (false positives). The values however are dependent, and thus,
should be combined to unambiguously compare the success between different methods.
For the comparison, the enhanced Venkatesh-Kitchen discrepancy measure introduced
in [22] was adopted. The discrepancy measure was originally devised for comparison of
edge detection methods, but can be utilised here by setting the measure parameter values
to a = 0.5, 6 = 0.5, v = 0.0 and 6 = 0.0, resulting in the following discrepancy error
measure:

error = false positives x a + false negatives x 3 (4.12)

a = B = 0.5 yields from the assumption that both false positives and false negatives
are considered as equally erroneous mistakes. v and § are set to zero since they affect
the spatially dependent error factors, that is, errors near correct values are considered
less erroneous compared to errors further away. This is motivated in the case of edge
detection, but for fine and sparse details the errors are equally erroneous regardless of
their location.

In the picking data, for example, the statistical properties consistently change along the
strips. In this specific case, the change can be modelled as an increase in the a priori
probability of encountering a defect P;(7) as demonstrated in Fig. 4.8. In Fig. 4.8 the
histogram, computed from areas of the same size in different locations of the sample,
shapes remain the same but their amplitude increases.

Figure 4.8: Histograms of manually marked defects.

Since the foreground/background ratio is clearly an important property, it is motivated
to inspect performance of different methods as a function of this ratio. This is done by
applying the methods to artificial images. The behaviour remains the same for different
selections of parameters, but here the values are derived to correspond to the ones oc-
curring in the picking samples. The actual foreground /background ratios vary between
0.1%—5.0% while the other characteristics correspond to the model parameters u, = 0.30,
op = 0.055, ¢ = 1,...,50, pq(i) ~ U(0.50,0.80), 04(i) = N(to,,0s,) = N(0.01,0.002).
The behaviour was inspected for ratios between 0.001 and 0.050, and the histograms and
images corresponding to the two extreme values are shown in Fig. 4.9. It is advisable
to note that the methods are applied to model histograms and the probability of a miss
classification is not an actual miss classification for real picking images. False negative
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values in Fig. 4.10(a) are obtained by calculating how much of the estimated foreground
is below the threshold obtained by the different thresholding methods. Similarly, false
positives in Fig. 4.10(b) are obtained by calculating how much of the background dis-
tribution is above the threshold obtained by the different thresholding methods. The
discrepancy measure in Fig. 4.10(c) is calculated by using Eq. 4.12.

T T T T T
- - -foreground - - -foreground

- background| | _| & - background| |
—— combined —— combined

()

Figure 4.9: Model-generated histograms and the corresponding artificial images:
(a),(c) Foreground/background ratio (> Pu(2)/Py) 0.001; (b),(d) 0.05.

Surprisingly, a change in the a priori value does not induce any significant change in the
performance of the methods as shown in Fig. 4.10. This behaviour is natural for methods
based on the bi-modality assumption (Kittler and Rosin). Otsu’s method completely fails
by detecting most of the background as foreground (Fig. 4.10(b)), and Kapur’s method
fails by missing a significant number of foreground defects (Fig. 4.10(a)). These two
general thresholding methods seem to be inapplicable to the given problem domain.
Tsai’s method performs well for small numbers of defects, but it becomes unstable when
the foreground/background ratio approaches 0.05 (Figures 4.10(a) and 4.10(b)). The
success of the different methods become even more clear in the discrepancy graph in
Fig. 4.10(c). The two most successful methods are Kittler’s and Rosin’s methods. The
change in thresholds can be seen from Fig. 4.10(d). Picking data also supports the next
study since the distribution of paper defects can be modelled as a normal distribution
(Figs. 4.8 and 4.11).

Since the histogram in Fig. 4.11 posses a clearly unimodal distribution, it is motivated to
study how the methods perform as a function of the level of unimodality. The tolerance
can be tested by varying the mean of the defect distribution. The mean of the foreground
distribution p,,, was varied between 0.36 and 0.56 while the other parameters were kept
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Figure 4.10: Detection results for artificial data, lower values are better in Figs.
(a)-(c): (a) Proportion of not detected foreground pixels; (b) Proportion of falsely
detected background pixels;(c) Discrepancy; (d) Threshold change with respect

to foreground/background rat
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Figure 4.11: Histograms of manually marked picking defects and the back-
ground. The foreground/background ratio is ), Pa(i) = 0.005, the background
mean is pp = 0.345 and the standard deviation o = 0.011. The foreground mean
is pt, = 0.372 and the standard deviation o,, = 0.037.
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constant (up = 0.30 and o, = 0.055). From the results in Fig. 4.12, it is evident that
Rosin’s, Tsai’s, and Kittler’s methods perform equally well in the detection of defects and
only Otsu’s method provides distinctly worse results. The results are again most obvious
in the discrepancy graph in Fig. 4.12(c) (note that Kapur’s method is here omitted due
to its poor performance earlier).
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Figure 4.12: Detection results for artificial data as functions of defect distribu-
tion mean p,,, the background distribution was kept constant mu;, = 0.30, lower
values are better: (a) Proportion of foreground pixels that were not detected,
and (b) Proportion of pixels that were falsely detected as background pixels; (c)
Discrepancy.

4.5 Experiments

In this section, the results with the real picking images are briefly described.
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4.5.1 Picking images

A set of picking images captured under oblique lighting were used as the real test set
for the candidate methods. As a preceding step to thresholding, an image enhancement
procedure was applied to the images.

4.5.2 Image enhancement

In practice, input images often are or have been derived from images with only 8 bits per
pixel, i.e., 256 intensity levels, so there is little motivation to generate histograms with
more than 256 bins. However, certain image transformations, such as convolution filtering
in the floating point form, can dramatically increase the number of intensity levels and
produce larger histograms which allow a more precise threshold estimation. Another
benefit of the filter is that it encompasses the spatial of a single defect and therefore
makes the detection of defects more accurate since intensity and spatial information can
be used.

It is clear that certain image enhancement techniques may lead to more accurate thresh-
olding results since sub-level accuracy is achieved. With fine and sparse details, it can
be beneficial to filter the image with a spot detection filter. By filtering with a simple
n X n filter, the number of distinct intensities in an image can increase up to the factor
of n? times. Such image preprocessing before constructing the histogram agrees with the
results presented in [5]. In the case of the picking images, the following spot detection
filter was used:

—1—1—-1—-1-1-1-1
10 0 0 0 0 —1
-1 0153 15 0 —1

f=1]-10 386 3 0-1]". (4.13)
-10 153 150 -1
10 0 0 0 0 —1
—1-1-1-1-1-1-1

The main reason for the image enhancement for the picking images was removal of unde-
sired imaging effects on the paper samples, such as the waving appearing in Fig. 4.5(a)
(visible in the top row images). This spot filter is not necessary for uncoated papers,
which do not suffer partial delamination in the same way as coated papers do. Uncoated
papers do not suffer from waving and therefore this step, again, is not required although
it does enhance small details even in uncoated paper images.

Image examples

Figs. 4.13 and 4.14 show four picking images for coated papers, their enhanced versions,
and the results for all five thresholding methods. The results with the real images cor-
respond to the results with the artificial data: two of the most promising methods are
Rosin’s method and Kittler’s method. Rosin’s method detects more foreground pix-
els, but also falsely detects a large number of background pixels. This is evident from
Figs. 4.10, 4.13 and 4.14. Therefore, Kittler’s method corresponds more precisely to what
is to be detected from the original images.
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Figure 4.13: Two examples of picking images, and the thresholding results.
Images from the top are the aligned image (top), the enhanced image, the result
from the method by Rosin, Tsai, Otsu, Kapur, and Kittler (bottom).
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Figure 4.14: Two additional examples of picking images, and the thresholding
results. Images from the top are the aligned image (top), the enhanced image,

the result from the method by Rosin, Tsai, Otsu, Kapur, and Kittler (bottom).
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4.6 Heuristics to determine the starting location of picking

After the images have been thresholded, some heuristics and post processing is required
to determine the actual starting location of the picking. Currently the picking location
is determined by calculating the profile of the thresholded binary image, i.e., the number
of detected defects is summed over the length of the image so that a profile of the image
is obtained. The picking starting location can be determined from the profile with some
user definable parameters. The first parameter is the size of the picking /N, which in a
profile graph means that all values below this number are considered as being not picking
but some noise such as dust speckles or irrelevant (too small) pickings. When the profile
graph exceeds the set threshold N its length above the threshold is measured. If the
measure is higher than d, the picking is marked to start at the location where the profile
graph first exceeded threshold N. In order to allow small gaps in the thresholded graph,
a third variable d,,;, is used. It ignores small gaps in the thresholded graph if they are
not longer than d,,;,. Fig. 4.15 demonstrates how the heuristics work to determine the
picking start location.

This is just one example of the heuristics that can be used to determine the starting
location of the picking. It has been advised by numerous industrial experts that this step
should be as customisable as possible. Different laboratories, even inside same company,
have different ways to actually determine the picking start location depending on their
customers’ requirements. Currently, the paper and printing industry are trying to define
a standard that would define picking more clearly but at the time of writing, the standard
is not ready and thus cannot be used to define picking start location more clearly.

The whole picking detection method is summarised in algorithm 4.

Algorithm 4 Method for detecting picking.

: Image the sample.

: Preprocessing.

: Threshold the image.

Use heuristics to determine picking start location.

N RN
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Figure 4.15: Example of the heuristics procedure. a) Grey level image of picking
sample; b) After Kittler’s thresholding; ¢) Projection of thresholded image.; d)
Thresholded projection, 1 designated picking area and 0 background; e) Picking

start location marked in the original grey level image (dark line at around 400).
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4.7 Summary

In this chapter, an automated method for detecting picking from printed test samples
was introduced. A model for images with fine and sparse details was also given based on
statistical properties in the image grey-level histogram domain. Based on the proposed
model, several well-known and widely used thresholding methods were studied to evaluate
their performance as functions of the model variables, and the most promising methods
were proposed for detecting fine and sparse details.

The proposed model aimed to explain characteristics of real images containing different
types of defects on a noisy background. An adaptable and problem specific method was
introduced in this thesis for the automatic evaluation of picking samples. Visualisation
of the model corresponded to the real data, and the results with real images verified
the analytical results. Based on the study and the conducted experiments, Kittler’s and
Nlingworth’s minimum error thresholding was selected as the most suitable method for
the given task.

Determining the actual starting location of picking was complicated. Different paper
and printing industry experts have different opinions about what should be considered
as picking and therefore only an adaptable and problem specific method was introduced.
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CHAPTER V

Imaging setup for performing the Heliotest and picking test

During the course of the thesis work, a laboratory test setup for performing the Heliotest
and picking test inspection on printed samples was built. The setup enabled testing the
methods introduced in the earlier chapters.

5.1 Imaging setup

As mentioned in Chapter 3, the Heliotest has demanding requirements for image resolu-
tion. Furthermore the printed Heliotest and picking test samples should not come into
contact with anything during industrial quality inspection tests since the ink can still be
wet and lift fibres should not be folded back into the paper surface. In order to meet
these requirements, an Allied Vision Oscar F510C CCD camera with Moritex ML-Z0108
micro objective lens was chosen as the imaging device. Table I.1 in Appendix I lists the
camera specifications and specifications for the lens are listed in Table 1.2. The camera
was attached to a computer via a Firewire connection. The benefit of this arrangement
was that the camera could now be controlled via Linux due to freely distributed Firewire
drivers [17].

Two different light sources were selected to illuminate samples below the camera. For the
Heliotest samples, a ring light illuminating the samples directly from above was chosen.
For the picking samples, two high pressure 250W halogen lights were chosen to meet the
oblique illumination requirement. The lights were attached to an adjustable handle and
could be adjusted to provide light at low angles with respect to a sample. Specifications
for the ring light and its light source are listed in Tables 1.3 and I.4.

One problem with the camera arrangement was that the whole sample did not fit into an
image and had to be imaged in parts. A solution for this imaging difficulty was to use
a very accurate desktop robot to move either the sample or the camera. Specifications
for the Sony Cast Pro II robot are given in Table I1.5. The accuracy of the robot enables
the user to move the camera or sample very accurately to a known position which means
that time consuming image alignment was not needed but done by the robot.

91
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In the system, imaging is done by placing the sample on the robot table and the camera is
moved above the sample. The sample is imaged in parts and each image part is processed
with the proposed algorithms. Image acquisition is asynchronous which, means that the
actuator moves to the next location while the current image is being processed. Fig. 5.1
shows the whole test setup.

Figure 5.1: Experimental setup ready for analysing Heliotest sample.

5.2 Detecting the rectangular measurement area

After an image of a sample is acquired, the rectangular measurement area must be located
in order to avoid unnecessary image processing. Regions outside the measurement area
do not provide any necessary information but only slow processing. Furthermore, dots
can be falsely detected as missing outside of the measurement area since that area is blank
and does not contain any dots. The measurement area differs from the background based
on its texture pattern and colour. In short, the measurement area is detected by edge
detectors, Hough transform and heuristics.

In order to reduce the number of unnecessary details like edges of individual dots in
the Heliotest and to speed up processing, the input image is first downsampled. The
scaling factor can be set by the user and it should be selected so that individual dots
inside the measurement area become indistinguishable from each other. In this way the
measurement area itself is portrayed in one colour and the background in a noticeably
different one. After downsampling, the image is filtered using a Gaussian filter so that
any minor details left in the image become blurred and do not appear as edges. Fig. 5.2
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shows the original image and the images after it has been down sampled and Gaussian
filtered.

Figure 5.2: Image processing before edge detection: (a) Original grey-level im-
age; (b) Downsampled; (¢) After Gaussian filtering.

After image smoothing by Gaussian filter, the edges of the measurement area are detected
using edge detector. The Canny edge detector [10] was chosen for the task because of
its good performance compared to other methods [80]. The Canny algorithm requires
two parameters which are application dependant. The parameters are called hysteresis
thresholds. The upper threshold defines a value above which a possible edge is identified
to be an actual edge. The lower threshold tries to connect partial edges together. If the
pixel next to an accepted edge pixel drops below the higher threshold but stays above the
lower one, it is considered as belonging to the same edge. These parameters are usually
found by trial and error but more refined methods have also been studied [58].

After the edge lines of the measurement area are detected, their parameters are estab-
lished. The edge line parameters are needed for determining the actual shape of the
measurement area. Only the corner points of the measurement area are actually needed,
but in order to detect the corner points, crossings of the edge lines are needed. Fig. 5.3
shows how the edge lines are used.

Edge line parameters are determined by using the Hough transform [54]. The number of
lines to be detected is limited to four since the measurement area consists of four edges.

After the corner points have been obtained, a bounding box can be used to either define
the measurement area or the area can be rotated to strictly vertical by using the affine
transform [81]. By rotating the image, unnecessary data is removed thus making image
manipulation faster. The downside of the rotation operation is its rather heavy computa-
tional cost with large images. The rotation matrix required for the affine transformation
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Image edge

order.

is formed based on the corner point information. Fig. 5.4 show an input image and
the detected measurement area using the described method. The whole measurement
detection algorithm is summarised in algorithm 5.

Algorithm 5 Detecting the printed measurement area.

Downsample the image.

Smooth the image.

Detect edges of the image by using the Canny edge detector.
Estimate the parameters of the edge line by using Hough transform.
Calculate the crossing points of edge lines.

Define bounding box for the measurement area based on edge points.

BAISANR SR

It should be noted that the detected measurement area will have some minor errors
since the measurement area calculations are done to downsampled image. The full sized
measurement, area can have an error by the down sampling factor. Also the Gaussian
filtering causes the edge of the measurement area to blur thus making detection of the
actual edge more inaccurate, as can be seen from Fig. 5.4(b). However, these minor
errors do not harm the later processing. In addition no aliasing effect happens in the
resulting image since the image is not downsampled, only cropped.

After measurement area detection, the methods introduced in the previous chapters can
be used to detect missing dots or pickings from the imaged sample. Each individual
image is processed separately and coordinates of missing dots or possible pickings are
saved. After the 20th missing dot or picking point is located, the distance is calculated
and shown on the screen both in pixels and in millimetres.
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Figure 5.4: Measurement area detection: (a) Image of a Heliotest strip; (b)
Measurement area detected from the same image.
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5.3 Experiments

The experimental setup was tested with the co-operation of industrial partners at paper
mills. The tests were preliminary in nature but they give a good indication of the
potential of the setup in automating the quality inspection tasks. Appendix II lists the
results obtained by two laboratory experts and the experimental setup regarding picking
test inspection. Both experts marked picking location on a separate paper without
seeing each other’s markings. Finally the experimental setup was used to analyse the
same samples.

Hand marked distances are measured using an ordinary 30 cm long ruler and therefore can
easily contain errors of about £1 mm which should be kept in mind when the results are
assessed. The results were quite satisfactory most of the time, picking was found correctly
but determining where to mark the picking starting location requires more consideration.
The coefficient of determination (R?) between the measurements of experts and these
of the setup are listed in Table 5.1. As can be seen, the setup results correlate better
with expert 1 than with expert 2 but there is still a notable difference of opinions about
missing dot locations between the setup and the experts. However, even the experts are
not unanimous about the picking start location.

Table 5.1: Coefficient of determination between expert measures and setup mea-
sures with picking test samples. E denotes expert and S denotes setup. Correla-
tions were calculated over all different paper qualities.
ElvsS | E2vsS | El1 vs E2
0.84 0.81 0.97

Similar tests with the Heliotest were also performed. The individual results can be
found from appendix ITI. The setup performed very well with the Heliotest, there were
some troublesome cases where the dots were so dimly printed that the setup mistakenly
labelled them as missing dots, whereas human experts did not. Fig. 5.5 demonstrates
this. The decision to classify dot as a missing/not missing can be subjective and the
threshold for marking a dot as a missing depends on the set threshold. The coefficient
of determination correlations between the setup and experts are listed in Table 5.2. As
can be seen from the results, measurements between experts and the experimental setup
are very well aligned.

Table 5.2: Correlations between expert measures and setup measures with He-
liotest samples. E denotes expert and S denotes setup. Correlations were calcu-

lated over all different paper qualities.
ElvsS |E2vsS | E3vsS | El1vsE2 | E1 vs E3 | E2 vs E3

0.99 0.99 0.99 1.00 1.00 0.99

Statistics for individual paper grades were not calculated due to the few measurements
available. The industrial partners were satisfied with the accuracy of the methods and
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the experimental setup. The speed of the measurement methods were also deemed satis-
factory. The picking test for a single sample could be performed in about 10 seconds. For
the Heliotest it took a bit longer, a single test sample is analysed in about a minute. A
laboratory expert can perform the same tests in about 30 seconds per sample, depending
on the level of experience and difficulty of the sample.

Figure 5.5: Cluster of falsely located missing dots. Circles mark missing dots
found automatically, missing dots found by laboratory expert have been marked
with squares.

5.4 Summary

This chapter explained how the methods introduced in the previous chapters were applied
to an experimental test setup. The setup was introduced and its specifications presented.
A method for detecting the measurement area from the Heliotest and picking test images
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was also presented. Finally the setup was used to perform the Heliotest and picking test
inspection on samples that were also evaluated by industrial experts. The results of these
tests are given in appendices IT and ITI. Industry partners were satisfied with the setup
performance. Although the Heliotest could be performed faster manually, the benefit of
using automation comes from repeatability and reduction in eye strain.



CHAPTER VI

Discussion

The objective of this thesis was to seek methods to detect irregularities from regular
patterns and methods for detecting small and sparse details from images. Two paper
quality measurement problems in paper and printing industry were introduced as prac-
tical problems: The first was the detection of missing dots from Heliotest patterns and
the second detection of small and sparse details from IGT picking samples.

The first practical problem is generally related to regular patterns and how to detect
irregularities from them. The well known Fourier transform was selected as a basis for
further study. Three methods were developed for detecting irregularities (missing “dots”)
from regular patterns based on Fourier analysis. Their performance in the Heliotest
inspection task was analysed and the generality of methods was discussed. The proposed
methods are applicable to all tasks where regular pattern may contain irregularities, for
example, the inspection of patterned wafers, and a very similar method is patented for
integrated circuit fault detection [75]. For irregularity detection it became apparent that a
good contrast between the object and the background gives better results and therefore
a contrast enhancement algorithm based on Bayesian decision making was developed.
The posteriori contrast enhancement method made the task of thresholding the irregular
image easier. The most noteworthy advantage of the proposed irregularity detection
methods over the methods proposed earlier in [53, 31, 47] are their ability to detected
multiple irregularities clustered next to each other.

The weaknesses of the proposed irregularity detection method appear when the actual
irregularities are segmented from the irregular image. Selecting a suitable threshold for
detection is not simple. Small variations in the image, such as noise, can easily be falsely
interpreted as irregularities. To counter this, the irregular image can be thresholded and
analysed so that the binarised areas have to match the sizes of the actual dots in the
regular image part. In this way noisy pixels in the binarised image do not affect the
irregularity detection process.

There is also a practical problem with Heliotest. The printed pattern edges are not
always straight, meaning that the edge line of printed dots can suddenly shift one dot
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column left or right. When this happens in the middle of an image, the empty space
after the shift can be mistaken as a column of missing dots. This problem is countered
by simply ignoring a certain amount of missing dots near the image edges. By applying
the proposed methods to an imaging setup, the Heliotest could be performed with very
satisfying results.

The second problem addressed in this work was the detection of small and sparse details
from images such as IGT picking sample images. Well known thresholding methods were
chosen for the task and their performances with artificial small and sparse details were
compared. Kittler’'s and Illingworth’s minimum error thresholding was chosen as the
most suitable for the task. When applied in practice on IGT picking sample images,
picking (paper surface tearing) in the images is detected accurately; problems are more
related to analysing the actual thresholded images. Consensus needs to be reached on how
the picking start location is defined. The current method produces repeatable results,
but still may fail to satisfy experts because their opinions differ on how to define the
picking start location. Therefore, testing the method with real picking test images with
ground truth data is difficult, since no common ground is found on how to define the
ground truth. Marking picking spots manually on the samples would take a lot of time
and would still produce subjective results. Therefore to reliably to measure thresholding
performance an artificial data was used. For the artificial data, the exact ground truth
was available.

In the future studies, more information about determining the picking starting location
from the thresholded images is needed. Industry would prefer the results to be close to
those obtained by human evaluation. Spatial information of the defects could be used
more, along with intensity, as the separation between the background and defects in
picking images might improve.

In this thesis, an experimental setup is presented, which utilises the methods introduced
to detect irregularities and small and sparse details. The performance of the setup
is measured by performing Heliotests and picking tests on expert evaluated samples.
Feedback on the performance of the setup from paper laboratories has been encouraging
and therefore further product development is justified.
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APPENDIX 1
Specifications for imaging setup

The technical specifications for imaging setup are listed below.

Table I.1: Specifications for Allied Vision Technologies OSCAR F-510C camera.

Manufacturer Allied Vision Technologies

Model OSCAR F-510C

Type Industrial camera

Sensor size 2/3”

Resolution up to 2588 x 1958

Pixel size 3.2 pm (square)

Sensor type CMOS

Colour RAW, RGB, YUV-4:2: 2, Mono8
Scan type True partial scan

Shutter speed 20us — 67s

Resolution depth | from 12bit up to 16bit
in high resolution mode

Connector Firewire

Lens mount C

Dimensions 44 x 44 x 58.9 mm
Drivers Linux & Windows
Abilities Possible to define custom

resolution for images.
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I Specifications for imaging setup

Table I.2: Specifications for Mortitex macro zoom objective.

Manufacturer
Model
Type

Moritex
ML-Z0108
0.1 x —0.8x zoom lens

Working Distance
WD adjustment
Effective F Number

213 mm
420 mm
82—-9.3

Depth of Field
Resolution
TV Distortion
Largest sensor
Mount

32.8 — 0.6 mm

55 — 8 um

—0.02 £ 0.17% (or less)
1/277

C-mount,

Table I.3: Specifications for light source.

Manufacturer
Model
Type

Moritex
MHF-M1002
100W Halogen type light source

Input Voltage

Power consumption
Lamp type
Options

AC180 ~ 250V

50/60 Hz

270 VA

LM-100

External light control (0-5 V)
External volume light control
External on/off

Lamp rush current detection
Internal temperature detection

Table I.4: Specifications for lamp.

Manufacturer
Model
Type

Moritex
LM-100
100W Halogen lamp

Lamp current
Average life

Power consumption | 100 W

Average luminosity
Colour Temperature | 3100° K

84 A
1000 h
30000 lux
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Table 1.5: Specifications for Sony Cast Pro II desktop robot.

Manufacturer Sony

Model Cast Pro 11
Type desktop robot
Operating area 350 x 350 mm
Moving precision | 0.02 mm
Number of axis 2
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APPENDIX II

Picking test with test setup

Picking test measurement results. All measures are given in millimetres. 5 different
paper qualities were measured and each quality contained 5 samples. Different quality
papers are separated with horizontal lines. Table T1.1 lists the measurements.

Table I1.1: Picking test results. Expert 1 and 2 results were obtained by human

observations and Setup was performed by machine vision setup. All results are

presented in millimetres. Quality refers to different paper grades.

Grade Sample | Expert 1 | Expert 2 | Setup
Quality 1 | 1 88 81 99

2 71 74 102

3 73 73 97

4 62 67 64

5 80 82 97
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Table I1.2: Table II.1 continued.

Grade Sample | Expert 1 | Expert 2 | Setup
Quality 2 | 1 51 47 49
2 32 34 33
3 32 29 36
4 44 44 45
5 42 42 43
Quality 3 | 1 40 40 43
2 47 47 50
3 42 40 43
4 46 42 45
5 42 44 39
Quality 4 | 1 93 89 85
2 93 87 97
3 92 90 113
4 83 76 82
5 82 69 85
Quality 5 | 1 184 137 137
2 184 185 138
3 194 193 143
4 193 192 -
5 181 183 122




APPENDIX III
Heliotest with test setup

The test was performed by 3 human experts and Setup. The greatest differences in
measurements happened when some dimly missing dots were falsely classified as missing
dots by the machine vision setup. Table ITI.1 lists the measurement results.

Table ITI.1: Heliotest results. Expert 1, 2, and 3 results were obtained by human
observations and Setup was performed by machine vision setup. All results are
presented in millimetres. Quality refers to different paper grades.

Grade Sample | Expert 1 | Expert 2 | Expert 3 | Setup
Quality 1 | 1 62 60 64 62
2 56 56 56 54
3 51 50 50 50
4 63 62 63 62
5 56 56 56 55
Quality 2 | 1 72 72 72 72
2 61 60 61 63
3 71 70 70 70
4 69 67 68 64
5 79 79 79 78
Quality 3 | 1 26 26 23 28
2 20 20 19 20
3 28 26 25 28
4 31 29 29 30
5 26 29 23 28
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IIT Heliotest with test setup

Table IT1.2: Table II1.1 continued.
Grade Sample | Expert 1 | Expert 2 | Expert 3 | Setup
Quality 4 | 1 40 40 39 40
2 47 46 46 46
3 37 36 36 38
4 47 46 46 47
5 42 41 41 41
Quality 5 | 1 48 48 48 46
2 51 50 50 50
3 54 50 50 49
4 63 63 63 60
) 93 51 52 46
Quality 6 | 1 80 82 81 80
2 90 90 89 89
3 81 80 89 82
4 85 85 84 84
) 90 90 &9 80
Quality 7 | 1 96 96 95 94
2 110+ 110+ 110+ -
3 105 106 105 101
4 95 95 94 94
5 106 107 106 105
Quality 8 | 1 78 7 76 7
2 81 82 81 82
3 65 66 65 66
4 91 93 91 91
) &0 82 80 80




