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Abstra
tJarkko VartiainenMeasuring irregularities and surfa
e defe
ts from printed patternsLappeenranta, 2007116 p.A
ta Universitatis Lappeenrantaensis 264Diss. Lappeenranta University of Te
hnologyISBN 978-952-214-370-9ISBN 978-952-214-371-6 (PDF)ISSN 1456-4491Quality inspe
tion and assuran
e is a very important step when today's produ
ts aresold to markets. As produ
ts are produ
ed in vast quantities, the interest to automatequality inspe
tion tasks has in
reased 
orrespondingly. Quality inspe
tion tasks usuallyrequire the dete
tion of de�
ien
ies, de�ned as irregularities in this thesis.Obje
ts 
ontaining regular patterns appear quite frequently on 
ertain industries ands
ien
e, e.g. half-tone raster patterns in the printing industry, 
rystal latti
e stru
turesin solid state physi
s and solder joints and 
omponents in the ele
troni
s industry. Inthis thesis, the problem of regular patterns and irregularities is des
ribed in analyti
alform and three di�erent dete
tion methods are proposed. All the methods are based on
hara
teristi
s of Fourier transform to represent regular information 
ompa
tly. Fouriertransform enables the separation of regular and irregular parts of an image but the threemethods presented are shown to di�er in generality and 
omputational 
omplexity.Need to dete
t �ne and sparse details is 
ommon in quality inspe
tion tasks, e.g., lo
atingsmall fra
tures in 
omponents in the ele
troni
s industry or dete
ting tearing from papersamples in the printing industry. In this thesis, a general de�nition of su
h details isgiven by de�ning su�
ient statisti
al properties in the histogram domain. The analyti
alde�nition allows a quantitative 
omparison of methods designed for detail dete
tion.Based on the de�nition, the utilisation of existing thresholding methods is shown tobe well motivated. Comparison of thresholding methods shows that minimum errorthresholding outperforms other standard methods.The results are su

essfully applied to a paper printability and runnability inspe
tionsetup. Missing dots from a repeating raster pattern are dete
ted from Heliotest stripsand small surfa
e defe
ts from IGT pi
king papers.Keywords: quality inspe
tion, paper industry, regular patterns, thresholding, auto-mated opti
al inspe
tion, Fourier transform, ma
hine vision, image pro-
essing and analysis, HeliotestUDC 676.017.7 : 004.932.2 : 004.921





Symbols and abbreviations
3D 3 dimensional
~a Ve
tor a
F Dis
rete Fourier transform
F−1 Inverse dis
rete Fourier transform
M(u, v) Mask �lter
µ(x) Mean
I(u, v) Unit fun
tionN Newton
N(µ, σ) Normal distribution
R2 Coe�
ient of determination
σ Standard deviation
ξ(x, y) Spatial image
Ξ(u, v) Fourier transformation of ξ(x, y)



CCD Charge-
oupled devi
e, imaging sensorFFT Fast Fourier Transform
H Multipli
ative noise fun
tionh HistogramISO International Standardisation Organisation
L ∗ a ∗ b∗ Adams Chromati
 Value Spa
epdf Probability density fun
tionPa Pressure in pas
alsRH Relative humidity (in air)RGB Red, Green, Blue 
olour spa
e
S Surfa
e area
T Thresholdu,v position in Fourier domainx,y position in spatial domainVVP Velo
ity vis
osity produ
t
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Chapter IIntrodu
tion

The purpose of this thesis is to �nd methods to perform automati
 visual quality in-spe
tion for two quality inspe
tion tasks in the paper and printing industry. Qualityinspe
tion and monitoring are essential steps when today's produ
ts are sold to the mar-kets. Consisten
y in the quality inspe
tion pro
ess is 
ru
ial in order to guarantee thatdi�erent produ
tion bat
hes meet the required quality 
riteria. Often, the inspe
tion is
ondu
ted visually by trained personnel, whi
h means that the results 
an be subje
tivefor various reasons su
h as di�eren
e in opinions, tiredness and other physiologi
al orpsy
hologi
al fa
tors.Ma
hine vision 
an over
ome some of these human de�
ien
ies: Computers do not gettired and produ
e repeatable results under standardised inspe
tion 
onditions. In thepaper and printing industry, these quality inspe
tion problems are en
ountered whenpaper printing quality is assessed. Paper grade quality is determined by printing a testpattern on a paper and then various measurements are taken and the test paper inspe
tedvisually by laboratory sta� with a magnifying 
lass or a mi
ros
ope.1.1 Resear
h questionsThe spe
i�
 problems that are addressed in this thesis are the dete
tion of irregularitiesfrom regular patterns and the dete
tion of small and sparse details from a paper surfa
e.Su
h problems are inherent in the Heliotest and pi
king test. The Heliotest is a standardmethod in the paper industry to test the smoothness of printing paper. Smoothness isrelated to paper printability. The smoother the paper, the better the ink absorbs onto thepaper, resulting in 
olourful and detailed prints. The pi
king test measures the surfa
estrength of a paper. It gives a rough indi
ation of how fast a given paper 
an be printedbefore the paper surfa
e starts to tear due to fri
tion for
es a�e
ting the paper surfa
eduring print head and paper intera
tion. 11



12 1. Introdu
tion1.1.1 Dete
ting irregularities from regular patternsIn the Heliotest, half-tone dots are printed on a strip of paper so that the spa
ing of thedots stays the same but the size de
reases towards the end of the strip. The dots form aregular raster pattern on the paper surfa
e. Due to roughness of the paper, ink does notalways absorb to the paper resulting in missing or partially missing dots in the regularpattern. In the paper and printing industries, paper quality is determined by 
ountingthe distan
e to the 20th missing dot from the start of the printed regular area [36℄. Thisis the �rst main resear
h problem in the thesis; the dete
tion of defe
ts from regularpatterns.An image pro
essing sub-�eld whi
h 
ontains many similar 
hara
teristi
s to regularpatterns is texture analysis. In texture analysis, however, the most typi
al problem isto distinguish between di�erent types of textures, and thus, the proposed approa
hesfavour between-texture type 
lassi�
ation. Irregularity dete
tion, however, needs within-texture type of 
lassi�
ation. Still, there are many useful texture 
hara
teristi
s andnotations that 
an be used, e.g., half-tone dots 
an be 
onsidered as texture atoms andtheir spa
ing 
an be represented as the spatial interrelationships between the atoms [28℄.Resear
h related to irregularity dete
tion has been 
ondu
ted in fabri
 defe
t dete
tion(e.g., [12℄), but there the problem setting is too loose for missing dot dete
tion: fabri
defe
t dete
tion is primarily 
on
erned about the lo
ation of a possible error, but inmissing dot dete
tion, it is ne
essary to �nd what is wrong in the given lo
ation. Inother words, one needs to �nd both the lo
ations where there are irregularities, and whatkind of irregularities are present, e.g., a partly or 
ompletely missing dot or a group ofdots. Spe
i�
 image pro
essing methods for missing half-tone dot dete
tion have beenproposed, e.g., by Langinmaa [53℄, and Hees
hen and Smith [31℄. Their methods arebased on template mat
hing or binary level pro
essing. A

ording to the authors of bothmethods, their weakness is the di�
ulty of distinguishing the exa
t number of missingdots from areas that 
ontain 
lusters of missing dots.1.1.2 Dete
ting small and sparse details from the ba
kgroundThe se
ond resear
h problem in the thesis is the dete
tion of small and sparse detailsfrom a paper surfa
e as is the 
ase in the pi
king test. The pi
king test is performed witha spe
ial printing oil that is printed at a

elerating speed on a paper surfa
e. At 
ertainspeed, the paper surfa
e starts to tear due to the in
reasing for
e a�e
ting its surfa
e. At�rst only some �bres start to lift from the paper and then the paper surfa
e starts to tearup more visibly. These small surfa
ing �bres are small defe
ts that need to be dete
tedfrom the ba
kground. In the imaged samples, the proportion of pixels related to defe
tsis typi
ally very small, making the grey-level histograms almost unimodal. Additionally,the grey-level values of both the defe
ts and surfa
e overlap signi�
antly. The spatialdistribution of the defe
ts 
an be 
onsidered random, and thus, general thresholdingmethods are appli
able.Binary thresholding is one of the most 
ommonly used and essential operations in digitalimage pro
essing, and in many appli
ations thresholding is used at some point of thealgorithm. Even though the operation itself is very simple, the problem of sele
ting anoptimal threshold value is not trivial at all. For a single image, the optimal value 
an be



1.2 Contributions 13sele
ted manually, but adaptive thresholding methods exist intended to automati
allyestimate the optimal value. Due to its importan
e, adaptive thresholding has beenstudied for a few de
ades, and a wide variety of di�erent methods have been proposed(see, e.g., [79℄). The extensive work in the past should have resulted in a proper methodexisting, for any problem. Sin
e the di�erent methods value di�erent properties, methodsele
tion depends on the 
hara
teristi
s of the problem domain.This thesis assesses the ability of adaptive thresholding to bring up �ne and sparse details.Most methods perform well when the image foreground and ba
kground 
onstitute areasof su�
iently equal sizes, and the grey level values have substantially non-overlappingdistributions [79℄. However, when either or both of the above assumptions are not valid,major di�
ulties 
an be en
ountered. The problem 
an be solved by de�ning the ne
-essary statisti
al properties in the histogram domain and by analysing the performan
eof well-known and well-performing general adaptive thresholding methods and methodsspe
i�
ally appli
able to unimodal histograms. Another approa
h to solve the problem
ould be to use te
hniques widely used in 
ontent based image retrieval where the goalis to lo
ate images of a same obje
t/s
ene from di�erent angles. These methods oftenrely both on 
olour information and spatial information of the 
olour to better separatedi�erent images from ea
h other [34℄. The basi
 underlying idea is that instead of usingonly 
olour information, both 
olour and spatial information is used to better separatedi�erent images from ea
h other. The same idea 
ould be applied to more 
learly sep-arate small and sparse defe
ts from the ba
kground. To in
lude spatial information, aspot �lter that emphasises the small bright spots on samples is used in this work due toits simpli
ity and ease of use.1.2 ContributionsThe main 
ontributions of this thesis are methods for dete
ting irregularities from regularpatterns and the study of methods for dete
ting small and sparse surfa
e defe
ts. Themethods have been 
reated to ful�l the needs of the paper and printing industry, butthey are not limited these parti
ular �elds. The methods for dete
ting irregularities fromregular patterns are robust and 
an be applied anywhere where regular data is available.Evaluation of these methods has proven them to be very a

urate and relatively simple toimplement, whi
h should make them very attra
tive for use in quality inspe
tion tasks.The work presented in this thesis is a part of the larger Papvision proje
t (http://www.it.lut.�/proje
t/papvision) investigating ma
hine vision methods for paper qualityinspe
tion. Several people took part in the Papvision proje
t. This thesis is a monograph,but some of the results have been published in s
ienti�
 
onferen
es or other s
ienti�
media (in [77, 20℄ the author parti
ipated in development, was one of main authors andperformed the experiments, in [91, 92, 93, 94℄ the author developed the methods, wrotethe arti
les and performed the experiments). The author provided software and helpedbuild the setup introdu
ed in Chapter 5.1.3 Stru
ture of the thesisChapter 2 gives ba
kground information about the resear
h area. It gives an overview ofthe methods and pro
edures used today in paper stru
ture analysis and reviews previous



14 1. Introdu
tionresear
h in the area.Chapter 3 des
ribes the �rst resear
h problem of the thesis, the dete
tion of missingatoms from repeating patterns. The 
hapter des
ribes the problem in detail and thengives a detailed explanation of the methods that were developed during the 
ourse of theresear
h. After presenting theoreti
al 
onsiderations, the experiments are des
ribed andthe results given.Chapter 4 
onsiders the se
ond problem of the thesis, namely the dete
tion of smalland sparse details. The stru
ture of this 
hapter follows that of Chapter 3. First thetheoreti
al ba
kground for the problem is introdu
ed and then the methods proposedand their validity are analysed. The methods are then veri�ed with both arti�
ial andreal data.Chapter 5 presents the appli
ation of the proposed methods to experimental test setup.The setup spe
i�
ations are shown and a method to dete
t the measurement area frominput images is presented. The setup is then used at paper mills to perform the Heliotestand pi
king test. The measurements obtained by the system and by industrial expertsare given in appendi
es II and III.In Chapter 6 the weaknesses and strengths of the methods introdu
ed in Chapters 3 and4 are dis
ussed. The dis
ussion also 
ontemplates other possible appli
ations where thesemethods 
ould be used.



Chapter IIPaper quality inspe
tion

Inspe
ting produ
t quality is 
ommon in all industries and the paper and printing indus-try is no ex
eption. Quality inspe
tion 
an be performed at many stages of the produ
tion
y
le, raw materials, end produ
ts and intermediates of a manufa
turing pro
ess 
an allbe tested. The aim of quality inspe
tion is to numeri
ally des
ribe the most relevantproperties or features of a produ
t or its intermediate or both. Unfortunately inspe
tiontests do not always measure the exa
t features of the produ
t in question, e.g., obje
tdensity 
an be determined by measuring its mass and volume. For inspe
tion to be rel-evant, the feature measured should 
orrelate well with a property of the produ
t under
onsideration.In industry, inspe
tion 
an have other fun
tions. It 
an be used to 
ontrol pro
ess 
ondi-tions or for quality assuran
e that the end produ
ts are 
onsistent, i.e. their propertiesdo not vary, and they meet set quality 
riteria. Inspe
tion 
an also be used to obtainadditional value for marketing purposes. Sele
ting the proper test for di�erent situationsrequires 
areful 
onsideration.Nowadays, more and more tests are done on-line during produ
tion. This gives thebene�t of being able to adjust produ
tion pro
ess right away in order to maintain ane�
ient and 
onsistent produ
tion 
y
le. Therefore industry wants to perform as manytests as possible on-line. Unfortunately, not all tests 
an be performed on-line due toa la
k of proper sensors or methods, and furthermore some tests require stri
t 
ontrolover the measurement environment, whi
h is rarely possible on-line. For some produ
ts
ustomers may also require varying quality inspe
tions on pur
hased produ
ts.2.1 Paper quality propertiesPaper quality is tested just as any other industrial produ
t. A

ording to [55℄ the ba-si
 questions to ask when 
ondu
ting inspe
tions are as follows: What are the pro
ess
onditions and the variations that are wanted to be monitored with the testing and15



16 2. Paper quality inspe
tionwhat feature or fun
tion of the material should the inspe
tion des
ribe. Answering thesequestions 
an identify the relevant tests and analyses.Pro
ess analysis tries to de�ne the 
ontrol variables of paper making pro
ess that allowit to run smoothly and produ
e paper with the ne
essary properties. The �rst stepin pro
ess analysis is de�ning 
riti
al 
ontrol variables. A 
ontrol variable is 
riti
alif 
hanging it positively a�e
ts one pro
ess or produ
t property and at the same timenegatively a�e
ts another. These 
riti
al 
ontrol variables 
an be listed and their e�e
ton the whole pro
ess identi�ed. In order to improve any paper making pro
ess, knowinghow it a�e
ts on the individual �bres and the pulp is ne
essary. Measuring single �breproperties is useful for this purpose.Paper is a network formed by bonding of �bres and �bre fragments. The properties ofall the 
omponents, in
luding �llers and additives, in�uen
e the properties of the paper.Single �bre properties des
ribe statisti
al properties of �bres su
h as their �bre length.Fibres 
an be 
lassi�ed by given 
riteria, e.g., 
lassifying them in to early- and late-wood �bres [32℄. Analysis of pulp �bres is an important area of pulp and paper qualityinspe
tion but is beyond the s
ope of this thesis.Produ
t analysis de�nes the properties that relate to the use of paper. Important fea-tures, requirements and measures 
on
erning the use of a produ
t are required for prod-u
t analysis. This thesis is mainly related to produ
t analysis sin
e the properties ofthe end produ
t are measured, i.e., properties related to the printability and runnabilityof the paper. An example of a produ
t analysis measurement is paper runnability. Apaper requires su�
ient strength so that it does not tear during the printing pro
ess.Produ
t analysis de�nes the spe
i�
 strength property to measure, tensile strength ortear strength. Table 2.1 des
ribes several tests that are used to des
ribe the fun
tionalrequirements of paper produ
ts.Many physi
al properties des
ribe the paper 
hara
teristi
s. The properties 
an begrouped as follows [56℄, of whi
h the most relevant to the thesis are in bold and in-trodu
ed in the following sub
hapters:-Basi
 properties-Strength properties-Sti�ness properties-Stru
tural properties-Surfa
e properties-Absorption properties-Opti
al propertiesA number of methods exist to measure these properties and it is a large topi
 in itself.This thesis 
on
entrates only on tests that measure properties in bold in the list. Otherproperties are only brie�y introdu
ed. Paper properties dis
ussed below are des
ribed inmore detail in [56, 83, 90, 1℄.



2.1 Paper quality properties 17The aim of inspe
ting a pie
e of paper or board is often to obtain information aboutthe properties of a mu
h larger set than that on whi
h the test is made. Therefore it isessential to perform the test on a sample that best represents all the produ
ed material.To be representative, ea
h sample has to have an equal statisti
al probability to bein
luded into the sample set. In pra
ti
e this requirement is di�
ult to ful�l. Paper isdelivered in large rolls and obtaining a sample from the middle or 
entre of a roll is notviable. Therefore samples are obtained from many rolls and using the to most frequentlyapplied prin
iple, the number of rolls sampled should be relative to the square root ofthe total number of rolls in the 
onsignment. des
ribed in detail in [44℄.From ea
h sampled roll, a few sheets of paper are 
ut with a minimum size of 300×450mmThe sheets are 
ombined into one sample set that is randomised by 
areful mixing. Fromthese larger sheets, test pie
es 
an be 
ut based on the spe
i�
ations of the di�erentinspe
tion tests.The next requirement for paper inspe
tion is the testing environment. Wood �bres arenaturally hygros
opi
 and thus paper easily absorbs moisture from the ambient atmo-sphere or releases moisture if the atmosphere is drier than the moisture 
ontent of thepaper. The moisture 
ontent of the paper a�e
ts almost all of its physi
al properties.Therefore the preferred 
onditioning 
limate is 50 ± 2%RH and 23 ± 1oC [41℄. Otheralternative allowed in tropi
al 
ountries is 65% and 27oC. The normal 
onditioning timefor paper is usually 4 hours whi
h is relatively long sin
e the absorption or desorptionrate of moisture from and to paper is quite fast, it happens in the �rst minutes afterthe paper is moved from one atmosphere to another. Temperature is not as 
ru
ial aparameter, although it has been standardised mainly to keep the relative humidity withina

eptable limits.The most basi
 properties of any paper or board in
lude moisture 
ontent, basis weight,thi
kness, density, and �ller 
ontent. Paper and board trade is based on weight, thereforebasis weight links the paper weight to its surfa
e area. Thi
kness and density on the otherhand des
ribe the paper stru
ture.The moisture 
ontent of paper is determined simply by weighting the paper before andafter drying at 105 ± 2oC as per [40℄. Moisture 
ontent is expressed as a per
entage ofthe weight of the moist sample. Basis weight (grammage) is the weight per unit area ofpaper and board, expressed in g/m2. This is determined by weighing a pie
e of paperwith a known area as des
ribed in [42℄. Thi
kness is measured in mi
ro meters (µm). It ismeasured by using a thi
kness gauge at a paper sheet or sheets of paper 
ompressed witha given pressure between two parallel plates. Density then is obtained as a ratio betweenthe basis weight and thi
kness of the paper. Filler 
ontent is obtained by igniting thepaper sample at 900oC as per [43℄ or at 525oC, depending on the �ller 
omposition.Sti�ness relates to a material's elasti
 properties and measures how mu
h the materialresists when it is deformed by an external load. Paper sti�ness is usually measured astensile sti�ness and bending sti�ness. Tensile sti�ness is measured by subje
ting thepaper to a for
e parallel to the paper surfa
e, the resulting deformation is elongation.This measure 
an be obtained at the same time with the tensile strength test. Bendingsti�ness measures the paper's ability to withstand a bending for
e when one end of thepaper is tied down and the a for
e applied to free end. Methods for performing the testvary, but perhaps the simplest way is to use the paper's own weight and measure how
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tionmu
h gravity bends the paper from the horizontal level when one end is supported andthe other hangs freely.Other things to note about paper measures is the dire
tion of �bres in the paper. Mostma
hine made papers have the �bres aligned in the ma
hine dire
tion of the paper. Thisanisotropy is referred to as �bre orientation or paper dire
tionality. Fibre orientation hasa strong in�uen
e on paper properties depending on the dire
tion of the paper. Whenresults are reported, the dire
tion of the test in relation to the paper should always begiven. Depending on the manufa
turing te
hnique, the two sides of the paper 
an alsobe di�erent, therefore if ne
essary, the properties of both sides of the paper should bemeasured. A review of di�erent tests for paper 
oatings are presented in [96℄, some ofthe tests presented in the paper are also appli
able for inspe
ting plain un
oated papers.Next the di�erent properties of paper are 
onsidered.2.1.1 Strength propertiesTensile strength 
an be used to des
ribe the general strength of any material. For paper,it is the maximum for
e per unit width that a paper strip 
an resist before it breaks whenthe load is applied parallel to the length of the paper strip. Tensile strength is expressedin kN/m. The measure is dependant on �bre orientation and therefore the measurementdire
tion should always be mentioned. Zero-span tensile strength measures the strengthof individual �bres instead of that of the paper. It is a spe
ial 
ase of tensile strengthtesting.Bursting strength indi
ates how mu
h pressure the paper 
an resist without breaking.The pressure is applied perpendi
ular to the paper surfa
e. The unit for bursting strengthis kPa. The bursting strength test is an old test for paper strength and it was developedempiri
ally.Internal tearing resistan
e measures the mean strength required to 
ontinue paper tearingfrom an initial tear in a single sheet of paper. It is very mu
h dependant on the �breorientation and therefore the dire
tion in whi
h the measurement is done should alwaysbe mentioned. The unit for expressing tearing strength is newton (N) or millinewton(mN).Folding strength measures the paper's ability to withstand folding without breaking undera 
ertain load. The load is 
onstant but is usually mu
h lower than the tensile strengthof the paper. The folding strength is expressed dire
tly as the number of double foldingsthe paper 
an withstand. The test is old and has present day uses when measuring paperaging, also banknotes are subje
ted to this test.The surfa
e strength of a paper tells the paper's ability to resist for
es that pull �bre or�bre bundles from its surfa
e. Low surfa
e strength may 
ause linting and runnabilityproblems in rotogravure printing or even destroy the printing result. Linting is a termthat means slow a

umulation of loose material, su
h us �bres from a paper surfa
e, ontoa printing blanket and inking unit in o�set printing. It a�e
ts how ink transfers from theprinting plate to the paper and 
auses loss of details in the print. The pi
king propertyis very similar to linting, the main di�eren
e is that in linting the material 
an be totallydeta
hed from its original lo
ation whereas in pi
king, the material su
h as �bres are atleast partially bonded with the paper. Dusting is a term used to des
ribe loose 
olour



2.1 Paper quality properties 19pigments on the paper surfa
e and it is 
losely related to linting and pi
king. Surfa
estrength is usually measured with high vis
osity, ta
ky oils or printing inks. The testsample is printed with at a 
ontinuously in
reasing speed and the speed at whi
h thepi
king starts is measured. The produ
t of the speed and print oil or ink vis
osity is themeasure of the surfa
e strength.The Z-dire
tional strength of a paper measures the paper's ability to resist tensile loadingin a dire
tion perpendi
ular to the paper surfa
e. After the Z-dire
tional strength limitof the paper is rea
hed, the paper stru
ture breaks inside the paper but not at its surfa
e.Essentially the paper is split into two parts so that the paper surfa
e does not get damagedon either side. This kind of loading of paper happens often in o�set printing and 
ertain
onverting operations su
h as 
orrugating, folding and plasti
 
oating.2.1.2 Surfa
e propertiesThe most important surfa
e properties of paper are surfa
e strength, roughness or smooth-ness, fri
tion and gloss. Surfa
e strength was des
ribed earlier in se
tion 2.1.1. Papersmoothness or roughness des
ribes paper surfa
e topography. Paper smoothness is ob-tained by measuring air�ow between a paper surfa
e and measuring surfa
e or edge.Information needed for these measures are pressure di�eren
e used to 
reate the air�ow,pressure of the measuring head against the paper surfa
e, and the area of the measuringhead. The volume of air �ow per time unit is reported as roughness and the time for a
ertain air volume to stream out is 
alled smoothness.Fri
tion has two main measures, stati
 fri
tion and kineti
 fri
tion. Stati
 fri
tion 
anbe measured by atta
hing one paper to a surfa
e and another to the bottom of a sled ofknown weight. Next the sled is pla
ed on top of the paper atta
hed to the surfa
e andthen the sled 
an be either pulled with an in
reasing for
e or the surfa
e in
lined untilthe sledge starts to move. Kineti
 fri
tion 
an be obtained by pulling the sled over thepaper on the surfa
e at 
onstant speed and by measuring the average fri
tion for
e overa spe
i�ed length of sliding. More variations to the measures are obtained by 
hangingpaper orientations.Gloss measures the intera
tion of light and the paper surfa
e. There are four basi
 wayshow light 
an intera
t with paper and usually they all 
an happen at the same time.Figure 2.1 shows what 
an happen when light hits a paper surfa
e. Gloss measures thepaper's ability to spe
ularly re�e
t light. High gloss is desirable in high quality paperwith many images. Paper with high gloss has a wider tone range than that of a mattesurfa
e. The downside of high gloss is that it usually impairs the readability of text andtherefore in textbooks it is a highly undesirable property.Gloss 
an be measured in many ways but the paper industry has adopted a 75o spe
ulargloss method. The angle refers to the angle at whi
h the light is proje
ted onto the papersurfa
e and the angle at whi
h it is viewed. The angle is given from the perpendi
ularto the paper surfa
e. This angle was sele
ted be
ause it had the best 
orrelation withvisually per
eived gloss. With gloss it is also important that the gloss is as even aspossible, the higher the gloss the easier it is for a human to dete
t unevenness of gloss.
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tion
Table 2.1: Examples of tests used for des
ribing the fun
tional requirements ofpaper produ
ts [55℄. Tests that relate to the topi
 of this thesis are in bold.Required behaviour of paper Measurable propertiesSu�
ient strength Tensile strengthBursting strengthTearing strengthZ-dire
tional strengthSuitable stru
ture DensityAir permean
eCorre
t opti
al properties BrightnessOpa
ityColourSuitable surfa
e properties Smoothness or roughnessSurfa
e strengthSu�
ient sti�ness Bending sti�nessCon
ora medium testCrush testEdge 
rush test
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Absorption
(heat)

Sprecular reflection
(gloss)

Transmission ScatteringFigure 2.1: Light intera
tion with paper



2.2 Paper printability and runnability 212.1.3 Absorption propertiesAbsorption properties are important. In printing it is important to know how well ink orprinting oil 
an adhere to a given paper type. Water repellen
y of a paper 
an obtained bymeasuring how mu
h water it 
an absorb in a 
ertain time period. This kind of measureis important for example in the produ
tion of tissue papers. Another way to measureabsorption properties is to pull a liquid �lled nozzle over the sample at varying speeds.The liquid in the nozzle 
an be 
oloured water or printing oil. During the movement theliquid �ll the 
avities of the paper and partially absorbs into the paper sample. At ea
hspeed the amount of 
olour absorbed is measured and in this way the amount absorbed
an be estimated as a fun
tion of time.[83℄.For printing papers, the absorben
y of paper is often measured with printing tests. A
ommon test used to measure how well ink absorbs to the paper is the ink stain testwhere ink is hand-smeared to a paper and then the ink shape is used to estimate thepaper stru
ture and evenness. A problem with this method is that it does not 
orrelatewell with other laboratory tests or with a
tual printing pro
esses. The main reason isthat the intera
tion time between the ink and the paper in ink stain test is mu
h longerthan in a
tual printing.Rotogravure printing requires a spe
i�
 test to measure how well ink absorbs to a pa-per. The greatest problem with rotogravure printing involves the reprodu
tion of lightand medium tones. Defe
ts that appear are missing dots and waving. Waving defe
tsare elongated density defe
ts with an area about 1mm2 perpendi
ular to the printingdire
tion [73℄. Missing dots are inevitable at 5% half tone but disastrous when o

urringat 20% to 30% half tones [73℄. The number of missing dots is a traditional measure ofrotogravure printability of paper. In laboratories, the Heliotest indi
ates the number ofmissing dots. The test pattern is a 110 mm long and 8 mm wide raster where the tone
hanges from dark to light. The size of the printed dots de
reases towards the end of thetest pattern [53, 13℄. The quality of the paper is de�ned as the distan
e from the darkerend of the test strip to the 20th missing dot on the strip. The longer the distan
e, thebetter the printing quality. Fig. 2.2 shows a sample image of a Heliotest strip.
Figure 2.2: Sample Heliotest strip with the measurement area, i.e. the areawhere the missing dots are measured, (110mm ×8mm) marked on the image.2.2 Paper printability and runnabilitySome of the properties des
ribed in the previous se
tion relate to printability and runnabil-ity of paper. Printability is a quality potential of paper for a 
ertain printing pro
ess.Good printability means that the paper in question is not very sensitive to di�erentprinting pro
ess variables and always produ
es good print quality. De�ning printing



22 2. Paper quality inspe
tionquality is however not absolute. It is dependant on the �nal use of the printed prod-u
t. Some, but not all, properties that 
an be used to measure print quality are printdensity, resolution and evenness of the printed image. Printability tests depend on theprinting pro
ess involved. Some tests are appli
able for general printability inspe
tionwhile others are dependant on the printing pro
ess. Paper absorption and surfa
e prop-erties relate 
losely to paper printability. A review of measures related to paper 
oatingsurfa
es, paper stru
tures and printability 
an be found in [13℄.Runnability generally means the maximum speed of a printing ma
hine possible withouten
ountering any problems. Paper strength and surfa
e properties a�e
t the runnabilityof paper. Poor runnability is anything that 
an redu
e printing e�
ien
y, and insu�
ientrunnability of paper 
an result in web breaks that suddenly stop produ
tion. More subtleways of en
ountering runnability problems are 
umulative e�e
ts su
h as linting, dusting,or piling whi
h require pro
essing to be stopped and maintenan
e 
leaning operations tobe performed. Slow drying times also a�e
t the printing speed. Separating the inspe
tionof printability and runnability 
an be di�
ult sin
e printability problems often originatefrom runnability problems and vi
e versa.Runnability is an essential problem for all printing papers. Runnability problems betweendi�erent printing methods, su
h as rotogravure, �exographi
, o�set and even digitalprinting generally do not di�er very mu
h. Relevant di�eren
es appear between webprinting and sheet printing. In web fed presses, good runnability means that the paperwill run through the printing ma
hine at planned speeds without problems and withfew 
ompli
ations su
h as web breaks, stress variations and �apping. In newsprint, forexample, a frequen
y of less than 2 web breaks per 100 paper rolls printed is desirable.Other problems in web printing are 
ra
king and blistering. Cra
king is a phenomenonwhere 
entral pages 
ome o� from a book/newspaper due to breaks at staple points.This property is generally related to paper humidity, and web o�set papers are normallyprodu
ed to low humidity to avoid blistering in the drying phase of a printing pro
ess.Unfortunately low humidity paper is brittle and 
an therefore 
ra
k during folding andstapling.Blistering is a problem where the paper �bre matrix ruptures and blisters when steamexpands inside a paper during the high temperature drying sequen
e that 
ompletesthe web printing pro
ess. The main properties that a�e
t blistering are paper moisture
ontent, porosity of the paper 
oating layer, internal strength of the paper, ink 
overageof the paper and drying temperature. Due to very rapid heating from ambient to 100oC-
150oC the moisture in the paper evaporates and tries to es
ape through the 
oating layerof the paper or produ
es blisters if the vapour pressure ex
eeds the internal bondingstrength of the paper.In sheet fed printing, ea
h sheet is printed separately. Therefore measuring runnability ismore oriented to di�erent types of feeding, transportation and delivery problems. Paper
url, poor sti�ness and paper surfa
e properties su
h as fri
tion and stati
 ele
tri
ityin�uen
e sheet fed press runnability.Curling means out-of-plane movement of a paper. Curl 
an result from di�erent �breorientation or �bre bonding on di�erent sides of the paper. Fibre swelling and shrinkagedue to moisture variations 
an also indu
e 
urling.



2.3 Ma
hine vision in quality inspe
tion 23Stati
 ele
tri
ity refers to a paper's 
apa
ity to 
harge itself and the time required todis
harge itself. Highly 
harged sheets 
olle
t dust easily and easily adhere togetherwhi
h will 
ause runnability problems.Some paper properties a�e
t runnability from a 
ertain time after starting to print.Su
h time dependant problems o

ur basi
ally due to intera
tion between the paper andprinting ink. Linting, pi
king and piling are typi
al time dependent runnability problems.2.3 Ma
hine vision in quality inspe
tionWhen talking about 
omputer vision, the topi
 
an be separated into two main �elds,namely 
omputer vision and ma
hine vision. The distin
tion between the two is a bitvague, but roughly it 
an be said that 
omputer vision's ultimate goal is to emulatehuman vision [23℄ whereas ma
hine vision is merely interested in using sensors atta
hedto 
omputers in industrial appli
ations in whi
h robustness and simpli
ity are the mainvirtues. Many quality inspe
tion tasks today have been automated using 
omputer-and 
amera-based systems. Earlier the 
omputation power required by ma
hine visionappli
ations has somewhat deterred its use for industrial purposes. Now all is 
hanging,as the �eld of s
ien
e has matured and methods improved. The 
omputational powerof modern desktop 
omputers has in
reased quite rapidly, whi
h has made it possible touse methods that were 
omputationally too 
omplex in the past. interest inThe bene�ts of automation are quite 
lear. Cameras do not strain like human eyes doand the results are almost always repeatable, whi
h is another huge bene�t over human-based quality inspe
tion. Repeatability of inspe
tion is very important when it must beguaranteed that two bat
hes of a produ
t meet the same quality 
riterions. Sometimesit is not viable to do the quality inspe
tion by human visual inspe
tion. Su
h a 
ase 
anbe, for example, lo
ating defe
tive solder joints on 
ir
uit boards. The number of solderjoints on one 
hip 
an be in the thousands and using somebody visually inspe
ting ea
hsolder point repeatedly is not e�e
tive [2℄.Typi
al ma
hine vision systems today 
onsist of a single or multiple CCD 
ameras andan ordinary desktop 
omputer (see Fig. 2.3). Typi
al ma
hine vision appli
ations require
onstant lighting 
onditions so that the obtained images remain 
onstant or in order toensure that fast moving obje
ts are su�
iently illuminated for high speed 
ameras. Afterthe image a
quisition, the image is usually prepro
essed in order to enhan
e 
ontrast orto remove noise [97℄. This 
an be done with spe
ial hardware or by 
omputer. Furtherpro
essing then allows more sophisti
ated image manipulation su
h as edge dete
tion,
ontour tra
king, thresholding, feature extra
tion and obje
t re
ognition. These features
an then be analysed by spe
ially designed software whi
h 
an then de
ide whether ornot the imaged obje
t meets the spe
i�
ations needed and rea
ts a

ordingly by markingthe defe
tive part or by removing it from the produ
tion line [97℄. The bene�ts of usingsimple o� the shelf 
ommer
ial 
ameras 
ome from upkeep and maintenan
e. It is rathereasy and usually 
heap and fast to obtain spare parts if they 
an be found in almostevery ele
tri
 hardware store [60℄.Of 
ourse there 
an be more demanding tasks whi
h 
an require some kind of robot toinspe
t pla
es where it is di�
ult or dangerous for a human to go. An example of su
han appli
ation is water pipes inspe
tion [62℄ or a nu
lear plant where the radiation is a
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tionproblem [60℄. It is impossible for a human to �t into a small water pipe, but a spe
i�
robot has been developed for just that kind of task [62℄. Naturally not all tasks are asdemanding but 
an still bene�t from 
omputer vision based quality inspe
tion systems.In fa
t su
h systems 
an be found in many industrial areas. Automati
 visual qualityinspe
tion is used, for example, for pulp [9, 11℄, metal [63℄, print [95℄, wood [71℄, textile[66℄ and ele
troni
 
omponents [2, 97℄. A more thorough overview of re
ent industrialma
hine vision systems and appli
ations 
an be found in [60℄ and earlier surveys in[65, 14℄.Se
tion 2.1 introdu
ed measures for paper properties. Next some automated methodsfor measuring paper properties are introdu
ed. It is good to keep in mind, though, thatmost of the tests mentioned in Se
tion 2.1 are still performed manually by laboratoryexperts. Spe
ial emphasis on this survey is put on methods that have been used for theHeliotest (introdu
ed in Se
tion 2.1.3) and pi
king test (Se
tion 2.1.1) sin
e they are themain topi
s of this thesis. A brief overview of some methods that are used for qualitymonitoring in steps when wood is pro
essed to paper are introdu
ed in order to givesome understanding of what happens during the paper making pro
ess.2.3.1 Paper making pro
ess analysisComputer vision based systems are used quite widely in the paper industry. Wooden
hips that are used for making the pulp are analysed based on the 
olour of the 
hips onthe 
onveyor [85℄. Colour information 
an reveal how mu
h bark and how mu
h woodthe 
hip �ow 
ontains. All measurements are done online during produ
tion. As this isa 
ommer
ial produ
t, detailed information about the 
olour analysis is not available.The 
omposition of pulp 
an be analysed using ma
hine vision. The speed at whi
hthe pulp moves on the 
onveyor and the high resolution required di
tates that spe
ialarrangements regarding hardware is required. The hardware 
onsists of several CCD
amera lines that shift their ele
tri
al 
harges from one line to the next one in syn
hro-nisation with the inspe
ted produ
t movement. This shift pro
edure is performed insu
h a way that an image of ea
h produ
t line is a
quired in several positions and thesingle a
quired images are added to ea
h other by the 
amera ele
troni
s in order to pro-
Process control

system

Image processing

hardware

Computer

Illumination
Camera

Manufacturing lineFigure 2.3: Typi
al ma
hine vision based industrial system.
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hine vision in quality inspe
tion 25du
e a single line-image that has several times more dynami
 range than a 
onventionallinear 
amera, therefore allowing impurity dete
tion under the appropriate inspe
tionrequirements [9℄. The obtained images are sharp, but their lighting is not homogeneous.Therefore the images 
an not be thresholded with uniform threshold to dete
t impuritiesbut instead a se
tion of image is 
hosen from ea
h image. Ea
h of these se
tions havemore even lighting distribution. To further enhan
e lighting evenness, the darkest andbrightest images are removed from the blo
k image series. After these images have beenremoved, the mean and standard deviation of the remaining images are 
al
ulated andthis information in turn is then used for setting appropriate threshold [9℄. Impurities inpulp are then dete
table by thresholding. A similar system is proposed in [8℄, where thepaper making pro
ess is imaged on-line using a TDI (Time delay integration) 
amera.Neural networks are used to train �lters whi
h in turn 
an be used to dete
t defe
ts fromthe on-line images.A system for dete
ting a dry line at the wet end of a paper ma
hine is introdu
ed in [7℄.The dry line of paper is the lo
ation where water disappears from the surfa
e of the pulpweb in the wet end of a paper ma
hine. In the study in [7℄ a standard CCD-
amera wasused with some spe
ial lighting arrangements to image the dry line of the paper web.From the images a dry line edge pro�le is extra
ted and it is 
ompared to basis weightand moisture data. The edge pro�le data 
orrelates well with basis weight and thereforethe edge pro�le information near the wet end of the paper ma
hine 
an be dire
tly usedto 
ontrol the paper making pro
ess. A 
omparable method is also proposed in [50℄. The
ontribution of the authors is the way 
amera is positioned next to the paper ma
hine,instead of above it. This pla
ement makes 
amera maintenan
e easier and the 
amera isnot subje
ted to the moisture and hot air above the paper ma
hine.Performan
e and suitability of CCD line 
ameras for paper web inspe
tion is reviewedin [52℄. In the paper CCD line 
amera performan
e is analysed regarding its 
hargetransfer e�
ien
y whi
h in turn a�e
ts the imaging response of the 
amera. Camerasuitability for use in paper web inspe
tion is studied by dete
ting streaks in the paperweb at di�erent lo
ations of the 
amera 
ell.The appli
ation of Fourier transform for examining the dimensions of a paper web isintrodu
ed in [27℄. Ways of obtaining non blurry still images from a fast moving paperweb (up to 20 m/s) are also studied. In their earlier paper [26℄ Hansson and Mannebergstudied the suitability of Fourier transform for measuring paper dimensions and �breorientation on a stationary paper.In [89℄ 9 di�erent texture feature extra
tion methods for 
hara
terising paper propertiesare 
ompared. The aim of the work was to study the suitability of the di�erent texturefeatures for 
lassifying papers into di�erent grades. The features were 
lassi�ed basedon unsupervised learning. The data was also visualised by using a self-organising map(SOM) to map the multidimensional feature ve
tors into a more easily understandable2-dimensional map. The authors 
on
lude that best 
lustering results are obtained byusing a lo
al binary pattern to obtain the texture features. They suggest that a SOMand feature extra
tion 
ould be used on-line to 
hara
terising paper during paper makingpro
ess. Based on the paper 
hara
teristi
s, a paper ma
hine 
ould be adjusted on-lineby using the information provided by the SOM and the extra
ted features.
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tion2.3.2 Paper produ
t analysisIn [33℄ Ho and Smith present a way to measure basis weight, width, and moisture 
ontentonline. Labelling this as a ma
hine vision appli
ation is somewhat questionable sin
e nopattern re
ognition is used nor a
tual images grabbed from the paper. Instead the paperma
hine's own sensor information is used. First, paper mill personnel set limits fordi�erent properties like basis weight. Then, the system 
olour 
odes this informationto a qui
kly understandable form so that the paper ma
hine operators 
an have a goodoverview of the general quality of the paper they are making. Quantisation noise in thesensor data is redu
ed by low-pass �ltering.In [18℄ Don et al. des
ribe a method whi
h produ
es a 3D image of a paper. The pro
essis quite straight forward where the paper is sli
ed with a spe
ial purpose ma
hine 
alled ami
rotome. Mi
rotomes are designed to 
ut uniform sli
es for mi
ros
ope imaging. Aftersli
ing, a mi
ros
opi
 image is taken from the paper sli
e on whi
h the analysis is to bedone. The system is meant to analyse paper 
oating used on high quality papers. Thepurpose of the 
oating is to �ll 
avities and 
ovets on the paper's surfa
e. The distin
tionbetween the paper and the 
oating is based on 
olour information. Be
ause there aredi�erent 
oatings, user intervention in the beginning of the pro
ess is required. A usermust loosely mark the 
oating on the �rst image so that the 
olour of the 
oating 
an beknown. No spatial information is stored. The de
ision if an image pixel is 
oating or notis based on 
olour information of the 
urrent pixel and also pixels adjoining the 
urrentimage. After the whole sample is sli
ed, a 3D image of the sample 
an be formed withthe 
oating and paper segmented separately. Naturally this pro
ess is time 
onsumingand it also destroys the sample.In [6℄ Bergman et al. use a rather 
omplex 
olour segmentation te
hnique to evaluateink dots on a printed pattern. First, the printed pattern is imaged with a standard CCD
amera. Then the obtained image is 
onverted from RGB 
olour spa
e to CIE L∗a∗b∗
olour spa
e. This is done to avoid the distan
e measurement problems inherent in theRGB 
olour spa
e. Namely the metri
s in RGB 
olour spa
e do not represent 
olourdi�eren
es on a uniform s
ale therefore making it di�
ult to evaluate the similarity ofdi�erent 
olours based on their distan
e in RGB spa
e. The segmentation is done inthree steps. First, parameters for rough initial segmentation are obtained using a FuzzyKohonen 
lustering algorithm. After segmentation the resulting image is eroded using abinary erosion algorithm. Fine re�nement of the segmentation is then performed usinga fuzzy 
luster volume algorithm to learn the parameters of the re�ned 
lusters. Initialrough segmentation uses only 
olour information in order to speed up pro
essing, the�nal re�ning segmentation step uses also the pixel's spatial information. Rough initialsegmentation information is used to obtain balan
ed training data for the a
tual re�ning�nal segmentation. The purpose of the erosion operation is to prevent the initial roughsegmentation from sele
ting un
ertain pixels that are lo
ated near the edges where 
olours
hange. After �nal segmentation the shape of the ink dots 
an be analysed.A theory for a 
olour histogram based printing quality assessment method is presentedin [59℄. Initially the illumination of the image has to be normalised sin
e histogrambased methods are quite sensitive to illumination 
hanges [59℄. This is done based ona method proposed in [29℄. After illumination normalisation the dimensionality of the
olour histogram is redu
ed by proje
ting it into RG, GB and BR 
olour planes. Next



2.3 Ma
hine vision in quality inspe
tion 27the three planes are rotated and summed. In order to further redu
e dimensionality afourth-order moment is 
al
ulated for the summed matrix. Finally eigen-values fromthe fourth-order moment are 
al
ulated and are used in a supervised three layer neuralnetwork for image 
lassi�
ation. The proposed system 
an dete
t 
olour di�eren
es ofsimilar images under di�erent lighting 
onditions, but 
annot dete
t any spatial 
hanges.In [48℄ a thermal imaging 
amera is used for various paper quality property inspe
tiontasks. A

ording to the study, 
amera response does not dire
tly measure, for example,paper 
urliness right after it has been printed. Instead the variations in thermal image
orrelate well with for instan
e paper 
urling after the paper has been heated in theprinting ma
hine.Two prior methods have been proposed for 
ounting the missing dots in gravure printing.The �rst method [31℄ uses morphology to lo
ate the missing dots. The pro
edure is quitestraightforward. First the input image is 
onverted to a binary image by thresholding,after whi
h the median of the dot size is 
al
ulated. Next a series of dilations areperformed until the area 
overed by the swelling dots rea
hes a prede�ned threshold.After the dilation step the image 
ontains mostly missing dots and some noise. Noise isremoved based on the estimated size of an a
tual dot. The size of the missing dot hole isestimated statisti
ally from the dilated image. Finally, after noise removal, the missingdots are estimated based on the size of the hole in the dilated binary image. If multiplemissing dots are next to ea
h other, then the �large� missing dot is divided by the sizeof the single missing dot in order to separate the multiple missing dots from ea
h other.This method works quite well if the missing dots are not grouped but with multiplemissing dots near ea
h other the method struggles to di�erentiate the a
tual number ofmissing dots in the missing dot 
luster [31℄. Determining the stopping threshold for thedilations 
an also be problemati
. Numerous missing dots 
an mean that dilations are
arried on even when the dots have already merged and and after a while a
tual missingdot �holes� get 
overed with the swelling dot area until the threshold is rea
hed.Another approa
h to 
al
ulate the number of missing dots in gravure printing was pro-posed in [53℄. First the input image is �ltered using a 
ombination of median andminimum �lters.
yij = med(z1, z2, z3, z4)
z1 = min(xi,j−v, . . . , xi,j . . . , xi,j+v)
z2 = min(xi−v,j , . . . , xi,j . . . , xi+v,j)
z3 = min(xi+v,j−v, . . . , xi,j . . . , xi−v,j+v)
z4 = min(xi−v,j−v, . . . , xi,j . . . , xi+v,j+v)

(2.1)where xij is the grey level pixel value at lo
ation i, j, v is a 
onstant that de�nes theregion of interest. Med() denotes median of values in parenthesis and min() denotesminimum of values in parenthesis. The idea of the median/minimum �lter is to alleviatethe strong tenden
y of a minimum �lter to expand dark (dot) area. After pre-pro
essing,the image is �ltered using a mat
hing �lter that is designed to �nd dark areas that aresurrounded with white areas. A

ording to the author, several templates were tested butthe exa
t design seemed to have little signi�
an
e provided that it is of the right type[53℄. Template mat
hing is implemented by using 
onvolution �ltering. The de
isionto a

ept a response as a missing dot is based on the size of the response. Supervisedlearning is used to tea
h a proper threshold value for the size of the response. Due to the



28 2. Paper quality inspe
tionlarge size of Heliotest samples, the samples are imaged in parts and a threshold for ea
hpart is taught separately. The problem with this method is the same as in [31℄, namelywhen the missing dots are 
lustered next to ea
h other, the template mat
hing fails dueto fa
t that the missing dot area is larger than originally anti
ipated.Arti
le [30℄ introdu
es an on-line method for dete
ting missing dots from printed paper.An opti
al method for 
ounting missing dots based on opti
al Fourier analysis is used.First the method is analysed and the opti
al Fourier transforms response is derived ana-lyti
ally. Opti
al Fourier transform is obtained by using a spe
ial imaging arrangement.Details about the arrangement 
an be found from the arti
le. In the analyti
al analysis ofopti
al Fourier transform, the authors �rst derive Fourier transform for a perfe
t s
reendot pattern with dot-to-dot interval a and dot size b. The obje
t is limited by a 
ir
ularaperture with diameter D. This limitation of the �eld of view makes the 
omparison ofintensities in the Fourier plane possible. The result of this Fourier transformation is aFourier pattern with the same kind of symmetry as the original image. Separation ofpeaks in the Fourier plane however is inversely proportional to the 
orresponding dis-tan
es in the original spatial s
reen dot pattern and the width of the peaks is mu
hsmaller than the diameter b of a s
reen dot. The main result of this transformation isa Fourier plane with intense 
entral peak surrounded by regular peaks with de
reasingintensities as they progress further from the 
entral peak.Next dots are randomly removed from the perfe
t s
reen dot pattern and a Fourierplane equation derived for this imperfe
t s
reen dot pattern. The imperfe
t pattern
rimperfect(x, y) 
an be 
onsidered to 
onsist of perfe
t pattern rperfect(x, y) and of adefe
t rdefect(x, y) as follows

rimperfect(x, y) = rperfect(x, y) + rdefect(x, y). (2.2)The same was deemed to apply in the Fourier plane. The missing dots in the imperfe
tdot pattern add light to the 
entral peak in the Fourier plane and remove light from theother regular peaks. The important result of this phenomenon is that the regular peaksin the Fourier plane stay in their pla
e but the light transferred from them due to missingdots spreads between the peaks. The intensity of the peaks does not ne
essarily diminishas the number of missing dot in
reases, but rather os
illates. Therefore the number ofmissing dots 
an be estimated by measuring intensities between the peaks. In pra
ti
alexperiments the authors 
on�rm that a
tual measurements are in good agreement withtheir theoreti
al predi
tions. The method 
an 
al
ulate the number of missing dotsfrom an image, but it does not return lo
ation information about the missing dots andtherefore is not suitable for the Heliotest.Some 
ommer
ial appli
ations [21, 38, 51℄ for paper quality assessment also exist, [38℄ forexample uses lo
al binary patterns in analysing paper surfa
e. Unfortunately as theseare 
ommer
ial produ
ts, detailed information about these methods is not available.2.4 SummaryQuality 
ontrol via automation is gaining popularity as methods in 
omputer vision getfaster, more re�ned and more a

urate. Appli
ations that were possible but not pra
ti
al10�20 years ago are very mu
h appli
able today as the 
omputing speed of 
omputers



2.4 Summary 29has in
reased and 
heaper 
ameras have appeared. Espe
ially in industry, line 
amerasare often used. The 
ameras are fast and simple image pro
essing tasks 
an be done at a
amera hardware level therefore redu
ing the pro
essing power required by the 
omputersoftware.In the paper and printing industry, many tests have not yet been automated, e.g., propo-sitions how to automate the pi
king test have not been found during the 
ourse of theproje
t. Some of the tests require spe
ial arrangements in whi
h automation is not pra
-ti
al due the ne
essary user intera
tion involved. Some tests on the other hand 
ouldbene�t from automation: Results would be more repeatable and the likelihood of humanerrors would redu
e. Examples of su
h tests are the pi
king test and the Heliotest. Bothhave de�nite features that are measured and both are straining for humans to performfor long periods of time.
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Chapter IIIPrintability evaluation by 
ounting missing dots

This 
hapter des
ribes automati
 inspe
tion methods for rotogravure print inspe
tion.The inspe
tion is 
ondu
ted by 
al
ulating missing dots from rotogravure printed He-liotest strips. The Heliotest was introdu
ed in Se
tion 2.1.3. In the Heliotest, dots areprinted on a paper. Some of the dots 
an be missing sin
e, for various reasons, theink is not absorbing on to the paper perfe
tly. The distan
e from the beginning of theprinted area to the 20th missing dot on the strip is an inspe
tion property widely usedin industry. Fig. 3.1 shows a detailed part of a strip.
Figure 3.1: Part of a Heliotest strip, dots and some missing dots in the imageare visible.3.1 The Heliotest printability testAs dis
ussed in Se
tion 2.2, printability des
ribes how well a paper reprodu
es the originalartwork. The test is performed under standard atmosphere 23.0±1.0 oC and 50±2% rh.The test print is performed at 1m/s with a spe
ial Heliotest ink. A formal des
riptionof how to perform the Heliotest is introdu
ed in [36℄ as follows:1. Starting from the side with the largest dots in the variable s
reen area 
ountthe missing dots until the 20th one. 31



32 3. Printability evaluation by 
ounting missing dots2. Measure the distan
e in mm from the 20th missing dot to the beginning of thevariable s
reen area.3. In the 
ase when the distan
e is very small (only a few millimetres) 
ount thetotal number of missing dots in the four dotted lines on both sides of the variablehalf tone.4. Repeat Steps 1 and 2 or 3 for ea
h test strip.5. Cal
ulate the average and if required the standard deviation. In some 
ases itmay be useful to mention the highest and lowest value as well.6. If needed, assess the printing quality visually in the 
onventional s
reen area.The di�erent s
reen areas of a Heliotest strip are shown in Fig. 3.2 The half-tone area isprodu
ed by a printing disk that 
ontains the dot pattern 
arved on the surfa
e of thedisk. The diameter of the 
arved dots remains the same throughout the disk but thedepth 
hanges in order to produ
e less intensive half tones. Deeper engraves produ
edarker tones and larger dots and shallower engraves produ
e lighter and smaller dots.The half-tone print produ
ed by the printing disk is the area from whi
h the 20th missingdot is measured and is therefore the most important part of the print.A 
onventional s
reen area is used for general visual assessment of the printing quality.Although it is seldom used sin
e it does not provide mu
h information.Two lines of dots on both sides of the half-tone area are used if the a
tual half-tone area
ontains too many missing dots right from the start. In that 
ase, the total number ofmissing dots is 
al
ulated from these lines. This 
an happen if the paper is very rough.In pra
ti
e, this information is very rarely used.The use of this test as a good measure of printability has been 
alled into question sin
ethe results obtained in laboratory tests with the Heliotest have not ne
essary 
orrelatedwell with a
tual online printing results [73℄. Nevertheless, the measure is important forthe paper and printing industry.3.2 Overall stru
ture of the automated Heliotest methodThis se
tion gives an overview of how the missing atom (in the Heliotest images, missingdots) dete
tion methods work. The �rst step when performing missing atom dete
tion isimage a
quisition. It will be dis
ussed in se
tion 3.3. After the image has been a
quired,it will be 
onverted to grey level. Instead of using a linear 
onversion, a method basedon Bayesian-de
ision making is used, resulting in mu
h better 
ontrast in the grey levelimage. The method is des
ribed in se
tion 3.4.The grey level image is then subje
ted to the 3 methods proposed in se
tion 3.5. Thebasi
 idea behind missing atom dete
tion from images 
omes from the properties ofFourier transform. The repeating pattern in the spatial image 
auses repeating peaks inthe Fourier domain. By utilising this information the faultless repeating pattern of theoriginal image 
an be obtained whi
h 
an then be used to dete
t missing atoms fromthe original faulty image. Finally the proposed methods are tested in the experimentsse
tion 3.6.



3.3 Image a
quisition 333.3 Image a
quisitionThe requirements for image a
quisition in the Heliotest are rather demanding due tothe high resolution required. The diameter of an individual dot in a Heliotest sample isaround 140 µm whi
h di
tates that the resolution of the image should be around 1200dpi (dots per in
h). At that resolution, the individual dots will be around 5-15 pixelsin diameter, depending on whi
h part of the Heliotest strip is a
quired. The resolutionlevel means aliasing is avoided sin
e the dots form the highest frequen
ies in the Heliotestimages and the dots themselves are not very sharp from the edges due to ink spreadinginto the paper.Image enhan
ement based on 
olour information is performed in order to distinguish grey�dirt�, su
h as dust, from the red printed dots. In laboratory 
onditions, a su�
ientlya

urate �atbed s
anner 
an be used, but in pra
ti
e, the samples may be wet withprinting ink and therefore 
onta
t is not desirable.3.4 Converting a 
olour image into a grey level imageAfter the half-tone s
reen area has been lo
ated from the input image, it is 
onvertedto a grey level image. Linear grey level 
onversion, however, introdu
es poor 
ontrast inthe resulting grey level image. So 
ontrast enhan
ement is required in order to betterdistinguish dots from the ba
kground and �dirt�. Ordinary 
onversion from a RGB imageto a grey level, i.e. summing the individual 
hannels and dividing by 3, introdu
es poor
ontrast in the grey level image between the dots and the ba
kground whi
h in turnmeans that thresholding in later steps of image pro
essing is di�
ult. Therefore a moresuitable 
onversion method for the 
olour image to the grey level is required. This 
anbe a
hieved by doing the 
olour 
onversion and 
ontrast enhan
ement simultaneously,instead of 
onse
utively. Fig. 3.3 demonstrates the di�eren
e between ordinary grey level
onversion and the proposed method. If an image 
ontains any unevenness in lighting,it should be 
ompensated for before applying 
ontrast stret
hing or 
olour image to thegrey level image 
onversion.The obje
tive of 
ontrast enhan
ement is to prepro
ess the image so that relevant in-formation 
an be either seen immediately or pro
essed further more reliably. Thesete
hniques are typi
ally applied when the image itself or the devi
e used for image rep-resentation provides poor visibility and 
hara
teristi
s of di�erent regions of interest inthe image. The reason for the poor representation 
an be a high dynami
 range of pixelintensities when displays 
annot reprodu
e them, a narrow dynami
 range over the theregions of interest, or even in
ompatibility with the human observer. The most importantappli
ation areas for 
ontrast enhan
ement are medi
al imaging [98℄ and visualisation ofimages with a high dynami
 range [70℄. The enhan
ement is usually performed to pro-du
e a better representation for a human observer, but properly enhan
ed images 
analso enable more a

urate and more reliable results in general image pro
essing tasks,su
h as segmentation, due to an enhan
ed signal-to-noise-ratio.A reversible and fast 
ontrast enhan
ement is often preferred, e.g., in medi
al imaging.Therefore, the methods typi
ally exploit histograms. The histogram 
an be multidimen-sional, su
h as a 3-D 
olour histogram, but most methods assume a 1-D histogram is
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Figure 3.2: Detailed des
ription of Heliotest print.
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ounting missing dotssu�
ient, resulting in separate pro
essing of the 
olour 
omponents in the enhan
ementpro
ess. The baseline method for 
ontrast enhan
ement is histogram equalisation [25, 35℄,but the method does not utilise any information about whi
h regions should be empha-sised. This �blind� equalisation often leads to a representation where image noise isampli�ed, and the properties aiding separability of di�erent image regions de
line [98℄.The ampli�
ation of noise may be avoided to some extent by lo
al pro
essing [98℄, but anundesired result is the loss of rank order of image intensities. It seems that estimation ofthe ba
kground and foreground, either manually or automati
ally, is ne
essary for su
-
essful 
ontrast enhan
ement. Manual estimation would make the solution trivial, butautomati
 estimation still remains a 
hallenging problem. Automati
 estimation maybe based solely on the intensity information, or it 
an in
lude also analysis of spatialrelationships.A
tual 
ontrast enhan
ement is based on stret
hing the per
eivable dynami
 range be-tween the estimated regions (visual enhan
ement). In visual enhan
ement, pseudo 
olour-ing [82℄ or multiple images are used to arti�
ially emphasise the 
ontrast [70℄. The use ofmultidimensional data is, however, di�
ult for many image pro
essing te
hniques, su
has frequen
y- or s
ale-spa
e methods. Therefore, multi-representation is generally a goodsolution only for visualisation purposes.In this se
tion, 
olour 
onversion and enhan
ement is presented as a method to proje
t N-dimensional image data to a 1-dimensional (grey-level) image whi
h possesses a maximal
ontrast between the foreground and ba
kground. The main reason for the grey-levelimage representation is to allow the use of standard image pro
essing te
hniques, eventhough it 
an also be used for visualisation purposes. In the simplest 
ase, the imageis bi-modal, i.e., there are two regions of interest. In this 
ase, the maximal 
ontrast isa
hieved by binarisation. Binarisation, however, does not provide optimal 
ontrast dueto the presen
e of noise. To a
hieve better 
ontrast, Bayesian inferen
e and posteriorivalues are utilised in the enhan
ement. Similar approa
hes have been used, for example,in thresholding [49℄ and 
olour segmentation [72℄. The proposed 
olour 
onversion and
ontrast enhan
ement is analyti
ally studied with simulated data, and the e�
ien
y isalso demonstrated with real images.3.4.1 Colour to grey 
onversion and 
ontrast enhan
ementSu

essful 
ontrast enhan
ement produ
es an output image where the dynami
 range ofoutput spa
e values is organised to emphasise the separation between regions of seman-ti
ally di�erent 
lasses. It should be noted that there exists no de�nition for optimal
ontrast enhan
ement, but the desired result depends on the appli
ation. A similar butmore unambiguous problem is image segmentation in whi
h regions of similar 
hara
ter-isti
s (texture, 
olour, et
.) should be automati
ally labelled with the same label. Forinstan
e, in 
olour segmentation it is assumed that di�erent 
olours belong to di�erentsemanti
 regions. The input spa
e, typi
ally the RGB or HSI 
olour spa
e, is mapped todis
rete 
olour labels, and if the assumption holds, desired regions, su
h as the humanskin may be revealed [72℄.An optimal output spa
e for the 
ontrast enhan
ement 
annot be de�ned either: somemethods, su
h as histogram equalisation, work on the grey level histogram domain and
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e a new representation within the same domain, while other methods produ
e anindex labelled representation (pseudo 
olouring) or even multiple images.The next part to be addressed is a spe
i�
 mapping problem where an N-
hannel inputimage (e.g., N = 1 for grey-level images, N = 3 for RGB images) is mapped to a 1-Drepresentation where the maximal 
ontrast is optimised between M di�erent regions ofinterest. The mapping of M di�erent regions into a single variable is a distin
t problem,and it will be evident that the posteriori 
ontrast, as it will be de�ned, provides theminimum error only as biased by the sele
ted mapping method. How the biased errorrelates to the true error is an information theoreti
 problem dealing with how the regiondata should be optimally 
oded into a single variable. The true error 
an be a
hievedonly in the bi-modal 
ase (M = 2). is generalisable to any number of regions M, however.3.4.2 The bi-modal image modelIn the bi-modal image model, there are two di�erent regions of interest, ω0 and ω1, in theimage f(x, y) where f : (x, y) → ~x. The output spa
e values ~x of the two regions varywith respe
t to probability distributions p(~x|ω0) and p(~x|ω1), and the 
overed area ofthe two regions is de�ned by a priori probabilities P (ω0) and P (ω1). Sin
e the maximal
ontrast 
an be a
hieved only by a representation where no ambiguity exists between thetwo regions, the maximal 
ontrast for the bi-modal image model 
orresponds to a binaryrepresentation, e.g.,
~x→

{

0, if ~x ∈ ω0

1, if ~x ∈ ω1

. (3.1)Symbols 0 and 1 are sele
ted here just for 
onvenien
e � any other two di�erent symbolsagree with the de�nition. For a bi-modal image, the optimal 
ontrast enhan
ement wouldprodu
e a representation where the pixels belonging to the region ω0 are denoted by onesymbol, and the pixels belonging to the region ω1 by another symbol.It is 
lear that the maximal 
ontrast 
an be obtained by using binary thresholding meth-ods. However, if the distributions of the two 
lasses overlap, thresholding provides alsothe maximal error for a single pixel if a wrong de
ision has been made. Thresholdingdoes not generally provide the minimum-error maximal 
ontrast.For image f : (x, y) → ~x where for all spatial points (x, y) the minimum error for 
ontrastis obtained by Bayesian inferen
e if the 
onditional probability density fun
tions of the
lasses, p(~x|0) and (~x|1) and a priories of both regions P (0) and P (1) are known asfollows
~x⇒

{

0, if p(x|0)P (0) ≥ p(x|1)P (1),

1, if p(x|0)P (0) < p(x|1)P (1)
. (3.2)The Bayesian rule guarantees minimum error in binarisation, and by following this prin-
iple Kittler and Illingworth de�ned a method to sele
t the optimal threshold valueassuming normal distributions for p(~x|0) and p(~x|1) [49℄.If binary representation is assumed, the Kittler and Illingworth method 
an in this 
on-text be referen
ed as the minimum-error maximal 
ontrast. It is 
lear that there exists a
onfusion fa
tor in the binary Bayesian de
ision. For example, when the posteriories of
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ounting missing dotsboth regions are 0.5, the de
ision favouring 0 would not be the optimal de
ision. Bina-risation does not allow utilisation of the 
on�den
e information, but if the non-maximal
ontrast by the real number spa
e is su�
ient, the 
on�den
e 
an be embedded into the
ontrast des
ription. For values between [0, 1], the minimum-error de
ision 
orrespondsdire
tly to the posteriori values [15℄ as shown below. Sin
e 0 now represents strong 
er-tainty of the region ω0 and ω1 of 1, the posteriori of either region 
an be sele
ted. Inorder to maximise the 
ontrast, the value that minimises the error fun
tion
argmin

V (~x)

error ∀~x (3.3)where error is the expe
tation of squared error in thresholding de�ned as
error(~x) = P (0|~x)(V − 0)2 + P (1|~x)(1 − V )2 (3.4)where V and 1 − V are the posteriori values obtained by Bayesian de
ision. error isminimised if V = P (1|~x). By writing the equation into the form
error(~x) = V 2 + (2P (0|~x) − 2)V + 1 − P (0|~x) (3.5)and di�erentiating it regarding V and setting gradient to 0, the result is the minimumof the error fun
tion.

V = 1 − P (0|~x) = P (1|~x) (3.6)Therefore for a bi-modal image model, the posteriori values provide the true minimumerror 
ontrast in a mean square sense. Sin
e this applies to all pixels in an image, themean squared error (MSE) 
an be 
omputed as
MSE =

∑

x

∑

y

error(~x)

∑

x

∑

y

1
, (3.7)where ∑

x

∑

y

1 is the number of pixels in an image. The bene�t of this methods is thatunlike in equation 3.2 instead of thresholding an image into 
risp 1 or 0, un
lear pixelsget a value between [0, 1].3.4.3 Estimating probability distributionsBefore the presented results 
an be applied, the distributions and their parameters,
p(~x|ωi) and P (ωi), for di�erent regions of interest must be estimated. Only one as-sumption is made, the assumption by Kittler and Illingworth is generalised and it isassumed that the probability densities p(~x|ωi) are multivariate normal distributions. Ifno prior knowledge of the distribution type is available, the multivariate normal distri-bution provides a good general solution playing a predominant role in many areas ofmathemati
s [86℄.The expe
tation maximisation (EM) algorithm was applied [69℄ for the estimation of Mnormal distributions in N -dimensional input spa
e.
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tion and dete
ting missing dots 393.5 Feature extra
tion and dete
ting missing dotsAs 
an be seen from Fig. 3.1, Heliotest samples 
onsist of a regular texture pattern. Thethree basi
 ways to des
ribe texture are statisti
al, stru
tural and spe
tral [23℄. Statisti
alproperties analyse the statisti
al properties of the points that 
omprise a surfa
e in theimage. Typi
ally these point values are 
omputed from grey level values, although 
olourinformation 
an also be used. The stru
tural approa
h 
hara
terise texture as being
omposed of simple primitives 
alled texels that are arranged on the surfa
e a

ording tosome rule. The rule 
an be formally de�ned by some grammar. Spe
tral approa
hes aretypi
ally used for periodi
 2D patterns in an image. The most 
ommonly used spe
tralapproa
h is the Fourier transform. Its properties 
an be used to des
ribe periodi
ity ofgrey levels of a surfa
e by identifying high energy peaks in the spe
trum.Sin
e the Heliotest 
learly presents a regular texture pattern, the most promising meth-ods for dete
ting this regularity (and 
onsequently irregularity) 
ome from the spe
tralapproa
h. Di�erent spe
tral domain approa
hes 
an be, for example, Fourier transform,
osine transform and Gabor �lters [24℄. The methods were 
ompared for appli
ability tothe Heliotest in [76℄. Based on those tests, and prior papers [88, 47℄ about using Fouriertransform for regular pattern dete
tion, Fourier transform was sele
ted for further study.In the arti
le [30℄ the use of opti
al Fourier transform to dete
t missing dots from a rasterpattern is proposed. In the arti
le, an analyti
al model for obtaining Fourier transformfrom a raster pattern is derived. The model assumes that an image of an in�nite sizeraster pattern is obtained through an aperture D millimetres wide. Fig. 3.4 
omparesmagnitudes (absolute values of Fourier spe
tra) obtained by the analyti
al model withresults obtained by applying FFT on an image with the same parameters. The di�eren
ein the images originates from the way they are obtained. The analyti
al model views anin�nite raster pattern through a round aperture with �nite size whereas FFT performsFourier transformation on a re
tangular image with �nite dimensions. As 
an be seenfrom the image pro�les in Figs. 3.4(d) and 3.4(e), both methods produ
e distin
t peaksin the Fourier domain. These peaks de�ne the repeating pattern in the spatial domain.3.5.1 Pattern regularityIt is worthwhile to de�ne terms dot and pattern in this 
ontext. A dot is a parti
ulartype of texture atom; an indivisible atom whi
h 
an be represented for example by a 2-dGaussian fun
tion. A pattern is a set of spatial 
oordinates in whi
h dots are reprodu
ed.When the pattern expresses some degree of periodi
ity it 
an be 
onsidered as regular.Similar de�nitions and results are used in solid state physi
s and in de�nitions of 
rystallatti
e stru
tures [3℄.Regularity is a property whi
h means that some mnemoni
 instan
es follow prede�nedrules. In the spatial domain, regularity typi
ally means that a pattern 
onsists of aperiodi
 or approximately periodi
 stru
ture of smaller pattern units or atoms, and thus,it is worthwhile exploring pattern regularity in terms of periodi
al fun
tions and espe
iallyvia their Fourier transforms. The following is mainly based on de�nitions in solid statephysi
s and is related to Bravais latti
e formulations: A Bravais latti
e is an in�nitearray of dis
rete points with an arrangement and orientation that appears exa
tly the
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ale; (d) Image pro�le along the dashed line in Fig. 3.4(b);(e) Image pro�le along the dashed line in Fig. 3.4(
)
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hever of the points the array is viewed. A two-dimensional (2-d) Bravaislatti
e 
onsists of all points with position ve
tors R of the form
R = n1~a1 + n2~a2 (3.8)where ~a1 and ~a2 are any two linearly independent ve
tors, and n1 and n2 range throughall integer values. The ve
tors ~ai are 
alled primitive ve
tors and are said to generate orspan the latti
e. It should be noted that the ve
tors ~ai are not unique. Fig. 3.5 shows apart of a two-dimensional Bravais latti
e [3℄.
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Figure 3.5: A two-dimensional Bravais latti
e of no parti
ular symmetry, anoblique net. All the net points are linear 
ombinations of two primitive ve
tors(e.g. P = ~a1 + 2~a2, and Q = −~a1 + ~a2).The de�nition of a Bravais latti
e refers to points, but it 
an also refer to a set of ve
torswhi
h represent another stru
ture. A point as an atom 
an also be repla
ed with any,preferably lo
ally 
on
entrated, stru
ture. A region whi
h in
ludes exa
tly one latti
epoint is 
alled a primitive unit 
ell and ~ai now de�nes the spatial relationship of the unit
ells [3℄. Unit 
ells 
an also be de�ned as non-primitive but in both 
ases they must �llthe spa
e without any overlapping. The primitive and non-primitive unit 
ells are notunique.3.5.2 Fourier transform of 2-d periodi
 fun
tionsLet us 
onsider a fun
tion f (~r) (where ~r = (x, y)) in whi
h the spatial domain is aperiodi
 extension of a unit 
ell. Periodi
ity 
an be formally des
ribed. Let M be a 2×2matrix whi
h is invertible and su
h that
f (M ~m+ ~r) = f (~r) (3.9)where ~m is any 2-dimensional integer ve
tor Now, 
learly, every point ~r in the spa
e 
anbe written uniquely as
~r = M (~n+ ~u) (3.10)where ~n is a 2-dimensional integer ve
tor and ~u is a ve
tor where ea
h 
oordinate satis�es

0 ≤ ui < 1. A unit 
ell U (M) is the region in spa
e 
orresponding to all points M~u. It
an be shown that the volume of a unit 
ell is V = |detM |.
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ounting missing dotsThe set of all points L (M) of the formM~n is 
alled the latti
e indu
ed byM . A point inthe spa
e 
orresponds to a point in the unit 
ell translated by a latti
e ve
tor. Note thata sum of two latti
e ve
tors is a latti
e ve
tor and the periodi
ity of fun
tion f impliesthat its value is invariant under translations by multiples of the latti
e ve
tor. A matrix
M̂ 
an be obtained by inverting and transposing M

M̂ = M−T . (3.11)For M̂ a new latti
e and unit 
ell 
an be asso
iated, 
alled the re
ipro
al latti
e L
(

M̂
)and the re
ipro
al unit 
ell U (

M̂
), respe
tively. If we 
onsider wave number spa
e, ea
hve
tor ~k is written uniquely as

~k = M̂
(

~κ+ ~ξ
) (3.12)where ~κ is a 2-dimensional integer ve
tor and ~ξ any real ve
tor whose ordinates 0 ≤ ξi < 1.The re
ipro
al latti
e ve
tors span the latti
e points M̂~κ.The fundamental result is that Fourier transform of a periodi
 fun
tion with a unit 
ellspe
i�ed by M has a dis
rete spe
trum, with peaks lo
ated at the re
ipro
al latti
epoints spe
i�ed by M̂ [3℄. That is, the wavenumber ve
tors are 
onstrained to lie at there
ipro
al latti
e points. The expli
it transform and inverse transform formulas are

f̂M

(

~k
)

=
1

|detM |

∫

~r∈U(M)

f (~r) e−j(~k·~r)dV (~r) , ~k ∈ L
(

M̂
) (3.13)and

f (~r) =
∑

~k∈L(M̂)

f̂M

(

~k
)

ej~k·~r . (3.14)The dis
rete spe
trum 
an be interpreted as a 
ontinuous spe
trum 
onsisting of Dira
impulse fun
tions lo
ated at the re
ipro
al latti
e points
f̂

(

~k
)

=
∑

~κ∈ZD

f̂M

(

M̂~κ
)

δ
(

~k − M̂~κ
)

. (3.15)3.5.3 Fourier transform of 2-d approximately periodi
 fun
tionsIn a more general 
ase we 
an take a 2-d image whi
h is only approximately periodi
.Consider a pattern image whose unit 
ell and latti
e stru
tures are spe
i�ed by M. If thisimage is unbounded in all dire
tions and we 
an 
onsider a fun
tion whi
h is periodi
 (i.e.,invariant under translation by a latti
e ve
tor), then the superposition of waves whosewavenumber ve
tors are ne
essarily pre
isely latti
e ve
tors in the re
ipro
al latti
e,spe
i�ed by M̂ = M−T .However, a real image has a �nite extent and has imperfe
tions (irregularities). Theideally periodi
 fun
tion is 
onstrained to satisfy 
ertain boundary 
onditions. The 
on-sequen
es of this is illustrated by 
onsidering a situation where the pattern is 
omprised
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ting missing dots 43only of a �nite number of translates of the unit 
ell. Let V denote the �nite regiono

upied by the pattern, and 
onsider the window fun
tion wV (~r) de�ned as
wV (~r) =

{
1 , ~r ∈ V
0 , otherwise (3.16)If f (~r) is the ideal, the truly periodi
 fun
tion (with periodi
ity spe
i�ed by M) and

fV (~r) is the trun
ated fun
tion
fV (~r) = wV (~r) f (~r) =

{
f (~r) , ~r ∈ V

0 , otherwise (3.17)then fV (~r) has a 
ontinuous spe
trum given by
f̂V

(

~k
)

=
∑

~κ∈Z2

f̂M

(

M̂~κ
)

ŵV

(

~k − M̂~κ
) (3.18)where ŵV is Fourier transform of wV .It 
an be shown that ŵV 
ontains a 
ontinuous spe
trum whi
h has in�nite extent butwhi
h fades out with 1/

∣
∣
∣~k

∣
∣
∣.The most important result is that approximatively periodi
 fun
tions have approxima-tively dis
rete spe
tra, with the spe
tral energy 
on
entrated at points in the re
ipro
allatti
e.3.5.4 Pattern irregularityIn terms of fun
tion periodi
ity, pattern irregularity 
an be de�ned as an aperiodi
 fun
-tion ε(x, y), with spatial energy | ε |≪| fV |.Finally, the initial 2-d pattern image 
an be represented as

fV (~r) = wV (~r) f (~r) + ε (~r) (3.19)and the problem is to separate the regular part wV (~r) f (~r) and the irregular part ε (~r)as a

urately as possible.3.5.5 Extra
ting the regular pattern informationAs was des
ribed in the previous se
tion, the formation of the model of the ideal regularpart of an image is 
ru
ial for irregularity dete
tion; the more a

urate the model that
an be established the more a

urate and detailed the dete
tion that 
an be made.The details level needed for the regular part formation is parti
ularly high, for example,in Heliotest images [76℄, and thus, typi
al texture segmentation methods (e.g. [28℄) ordefe
t dete
tion methods (e.g. [12℄) 
annot provide su�
ient a

ura
y. The user mustbe able to de�ne the minimum deviation from the single ideal unit 
ell whi
h is 
lassi�edas an irregularity.
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ounting missing dotsOne attra
tive approa
h to estimate an ideal regular pattern is to derive an analyti
almodel and to estimate model parameters based on an input image. This approa
h hasbeen proposed, for example, in [12℄, but requires a pre
ise and very a

urate analyti
almodel, in whi
h 
ase the parameter estimation may be
ome very unstable and slow.Typi
ally, real images do not 
orrespond to analyti
al models but 
ontain distortions andnoise. For this reason it is motivated to use the analyti
al model only as a restri
tingbias in the regular pattern formation and allow in
ompleteness by extra
ting the regularpattern from an input image itself. This approa
h has been applied in frequen
y domainself-�ltering to emphasise regular patterns [4℄ and will be the 
ase in the approa
hesproposed in this thesis as well. Results from the regular latti
es and the re
ipro
allatti
e are applied, but only to estimate appropriate model parameters, while details areextra
ted from an input image. Fa
tors whi
h a�e
t to the sele
tion of this approa
hwill be dis
ussed next.3.5.6 Spatial modelling limits of a

ura
yBefore 
onsidering how to extra
t the ideal regular pattern from an input image, it isimportant to explain why all parameters of the analyti
al model 
annot be dire
tly esti-mated. Analyti
al models would be the most obvious solutions sin
e they are 
ommonlyused in regular dot pattern synthesis, e.g., in digital half-toning [45℄, and also used fordefe
t dete
tion (e.g. [12℄). In the 
ontext of regular dot patterns the analyti
al expres-sion in (3.19) 
an be used, but the limits of a

ura
y prevent estimation of the modelparameters dire
tly be
ause of pra
ti
al restri
tions due to the dis
rete image resolutionwhi
h 
annot be bypassed. For the same reason, the limited available resolution, a halftone synthesis is not ne
essarily reversible.Fig. 3.6(a) shows a simpli�ed model of a regular dot pattern whi
h 
an also be used todes
ribe the pattern in Heliotest assessment [73, 76℄. Parameters of the model 
an bedivided in the following 
lasses:1. Image geometry parameters, i.e., latti
e primitive ve
tors ~a1, ~a2 (see Fig 3.6(a))and the overall latti
e shift ve
tor ~s.2. Unit 
ell model parameters. In the 
ase of the Heliotest it 
an, for example, be a2-d Gaussian hat (see Fig 3.6(b)).Estimation of all the above-mentioned parameters is ne
essary in order to generate ana

urate ideal regular pattern model whi
h 
an be used in irregularity dete
tion by
omparing or subtra
ting it from the observed image. However, the estimation is nottrivial; it 
an be performed with sear
h or generi
 optimisation methods where a targetfun
tion to be minimised is, for example, energy di�eren
e between the observed imageand the model. Unfortunately the number of parameters to be optimised is very highand they 
annot be independently optimised.The �rst step in the pattern modelling is estimation of the latti
e parameters ( ~a1, ~a2)representing periodi
ity (latti
e matrix M). These parameters 
an be derived using anumber of te
hniques: using image auto
orrelation spa
e, image texture statisti
s (grey-level statisti
s), LBP (lo
al binary pattern [64℄), �xed window features, et
. Problems
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(b)Figure 3.6: Simple model of a regular dot pattern (Heliotest): (a) 2-d latti
estru
ture ( ~a1, ~a2 - primitive ve
tors); (b) Gaussian dot model (µ, Σ, A).
may arise, during periodi
ity estimation su
h as in
orre
t period estimation (
onvergen
eto harmoni
s nM instead of M). A solution for the periodi
ity ambiguity is a 
orre
tinitial period guess. For example, in the Heliotest proper, limits of the sear
h domain forve
tors ~a1, ~a2 must be de�ned. This approa
h depends on the input image and furthergeneralisation seems to meet with low su

ess.It is also possible to estimate the parameters using statisti
al tools: the mean latti
e ma-trix Mµ and latti
e matrix deviation MΣ. The question arises, whether the mean latti
ematrix 
an be used as a model of the ideal latti
e. Pra
ti
al experiments, unfortunately,showed that it 
annot; the observed latti
e from an input image is typi
ally not regularenough and therefore it should be modelled rather as a real world sto
hasti
 pro
ess.Also, as the input images are large, over 1500 pixels in length, even a slight parameterestimation error 
an divert the estimated latti
e points way o� near the edges of theimage, even when they are 
orre
t at the beginning of the image. The only possible wayof using this modelling approa
h would be a lo
al re�ning where ea
h latti
e grid pointis adjusted to a 
orresponding unit 
ell in the observed image. This in turn would 
auseadditional 
omputational expenses whi
h would prevent an e�
ient implementation ofthe method. Furthermore, it should be noted that additional model parameters introdu
emore un
ertainty and more adjustment is then required.It is evident that it is easy to 
onstru
t a mathemati
al model to synthesise regulardot patterns, but this pro
ess is often irreversible in pra
ti
e due to the limited a
quisi-tion resolution and exhaustive 
omputation needed in the parameter estimation. Withthe help of appli
ation spe
i�
 heuristi
s, a 
ombination of dire
t estimations and op-timisation may still su

eed, but whether it is a

urate and 
omputationally feasible isquestionable. Thus a more general, re-useable, and su�
iently a

urate approximationte
hnique is needed.
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ounting missing dots3.5.7 Exploiting Fourier domainLet us now 
onsider real images whi
h represent regular dot patterns. Su
h imagesare produ
ed by the Heliotest assessment as shown on the left-hand-side of Fig. 3.7.Next 
onsider Fourier spe
tra of the given image, i.e., the magnitude spe
tra. On theright-hand-side of Fig. 3.7 it is possible to see the distin
tive frequen
y peaks lo
atedat the re
ipro
al latti
e points in Eq. 3.13. Sin
e no spe
ial window fun
tion is used toprepro
ess the original input image, and due to the fa
t that the images are dis
rete,the frequen
y peaks 
an leak energy to adja
ent frequen
ies, mostly perpendi
ular tothe running dire
tions of the spatial patterns. This happens when the pattern does not
ontinue �awlessly on image edges. This energy leakage gives the peaks a �star like�shape, visible on the right-hand-side of Fig. 3.7. The leak dire
tion depends on theamplitude di�eren
e on the image edges when they are wrapped around. By windowingthe input image with, e.g., the Hamming window fun
tion, this energy leakage woulddiminish, but the peaks would also blur, making it more di�
ult to dete
t the repeatingpeak lo
ations a

urately. However, if the number of individual image atoms that formthe regular pattern in the spatial domain is small, then a proper windowing 
ould beapplied to better distinguish separate peaks from Fourier spe
tra.

Figure 3.7: Example of regular dot pattern image (Heliotest) and its Fourierspe
tra magnitude.It is 
lear that by �ltering out all the other frequen
ies ex
ept the re
ipro
al latti
efrequen
ies it is possible to estimate the faultless periodi
 
omponent, the ideal regularpattern, of the input image and by utilising this 
omponent also the defe
t 
omponent,the irregular part. These two parts are now 
alled as the regular and irregular parts ofthe image and demonstrated in Fig. 3.8. It should be noted that e�e
ts of image bordersin Fig. 3.8 appear sin
e the borders are dis
ontinuity points. Separation of the parts 
anbe formulated as
ξ(x, y) = F−1{Ξ(u, v)} =

= F−1{M(u, v)Ξ(u, v) + (I(u, v) − M(u, v))Ξ(u, v)} =
= F−1{M(u, v)Ξ(u, v)}

︸ ︷︷ ︸regular part + F−1{(I(u, v) − M(u, v))Ξ(u, v)}
︸ ︷︷ ︸irregular part (3.20)
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ting missing dots 47where ξ(x, y) is the spatial image, Ξ(u, v) is the Fourier domain image, F and F−1 areforward and inverse dis
rete Fourier transforms, M(u, v) is a mask �lter (real valuedfun
tion of the same de�nition domain as Ξ(u, v)), and I(x, y) is a unit fun
tion. Thede
omposition in Eq. 3.20 is possible be
ause Fourier transform and its inverse are linearoperators. The mask �lter 
an be of any type suitable for a parti
ular appli
ation, i.e.,a

ept/reje
t (binary), not
h �lter, et
. The only 
ondition for the mask is that it shouldin
lude the periodi
 
omponent while removing other frequen
ies, i.e., it should haveband-pass on frequen
ies near the re
ipro
al peak points.The e�e
t of white (Gaussian) noise in a spatial image does not have a harmful e�e
ton the Fourier image, the energy of the noise will spread evenly on all frequen
y bands,leaving the repeating peaks still 
learly visible, provided that the noise amplitude is notstrong enough to mask the repeating peaks. Random noise in an image has a randompattern in the Fourier domain and is appli
ation dependant. If it is a problem, shoulddealt with in the prepro
essing steps. Patterned noise in a spatial image, however, hasdistin
t peaks in Fourier domain, and should be dealt in prepro
essing if the noise is aproblem.

Figure 3.8: Examples of regular and irregular image parts (Heliotest).3.5.8 Spatial domain vs. Frequen
y domainMany image pro
essing te
hniques work well dire
tly in the spatial domain. However,with repetitive patterns, the 
hoi
e of frequen
y domain is obvious. Using the FFTalgorithm, forward and inverse Fourier transforms 
an be made e�
iently and fast. 2-dperiodi
ity in the spatial domain is given by a latti
e matrixM and a 2-d periodi
 fun
tionin the frequen
y domain has dis
rete spe
tra lo
ated at the re
ipro
al latti
eM−T points.For an N ×N image the FFT transform is also N ×N with dis
rete frequen
ies rangingfrom 0 to (N − 1)/N (wave numbers 0, . . . , N − 1). If the input image pattern 
ontainsa large number of unit 
ell translations, the frequen
y pi
ture will be sparse, having asmall number of latti
e points in it. Consequently, rough estimation of latti
e matrix Mthrough a re
ipro
al matrix M−T is easier.Inspe
ting small details, su
h as the shape of a single unit 
ell, is a di�
ult task in theFourier domain, and inverse transform ba
k to the spatial domain is needed in detailed
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ounting missing dotsanalysis. These issues will be dis
ussed in the next se
tion in the des
ription of theproposed algorithms.Aliasing 
an happen during image a
quisition if the repeating details are not imagedwith su�
ient detail. This problem o

urs if the sampling frequen
y is lower than theNyquist sampling rate. On
e again this is an appli
ation spe
i�
 problem and if needed,proper anti-aliasing methods should be applied. After an image has been obtained, nofurther aliasing problems 
an o

ur. Be
ause the images are �nite, they are band limitedin nature and therefore Fourier transformation 
an not produ
e higher frequen
ies thanalready apparent in the image.3.5.9 Method 1: Fourier domain regularity dete
tion and global grey-levelpro
essing in the spatial domainThis method (referred to as Method 1) is based on the fa
t that the periodi
 regularstru
ture provides intensity peaks in the Fourier domain, as demonstrated for the periodi
fun
tion f and its re
ipro
al 
ounterpart f̂ in Eqs. 3.9 and 3.15 and shown in Fig. 3.7.If the mask M 
an be automati
ally generated by utilising lo
ations of the peaks inthe frequen
y domain, regular and irregular parts of an image 
an be extra
ted usingEq. 3.20. It is possible to �nd irregularities from an irregular image by global pro
essing,i.e., by thresholding a grey-level irregular image and then pro
essing the binary areas(see the right-hand-side in Fig. 3.8). The following stages are needed:1. Image prepro
essing to eliminate illumination 
hanges and a
quisition noise.2. Extra
ting the irregular 
omponent by forming the mask based on the peak fre-quen
ies.3. Global pro
essing of the irregular image part.Irregular 
omponent extra
tionA general approa
h for irregular 
omponent extra
tion was established by introdu
ingthe theory of re
ipro
al latti
es of periodi
 patterns in Se
tion 3.5.1 and by the separationprin
iple in Se
tion 3.5.7. The extra
tion is des
ribed in Algorithm 1.Algorithm 1 Irregular image extra
tion1: Compute magnitude of Fourier transform |Ξ| of an input image ξ.2: Form the re
ipro
al latti
e ve
tors using lo
ations of magnitude peaks.3: Create the mask M by setting Gaussian band-pass �lters to re
ipro
al latti
e points.4: Extra
t the irregular 
omponent from ξ using the mask M and the inverse Fouriertransform as per 3.20.The �rst and last steps are 
lear enough, but the other two need more detailed des
rip-tion. The se
ond step a
tually introdu
es the problem 
orresponding to the topi
 of this
hapter: dete
tion of regularity in regular dot patterns. The re
ipro
al latti
e is de�nedby the primitive ve
tors, whi
h 
an be estimated within a sub-pixel a

ura
y using the
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ations, but the estimation may be sensitive to the initial guess. The estima-tion ambiguity o

urs due to harmoni
 
omponents, although it 
an be prevented byusing a su�
iently a

urate initial guess. Another ad ho
 solution would be to lo
ate allfrequen
y peaks, but sin
e the frequen
y plane is dis
rete, the harmoni
 set estimationbased on lower frequen
ies is not a

urate and the peaks need to be adjusted to a
tuallo
al maxima. This adjustment is performed by looking for a lo
al maximum in a 
ertainneighbourhood. This neighbourhood 
an be de�ned as a re
tangular area with the �rstapproximation point in the 
entre and should 
ontain only one lo
al maximum from theharmoni
s set. It should be noted that estimation to sub-pixel a

ura
y is not neededsin
e the regular pattern is �nally extra
ted from the original image.Filter mask generation is based on the re
ipro
al latti
e and a band-pass �lter suitablefor an appli
ation. Without any prior information, the Gaussian su

eeds as the generalform. The width of the Gaussian 
an be estimated from the lo
al peaks but again dueto the use of the original signal in the regularity extra
tion, a �xed width 
an be safelyused for e�
ien
y. Two image 
omponents are derived from the observed image, one
ontaining the regular image part and the other 
ontaining the irregular part. It shouldbe noted that the algorithm tolerates arbitrary rotations and s
alings.Pro
essing the irregular imageThe irregular image produ
ed by Algorithm 1 must be further pro
essed to lo
ate whi
hirregularities are signi�
ant for the dete
tion. The irregular image may still 
ontainnoise, whi
h 
an be removed using standard noise removal methods, and following noiseremoval, pro
essing of the irregular image 
an be de�ned a

ording to Algorithm 2.Algorithm 2 Dete
ting irregularities from irregular image1: Threshold the irregular image ξI using the threshold limit T .2: Lo
ate foreground areas of a size greater than S.3: Compute 
entres of ea
h foreground areas.4: Return 
entres as irregularity 
oordinates.There are various methods whi
h 
an be used to perform the binary pro
essing tasks inSteps 2 and 3, e.g., areas of size less than S 
an be removed using the binary openingpro
edure [23℄. Algorithm 2 requires two parameters to be de�ned: a threshold value Tand the minimum area S. T 
an be obtained for example as:
T = mean(ξI) + n std(ξI) (3.21)where the mean is used to 
al
ulate the mean of the irregular image ξI grey level valuesand std to 
al
ulate standard deviation of irregular image grey level values. The greylevel histogram of ξI is assumed to follow Gaussian distribution and therefore parameter

n de�nes the 
on�den
e interval inside whi
h pixels are determined to belong to theba
kground, i.e., they are not 
onsidered as missing dots. The regular image 
an beused as a training set to obtain good values for the minimum area S. By thresholdingthe regular image ξR using for example Otsu's [68℄ standard method, the dots 
an besegmented and then their average or median size 
al
ulated and used to de�ne parameter
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S. A 
onstant value for S 
an be used if the individual dots in the image are roughly thesame size. For the Heliotest this 
an be a
hieved by analysing the image in parts whi
h
ontain roughly equal sized dots.3.5.10 Method 2: Fourier domain self-�lteringMethod 2 is based on frequen
y domain self-�ltering [4℄. In this approa
h, the frequen
yimage itself de�nes the �lter. If Ξ(u, v) is the Fourier transform of an image ξ(x, y), the�lter M2(u, v) is the magnitude of the frequen
y image, i.e.,

M2(u, v) = |Ξ(u, v)| (3.22)Depending on the frequen
y 
ontent of the original data, it might be appropriate toemphasise the high frequen
ies by applying
M3(u, v) =

√

u2 + v2|Ξ(u, v)| (3.23)To enhan
e the relatively smaller peaks at higher frequen
ies, the following �lter 
an beused.
M4(u, v) = log(1 +

√

u2 + v2|Ξ(u, v)|) (3.24)It equalises the relative di�eren
es between high peaks at lower frequen
ies and smallerpeaks at higher frequen
ies and therefore makes the resulting regular image sharper.After the given image is �ltered in the frequen
y domain, the regular and irregular imageparts 
an be 
onverted to the spatial domain by using the inverse Fourier transform.Thus the regular image part 
ontains the repeating pattern and the irregular image part
ontains nothing but the irregularities and some noise. On
e the regular and irregularimage parts have been separated, Method 2 pro
eeds exa
tly like Method 1: the irregularimage is thresholded, and binary areas larger than S are 
onsidered as missing dots.It should be noted, however, that the method 
an su�er if proper windowing is not used.With the re
tangular window used in the work, the repeating peaks in the Fourier domainleak energy to nearby frequen
ies and 
an thereby mask the irregular (missing dots)information that is lo
ated between the regular peaks. The most important propertyof the method is that it emphasises a pattern that is dominating in an image. For theHeliotest this is desirable sin
e the most dominant repeating pattern in a Heliotest imageis the ink dot pattern. With a su�
ient number of repeating atoms of an input image,the method performs well enough despite the energy leakage. Be
ause the re
ipro
alpeaks are mu
h stronger than the ba
kground, the method attenuates the re
ipro
alpeak lo
ations more than their surroundings and therefore emphasises the repeatingpattern in the spatial domain.3.5.11 Method 3: Fourier domain regularity dete
tion and lo
al grey-levelpro
essing in the spatial domainThis approa
h (referred to as Method 3) 
an be divided into the following steps:1. Regular spatial latti
e points estimation.2. Lo
al 
lassi�
ation at spatial latti
e points.



3.5 Feature extra
tion and dete
ting missing dots 51Spatial latti
e estimationSpatial latti
e estimation 
orresponds to the estimation of irregularities in the regularpart, and thus, Algorithms 1 and 2 
an also be used to �nd 
entroids of the unit 
ells.The only di�eren
e is that the regular image part is used instead of the irregular one.When all the 
entroids of the regular image part have been lo
ated, the original image
an be pro
essed and analysed at ea
h unit 
ell lo
ation.Lo
al 
lassi�
ation at spatial latti
e pointsThe lo
ations of the unit 
ells 
an be extra
ted using the regular image and next thede
ision whether it is regular or irregular, not missing or missing 
an be made at the ea
hlo
ation (see Fig. 3.9). First, some kind of feature extra
tion is needed, e.g., simply theve
tor of all grey-level values. After feature extra
tion, the features are 
lassi�ed usinga 
lassi�er. There are a vast number of appli
able methods available and for ve
tors ofgrey-level values a prin
ipal 
omponent subspa
e 
lassi�er was used [67℄. The prin
ipleof the 
lassi�er is simple. The feature ve
tors are proje
ted into a subspa
e so thatthe subspa
e basis ve
tors are orthonormal. The training features are treated the sameway. Classi�
ation is performed by 
al
ulating the distan
e between subspa
e data of thefeatures with respe
t to the training data subspa
es. It should be noted that a separatetraining set is needed in this approa
h, but the lo
al pro
essing approa
h 
an also providedetailed information about the type of missing dots.
a

e

b

f

c

g

d

hFigure 3.9: Examples of dots in Heliotest images: (a)-(
) Regular dots; (d)Regular dot expe
tation; (e)-(g) Missing dots; (h) Missing dot expe
tation (notethat not 
ompletely missing).



52 3. Printability evaluation by 
ounting missing dots3.6 ExperimentsIn the experiments the image enhan
ement method introdu
ed in Se
tion 3.4 was evalu-ated and the three proposed methods for dete
ting irregularities were tested.3.6.1 Colour image 
onversion to grey levelTo demonstrate the method both quantitatively and visually, RGB 
olour spa
e wassele
ted as the image output value ~x. An image is generated by pla
ing two randompoints into the 3-D RGB spa
e, assigning every image pixel to one of the points withrespe
t to �xed a priori values P (0) and P (1), and applying 
olour spa
e noise based on�xed normal distributions p(~x|0) and p(~x|1) to the pixels. To test the e�e
t of distan
eand varian
e of points in 
olour spa
e, the points 
an be repeatedly generated fromuniform distribution with varying distan
e and varian
e parameters.Two images with di�erent parameter values are shown in Fig. 3.10. It should be notedthat the 
ovarian
e is a diagonal with �xed varian
e in all dimensions.
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(e) (f)Figure 3.10: Generated bi-modal image data in the spatial domain (left),generated points in RGB spa
e (middle), and EM-estimated distributions(right); (a),(b),(
) P (0) = 0.5, P (1) = 0.5, µ0 = [85, 134, 191]/256, µ1 =

[174, 52, 126]/256, σ0 = 20/256, σ1 = 20/256; (d),(e),(f) P (0) = 0.2, P (1) = 0.8,
µ0 = [192, 87, 111]/256,µ1 = [159, 172, 126]/256, σ0 = 20/256, σ1 = 20/256.



3.6 Experiments 53The most popular general method to 
onvert RGB data to a single variable image(grey-level image) is the standard RGB-to-grey transformation, obtained by (I(x,y) =
R(x,y) +G(x,y) +B(x,y))/3, and one of the most su

essful maximum 
ontrast (thresh-olding) methods is the minimum-error thresholding [49℄. To 
ompare the proposedminimum-error 
ontrast enhan
ement, where the 
al
ulated posteriori values are dire
tlyused as the grey level image, the MSE behaviour of these methods was studied for thegenerated data. The results are demonstrated in Fig. 3.11. The MSE is 
al
ulated withrespe
t to the perfe
t maximal 
ontrast image (binary).
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(b)Figure 3.11: MSE of di�erent 
ontrast enhan
ement methods: (a) As fun
tionof 
luster distan
e p

(µ0 − µ1)2 (P (0) = P (1) = 0.5, σ0 = σ1 = 20/256); (b) Asfun
tions of 
luster varian
e (p(µ0 − µ1)2 = 100, P (0) = P (1) = 0.5).The di�erent methods shown in the �gures are as follows: RGB+enhan
ement meansthat the proposed 
olour image 
onversion method is applied to the RGB 
olour im-age, RGB2gray is linear RGB to grey 
onversion, RGB2gray + enhan
ement shows theproposed 
olour image 
onversion method applied to the grey level image obtained bythe linear RGB to grey 
onversion. RGB2gray + min.err.th. shows the results whenminimum-error thresholding [49℄ is applied to the grey level image obtained by the linearRGB to grey 
onversion. Based on the results shown in Fig. 3.11, the behaviour of thedi�erent methods is as expe
ted. The standard RGB-to-grey 
onversion provides theweakest 
ontrast. The minimum-error thresholding method provides su�
iently good
ontrast if the overlap of 
lusters is not signi�
ant. Best 
ontrast representation is ob-tained by using the proposed 
ontrast enhan
ement method. It should be noted thatutilising the 
olour information provides the most a

urate results, sin
e it uses all the
olour information available. Other simpler methods 
an falsely 
lassify noisy ba
kgroundpixels (e.g. dirt/dust in real Heliotest images) to the foreground and vi
e versa. Theresults are shown in Figs. 3.12 and 3.13. The only di�eren
e between the images is thelo
ation of the 
luster 
entres, the 
luster distan
e √

(µ0 − µ1)2 = 100 and noise varian
e
σ0 = σ1 = 15/256 are equal.The a
tual 
ontrast enhan
ement method was applied to Heliotest data. To in
rease
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(a) (b) (
)
(d) (e) (f)Figure 3.12: Examples of 
ontrast enhan
ement images: (a) Original RGBimage; (b) Maximal 
ontrast image; (
) RGB to grey 
onverted image(MSE=0.4726); (d) Minimum-error thresholding applied to the intensity image(MSE=0.5); (e) Posteriori 
ontrast enhan
ement applied to the intensity image(MSE=0.2628); (f) Posteriori 
ontrast enhan
ement applied to the RGB image(MSE=0.0072).
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(a) (b) (
)
(d) (e) (f)Figure 3.13: Examples of 
ontrast enhan
ement images: (a) Original RGBimage; (b) Maximal 
ontrast image; (
) RGB to grey 
onverted image(MSE=0.4383); (d) Minimum-error thresholding applied to the intensity image(MSE=0.0308); (e) Posteriori 
ontrast enhan
ement applied to the intensity im-age (MSE=0.0466); (f) Posteriori 
ontrast enhan
ement applied to the RGB image(MSE=0.0006).
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ounting missing dotsthe su

essful dete
tion rate, the image 
ontrast 
an be enhan
ed to magnify the sepa-rability of printed dots from the ba
kground. In Fig. 3.14, the performan
e of 
ontrastenhan
ement has been demonstrated. The e�e
t on thresholding 
an be seen in Fig. 3.15,in whi
h an image is 
onverted to grey level linearly by summing the individual 
olour
hannels and dividing by 3. The original 
olour image is also 
onverted to grey levelusing the proposed method. After both images are in gray level, Method 2 is applied toboth images. Both grey level images were normalised to have values between 0 and 1in order to make the thresholding 
omparable. Both images in Figs. 3.15(
) and 3.15(f)were thresholded by using same threshold determined by visual evaluation of the thresh-olding result, the resulting thresholded images 
an be seen in Figs. 3.15(d) 3.15(g). As
an be seen, the missing dot is mu
h more visible in Fig. 3.15(g) with less noise thanin Fig. 3.15(d). If the threshold in Fig. 3.15(d) is lowered, the missing dot area in theimage be
omes larger, but the noisy dots also be
ome more numerous and larger.
20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 (a) 20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 (b) 20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 (
)
20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 (d) 20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 (e) 20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 (f)Figure 3.14: Partial Heliotest images: (a),(d) Original 
olour image; (b),(e)Intensity image; (
),(f) Posteriori 
ontrast enhan
ed image.3.6.2 Experiments for irregularity dete
tionHeliotest imagesIn the experiments, the three methods were 
ompared by studying their a

ura
y and
omputational e�
ien
y. All methods were implemented using Matlab. The dataset
onsisted of 101 Heliotest images s
anned from Heliotest samples (for an example, seeFig. 3.16). The regular pattern in ea
h image was a printed raster pattern whi
h 
onsisted
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(a)
(b) (
) (d)
(e) (f) (g)Figure 3.15: (a) Original image; (b) Gray level image; (
) Irregular image ofgray level image; (d) Thresholded irregular gray level image; (e) Proposed 
olour
onversion applied to original image; (f) Irregular image; (g) Thresholded irregularimage.
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ounting missing dotsof unit atoms with a Gaussian shape and a size of 6-10 pixels in diameter. The a

ura
y ofea
h method was determined using the measure used in the paper and printing industry:the distan
e from the beginning of the raster pattern to the 20th missing dot in the rasterpattern. This distan
e gives information about the printability of the tested paper type.Ground truth data was obtained by visually inspe
ting the images and by marking theirregularities, i.e., missing dot lo
ations. Only the �rst 20 missing dots were marked,ea
h sample 
ould 
ontain a lot more missing dots, but the paper and printing industryis only interested in the �rst 20. The results are reported for the proposed methods;global pro
essing of the irregular image (Method 1), self-�ltering (Method 2), and lo
alpro
essing of the original image (Method 3).
(a) (b)Figure 3.16: Test sample: (a) The measurement area is marked on the image asa re
tangle; (b) Small part of the measurement area enlarged.The number of dete
ted missing dots and false alarms as a fun
tion of the radius from theground truth missing dots are shown in Fig. 3.17 for all methods. The graph indi
ates howa

urately the di�erent methods are able to dete
t the missing dots. It 
an be seen thatlo
al pro
essing (Method 3) more a

urately dete
ted missing dots and gave fewer falsealarms. Methods 1 and 2 �nd all the missing dots, but on average (a

eptan
e radius=4pixels) they dete
t 2 more falsely dete
ted missing points than Method 3. Method 3 mayfail to dete
t one a
tually missing dot but it dete
ts fewer false positives than Methods1 and 2. The results are demonstrated in pixels and the mean shortest distan
e betweentwo dots was 7.1 pixels (graphs in Fig. 3.17 stop at 4.0 pixels).The a

ura
ies of all methods 
ompared to the ground truth distan
e to the 20th missingdot are shown in Fig. 3.18. Ea
h method was separately used to 
ount the missing dotsfrom the beginning of ea
h strip and ea
h of them returned the distan
e estimationto the lo
ation of the 20th automati
ally dete
ted missing dot from the start of theprint area. In this performan
e measure, individual false positives and false negatives
ontributed only to the �nal error. Using this industrial error measure, all methodsperformed almost equally well. For 95% of the test samples, the error remains under 8.0mm. The typi
al distan
e to the 20th missing dot varies between di�erent paper grades;with good quality paper the distan
e is around 80 mm. The average exe
ution times ona laptop PC (Pentium 4, 3200MHz, 512 Mb) for the methods were as follows: Method1 - 7.76 s, Method 2 - 6.66 s and Method 3 - 49.9 s. The di�eren
e in exe
ution timesbetween Method 1 and Method 2 
omes from the time needed to pro
ess the peaks in thefrequen
y domain. It takes 0.43 s on average to dete
t and mask the frequen
y domainpeaks with Method 1, whereas with Method 2, utilising frequen
y domain self-�ltering,



3.6 Experiments 59the same task requires 0.15 s on average. The methods perform equally well for thisindustrial measurement. The advantage of Method 3 over the other methods 
omes fromits ability to 
lassify, if su
h fun
tionality is later needed, the types of missing dots thatare dete
ted at the same time when the missing dots are dete
ted.Examples of the dete
ted missing dots (Method 2) are shown in Fig. 3.19. Figs. 3.19(
)and 3.19(d) show examples where the method seems to be over-sensitive to dete
tingonly partly missing dots as missing dots; however in some 
ases those points were also
onsidered as missing dots by an expert.Arti�
ial imagesIn the se
ond part of the experiments, arti�
ial images were generated to a
t as 
ontrolledinputs to the methods (see Fig. 3.20). The images were prepared based on a
quiredHeliotest samples, and they 
onsisted of a bla
k ba
kground and white Gaussian-shapedpeaks with regular intervals between the peaks. To model the uneven ba
kground (paper)and imaging pro
ess, ea
h image was degraded by adding Gaussian noise with zero meanand normalised varian
e of 0.001. To model the missing portions of print, ea
h imagewas further degraded with multipli
ative spe
kle noise. The whole pro
ess of imagegeneration 
an be formulated as follows:
ξ(x, y) = H[ξideal(x, y) + η(x, y)] (3.25)where ξ(x, y) is the generated image, ξideal is the arti�
ial image with the regular pattern,

η is the Gaussian noise image, H represents the multipli
ative noise fun
tion utilising auniformly distributed random variable with zero mean and varying varian
e. Mean squareerrors were 
omputed between the images obtained by Methods 1 and 2 and the originalarti�
ial images that 
ontained neither Gaussian nor spe
kle noise. Irregular imagesobtained by Methods 1 and 2 were 
ompared to the image whi
h 
ontained only noise.This image was obtained by subtra
ting the original image with the regular pattern fromthe generated image. The results of this experiment are shown in Fig. 3.21. To furtherelaborate the di�eren
es of the approa
hes, Methods 1 and 2 were used to separate twodi�erent frequen
ies from ea
h other. The original image is shown in Fig. 3.22(a), andthe resulting regular and irregular images using both methods are shown in Figs. 3.22(b)-3.22(e).Near regular imagesThe previous experiments on Heliotest images quantitatively evaluated the a

ura
y ofthe methods. To demonstrate generality, the proposed methods were also applied tofree form regular textures. Images from the CMU NRT near-regular texture database(http://graphi
s.
s.
mu.edu/data/texturedb/gallery/) were used. Method 2 wasapplied to several images using the 
ommon threshold τ = 240. Examples of irregularitydete
tion from near-irregular textures with arti�
ially imposed irregularities are shownin Fig. 3.23.It is 
lear that while the Heliotest assessment appears a straightforward appli
ation ofthe proposed methods and a
ted as the original reason for the resear
h, the methods alsoprovide a more general approa
h to irregularity dete
tion from regular and near-regulartextures.
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tion a

ura
ies as fun
tions of radius from the ground truthlo
ations: (a) Corre
t positives, the faster graph rea
hes 20, the better the method;(b) False positives. The faster the graph drops from 20 to 0, the better the method.
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3780 (e)Figure 3.19: Examples of dete
ted missing dots: (a),(b) dot 
ompletely missing(
orre
t positive); (
),(d) dot partly missing (false positive); (e) a group of missingdots (
orre
t positives).3.6.3 Dis
ussionAll the presented methods are suitable for dete
ting irregularities in a regular pattern.Methods 1 and 2 are a

urate in dete
ting missing dots from a pattern, but they 
annotmat
h the a

ura
y of Method 3. This is be
ause Method 3 uses a 
lassi�er at ea
h unit
ell lo
ation to determine whether there is a missing dot or not. The disadvantage ofMethod 3 is that it requires more 
omputing time. By using 
ontrolled input images, itis possible to demonstrate that frequen
y masks designed for ea
h spe
i�
 image types(Method 1) provide lower error levels when the results of frequen
y separation are 
om-pared to the ideal regular pattern. Depending on the appli
ation, this 
an be importantin the 
lassi�
ation of defe
ts if the original image data is not used for this purpose.Although Methods 1 and 2 are almost identi
al in nature, Method 1 has advantagesover Method 2. Method 1 utilises prior knowledge of the Fourier peaks, and thus, 
andete
t several underlying regular patterns from a given image. For example, if the imagehas two repeating patterns that have di�erent frequen
ies, Method 1 
an be used to
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(k) (l) (m) (n) (o)Figure 3.23: Near-regular textures from CMU NRT database; (a),(f),(k) Originalimage; (b),(g),(l) Arti�
ially generated irregularity; (
),(h),(m) Regular image;(d),(i),(n) Irregular image; (e),(j),(o) Thresholded irregular image.
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ounting missing dotsextra
t either one of the underlying patterns. Another advantage of Methods 1 and 3is that they do not su�er from energy leakage as mu
h as Method 2 sin
e Methods 1and 3 only sele
t the repeating peaks from the Fourier plane and use them to build theregular image. Method 2, utilising frequen
y domain self-�ltering, is unable to extra
ttwo di�erent repeating patterns, but instead lo
ates both patterns. This 
an be seenin Fig. 3.22. The advantage of Method 2, on the other hand, is that it needs no priorknowledge of the spatial properties of the repeating pattern as Methods 1 and 3 do.From a pra
ti
al point of view, Method 2 is good for general needs. It is a

urate andits 
omputational e�
ien
y is very good. It does not need any training data and 
anperform the missing dot dete
tion well sin
e there is only a single repeating raster patternin the Heliotest images. Methods 1 and 3 require parameters for dete
ting the peaks inthe frequen
y domain, but Method 2 does not.The key di�eren
e between the methods proposed in this thesis and methods found inliterature [53, 31, 47℄ is the use of frequen
y information for dete
ting missing dots.The methods found in literature use only spatial information. Therefore the proposedmethods have one major advantage over the other methods suggested in literature [53,31, 47℄, namely the ability to dete
t individual missing dots 
lustered 
losely together.The other methods fail in this respe
t. They 
an dete
t if there are missing dots in anarea, but if there are many missing dots next to ea
h other, then the other methods areprone to fail. On the other hand, if it 
an be 
ertain that the image to be analysed doesnot 
ontain 
lusters of missing image atoms, then the methods proposed by [53, 31, 47℄
an work well and e�
iently. Another bene�t of these methods is that they work equallye�
iently on image edges. The methods proposed in this paper 
an fail to dete
t missingdots near image edges be
ause they are blurrier than image 
entres as 
an be seen inFig.3.8. This happens due to Fourier transform being applied to a dis
rete image.The method proposed in [30℄ is based on the similar Fourier prin
iple proposed in thisthesis. The di�eren
e between the methods 
omes from how the Fourier analysis isperformed. In [30℄ they use a spe
ial imaging arrangement to perform opti
al Fouriertransformation. The number of missing dots in the imaged area is obtained by measuringthe e�e
t of missing dots on the Fourier spe
tra, namely the e�e
t on intensity betweenrepeating peaks in the Fourier plane. Methods proposed in this thesis work very similarlywith the di�eren
e being that �rst the perfe
tly regular image is obtained based on therepeating intensity peaks in Fourier plane. Then by subtra
ting this regular image fromthe original image with the missing dots, not only the missing dots 
an be 
al
ulated,but also their lo
ations. The irregular image, obtained by subtra
ting the regular imagefrom the original missing dot image, does, however, 
ontain some noise. Due to thedis
reet nature of image pro
essing and simple windowing used, the irregular image�leaks� some energy from the intensity peaks in the Fourier plane into neighbouringfrequen
ies, 
ausing some noise into the irregularity information. Method 2 su�ers fromthis more than Methods 1 and 3. Methods 1 and 3 band pass only the repeating peaksin the Fourier domain and therefore the energy leakage does not a�e
t the regular imageas mu
h.The key advantage of method [30℄ is unquestionably its speed. The opti
al Fouriertransformation is fast to perform and the results obtained by the system seem quitereliable. The systems seems very suitable for on-line missing dots measurements from



3.7 Summary 65printed paper. However when number and lo
ations of missing dots are needed, it isre
ommended to use methods proposed in this thesis.3.7 SummaryIn this 
hapter, three methods for measuring irregularities from a regular pattern was in-trodu
ed. As an example, the methods were applied to Heliotest samples whi
h 
onsistedof a regularly printed raster pattern that 
ould have missing dots, i.e. irregularities. Thea

ura
ies and exe
ution times of the methods were 
ompared, and their strengths andweaknesses dis
ussed. For fast exe
ution and good a

ura
y, the method based on fre-quen
y domain self-�ltering (Method 2) was a good 
hoi
e. However, if the appli
ationis sensitive to 
hanges to the regular or irregular patterns or the image to be assessed
ontains more than one repeating pattern, Methods 1 and 3 utilising prior knowledge ofthe repeating patterns are more appli
able.An e�
ient method for enhan
ing 
ontrast between two dominating 
olours in an imagewas also introdu
ed. The 
ontrast enhan
ement enabled later image pro
essing steps towork more reliably.
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Chapter IVRunnability evaluation by dete
ting surfa
e defe
ts

Paper runnability was introdu
ed in Se
tion 2.2. In short, anything that adversely a�e
tsrunnability is undesirable. Small parti
les that sti
k to printing heads or obstru
t printingrollers is one part of this problem. Paper surfa
e strength is typi
ally inspe
ted with theIGT pi
king test in order to determine how fast the paper 
an be printed without surfa
edefe
ts or tearing.4.1 The IGT pi
king runnability testPi
king is 
losely related to linting, introdu
ed in Se
tion 2.2. The greatest di�eren
ebetween pi
king and linting is that pi
king is at least partially atta
hed to paper whereaslinting 
onsists of totally loose parti
les [83℄. The origin for pi
king 
an be poor papersurfa
e strength or fast setting of the printing or both. The IGT pi
king test is printed byan IGT pi
king devi
e that prints a test pattern on a paper sample with in
reasing speedusing ta
ky printing oils with known vis
osity (standards [39, 84, 78℄). The IGT pi
kingapparatus is a me
hani
al devi
e whi
h does not produ
e any image data from samples.The apparatus 
onsists of an oil appli
ator and a printing unit in whi
h a printing
ylinder produ
es a test pattern 200 − 320 mm long and 10 mm or 20 mm wide. Theprinting speed in
reases linearly towards the end of the print. The proportion of visibledefe
ts, e.g., �bre surfa
ing or 
oat tearing, is assumed to provide information about theprinting properties of a parti
ular paper type (printability and runnability). The longerthe distan
e between the print starting point and the beginning of �bre surfa
ing, thehigher the speed that 
an be used in the printing pro
ess. The speed and the printingoil vis
osity information 
an be used to 
al
ulate the velo
ity-vis
osity produ
t (VVP),whi
h enables 
omparisons between paper grades obtained using di�erent printing oils.The VVP is 
al
ulated as follows:
V V P = vd ∗ V (4.1)where vd is the speed at whi
h the pi
king started and V is the printing oil vis
osity inPas
als (Pa) at the printing room temperature [37℄. Fig. 4.1 shows the di�erent ma
hines67



68 4. Runnability evaluation by dete
ting surfa
e defe
tsrequired for pi
king inspe
tion.

(a)

(b)Figure 4.1: Equipment for inspe
ting pi
king: (a) Ma
hine for making the testprints; (b) Spe
ial lighting system for visually determining the pi
king start lo
a-tion.A problem in pi
king test inspe
tion is the determination of the pi
king start lo
ation.Di�erent experts have di�erent opinions about where the pi
king should be marked asstarting. Pi
king 
an be marked as starting if the defe
t size is small surfa
ing �bre orif 2/3 of the test print area width has torn, or somewhere in between. This 
riterionvaries between experts. The most prominent problem is naturally eye strain. Due tothese problems, standardisation and automation of the pi
king print analysis is desir-able. Fig. 4.2 illustrates this problem well. In Fig. 4.2(a) an expert has few options for



4.2 Overall stru
ture of the automated IGT pi
king test 69interpreting where the pi
king starts, whereas in Fig. 4.2(b) the same type of paper isprinted with di�erent speed settings (speed at the end of print) and the marked pi
kingstart lo
ation (dark dots near image edges) la
ks 
onsisten
y.

(a)
(b)Figure 4.2: Example of di�
ulties in determining the pi
king start lo
ation.Pi
king start lo
ations are marked with dark dots on the images: (a) �Easy� 
ase;(b) In
onsisten
y in the results. Printing speed on the images in
reases from leftto right.

4.2 Overall stru
ture of the automated IGT pi
king testPi
king dete
tion starts with image a
quisition. Se
tion 4.3 des
ribes the ne
essaryimaging arrangements required for pi
king dete
tion. In order to highlight the protruding�bres on the samples, the samples are illuminated from a large angle with respe
t tosurfa
e normal.Se
tion 4.4 introdu
es the problem of dete
ting small and sparse details. In the followingsubse
tion 4.4.1 an analyti
al model for small and sparse details is introdu
ed and howthe defe
ts are visualised. The visual model is used merely for visual 
omparison of anarti�
ial image and an a
tual pi
king test image.



70 4. Runnability evaluation by dete
ting surfa
e defe
tsSe
tion 4.4.2 reviews the well known thresholding methods that were used for dete
t-ing the small and sparse details. First the methods are introdu
ed and in the followingse
tion 4.4.5 their performan
e for thresholding small and sparse details is determined ex-perimentally; First with arti�
ially generated data and then with a
tual pi
king samples(se
tion 4.5).4.3 Image a
quisitionThe �rst step is to obtain the sample image. The resolution of the image has to behigh in order to dete
t small surfa
e defe
ts. A resolution of about 1200 dpi is su�
ientto dete
t small defe
ts, and the resulting image size is about 1200 × 3000 pixels. Thesample surfa
e should not be tou
hed before the sample is imaged so that any small�bres that have lift from the paper do not get �attened. In the Heliotest a 
ir
ular lightsour
e dire
tly above the sample is used but this layout is not suitable for pi
king testinspe
tion. In the 
ase of pi
king test inspe
tion, oblique lighting (front light at verylow angles) is more suitable for dete
ting surfa
e defe
ts su
h as bumps, lift �bres andparti
les. With the oblique lighting, the surfa
e of the obje
t stays rather dark, butlift defe
ts appear bright. The reason for this is that light from the �at surfa
e doesnot re�e
t at the 
amera but lift defe
ts re�e
t the light to the 
amera (Fig. 4.3). Thedrawba
k of this lighting arrangement is that surfa
e bumps also re�e
t the light at the
amera.
Paper surface

LightLight

Camera

Figure 4.3: Oblique lighting prin
iple.After an image has been a
quired under oblique lighting, the printed area is dete
ted.Fig. 4.4 displays the di�erent areas of a pi
king sample. Printed area dete
tion is a
hievedusing the same method as in the Heliotest in Se
tion 5.2. Edge dete
tion parameters forpi
king images have to be sele
ted more 
arefully sin
e the 
ontrast between the paperand the printing oil/ink is worse than the 
ontrast between the Heliotest pattern andpaper.
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king dete
tion by thresholding 71
Figure 4.4: Di�erent areas of a pi
king sample. Printed area is marked with athi
k borderline. The start of the printed area 
ontains some pi
king due to initialimpa
t of the printing head on the paper.4.4 Pi
king dete
tion by thresholdingThresholding based segmentation 
an be found at the 
ore of many ma
hine vision basedinspe
tion appli
ations, su
h as [16, 57, 61℄. Several analyti
ally sound and general solu-tions exist, but in pra
ti
e, thresholding is often based on appli
ation-spe
i�
 heuristi
s.The use of heuristi
s usually prevents reusability, and the methods be
ome sensitive tosmall 
hanges in the problem setting. This study provides a more general solution todete
t adaptively a small number of �ne details from a ba
kground. This solution is de-veloped by �rst de�ning analyti
ally the appearan
e of the details and then by studyingthe performan
e of the most well-known adaptive thresholding methods, that is, methodswhi
h do not require any parameters.Binary thresholding is one of the most 
ommonly used and essential operations in digitalimage pro
essing, and in many appli
ations, thresholding is used at some point of thealgorithm. Even though the operation itself is very simple, the problem of sele
ting anoptimal threshold value is not trivial at all. For a single image, the optimal value 
anbe sele
ted manually, but adaptive thresholding methods exist intended to automati-
ally estimate the optimal value. Due to its importan
e, adaptive thresholding has beenstudied for a few de
ades, and a wide variety of di�erent methods have been proposed[79℄. The extensive work in the past should have resulted in a proper method for anyexisting problem. Sin
e di�erent methods may value di�erent properties, method se-le
tion depends on the 
hara
teristi
s of the problem domain. However, new problem
hara
teristi
s are 
ontinuously en
ountered in pra
ti
al problems, and thus, adaptivethresholding still remains intensively studied after more than 30 years.Most methods perform well when the image foreground and ba
kground 
onstitute areasof su�
iently equal sizes, and the grey level values have substantially non-overlappingdistributions [79℄. However, when either or both of the above assumptions are not valid,major di�
ulties 
an be en
ountered. This is the 
ase here, where the motivation origi-nates from a problem in whi
h small paper surfa
e defe
ts must be automati
ally dete
ted[19℄. The samples 
an be imaged into a digital form where low intensity grey-level values
orrespond to the paper surfa
e, and high intensity grey-level values 
orrespond to smalldefe
ts on the surfa
e. The proportion of pixels related to defe
ts is typi
ally very small,making the grey-level histograms almost unimodal. Additionally, the grey-level values ofboth the defe
ts and surfa
e overlap signi�
antly. The spatial distribution of the defe
ts
an be 
onsidered random, although a single defe
t in an image 
an 
onsist of a fewneighbouring pixels in the image. This spatial information 
an be taken into a

ount



72 4. Runnability evaluation by dete
ting surfa
e defe
tsby using a spot dete
tor, whi
h will be introdu
ed in Se
tion 4.5.2. The �lter empha-sises small intensity 
hanges in a small area in the image and therefore en
ompasses thespatial information of a single defe
t. Due to the spatial randomness of the defe
ts, theappli
ation of global thresholding methods is motivated.This thesis assesses the ability of adaptive thresholding to bring up �ne and sparsedetails. The problem is solved by de�ning the ne
essary statisti
al properties in thehistogram domain and by analysing the performan
e of well-known and well-performinggeneral adaptive thresholding methods and methods spe
i�
ally appli
able to unimodalhistograms.4.4.1 Fine and sparse details on noisy ba
kgroundsThe motivation for resear
hingmethods to dete
t �ne and sparse details and their possibleappli
ation areas are explained �rst. In the parti
ular 
ase dis
ussed here, the problemwas to automati
ally perform the visual assessment of IGT pi
king samples. To get theimage data, the paper strips are digitally imaged under oblique lighting (Fig. 4.5(a)).The grey-level histogram of the strip 
an be seen in Fig. 4.5(b).In Fig. 4.5(a), the defe
ts are not 
learly visible, and the imaging su�ers from the dis-tortions 
hara
teristi
 of board strips (e.g., 
o
kling). However, after proper image en-han
ement, the defe
ts appear as tiny spots having higher intensity than the surroundingnoisy ba
kground (Fig. 4.6). This masking however averages the image and therefore
omparing values of neighbouring pixels after masking is useless. Consequently, a globalpro
essing is used to threshold these defe
ts.
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(b)Figure 4.5: Image of a pi
king sample (
oated board) 
aptured under obliquelighting: (a) The whole strip is divided into 3 pie
es for better presentation. Theadja
ent pie
es from left to right (printing speed in
reases) are arranged from topto down; (b) Grey-level histogram of the image.The separation of image areas into ba
kground (paper surfa
e) and foreground (defe
ts) ismore understandable from Fig. 4.6. For further pro
essing, however, a suitable thresholdvalue at whi
h defe
ts on the paper surfa
e begin to appear in the foreground mustbe sele
ted. Based on the set of test samples, it was found that the proportion ofpixels representing the defe
ts was 0.1-5.0% of total image area, and the defe
t pixels



4.4 Pi
king dete
tion by thresholding 73partly shared intensity values with the ba
kground pixels. Therefore, the ba
kgroundand foreground are mixed into a nearly unimodal grey-level histogram, making sele
tionof the threshold value a very di�
ult problem.
Figure 4.6: Enhan
ed partial image of pi
king sample.The nature of the defe
ts and their presen
e in the given problem have motivated tointrodu
e the notion of �ne and sparse defe
ts. It should be noted that the terms detailsand defe
ts are used inter
hangeably in this 
ase. The �ne and sparse defe
ts are small(�ne) and isolated (sparse) signal pat
hes 
omprising only a minority of the total imagearea. Their intensities are 
lose to or mixed with the ba
kground intensity range. Tostudy the problem more extensively, a statisti
al model of the defe
ts must be derived�rst. Based on the statisti
al model, the behaviour of di�erent thresholding te
hniques
an be analysed more analyti
ally sin
e the e�e
t of all model parameters 
an be studied.If the spatial relationships are negle
ted, image pixels 
an be 
onsidered as realizationsof a random variable. For a su�
iently large image, the grey-level histogram 
orrespondsto the probability density fun
tion of the random variable, and thus, it is su�
ient tomodel the probability density fun
tion (pdf) to model the details.A noisy ba
kground 
an be modelled with a single probability density fun
tion, and theforeground 
an be treated as a mixture of probability density fun
tions. Finally, thewhole pdf 
onsists of a weighted sum of pdfs for both the foreground and ba
kground.The intensities of ba
kground pixels 
an be modelled by values of a random variablehaving the normal distribution N(µb, σb) with the mean value µb, and standard deviation

σb.A single defe
t 
an be modelled by a low probability (low a priori) random variable whi
hadheres to the normal distribution
Pd(i)

1√
2πσd(i)

e

−(x− µd(i))
2

2σd(i)2 (4.2)where µd(i) and σd(i) denote the intensity mean value and standard deviation for the
i-th defe
t, and Pd(i) 
orresponds to the a priori probability of en
ountering the defe
t.However, sin
e a single defe
t is highly lo
alised (
on
entrated near to a single spatiallo
ation), Pd(i) 
orresponds to a proportional spatial size of the defe
t rather than a truea priori probability. Correspondingly, the proportional spatial size of the ba
kground is

Pb = 1 −
∑

i

Pd(i) . (4.3)



74 4. Runnability evaluation by dete
ting surfa
e defe
tsNow, the resulting histogram of �ne and sparse defe
ts on a noisy ba
kground dependssolely on the set of parameters {µb, σb, µd(i), σd(i), Pd(i)}. Finally, the 
ompositeprobability density fun
tion whi
h de�nes the expe
ted shape of the histogram is
f(x) = Pb

1√
2πσb

e

−(x− µb)
2

2σ2
b +

∑

i

Pd(i)
1√

2πσd(i)
e

−(x− µd(i))
2

2σd(i)2 . (4.4)One more 
onsideration is the distributions of µd(i) and σd(i). The simplest 
lass ofsparse defe
ts has the uniform distribution µd(i) ∼ U(a, b) or the normal distribution
µd(i) ∼ N(µµd

, σµd
), and the standard deviation σd(i) ∼ N(µσd

, σσd
) (see Figs. 4.8and 4.11). It should be noted that the number of defe
ts 
an also be obtained froma random distribution, but it does not a
tually a�e
t the results but only the fore-ground/ba
kground ratio.Model visualisationFor the visualisation and for 
omparison of the arti�
ial images with the real ones,a model in the spatial domain that 
orresponds to the model in the domain of grey-level histograms must be de�ned. This is done be
ause obtaining the foreground andba
kground distributions from a
tual pi
king samples has proved to be very di�
ult.The �rst problem was in determining whi
h pixels in a pi
king image a
tually are defe
ts.The se
ond problem was to a
tually mark the pixels determined to be defe
tive. Whenan image is observed without magni�
ation, the pi
king lo
ations are somewhat 
lear,but when the image is magni�ed, the di�eren
e between the ba
kground and defe
t wasalmost impossible to distinguish and in most 
ases failed.This model in
ludes the histogram and a mapping from the histogram to the spatialplane. The spatial model must be 
onsistent with the histogram model and have thesame parameters; the resulting arti�
ial image possesses the same histogram as obtainedvia the histogram model.First, the image ba
kground is generated using a random variable with the same distri-bution and parameters µb and σb as des
ribed for the histogram model. Next, the defe
tsare randomly seeded on the noisy ba
kground. For ea
h defe
t, the area is derived ina

ordan
e with the total image size, and the proportional defe
t size Pd(i).Finally, values at ea
h defe
t area are derived from the 
orresponding random vari-able, N(µd(i), σd(i)). To vary also area sizes, the proportional areas 
an be derived from

Pd(i) = N(µPd
, σPd

). It should be noted, however, that if a 
ertain foreground/ba
kgroundratio is required, the proportional sizes Pd(i) must be normalised to a
hieve the requestedratio. An example of an arti�
ial image is shown in Fig. 4.7.The de�nition of details was 
arried out in the histogram domain, and thus, methods forhistogram-based global thresholding 
an be used to separate the ba
kground and fore-ground. In the next se
tion, the methods are dis
ussed, and their dete
tion performan
eis studied utilising the de�ned statisti
al model.



4.4 Pi
king dete
tion by thresholding 754.4.2 Defe
t segmentation by thresholdingThresholding methods are based on the assumption that the grey levels of pixels be-longing to obje
ts (foreground) are substantially di�erent from the grey levels of pixelsbelonging to the ba
kground. However, the 
hara
teristi
s of the histogram and thespatial distribution of the obje
ts make some thresholding methods more suitable to aspe
i�
 task than others.Based on the de�nition of the details, suitable thresholding methods were sear
hed fromliterature. First, the most popular and well-performing general-purpose thresholdingmethods were 
onsidered, several methods designed spe
ially for unimodal histogramswere studied.4.4.3 Multimodal grey level thresholding methodsGeneral thresholding methods should perform well when (i) the foreground obje
ts andba
kground 
onstitute proportionally the same sizes in an image, and (ii) the grey-levelvalues of obje
ts and the ba
kground possess substantially distant and non-overlappingdistributions. When these restri
tions 
an be met, one of the most popular methods isOtsu's method [68℄. Methods by Kittler et al. [49℄ and Kapur et al. [46℄ have beenshown to outperform many others in 
omparisons [79℄. Therefore, these methods aregood 
andidates as general thresholding methods for the given problem. In the followingse
tions, the three methods will be brie�y reviewed.Otsu's methodOtsu's thresholding method is based on the idea of �nding a threshold value that min-imises the within-
lass varian
e of the resulting foreground and ba
kground 
lasses [68℄.Thus, the optimal threshold T is 
al
ulated by minimising the 
riterion fun
tion
J(T ) =

P1(T )σ2
1(T ) + P2(T )σ2

2(T )

σ2
(4.5)where σ2 is the grey-level total varian
e estimated from the histogram and P1(T ) and

P2(T ) are prior probabilities asso
iated to foreground and ba
kground.
Figure 4.7: An arti�
ial image with �ne and sparse details generated using thevisualisation of the histogram model (µb = 0.3, σb = 0.055, i = 1, . . . , 50, µσd

=

0.01, σσd
= 0.002, foreground/ba
kground ratio = 0.015, µPd

= 5, σPd
= 3).Intensity values s
aled for visualisation.



76 4. Runnability evaluation by dete
ting surfa
e defe
tsOtsu's thresholding is one of the most widely used and 
ited threshold estimation meth-ods. The method is very robust, and it provides thresholding results of 
onsiderablequality in a vast variety of 
ases. Performan
e is good when the number of pixels in theforeground and ba
kground are 
lose to ea
h other. However, the method usually failsto �nd an appropriate threshold value if the number of foreground pixels is less than 5%of the total image size. With unimodal or nearly unimodal histograms the method tendsto split the only mode in the middle, resulting in a �salt and pepper� binary image [49℄.Kapur's methodA thresholding method based on entropy has been proposed by Kapur et al.[46℄. Themethod maximises 
lass entropies, whi
h 
an be interpreted as measures of 
lass 
om-pa
tness and separability. In this 
ase, the 
riterion fun
tion 
an be given as
J(T ) = −

T∑

g=0

h(g)

P1(T )
log

(
h(g)

P1(T )

)

−
n∑

g=T+1

h(g)

P2(T )
log

(
h(g)

P2(T )

) (4.6)where n is the maximum length of a histogram h(g) of grey level values g. J(T ) is max-imised to obtain maximum information between the obje
t and ba
kground distributionsin the image. The dis
rete value T , whi
h maximises J(T ), is the threshold value. Themethod is suitable for images that have good separation between 
lass entropies. Su
himages are, for example, material defe
t images. Su
h an image 
ould be taken from, forinstan
e, a fra
tured air
raft fuselage. In su
h a 
ase the defe
t entropy di�erentiateswell from the rest of the image even when the di�eren
e in the spatial image is hard todistinguish.Kittler's methodKittler and Illingworth have proposed a thresholding algorithm whose 
ost fun
tion isoptimised based on the Bayesian 
lassi�
ation rule [49℄. In this method, it is assumedthat 
omponents in the bi-modal histogram h(g) in the grey level image are normallydistributed. Normal distributions are de�ned by their means µi, standard deviations σi,and a priori probabilities Pi. For a 
ase of two di�erent 
lasses (i = 1, 2), the ba
kgroundand foreground, and given a threshold T parameters 
an be estimated from the following:
Pi(T ) =

b∑

g=a

h(g)

µi(T ) =
1

Pi(T )

b∑

g=a

h(g)g

σ2
i (T ) =

1

Pi(T )

b∑

g=a

(g − µi(T ))2h(g)

(4.7)
where

a =

{

0 i=1
T + 1 i=2 and b =

{

T i=1
n i=2 . (4.8)



4.4 Pi
king dete
tion by thresholding 77Now, the 
riterion fun
tion 
an be 
al
ulated as
J(T ) =1 + 2[P1(T ) log σ1(T ) + P2(T ) log σ2(T )]

− 2[P1(T ) logP1(T ) + P2(T ) logP2(T )] ,
(4.9)and the minimum error threshold 
an be 
omputed by minimising the 
riterion J(T ).The method is suitable for thresholding images that have 
learly bi-modal distributionsfor the ba
kground and foreground. The method 
an also perform well with histogramswhere the number of pixels 
ontributing to the ba
kground and foreground distributionsdi�er signi�
antly or when the distribution between the foreground and ba
kground isnearly unimodal. In su
h a 
ase the threshold is pla
ed on either side of the moderesulting in an image where most of the pixels are 
lassi�ed to one 
lass, and the rest toanother.4.4.4 Unimodal histogram thresholding methodsAs already dis
ussed, most thresholding methods work in the general 
ase of bi- or multi-modal grey-level histograms. In su
h 
ases, all modes in the histogram are 
onsideredto represent di�erent obje
ts, or the ba
kground. However, the properties of the �nedetails, as seen above, 
an 
ause the images to have a distribution whi
h is 
lose tounimodal, therefore, the information available for distinguishing the details is hiddensomewhere that looks like normal ba
kground noise. Fortunately, this is not a newproblem in the �eld of thresholding and several di�erent methods have been proposed.Some of these methods have a more sound basis while others are more or less ad ho
solutions. Two unimodal thresholding methods from the literature, Tsai's method [87℄and Rosin's method [74℄, are interesting be
ause of their adaptive nature. These twoshould be appli
able for the given problem. They are reviewed brie�y below.Tsai's methodTsai has introdu
ed two similar approa
hes to image thresholding using smoothed his-tograms, one of whi
h is espe
ially intended for unimodal histograms [87℄. Both ap-proa
hes are introdu
ed here, but the approa
h intended for unimodal histograms is ofmore interest for the given problem area. The method di�ers from previous methodssu
h that it evaluates the shape of the histogram whereas the methods reviewed earlieruse various statisti
al properties of image histograms.The �rst approa
h looks for peaks and valleys in the histogram smoothed with a Gaussiankernel. The smoothing level is adjusted to make the smoothed histogram 
ontain exa
tlythe same number of peaks as the desired number of thresholding levels. The valleysbetween the peaks are sele
ted as the threshold values. In the 
ase where the number ofpeaks is less than the desired number after using the smallest possible Gaussian kernelfor smoothing, additional threshold values are sele
ted as the maximums of 
urvature ofthe histogram.The se
ond approa
h utilising 
urvature is intended espe
ially for unimodal histograms,and represents a 
ustom 
ase of the �rst approa
h. In the 
ase where only one peak 
an befound in the histogram, whi
h is the unimodal 
ase, the threshold value is sele
ted as the



78 4. Runnability evaluation by dete
ting surfa
e defe
tsintensity value at whi
h the histogram rea
hes its maximum 
urvature. The 
urvaturevalues are 
al
ulated from [87℄
Kt =

1

R

R∑

j=1

|ψt+j − ψt−j | (4.10)where
ψt =

1

R

R∑

j=1

hk(t+ j) − hk(t− j)

2j
, hk(i), i = 1 . . . R (4.11)are the smoothed histogram values. hk(t) is the number of pixels with grey level t at the

kth iteration. R spe
i�es the region of support, and it is used as a smoothing fa
tor to
ompute the mean tangent angle ψt and the mean 
urvature Kt at grey level t. To avoidover smoothing, a small R (R < 3) is generally used.The basi
 idea behind the se
ond approa
h is that it is assumed that even though theimage histogram is unimodal, there might be some dis
ontinuity at a point where theba
kground and foreground distributions overlap. By dete
ting this dis
ontinuity, theba
kground and foreground of an image 
an be thresholded. If there are no dis
ontinuitiesin an image histogram, then the performan
e of the method is questionable.Rosin's methodRosin's thresholding is another method for binary thresholding in the 
ase of unimodalhistograms [74℄. This simple algorithm is shown in algorithm 3.Algorithm 3 Rosin thresholding1: A line is drawn from the maximum of the histogram to the last non-zero element ofthe histogram:
(argmax

i

hi, max
i

hi) → (argmax
i

[hi = 0 and hi−1 6= 0] , 0), where hi is the i-th ele-ment of the histogram.2: The optimal threshold value is sele
ted as the intensity value whi
h maximises theperpendi
ular distan
e between the line and the histogram.This method de�nitely la
ks intuitive motivation. Theoreti
al mathemati
al analysisshows that the method is almost insensitive to foreground pixels, and it a
tually deter-mines the threshold value using only information about the dominating ba
kground [74℄.The method is not always appli
able, but works as long as the histogram mode is not sobroad as to �ll most of the histogram, and the mode is not too strongly peaked.4.4.5 Evaluation of thresholding methodsThe 
onstru
ted model allows detailed analysis of di�erent methods as fun
tions of themodel parameters sin
e the distributions of both foreground and ba
kground are known.The optimal sele
tion of a method for a spe
i�
 appli
ation 
an be a
hieved by resolvingwhi
h model parameters 
orrespond to the variation in the a
quired data.



4.4 Pi
king dete
tion by thresholding 79The most important su

ess fa
tors in the evaluation of di�erent adaptive thresholdingmethods are the number of not dete
ted foreground pixels (false negatives) and falselydete
ted ba
kground pixels (false positives). The values however are dependent, and thus,should be 
ombined to unambiguously 
ompare the su

ess between di�erent methods.For the 
omparison, the enhan
ed Venkatesh-Kit
hen dis
repan
y measure introdu
edin [22℄ was adopted. The dis
repan
y measure was originally devised for 
omparison ofedge dete
tion methods, but 
an be utilised here by setting the measure parameter valuesto α = 0.5, β = 0.5, γ = 0.0 and δ = 0.0, resulting in the following dis
repan
y errormeasure: error = false positives× α+ false negatives× β (4.12)
α = β = 0.5 yields from the assumption that both false positives and false negativesare 
onsidered as equally erroneous mistakes. γ and δ are set to zero sin
e they a�e
tthe spatially dependent error fa
tors, that is, errors near 
orre
t values are 
onsideredless erroneous 
ompared to errors further away. This is motivated in the 
ase of edgedete
tion, but for �ne and sparse details the errors are equally erroneous regardless oftheir lo
ation.In the pi
king data, for example, the statisti
al properties 
onsistently 
hange along thestrips. In this spe
i�
 
ase, the 
hange 
an be modelled as an in
rease in the a prioriprobability of en
ountering a defe
t Pd(i) as demonstrated in Fig. 4.8. In Fig. 4.8 thehistogram, 
omputed from areas of the same size in di�erent lo
ations of the sample,shapes remain the same but their amplitude in
reases.
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Figure 4.8: Histograms of manually marked defe
ts.Sin
e the foreground/ba
kground ratio is 
learly an important property, it is motivatedto inspe
t performan
e of di�erent methods as a fun
tion of this ratio. This is done byapplying the methods to arti�
ial images. The behaviour remains the same for di�erentsele
tions of parameters, but here the values are derived to 
orrespond to the ones o
-
urring in the pi
king samples. The a
tual foreground/ba
kground ratios vary between
0.1%−5.0% while the other 
hara
teristi
s 
orrespond to the model parameters µb = 0.30,
σb = 0.055, i = 1, . . . , 50, µd(i) ∼ U(0.50, 0.80), σd(i) = N(µσd

, σσd
) = N(0.01, 0.002).The behaviour was inspe
ted for ratios between 0.001 and 0.050, and the histograms andimages 
orresponding to the two extreme values are shown in Fig. 4.9. It is advisableto note that the methods are applied to model histograms and the probability of a miss
lassi�
ation is not an a
tual miss 
lassi�
ation for real pi
king images. False negative



80 4. Runnability evaluation by dete
ting surfa
e defe
tsvalues in Fig. 4.10(a) are obtained by 
al
ulating how mu
h of the estimated foregroundis below the threshold obtained by the di�erent thresholding methods. Similarly, falsepositives in Fig. 4.10(b) are obtained by 
al
ulating how mu
h of the ba
kground dis-tribution is above the threshold obtained by the di�erent thresholding methods. Thedis
repan
y measure in Fig. 4.10(
) is 
al
ulated by using Eq. 4.12.
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(
) (d)Figure 4.9: Model-generated histograms and the 
orresponding arti�
ial images:(a),(
) Foreground/ba
kground ratio (P Pd(i)/Pb) 0.001; (b),(d) 0.05.Surprisingly, a 
hange in the a priori value does not indu
e any signi�
ant 
hange in theperforman
e of the methods as shown in Fig. 4.10. This behaviour is natural for methodsbased on the bi-modality assumption (Kittler and Rosin). Otsu's method 
ompletely failsby dete
ting most of the ba
kground as foreground (Fig. 4.10(b)), and Kapur's methodfails by missing a signi�
ant number of foreground defe
ts (Fig. 4.10(a)). These twogeneral thresholding methods seem to be inappli
able to the given problem domain.Tsai's method performs well for small numbers of defe
ts, but it be
omes unstable whenthe foreground/ba
kground ratio approa
hes 0.05 (Figures 4.10(a) and 4.10(b)). Thesu

ess of the di�erent methods be
ome even more 
lear in the dis
repan
y graph inFig. 4.10(
). The two most su

essful methods are Kittler's and Rosin's methods. The
hange in thresholds 
an be seen from Fig. 4.10(d). Pi
king data also supports the nextstudy sin
e the distribution of paper defe
ts 
an be modelled as a normal distribution(Figs. 4.8 and 4.11).Sin
e the histogram in Fig. 4.11 posses a 
learly unimodal distribution, it is motivated tostudy how the methods perform as a fun
tion of the level of unimodality. The toleran
e
an be tested by varying the mean of the defe
t distribution. The mean of the foregrounddistribution µµd

was varied between 0.36 and 0.56 while the other parameters were kept
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(d)Figure 4.10: Dete
tion results for arti�
ial data, lower values are better in Figs.(a)-(
): (a) Proportion of not dete
ted foreground pixels; (b) Proportion of falselydete
ted ba
kground pixels;(
) Dis
repan
y; (d) Threshold 
hange with respe
tto foreground/ba
kground ratio.
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Figure 4.11: Histograms of manually marked pi
king defe
ts and the ba
k-ground. The foreground/ba
kground ratio is P

i
Pd(i) = 0.005, the ba
kgroundmean is µb = 0.345 and the standard deviation σb = 0.011. The foreground meanis µµd

= 0.372 and the standard deviation σσd
= 0.037.
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onstant (µb = 0.30 and σb = 0.055). From the results in Fig. 4.12, it is evident thatRosin's, Tsai's, and Kittler's methods perform equally well in the dete
tion of defe
ts andonly Otsu's method provides distin
tly worse results. The results are again most obviousin the dis
repan
y graph in Fig. 4.12(
) (note that Kapur's method is here omitted dueto its poor performan
e earlier).
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(
)Figure 4.12: Dete
tion results for arti�
ial data as fun
tions of defe
t distribu-tion mean µµd
, the ba
kground distribution was kept 
onstant mub = 0.30, lowervalues are better: (a) Proportion of foreground pixels that were not dete
ted,and (b) Proportion of pixels that were falsely dete
ted as ba
kground pixels; (
)Dis
repan
y.

4.5 ExperimentsIn this se
tion, the results with the real pi
king images are brie�y des
ribed.
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ting surfa
e defe
ts4.5.1 Pi
king imagesA set of pi
king images 
aptured under oblique lighting were used as the real test setfor the 
andidate methods. As a pre
eding step to thresholding, an image enhan
ementpro
edure was applied to the images.4.5.2 Image enhan
ementIn pra
ti
e, input images often are or have been derived from images with only 8 bits perpixel, i.e., 256 intensity levels, so there is little motivation to generate histograms withmore than 256 bins. However, 
ertain image transformations, su
h as 
onvolution �lteringin the �oating point form, 
an dramati
ally in
rease the number of intensity levels andprodu
e larger histograms whi
h allow a more pre
ise threshold estimation. Anotherbene�t of the �lter is that it en
ompasses the spatial of a single defe
t and thereforemakes the dete
tion of defe
ts more a

urate sin
e intensity and spatial information 
anbe used.It is 
lear that 
ertain image enhan
ement te
hniques may lead to more a

urate thresh-olding results sin
e sub-level a

ura
y is a
hieved. With �ne and sparse details, it 
anbe bene�
ial to �lter the image with a spot dete
tion �lter. By �ltering with a simple
n× n �lter, the number of distin
t intensities in an image 
an in
rease up to the fa
torof n2 times. Su
h image prepro
essing before 
onstru
ting the histogram agrees with theresults presented in [5℄. In the 
ase of the pi
king images, the following spot dete
tion�lter was used:

f =






−1 −1 −1 −1 −1 −1 −1
−1 0 0 0 0 0 −1
−1 0 1.5 3 1.5 0 −1
−1 0 3 6 3 0 −1
−1 0 1.5 3 1.5 0 −1
−1 0 0 0 0 0 −1
−1 −1 −1 −1 −1 −1 −1




 . (4.13)The main reason for the image enhan
ement for the pi
king images was removal of unde-sired imaging e�e
ts on the paper samples, su
h as the waving appearing in Fig. 4.5(a)(visible in the top row images). This spot �lter is not ne
essary for un
oated papers,whi
h do not su�er partial delamination in the same way as 
oated papers do. Un
oatedpapers do not su�er from waving and therefore this step, again, is not required althoughit does enhan
e small details even in un
oated paper images.Image examplesFigs. 4.13 and 4.14 show four pi
king images for 
oated papers, their enhan
ed versions,and the results for all �ve thresholding methods. The results with the real images 
or-respond to the results with the arti�
ial data: two of the most promising methods areRosin's method and Kittler's method. Rosin's method dete
ts more foreground pix-els, but also falsely dete
ts a large number of ba
kground pixels. This is evident fromFigs. 4.10, 4.13 and 4.14. Therefore, Kittler's method 
orresponds more pre
isely to whatis to be dete
ted from the original images.
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(a)

(b)Figure 4.13: Two examples of pi
king images, and the thresholding results.Images from the top are the aligned image (top), the enhan
ed image, the resultfrom the method by Rosin, Tsai, Otsu, Kapur, and Kittler (bottom).
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(a)

(b)Figure 4.14: Two additional examples of pi
king images, and the thresholdingresults. Images from the top are the aligned image (top), the enhan
ed image,the result from the method by Rosin, Tsai, Otsu, Kapur, and Kittler (bottom).



4.6 Heuristi
s to determine the starting lo
ation of pi
king 874.6 Heuristi
s to determine the starting lo
ation of pi
kingAfter the images have been thresholded, some heuristi
s and post pro
essing is requiredto determine the a
tual starting lo
ation of the pi
king. Currently the pi
king lo
ationis determined by 
al
ulating the pro�le of the thresholded binary image, i.e., the numberof dete
ted defe
ts is summed over the length of the image so that a pro�le of the imageis obtained. The pi
king starting lo
ation 
an be determined from the pro�le with someuser de�nable parameters. The �rst parameter is the size of the pi
king N , whi
h in apro�le graph means that all values below this number are 
onsidered as being not pi
kingbut some noise su
h as dust spe
kles or irrelevant (too small) pi
kings. When the pro�legraph ex
eeds the set threshold N its length above the threshold is measured. If themeasure is higher than d, the pi
king is marked to start at the lo
ation where the pro�legraph �rst ex
eeded threshold N . In order to allow small gaps in the thresholded graph,a third variable dmin is used. It ignores small gaps in the thresholded graph if they arenot longer than dmin. Fig. 4.15 demonstrates how the heuristi
s work to determine thepi
king start lo
ation.This is just one example of the heuristi
s that 
an be used to determine the startinglo
ation of the pi
king. It has been advised by numerous industrial experts that this stepshould be as 
ustomisable as possible. Di�erent laboratories, even inside same 
ompany,have di�erent ways to a
tually determine the pi
king start lo
ation depending on their
ustomers' requirements. Currently, the paper and printing industry are trying to de�nea standard that would de�ne pi
king more 
learly but at the time of writing, the standardis not ready and thus 
annot be used to de�ne pi
king start lo
ation more 
learly.The whole pi
king dete
tion method is summarised in algorithm 4.Algorithm 4 Method for dete
ting pi
king.1: Image the sample.2: Prepro
essing.3: Threshold the image.4: Use heuristi
s to determine pi
king start lo
ation.
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500 (e)Figure 4.15: Example of the heuristi
s pro
edure. a) Grey level image of pi
kingsample; b) After Kittler's thresholding; 
) Proje
tion of thresholded image.; d)Thresholded proje
tion, 1 designated pi
king area and 0 ba
kground; e) Pi
kingstart lo
ation marked in the original grey level image (dark line at around 400).



4.7 Summary 894.7 SummaryIn this 
hapter, an automated method for dete
ting pi
king from printed test sampleswas introdu
ed. A model for images with �ne and sparse details was also given based onstatisti
al properties in the image grey-level histogram domain. Based on the proposedmodel, several well-known and widely used thresholding methods were studied to evaluatetheir performan
e as fun
tions of the model variables, and the most promising methodswere proposed for dete
ting �ne and sparse details.The proposed model aimed to explain 
hara
teristi
s of real images 
ontaining di�erenttypes of defe
ts on a noisy ba
kground. An adaptable and problem spe
i�
 method wasintrodu
ed in this thesis for the automati
 evaluation of pi
king samples. Visualisationof the model 
orresponded to the real data, and the results with real images veri�edthe analyti
al results. Based on the study and the 
ondu
ted experiments, Kittler's andIllingworth's minimum error thresholding was sele
ted as the most suitable method forthe given task.Determining the a
tual starting lo
ation of pi
king was 
ompli
ated. Di�erent paperand printing industry experts have di�erent opinions about what should be 
onsideredas pi
king and therefore only an adaptable and problem spe
i�
 method was introdu
ed.
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Chapter VImaging setup for performing the Heliotest and pi
king test

During the 
ourse of the thesis work, a laboratory test setup for performing the Heliotestand pi
king test inspe
tion on printed samples was built. The setup enabled testing themethods introdu
ed in the earlier 
hapters.5.1 Imaging setupAs mentioned in Chapter 3, the Heliotest has demanding requirements for image resolu-tion. Furthermore the printed Heliotest and pi
king test samples should not 
ome into
onta
t with anything during industrial quality inspe
tion tests sin
e the ink 
an still bewet and lift �bres should not be folded ba
k into the paper surfa
e. In order to meetthese requirements, an Allied Vision Os
ar F510C CCD 
amera with Moritex ML-Z0108mi
ro obje
tive lens was 
hosen as the imaging devi
e. Table I.1 in Appendix I lists the
amera spe
i�
ations and spe
i�
ations for the lens are listed in Table I.2. The 
amerawas atta
hed to a 
omputer via a Firewire 
onne
tion. The bene�t of this arrangementwas that the 
amera 
ould now be 
ontrolled via Linux due to freely distributed Firewiredrivers [17℄.Two di�erent light sour
es were sele
ted to illuminate samples below the 
amera. For theHeliotest samples, a ring light illuminating the samples dire
tly from above was 
hosen.For the pi
king samples, two high pressure 250W halogen lights were 
hosen to meet theoblique illumination requirement. The lights were atta
hed to an adjustable handle and
ould be adjusted to provide light at low angles with respe
t to a sample. Spe
i�
ationsfor the ring light and its light sour
e are listed in Tables I.3 and I.4.One problem with the 
amera arrangement was that the whole sample did not �t into animage and had to be imaged in parts. A solution for this imaging di�
ulty was to usea very a

urate desktop robot to move either the sample or the 
amera. Spe
i�
ationsfor the Sony Cast Pro II robot are given in Table I.5. The a

ura
y of the robot enablesthe user to move the 
amera or sample very a

urately to a known position whi
h meansthat time 
onsuming image alignment was not needed but done by the robot.91



92 5. Imaging setup for performing the Heliotest and pi
king testIn the system, imaging is done by pla
ing the sample on the robot table and the 
amera ismoved above the sample. The sample is imaged in parts and ea
h image part is pro
essedwith the proposed algorithms. Image a
quisition is asyn
hronous whi
h, means that thea
tuator moves to the next lo
ation while the 
urrent image is being pro
essed. Fig. 5.1shows the whole test setup.

Figure 5.1: Experimental setup ready for analysing Heliotest sample.5.2 Dete
ting the re
tangular measurement areaAfter an image of a sample is a
quired, the re
tangular measurement area must be lo
atedin order to avoid unne
essary image pro
essing. Regions outside the measurement areado not provide any ne
essary information but only slow pro
essing. Furthermore, dots
an be falsely dete
ted as missing outside of the measurement area sin
e that area is blankand does not 
ontain any dots. The measurement area di�ers from the ba
kground basedon its texture pattern and 
olour. In short, the measurement area is dete
ted by edgedete
tors, Hough transform and heuristi
s.In order to redu
e the number of unne
essary details like edges of individual dots inthe Heliotest and to speed up pro
essing, the input image is �rst downsampled. Thes
aling fa
tor 
an be set by the user and it should be sele
ted so that individual dotsinside the measurement area be
ome indistinguishable from ea
h other. In this way themeasurement area itself is portrayed in one 
olour and the ba
kground in a noti
eablydi�erent one. After downsampling, the image is �ltered using a Gaussian �lter so thatany minor details left in the image be
ome blurred and do not appear as edges. Fig. 5.2



5.2 Dete
ting the re
tangular measurement area 93shows the original image and the images after it has been down sampled and Gaussian�ltered.
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)Figure 5.2: Image pro
essing before edge dete
tion: (a) Original grey-level im-age; (b) Downsampled; (
) After Gaussian �ltering.After image smoothing by Gaussian �lter, the edges of the measurement area are dete
tedusing edge dete
tor. The Canny edge dete
tor [10℄ was 
hosen for the task be
ause ofits good performan
e 
ompared to other methods [80℄. The Canny algorithm requirestwo parameters whi
h are appli
ation dependant. The parameters are 
alled hysteresisthresholds. The upper threshold de�nes a value above whi
h a possible edge is identi�edto be an a
tual edge. The lower threshold tries to 
onne
t partial edges together. If thepixel next to an a

epted edge pixel drops below the higher threshold but stays above thelower one, it is 
onsidered as belonging to the same edge. These parameters are usuallyfound by trial and error but more re�ned methods have also been studied [58℄.After the edge lines of the measurement area are dete
ted, their parameters are estab-lished. The edge line parameters are needed for determining the a
tual shape of themeasurement area. Only the 
orner points of the measurement area are a
tually needed,but in order to dete
t the 
orner points, 
rossings of the edge lines are needed. Fig. 5.3shows how the edge lines are used.Edge line parameters are determined by using the Hough transform [54℄. The number oflines to be dete
ted is limited to four sin
e the measurement area 
onsists of four edges.After the 
orner points have been obtained, a bounding box 
an be used to either de�nethe measurement area or the area 
an be rotated to stri
tly verti
al by using the a�netransform [81℄. By rotating the image, unne
essary data is removed thus making imagemanipulation faster. The downside of the rotation operation is its rather heavy 
omputa-tional 
ost with large images. The rotation matrix required for the a�ne transformation
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Figure 5.3: Example of 
orner dete
tion, 
orners are numbered in dete
tionorder.is formed based on the 
orner point information. Fig. 5.4 show an input image andthe dete
ted measurement area using the des
ribed method. The whole measurementdete
tion algorithm is summarised in algorithm 5.Algorithm 5 Dete
ting the printed measurement area.1: Downsample the image.2: Smooth the image.3: Dete
t edges of the image by using the Canny edge dete
tor.4: Estimate the parameters of the edge line by using Hough transform.5: Cal
ulate the 
rossing points of edge lines.6: De�ne bounding box for the measurement area based on edge points.It should be noted that the dete
ted measurement area will have some minor errorssin
e the measurement area 
al
ulations are done to downsampled image. The full sizedmeasurement area 
an have an error by the down sampling fa
tor. Also the Gaussian�ltering 
auses the edge of the measurement area to blur thus making dete
tion of thea
tual edge more ina

urate, as 
an be seen from Fig. 5.4(b). However, these minorerrors do not harm the later pro
essing. In addition no aliasing e�e
t happens in theresulting image sin
e the image is not downsampled, only 
ropped.After measurement area dete
tion, the methods introdu
ed in the previous 
hapters 
anbe used to dete
t missing dots or pi
kings from the imaged sample. Ea
h individualimage is pro
essed separately and 
oordinates of missing dots or possible pi
kings aresaved. After the 20th missing dot or pi
king point is lo
ated, the distan
e is 
al
ulatedand shown on the s
reen both in pixels and in millimetres.
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king test5.3 ExperimentsThe experimental setup was tested with the 
o-operation of industrial partners at papermills. The tests were preliminary in nature but they give a good indi
ation of thepotential of the setup in automating the quality inspe
tion tasks. Appendix II lists theresults obtained by two laboratory experts and the experimental setup regarding pi
kingtest inspe
tion. Both experts marked pi
king lo
ation on a separate paper withoutseeing ea
h other's markings. Finally the experimental setup was used to analyse thesame samples.Hand marked distan
es are measured using an ordinary 30 
m long ruler and therefore 
aneasily 
ontain errors of about ±1 mm whi
h should be kept in mind when the results areassessed. The results were quite satisfa
tory most of the time, pi
king was found 
orre
tlybut determining where to mark the pi
king starting lo
ation requires more 
onsideration.The 
oe�
ient of determination (R2) between the measurements of experts and theseof the setup are listed in Table 5.1. As 
an be seen, the setup results 
orrelate betterwith expert 1 than with expert 2 but there is still a notable di�eren
e of opinions aboutmissing dot lo
ations between the setup and the experts. However, even the experts arenot unanimous about the pi
king start lo
ation.Table 5.1: Coe�
ient of determination between expert measures and setup mea-sures with pi
king test samples. E denotes expert and S denotes setup. Correla-tions were 
al
ulated over all di�erent paper qualities.E1 vs S E2 vs S E1 vs E20.84 0.81 0.97Similar tests with the Heliotest were also performed. The individual results 
an befound from appendix III. The setup performed very well with the Heliotest, there weresome troublesome 
ases where the dots were so dimly printed that the setup mistakenlylabelled them as missing dots, whereas human experts did not. Fig. 5.5 demonstratesthis. The de
ision to 
lassify dot as a missing/not missing 
an be subje
tive and thethreshold for marking a dot as a missing depends on the set threshold. The 
oe�
ientof determination 
orrelations between the setup and experts are listed in Table 5.2. As
an be seen from the results, measurements between experts and the experimental setupare very well aligned.Table 5.2: Correlations between expert measures and setup measures with He-liotest samples. E denotes expert and S denotes setup. Correlations were 
al
u-lated over all di�erent paper qualities.E1 vs S E2 vs S E3 vs S E1 vs E2 E1 vs E3 E2 vs E30.99 0.99 0.99 1.00 1.00 0.99Statisti
s for individual paper grades were not 
al
ulated due to the few measurementsavailable. The industrial partners were satis�ed with the a

ura
y of the methods and



5.4 Summary 97the experimental setup. The speed of the measurement methods were also deemed satis-fa
tory. The pi
king test for a single sample 
ould be performed in about 10 se
onds. Forthe Heliotest it took a bit longer, a single test sample is analysed in about a minute. Alaboratory expert 
an perform the same tests in about 30 se
onds per sample, dependingon the level of experien
e and di�
ulty of the sample.

Figure 5.5: Cluster of falsely lo
ated missing dots. Cir
les mark missing dotsfound automati
ally, missing dots found by laboratory expert have been markedwith squares.
5.4 SummaryThis 
hapter explained how the methods introdu
ed in the previous 
hapters were appliedto an experimental test setup. The setup was introdu
ed and its spe
i�
ations presented.A method for dete
ting the measurement area from the Heliotest and pi
king test images



98 5. Imaging setup for performing the Heliotest and pi
king testwas also presented. Finally the setup was used to perform the Heliotest and pi
king testinspe
tion on samples that were also evaluated by industrial experts. The results of thesetests are given in appendi
es II and III. Industry partners were satis�ed with the setupperforman
e. Although the Heliotest 
ould be performed faster manually, the bene�t ofusing automation 
omes from repeatability and redu
tion in eye strain.



Chapter VIDis
ussion

The obje
tive of this thesis was to seek methods to dete
t irregularities from regularpatterns and methods for dete
ting small and sparse details from images. Two paperquality measurement problems in paper and printing industry were introdu
ed as pra
-ti
al problems: The �rst was the dete
tion of missing dots from Heliotest patterns andthe se
ond dete
tion of small and sparse details from IGT pi
king samples.The �rst pra
ti
al problem is generally related to regular patterns and how to dete
tirregularities from them. The well known Fourier transform was sele
ted as a basis forfurther study. Three methods were developed for dete
ting irregularities (missing �dots�)from regular patterns based on Fourier analysis. Their performan
e in the Heliotestinspe
tion task was analysed and the generality of methods was dis
ussed. The proposedmethods are appli
able to all tasks where regular pattern may 
ontain irregularities, forexample, the inspe
tion of patterned wafers, and a very similar method is patented forintegrated 
ir
uit fault dete
tion [75℄. For irregularity dete
tion it be
ame apparent that agood 
ontrast between the obje
t and the ba
kground gives better results and thereforea 
ontrast enhan
ement algorithm based on Bayesian de
ision making was developed.The posteriori 
ontrast enhan
ement method made the task of thresholding the irregularimage easier. The most noteworthy advantage of the proposed irregularity dete
tionmethods over the methods proposed earlier in [53, 31, 47℄ are their ability to dete
tedmultiple irregularities 
lustered next to ea
h other.The weaknesses of the proposed irregularity dete
tion method appear when the a
tualirregularities are segmented from the irregular image. Sele
ting a suitable threshold fordete
tion is not simple. Small variations in the image, su
h as noise, 
an easily be falselyinterpreted as irregularities. To 
ounter this, the irregular image 
an be thresholded andanalysed so that the binarised areas have to mat
h the sizes of the a
tual dots in theregular image part. In this way noisy pixels in the binarised image do not a�e
t theirregularity dete
tion pro
ess.There is also a pra
ti
al problem with Heliotest. The printed pattern edges are notalways straight, meaning that the edge line of printed dots 
an suddenly shift one dot99
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olumn left or right. When this happens in the middle of an image, the empty spa
eafter the shift 
an be mistaken as a 
olumn of missing dots. This problem is 
ounteredby simply ignoring a 
ertain amount of missing dots near the image edges. By applyingthe proposed methods to an imaging setup, the Heliotest 
ould be performed with verysatisfying results.The se
ond problem addressed in this work was the dete
tion of small and sparse detailsfrom images su
h as IGT pi
king sample images. Well known thresholding methods were
hosen for the task and their performan
es with arti�
ial small and sparse details were
ompared. Kittler's and Illingworth's minimum error thresholding was 
hosen as themost suitable for the task. When applied in pra
ti
e on IGT pi
king sample images,pi
king (paper surfa
e tearing) in the images is dete
ted a

urately; problems are morerelated to analysing the a
tual thresholded images. Consensus needs to be rea
hed on howthe pi
king start lo
ation is de�ned. The 
urrent method produ
es repeatable results,but still may fail to satisfy experts be
ause their opinions di�er on how to de�ne thepi
king start lo
ation. Therefore, testing the method with real pi
king test images withground truth data is di�
ult, sin
e no 
ommon ground is found on how to de�ne theground truth. Marking pi
king spots manually on the samples would take a lot of timeand would still produ
e subje
tive results. Therefore to reliably to measure thresholdingperforman
e an arti�
ial data was used. For the arti�
ial data, the exa
t ground truthwas available.In the future studies, more information about determining the pi
king starting lo
ationfrom the thresholded images is needed. Industry would prefer the results to be 
lose tothose obtained by human evaluation. Spatial information of the defe
ts 
ould be usedmore, along with intensity, as the separation between the ba
kground and defe
ts inpi
king images might improve.In this thesis, an experimental setup is presented, whi
h utilises the methods introdu
edto dete
t irregularities and small and sparse details. The performan
e of the setupis measured by performing Heliotests and pi
king tests on expert evaluated samples.Feedba
k on the performan
e of the setup from paper laboratories has been en
ouragingand therefore further produ
t development is justi�ed.



Bibliography
[1℄ Properties of paper. Available: http://www.paperonweb.
om/paperpro.htm, Refer-en
ed: 6.11.2006.[2℄ A

iani, G., Brunetti, G., and Fornarelli, G. Appli
ation of neural networksin opti
al inspe
tion and 
lassi�
ation of solder joints in surfa
e mount te
hnology.IEEE Transa
tions on Industrial Informati
s 2, 3 (2006), 200�209.[3℄ Ash
roft, N., and Mermin, N. Solid State Physi
s. Thomson Learning, In
.,1976.[4℄ Bailey, D. Dete
ting regular patterns using frequen
y domain self-�ltering. InPro
. Int. Conf. on Image Pro
essing (1997), vol. 1, pp. 440�443.[5℄ Baradez, M.-O., M
Gu
kin, C., Forraz, N., Pettengell, R., and Hoppe,A. Robust and automated unimodal histogram thresholding and potential appli
a-tions. Pattern Re
ognition 37, 6 (2004), 1131�1148.[6℄ Bergman, L., Verikas, A., and Ba
auskiene, M. Unsupervised 
olour imagesegmentation applied to printing quality assessment. Image and Vision Computing,23 (2005), 417�425.[7℄ Berndtson, J., and Niemi, A. Automati
 observation of the dry line in paperma
hine. In International Conferen
e on Pattern Re
ognition (1996), vol. 3, pp. 308�312.[8℄ Calderon-Martinez, J., and Campoy-Cervera, P. A 
onvolutional neuralar
hite
ture: an appli
ation for defe
ts dete
tion in 
ontinuous manufa
turing sys-tems. In Pro
eedings of the 2003 International Symposium on Cir
uits and Systems(2003), vol. 5, pp. 749�752.[9℄ Campoy, P., Canaval, J., and Peña, D. InsPulp-IC: an on-line visual inspe
tionsystem for the pulp industry. Computers in Industry 56, 8 (2005), 935�942.[10℄ Canny, J. A 
omputational approa
h to edge dete
tion. IEEE Transa
tions onPattern Analysis and Ma
hine Intelligen
e 8, 6 (1986), 679�698.[11℄ Carvalho, P., Araújo, H., and Dourado, A. An automati
 opti
al sensor forvessels and �bbers quality inspe
tion in pulp produ
tion. Computers & IndustrialEngineering 37, 1-2 (1999), 355�358. 101



102 BIBLIOGRAPHY[12℄ Chan, C.-H., and Pang, G. Fabri
 defe
t dete
tion by fourier analysis. IEEETransa
tions on Industry Appli
ations 36, 5 (2000), 1267�1276.[13℄ Chen, C., R.J., P., and Wygant, R. A review of te
hniques for 
hara
terizingpaper 
oating surfa
es, stru
tures and printability. In Pro
eedinds of Tappi CoatingFun
damentals Symposium (1995).[14℄ Chin, R. Automated visual inspe
tion: 1981 to 1987. Computer Vision, Graphi
s,and Image Pro
essing 41, 3 (1988), 346�381.[15℄ Cover, T., and Thomas, J. Elements of Information Theory. John Wiley &Sons, 1991.[16℄ de la Es
alera, A., Moreno, L., Sali
hs, M., and Armingol, J. Road tra�
sign dete
tion and 
lassi�
ation. IEEE Transa
tions on Industrial Ele
troni
s 44, 6(1997), 848�859.[17℄ Dennedy, D., Doux
hamps, D., and Peters, G. 1394 BasedDC 
ontrol library. Sour
eforge.net, Referen
ed: 24.11.2006. Available:http://sour
eforge.net/proje
ts/libd
1394.[18℄ Donoser, M., Wilts
he, M., Bis
hof, H., and Bauer, W. Paper 
oatinglayer analysis based on 
omputer vision methods. In International Conferen
e onQuality Control by Arti�
ial Vision (2005).[19℄ Drob
henko, A. Automated pi
king assessment using ma
hine vision. Master'sthesis, Lappeenranta University of Te
hnology, 2004.[20℄ Drob
henko, A., Vartiainen, J., Kamarainen, J.-K., Lensu, L., andKälviäinen, H. Thresholding based dete
tion of �ne and sparse details. In IAPRConferen
e on Ma
hine Vision Appli
ations (2005), pp. 257�260.[21℄ Elektronis
he Mess-und Steuerungste
hnik GmbH, E. Im-age Analysis, Referen
ed: 22.9.2006. Available: http://www.em
o-leipzig.
om/english/download/prospekte_eng.htm.[22℄ Fernández-Gar
ía, N., Medina-Carni
er, R., Carmona-Poyato, A.,Madris-Cuevas, F., and Prieto-Villegas, M. Chara
terization of empiri
aldis
repan
y evaluation measures. Pattern Re
ognition Letters 25 (2004), 35�47.[23℄ Gonzalez, R. C., and Woods, R. E. Digital Image Pro
essing. Prenti
e-Hall,In
., 2002. ISBN 0-201-18075-8.[24℄ Granlund, G. H. In sear
h of a general pi
ture pro
essing operator. ComputerGraphi
s and Image Pro
essing 8 (1978), 155�173.[25℄ Hall, E. Almost uniform distributions for 
omputer image enhan
ement. IEEETrans. Computers C-23, 2 (1974).[26℄ Hansson, P., and Manneberg, G. Fourier opti
 
hara
terization of paper sur-fa
es. Opti
al Engineering 36, 1 (1997), 35�39.



BIBLIOGRAPHY 103[27℄ Hansson, P., and Manneberg, G. Fourier opti
 online measurement of thedimensional variations in paper. Opti
al Engineering 38, 10 (1999), 1683�1687.[28℄ Harali
k, R. M. Statisti
al and stru
tural approa
hes to texture. Pro
. of theIEEE 67, 5 (1979), 786�804.[29℄ Healey, G., and Slater, D. Global 
olour 
onstan
y: re
ognition of obje
ts byuse of illumination-invariant properties of 
olour distributions. Opti
al So
iety ofAmeri
a. Journal A: Opti
s, Image S
ien
e, and Vision 11, 11 (1994), 3003�3010.[30℄ Hedsten, H., and Mannenberg, G. Opti
al Fourier analysis of a di�usely re�e
-tive s
reen dot pattern with an opti
ally addressed spatial light modulator. Opti
alEngineering 34, 2 (1995), 535�547.[31℄ Hees
hen, W., and Smith, D. Robust digital image analysis method for 
ountingmissing dots in gravure printing. In Pro
eedings of International Printing & Graphi
Arts Conferen
e (Atlanta, GA, USA, 2000), pp. 29�35.[32℄ Heikkurinen, A. Pulp and Paper Testing, vol. 17 of Papermaking S
ien
e andTe
hnology. Fapet Oy, 1999, 
h. Single �ber properties.[33℄ Ho, T., and Smith, W. Applying digital image te
hnology to pulp and paper. InCanadian Conferen
e on Ele
tri
al and Computer Engineering, vol. 2, pp. 1139 �1143.[34℄ Huang, J., Kumar, S., Mitra, M., Zhu, W.-J., and Zabih, R. Image index-ing using 
olor 
orrelograms. In IEEE Computer So
iety Conferen
e on ComputerVision and Pattern Re
ognition (1997), pp. 762�768.[35℄ Hummel, R. Histogram modi�
ation te
hniques. Computer Graphi
s and ImagePro
essing 4 (1975).[36℄ IGT. IGT information lea�et W41, Heliotest, Referen
ed: 10.9.2006. Avalable:http://www.igt.nl/igt-site-220105/index-us/w-bladen/GST/W41.pdf.[37℄ IGT. IGT information lea�et W31: IGT AIC2-5 from type AA PICKING, IGTmethod, aluminium dis
, Referen
ed: 2.10.2006. Avalable: http://www.igt.nl/igt-site-220105/index-uk/w-bladen/AIC/oud/W31.pdf.[38℄ Intopii Oy, Referen
ed: 22.9.2006. Available:http://www.intopii.�/index.php?se
tion=english.Produ
ts.PINTA_Paper.[39℄ ISO standard. ISO 3783, Paper and board � Determination of resistan
e to pi
king� A

elerated speed method using the IGT-type tester (ele
tri
 model).[40℄ ISO standard. ISO 287, Paper and board � Determination of moisture 
ontent �Oven-drying method, 1985.[41℄ ISO standard. ISO 187, Paper, board and pulps � Standard atmosphere for 
on-ditioning and testing and pro
edure for monitoring the atmosphere and 
onditioningof samples, 1990.[42℄ ISO standard. ISO 536, Paper and board � Determination of grammage, 1995.



104 BIBLIOGRAPHY[43℄ ISO standard. ISO 2144, Paper, board and pulps � Determination of residue (ash)on ignition at 900 degrees C, 1997.[44℄ ISO standard. ISO 186, Paper and board � Sampling to determine average quality,2002.[45℄ Kang, H. R. Digital Color Halftoning. SPIE Press, 1999.[46℄ Kapur, J., Sahoo, P., and Wong, A. A new method for gray-level pi
turethresholding using the entropy of the histogram. Computer Vision Graphi
s andImage Pro
essing 29 (1985), 273�285.[47℄ Khalaj, B., Aghajan, H., and Kailath, T. Patterned wafer inspe
tion byhigh resolution spe
tral estimation te
hniques. Ma
hine Vision and Appli
ations 7(1994), 178�185.[48℄ Kiiskinen, H. T., Kukkonen, H. K., Pakarinen, P. I., and Laine, A. J.Infrared thermography examination of paper stru
ture. TAPPI 80, 4 (1997), 159�162.[49℄ Kittler, J., and Illingworth, J. Minimum error thresholding. Pattern Re
og-nition 19 (1986), 41�47.[50℄ Kjaer, A., Wellstead, P., and Heath, W. On-line sensing of paper ma
hinewet-end properties: dry-line dete
tor. IEEE Transa
tions on Control Systems Te
h-nology 5, 6 (1997), 571�585.[51℄ Klinker, H. Computerized mottle and Heliotest analysing: the-state-of-the-art-solution for mottle and Heliotest analysis. In Appita Annual General Conferen
e(1998), vol. 2, pp. 591�594.[52℄ Laitinen, J. E�e
t of 
harge transfer e�
ien
y on image quality in CCD lines
an-based web inspe
tion. Opti
s and Lasers in Engineering 29, 6 (1998), 385�401.[53℄ Langinmaa, A. An image analysis based method to evaluate gravure paper quality.In Pro
eedings of the 11th IAPR International Conferen
e on Computer Vision andAppli
ations (1992), vol. 1, pp. 777�780.[54℄ Leavers, V. Whi
h Hough transform. CVGIP: Image understanding 58, 2 (1993),250�264.[55℄ Levlin, J.-E. Pulp and Paper Testing, vol. 17 of Papermaking S
ien
e and Te
h-nology. Fapet Oy, 1999, 
h. Aim of pulp and paper testing.[56℄ Levlin, J.-E. Pulp and Paper Testing, vol. 17 of Papermaking S
ien
e and Te
h-nology. Fapet Oy, 1999, 
h. General physi
al properties of paper and board.[57℄ Lia, Q., Wang, M., and Gu, W. Computer vision based system for apple surfa
edefe
t dete
tion. Computers and Ele
troni
s in Agri
ulture 36, 2-3 (2002), 215�223.[58℄ Liu, G., and Harali
k, R. Two pra
ti
al issues in Canny's edge dete
tor imple-mentation. In 15th International Conferen
e on Pattern Re
ognition (2000), vol. 3,pp. 676�678.



BIBLIOGRAPHY 105[59℄ Luo, J., and Zhang, Z. Automati
 
olour printing inspe
tion by image pro
essing.Journal of Materials Pro
essing Te
hnology, 139 (2003), 373�378.[60℄ Malamas, E., Petrakis, E. G. M., Zervakis, M., PetitL., and Legat, J.-D. A survey on industrial vision systems, appli
ations and tools. Image and VisionComputing 21, 2 (2003), 171�188.[61℄ Medina-Carni
er, R., Madrid-Cuevas F.J.and Fernández-Gar
ía, N.,and Carmona-Poyato, A. Evaluation of global thresholding te
hniques in non-
ontextual edge dete
tion. Pattern Re
ognition Letters 26, 10 (2005), 1423�1434.[62℄ Moraleda, J., Ollero, A., and Orte, M. A roboti
 system for internal inspe
-tion of water pipelines. Roboti
s & Automation Magazine 6, 3 (1999), 30�41.[63℄ Myller, K., Juuti, M., Peiponen, K.-E., R., S., and Heikkinen, E. Qualityinspe
tion of metal surfa
es by di�ra
tive opti
al element-based glossmeter. Pre
i-sion Engineering (2006), In press.[64℄ Mäenpää, T., Pietikäinen, M., and Ojala, T. Robust texture 
lassi�
ation bysubsets of lo
al binary patterns. In International Conferen
e on Pattern Re
ognition(2000), vol. 3, pp. 935�938.[65℄ Newman, T., and Anil, K. J. A survey of automated visual inspe
tion. ComputerVision and Image Understanding 61, 2 (1995), 231�262.[66℄ Odemir, S., Baykut, A., Meylani, R., Er
il, A., and Ertuzun, A. Com-parative evaluation of texture analysis algorithms for defe
t inspe
tion of textileprodu
ts. In Fourteenth International Conferen
e on Pattern Re
ognition (1998),vol. 2, pp. 1738�1740.[67℄ Oja, E., and Kohonen, T. The subspa
e learning algorithm as a formalism forpattern re
ognition and neural networks. IEEE Int. Conf. on Neural Networks 1(1988), 277�284.[68℄ Otsu, N. A threshold sele
tion method from gray-level histograms. IEEE Trans-a
tions on Systems, Man, and Cyberneti
s 9, 1 (1979), 62�66.[69℄ Paalanen, P., Kamarainen, J.-K., Ilonen, J., and Kälviäinen, H. Fea-ture representation and dis
rimination based on Gaussian mixture model probabilitydensities�Pra
ti
es and algorithms. Pattern Re
ognition 39 (2006), 1346�1358.[70℄ Pardo, A., and Sapiro, G. Visualization of High Dynami
 Range images. IEEETransa
tions on Image Pro
essing 12, 6 (2003).[71℄ Paul, D., Hatti
h, W., Nill, W., Tatari, S., and Winkler, G. VISTA:visual interpretation system for te
hni
al appli
ations -ar
hite
ture and use. PatternAnalysis and Ma
hine Intelligen
e 10, 3 (1988), 399�407.[72℄ Phung, S., Bouzerdoum, A., and Chai, D. Skin segmentation using 
olor pixel
lassi�
ation: Analysis and 
omparison. IEEE Transa
tions on Pattern Analysisand Ma
hine Intelligen
e 27, 1 (Jan. 2005), 148�154.



106 BIBLIOGRAPHY[73℄ Piette, P., Morin, V., and Maume, J. Industrial-s
ale rotogravure printingtests. Wo
henblatt für Papierfabrikation 125, 16 (1997), 744�750.[74℄ Rosin, P. Unimodal thresholding. Pattern Re
ognition 34, 11 (2001), 2083�2096.[75℄ Russell, J. Spatial �ltering method for failure analysis of a devi
e. United StatesPatent 6731824, 2004.[76℄ Sadovnikov, A. Automated heliotest inspe
tion using ma
hine vision. Master'sthesis, Lappeenranta University of Te
hnology, 2003.[77℄ Sadovnikov, A., Vartiainen, J., Kamarainen, J.-K., Lensu, L., andKälviäinen, H. Dete
tion of irregularities in regular dot patterns. In IAPR Con-feren
e on Ma
hine Vision Appli
ations (2005), pp. 380�383.[78℄ SCAN standard. SCAN 63:90, Surfa
e strength, IGT.[79℄ Sezgin, M., and Sankur, B. Survey over image thresholding te
hniques andquantitative performan
e evaluation. Journal of Ele
troni
al Imaging 13, 1 (2004),146�165.[80℄ Sharifi, M., Fathy, M., and Mahmoudi, M. A 
lassi�ed and 
omparativestudy of edge dete
tion algorithms. In International Conferen
e on InformationTe
hnology: Coding and Computing (2002), pp. 117�120.[81℄ Shizawa, M. Dis
rete invertible a�ne transformations. In 10th International Con-feren
e on Pattern Re
ognition (1990), vol. 2, pp. 134�139.[82℄ Smith, S. Color 
oding and visual separability in information displays. Journal ofApplied Psy
hology 47 (1963).[83℄ Suontausta, O. Pulp and Paper Testing, vol. 17 of Papermaking S
ien
e andTe
hnology. Fapet Oy, 1999, 
h. End-use properties of printing papers.[84℄ Tappi standard. Surfa
e Strength of Paper (IGT Tester) (Formerly T 499).[85℄ Teknosavo Oy. ChipSmart(tm), Referen
ed: 20.9.2006. Available:http://www.teknosavo.�/tuotteet_entry.asp.[86℄ Tong, Y. The Multivariate Normal Distribution. Springer Series in Statisti
s.Springer-Verlag, 1990.[87℄ Tsai, D.-M. A fast thresholding sele
tion pro
edure for multimodal and unimodalhistograms. Pattern Re
ognition Letters 16 (1995), 653�666.[88℄ Tsai, D. M., and Hsieh, C. Y. Automated surfa
e inspe
tion for dire
tionaltextures. Image and Vision Computing 18, 1 (1999), 49�62.[89℄ Turtinen, M., Pietikäinen, M., Silven, O., Mäenpää, T., and Niskanen,M. Paper 
hara
terisation by texture using visualisation-based training. The Inter-national Journal of Advan
ed Manufa
turing Te
hnology 11-12, 22 (2003), 890�898.[90℄ Vaarasalo, J. Pulp and Paper Testing, vol. 17 of Papermaking S
ien
e and Te
h-nology. Fapet Oy, 1999, 
h. Opti
al properties of paper.



BIBLIOGRAPHY 107[91℄ Vartiainen, J., Lensu, L., Kamarainen, J.-K., Sadovnikov, A., andKälviäinen, H. Dete
ting irregularities in regular patterns. In Pro
eedings ofthe 18th International Conferen
e on Pattern Re
ognition (ICPR2006) (2006).[92℄ Vartiainen, J., Lyden, S., Sadovnikov, A., Kamarainen, J.-K., Lensu, L.,and Kälviäinen, H. Automating visual inspe
tion of print quality. In Pro
eedingsof the International Conferen
e on Image Analysis and Re
ognition (2006).[93℄ Vartiainen, J., Paalanen, P., Kämäräinen, J.-K., Lensu, L., and Kälviäi-nen, H. Minimum error 
ontrast enhan
ement. Resear
h report 102, LappeenrantaUniversity of Te
hnology, Department of Information te
hnology, 2006.[94℄ Vartiainen, J., Sadovnikov, A., Kamarainen, J.-K., Lensu, L., andKälviäinen, H. Dete
tion of irregularities in regular patterns. Ma
hine visionand appli
ations (2007). A

epted.[95℄ Verikas, A., Malmqvist, K., and Bergman, L. Dete
ting and measuring ringsin banknote images. Engineering Appli
ations of Arti�
ial Intelligen
e 18, 3 (2005),363�371.[96℄ Wygant, R., Pruett, R., and Chen, C.-Y. A review of te
hniques for 
hara
ter-izing paper 
oating surfa
es. In TAPPI International Paper Coating FundamentalsSymposium (May 1995). (invited).[97℄ Zhang, J. B. Computer-aided visual inspe
tion for integrated quality 
ontrol.Computers in Industry 30, 3 (1996), 185�192.[98℄ Zimmerman, J., Pizer, S., Staab, E., Perry, J., M
Cartney, W., andBrenton, B. An evaluation of the e�e
tiveness of adaptive histogram equaliza-tion for 
ontrast enhan
ement. IEEE Transa
tions on Medi
al Imaging 7, 4 (1988).



108 BIBLIOGRAPHY



APPENDIX ISpe
i�
ations for imaging setup

The te
hni
al spe
i�
ations for imaging setup are listed below.Table I.1: Spe
i�
ations for Allied Vision Te
hnologies OSCAR F-510C 
amera.Manufa
turer Allied Vision Te
hnologiesModel OSCAR F-510CType Industrial 
ameraSensor size 2/3�Resolution up to 2588 × 1958Pixel size 3.2 µm (square)Sensor type CMOSColour RAW, RGB, YUV-4 : 2 : 2, Mono8S
an type True partial s
anShutter speed 20µs − 67sResolution depth from 12bit up to 16bitin high resolution modeConne
tor FirewireLens mount CDimensions 44 × 44 × 58.9 mmDrivers Linux & WindowsAbilities Possible to de�ne 
ustomresolution for images.
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110 I Spe
i�
ations for imaging setup
Table I.2: Spe
i�
ations for Mortitex ma
ro zoom obje
tive.Manufa
turer MoritexModel ML-Z0108Type 0.1 ×−0.8× zoom lensWorking Distan
e 213 mmWD adjustment ±20 mmE�e
tive F Number 8.2 − 9.3Depth of Field 32.8 − 0.6 mmResolution 55 − 8 µmTV Distortion −0.02 ± 0.17% (or less)Largest sensor 1/2�Mount C-mount

Table I.3: Spe
i�
ations for light sour
e.Manufa
turer MoritexModel MHF-M1002Type 100W Halogen type light sour
eInput Voltage AC180 ∼ 250V50/60 HzPower 
onsumption 270 VALamp type LM-100Options External light 
ontrol (0�5 V)External volume light 
ontrolExternal on/o�Lamp rush 
urrent dete
tionInternal temperature dete
tion
Table I.4: Spe
i�
ations for lamp.Manufa
turer MoritexModel LM-100Type 100W Halogen lampPower 
onsumption 100 WLamp 
urrent 8.4 AAverage life 1000 hAverage luminosity 30000 luxColour Temperature 3100◦ K
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Table I.5: Spe
i�
ations for Sony Cast Pro II desktop robot.Manufa
turer SonyModel Cast Pro IIType desktop robotOperating area 350 × 350 mmMoving pre
ision 0.02 mmNumber of axis 2
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APPENDIX IIPi
king test with test setup

Pi
king test measurement results. All measures are given in millimetres. 5 di�erentpaper qualities were measured and ea
h quality 
ontained 5 samples. Di�erent qualitypapers are separated with horizontal lines. Table II.1 lists the measurements.Table II.1: Pi
king test results. Expert 1 and 2 results were obtained by humanobservations and Setup was performed by ma
hine vision setup. All results arepresented in millimetres. Quality refers to di�erent paper grades.Grade Sample Expert 1 Expert 2 SetupQuality 1 1 88 81 992 71 74 1023 73 73 974 62 67 645 80 82 97
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114 II Pi
king test with test setup

Table II.2: Table II.1 
ontinued.Grade Sample Expert 1 Expert 2 SetupQuality 2 1 51 47 492 32 34 333 32 29 364 44 44 455 42 42 43Quality 3 1 40 40 432 47 47 503 42 40 434 46 42 455 42 44 39Quality 4 1 93 89 852 93 87 973 92 90 1134 83 76 825 82 69 85Quality 5 1 184 137 1372 184 185 1383 194 193 1434 193 192 -5 181 183 122



APPENDIX IIIHeliotest with test setup

The test was performed by 3 human experts and Setup. The greatest di�eren
es inmeasurements happened when some dimly missing dots were falsely 
lassi�ed as missingdots by the ma
hine vision setup. Table III.1 lists the measurement results.Table III.1: Heliotest results. Expert 1, 2, and 3 results were obtained by humanobservations and Setup was performed by ma
hine vision setup. All results arepresented in millimetres. Quality refers to di�erent paper grades.Grade Sample Expert 1 Expert 2 Expert 3 SetupQuality 1 1 62 60 64 622 56 56 56 543 51 50 50 504 63 62 63 625 56 56 56 55Quality 2 1 72 72 72 722 61 60 61 633 71 70 70 704 69 67 68 645 79 79 79 78Quality 3 1 26 26 23 282 20 20 19 203 28 26 25 284 31 29 29 305 26 29 23 28
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116 III Heliotest with test setup

Table III.2: Table III.1 
ontinued.Grade Sample Expert 1 Expert 2 Expert 3 SetupQuality 4 1 40 40 39 402 47 46 46 463 37 36 36 384 47 46 46 475 42 41 41 41Quality 5 1 48 48 48 462 51 50 50 503 54 50 50 494 63 63 63 605 53 51 52 46Quality 6 1 80 82 81 802 90 90 89 893 81 80 89 824 85 85 84 845 90 90 89 80Quality 7 1 96 96 95 942 110+ 110+ 110+ -3 105 106 105 1014 95 95 94 945 106 107 106 105Quality 8 1 78 77 76 772 81 82 81 823 65 66 65 664 91 93 91 915 80 82 80 80


