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Symbols and abbreviations
3D 3 dimensional
~a Vetor a
F Disrete Fourier transform
F−1 Inverse disrete Fourier transform
M(u, v) Mask �lter
µ(x) Mean
I(u, v) Unit funtionN Newton
N(µ, σ) Normal distribution
R2 Coe�ient of determination
σ Standard deviation
ξ(x, y) Spatial image
Ξ(u, v) Fourier transformation of ξ(x, y)



CCD Charge-oupled devie, imaging sensorFFT Fast Fourier Transform
H Multipliative noise funtionh HistogramISO International Standardisation Organisation
L ∗ a ∗ b∗ Adams Chromati Value Spaepdf Probability density funtionPa Pressure in pasalsRH Relative humidity (in air)RGB Red, Green, Blue olour spae
S Surfae area
T Thresholdu,v position in Fourier domainx,y position in spatial domainVVP Veloity visosity produt
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Chapter IIntrodution

The purpose of this thesis is to �nd methods to perform automati visual quality in-spetion for two quality inspetion tasks in the paper and printing industry. Qualityinspetion and monitoring are essential steps when today's produts are sold to the mar-kets. Consisteny in the quality inspetion proess is ruial in order to guarantee thatdi�erent prodution bathes meet the required quality riteria. Often, the inspetion isonduted visually by trained personnel, whih means that the results an be subjetivefor various reasons suh as di�erene in opinions, tiredness and other physiologial orpsyhologial fators.Mahine vision an overome some of these human de�ienies: Computers do not gettired and produe repeatable results under standardised inspetion onditions. In thepaper and printing industry, these quality inspetion problems are enountered whenpaper printing quality is assessed. Paper grade quality is determined by printing a testpattern on a paper and then various measurements are taken and the test paper inspetedvisually by laboratory sta� with a magnifying lass or a mirosope.1.1 Researh questionsThe spei� problems that are addressed in this thesis are the detetion of irregularitiesfrom regular patterns and the detetion of small and sparse details from a paper surfae.Suh problems are inherent in the Heliotest and piking test. The Heliotest is a standardmethod in the paper industry to test the smoothness of printing paper. Smoothness isrelated to paper printability. The smoother the paper, the better the ink absorbs onto thepaper, resulting in olourful and detailed prints. The piking test measures the surfaestrength of a paper. It gives a rough indiation of how fast a given paper an be printedbefore the paper surfae starts to tear due to frition fores a�eting the paper surfaeduring print head and paper interation. 11



12 1. Introdution1.1.1 Deteting irregularities from regular patternsIn the Heliotest, half-tone dots are printed on a strip of paper so that the spaing of thedots stays the same but the size dereases towards the end of the strip. The dots form aregular raster pattern on the paper surfae. Due to roughness of the paper, ink does notalways absorb to the paper resulting in missing or partially missing dots in the regularpattern. In the paper and printing industries, paper quality is determined by ountingthe distane to the 20th missing dot from the start of the printed regular area [36℄. Thisis the �rst main researh problem in the thesis; the detetion of defets from regularpatterns.An image proessing sub-�eld whih ontains many similar harateristis to regularpatterns is texture analysis. In texture analysis, however, the most typial problem isto distinguish between di�erent types of textures, and thus, the proposed approahesfavour between-texture type lassi�ation. Irregularity detetion, however, needs within-texture type of lassi�ation. Still, there are many useful texture harateristis andnotations that an be used, e.g., half-tone dots an be onsidered as texture atoms andtheir spaing an be represented as the spatial interrelationships between the atoms [28℄.Researh related to irregularity detetion has been onduted in fabri defet detetion(e.g., [12℄), but there the problem setting is too loose for missing dot detetion: fabridefet detetion is primarily onerned about the loation of a possible error, but inmissing dot detetion, it is neessary to �nd what is wrong in the given loation. Inother words, one needs to �nd both the loations where there are irregularities, and whatkind of irregularities are present, e.g., a partly or ompletely missing dot or a group ofdots. Spei� image proessing methods for missing half-tone dot detetion have beenproposed, e.g., by Langinmaa [53℄, and Heeshen and Smith [31℄. Their methods arebased on template mathing or binary level proessing. Aording to the authors of bothmethods, their weakness is the di�ulty of distinguishing the exat number of missingdots from areas that ontain lusters of missing dots.1.1.2 Deteting small and sparse details from the bakgroundThe seond researh problem in the thesis is the detetion of small and sparse detailsfrom a paper surfae as is the ase in the piking test. The piking test is performed witha speial printing oil that is printed at aelerating speed on a paper surfae. At ertainspeed, the paper surfae starts to tear due to the inreasing fore a�eting its surfae. At�rst only some �bres start to lift from the paper and then the paper surfae starts to tearup more visibly. These small surfaing �bres are small defets that need to be detetedfrom the bakground. In the imaged samples, the proportion of pixels related to defetsis typially very small, making the grey-level histograms almost unimodal. Additionally,the grey-level values of both the defets and surfae overlap signi�antly. The spatialdistribution of the defets an be onsidered random, and thus, general thresholdingmethods are appliable.Binary thresholding is one of the most ommonly used and essential operations in digitalimage proessing, and in many appliations thresholding is used at some point of thealgorithm. Even though the operation itself is very simple, the problem of seleting anoptimal threshold value is not trivial at all. For a single image, the optimal value an be



1.2 Contributions 13seleted manually, but adaptive thresholding methods exist intended to automatiallyestimate the optimal value. Due to its importane, adaptive thresholding has beenstudied for a few deades, and a wide variety of di�erent methods have been proposed(see, e.g., [79℄). The extensive work in the past should have resulted in a proper methodexisting, for any problem. Sine the di�erent methods value di�erent properties, methodseletion depends on the harateristis of the problem domain.This thesis assesses the ability of adaptive thresholding to bring up �ne and sparse details.Most methods perform well when the image foreground and bakground onstitute areasof su�iently equal sizes, and the grey level values have substantially non-overlappingdistributions [79℄. However, when either or both of the above assumptions are not valid,major di�ulties an be enountered. The problem an be solved by de�ning the ne-essary statistial properties in the histogram domain and by analysing the performaneof well-known and well-performing general adaptive thresholding methods and methodsspei�ally appliable to unimodal histograms. Another approah to solve the problemould be to use tehniques widely used in ontent based image retrieval where the goalis to loate images of a same objet/sene from di�erent angles. These methods oftenrely both on olour information and spatial information of the olour to better separatedi�erent images from eah other [34℄. The basi underlying idea is that instead of usingonly olour information, both olour and spatial information is used to better separatedi�erent images from eah other. The same idea ould be applied to more learly sep-arate small and sparse defets from the bakground. To inlude spatial information, aspot �lter that emphasises the small bright spots on samples is used in this work due toits simpliity and ease of use.1.2 ContributionsThe main ontributions of this thesis are methods for deteting irregularities from regularpatterns and the study of methods for deteting small and sparse surfae defets. Themethods have been reated to ful�l the needs of the paper and printing industry, butthey are not limited these partiular �elds. The methods for deteting irregularities fromregular patterns are robust and an be applied anywhere where regular data is available.Evaluation of these methods has proven them to be very aurate and relatively simple toimplement, whih should make them very attrative for use in quality inspetion tasks.The work presented in this thesis is a part of the larger Papvision projet (http://www.it.lut.�/projet/papvision) investigating mahine vision methods for paper qualityinspetion. Several people took part in the Papvision projet. This thesis is a monograph,but some of the results have been published in sienti� onferenes or other sienti�media (in [77, 20℄ the author partiipated in development, was one of main authors andperformed the experiments, in [91, 92, 93, 94℄ the author developed the methods, wrotethe artiles and performed the experiments). The author provided software and helpedbuild the setup introdued in Chapter 5.1.3 Struture of the thesisChapter 2 gives bakground information about the researh area. It gives an overview ofthe methods and proedures used today in paper struture analysis and reviews previous



14 1. Introdutionresearh in the area.Chapter 3 desribes the �rst researh problem of the thesis, the detetion of missingatoms from repeating patterns. The hapter desribes the problem in detail and thengives a detailed explanation of the methods that were developed during the ourse of theresearh. After presenting theoretial onsiderations, the experiments are desribed andthe results given.Chapter 4 onsiders the seond problem of the thesis, namely the detetion of smalland sparse details. The struture of this hapter follows that of Chapter 3. First thetheoretial bakground for the problem is introdued and then the methods proposedand their validity are analysed. The methods are then veri�ed with both arti�ial andreal data.Chapter 5 presents the appliation of the proposed methods to experimental test setup.The setup spei�ations are shown and a method to detet the measurement area frominput images is presented. The setup is then used at paper mills to perform the Heliotestand piking test. The measurements obtained by the system and by industrial expertsare given in appendies II and III.In Chapter 6 the weaknesses and strengths of the methods introdued in Chapters 3 and4 are disussed. The disussion also ontemplates other possible appliations where thesemethods ould be used.



Chapter IIPaper quality inspetion

Inspeting produt quality is ommon in all industries and the paper and printing indus-try is no exeption. Quality inspetion an be performed at many stages of the produtionyle, raw materials, end produts and intermediates of a manufaturing proess an allbe tested. The aim of quality inspetion is to numerially desribe the most relevantproperties or features of a produt or its intermediate or both. Unfortunately inspetiontests do not always measure the exat features of the produt in question, e.g., objetdensity an be determined by measuring its mass and volume. For inspetion to be rel-evant, the feature measured should orrelate well with a property of the produt underonsideration.In industry, inspetion an have other funtions. It an be used to ontrol proess ondi-tions or for quality assurane that the end produts are onsistent, i.e. their propertiesdo not vary, and they meet set quality riteria. Inspetion an also be used to obtainadditional value for marketing purposes. Seleting the proper test for di�erent situationsrequires areful onsideration.Nowadays, more and more tests are done on-line during prodution. This gives thebene�t of being able to adjust prodution proess right away in order to maintain ane�ient and onsistent prodution yle. Therefore industry wants to perform as manytests as possible on-line. Unfortunately, not all tests an be performed on-line due toa lak of proper sensors or methods, and furthermore some tests require strit ontrolover the measurement environment, whih is rarely possible on-line. For some produtsustomers may also require varying quality inspetions on purhased produts.2.1 Paper quality propertiesPaper quality is tested just as any other industrial produt. Aording to [55℄ the ba-si questions to ask when onduting inspetions are as follows: What are the proessonditions and the variations that are wanted to be monitored with the testing and15



16 2. Paper quality inspetionwhat feature or funtion of the material should the inspetion desribe. Answering thesequestions an identify the relevant tests and analyses.Proess analysis tries to de�ne the ontrol variables of paper making proess that allowit to run smoothly and produe paper with the neessary properties. The �rst stepin proess analysis is de�ning ritial ontrol variables. A ontrol variable is ritialif hanging it positively a�ets one proess or produt property and at the same timenegatively a�ets another. These ritial ontrol variables an be listed and their e�eton the whole proess identi�ed. In order to improve any paper making proess, knowinghow it a�ets on the individual �bres and the pulp is neessary. Measuring single �breproperties is useful for this purpose.Paper is a network formed by bonding of �bres and �bre fragments. The properties ofall the omponents, inluding �llers and additives, in�uene the properties of the paper.Single �bre properties desribe statistial properties of �bres suh as their �bre length.Fibres an be lassi�ed by given riteria, e.g., lassifying them in to early- and late-wood �bres [32℄. Analysis of pulp �bres is an important area of pulp and paper qualityinspetion but is beyond the sope of this thesis.Produt analysis de�nes the properties that relate to the use of paper. Important fea-tures, requirements and measures onerning the use of a produt are required for prod-ut analysis. This thesis is mainly related to produt analysis sine the properties ofthe end produt are measured, i.e., properties related to the printability and runnabilityof the paper. An example of a produt analysis measurement is paper runnability. Apaper requires su�ient strength so that it does not tear during the printing proess.Produt analysis de�nes the spei� strength property to measure, tensile strength ortear strength. Table 2.1 desribes several tests that are used to desribe the funtionalrequirements of paper produts.Many physial properties desribe the paper harateristis. The properties an begrouped as follows [56℄, of whih the most relevant to the thesis are in bold and in-trodued in the following subhapters:-Basi properties-Strength properties-Sti�ness properties-Strutural properties-Surfae properties-Absorption properties-Optial propertiesA number of methods exist to measure these properties and it is a large topi in itself.This thesis onentrates only on tests that measure properties in bold in the list. Otherproperties are only brie�y introdued. Paper properties disussed below are desribed inmore detail in [56, 83, 90, 1℄.



2.1 Paper quality properties 17The aim of inspeting a piee of paper or board is often to obtain information aboutthe properties of a muh larger set than that on whih the test is made. Therefore it isessential to perform the test on a sample that best represents all the produed material.To be representative, eah sample has to have an equal statistial probability to beinluded into the sample set. In pratie this requirement is di�ult to ful�l. Paper isdelivered in large rolls and obtaining a sample from the middle or entre of a roll is notviable. Therefore samples are obtained from many rolls and using the to most frequentlyapplied priniple, the number of rolls sampled should be relative to the square root ofthe total number of rolls in the onsignment. desribed in detail in [44℄.From eah sampled roll, a few sheets of paper are ut with a minimum size of 300×450mmThe sheets are ombined into one sample set that is randomised by areful mixing. Fromthese larger sheets, test piees an be ut based on the spei�ations of the di�erentinspetion tests.The next requirement for paper inspetion is the testing environment. Wood �bres arenaturally hygrosopi and thus paper easily absorbs moisture from the ambient atmo-sphere or releases moisture if the atmosphere is drier than the moisture ontent of thepaper. The moisture ontent of the paper a�ets almost all of its physial properties.Therefore the preferred onditioning limate is 50 ± 2%RH and 23 ± 1oC [41℄. Otheralternative allowed in tropial ountries is 65% and 27oC. The normal onditioning timefor paper is usually 4 hours whih is relatively long sine the absorption or desorptionrate of moisture from and to paper is quite fast, it happens in the �rst minutes afterthe paper is moved from one atmosphere to another. Temperature is not as ruial aparameter, although it has been standardised mainly to keep the relative humidity withinaeptable limits.The most basi properties of any paper or board inlude moisture ontent, basis weight,thikness, density, and �ller ontent. Paper and board trade is based on weight, thereforebasis weight links the paper weight to its surfae area. Thikness and density on the otherhand desribe the paper struture.The moisture ontent of paper is determined simply by weighting the paper before andafter drying at 105 ± 2oC as per [40℄. Moisture ontent is expressed as a perentage ofthe weight of the moist sample. Basis weight (grammage) is the weight per unit area ofpaper and board, expressed in g/m2. This is determined by weighing a piee of paperwith a known area as desribed in [42℄. Thikness is measured in miro meters (µm). It ismeasured by using a thikness gauge at a paper sheet or sheets of paper ompressed witha given pressure between two parallel plates. Density then is obtained as a ratio betweenthe basis weight and thikness of the paper. Filler ontent is obtained by igniting thepaper sample at 900oC as per [43℄ or at 525oC, depending on the �ller omposition.Sti�ness relates to a material's elasti properties and measures how muh the materialresists when it is deformed by an external load. Paper sti�ness is usually measured astensile sti�ness and bending sti�ness. Tensile sti�ness is measured by subjeting thepaper to a fore parallel to the paper surfae, the resulting deformation is elongation.This measure an be obtained at the same time with the tensile strength test. Bendingsti�ness measures the paper's ability to withstand a bending fore when one end of thepaper is tied down and the a fore applied to free end. Methods for performing the testvary, but perhaps the simplest way is to use the paper's own weight and measure how



18 2. Paper quality inspetionmuh gravity bends the paper from the horizontal level when one end is supported andthe other hangs freely.Other things to note about paper measures is the diretion of �bres in the paper. Mostmahine made papers have the �bres aligned in the mahine diretion of the paper. Thisanisotropy is referred to as �bre orientation or paper diretionality. Fibre orientation hasa strong in�uene on paper properties depending on the diretion of the paper. Whenresults are reported, the diretion of the test in relation to the paper should always begiven. Depending on the manufaturing tehnique, the two sides of the paper an alsobe di�erent, therefore if neessary, the properties of both sides of the paper should bemeasured. A review of di�erent tests for paper oatings are presented in [96℄, some ofthe tests presented in the paper are also appliable for inspeting plain unoated papers.Next the di�erent properties of paper are onsidered.2.1.1 Strength propertiesTensile strength an be used to desribe the general strength of any material. For paper,it is the maximum fore per unit width that a paper strip an resist before it breaks whenthe load is applied parallel to the length of the paper strip. Tensile strength is expressedin kN/m. The measure is dependant on �bre orientation and therefore the measurementdiretion should always be mentioned. Zero-span tensile strength measures the strengthof individual �bres instead of that of the paper. It is a speial ase of tensile strengthtesting.Bursting strength indiates how muh pressure the paper an resist without breaking.The pressure is applied perpendiular to the paper surfae. The unit for bursting strengthis kPa. The bursting strength test is an old test for paper strength and it was developedempirially.Internal tearing resistane measures the mean strength required to ontinue paper tearingfrom an initial tear in a single sheet of paper. It is very muh dependant on the �breorientation and therefore the diretion in whih the measurement is done should alwaysbe mentioned. The unit for expressing tearing strength is newton (N) or millinewton(mN).Folding strength measures the paper's ability to withstand folding without breaking undera ertain load. The load is onstant but is usually muh lower than the tensile strengthof the paper. The folding strength is expressed diretly as the number of double foldingsthe paper an withstand. The test is old and has present day uses when measuring paperaging, also banknotes are subjeted to this test.The surfae strength of a paper tells the paper's ability to resist fores that pull �bre or�bre bundles from its surfae. Low surfae strength may ause linting and runnabilityproblems in rotogravure printing or even destroy the printing result. Linting is a termthat means slow aumulation of loose material, suh us �bres from a paper surfae, ontoa printing blanket and inking unit in o�set printing. It a�ets how ink transfers from theprinting plate to the paper and auses loss of details in the print. The piking propertyis very similar to linting, the main di�erene is that in linting the material an be totallydetahed from its original loation whereas in piking, the material suh as �bres are atleast partially bonded with the paper. Dusting is a term used to desribe loose olour



2.1 Paper quality properties 19pigments on the paper surfae and it is losely related to linting and piking. Surfaestrength is usually measured with high visosity, taky oils or printing inks. The testsample is printed with at a ontinuously inreasing speed and the speed at whih thepiking starts is measured. The produt of the speed and print oil or ink visosity is themeasure of the surfae strength.The Z-diretional strength of a paper measures the paper's ability to resist tensile loadingin a diretion perpendiular to the paper surfae. After the Z-diretional strength limitof the paper is reahed, the paper struture breaks inside the paper but not at its surfae.Essentially the paper is split into two parts so that the paper surfae does not get damagedon either side. This kind of loading of paper happens often in o�set printing and ertainonverting operations suh as orrugating, folding and plasti oating.2.1.2 Surfae propertiesThe most important surfae properties of paper are surfae strength, roughness or smooth-ness, frition and gloss. Surfae strength was desribed earlier in setion 2.1.1. Papersmoothness or roughness desribes paper surfae topography. Paper smoothness is ob-tained by measuring air�ow between a paper surfae and measuring surfae or edge.Information needed for these measures are pressure di�erene used to reate the air�ow,pressure of the measuring head against the paper surfae, and the area of the measuringhead. The volume of air �ow per time unit is reported as roughness and the time for aertain air volume to stream out is alled smoothness.Frition has two main measures, stati frition and kineti frition. Stati frition anbe measured by attahing one paper to a surfae and another to the bottom of a sled ofknown weight. Next the sled is plaed on top of the paper attahed to the surfae andthen the sled an be either pulled with an inreasing fore or the surfae inlined untilthe sledge starts to move. Kineti frition an be obtained by pulling the sled over thepaper on the surfae at onstant speed and by measuring the average frition fore overa spei�ed length of sliding. More variations to the measures are obtained by hangingpaper orientations.Gloss measures the interation of light and the paper surfae. There are four basi wayshow light an interat with paper and usually they all an happen at the same time.Figure 2.1 shows what an happen when light hits a paper surfae. Gloss measures thepaper's ability to speularly re�et light. High gloss is desirable in high quality paperwith many images. Paper with high gloss has a wider tone range than that of a mattesurfae. The downside of high gloss is that it usually impairs the readability of text andtherefore in textbooks it is a highly undesirable property.Gloss an be measured in many ways but the paper industry has adopted a 75o speulargloss method. The angle refers to the angle at whih the light is projeted onto the papersurfae and the angle at whih it is viewed. The angle is given from the perpendiularto the paper surfae. This angle was seleted beause it had the best orrelation withvisually pereived gloss. With gloss it is also important that the gloss is as even aspossible, the higher the gloss the easier it is for a human to detet unevenness of gloss.



20 2. Paper quality inspetion
Table 2.1: Examples of tests used for desribing the funtional requirements ofpaper produts [55℄. Tests that relate to the topi of this thesis are in bold.Required behaviour of paper Measurable propertiesSu�ient strength Tensile strengthBursting strengthTearing strengthZ-diretional strengthSuitable struture DensityAir permeaneCorret optial properties BrightnessOpaityColourSuitable surfae properties Smoothness or roughnessSurfae strengthSu�ient sti�ness Bending sti�nessConora medium testCrush testEdge rush test
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Transmission ScatteringFigure 2.1: Light interation with paper



2.2 Paper printability and runnability 212.1.3 Absorption propertiesAbsorption properties are important. In printing it is important to know how well ink orprinting oil an adhere to a given paper type. Water repelleny of a paper an obtained bymeasuring how muh water it an absorb in a ertain time period. This kind of measureis important for example in the prodution of tissue papers. Another way to measureabsorption properties is to pull a liquid �lled nozzle over the sample at varying speeds.The liquid in the nozzle an be oloured water or printing oil. During the movement theliquid �ll the avities of the paper and partially absorbs into the paper sample. At eahspeed the amount of olour absorbed is measured and in this way the amount absorbedan be estimated as a funtion of time.[83℄.For printing papers, the absorbeny of paper is often measured with printing tests. Aommon test used to measure how well ink absorbs to the paper is the ink stain testwhere ink is hand-smeared to a paper and then the ink shape is used to estimate thepaper struture and evenness. A problem with this method is that it does not orrelatewell with other laboratory tests or with atual printing proesses. The main reason isthat the interation time between the ink and the paper in ink stain test is muh longerthan in atual printing.Rotogravure printing requires a spei� test to measure how well ink absorbs to a pa-per. The greatest problem with rotogravure printing involves the reprodution of lightand medium tones. Defets that appear are missing dots and waving. Waving defetsare elongated density defets with an area about 1mm2 perpendiular to the printingdiretion [73℄. Missing dots are inevitable at 5% half tone but disastrous when ourringat 20% to 30% half tones [73℄. The number of missing dots is a traditional measure ofrotogravure printability of paper. In laboratories, the Heliotest indiates the number ofmissing dots. The test pattern is a 110 mm long and 8 mm wide raster where the tonehanges from dark to light. The size of the printed dots dereases towards the end of thetest pattern [53, 13℄. The quality of the paper is de�ned as the distane from the darkerend of the test strip to the 20th missing dot on the strip. The longer the distane, thebetter the printing quality. Fig. 2.2 shows a sample image of a Heliotest strip.
Figure 2.2: Sample Heliotest strip with the measurement area, i.e. the areawhere the missing dots are measured, (110mm ×8mm) marked on the image.2.2 Paper printability and runnabilitySome of the properties desribed in the previous setion relate to printability and runnabil-ity of paper. Printability is a quality potential of paper for a ertain printing proess.Good printability means that the paper in question is not very sensitive to di�erentprinting proess variables and always produes good print quality. De�ning printing



22 2. Paper quality inspetionquality is however not absolute. It is dependant on the �nal use of the printed prod-ut. Some, but not all, properties that an be used to measure print quality are printdensity, resolution and evenness of the printed image. Printability tests depend on theprinting proess involved. Some tests are appliable for general printability inspetionwhile others are dependant on the printing proess. Paper absorption and surfae prop-erties relate losely to paper printability. A review of measures related to paper oatingsurfaes, paper strutures and printability an be found in [13℄.Runnability generally means the maximum speed of a printing mahine possible withoutenountering any problems. Paper strength and surfae properties a�et the runnabilityof paper. Poor runnability is anything that an redue printing e�ieny, and insu�ientrunnability of paper an result in web breaks that suddenly stop prodution. More subtleways of enountering runnability problems are umulative e�ets suh as linting, dusting,or piling whih require proessing to be stopped and maintenane leaning operations tobe performed. Slow drying times also a�et the printing speed. Separating the inspetionof printability and runnability an be di�ult sine printability problems often originatefrom runnability problems and vie versa.Runnability is an essential problem for all printing papers. Runnability problems betweendi�erent printing methods, suh as rotogravure, �exographi, o�set and even digitalprinting generally do not di�er very muh. Relevant di�erenes appear between webprinting and sheet printing. In web fed presses, good runnability means that the paperwill run through the printing mahine at planned speeds without problems and withfew ompliations suh as web breaks, stress variations and �apping. In newsprint, forexample, a frequeny of less than 2 web breaks per 100 paper rolls printed is desirable.Other problems in web printing are raking and blistering. Craking is a phenomenonwhere entral pages ome o� from a book/newspaper due to breaks at staple points.This property is generally related to paper humidity, and web o�set papers are normallyprodued to low humidity to avoid blistering in the drying phase of a printing proess.Unfortunately low humidity paper is brittle and an therefore rak during folding andstapling.Blistering is a problem where the paper �bre matrix ruptures and blisters when steamexpands inside a paper during the high temperature drying sequene that ompletesthe web printing proess. The main properties that a�et blistering are paper moistureontent, porosity of the paper oating layer, internal strength of the paper, ink overageof the paper and drying temperature. Due to very rapid heating from ambient to 100oC-
150oC the moisture in the paper evaporates and tries to esape through the oating layerof the paper or produes blisters if the vapour pressure exeeds the internal bondingstrength of the paper.In sheet fed printing, eah sheet is printed separately. Therefore measuring runnability ismore oriented to di�erent types of feeding, transportation and delivery problems. Paperurl, poor sti�ness and paper surfae properties suh as frition and stati eletriityin�uene sheet fed press runnability.Curling means out-of-plane movement of a paper. Curl an result from di�erent �breorientation or �bre bonding on di�erent sides of the paper. Fibre swelling and shrinkagedue to moisture variations an also indue urling.



2.3 Mahine vision in quality inspetion 23Stati eletriity refers to a paper's apaity to harge itself and the time required todisharge itself. Highly harged sheets ollet dust easily and easily adhere togetherwhih will ause runnability problems.Some paper properties a�et runnability from a ertain time after starting to print.Suh time dependant problems our basially due to interation between the paper andprinting ink. Linting, piking and piling are typial time dependent runnability problems.2.3 Mahine vision in quality inspetionWhen talking about omputer vision, the topi an be separated into two main �elds,namely omputer vision and mahine vision. The distintion between the two is a bitvague, but roughly it an be said that omputer vision's ultimate goal is to emulatehuman vision [23℄ whereas mahine vision is merely interested in using sensors attahedto omputers in industrial appliations in whih robustness and simpliity are the mainvirtues. Many quality inspetion tasks today have been automated using omputer-and amera-based systems. Earlier the omputation power required by mahine visionappliations has somewhat deterred its use for industrial purposes. Now all is hanging,as the �eld of siene has matured and methods improved. The omputational powerof modern desktop omputers has inreased quite rapidly, whih has made it possible touse methods that were omputationally too omplex in the past. interest inThe bene�ts of automation are quite lear. Cameras do not strain like human eyes doand the results are almost always repeatable, whih is another huge bene�t over human-based quality inspetion. Repeatability of inspetion is very important when it must beguaranteed that two bathes of a produt meet the same quality riterions. Sometimesit is not viable to do the quality inspetion by human visual inspetion. Suh a ase anbe, for example, loating defetive solder joints on iruit boards. The number of solderjoints on one hip an be in the thousands and using somebody visually inspeting eahsolder point repeatedly is not e�etive [2℄.Typial mahine vision systems today onsist of a single or multiple CCD ameras andan ordinary desktop omputer (see Fig. 2.3). Typial mahine vision appliations requireonstant lighting onditions so that the obtained images remain onstant or in order toensure that fast moving objets are su�iently illuminated for high speed ameras. Afterthe image aquisition, the image is usually preproessed in order to enhane ontrast orto remove noise [97℄. This an be done with speial hardware or by omputer. Furtherproessing then allows more sophistiated image manipulation suh as edge detetion,ontour traking, thresholding, feature extration and objet reognition. These featuresan then be analysed by speially designed software whih an then deide whether ornot the imaged objet meets the spei�ations needed and reats aordingly by markingthe defetive part or by removing it from the prodution line [97℄. The bene�ts of usingsimple o� the shelf ommerial ameras ome from upkeep and maintenane. It is rathereasy and usually heap and fast to obtain spare parts if they an be found in almostevery eletri hardware store [60℄.Of ourse there an be more demanding tasks whih an require some kind of robot toinspet plaes where it is di�ult or dangerous for a human to go. An example of suhan appliation is water pipes inspetion [62℄ or a nulear plant where the radiation is a



24 2. Paper quality inspetionproblem [60℄. It is impossible for a human to �t into a small water pipe, but a spei�robot has been developed for just that kind of task [62℄. Naturally not all tasks are asdemanding but an still bene�t from omputer vision based quality inspetion systems.In fat suh systems an be found in many industrial areas. Automati visual qualityinspetion is used, for example, for pulp [9, 11℄, metal [63℄, print [95℄, wood [71℄, textile[66℄ and eletroni omponents [2, 97℄. A more thorough overview of reent industrialmahine vision systems and appliations an be found in [60℄ and earlier surveys in[65, 14℄.Setion 2.1 introdued measures for paper properties. Next some automated methodsfor measuring paper properties are introdued. It is good to keep in mind, though, thatmost of the tests mentioned in Setion 2.1 are still performed manually by laboratoryexperts. Speial emphasis on this survey is put on methods that have been used for theHeliotest (introdued in Setion 2.1.3) and piking test (Setion 2.1.1) sine they are themain topis of this thesis. A brief overview of some methods that are used for qualitymonitoring in steps when wood is proessed to paper are introdued in order to givesome understanding of what happens during the paper making proess.2.3.1 Paper making proess analysisComputer vision based systems are used quite widely in the paper industry. Woodenhips that are used for making the pulp are analysed based on the olour of the hips onthe onveyor [85℄. Colour information an reveal how muh bark and how muh woodthe hip �ow ontains. All measurements are done online during prodution. As this isa ommerial produt, detailed information about the olour analysis is not available.The omposition of pulp an be analysed using mahine vision. The speed at whihthe pulp moves on the onveyor and the high resolution required ditates that speialarrangements regarding hardware is required. The hardware onsists of several CCDamera lines that shift their eletrial harges from one line to the next one in synhro-nisation with the inspeted produt movement. This shift proedure is performed insuh a way that an image of eah produt line is aquired in several positions and thesingle aquired images are added to eah other by the amera eletronis in order to pro-
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2.3 Mahine vision in quality inspetion 25due a single line-image that has several times more dynami range than a onventionallinear amera, therefore allowing impurity detetion under the appropriate inspetionrequirements [9℄. The obtained images are sharp, but their lighting is not homogeneous.Therefore the images an not be thresholded with uniform threshold to detet impuritiesbut instead a setion of image is hosen from eah image. Eah of these setions havemore even lighting distribution. To further enhane lighting evenness, the darkest andbrightest images are removed from the blok image series. After these images have beenremoved, the mean and standard deviation of the remaining images are alulated andthis information in turn is then used for setting appropriate threshold [9℄. Impurities inpulp are then detetable by thresholding. A similar system is proposed in [8℄, where thepaper making proess is imaged on-line using a TDI (Time delay integration) amera.Neural networks are used to train �lters whih in turn an be used to detet defets fromthe on-line images.A system for deteting a dry line at the wet end of a paper mahine is introdued in [7℄.The dry line of paper is the loation where water disappears from the surfae of the pulpweb in the wet end of a paper mahine. In the study in [7℄ a standard CCD-amera wasused with some speial lighting arrangements to image the dry line of the paper web.From the images a dry line edge pro�le is extrated and it is ompared to basis weightand moisture data. The edge pro�le data orrelates well with basis weight and thereforethe edge pro�le information near the wet end of the paper mahine an be diretly usedto ontrol the paper making proess. A omparable method is also proposed in [50℄. Theontribution of the authors is the way amera is positioned next to the paper mahine,instead of above it. This plaement makes amera maintenane easier and the amera isnot subjeted to the moisture and hot air above the paper mahine.Performane and suitability of CCD line ameras for paper web inspetion is reviewedin [52℄. In the paper CCD line amera performane is analysed regarding its hargetransfer e�ieny whih in turn a�ets the imaging response of the amera. Camerasuitability for use in paper web inspetion is studied by deteting streaks in the paperweb at di�erent loations of the amera ell.The appliation of Fourier transform for examining the dimensions of a paper web isintrodued in [27℄. Ways of obtaining non blurry still images from a fast moving paperweb (up to 20 m/s) are also studied. In their earlier paper [26℄ Hansson and Mannebergstudied the suitability of Fourier transform for measuring paper dimensions and �breorientation on a stationary paper.In [89℄ 9 di�erent texture feature extration methods for haraterising paper propertiesare ompared. The aim of the work was to study the suitability of the di�erent texturefeatures for lassifying papers into di�erent grades. The features were lassi�ed basedon unsupervised learning. The data was also visualised by using a self-organising map(SOM) to map the multidimensional feature vetors into a more easily understandable2-dimensional map. The authors onlude that best lustering results are obtained byusing a loal binary pattern to obtain the texture features. They suggest that a SOMand feature extration ould be used on-line to haraterising paper during paper makingproess. Based on the paper harateristis, a paper mahine ould be adjusted on-lineby using the information provided by the SOM and the extrated features.



26 2. Paper quality inspetion2.3.2 Paper produt analysisIn [33℄ Ho and Smith present a way to measure basis weight, width, and moisture ontentonline. Labelling this as a mahine vision appliation is somewhat questionable sine nopattern reognition is used nor atual images grabbed from the paper. Instead the papermahine's own sensor information is used. First, paper mill personnel set limits fordi�erent properties like basis weight. Then, the system olour odes this informationto a quikly understandable form so that the paper mahine operators an have a goodoverview of the general quality of the paper they are making. Quantisation noise in thesensor data is redued by low-pass �ltering.In [18℄ Don et al. desribe a method whih produes a 3D image of a paper. The proessis quite straight forward where the paper is slied with a speial purpose mahine alled amirotome. Mirotomes are designed to ut uniform slies for mirosope imaging. Aftersliing, a mirosopi image is taken from the paper slie on whih the analysis is to bedone. The system is meant to analyse paper oating used on high quality papers. Thepurpose of the oating is to �ll avities and ovets on the paper's surfae. The distintionbetween the paper and the oating is based on olour information. Beause there aredi�erent oatings, user intervention in the beginning of the proess is required. A usermust loosely mark the oating on the �rst image so that the olour of the oating an beknown. No spatial information is stored. The deision if an image pixel is oating or notis based on olour information of the urrent pixel and also pixels adjoining the urrentimage. After the whole sample is slied, a 3D image of the sample an be formed withthe oating and paper segmented separately. Naturally this proess is time onsumingand it also destroys the sample.In [6℄ Bergman et al. use a rather omplex olour segmentation tehnique to evaluateink dots on a printed pattern. First, the printed pattern is imaged with a standard CCDamera. Then the obtained image is onverted from RGB olour spae to CIE L∗a∗b∗olour spae. This is done to avoid the distane measurement problems inherent in theRGB olour spae. Namely the metris in RGB olour spae do not represent olourdi�erenes on a uniform sale therefore making it di�ult to evaluate the similarity ofdi�erent olours based on their distane in RGB spae. The segmentation is done inthree steps. First, parameters for rough initial segmentation are obtained using a FuzzyKohonen lustering algorithm. After segmentation the resulting image is eroded using abinary erosion algorithm. Fine re�nement of the segmentation is then performed usinga fuzzy luster volume algorithm to learn the parameters of the re�ned lusters. Initialrough segmentation uses only olour information in order to speed up proessing, the�nal re�ning segmentation step uses also the pixel's spatial information. Rough initialsegmentation information is used to obtain balaned training data for the atual re�ning�nal segmentation. The purpose of the erosion operation is to prevent the initial roughsegmentation from seleting unertain pixels that are loated near the edges where olourshange. After �nal segmentation the shape of the ink dots an be analysed.A theory for a olour histogram based printing quality assessment method is presentedin [59℄. Initially the illumination of the image has to be normalised sine histogrambased methods are quite sensitive to illumination hanges [59℄. This is done based ona method proposed in [29℄. After illumination normalisation the dimensionality of theolour histogram is redued by projeting it into RG, GB and BR olour planes. Next



2.3 Mahine vision in quality inspetion 27the three planes are rotated and summed. In order to further redue dimensionality afourth-order moment is alulated for the summed matrix. Finally eigen-values fromthe fourth-order moment are alulated and are used in a supervised three layer neuralnetwork for image lassi�ation. The proposed system an detet olour di�erenes ofsimilar images under di�erent lighting onditions, but annot detet any spatial hanges.In [48℄ a thermal imaging amera is used for various paper quality property inspetiontasks. Aording to the study, amera response does not diretly measure, for example,paper urliness right after it has been printed. Instead the variations in thermal imageorrelate well with for instane paper urling after the paper has been heated in theprinting mahine.Two prior methods have been proposed for ounting the missing dots in gravure printing.The �rst method [31℄ uses morphology to loate the missing dots. The proedure is quitestraightforward. First the input image is onverted to a binary image by thresholding,after whih the median of the dot size is alulated. Next a series of dilations areperformed until the area overed by the swelling dots reahes a prede�ned threshold.After the dilation step the image ontains mostly missing dots and some noise. Noise isremoved based on the estimated size of an atual dot. The size of the missing dot hole isestimated statistially from the dilated image. Finally, after noise removal, the missingdots are estimated based on the size of the hole in the dilated binary image. If multiplemissing dots are next to eah other, then the �large� missing dot is divided by the sizeof the single missing dot in order to separate the multiple missing dots from eah other.This method works quite well if the missing dots are not grouped but with multiplemissing dots near eah other the method struggles to di�erentiate the atual number ofmissing dots in the missing dot luster [31℄. Determining the stopping threshold for thedilations an also be problemati. Numerous missing dots an mean that dilations arearried on even when the dots have already merged and and after a while atual missingdot �holes� get overed with the swelling dot area until the threshold is reahed.Another approah to alulate the number of missing dots in gravure printing was pro-posed in [53℄. First the input image is �ltered using a ombination of median andminimum �lters.
yij = med(z1, z2, z3, z4)
z1 = min(xi,j−v, . . . , xi,j . . . , xi,j+v)
z2 = min(xi−v,j , . . . , xi,j . . . , xi+v,j)
z3 = min(xi+v,j−v, . . . , xi,j . . . , xi−v,j+v)
z4 = min(xi−v,j−v, . . . , xi,j . . . , xi+v,j+v)

(2.1)where xij is the grey level pixel value at loation i, j, v is a onstant that de�nes theregion of interest. Med() denotes median of values in parenthesis and min() denotesminimum of values in parenthesis. The idea of the median/minimum �lter is to alleviatethe strong tendeny of a minimum �lter to expand dark (dot) area. After pre-proessing,the image is �ltered using a mathing �lter that is designed to �nd dark areas that aresurrounded with white areas. Aording to the author, several templates were tested butthe exat design seemed to have little signi�ane provided that it is of the right type[53℄. Template mathing is implemented by using onvolution �ltering. The deisionto aept a response as a missing dot is based on the size of the response. Supervisedlearning is used to teah a proper threshold value for the size of the response. Due to the



28 2. Paper quality inspetionlarge size of Heliotest samples, the samples are imaged in parts and a threshold for eahpart is taught separately. The problem with this method is the same as in [31℄, namelywhen the missing dots are lustered next to eah other, the template mathing fails dueto fat that the missing dot area is larger than originally antiipated.Artile [30℄ introdues an on-line method for deteting missing dots from printed paper.An optial method for ounting missing dots based on optial Fourier analysis is used.First the method is analysed and the optial Fourier transforms response is derived ana-lytially. Optial Fourier transform is obtained by using a speial imaging arrangement.Details about the arrangement an be found from the artile. In the analytial analysis ofoptial Fourier transform, the authors �rst derive Fourier transform for a perfet sreendot pattern with dot-to-dot interval a and dot size b. The objet is limited by a irularaperture with diameter D. This limitation of the �eld of view makes the omparison ofintensities in the Fourier plane possible. The result of this Fourier transformation is aFourier pattern with the same kind of symmetry as the original image. Separation ofpeaks in the Fourier plane however is inversely proportional to the orresponding dis-tanes in the original spatial sreen dot pattern and the width of the peaks is muhsmaller than the diameter b of a sreen dot. The main result of this transformation isa Fourier plane with intense entral peak surrounded by regular peaks with dereasingintensities as they progress further from the entral peak.Next dots are randomly removed from the perfet sreen dot pattern and a Fourierplane equation derived for this imperfet sreen dot pattern. The imperfet pattern
rimperfect(x, y) an be onsidered to onsist of perfet pattern rperfect(x, y) and of adefet rdefect(x, y) as follows

rimperfect(x, y) = rperfect(x, y) + rdefect(x, y). (2.2)The same was deemed to apply in the Fourier plane. The missing dots in the imperfetdot pattern add light to the entral peak in the Fourier plane and remove light from theother regular peaks. The important result of this phenomenon is that the regular peaksin the Fourier plane stay in their plae but the light transferred from them due to missingdots spreads between the peaks. The intensity of the peaks does not neessarily diminishas the number of missing dot inreases, but rather osillates. Therefore the number ofmissing dots an be estimated by measuring intensities between the peaks. In pratialexperiments the authors on�rm that atual measurements are in good agreement withtheir theoretial preditions. The method an alulate the number of missing dotsfrom an image, but it does not return loation information about the missing dots andtherefore is not suitable for the Heliotest.Some ommerial appliations [21, 38, 51℄ for paper quality assessment also exist, [38℄ forexample uses loal binary patterns in analysing paper surfae. Unfortunately as theseare ommerial produts, detailed information about these methods is not available.2.4 SummaryQuality ontrol via automation is gaining popularity as methods in omputer vision getfaster, more re�ned and more aurate. Appliations that were possible but not pratial10�20 years ago are very muh appliable today as the omputing speed of omputers



2.4 Summary 29has inreased and heaper ameras have appeared. Espeially in industry, line amerasare often used. The ameras are fast and simple image proessing tasks an be done at aamera hardware level therefore reduing the proessing power required by the omputersoftware.In the paper and printing industry, many tests have not yet been automated, e.g., propo-sitions how to automate the piking test have not been found during the ourse of theprojet. Some of the tests require speial arrangements in whih automation is not pra-tial due the neessary user interation involved. Some tests on the other hand ouldbene�t from automation: Results would be more repeatable and the likelihood of humanerrors would redue. Examples of suh tests are the piking test and the Heliotest. Bothhave de�nite features that are measured and both are straining for humans to performfor long periods of time.
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Chapter IIIPrintability evaluation by ounting missing dots

This hapter desribes automati inspetion methods for rotogravure print inspetion.The inspetion is onduted by alulating missing dots from rotogravure printed He-liotest strips. The Heliotest was introdued in Setion 2.1.3. In the Heliotest, dots areprinted on a paper. Some of the dots an be missing sine, for various reasons, theink is not absorbing on to the paper perfetly. The distane from the beginning of theprinted area to the 20th missing dot on the strip is an inspetion property widely usedin industry. Fig. 3.1 shows a detailed part of a strip.
Figure 3.1: Part of a Heliotest strip, dots and some missing dots in the imageare visible.3.1 The Heliotest printability testAs disussed in Setion 2.2, printability desribes how well a paper reprodues the originalartwork. The test is performed under standard atmosphere 23.0±1.0 oC and 50±2% rh.The test print is performed at 1m/s with a speial Heliotest ink. A formal desriptionof how to perform the Heliotest is introdued in [36℄ as follows:1. Starting from the side with the largest dots in the variable sreen area ountthe missing dots until the 20th one. 31



32 3. Printability evaluation by ounting missing dots2. Measure the distane in mm from the 20th missing dot to the beginning of thevariable sreen area.3. In the ase when the distane is very small (only a few millimetres) ount thetotal number of missing dots in the four dotted lines on both sides of the variablehalf tone.4. Repeat Steps 1 and 2 or 3 for eah test strip.5. Calulate the average and if required the standard deviation. In some ases itmay be useful to mention the highest and lowest value as well.6. If needed, assess the printing quality visually in the onventional sreen area.The di�erent sreen areas of a Heliotest strip are shown in Fig. 3.2 The half-tone area isprodued by a printing disk that ontains the dot pattern arved on the surfae of thedisk. The diameter of the arved dots remains the same throughout the disk but thedepth hanges in order to produe less intensive half tones. Deeper engraves produedarker tones and larger dots and shallower engraves produe lighter and smaller dots.The half-tone print produed by the printing disk is the area from whih the 20th missingdot is measured and is therefore the most important part of the print.A onventional sreen area is used for general visual assessment of the printing quality.Although it is seldom used sine it does not provide muh information.Two lines of dots on both sides of the half-tone area are used if the atual half-tone areaontains too many missing dots right from the start. In that ase, the total number ofmissing dots is alulated from these lines. This an happen if the paper is very rough.In pratie, this information is very rarely used.The use of this test as a good measure of printability has been alled into question sinethe results obtained in laboratory tests with the Heliotest have not neessary orrelatedwell with atual online printing results [73℄. Nevertheless, the measure is important forthe paper and printing industry.3.2 Overall struture of the automated Heliotest methodThis setion gives an overview of how the missing atom (in the Heliotest images, missingdots) detetion methods work. The �rst step when performing missing atom detetion isimage aquisition. It will be disussed in setion 3.3. After the image has been aquired,it will be onverted to grey level. Instead of using a linear onversion, a method basedon Bayesian-deision making is used, resulting in muh better ontrast in the grey levelimage. The method is desribed in setion 3.4.The grey level image is then subjeted to the 3 methods proposed in setion 3.5. Thebasi idea behind missing atom detetion from images omes from the properties ofFourier transform. The repeating pattern in the spatial image auses repeating peaks inthe Fourier domain. By utilising this information the faultless repeating pattern of theoriginal image an be obtained whih an then be used to detet missing atoms fromthe original faulty image. Finally the proposed methods are tested in the experimentssetion 3.6.



3.3 Image aquisition 333.3 Image aquisitionThe requirements for image aquisition in the Heliotest are rather demanding due tothe high resolution required. The diameter of an individual dot in a Heliotest sample isaround 140 µm whih ditates that the resolution of the image should be around 1200dpi (dots per inh). At that resolution, the individual dots will be around 5-15 pixelsin diameter, depending on whih part of the Heliotest strip is aquired. The resolutionlevel means aliasing is avoided sine the dots form the highest frequenies in the Heliotestimages and the dots themselves are not very sharp from the edges due to ink spreadinginto the paper.Image enhanement based on olour information is performed in order to distinguish grey�dirt�, suh as dust, from the red printed dots. In laboratory onditions, a su�ientlyaurate �atbed sanner an be used, but in pratie, the samples may be wet withprinting ink and therefore ontat is not desirable.3.4 Converting a olour image into a grey level imageAfter the half-tone sreen area has been loated from the input image, it is onvertedto a grey level image. Linear grey level onversion, however, introdues poor ontrast inthe resulting grey level image. So ontrast enhanement is required in order to betterdistinguish dots from the bakground and �dirt�. Ordinary onversion from a RGB imageto a grey level, i.e. summing the individual hannels and dividing by 3, introdues poorontrast in the grey level image between the dots and the bakground whih in turnmeans that thresholding in later steps of image proessing is di�ult. Therefore a moresuitable onversion method for the olour image to the grey level is required. This anbe ahieved by doing the olour onversion and ontrast enhanement simultaneously,instead of onseutively. Fig. 3.3 demonstrates the di�erene between ordinary grey levelonversion and the proposed method. If an image ontains any unevenness in lighting,it should be ompensated for before applying ontrast strething or olour image to thegrey level image onversion.The objetive of ontrast enhanement is to preproess the image so that relevant in-formation an be either seen immediately or proessed further more reliably. Thesetehniques are typially applied when the image itself or the devie used for image rep-resentation provides poor visibility and harateristis of di�erent regions of interest inthe image. The reason for the poor representation an be a high dynami range of pixelintensities when displays annot reprodue them, a narrow dynami range over the theregions of interest, or even inompatibility with the human observer. The most importantappliation areas for ontrast enhanement are medial imaging [98℄ and visualisation ofimages with a high dynami range [70℄. The enhanement is usually performed to pro-due a better representation for a human observer, but properly enhaned images analso enable more aurate and more reliable results in general image proessing tasks,suh as segmentation, due to an enhaned signal-to-noise-ratio.A reversible and fast ontrast enhanement is often preferred, e.g., in medial imaging.Therefore, the methods typially exploit histograms. The histogram an be multidimen-sional, suh as a 3-D olour histogram, but most methods assume a 1-D histogram is



34 3. Printability evaluation by ounting missing dots

Figure 3.2: Detailed desription of Heliotest print.
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1600 ()Figure 3.3: Example of olour enhanement: a) Original RGB image; b) RGBimage onverted to grey level image; ) Original RGB image in gray level afterontrast enhanement.



36 3. Printability evaluation by ounting missing dotssu�ient, resulting in separate proessing of the olour omponents in the enhanementproess. The baseline method for ontrast enhanement is histogram equalisation [25, 35℄,but the method does not utilise any information about whih regions should be empha-sised. This �blind� equalisation often leads to a representation where image noise isampli�ed, and the properties aiding separability of di�erent image regions deline [98℄.The ampli�ation of noise may be avoided to some extent by loal proessing [98℄, but anundesired result is the loss of rank order of image intensities. It seems that estimation ofthe bakground and foreground, either manually or automatially, is neessary for su-essful ontrast enhanement. Manual estimation would make the solution trivial, butautomati estimation still remains a hallenging problem. Automati estimation maybe based solely on the intensity information, or it an inlude also analysis of spatialrelationships.Atual ontrast enhanement is based on strething the pereivable dynami range be-tween the estimated regions (visual enhanement). In visual enhanement, pseudo olour-ing [82℄ or multiple images are used to arti�ially emphasise the ontrast [70℄. The use ofmultidimensional data is, however, di�ult for many image proessing tehniques, suhas frequeny- or sale-spae methods. Therefore, multi-representation is generally a goodsolution only for visualisation purposes.In this setion, olour onversion and enhanement is presented as a method to projet N-dimensional image data to a 1-dimensional (grey-level) image whih possesses a maximalontrast between the foreground and bakground. The main reason for the grey-levelimage representation is to allow the use of standard image proessing tehniques, eventhough it an also be used for visualisation purposes. In the simplest ase, the imageis bi-modal, i.e., there are two regions of interest. In this ase, the maximal ontrast isahieved by binarisation. Binarisation, however, does not provide optimal ontrast dueto the presene of noise. To ahieve better ontrast, Bayesian inferene and posteriorivalues are utilised in the enhanement. Similar approahes have been used, for example,in thresholding [49℄ and olour segmentation [72℄. The proposed olour onversion andontrast enhanement is analytially studied with simulated data, and the e�ieny isalso demonstrated with real images.3.4.1 Colour to grey onversion and ontrast enhanementSuessful ontrast enhanement produes an output image where the dynami range ofoutput spae values is organised to emphasise the separation between regions of seman-tially di�erent lasses. It should be noted that there exists no de�nition for optimalontrast enhanement, but the desired result depends on the appliation. A similar butmore unambiguous problem is image segmentation in whih regions of similar harater-istis (texture, olour, et.) should be automatially labelled with the same label. Forinstane, in olour segmentation it is assumed that di�erent olours belong to di�erentsemanti regions. The input spae, typially the RGB or HSI olour spae, is mapped todisrete olour labels, and if the assumption holds, desired regions, suh as the humanskin may be revealed [72℄.An optimal output spae for the ontrast enhanement annot be de�ned either: somemethods, suh as histogram equalisation, work on the grey level histogram domain and



3.4 Converting a olour image into a grey level image 37produe a new representation within the same domain, while other methods produe anindex labelled representation (pseudo olouring) or even multiple images.The next part to be addressed is a spei� mapping problem where an N-hannel inputimage (e.g., N = 1 for grey-level images, N = 3 for RGB images) is mapped to a 1-Drepresentation where the maximal ontrast is optimised between M di�erent regions ofinterest. The mapping of M di�erent regions into a single variable is a distint problem,and it will be evident that the posteriori ontrast, as it will be de�ned, provides theminimum error only as biased by the seleted mapping method. How the biased errorrelates to the true error is an information theoreti problem dealing with how the regiondata should be optimally oded into a single variable. The true error an be ahievedonly in the bi-modal ase (M = 2). is generalisable to any number of regions M, however.3.4.2 The bi-modal image modelIn the bi-modal image model, there are two di�erent regions of interest, ω0 and ω1, in theimage f(x, y) where f : (x, y) → ~x. The output spae values ~x of the two regions varywith respet to probability distributions p(~x|ω0) and p(~x|ω1), and the overed area ofthe two regions is de�ned by a priori probabilities P (ω0) and P (ω1). Sine the maximalontrast an be ahieved only by a representation where no ambiguity exists between thetwo regions, the maximal ontrast for the bi-modal image model orresponds to a binaryrepresentation, e.g.,
~x→

{

0, if ~x ∈ ω0

1, if ~x ∈ ω1

. (3.1)Symbols 0 and 1 are seleted here just for onveniene � any other two di�erent symbolsagree with the de�nition. For a bi-modal image, the optimal ontrast enhanement wouldprodue a representation where the pixels belonging to the region ω0 are denoted by onesymbol, and the pixels belonging to the region ω1 by another symbol.It is lear that the maximal ontrast an be obtained by using binary thresholding meth-ods. However, if the distributions of the two lasses overlap, thresholding provides alsothe maximal error for a single pixel if a wrong deision has been made. Thresholdingdoes not generally provide the minimum-error maximal ontrast.For image f : (x, y) → ~x where for all spatial points (x, y) the minimum error for ontrastis obtained by Bayesian inferene if the onditional probability density funtions of thelasses, p(~x|0) and (~x|1) and a priories of both regions P (0) and P (1) are known asfollows
~x⇒

{

0, if p(x|0)P (0) ≥ p(x|1)P (1),

1, if p(x|0)P (0) < p(x|1)P (1)
. (3.2)The Bayesian rule guarantees minimum error in binarisation, and by following this prin-iple Kittler and Illingworth de�ned a method to selet the optimal threshold valueassuming normal distributions for p(~x|0) and p(~x|1) [49℄.If binary representation is assumed, the Kittler and Illingworth method an in this on-text be referened as the minimum-error maximal ontrast. It is lear that there exists aonfusion fator in the binary Bayesian deision. For example, when the posteriories of



38 3. Printability evaluation by ounting missing dotsboth regions are 0.5, the deision favouring 0 would not be the optimal deision. Bina-risation does not allow utilisation of the on�dene information, but if the non-maximalontrast by the real number spae is su�ient, the on�dene an be embedded into theontrast desription. For values between [0, 1], the minimum-error deision orrespondsdiretly to the posteriori values [15℄ as shown below. Sine 0 now represents strong er-tainty of the region ω0 and ω1 of 1, the posteriori of either region an be seleted. Inorder to maximise the ontrast, the value that minimises the error funtion
argmin

V (~x)

error ∀~x (3.3)where error is the expetation of squared error in thresholding de�ned as
error(~x) = P (0|~x)(V − 0)2 + P (1|~x)(1 − V )2 (3.4)where V and 1 − V are the posteriori values obtained by Bayesian deision. error isminimised if V = P (1|~x). By writing the equation into the form
error(~x) = V 2 + (2P (0|~x) − 2)V + 1 − P (0|~x) (3.5)and di�erentiating it regarding V and setting gradient to 0, the result is the minimumof the error funtion.

V = 1 − P (0|~x) = P (1|~x) (3.6)Therefore for a bi-modal image model, the posteriori values provide the true minimumerror ontrast in a mean square sense. Sine this applies to all pixels in an image, themean squared error (MSE) an be omputed as
MSE =

∑

x

∑

y

error(~x)

∑

x

∑

y

1
, (3.7)where ∑

x

∑

y

1 is the number of pixels in an image. The bene�t of this methods is thatunlike in equation 3.2 instead of thresholding an image into risp 1 or 0, unlear pixelsget a value between [0, 1].3.4.3 Estimating probability distributionsBefore the presented results an be applied, the distributions and their parameters,
p(~x|ωi) and P (ωi), for di�erent regions of interest must be estimated. Only one as-sumption is made, the assumption by Kittler and Illingworth is generalised and it isassumed that the probability densities p(~x|ωi) are multivariate normal distributions. Ifno prior knowledge of the distribution type is available, the multivariate normal distri-bution provides a good general solution playing a predominant role in many areas ofmathematis [86℄.The expetation maximisation (EM) algorithm was applied [69℄ for the estimation of Mnormal distributions in N -dimensional input spae.



3.5 Feature extration and deteting missing dots 393.5 Feature extration and deteting missing dotsAs an be seen from Fig. 3.1, Heliotest samples onsist of a regular texture pattern. Thethree basi ways to desribe texture are statistial, strutural and spetral [23℄. Statistialproperties analyse the statistial properties of the points that omprise a surfae in theimage. Typially these point values are omputed from grey level values, although olourinformation an also be used. The strutural approah haraterise texture as beingomposed of simple primitives alled texels that are arranged on the surfae aording tosome rule. The rule an be formally de�ned by some grammar. Spetral approahes aretypially used for periodi 2D patterns in an image. The most ommonly used spetralapproah is the Fourier transform. Its properties an be used to desribe periodiity ofgrey levels of a surfae by identifying high energy peaks in the spetrum.Sine the Heliotest learly presents a regular texture pattern, the most promising meth-ods for deteting this regularity (and onsequently irregularity) ome from the spetralapproah. Di�erent spetral domain approahes an be, for example, Fourier transform,osine transform and Gabor �lters [24℄. The methods were ompared for appliability tothe Heliotest in [76℄. Based on those tests, and prior papers [88, 47℄ about using Fouriertransform for regular pattern detetion, Fourier transform was seleted for further study.In the artile [30℄ the use of optial Fourier transform to detet missing dots from a rasterpattern is proposed. In the artile, an analytial model for obtaining Fourier transformfrom a raster pattern is derived. The model assumes that an image of an in�nite sizeraster pattern is obtained through an aperture D millimetres wide. Fig. 3.4 omparesmagnitudes (absolute values of Fourier spetra) obtained by the analytial model withresults obtained by applying FFT on an image with the same parameters. The di�erenein the images originates from the way they are obtained. The analytial model views anin�nite raster pattern through a round aperture with �nite size whereas FFT performsFourier transformation on a retangular image with �nite dimensions. As an be seenfrom the image pro�les in Figs. 3.4(d) and 3.4(e), both methods produe distint peaksin the Fourier domain. These peaks de�ne the repeating pattern in the spatial domain.3.5.1 Pattern regularityIt is worthwhile to de�ne terms dot and pattern in this ontext. A dot is a partiulartype of texture atom; an indivisible atom whih an be represented for example by a 2-dGaussian funtion. A pattern is a set of spatial oordinates in whih dots are reprodued.When the pattern expresses some degree of periodiity it an be onsidered as regular.Similar de�nitions and results are used in solid state physis and in de�nitions of rystallattie strutures [3℄.Regularity is a property whih means that some mnemoni instanes follow prede�nedrules. In the spatial domain, regularity typially means that a pattern onsists of aperiodi or approximately periodi struture of smaller pattern units or atoms, and thus,it is worthwhile exploring pattern regularity in terms of periodial funtions and espeiallyvia their Fourier transforms. The following is mainly based on de�nitions in solid statephysis and is related to Bravais lattie formulations: A Bravais lattie is an in�nitearray of disrete points with an arrangement and orientation that appears exatly the
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3.5 Feature extration and deteting missing dots 41same from whihever of the points the array is viewed. A two-dimensional (2-d) Bravaislattie onsists of all points with position vetors R of the form
R = n1~a1 + n2~a2 (3.8)where ~a1 and ~a2 are any two linearly independent vetors, and n1 and n2 range throughall integer values. The vetors ~ai are alled primitive vetors and are said to generate orspan the lattie. It should be noted that the vetors ~ai are not unique. Fig. 3.5 shows apart of a two-dimensional Bravais lattie [3℄.
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-Figure 3.5: A two-dimensional Bravais lattie of no partiular symmetry, anoblique net. All the net points are linear ombinations of two primitive vetors(e.g. P = ~a1 + 2~a2, and Q = −~a1 + ~a2).The de�nition of a Bravais lattie refers to points, but it an also refer to a set of vetorswhih represent another struture. A point as an atom an also be replaed with any,preferably loally onentrated, struture. A region whih inludes exatly one lattiepoint is alled a primitive unit ell and ~ai now de�nes the spatial relationship of the unitells [3℄. Unit ells an also be de�ned as non-primitive but in both ases they must �llthe spae without any overlapping. The primitive and non-primitive unit ells are notunique.3.5.2 Fourier transform of 2-d periodi funtionsLet us onsider a funtion f (~r) (where ~r = (x, y)) in whih the spatial domain is aperiodi extension of a unit ell. Periodiity an be formally desribed. Let M be a 2×2matrix whih is invertible and suh that
f (M ~m+ ~r) = f (~r) (3.9)where ~m is any 2-dimensional integer vetor Now, learly, every point ~r in the spae anbe written uniquely as
~r = M (~n+ ~u) (3.10)where ~n is a 2-dimensional integer vetor and ~u is a vetor where eah oordinate satis�es

0 ≤ ui < 1. A unit ell U (M) is the region in spae orresponding to all points M~u. Itan be shown that the volume of a unit ell is V = |detM |.



42 3. Printability evaluation by ounting missing dotsThe set of all points L (M) of the formM~n is alled the lattie indued byM . A point inthe spae orresponds to a point in the unit ell translated by a lattie vetor. Note thata sum of two lattie vetors is a lattie vetor and the periodiity of funtion f impliesthat its value is invariant under translations by multiples of the lattie vetor. A matrix
M̂ an be obtained by inverting and transposing M

M̂ = M−T . (3.11)For M̂ a new lattie and unit ell an be assoiated, alled the reiproal lattie L
(

M̂
)and the reiproal unit ell U (

M̂
), respetively. If we onsider wave number spae, eahvetor ~k is written uniquely as

~k = M̂
(

~κ+ ~ξ
) (3.12)where ~κ is a 2-dimensional integer vetor and ~ξ any real vetor whose ordinates 0 ≤ ξi < 1.The reiproal lattie vetors span the lattie points M̂~κ.The fundamental result is that Fourier transform of a periodi funtion with a unit ellspei�ed by M has a disrete spetrum, with peaks loated at the reiproal lattiepoints spei�ed by M̂ [3℄. That is, the wavenumber vetors are onstrained to lie at thereiproal lattie points. The expliit transform and inverse transform formulas are

f̂M

(

~k
)

=
1

|detM |

∫

~r∈U(M)

f (~r) e−j(~k·~r)dV (~r) , ~k ∈ L
(

M̂
) (3.13)and

f (~r) =
∑

~k∈L(M̂)

f̂M

(

~k
)

ej~k·~r . (3.14)The disrete spetrum an be interpreted as a ontinuous spetrum onsisting of Diraimpulse funtions loated at the reiproal lattie points
f̂

(

~k
)

=
∑

~κ∈ZD

f̂M

(

M̂~κ
)

δ
(

~k − M̂~κ
)

. (3.15)3.5.3 Fourier transform of 2-d approximately periodi funtionsIn a more general ase we an take a 2-d image whih is only approximately periodi.Consider a pattern image whose unit ell and lattie strutures are spei�ed by M. If thisimage is unbounded in all diretions and we an onsider a funtion whih is periodi (i.e.,invariant under translation by a lattie vetor), then the superposition of waves whosewavenumber vetors are neessarily preisely lattie vetors in the reiproal lattie,spei�ed by M̂ = M−T .However, a real image has a �nite extent and has imperfetions (irregularities). Theideally periodi funtion is onstrained to satisfy ertain boundary onditions. The on-sequenes of this is illustrated by onsidering a situation where the pattern is omprised



3.5 Feature extration and deteting missing dots 43only of a �nite number of translates of the unit ell. Let V denote the �nite regionoupied by the pattern, and onsider the window funtion wV (~r) de�ned as
wV (~r) =

{
1 , ~r ∈ V
0 , otherwise (3.16)If f (~r) is the ideal, the truly periodi funtion (with periodiity spei�ed by M) and

fV (~r) is the trunated funtion
fV (~r) = wV (~r) f (~r) =

{
f (~r) , ~r ∈ V

0 , otherwise (3.17)then fV (~r) has a ontinuous spetrum given by
f̂V

(

~k
)

=
∑

~κ∈Z2

f̂M

(

M̂~κ
)

ŵV

(

~k − M̂~κ
) (3.18)where ŵV is Fourier transform of wV .It an be shown that ŵV ontains a ontinuous spetrum whih has in�nite extent butwhih fades out with 1/

∣
∣
∣~k

∣
∣
∣.The most important result is that approximatively periodi funtions have approxima-tively disrete spetra, with the spetral energy onentrated at points in the reiproallattie.3.5.4 Pattern irregularityIn terms of funtion periodiity, pattern irregularity an be de�ned as an aperiodi fun-tion ε(x, y), with spatial energy | ε |≪| fV |.Finally, the initial 2-d pattern image an be represented as

fV (~r) = wV (~r) f (~r) + ε (~r) (3.19)and the problem is to separate the regular part wV (~r) f (~r) and the irregular part ε (~r)as aurately as possible.3.5.5 Extrating the regular pattern informationAs was desribed in the previous setion, the formation of the model of the ideal regularpart of an image is ruial for irregularity detetion; the more aurate the model thatan be established the more aurate and detailed the detetion that an be made.The details level needed for the regular part formation is partiularly high, for example,in Heliotest images [76℄, and thus, typial texture segmentation methods (e.g. [28℄) ordefet detetion methods (e.g. [12℄) annot provide su�ient auray. The user mustbe able to de�ne the minimum deviation from the single ideal unit ell whih is lassi�edas an irregularity.



44 3. Printability evaluation by ounting missing dotsOne attrative approah to estimate an ideal regular pattern is to derive an analytialmodel and to estimate model parameters based on an input image. This approah hasbeen proposed, for example, in [12℄, but requires a preise and very aurate analytialmodel, in whih ase the parameter estimation may beome very unstable and slow.Typially, real images do not orrespond to analytial models but ontain distortions andnoise. For this reason it is motivated to use the analytial model only as a restritingbias in the regular pattern formation and allow inompleteness by extrating the regularpattern from an input image itself. This approah has been applied in frequeny domainself-�ltering to emphasise regular patterns [4℄ and will be the ase in the approahesproposed in this thesis as well. Results from the regular latties and the reiproallattie are applied, but only to estimate appropriate model parameters, while details areextrated from an input image. Fators whih a�et to the seletion of this approahwill be disussed next.3.5.6 Spatial modelling limits of aurayBefore onsidering how to extrat the ideal regular pattern from an input image, it isimportant to explain why all parameters of the analytial model annot be diretly esti-mated. Analytial models would be the most obvious solutions sine they are ommonlyused in regular dot pattern synthesis, e.g., in digital half-toning [45℄, and also used fordefet detetion (e.g. [12℄). In the ontext of regular dot patterns the analytial expres-sion in (3.19) an be used, but the limits of auray prevent estimation of the modelparameters diretly beause of pratial restritions due to the disrete image resolutionwhih annot be bypassed. For the same reason, the limited available resolution, a halftone synthesis is not neessarily reversible.Fig. 3.6(a) shows a simpli�ed model of a regular dot pattern whih an also be used todesribe the pattern in Heliotest assessment [73, 76℄. Parameters of the model an bedivided in the following lasses:1. Image geometry parameters, i.e., lattie primitive vetors ~a1, ~a2 (see Fig 3.6(a))and the overall lattie shift vetor ~s.2. Unit ell model parameters. In the ase of the Heliotest it an, for example, be a2-d Gaussian hat (see Fig 3.6(b)).Estimation of all the above-mentioned parameters is neessary in order to generate anaurate ideal regular pattern model whih an be used in irregularity detetion byomparing or subtrating it from the observed image. However, the estimation is nottrivial; it an be performed with searh or generi optimisation methods where a targetfuntion to be minimised is, for example, energy di�erene between the observed imageand the model. Unfortunately the number of parameters to be optimised is very highand they annot be independently optimised.The �rst step in the pattern modelling is estimation of the lattie parameters ( ~a1, ~a2)representing periodiity (lattie matrix M). These parameters an be derived using anumber of tehniques: using image autoorrelation spae, image texture statistis (grey-level statistis), LBP (loal binary pattern [64℄), �xed window features, et. Problems
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(b)Figure 3.6: Simple model of a regular dot pattern (Heliotest): (a) 2-d lattiestruture ( ~a1, ~a2 - primitive vetors); (b) Gaussian dot model (µ, Σ, A).
may arise, during periodiity estimation suh as inorret period estimation (onvergeneto harmonis nM instead of M). A solution for the periodiity ambiguity is a orretinitial period guess. For example, in the Heliotest proper, limits of the searh domain forvetors ~a1, ~a2 must be de�ned. This approah depends on the input image and furthergeneralisation seems to meet with low suess.It is also possible to estimate the parameters using statistial tools: the mean lattie ma-trix Mµ and lattie matrix deviation MΣ. The question arises, whether the mean lattiematrix an be used as a model of the ideal lattie. Pratial experiments, unfortunately,showed that it annot; the observed lattie from an input image is typially not regularenough and therefore it should be modelled rather as a real world stohasti proess.Also, as the input images are large, over 1500 pixels in length, even a slight parameterestimation error an divert the estimated lattie points way o� near the edges of theimage, even when they are orret at the beginning of the image. The only possible wayof using this modelling approah would be a loal re�ning where eah lattie grid pointis adjusted to a orresponding unit ell in the observed image. This in turn would auseadditional omputational expenses whih would prevent an e�ient implementation ofthe method. Furthermore, it should be noted that additional model parameters introduemore unertainty and more adjustment is then required.It is evident that it is easy to onstrut a mathematial model to synthesise regulardot patterns, but this proess is often irreversible in pratie due to the limited aquisi-tion resolution and exhaustive omputation needed in the parameter estimation. Withthe help of appliation spei� heuristis, a ombination of diret estimations and op-timisation may still sueed, but whether it is aurate and omputationally feasible isquestionable. Thus a more general, re-useable, and su�iently aurate approximationtehnique is needed.



46 3. Printability evaluation by ounting missing dots3.5.7 Exploiting Fourier domainLet us now onsider real images whih represent regular dot patterns. Suh imagesare produed by the Heliotest assessment as shown on the left-hand-side of Fig. 3.7.Next onsider Fourier spetra of the given image, i.e., the magnitude spetra. On theright-hand-side of Fig. 3.7 it is possible to see the distintive frequeny peaks loatedat the reiproal lattie points in Eq. 3.13. Sine no speial window funtion is used topreproess the original input image, and due to the fat that the images are disrete,the frequeny peaks an leak energy to adjaent frequenies, mostly perpendiular tothe running diretions of the spatial patterns. This happens when the pattern does notontinue �awlessly on image edges. This energy leakage gives the peaks a �star like�shape, visible on the right-hand-side of Fig. 3.7. The leak diretion depends on theamplitude di�erene on the image edges when they are wrapped around. By windowingthe input image with, e.g., the Hamming window funtion, this energy leakage woulddiminish, but the peaks would also blur, making it more di�ult to detet the repeatingpeak loations aurately. However, if the number of individual image atoms that formthe regular pattern in the spatial domain is small, then a proper windowing ould beapplied to better distinguish separate peaks from Fourier spetra.

Figure 3.7: Example of regular dot pattern image (Heliotest) and its Fourierspetra magnitude.It is lear that by �ltering out all the other frequenies exept the reiproal lattiefrequenies it is possible to estimate the faultless periodi omponent, the ideal regularpattern, of the input image and by utilising this omponent also the defet omponent,the irregular part. These two parts are now alled as the regular and irregular parts ofthe image and demonstrated in Fig. 3.8. It should be noted that e�ets of image bordersin Fig. 3.8 appear sine the borders are disontinuity points. Separation of the parts anbe formulated as
ξ(x, y) = F−1{Ξ(u, v)} =

= F−1{M(u, v)Ξ(u, v) + (I(u, v) − M(u, v))Ξ(u, v)} =
= F−1{M(u, v)Ξ(u, v)}

︸ ︷︷ ︸regular part + F−1{(I(u, v) − M(u, v))Ξ(u, v)}
︸ ︷︷ ︸irregular part (3.20)



3.5 Feature extration and deteting missing dots 47where ξ(x, y) is the spatial image, Ξ(u, v) is the Fourier domain image, F and F−1 areforward and inverse disrete Fourier transforms, M(u, v) is a mask �lter (real valuedfuntion of the same de�nition domain as Ξ(u, v)), and I(x, y) is a unit funtion. Thedeomposition in Eq. 3.20 is possible beause Fourier transform and its inverse are linearoperators. The mask �lter an be of any type suitable for a partiular appliation, i.e.,aept/rejet (binary), noth �lter, et. The only ondition for the mask is that it shouldinlude the periodi omponent while removing other frequenies, i.e., it should haveband-pass on frequenies near the reiproal peak points.The e�et of white (Gaussian) noise in a spatial image does not have a harmful e�eton the Fourier image, the energy of the noise will spread evenly on all frequeny bands,leaving the repeating peaks still learly visible, provided that the noise amplitude is notstrong enough to mask the repeating peaks. Random noise in an image has a randompattern in the Fourier domain and is appliation dependant. If it is a problem, shoulddealt with in the preproessing steps. Patterned noise in a spatial image, however, hasdistint peaks in Fourier domain, and should be dealt in preproessing if the noise is aproblem.

Figure 3.8: Examples of regular and irregular image parts (Heliotest).3.5.8 Spatial domain vs. Frequeny domainMany image proessing tehniques work well diretly in the spatial domain. However,with repetitive patterns, the hoie of frequeny domain is obvious. Using the FFTalgorithm, forward and inverse Fourier transforms an be made e�iently and fast. 2-dperiodiity in the spatial domain is given by a lattie matrixM and a 2-d periodi funtionin the frequeny domain has disrete spetra loated at the reiproal lattieM−T points.For an N ×N image the FFT transform is also N ×N with disrete frequenies rangingfrom 0 to (N − 1)/N (wave numbers 0, . . . , N − 1). If the input image pattern ontainsa large number of unit ell translations, the frequeny piture will be sparse, having asmall number of lattie points in it. Consequently, rough estimation of lattie matrix Mthrough a reiproal matrix M−T is easier.Inspeting small details, suh as the shape of a single unit ell, is a di�ult task in theFourier domain, and inverse transform bak to the spatial domain is needed in detailed



48 3. Printability evaluation by ounting missing dotsanalysis. These issues will be disussed in the next setion in the desription of theproposed algorithms.Aliasing an happen during image aquisition if the repeating details are not imagedwith su�ient detail. This problem ours if the sampling frequeny is lower than theNyquist sampling rate. One again this is an appliation spei� problem and if needed,proper anti-aliasing methods should be applied. After an image has been obtained, nofurther aliasing problems an our. Beause the images are �nite, they are band limitedin nature and therefore Fourier transformation an not produe higher frequenies thanalready apparent in the image.3.5.9 Method 1: Fourier domain regularity detetion and global grey-levelproessing in the spatial domainThis method (referred to as Method 1) is based on the fat that the periodi regularstruture provides intensity peaks in the Fourier domain, as demonstrated for the periodifuntion f and its reiproal ounterpart f̂ in Eqs. 3.9 and 3.15 and shown in Fig. 3.7.If the mask M an be automatially generated by utilising loations of the peaks inthe frequeny domain, regular and irregular parts of an image an be extrated usingEq. 3.20. It is possible to �nd irregularities from an irregular image by global proessing,i.e., by thresholding a grey-level irregular image and then proessing the binary areas(see the right-hand-side in Fig. 3.8). The following stages are needed:1. Image preproessing to eliminate illumination hanges and aquisition noise.2. Extrating the irregular omponent by forming the mask based on the peak fre-quenies.3. Global proessing of the irregular image part.Irregular omponent extrationA general approah for irregular omponent extration was established by introduingthe theory of reiproal latties of periodi patterns in Setion 3.5.1 and by the separationpriniple in Setion 3.5.7. The extration is desribed in Algorithm 1.Algorithm 1 Irregular image extration1: Compute magnitude of Fourier transform |Ξ| of an input image ξ.2: Form the reiproal lattie vetors using loations of magnitude peaks.3: Create the mask M by setting Gaussian band-pass �lters to reiproal lattie points.4: Extrat the irregular omponent from ξ using the mask M and the inverse Fouriertransform as per 3.20.The �rst and last steps are lear enough, but the other two need more detailed desrip-tion. The seond step atually introdues the problem orresponding to the topi of thishapter: detetion of regularity in regular dot patterns. The reiproal lattie is de�nedby the primitive vetors, whih an be estimated within a sub-pixel auray using the



3.5 Feature extration and deteting missing dots 49peak loations, but the estimation may be sensitive to the initial guess. The estima-tion ambiguity ours due to harmoni omponents, although it an be prevented byusing a su�iently aurate initial guess. Another ad ho solution would be to loate allfrequeny peaks, but sine the frequeny plane is disrete, the harmoni set estimationbased on lower frequenies is not aurate and the peaks need to be adjusted to atualloal maxima. This adjustment is performed by looking for a loal maximum in a ertainneighbourhood. This neighbourhood an be de�ned as a retangular area with the �rstapproximation point in the entre and should ontain only one loal maximum from theharmonis set. It should be noted that estimation to sub-pixel auray is not neededsine the regular pattern is �nally extrated from the original image.Filter mask generation is based on the reiproal lattie and a band-pass �lter suitablefor an appliation. Without any prior information, the Gaussian sueeds as the generalform. The width of the Gaussian an be estimated from the loal peaks but again dueto the use of the original signal in the regularity extration, a �xed width an be safelyused for e�ieny. Two image omponents are derived from the observed image, oneontaining the regular image part and the other ontaining the irregular part. It shouldbe noted that the algorithm tolerates arbitrary rotations and salings.Proessing the irregular imageThe irregular image produed by Algorithm 1 must be further proessed to loate whihirregularities are signi�ant for the detetion. The irregular image may still ontainnoise, whih an be removed using standard noise removal methods, and following noiseremoval, proessing of the irregular image an be de�ned aording to Algorithm 2.Algorithm 2 Deteting irregularities from irregular image1: Threshold the irregular image ξI using the threshold limit T .2: Loate foreground areas of a size greater than S.3: Compute entres of eah foreground areas.4: Return entres as irregularity oordinates.There are various methods whih an be used to perform the binary proessing tasks inSteps 2 and 3, e.g., areas of size less than S an be removed using the binary openingproedure [23℄. Algorithm 2 requires two parameters to be de�ned: a threshold value Tand the minimum area S. T an be obtained for example as:
T = mean(ξI) + n std(ξI) (3.21)where the mean is used to alulate the mean of the irregular image ξI grey level valuesand std to alulate standard deviation of irregular image grey level values. The greylevel histogram of ξI is assumed to follow Gaussian distribution and therefore parameter

n de�nes the on�dene interval inside whih pixels are determined to belong to thebakground, i.e., they are not onsidered as missing dots. The regular image an beused as a training set to obtain good values for the minimum area S. By thresholdingthe regular image ξR using for example Otsu's [68℄ standard method, the dots an besegmented and then their average or median size alulated and used to de�ne parameter
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S. A onstant value for S an be used if the individual dots in the image are roughly thesame size. For the Heliotest this an be ahieved by analysing the image in parts whihontain roughly equal sized dots.3.5.10 Method 2: Fourier domain self-�lteringMethod 2 is based on frequeny domain self-�ltering [4℄. In this approah, the frequenyimage itself de�nes the �lter. If Ξ(u, v) is the Fourier transform of an image ξ(x, y), the�lter M2(u, v) is the magnitude of the frequeny image, i.e.,

M2(u, v) = |Ξ(u, v)| (3.22)Depending on the frequeny ontent of the original data, it might be appropriate toemphasise the high frequenies by applying
M3(u, v) =

√

u2 + v2|Ξ(u, v)| (3.23)To enhane the relatively smaller peaks at higher frequenies, the following �lter an beused.
M4(u, v) = log(1 +

√

u2 + v2|Ξ(u, v)|) (3.24)It equalises the relative di�erenes between high peaks at lower frequenies and smallerpeaks at higher frequenies and therefore makes the resulting regular image sharper.After the given image is �ltered in the frequeny domain, the regular and irregular imageparts an be onverted to the spatial domain by using the inverse Fourier transform.Thus the regular image part ontains the repeating pattern and the irregular image partontains nothing but the irregularities and some noise. One the regular and irregularimage parts have been separated, Method 2 proeeds exatly like Method 1: the irregularimage is thresholded, and binary areas larger than S are onsidered as missing dots.It should be noted, however, that the method an su�er if proper windowing is not used.With the retangular window used in the work, the repeating peaks in the Fourier domainleak energy to nearby frequenies and an thereby mask the irregular (missing dots)information that is loated between the regular peaks. The most important propertyof the method is that it emphasises a pattern that is dominating in an image. For theHeliotest this is desirable sine the most dominant repeating pattern in a Heliotest imageis the ink dot pattern. With a su�ient number of repeating atoms of an input image,the method performs well enough despite the energy leakage. Beause the reiproalpeaks are muh stronger than the bakground, the method attenuates the reiproalpeak loations more than their surroundings and therefore emphasises the repeatingpattern in the spatial domain.3.5.11 Method 3: Fourier domain regularity detetion and loal grey-levelproessing in the spatial domainThis approah (referred to as Method 3) an be divided into the following steps:1. Regular spatial lattie points estimation.2. Loal lassi�ation at spatial lattie points.



3.5 Feature extration and deteting missing dots 51Spatial lattie estimationSpatial lattie estimation orresponds to the estimation of irregularities in the regularpart, and thus, Algorithms 1 and 2 an also be used to �nd entroids of the unit ells.The only di�erene is that the regular image part is used instead of the irregular one.When all the entroids of the regular image part have been loated, the original imagean be proessed and analysed at eah unit ell loation.Loal lassi�ation at spatial lattie pointsThe loations of the unit ells an be extrated using the regular image and next thedeision whether it is regular or irregular, not missing or missing an be made at the eahloation (see Fig. 3.9). First, some kind of feature extration is needed, e.g., simply thevetor of all grey-level values. After feature extration, the features are lassi�ed usinga lassi�er. There are a vast number of appliable methods available and for vetors ofgrey-level values a prinipal omponent subspae lassi�er was used [67℄. The prinipleof the lassi�er is simple. The feature vetors are projeted into a subspae so thatthe subspae basis vetors are orthonormal. The training features are treated the sameway. Classi�ation is performed by alulating the distane between subspae data of thefeatures with respet to the training data subspaes. It should be noted that a separatetraining set is needed in this approah, but the loal proessing approah an also providedetailed information about the type of missing dots.
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hFigure 3.9: Examples of dots in Heliotest images: (a)-() Regular dots; (d)Regular dot expetation; (e)-(g) Missing dots; (h) Missing dot expetation (notethat not ompletely missing).



52 3. Printability evaluation by ounting missing dots3.6 ExperimentsIn the experiments the image enhanement method introdued in Setion 3.4 was evalu-ated and the three proposed methods for deteting irregularities were tested.3.6.1 Colour image onversion to grey levelTo demonstrate the method both quantitatively and visually, RGB olour spae wasseleted as the image output value ~x. An image is generated by plaing two randompoints into the 3-D RGB spae, assigning every image pixel to one of the points withrespet to �xed a priori values P (0) and P (1), and applying olour spae noise based on�xed normal distributions p(~x|0) and p(~x|1) to the pixels. To test the e�et of distaneand variane of points in olour spae, the points an be repeatedly generated fromuniform distribution with varying distane and variane parameters.Two images with di�erent parameter values are shown in Fig. 3.10. It should be notedthat the ovariane is a diagonal with �xed variane in all dimensions.
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(e) (f)Figure 3.10: Generated bi-modal image data in the spatial domain (left),generated points in RGB spae (middle), and EM-estimated distributions(right); (a),(b),() P (0) = 0.5, P (1) = 0.5, µ0 = [85, 134, 191]/256, µ1 =

[174, 52, 126]/256, σ0 = 20/256, σ1 = 20/256; (d),(e),(f) P (0) = 0.2, P (1) = 0.8,
µ0 = [192, 87, 111]/256,µ1 = [159, 172, 126]/256, σ0 = 20/256, σ1 = 20/256.



3.6 Experiments 53The most popular general method to onvert RGB data to a single variable image(grey-level image) is the standard RGB-to-grey transformation, obtained by (I(x,y) =
R(x,y) +G(x,y) +B(x,y))/3, and one of the most suessful maximum ontrast (thresh-olding) methods is the minimum-error thresholding [49℄. To ompare the proposedminimum-error ontrast enhanement, where the alulated posteriori values are diretlyused as the grey level image, the MSE behaviour of these methods was studied for thegenerated data. The results are demonstrated in Fig. 3.11. The MSE is alulated withrespet to the perfet maximal ontrast image (binary).
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(b)Figure 3.11: MSE of di�erent ontrast enhanement methods: (a) As funtionof luster distane p

(µ0 − µ1)2 (P (0) = P (1) = 0.5, σ0 = σ1 = 20/256); (b) Asfuntions of luster variane (p(µ0 − µ1)2 = 100, P (0) = P (1) = 0.5).The di�erent methods shown in the �gures are as follows: RGB+enhanement meansthat the proposed olour image onversion method is applied to the RGB olour im-age, RGB2gray is linear RGB to grey onversion, RGB2gray + enhanement shows theproposed olour image onversion method applied to the grey level image obtained bythe linear RGB to grey onversion. RGB2gray + min.err.th. shows the results whenminimum-error thresholding [49℄ is applied to the grey level image obtained by the linearRGB to grey onversion. Based on the results shown in Fig. 3.11, the behaviour of thedi�erent methods is as expeted. The standard RGB-to-grey onversion provides theweakest ontrast. The minimum-error thresholding method provides su�iently goodontrast if the overlap of lusters is not signi�ant. Best ontrast representation is ob-tained by using the proposed ontrast enhanement method. It should be noted thatutilising the olour information provides the most aurate results, sine it uses all theolour information available. Other simpler methods an falsely lassify noisy bakgroundpixels (e.g. dirt/dust in real Heliotest images) to the foreground and vie versa. Theresults are shown in Figs. 3.12 and 3.13. The only di�erene between the images is theloation of the luster entres, the luster distane √

(µ0 − µ1)2 = 100 and noise variane
σ0 = σ1 = 15/256 are equal.The atual ontrast enhanement method was applied to Heliotest data. To inrease
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(a) (b) ()
(d) (e) (f)Figure 3.12: Examples of ontrast enhanement images: (a) Original RGBimage; (b) Maximal ontrast image; () RGB to grey onverted image(MSE=0.4726); (d) Minimum-error thresholding applied to the intensity image(MSE=0.5); (e) Posteriori ontrast enhanement applied to the intensity image(MSE=0.2628); (f) Posteriori ontrast enhanement applied to the RGB image(MSE=0.0072).
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(a) (b) ()
(d) (e) (f)Figure 3.13: Examples of ontrast enhanement images: (a) Original RGBimage; (b) Maximal ontrast image; () RGB to grey onverted image(MSE=0.4383); (d) Minimum-error thresholding applied to the intensity image(MSE=0.0308); (e) Posteriori ontrast enhanement applied to the intensity im-age (MSE=0.0466); (f) Posteriori ontrast enhanement applied to the RGB image(MSE=0.0006).



56 3. Printability evaluation by ounting missing dotsthe suessful detetion rate, the image ontrast an be enhaned to magnify the sepa-rability of printed dots from the bakground. In Fig. 3.14, the performane of ontrastenhanement has been demonstrated. The e�et on thresholding an be seen in Fig. 3.15,in whih an image is onverted to grey level linearly by summing the individual olourhannels and dividing by 3. The original olour image is also onverted to grey levelusing the proposed method. After both images are in gray level, Method 2 is applied toboth images. Both grey level images were normalised to have values between 0 and 1in order to make the thresholding omparable. Both images in Figs. 3.15() and 3.15(f)were thresholded by using same threshold determined by visual evaluation of the thresh-olding result, the resulting thresholded images an be seen in Figs. 3.15(d) 3.15(g). Asan be seen, the missing dot is muh more visible in Fig. 3.15(g) with less noise thanin Fig. 3.15(d). If the threshold in Fig. 3.15(d) is lowered, the missing dot area in theimage beomes larger, but the noisy dots also beome more numerous and larger.
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200 (f)Figure 3.14: Partial Heliotest images: (a),(d) Original olour image; (b),(e)Intensity image; (),(f) Posteriori ontrast enhaned image.3.6.2 Experiments for irregularity detetionHeliotest imagesIn the experiments, the three methods were ompared by studying their auray andomputational e�ieny. All methods were implemented using Matlab. The datasetonsisted of 101 Heliotest images sanned from Heliotest samples (for an example, seeFig. 3.16). The regular pattern in eah image was a printed raster pattern whih onsisted
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(a)
(b) () (d)
(e) (f) (g)Figure 3.15: (a) Original image; (b) Gray level image; () Irregular image ofgray level image; (d) Thresholded irregular gray level image; (e) Proposed olouronversion applied to original image; (f) Irregular image; (g) Thresholded irregularimage.



58 3. Printability evaluation by ounting missing dotsof unit atoms with a Gaussian shape and a size of 6-10 pixels in diameter. The auray ofeah method was determined using the measure used in the paper and printing industry:the distane from the beginning of the raster pattern to the 20th missing dot in the rasterpattern. This distane gives information about the printability of the tested paper type.Ground truth data was obtained by visually inspeting the images and by marking theirregularities, i.e., missing dot loations. Only the �rst 20 missing dots were marked,eah sample ould ontain a lot more missing dots, but the paper and printing industryis only interested in the �rst 20. The results are reported for the proposed methods;global proessing of the irregular image (Method 1), self-�ltering (Method 2), and loalproessing of the original image (Method 3).
(a) (b)Figure 3.16: Test sample: (a) The measurement area is marked on the image asa retangle; (b) Small part of the measurement area enlarged.The number of deteted missing dots and false alarms as a funtion of the radius from theground truth missing dots are shown in Fig. 3.17 for all methods. The graph indiates howaurately the di�erent methods are able to detet the missing dots. It an be seen thatloal proessing (Method 3) more aurately deteted missing dots and gave fewer falsealarms. Methods 1 and 2 �nd all the missing dots, but on average (aeptane radius=4pixels) they detet 2 more falsely deteted missing points than Method 3. Method 3 mayfail to detet one atually missing dot but it detets fewer false positives than Methods1 and 2. The results are demonstrated in pixels and the mean shortest distane betweentwo dots was 7.1 pixels (graphs in Fig. 3.17 stop at 4.0 pixels).The auraies of all methods ompared to the ground truth distane to the 20th missingdot are shown in Fig. 3.18. Eah method was separately used to ount the missing dotsfrom the beginning of eah strip and eah of them returned the distane estimationto the loation of the 20th automatially deteted missing dot from the start of theprint area. In this performane measure, individual false positives and false negativesontributed only to the �nal error. Using this industrial error measure, all methodsperformed almost equally well. For 95% of the test samples, the error remains under 8.0mm. The typial distane to the 20th missing dot varies between di�erent paper grades;with good quality paper the distane is around 80 mm. The average exeution times ona laptop PC (Pentium 4, 3200MHz, 512 Mb) for the methods were as follows: Method1 - 7.76 s, Method 2 - 6.66 s and Method 3 - 49.9 s. The di�erene in exeution timesbetween Method 1 and Method 2 omes from the time needed to proess the peaks in thefrequeny domain. It takes 0.43 s on average to detet and mask the frequeny domainpeaks with Method 1, whereas with Method 2, utilising frequeny domain self-�ltering,



3.6 Experiments 59the same task requires 0.15 s on average. The methods perform equally well for thisindustrial measurement. The advantage of Method 3 over the other methods omes fromits ability to lassify, if suh funtionality is later needed, the types of missing dots thatare deteted at the same time when the missing dots are deteted.Examples of the deteted missing dots (Method 2) are shown in Fig. 3.19. Figs. 3.19()and 3.19(d) show examples where the method seems to be over-sensitive to detetingonly partly missing dots as missing dots; however in some ases those points were alsoonsidered as missing dots by an expert.Arti�ial imagesIn the seond part of the experiments, arti�ial images were generated to at as ontrolledinputs to the methods (see Fig. 3.20). The images were prepared based on aquiredHeliotest samples, and they onsisted of a blak bakground and white Gaussian-shapedpeaks with regular intervals between the peaks. To model the uneven bakground (paper)and imaging proess, eah image was degraded by adding Gaussian noise with zero meanand normalised variane of 0.001. To model the missing portions of print, eah imagewas further degraded with multipliative spekle noise. The whole proess of imagegeneration an be formulated as follows:
ξ(x, y) = H[ξideal(x, y) + η(x, y)] (3.25)where ξ(x, y) is the generated image, ξideal is the arti�ial image with the regular pattern,

η is the Gaussian noise image, H represents the multipliative noise funtion utilising auniformly distributed random variable with zero mean and varying variane. Mean squareerrors were omputed between the images obtained by Methods 1 and 2 and the originalarti�ial images that ontained neither Gaussian nor spekle noise. Irregular imagesobtained by Methods 1 and 2 were ompared to the image whih ontained only noise.This image was obtained by subtrating the original image with the regular pattern fromthe generated image. The results of this experiment are shown in Fig. 3.21. To furtherelaborate the di�erenes of the approahes, Methods 1 and 2 were used to separate twodi�erent frequenies from eah other. The original image is shown in Fig. 3.22(a), andthe resulting regular and irregular images using both methods are shown in Figs. 3.22(b)-3.22(e).Near regular imagesThe previous experiments on Heliotest images quantitatively evaluated the auray ofthe methods. To demonstrate generality, the proposed methods were also applied tofree form regular textures. Images from the CMU NRT near-regular texture database(http://graphis.s.mu.edu/data/texturedb/gallery/) were used. Method 2 wasapplied to several images using the ommon threshold τ = 240. Examples of irregularitydetetion from near-irregular textures with arti�ially imposed irregularities are shownin Fig. 3.23.It is lear that while the Heliotest assessment appears a straightforward appliation ofthe proposed methods and ated as the original reason for the researh, the methods alsoprovide a more general approah to irregularity detetion from regular and near-regulartextures.
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(b)Figure 3.17: Detetion auraies as funtions of radius from the ground truthloations: (a) Corret positives, the faster graph reahes 20, the better the method;(b) False positives. The faster the graph drops from 20 to 0, the better the method.
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3780 (e)Figure 3.19: Examples of deteted missing dots: (a),(b) dot ompletely missing(orret positive); (),(d) dot partly missing (false positive); (e) a group of missingdots (orret positives).3.6.3 DisussionAll the presented methods are suitable for deteting irregularities in a regular pattern.Methods 1 and 2 are aurate in deteting missing dots from a pattern, but they annotmath the auray of Method 3. This is beause Method 3 uses a lassi�er at eah unitell loation to determine whether there is a missing dot or not. The disadvantage ofMethod 3 is that it requires more omputing time. By using ontrolled input images, itis possible to demonstrate that frequeny masks designed for eah spei� image types(Method 1) provide lower error levels when the results of frequeny separation are om-pared to the ideal regular pattern. Depending on the appliation, this an be importantin the lassi�ation of defets if the original image data is not used for this purpose.Although Methods 1 and 2 are almost idential in nature, Method 1 has advantagesover Method 2. Method 1 utilises prior knowledge of the Fourier peaks, and thus, andetet several underlying regular patterns from a given image. For example, if the imagehas two repeating patterns that have di�erent frequenies, Method 1 an be used to



62 3. Printability evaluation by ounting missing dots

50 100 150 200 250

50

100

150

200

250Figure 3.20: An example of an arti�ial image with highest level of spekle noise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

Variance of speckle noise

S
q
u
a
re

d
 e

rr
o
r

Method 1

Method 2

Method 2 with emphasized high frequencies

Figure 3.21: Mean square errors of regular images from Methods 1 and 2 for aset of arti�ial images with di�erent levels of noise. Errors between the irregularimages were idential to the presented ones.



3.6 Experiments 63
50 100 150 200 250

50

100

150

200

250 (a)
50 100 150 200 250

50

100

150

200

250 (b) 50 100 150 200 250

50

100

150

200

250 () 50 100 150 200 250

50

100

150

200

250 (d) 50 100 150 200 250

50

100

150

200

250 (e)Figure 3.22: Two independent patterns appearing at di�erent intervals. (a)Original image; (b-) Separation of the regular (b) and irregular () part withMethod 1; (d-e) Separation of the parts with Method 2. [(d) regular, (e) irregular℄.
(a) (b) () (d) (e)
(f) (g) (h) (i) (j)
(k) (l) (m) (n) (o)Figure 3.23: Near-regular textures from CMU NRT database; (a),(f),(k) Originalimage; (b),(g),(l) Arti�ially generated irregularity; (),(h),(m) Regular image;(d),(i),(n) Irregular image; (e),(j),(o) Thresholded irregular image.



64 3. Printability evaluation by ounting missing dotsextrat either one of the underlying patterns. Another advantage of Methods 1 and 3is that they do not su�er from energy leakage as muh as Method 2 sine Methods 1and 3 only selet the repeating peaks from the Fourier plane and use them to build theregular image. Method 2, utilising frequeny domain self-�ltering, is unable to extrattwo di�erent repeating patterns, but instead loates both patterns. This an be seenin Fig. 3.22. The advantage of Method 2, on the other hand, is that it needs no priorknowledge of the spatial properties of the repeating pattern as Methods 1 and 3 do.From a pratial point of view, Method 2 is good for general needs. It is aurate andits omputational e�ieny is very good. It does not need any training data and anperform the missing dot detetion well sine there is only a single repeating raster patternin the Heliotest images. Methods 1 and 3 require parameters for deteting the peaks inthe frequeny domain, but Method 2 does not.The key di�erene between the methods proposed in this thesis and methods found inliterature [53, 31, 47℄ is the use of frequeny information for deteting missing dots.The methods found in literature use only spatial information. Therefore the proposedmethods have one major advantage over the other methods suggested in literature [53,31, 47℄, namely the ability to detet individual missing dots lustered losely together.The other methods fail in this respet. They an detet if there are missing dots in anarea, but if there are many missing dots next to eah other, then the other methods areprone to fail. On the other hand, if it an be ertain that the image to be analysed doesnot ontain lusters of missing image atoms, then the methods proposed by [53, 31, 47℄an work well and e�iently. Another bene�t of these methods is that they work equallye�iently on image edges. The methods proposed in this paper an fail to detet missingdots near image edges beause they are blurrier than image entres as an be seen inFig.3.8. This happens due to Fourier transform being applied to a disrete image.The method proposed in [30℄ is based on the similar Fourier priniple proposed in thisthesis. The di�erene between the methods omes from how the Fourier analysis isperformed. In [30℄ they use a speial imaging arrangement to perform optial Fouriertransformation. The number of missing dots in the imaged area is obtained by measuringthe e�et of missing dots on the Fourier spetra, namely the e�et on intensity betweenrepeating peaks in the Fourier plane. Methods proposed in this thesis work very similarlywith the di�erene being that �rst the perfetly regular image is obtained based on therepeating intensity peaks in Fourier plane. Then by subtrating this regular image fromthe original image with the missing dots, not only the missing dots an be alulated,but also their loations. The irregular image, obtained by subtrating the regular imagefrom the original missing dot image, does, however, ontain some noise. Due to thedisreet nature of image proessing and simple windowing used, the irregular image�leaks� some energy from the intensity peaks in the Fourier plane into neighbouringfrequenies, ausing some noise into the irregularity information. Method 2 su�ers fromthis more than Methods 1 and 3. Methods 1 and 3 band pass only the repeating peaksin the Fourier domain and therefore the energy leakage does not a�et the regular imageas muh.The key advantage of method [30℄ is unquestionably its speed. The optial Fouriertransformation is fast to perform and the results obtained by the system seem quitereliable. The systems seems very suitable for on-line missing dots measurements from



3.7 Summary 65printed paper. However when number and loations of missing dots are needed, it isreommended to use methods proposed in this thesis.3.7 SummaryIn this hapter, three methods for measuring irregularities from a regular pattern was in-trodued. As an example, the methods were applied to Heliotest samples whih onsistedof a regularly printed raster pattern that ould have missing dots, i.e. irregularities. Theauraies and exeution times of the methods were ompared, and their strengths andweaknesses disussed. For fast exeution and good auray, the method based on fre-queny domain self-�ltering (Method 2) was a good hoie. However, if the appliationis sensitive to hanges to the regular or irregular patterns or the image to be assessedontains more than one repeating pattern, Methods 1 and 3 utilising prior knowledge ofthe repeating patterns are more appliable.An e�ient method for enhaning ontrast between two dominating olours in an imagewas also introdued. The ontrast enhanement enabled later image proessing steps towork more reliably.
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Chapter IVRunnability evaluation by deteting surfae defets

Paper runnability was introdued in Setion 2.2. In short, anything that adversely a�etsrunnability is undesirable. Small partiles that stik to printing heads or obstrut printingrollers is one part of this problem. Paper surfae strength is typially inspeted with theIGT piking test in order to determine how fast the paper an be printed without surfaedefets or tearing.4.1 The IGT piking runnability testPiking is losely related to linting, introdued in Setion 2.2. The greatest di�erenebetween piking and linting is that piking is at least partially attahed to paper whereaslinting onsists of totally loose partiles [83℄. The origin for piking an be poor papersurfae strength or fast setting of the printing or both. The IGT piking test is printed byan IGT piking devie that prints a test pattern on a paper sample with inreasing speedusing taky printing oils with known visosity (standards [39, 84, 78℄). The IGT pikingapparatus is a mehanial devie whih does not produe any image data from samples.The apparatus onsists of an oil appliator and a printing unit in whih a printingylinder produes a test pattern 200 − 320 mm long and 10 mm or 20 mm wide. Theprinting speed inreases linearly towards the end of the print. The proportion of visibledefets, e.g., �bre surfaing or oat tearing, is assumed to provide information about theprinting properties of a partiular paper type (printability and runnability). The longerthe distane between the print starting point and the beginning of �bre surfaing, thehigher the speed that an be used in the printing proess. The speed and the printingoil visosity information an be used to alulate the veloity-visosity produt (VVP),whih enables omparisons between paper grades obtained using di�erent printing oils.The VVP is alulated as follows:
V V P = vd ∗ V (4.1)where vd is the speed at whih the piking started and V is the printing oil visosity inPasals (Pa) at the printing room temperature [37℄. Fig. 4.1 shows the di�erent mahines67



68 4. Runnability evaluation by deteting surfae defetsrequired for piking inspetion.

(a)

(b)Figure 4.1: Equipment for inspeting piking: (a) Mahine for making the testprints; (b) Speial lighting system for visually determining the piking start loa-tion.A problem in piking test inspetion is the determination of the piking start loation.Di�erent experts have di�erent opinions about where the piking should be marked asstarting. Piking an be marked as starting if the defet size is small surfaing �bre orif 2/3 of the test print area width has torn, or somewhere in between. This riterionvaries between experts. The most prominent problem is naturally eye strain. Due tothese problems, standardisation and automation of the piking print analysis is desir-able. Fig. 4.2 illustrates this problem well. In Fig. 4.2(a) an expert has few options for



4.2 Overall struture of the automated IGT piking test 69interpreting where the piking starts, whereas in Fig. 4.2(b) the same type of paper isprinted with di�erent speed settings (speed at the end of print) and the marked pikingstart loation (dark dots near image edges) laks onsisteny.

(a)
(b)Figure 4.2: Example of di�ulties in determining the piking start loation.Piking start loations are marked with dark dots on the images: (a) �Easy� ase;(b) Inonsisteny in the results. Printing speed on the images inreases from leftto right.

4.2 Overall struture of the automated IGT piking testPiking detetion starts with image aquisition. Setion 4.3 desribes the neessaryimaging arrangements required for piking detetion. In order to highlight the protruding�bres on the samples, the samples are illuminated from a large angle with respet tosurfae normal.Setion 4.4 introdues the problem of deteting small and sparse details. In the followingsubsetion 4.4.1 an analytial model for small and sparse details is introdued and howthe defets are visualised. The visual model is used merely for visual omparison of anarti�ial image and an atual piking test image.



70 4. Runnability evaluation by deteting surfae defetsSetion 4.4.2 reviews the well known thresholding methods that were used for detet-ing the small and sparse details. First the methods are introdued and in the followingsetion 4.4.5 their performane for thresholding small and sparse details is determined ex-perimentally; First with arti�ially generated data and then with atual piking samples(setion 4.5).4.3 Image aquisitionThe �rst step is to obtain the sample image. The resolution of the image has to behigh in order to detet small surfae defets. A resolution of about 1200 dpi is su�ientto detet small defets, and the resulting image size is about 1200 × 3000 pixels. Thesample surfae should not be touhed before the sample is imaged so that any small�bres that have lift from the paper do not get �attened. In the Heliotest a irular lightsoure diretly above the sample is used but this layout is not suitable for piking testinspetion. In the ase of piking test inspetion, oblique lighting (front light at verylow angles) is more suitable for deteting surfae defets suh as bumps, lift �bres andpartiles. With the oblique lighting, the surfae of the objet stays rather dark, butlift defets appear bright. The reason for this is that light from the �at surfae doesnot re�et at the amera but lift defets re�et the light to the amera (Fig. 4.3). Thedrawbak of this lighting arrangement is that surfae bumps also re�et the light at theamera.
Paper surface

LightLight

Camera

Figure 4.3: Oblique lighting priniple.After an image has been aquired under oblique lighting, the printed area is deteted.Fig. 4.4 displays the di�erent areas of a piking sample. Printed area detetion is ahievedusing the same method as in the Heliotest in Setion 5.2. Edge detetion parameters forpiking images have to be seleted more arefully sine the ontrast between the paperand the printing oil/ink is worse than the ontrast between the Heliotest pattern andpaper.



4.4 Piking detetion by thresholding 71
Figure 4.4: Di�erent areas of a piking sample. Printed area is marked with athik borderline. The start of the printed area ontains some piking due to initialimpat of the printing head on the paper.4.4 Piking detetion by thresholdingThresholding based segmentation an be found at the ore of many mahine vision basedinspetion appliations, suh as [16, 57, 61℄. Several analytially sound and general solu-tions exist, but in pratie, thresholding is often based on appliation-spei� heuristis.The use of heuristis usually prevents reusability, and the methods beome sensitive tosmall hanges in the problem setting. This study provides a more general solution todetet adaptively a small number of �ne details from a bakground. This solution is de-veloped by �rst de�ning analytially the appearane of the details and then by studyingthe performane of the most well-known adaptive thresholding methods, that is, methodswhih do not require any parameters.Binary thresholding is one of the most ommonly used and essential operations in digitalimage proessing, and in many appliations, thresholding is used at some point of thealgorithm. Even though the operation itself is very simple, the problem of seleting anoptimal threshold value is not trivial at all. For a single image, the optimal value anbe seleted manually, but adaptive thresholding methods exist intended to automati-ally estimate the optimal value. Due to its importane, adaptive thresholding has beenstudied for a few deades, and a wide variety of di�erent methods have been proposed[79℄. The extensive work in the past should have resulted in a proper method for anyexisting problem. Sine di�erent methods may value di�erent properties, method se-letion depends on the harateristis of the problem domain. However, new problemharateristis are ontinuously enountered in pratial problems, and thus, adaptivethresholding still remains intensively studied after more than 30 years.Most methods perform well when the image foreground and bakground onstitute areasof su�iently equal sizes, and the grey level values have substantially non-overlappingdistributions [79℄. However, when either or both of the above assumptions are not valid,major di�ulties an be enountered. This is the ase here, where the motivation origi-nates from a problem in whih small paper surfae defets must be automatially deteted[19℄. The samples an be imaged into a digital form where low intensity grey-level valuesorrespond to the paper surfae, and high intensity grey-level values orrespond to smalldefets on the surfae. The proportion of pixels related to defets is typially very small,making the grey-level histograms almost unimodal. Additionally, the grey-level values ofboth the defets and surfae overlap signi�antly. The spatial distribution of the defetsan be onsidered random, although a single defet in an image an onsist of a fewneighbouring pixels in the image. This spatial information an be taken into aount



72 4. Runnability evaluation by deteting surfae defetsby using a spot detetor, whih will be introdued in Setion 4.5.2. The �lter empha-sises small intensity hanges in a small area in the image and therefore enompasses thespatial information of a single defet. Due to the spatial randomness of the defets, theappliation of global thresholding methods is motivated.This thesis assesses the ability of adaptive thresholding to bring up �ne and sparsedetails. The problem is solved by de�ning the neessary statistial properties in thehistogram domain and by analysing the performane of well-known and well-performinggeneral adaptive thresholding methods and methods spei�ally appliable to unimodalhistograms.4.4.1 Fine and sparse details on noisy bakgroundsThe motivation for researhingmethods to detet �ne and sparse details and their possibleappliation areas are explained �rst. In the partiular ase disussed here, the problemwas to automatially perform the visual assessment of IGT piking samples. To get theimage data, the paper strips are digitally imaged under oblique lighting (Fig. 4.5(a)).The grey-level histogram of the strip an be seen in Fig. 4.5(b).In Fig. 4.5(a), the defets are not learly visible, and the imaging su�ers from the dis-tortions harateristi of board strips (e.g., okling). However, after proper image en-hanement, the defets appear as tiny spots having higher intensity than the surroundingnoisy bakground (Fig. 4.6). This masking however averages the image and thereforeomparing values of neighbouring pixels after masking is useless. Consequently, a globalproessing is used to threshold these defets.
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(b)Figure 4.5: Image of a piking sample (oated board) aptured under obliquelighting: (a) The whole strip is divided into 3 piees for better presentation. Theadjaent piees from left to right (printing speed inreases) are arranged from topto down; (b) Grey-level histogram of the image.The separation of image areas into bakground (paper surfae) and foreground (defets) ismore understandable from Fig. 4.6. For further proessing, however, a suitable thresholdvalue at whih defets on the paper surfae begin to appear in the foreground mustbe seleted. Based on the set of test samples, it was found that the proportion ofpixels representing the defets was 0.1-5.0% of total image area, and the defet pixels



4.4 Piking detetion by thresholding 73partly shared intensity values with the bakground pixels. Therefore, the bakgroundand foreground are mixed into a nearly unimodal grey-level histogram, making seletionof the threshold value a very di�ult problem.
Figure 4.6: Enhaned partial image of piking sample.The nature of the defets and their presene in the given problem have motivated tointrodue the notion of �ne and sparse defets. It should be noted that the terms detailsand defets are used interhangeably in this ase. The �ne and sparse defets are small(�ne) and isolated (sparse) signal pathes omprising only a minority of the total imagearea. Their intensities are lose to or mixed with the bakground intensity range. Tostudy the problem more extensively, a statistial model of the defets must be derived�rst. Based on the statistial model, the behaviour of di�erent thresholding tehniquesan be analysed more analytially sine the e�et of all model parameters an be studied.If the spatial relationships are negleted, image pixels an be onsidered as realizationsof a random variable. For a su�iently large image, the grey-level histogram orrespondsto the probability density funtion of the random variable, and thus, it is su�ient tomodel the probability density funtion (pdf) to model the details.A noisy bakground an be modelled with a single probability density funtion, and theforeground an be treated as a mixture of probability density funtions. Finally, thewhole pdf onsists of a weighted sum of pdfs for both the foreground and bakground.The intensities of bakground pixels an be modelled by values of a random variablehaving the normal distribution N(µb, σb) with the mean value µb, and standard deviation

σb.A single defet an be modelled by a low probability (low a priori) random variable whihadheres to the normal distribution
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2σd(i)2 (4.2)where µd(i) and σd(i) denote the intensity mean value and standard deviation for the
i-th defet, and Pd(i) orresponds to the a priori probability of enountering the defet.However, sine a single defet is highly loalised (onentrated near to a single spatialloation), Pd(i) orresponds to a proportional spatial size of the defet rather than a truea priori probability. Correspondingly, the proportional spatial size of the bakground is
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74 4. Runnability evaluation by deteting surfae defetsNow, the resulting histogram of �ne and sparse defets on a noisy bakground dependssolely on the set of parameters {µb, σb, µd(i), σd(i), Pd(i)}. Finally, the ompositeprobability density funtion whih de�nes the expeted shape of the histogram is
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2σd(i)2 . (4.4)One more onsideration is the distributions of µd(i) and σd(i). The simplest lass ofsparse defets has the uniform distribution µd(i) ∼ U(a, b) or the normal distribution
µd(i) ∼ N(µµd
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), and the standard deviation σd(i) ∼ N(µσd

, σσd
) (see Figs. 4.8and 4.11). It should be noted that the number of defets an also be obtained froma random distribution, but it does not atually a�et the results but only the fore-ground/bakground ratio.Model visualisationFor the visualisation and for omparison of the arti�ial images with the real ones,a model in the spatial domain that orresponds to the model in the domain of grey-level histograms must be de�ned. This is done beause obtaining the foreground andbakground distributions from atual piking samples has proved to be very di�ult.The �rst problem was in determining whih pixels in a piking image atually are defets.The seond problem was to atually mark the pixels determined to be defetive. Whenan image is observed without magni�ation, the piking loations are somewhat lear,but when the image is magni�ed, the di�erene between the bakground and defet wasalmost impossible to distinguish and in most ases failed.This model inludes the histogram and a mapping from the histogram to the spatialplane. The spatial model must be onsistent with the histogram model and have thesame parameters; the resulting arti�ial image possesses the same histogram as obtainedvia the histogram model.First, the image bakground is generated using a random variable with the same distri-bution and parameters µb and σb as desribed for the histogram model. Next, the defetsare randomly seeded on the noisy bakground. For eah defet, the area is derived inaordane with the total image size, and the proportional defet size Pd(i).Finally, values at eah defet area are derived from the orresponding random vari-able, N(µd(i), σd(i)). To vary also area sizes, the proportional areas an be derived from

Pd(i) = N(µPd
, σPd

). It should be noted, however, that if a ertain foreground/bakgroundratio is required, the proportional sizes Pd(i) must be normalised to ahieve the requestedratio. An example of an arti�ial image is shown in Fig. 4.7.The de�nition of details was arried out in the histogram domain, and thus, methods forhistogram-based global thresholding an be used to separate the bakground and fore-ground. In the next setion, the methods are disussed, and their detetion performaneis studied utilising the de�ned statistial model.



4.4 Piking detetion by thresholding 754.4.2 Defet segmentation by thresholdingThresholding methods are based on the assumption that the grey levels of pixels be-longing to objets (foreground) are substantially di�erent from the grey levels of pixelsbelonging to the bakground. However, the harateristis of the histogram and thespatial distribution of the objets make some thresholding methods more suitable to aspei� task than others.Based on the de�nition of the details, suitable thresholding methods were searhed fromliterature. First, the most popular and well-performing general-purpose thresholdingmethods were onsidered, several methods designed speially for unimodal histogramswere studied.4.4.3 Multimodal grey level thresholding methodsGeneral thresholding methods should perform well when (i) the foreground objets andbakground onstitute proportionally the same sizes in an image, and (ii) the grey-levelvalues of objets and the bakground possess substantially distant and non-overlappingdistributions. When these restritions an be met, one of the most popular methods isOtsu's method [68℄. Methods by Kittler et al. [49℄ and Kapur et al. [46℄ have beenshown to outperform many others in omparisons [79℄. Therefore, these methods aregood andidates as general thresholding methods for the given problem. In the followingsetions, the three methods will be brie�y reviewed.Otsu's methodOtsu's thresholding method is based on the idea of �nding a threshold value that min-imises the within-lass variane of the resulting foreground and bakground lasses [68℄.Thus, the optimal threshold T is alulated by minimising the riterion funtion
J(T ) =

P1(T )σ2
1(T ) + P2(T )σ2

2(T )

σ2
(4.5)where σ2 is the grey-level total variane estimated from the histogram and P1(T ) and

P2(T ) are prior probabilities assoiated to foreground and bakground.
Figure 4.7: An arti�ial image with �ne and sparse details generated using thevisualisation of the histogram model (µb = 0.3, σb = 0.055, i = 1, . . . , 50, µσd

=

0.01, σσd
= 0.002, foreground/bakground ratio = 0.015, µPd

= 5, σPd
= 3).Intensity values saled for visualisation.



76 4. Runnability evaluation by deteting surfae defetsOtsu's thresholding is one of the most widely used and ited threshold estimation meth-ods. The method is very robust, and it provides thresholding results of onsiderablequality in a vast variety of ases. Performane is good when the number of pixels in theforeground and bakground are lose to eah other. However, the method usually failsto �nd an appropriate threshold value if the number of foreground pixels is less than 5%of the total image size. With unimodal or nearly unimodal histograms the method tendsto split the only mode in the middle, resulting in a �salt and pepper� binary image [49℄.Kapur's methodA thresholding method based on entropy has been proposed by Kapur et al.[46℄. Themethod maximises lass entropies, whih an be interpreted as measures of lass om-patness and separability. In this ase, the riterion funtion an be given as
J(T ) = −

T∑

g=0

h(g)

P1(T )
log

(
h(g)

P1(T )

)

−
n∑

g=T+1

h(g)

P2(T )
log

(
h(g)

P2(T )

) (4.6)where n is the maximum length of a histogram h(g) of grey level values g. J(T ) is max-imised to obtain maximum information between the objet and bakground distributionsin the image. The disrete value T , whih maximises J(T ), is the threshold value. Themethod is suitable for images that have good separation between lass entropies. Suhimages are, for example, material defet images. Suh an image ould be taken from, forinstane, a fratured airraft fuselage. In suh a ase the defet entropy di�erentiateswell from the rest of the image even when the di�erene in the spatial image is hard todistinguish.Kittler's methodKittler and Illingworth have proposed a thresholding algorithm whose ost funtion isoptimised based on the Bayesian lassi�ation rule [49℄. In this method, it is assumedthat omponents in the bi-modal histogram h(g) in the grey level image are normallydistributed. Normal distributions are de�ned by their means µi, standard deviations σi,and a priori probabilities Pi. For a ase of two di�erent lasses (i = 1, 2), the bakgroundand foreground, and given a threshold T parameters an be estimated from the following:
Pi(T ) =

b∑

g=a

h(g)

µi(T ) =
1

Pi(T )

b∑

g=a

h(g)g

σ2
i (T ) =

1

Pi(T )

b∑

g=a

(g − µi(T ))2h(g)

(4.7)
where

a =

{

0 i=1
T + 1 i=2 and b =

{

T i=1
n i=2 . (4.8)



4.4 Piking detetion by thresholding 77Now, the riterion funtion an be alulated as
J(T ) =1 + 2[P1(T ) log σ1(T ) + P2(T ) log σ2(T )]

− 2[P1(T ) logP1(T ) + P2(T ) logP2(T )] ,
(4.9)and the minimum error threshold an be omputed by minimising the riterion J(T ).The method is suitable for thresholding images that have learly bi-modal distributionsfor the bakground and foreground. The method an also perform well with histogramswhere the number of pixels ontributing to the bakground and foreground distributionsdi�er signi�antly or when the distribution between the foreground and bakground isnearly unimodal. In suh a ase the threshold is plaed on either side of the moderesulting in an image where most of the pixels are lassi�ed to one lass, and the rest toanother.4.4.4 Unimodal histogram thresholding methodsAs already disussed, most thresholding methods work in the general ase of bi- or multi-modal grey-level histograms. In suh ases, all modes in the histogram are onsideredto represent di�erent objets, or the bakground. However, the properties of the �nedetails, as seen above, an ause the images to have a distribution whih is lose tounimodal, therefore, the information available for distinguishing the details is hiddensomewhere that looks like normal bakground noise. Fortunately, this is not a newproblem in the �eld of thresholding and several di�erent methods have been proposed.Some of these methods have a more sound basis while others are more or less ad hosolutions. Two unimodal thresholding methods from the literature, Tsai's method [87℄and Rosin's method [74℄, are interesting beause of their adaptive nature. These twoshould be appliable for the given problem. They are reviewed brie�y below.Tsai's methodTsai has introdued two similar approahes to image thresholding using smoothed his-tograms, one of whih is espeially intended for unimodal histograms [87℄. Both ap-proahes are introdued here, but the approah intended for unimodal histograms is ofmore interest for the given problem area. The method di�ers from previous methodssuh that it evaluates the shape of the histogram whereas the methods reviewed earlieruse various statistial properties of image histograms.The �rst approah looks for peaks and valleys in the histogram smoothed with a Gaussiankernel. The smoothing level is adjusted to make the smoothed histogram ontain exatlythe same number of peaks as the desired number of thresholding levels. The valleysbetween the peaks are seleted as the threshold values. In the ase where the number ofpeaks is less than the desired number after using the smallest possible Gaussian kernelfor smoothing, additional threshold values are seleted as the maximums of urvature ofthe histogram.The seond approah utilising urvature is intended espeially for unimodal histograms,and represents a ustom ase of the �rst approah. In the ase where only one peak an befound in the histogram, whih is the unimodal ase, the threshold value is seleted as the



78 4. Runnability evaluation by deteting surfae defetsintensity value at whih the histogram reahes its maximum urvature. The urvaturevalues are alulated from [87℄
Kt =

1

R

R∑

j=1

|ψt+j − ψt−j | (4.10)where
ψt =

1

R

R∑

j=1

hk(t+ j) − hk(t− j)

2j
, hk(i), i = 1 . . . R (4.11)are the smoothed histogram values. hk(t) is the number of pixels with grey level t at the

kth iteration. R spei�es the region of support, and it is used as a smoothing fator toompute the mean tangent angle ψt and the mean urvature Kt at grey level t. To avoidover smoothing, a small R (R < 3) is generally used.The basi idea behind the seond approah is that it is assumed that even though theimage histogram is unimodal, there might be some disontinuity at a point where thebakground and foreground distributions overlap. By deteting this disontinuity, thebakground and foreground of an image an be thresholded. If there are no disontinuitiesin an image histogram, then the performane of the method is questionable.Rosin's methodRosin's thresholding is another method for binary thresholding in the ase of unimodalhistograms [74℄. This simple algorithm is shown in algorithm 3.Algorithm 3 Rosin thresholding1: A line is drawn from the maximum of the histogram to the last non-zero element ofthe histogram:
(argmax

i

hi, max
i

hi) → (argmax
i

[hi = 0 and hi−1 6= 0] , 0), where hi is the i-th ele-ment of the histogram.2: The optimal threshold value is seleted as the intensity value whih maximises theperpendiular distane between the line and the histogram.This method de�nitely laks intuitive motivation. Theoretial mathematial analysisshows that the method is almost insensitive to foreground pixels, and it atually deter-mines the threshold value using only information about the dominating bakground [74℄.The method is not always appliable, but works as long as the histogram mode is not sobroad as to �ll most of the histogram, and the mode is not too strongly peaked.4.4.5 Evaluation of thresholding methodsThe onstruted model allows detailed analysis of di�erent methods as funtions of themodel parameters sine the distributions of both foreground and bakground are known.The optimal seletion of a method for a spei� appliation an be ahieved by resolvingwhih model parameters orrespond to the variation in the aquired data.



4.4 Piking detetion by thresholding 79The most important suess fators in the evaluation of di�erent adaptive thresholdingmethods are the number of not deteted foreground pixels (false negatives) and falselydeteted bakground pixels (false positives). The values however are dependent, and thus,should be ombined to unambiguously ompare the suess between di�erent methods.For the omparison, the enhaned Venkatesh-Kithen disrepany measure introduedin [22℄ was adopted. The disrepany measure was originally devised for omparison ofedge detetion methods, but an be utilised here by setting the measure parameter valuesto α = 0.5, β = 0.5, γ = 0.0 and δ = 0.0, resulting in the following disrepany errormeasure: error = false positives× α+ false negatives× β (4.12)
α = β = 0.5 yields from the assumption that both false positives and false negativesare onsidered as equally erroneous mistakes. γ and δ are set to zero sine they a�etthe spatially dependent error fators, that is, errors near orret values are onsideredless erroneous ompared to errors further away. This is motivated in the ase of edgedetetion, but for �ne and sparse details the errors are equally erroneous regardless oftheir loation.In the piking data, for example, the statistial properties onsistently hange along thestrips. In this spei� ase, the hange an be modelled as an inrease in the a prioriprobability of enountering a defet Pd(i) as demonstrated in Fig. 4.8. In Fig. 4.8 thehistogram, omputed from areas of the same size in di�erent loations of the sample,shapes remain the same but their amplitude inreases.
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Figure 4.8: Histograms of manually marked defets.Sine the foreground/bakground ratio is learly an important property, it is motivatedto inspet performane of di�erent methods as a funtion of this ratio. This is done byapplying the methods to arti�ial images. The behaviour remains the same for di�erentseletions of parameters, but here the values are derived to orrespond to the ones o-urring in the piking samples. The atual foreground/bakground ratios vary between
0.1%−5.0% while the other harateristis orrespond to the model parameters µb = 0.30,
σb = 0.055, i = 1, . . . , 50, µd(i) ∼ U(0.50, 0.80), σd(i) = N(µσd

, σσd
) = N(0.01, 0.002).The behaviour was inspeted for ratios between 0.001 and 0.050, and the histograms andimages orresponding to the two extreme values are shown in Fig. 4.9. It is advisableto note that the methods are applied to model histograms and the probability of a misslassi�ation is not an atual miss lassi�ation for real piking images. False negative



80 4. Runnability evaluation by deteting surfae defetsvalues in Fig. 4.10(a) are obtained by alulating how muh of the estimated foregroundis below the threshold obtained by the di�erent thresholding methods. Similarly, falsepositives in Fig. 4.10(b) are obtained by alulating how muh of the bakground dis-tribution is above the threshold obtained by the di�erent thresholding methods. Thedisrepany measure in Fig. 4.10() is alulated by using Eq. 4.12.
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() (d)Figure 4.9: Model-generated histograms and the orresponding arti�ial images:(a),() Foreground/bakground ratio (P Pd(i)/Pb) 0.001; (b),(d) 0.05.Surprisingly, a hange in the a priori value does not indue any signi�ant hange in theperformane of the methods as shown in Fig. 4.10. This behaviour is natural for methodsbased on the bi-modality assumption (Kittler and Rosin). Otsu's method ompletely failsby deteting most of the bakground as foreground (Fig. 4.10(b)), and Kapur's methodfails by missing a signi�ant number of foreground defets (Fig. 4.10(a)). These twogeneral thresholding methods seem to be inappliable to the given problem domain.Tsai's method performs well for small numbers of defets, but it beomes unstable whenthe foreground/bakground ratio approahes 0.05 (Figures 4.10(a) and 4.10(b)). Thesuess of the di�erent methods beome even more lear in the disrepany graph inFig. 4.10(). The two most suessful methods are Kittler's and Rosin's methods. Thehange in thresholds an be seen from Fig. 4.10(d). Piking data also supports the nextstudy sine the distribution of paper defets an be modelled as a normal distribution(Figs. 4.8 and 4.11).Sine the histogram in Fig. 4.11 posses a learly unimodal distribution, it is motivated tostudy how the methods perform as a funtion of the level of unimodality. The toleranean be tested by varying the mean of the defet distribution. The mean of the foregrounddistribution µµd

was varied between 0.36 and 0.56 while the other parameters were kept



4.4 Piking detetion by thresholding 81

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

10
−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

Proportion of foreground pixels

P
ro

p
o

rt
io

n
 o

f 
n

o
t 

d
e

te
c
te

d
 f

o
re

g
ro

u
n

d

Rosin

Tsai

Otsu

Kapur

Kittler(a) 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Proportion of foreground pixels

P
ro

p
o

rt
io

n
 o

f 
fa

ls
e

ly
 d

e
te

c
te

d
 b

a
c
k
g

ro
u

n
d

Rosin

Tsai

Otsu

Kapur

Kittler(b)
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

10
−3

10
−2

10
−1

10
0

Proportion of foreground pixels

D
is

c
re

p
a

n
c
y
 m

e
a

s
u

re
 v

a
lu

e

Rosin

Tsai

Otsu

Kapur

Kittler() 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proportion of foreground pixels

T
h

re
s
h

o
ld

Rosin

Tsai

Otsu

Kapur

Kittler
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Figure 4.11: Histograms of manually marked piking defets and the bak-ground. The foreground/bakground ratio is P

i
Pd(i) = 0.005, the bakgroundmean is µb = 0.345 and the standard deviation σb = 0.011. The foreground meanis µµd

= 0.372 and the standard deviation σσd
= 0.037.



4.5 Experiments 83onstant (µb = 0.30 and σb = 0.055). From the results in Fig. 4.12, it is evident thatRosin's, Tsai's, and Kittler's methods perform equally well in the detetion of defets andonly Otsu's method provides distintly worse results. The results are again most obviousin the disrepany graph in Fig. 4.12() (note that Kapur's method is here omitted dueto its poor performane earlier).
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()Figure 4.12: Detetion results for arti�ial data as funtions of defet distribu-tion mean µµd
, the bakground distribution was kept onstant mub = 0.30, lowervalues are better: (a) Proportion of foreground pixels that were not deteted,and (b) Proportion of pixels that were falsely deteted as bakground pixels; ()Disrepany.

4.5 ExperimentsIn this setion, the results with the real piking images are brie�y desribed.



84 4. Runnability evaluation by deteting surfae defets4.5.1 Piking imagesA set of piking images aptured under oblique lighting were used as the real test setfor the andidate methods. As a preeding step to thresholding, an image enhanementproedure was applied to the images.4.5.2 Image enhanementIn pratie, input images often are or have been derived from images with only 8 bits perpixel, i.e., 256 intensity levels, so there is little motivation to generate histograms withmore than 256 bins. However, ertain image transformations, suh as onvolution �lteringin the �oating point form, an dramatially inrease the number of intensity levels andprodue larger histograms whih allow a more preise threshold estimation. Anotherbene�t of the �lter is that it enompasses the spatial of a single defet and thereforemakes the detetion of defets more aurate sine intensity and spatial information anbe used.It is lear that ertain image enhanement tehniques may lead to more aurate thresh-olding results sine sub-level auray is ahieved. With �ne and sparse details, it anbe bene�ial to �lter the image with a spot detetion �lter. By �ltering with a simple
n× n �lter, the number of distint intensities in an image an inrease up to the fatorof n2 times. Suh image preproessing before onstruting the histogram agrees with theresults presented in [5℄. In the ase of the piking images, the following spot detetion�lter was used:

f =






−1 −1 −1 −1 −1 −1 −1
−1 0 0 0 0 0 −1
−1 0 1.5 3 1.5 0 −1
−1 0 3 6 3 0 −1
−1 0 1.5 3 1.5 0 −1
−1 0 0 0 0 0 −1
−1 −1 −1 −1 −1 −1 −1




 . (4.13)The main reason for the image enhanement for the piking images was removal of unde-sired imaging e�ets on the paper samples, suh as the waving appearing in Fig. 4.5(a)(visible in the top row images). This spot �lter is not neessary for unoated papers,whih do not su�er partial delamination in the same way as oated papers do. Unoatedpapers do not su�er from waving and therefore this step, again, is not required althoughit does enhane small details even in unoated paper images.Image examplesFigs. 4.13 and 4.14 show four piking images for oated papers, their enhaned versions,and the results for all �ve thresholding methods. The results with the real images or-respond to the results with the arti�ial data: two of the most promising methods areRosin's method and Kittler's method. Rosin's method detets more foreground pix-els, but also falsely detets a large number of bakground pixels. This is evident fromFigs. 4.10, 4.13 and 4.14. Therefore, Kittler's method orresponds more preisely to whatis to be deteted from the original images.



4.5 Experiments 85

(a)

(b)Figure 4.13: Two examples of piking images, and the thresholding results.Images from the top are the aligned image (top), the enhaned image, the resultfrom the method by Rosin, Tsai, Otsu, Kapur, and Kittler (bottom).
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(a)

(b)Figure 4.14: Two additional examples of piking images, and the thresholdingresults. Images from the top are the aligned image (top), the enhaned image,the result from the method by Rosin, Tsai, Otsu, Kapur, and Kittler (bottom).



4.6 Heuristis to determine the starting loation of piking 874.6 Heuristis to determine the starting loation of pikingAfter the images have been thresholded, some heuristis and post proessing is requiredto determine the atual starting loation of the piking. Currently the piking loationis determined by alulating the pro�le of the thresholded binary image, i.e., the numberof deteted defets is summed over the length of the image so that a pro�le of the imageis obtained. The piking starting loation an be determined from the pro�le with someuser de�nable parameters. The �rst parameter is the size of the piking N , whih in apro�le graph means that all values below this number are onsidered as being not pikingbut some noise suh as dust spekles or irrelevant (too small) pikings. When the pro�legraph exeeds the set threshold N its length above the threshold is measured. If themeasure is higher than d, the piking is marked to start at the loation where the pro�legraph �rst exeeded threshold N . In order to allow small gaps in the thresholded graph,a third variable dmin is used. It ignores small gaps in the thresholded graph if they arenot longer than dmin. Fig. 4.15 demonstrates how the heuristis work to determine thepiking start loation.This is just one example of the heuristis that an be used to determine the startingloation of the piking. It has been advised by numerous industrial experts that this stepshould be as ustomisable as possible. Di�erent laboratories, even inside same ompany,have di�erent ways to atually determine the piking start loation depending on theirustomers' requirements. Currently, the paper and printing industry are trying to de�nea standard that would de�ne piking more learly but at the time of writing, the standardis not ready and thus annot be used to de�ne piking start loation more learly.The whole piking detetion method is summarised in algorithm 4.Algorithm 4 Method for deteting piking.1: Image the sample.2: Preproessing.3: Threshold the image.4: Use heuristis to determine piking start loation.
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4.7 Summary 894.7 SummaryIn this hapter, an automated method for deteting piking from printed test sampleswas introdued. A model for images with �ne and sparse details was also given based onstatistial properties in the image grey-level histogram domain. Based on the proposedmodel, several well-known and widely used thresholding methods were studied to evaluatetheir performane as funtions of the model variables, and the most promising methodswere proposed for deteting �ne and sparse details.The proposed model aimed to explain harateristis of real images ontaining di�erenttypes of defets on a noisy bakground. An adaptable and problem spei� method wasintrodued in this thesis for the automati evaluation of piking samples. Visualisationof the model orresponded to the real data, and the results with real images veri�edthe analytial results. Based on the study and the onduted experiments, Kittler's andIllingworth's minimum error thresholding was seleted as the most suitable method forthe given task.Determining the atual starting loation of piking was ompliated. Di�erent paperand printing industry experts have di�erent opinions about what should be onsideredas piking and therefore only an adaptable and problem spei� method was introdued.



90 4. Runnability evaluation by deteting surfae defets



Chapter VImaging setup for performing the Heliotest and piking test

During the ourse of the thesis work, a laboratory test setup for performing the Heliotestand piking test inspetion on printed samples was built. The setup enabled testing themethods introdued in the earlier hapters.5.1 Imaging setupAs mentioned in Chapter 3, the Heliotest has demanding requirements for image resolu-tion. Furthermore the printed Heliotest and piking test samples should not ome intoontat with anything during industrial quality inspetion tests sine the ink an still bewet and lift �bres should not be folded bak into the paper surfae. In order to meetthese requirements, an Allied Vision Osar F510C CCD amera with Moritex ML-Z0108miro objetive lens was hosen as the imaging devie. Table I.1 in Appendix I lists theamera spei�ations and spei�ations for the lens are listed in Table I.2. The amerawas attahed to a omputer via a Firewire onnetion. The bene�t of this arrangementwas that the amera ould now be ontrolled via Linux due to freely distributed Firewiredrivers [17℄.Two di�erent light soures were seleted to illuminate samples below the amera. For theHeliotest samples, a ring light illuminating the samples diretly from above was hosen.For the piking samples, two high pressure 250W halogen lights were hosen to meet theoblique illumination requirement. The lights were attahed to an adjustable handle andould be adjusted to provide light at low angles with respet to a sample. Spei�ationsfor the ring light and its light soure are listed in Tables I.3 and I.4.One problem with the amera arrangement was that the whole sample did not �t into animage and had to be imaged in parts. A solution for this imaging di�ulty was to usea very aurate desktop robot to move either the sample or the amera. Spei�ationsfor the Sony Cast Pro II robot are given in Table I.5. The auray of the robot enablesthe user to move the amera or sample very aurately to a known position whih meansthat time onsuming image alignment was not needed but done by the robot.91



92 5. Imaging setup for performing the Heliotest and piking testIn the system, imaging is done by plaing the sample on the robot table and the amera ismoved above the sample. The sample is imaged in parts and eah image part is proessedwith the proposed algorithms. Image aquisition is asynhronous whih, means that theatuator moves to the next loation while the urrent image is being proessed. Fig. 5.1shows the whole test setup.

Figure 5.1: Experimental setup ready for analysing Heliotest sample.5.2 Deteting the retangular measurement areaAfter an image of a sample is aquired, the retangular measurement area must be loatedin order to avoid unneessary image proessing. Regions outside the measurement areado not provide any neessary information but only slow proessing. Furthermore, dotsan be falsely deteted as missing outside of the measurement area sine that area is blankand does not ontain any dots. The measurement area di�ers from the bakground basedon its texture pattern and olour. In short, the measurement area is deteted by edgedetetors, Hough transform and heuristis.In order to redue the number of unneessary details like edges of individual dots inthe Heliotest and to speed up proessing, the input image is �rst downsampled. Thesaling fator an be set by the user and it should be seleted so that individual dotsinside the measurement area beome indistinguishable from eah other. In this way themeasurement area itself is portrayed in one olour and the bakground in a notieablydi�erent one. After downsampling, the image is �ltered using a Gaussian �lter so thatany minor details left in the image beome blurred and do not appear as edges. Fig. 5.2



5.2 Deteting the retangular measurement area 93shows the original image and the images after it has been down sampled and Gaussian�ltered.
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94 5. Imaging setup for performing the Heliotest and piking test

Figure 5.3: Example of orner detetion, orners are numbered in detetionorder.is formed based on the orner point information. Fig. 5.4 show an input image andthe deteted measurement area using the desribed method. The whole measurementdetetion algorithm is summarised in algorithm 5.Algorithm 5 Deteting the printed measurement area.1: Downsample the image.2: Smooth the image.3: Detet edges of the image by using the Canny edge detetor.4: Estimate the parameters of the edge line by using Hough transform.5: Calulate the rossing points of edge lines.6: De�ne bounding box for the measurement area based on edge points.It should be noted that the deteted measurement area will have some minor errorssine the measurement area alulations are done to downsampled image. The full sizedmeasurement area an have an error by the down sampling fator. Also the Gaussian�ltering auses the edge of the measurement area to blur thus making detetion of theatual edge more inaurate, as an be seen from Fig. 5.4(b). However, these minorerrors do not harm the later proessing. In addition no aliasing e�et happens in theresulting image sine the image is not downsampled, only ropped.After measurement area detetion, the methods introdued in the previous hapters anbe used to detet missing dots or pikings from the imaged sample. Eah individualimage is proessed separately and oordinates of missing dots or possible pikings aresaved. After the 20th missing dot or piking point is loated, the distane is alulatedand shown on the sreen both in pixels and in millimetres.
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96 5. Imaging setup for performing the Heliotest and piking test5.3 ExperimentsThe experimental setup was tested with the o-operation of industrial partners at papermills. The tests were preliminary in nature but they give a good indiation of thepotential of the setup in automating the quality inspetion tasks. Appendix II lists theresults obtained by two laboratory experts and the experimental setup regarding pikingtest inspetion. Both experts marked piking loation on a separate paper withoutseeing eah other's markings. Finally the experimental setup was used to analyse thesame samples.Hand marked distanes are measured using an ordinary 30 m long ruler and therefore aneasily ontain errors of about ±1 mm whih should be kept in mind when the results areassessed. The results were quite satisfatory most of the time, piking was found orretlybut determining where to mark the piking starting loation requires more onsideration.The oe�ient of determination (R2) between the measurements of experts and theseof the setup are listed in Table 5.1. As an be seen, the setup results orrelate betterwith expert 1 than with expert 2 but there is still a notable di�erene of opinions aboutmissing dot loations between the setup and the experts. However, even the experts arenot unanimous about the piking start loation.Table 5.1: Coe�ient of determination between expert measures and setup mea-sures with piking test samples. E denotes expert and S denotes setup. Correla-tions were alulated over all di�erent paper qualities.E1 vs S E2 vs S E1 vs E20.84 0.81 0.97Similar tests with the Heliotest were also performed. The individual results an befound from appendix III. The setup performed very well with the Heliotest, there weresome troublesome ases where the dots were so dimly printed that the setup mistakenlylabelled them as missing dots, whereas human experts did not. Fig. 5.5 demonstratesthis. The deision to lassify dot as a missing/not missing an be subjetive and thethreshold for marking a dot as a missing depends on the set threshold. The oe�ientof determination orrelations between the setup and experts are listed in Table 5.2. Asan be seen from the results, measurements between experts and the experimental setupare very well aligned.Table 5.2: Correlations between expert measures and setup measures with He-liotest samples. E denotes expert and S denotes setup. Correlations were alu-lated over all di�erent paper qualities.E1 vs S E2 vs S E3 vs S E1 vs E2 E1 vs E3 E2 vs E30.99 0.99 0.99 1.00 1.00 0.99Statistis for individual paper grades were not alulated due to the few measurementsavailable. The industrial partners were satis�ed with the auray of the methods and



5.4 Summary 97the experimental setup. The speed of the measurement methods were also deemed satis-fatory. The piking test for a single sample ould be performed in about 10 seonds. Forthe Heliotest it took a bit longer, a single test sample is analysed in about a minute. Alaboratory expert an perform the same tests in about 30 seonds per sample, dependingon the level of experiene and di�ulty of the sample.

Figure 5.5: Cluster of falsely loated missing dots. Cirles mark missing dotsfound automatially, missing dots found by laboratory expert have been markedwith squares.
5.4 SummaryThis hapter explained how the methods introdued in the previous hapters were appliedto an experimental test setup. The setup was introdued and its spei�ations presented.A method for deteting the measurement area from the Heliotest and piking test images



98 5. Imaging setup for performing the Heliotest and piking testwas also presented. Finally the setup was used to perform the Heliotest and piking testinspetion on samples that were also evaluated by industrial experts. The results of thesetests are given in appendies II and III. Industry partners were satis�ed with the setupperformane. Although the Heliotest ould be performed faster manually, the bene�t ofusing automation omes from repeatability and redution in eye strain.



Chapter VIDisussion

The objetive of this thesis was to seek methods to detet irregularities from regularpatterns and methods for deteting small and sparse details from images. Two paperquality measurement problems in paper and printing industry were introdued as pra-tial problems: The �rst was the detetion of missing dots from Heliotest patterns andthe seond detetion of small and sparse details from IGT piking samples.The �rst pratial problem is generally related to regular patterns and how to detetirregularities from them. The well known Fourier transform was seleted as a basis forfurther study. Three methods were developed for deteting irregularities (missing �dots�)from regular patterns based on Fourier analysis. Their performane in the Heliotestinspetion task was analysed and the generality of methods was disussed. The proposedmethods are appliable to all tasks where regular pattern may ontain irregularities, forexample, the inspetion of patterned wafers, and a very similar method is patented forintegrated iruit fault detetion [75℄. For irregularity detetion it beame apparent that agood ontrast between the objet and the bakground gives better results and thereforea ontrast enhanement algorithm based on Bayesian deision making was developed.The posteriori ontrast enhanement method made the task of thresholding the irregularimage easier. The most noteworthy advantage of the proposed irregularity detetionmethods over the methods proposed earlier in [53, 31, 47℄ are their ability to detetedmultiple irregularities lustered next to eah other.The weaknesses of the proposed irregularity detetion method appear when the atualirregularities are segmented from the irregular image. Seleting a suitable threshold fordetetion is not simple. Small variations in the image, suh as noise, an easily be falselyinterpreted as irregularities. To ounter this, the irregular image an be thresholded andanalysed so that the binarised areas have to math the sizes of the atual dots in theregular image part. In this way noisy pixels in the binarised image do not a�et theirregularity detetion proess.There is also a pratial problem with Heliotest. The printed pattern edges are notalways straight, meaning that the edge line of printed dots an suddenly shift one dot99



100 6. Disussionolumn left or right. When this happens in the middle of an image, the empty spaeafter the shift an be mistaken as a olumn of missing dots. This problem is ounteredby simply ignoring a ertain amount of missing dots near the image edges. By applyingthe proposed methods to an imaging setup, the Heliotest ould be performed with verysatisfying results.The seond problem addressed in this work was the detetion of small and sparse detailsfrom images suh as IGT piking sample images. Well known thresholding methods werehosen for the task and their performanes with arti�ial small and sparse details wereompared. Kittler's and Illingworth's minimum error thresholding was hosen as themost suitable for the task. When applied in pratie on IGT piking sample images,piking (paper surfae tearing) in the images is deteted aurately; problems are morerelated to analysing the atual thresholded images. Consensus needs to be reahed on howthe piking start loation is de�ned. The urrent method produes repeatable results,but still may fail to satisfy experts beause their opinions di�er on how to de�ne thepiking start loation. Therefore, testing the method with real piking test images withground truth data is di�ult, sine no ommon ground is found on how to de�ne theground truth. Marking piking spots manually on the samples would take a lot of timeand would still produe subjetive results. Therefore to reliably to measure thresholdingperformane an arti�ial data was used. For the arti�ial data, the exat ground truthwas available.In the future studies, more information about determining the piking starting loationfrom the thresholded images is needed. Industry would prefer the results to be lose tothose obtained by human evaluation. Spatial information of the defets ould be usedmore, along with intensity, as the separation between the bakground and defets inpiking images might improve.In this thesis, an experimental setup is presented, whih utilises the methods introduedto detet irregularities and small and sparse details. The performane of the setupis measured by performing Heliotests and piking tests on expert evaluated samples.Feedbak on the performane of the setup from paper laboratories has been enouragingand therefore further produt development is justi�ed.
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APPENDIX ISpei�ations for imaging setup

The tehnial spei�ations for imaging setup are listed below.Table I.1: Spei�ations for Allied Vision Tehnologies OSCAR F-510C amera.Manufaturer Allied Vision TehnologiesModel OSCAR F-510CType Industrial ameraSensor size 2/3�Resolution up to 2588 × 1958Pixel size 3.2 µm (square)Sensor type CMOSColour RAW, RGB, YUV-4 : 2 : 2, Mono8San type True partial sanShutter speed 20µs − 67sResolution depth from 12bit up to 16bitin high resolution modeConnetor FirewireLens mount CDimensions 44 × 44 × 58.9 mmDrivers Linux & WindowsAbilities Possible to de�ne ustomresolution for images.
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Table I.2: Spei�ations for Mortitex maro zoom objetive.Manufaturer MoritexModel ML-Z0108Type 0.1 ×−0.8× zoom lensWorking Distane 213 mmWD adjustment ±20 mmE�etive F Number 8.2 − 9.3Depth of Field 32.8 − 0.6 mmResolution 55 − 8 µmTV Distortion −0.02 ± 0.17% (or less)Largest sensor 1/2�Mount C-mount

Table I.3: Spei�ations for light soure.Manufaturer MoritexModel MHF-M1002Type 100W Halogen type light soureInput Voltage AC180 ∼ 250V50/60 HzPower onsumption 270 VALamp type LM-100Options External light ontrol (0�5 V)External volume light ontrolExternal on/o�Lamp rush urrent detetionInternal temperature detetion
Table I.4: Spei�ations for lamp.Manufaturer MoritexModel LM-100Type 100W Halogen lampPower onsumption 100 WLamp urrent 8.4 AAverage life 1000 hAverage luminosity 30000 luxColour Temperature 3100◦ K
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Table I.5: Spei�ations for Sony Cast Pro II desktop robot.Manufaturer SonyModel Cast Pro IIType desktop robotOperating area 350 × 350 mmMoving preision 0.02 mmNumber of axis 2
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APPENDIX IIPiking test with test setup

Piking test measurement results. All measures are given in millimetres. 5 di�erentpaper qualities were measured and eah quality ontained 5 samples. Di�erent qualitypapers are separated with horizontal lines. Table II.1 lists the measurements.Table II.1: Piking test results. Expert 1 and 2 results were obtained by humanobservations and Setup was performed by mahine vision setup. All results arepresented in millimetres. Quality refers to di�erent paper grades.Grade Sample Expert 1 Expert 2 SetupQuality 1 1 88 81 992 71 74 1023 73 73 974 62 67 645 80 82 97
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Table II.2: Table II.1 ontinued.Grade Sample Expert 1 Expert 2 SetupQuality 2 1 51 47 492 32 34 333 32 29 364 44 44 455 42 42 43Quality 3 1 40 40 432 47 47 503 42 40 434 46 42 455 42 44 39Quality 4 1 93 89 852 93 87 973 92 90 1134 83 76 825 82 69 85Quality 5 1 184 137 1372 184 185 1383 194 193 1434 193 192 -5 181 183 122



APPENDIX IIIHeliotest with test setup

The test was performed by 3 human experts and Setup. The greatest di�erenes inmeasurements happened when some dimly missing dots were falsely lassi�ed as missingdots by the mahine vision setup. Table III.1 lists the measurement results.Table III.1: Heliotest results. Expert 1, 2, and 3 results were obtained by humanobservations and Setup was performed by mahine vision setup. All results arepresented in millimetres. Quality refers to di�erent paper grades.Grade Sample Expert 1 Expert 2 Expert 3 SetupQuality 1 1 62 60 64 622 56 56 56 543 51 50 50 504 63 62 63 625 56 56 56 55Quality 2 1 72 72 72 722 61 60 61 633 71 70 70 704 69 67 68 645 79 79 79 78Quality 3 1 26 26 23 282 20 20 19 203 28 26 25 284 31 29 29 305 26 29 23 28
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116 III Heliotest with test setup

Table III.2: Table III.1 ontinued.Grade Sample Expert 1 Expert 2 Expert 3 SetupQuality 4 1 40 40 39 402 47 46 46 463 37 36 36 384 47 46 46 475 42 41 41 41Quality 5 1 48 48 48 462 51 50 50 503 54 50 50 494 63 63 63 605 53 51 52 46Quality 6 1 80 82 81 802 90 90 89 893 81 80 89 824 85 85 84 845 90 90 89 80Quality 7 1 96 96 95 942 110+ 110+ 110+ -3 105 106 105 1014 95 95 94 945 106 107 106 105Quality 8 1 78 77 76 772 81 82 81 823 65 66 65 664 91 93 91 915 80 82 80 80


