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Belt-drive systems have been and still are the most commonly used power transmission form in 
various applications of different scale and use. The peculiar features of the dynamics of the belt-
drives include highly nonlinear deformation, large rigid body motion, a dynamical contact 
through a dry friction interface between the belt and pulleys with sticking and slipping zones, 
cyclic tension of the belt during the operation and creeping of the belt against the pulleys. The 
life of the belt-drive is critically related on these features, and therefore, a model which can be 
used to study the correlations between the initial values and the responses of the belt-drives is a 
valuable source of information for the development process of the belt-drives. 
 
Traditionally, the finite element models of the belt-drives consist of a large number of elements 
that may lead to computational inefficiency. In this research, the beneficial features of the 
absolute nodal coordinate formulation are utilized in the modeling of the belt-drives in order to 
fulfill the following requirements for the successful and efficient analysis of the belt-drive 
systems: the exact modeling of the rigid body inertia during an arbitrary rigid body motion, the 
consideration of the effect of the shear deformation, the exact description of the highly nonlinear 
deformations and a simple and realistic description of the contact. 
 
The use of distributed contact forces and high order beam and plate elements based on the 
absolute nodal coordinate formulation are applied to the modeling of the belt-drives in two- and 
three-dimensional cases. According to the numerical results, a realistic behavior of the belt-drives 
can be obtained with a significantly smaller number of elements and degrees of freedom in 
comparison to the previously published finite element models of belt-drives. The results of the 
examples demonstrate the functionality and suitability of the absolute nodal coordinate 
formulation for the computationally efficient and realistic modeling of belt-drives. 



 
This study also introduces an approach to avoid the problems related to the use of the continuum 
mechanics approach in the definition of elastic forces on the absolute nodal coordinate 
formulation. This approach is applied to a new computationally efficient two-dimensional shear 
deformable beam element based on the absolute nodal coordinate formulation. The proposed 
beam element uses a linear displacement field neglecting higher-order terms and a reduced 
number of nodal coordinates, which leads to fewer degrees of freedom in a finite element. 
 
Keywords: Belt-drive, finite element, flexible multibody dynamics, multibody application 
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NOMENCLATURE 

 

Abbreviations 

 

ANCF  Absolute Nodal Coordinate Formulation 

CPU  Central Processing Unit 

 

Symbols 

 

a0, …, a5 polynomial coefficients 

A  area of the element cross-section 

ψA    transformation matrix due to the rotation of the centerline 

γA    transformation matrix due to the shear deformation 

b0, …, b5 polynomial coefficients 

ψb   unit vector perpendicular to the element centerline and to vector ψn  

c   constant of integration 

cp  damping coefficient per unit length of the penalty force 

Cm  continuity on shape functions and their derivates up to order m 

C  vector of linearly independent constraint equations 

Ce  Jacobian matrix 

d  penetration between contact surfaces 

D  deformation gradient 

D   gradient of the displacement vector 

e1, …, e12 nodal coordinates 

e  vector of the nodal coordinates 

E  Young’s modulus 

E  matrix of elastic coefficients of the material 

fn  distributed normal contact force 

ft  distributed tangential contact force 

F  force applied to a node 
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nF   force per unit length in the normal direction 

tF    force per unit length in the tangential direction 

g  gravity 

G  shear modulus or mass flow rate 

h  height of the beam in the initial configuration or thickness of the plate element 

i  integer coefficient 

I  node I or mass moment of inertia 

I  identity matrix 

I   skew symmetric matrix of the identity matrix 

J  node J 

J  gradient of the position vector 

J0  constant transformation matrix  

k   elastic modulus with units of force or absolute value of the curvature 

kp  stiffness coefficient per unit length of the penalty force 

ks  shear correction factor 

l  length of the beam or element in the initial configuration 

lbelt  length of the belt in the initial configuration 

ls  span length 

m  mass of the structure  

M  moment load 

M  mass matrix 

n  number of elements 

n   unit normal vector at the contact surface 

ψn   unit vector perpendicular to the element centerline 

N   vector that defines the position of a contact point on the element 

Oi  center location of the pulley i  

P  arbitrary particle 

p   unit vector along the pulley axis 

q  shear force 

q  vector of the generalized coordinates 
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Q   vector of the generalized forces 

Qc  vector of the generalized contact forces 

Qd vector that arises by differentiating the constraint equations twice with respect to 

time 

Qe  vector of the generalized elastic forces 

Qk  vector of the generalized external forces 

Qr  vector of the generalized rigid body forces 

r  global location of an arbitrary particle  

rc  global location of the centerline of the element  

Or   global location of the center of the pulley 

rs  vector that defines the orientation of the cross-section of the element  

Ri  radius of circular constraint i 

 s   location of a portion of the belt.   

S1, …, S6 shape functions 

S  element shape function matrix 

0S    element shape function matrix evaluated at the centerline of the element 

t  time  

t  unit tangent vector at the contact surface 

ot   unit vector along the length of an infinitesimal portion of the belt 

ψt   unit tangent vector at the element centerline 

T  kinetic energy or axial strain 

Ta   opposing torque 

Ts  acceleration time 

u  displacement of the driving pulley 

ux  beam axial extension 

u  displacement vector 

U  strain energy  

U ε   strain energy due to axial elongation of element 

Uκ   strain energy function due to bending stiffness 

v   velocity or speed 
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vs  slope of the creep-rate dependent friction curve 

vt  relative tangential velocity  

v   vector contained in the cross-section of the element or velocity vector 

V  volume of the element or potential energy 

w  width of the element in the initial configuration or vertical displacement 

Wδ   virtual work of the contact forces 

x  local coordinate 

X  global coordinate 

x  vector of the local coordinates 

y  local coordinate 

Y  global coordinate 

z  local coordinate 

Z  global coordinate 

 

Greek Letters 

 

1α   axial stiffness parameter 

2α   bending stiffness parameter 

iβ   angular displacement of pulley i or angle 

γ   shear angle 

ε   Green strain 
Aε   Almansi strain 
a
xxε   axial strain component  

lε   elongation of the centerline of the element 

m
xxε   normal strain in x-direction 

m
yyε   normal strain in y-direction 

m
xyε    normal strain in xy-plane 

tε   true strain 

ε   vector of three components of Green Lagrange strain tensor 
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eε    Eulerian or Almansi strain tensor 
linε   strain tensor of linear strain-displacement relationship  
mε   Green Lagrange strain tensor 

ζ   non-dimensional quantity 

η   non-dimensional quantity 

θ   rotational degree of freedom or angular displacement or bending angle of a 

portion of the element 

θ   angular acceleration 

κ   curvature 

λ   Lame’s constant 

λ   vector of Lagrange multipliers 

µ   Lame’s constant or friction coefficient 

ν   Poisson’s ratio 

ξ   non-dimensional quantity 

ρ   material density 

ω   angular velocity 

driverω   angular velocity of the driver pulley 

drivenω   angular velocity of the driven pulley 

ωs   steady state angular velocity 

 

Subscripts and superscripts 

 

A,…, D nodes of the plate element  

e  absolute nodal coordinate 

I  node I 

J  node J 

n  node or normal direction 

o  reference state 

p  pulley 

P  particle P  
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q  partial derivative with respect to generalized coordinates 

r  rigid body coordinate or rigid body 

t  differentiation with respect time or tangential direction 

T  transposition of vector or matrix  

x  partial derivative with respect to x or local coordinate 

y   partial derivative with respect to y or local coordinate 

z  local coordinate 
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1 INTRODUCTION 

 

The structurally and materially versatile selection of belt-drives has been used for more than 200 

years to transmit power between rotational machine elements. Belt-drives are still being used in 

various ranges of applications including domestic appliances as well as automotive technology, 

Figure 1.1, due to the following advantages in comparison to alternative forms of power 

transmission: low price, quietness, cleanliness, no requirements for lubrication, absorption of 

shock loads, wide selection of speed ratios, small power loss, simple installation and 

maintenance, possibility for relatively long distances between driver and driven shafts and visual 

warning of failure. These mechanical systems involve pulleys and belts, Figure 1.2, which 

dynamically contact each other through a dry friction interface. The tension of the belt transitions 

ranges from low to high and vice versa during the operation. The life of the belt-drive depends 

critically on the tension magnitudes in the belt spans. Another significant factor in the life of the 

belt-drive is the sliding wear of the belt caused by creeping against the pulley. In the long run, 

this wear may deteriorate the surface of the belt leading to changes in the friction characteristics 

of the belt. As a result, noisy operation and other problems may occur. For these reasons, a 

detailed and computationally efficient model of the belt-drive, which is capable of accurately 

predicting the belt dynamics and the contribution of the contact forces between the belt and 

pulley, is beneficial in the product development process. 

 

 
Figure 1.1 Examples of belt-drive applications. 
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Driver pulley Direction of rotation Driven pulley

Tight free span

Slack free span

Belt

 
Figure 1.2 Sketch of a simple belt-drive structure. 

 

The traditional research of belt-drives can be divided into belt-drive mechanics studies and 

dynamic response studies of serpentine belt-drives used for front-end accessory drives in the 

automotive industry as suggested by Leamy and Wasfy [1]. The studies of belt mechanics can be 

further subcategorized to be based on the traditional creep theory or the shear theory [2]. In the 

creep theory, the belt is assumed to be elastically extensible and the frictional forces due to slip 

motion are determined by a Coulomb law. In the shear theory, the belt is modeled as inextensible 

adopting shear deformation. According to Alciatore et al. [2], the creep theory can be applied to 

homogenous belts such as leather flat belts, while the shear theory applies to steel-reinforced 

belts such as the most standard V-belts. 

 

An extensive review of the belt-drive mechanics is given by Fawcett [3] while the classical creep 

theory is reviewed by Johnson [4]. The inclusion of belt inertia for the string model with creep 

theory is introduced by Bechtel et al. [5]. During the past three decades, many authors have 

contributed to the theory of belt-drive mechanics including, for example, studies of the belt shear 

effects [6], radial compliance effects [6] and the power loss expression [7]. In Reference [8] the 

effect of belt velocity on normal and tangential belt forces and centrifugal forces on belt tension 

is studied by Kim and Marshek. In the study, it is analytically shown that the effective belt 

tension decreases if belt velocity is increased and the distribution of the normal and tangential 

forces is dependent on belt velocity. In Reference [9] Kim and Marshek and in Reference [10] 

Kim et al. studied a concentrated force applied to the pulley and the friction characteristics for a 
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concentrated load for a flat belt drive. In the studies of References [9, 10], it is shown by 

analytical and experimental results that the use of a varying coefficient of friction gives more 

accurate results than the use of the Euler formula about the ratio for tight and slack side tensions 

of the belt sliding against the pulley with a constant coefficient of friction. The changes of normal 

and tangential forces are found to be approximately linear rather than exponential as predicted by 

Euler’s equation.  The dynamic response of automotive serpentine belt-drives to crankshaft 

excitation has been researched in many analytical and numerical studies during the past fifteen 

years. These studies mainly concern the rotational response of the pulleys and the transverse 

response of the axially moving string-like belt with a simplified description of the belt-pulley 

contact [11…16]. Kong and Parker [17, 18] extended these studies by modeling the belt as a 

moving beam with bending stiffness enabling the study of the effects of design variables on belt-

pulley coupling. 

 

Kong and Parker modeled the belt as a moving Euler-Bernoulli beam including bending stiffness, 

elastic extension, Coulomb friction and belt inertia while excluding rotary inertia and shear 

deformation [19]. According to the results of Kong and Parker, for thick and low tension belts the 

role of bending stiffness should not be neglected due to its significant effect on wrap angles, 

power efficiency, the span tensions and the maximum transmissible moment on the steady 

motion of the belt. 

 

According to the authors of Reference [1], belt-drive mechanics studies have not often considered 

the dynamic excitation while the frictional belt-pulley modeling in the serpentine belt-drive 

studies has been typically idealized. As a result, the connection between belt-drive mechanics and 

the dynamic response of serpentine belt-drives has been weak due to the nature of the modeling 

methods. The problem has been studied by Leamy et al. in References. [20…22], where the 

simplified dynamic models for low and high rotational speeds are introduced. In Reference [1] 

Leamy and Wasfy have proposed a general dynamic finite element model of belt-drive systems. 

In the study, the flat belt is modeled using truss elements including detailed frictional contact [1, 

23]. The finite elements use only Cartesian coordinates of the nodes as degrees of freedom, and 

all degrees of freedom are defined directly in a global inertial reference frame. The contact forces 

are applied only at the nodes leading to a large number of degrees of freedom when the accurate 
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representation of the circular boundaries of the pulleys is considered. The equations of motion are 

formulated using a total Lagrangian formulation. The effect of bending stiffness on the dynamic 

and steady state responses of belt-drives can be accounted for using three node beam elements 

based on the torsional-spring formulation [24, 25]. The authors of References [1, 23, 25] 

demonstrate that the results of the proposed models and analytical values are in good agreement 

for discretizations with 38 three node beam elements, 154 degrees of freedom, or 100 truss 

elements, 202 degrees of freedom, per half pulley.  

 

The analysis of the angular velocity loss of a flat belt system is presented in Reference [26] by 

Chen and Shieh. The three dimensional finite element procedure of Reference [27] is modified in 

order to model the flexibility of the belt in a more convenient way leading to more accurate 

prediction of the angular velocity loss. The tension and rubber layers of the belt are modeled 

using three-dimensional two-node bar and eight-node brick elements, respectively. The model 

used in the analyses included 480 brick and 180 bar elements. By this combination, the angular 

velocity loss with different values of the dynamic friction coefficient, traction coefficient and 

material properties, such as the shear modulus of the rubber layer and the strain stiffness of the 

tension member, is studied in detail. 

 

A finite element model of the belt-drive with a V-ribbed belt is introduced by Yu et al. [28] 

where the mechanics of contact between a belt rib and pulley groove with a composite, hyper 

elastic material model is studied. In the study, the composite material is implemented by dividing 

the cross-section of the rib into six elements of different material properties. The work cycle of 

the belt-drive is limited to a rotation of 180 degrees, which enables the use of a longer length for 

the elements in the free strands between the pulleys and a shorter length for the elements which 

could be in contact with the pulley groove. Using this modeling approach, nonlinear strain-

displacement relationship can be omitted. The inclusion of contact is determined using an overlap 

criterion for the nodes of special interface elements, which are attached to the shorter elements. 

The belt of a total length of 754 mm includes 60 longer and 1560 shorter eight-node brick 

elements and 1040 interface elements. The model is particularly used to figure out the patterns of 

sticking and slipping between the belt and pulleys in entry and exit regions.  
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Three-dimensional finite element studies of frictional contact for flat and V-belt transmission 

systems are carried out by Shieh and Chen [27]. In the study, the belt consists of a composite 

structure where in the case of a flat belt a tension member is between a top rubber cover and a 

rubber layer, and in a V-belt the tension member is inside the rubber layer. In the development of 

the used finite element technique, Shieh and Chen have utilized a special transformation matrix 

that enables the mismatching of contact nodes and decreasing of system unknowns. In addition, 

the incremental Wilson displacement modes [29] are used to improve the accuracy of low-order 

eight-node brick elements, which originally can be inadequate in pure bending. According to the 

study, these features improve the accuracy of the contact forces especially at the inlet and exit 

regions of the contact area. The belt of a total length of 987 mm is analyzed using a quadrant of 

the belt due to the symmetry of geometry leading to 304 (flat belt) and 960 (V-belt) brick 

elements. The analysis is carried out using the classical Coulomb’s frictional law, and the effect 

of friction coefficients on the contact forces and the deformation of the cross-section of the V-belt 

are studied. In Reference [30] the centrifugal force term is included in the finite element 

procedure introduced in Reference [27] for studying the effect of angular velocity on frictional 

contact forces of the V-belt drive system. In addition, the results related to the deformation of the 

V-belt and the relationship between the distribution of friction angles and a dynamic friction 

coefficient are presented. 

 

References [2, 5, 7, 8, 16, 18, 19] include analytical studies of the belt-drives, References [9, 10, 

11, 12, 13] consist of both analytical and experimental studies, Reference [14] includes 

numerical, analytical and experimental studies, References [24, 28]  include numerical and 

experimental studies, numerical and analytical studies are presented in References [6, 17, 20, 23] 

while References [1, 15, 25, 26, 27, 30] consider the issue only from the numerical point of view. 

 

1.1 Scope of the Work and Outline of the Dissertation 

 

The objectives of this study are to develop a computationally efficient two-dimensional shear 

deformable beam element based on the absolute nodal coordinate formulation and find out the 

applicability of the absolute nodal coordinate formulation to modeling belt-drive systems as two- 
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and three-dimensional cases. In the studies of belt-drives, the main objective is the satisfaction of 

the following requirements:  Exact modeling of the rigid body motion resulting in zero strains. 

This requirement is due to the fact that a piece of the belt, i.e. an element undergoes large relative 

translation and rotations. The effect of the shear deformation must be considered as pointed out in 

Reference [6]. The third requirement is related to the description of highly nonlinear 

deformations that have to be described in order to obtain a reasonable number of elements in the 

model. The last essential requirement for the formulation used to model belt-drive systems is a 

simple and effective description of the contact between the belt and the pulleys [31].  

 

It is shown in Chapter 2 that the use of continuum mechanics with higher order elements leads to 

computationally inappropriate results. For this reason, a new computationally efficient two-

dimensional shear deformable beam element that is based on the use of the linear interpolation 

with the absolute nodal coordinate formulation is introduced in Chapter 2. 

 

In Chapter 3, a two-dimensional belt-drive system is introduced by using the distributed contact 

forces and high order belt-like elements based on the absolute nodal coordinate formulation. It is 

shown by numerical examples in Chapter 3 that with the contributions to the contact model 

shown in this study, there is no need to use a high number of nodes for realistic representation of 

the boundary of the pulley, and the realistic behavior of the belt-drives can be obtained with a 

significantly smaller number of degrees of freedom in comparison to the previously published 

finite element models of belt-drives. 

 

Chapter 4 presents more general formulations for the nonlinear dynamic finite element analysis 

of belt-drives by presenting three dimensional finite element absolute nodal coordinate beam and 

plate elements, which are applicable for the modeling of the belt-drives. The plate element is 

based on a thin plate theory and it provides additional degrees of freedom that may be important 

in the future in the study of three-dimensional dynamics phenomena. Bending stiffness can be 

varied in the element formulations, thereby allowing studying the effect of bending on the 

nonlinear dynamics of the belt-drive system. In Chapter 4, an analytical formulation for the belt 

drive with the assumptions is also discussed, and the finite element solution using the plate 

elements is compared with the solution obtained using a simplified analytical technique. 
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1.2 Contribution of the Dissertation 

 

The following original contributions are introduced in this dissertation: 

 

1. In this study, a new two-dimensional shear deformable beam element based on the 

absolute nodal coordinate formulation is proposed. Linear polynomials are used to 

interpolate both the transverse and longitudinal components of the displacement, which is 

different from other absolute nodal coordinate based beam elements where cubic 

polynomials are used in the longitudinal direction. The phenomenon known as shear 

locking is avoided through the adoption of selective integration within the numerical 

integration method. As shown in this study, accurate linear and nonlinear static 

deformations, as well as realistic dynamic behavior including the capturing of the 

centrifugal stiffening effect, can be achieved with a smaller computational effort by using 

the proposed element than by using existing shear deformable two-dimensional beam 

elements. 

 

2. This study introduces a novel method to model belt-drive systems by utilizing the 

considerable useful features of the distributed contact forces and high order belt-like 

elements based on the absolute nodal coordinate formulation. The requirements for the 

successful and efficient analysis of the belt-drive system including the exact modeling of 

the rigid body inertia during an arbitrary rigid body motion, the consideration of the effect 

of the shear deformation, the exact description of the highly nonlinear deformations and a 

simple and realistic description of the contact are fulfilled by the methods presented in 

this study. With the contributions to the contact model shown in this study, there is no 

need to use a high number of nodes for realistic representation of the boundary of the 

pulley and the realistic behavior of the belt-drives can be obtained with a significantly 

smaller number of degrees of freedom in comparison to the previously published finite 

element models of belt-drives.  
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The original scientific contributions have been or will be published in the following research 

papers: 

 

1. Kerkkänen, K. S., Sopanen, J. T., and Mikkola, A. M., 2005, “A Linear Beam Finite 

Element Based on the Absolute Nodal Coordinate Formulation”, Journal of Mechanical 

Design, 127, pp. 621-630. 

 

2. Kerkkänen, K. S., García-Vallejo, D., and Mikkola, A. M., 2006, ”Modeling of Belt-

Drives Using a Large Deformation Finite Element Formulation”, Nonlinear Dynamics, 

43, pp. 239-256. 

 

3. Dufva, K. E., Kerkkänen, K. S., Maqueda, L., and Shabana, A. A., “Nonlinear Dynamics 

of Three-Dimensional Belt-Drives Using the Finite Element Method”, Nonlinear 

Dynamics, in review. 
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2 ABSOLUTE NODAL COORDINATE FORMULATION 

 

The description of nonlinear deformations is a challenging and frequently studied research topic 

in the area of multibody dynamics. The goal of these studies is to obtain more realistic simulation 

models for applications such as belts and cables. Nonlinear deformation in multibody dynamics 

can be treated using, for example, the absolute nodal coordinate formulation [32…34] or the 

large rotation vector formulation [35]. The absolute nodal coordinate formulation has many 

advantages, which include the exact description of an arbitrary rigid body motion, a constant 

mass matrix and a capability of modeling nonlinear deformations. The most distinctive feature of 

the formulation is that slopes, i.e. position gradient coordinates, and displacements are used as the 

nodal coordinates instead of finite or infinitesimal rotations. The effect of the shear deformation 

was included in the absolute nodal coordinate formulation first by Omar and Shabana [36]. The 

absolute nodal coordinate formulation has been successfully applied to three-dimensional beams 

[37, 38] and shells [39]. Despite numerous studies into the usability and accuracy of the absolute 

nodal coordinate formulation [40, 41] its accuracy and appropriateness studies are still under 

way. 

 

When using the absolute nodal coordinate formulation, the elastic forces can be obtained using 

either a continuum mechanics approach [38] or by employing a local element coordinate system 

[42]. Use of the continuum mechanics approach with the nonlinear strain-displacement 

relationship gives a much simpler and general expression for the elastic forces than use of the 

element local coordinate system and the linear strain-displacement relationship [36]. However, if 

the continuum mechanics approach is applied to higher order elements in the absolute nodal 

coordinate formulation, some problems, as stated by Sopanen and Mikkola [41] and García-

Vallejo, Mikkola and Escalona [43], may exist. These problems are Poisson’s locking due to the 

residual transverse normal stresses in bending, curvature thickness locking due to the element 

shrinking in bending, shear locking due to the element’s inability to describe constant shear strain 

if the bending moment is linearly varied, and inaccurate description of bending. The first three of 

these phenomena can be seen as a prediction of overly stiff bending behavior of the element. In 

addition, despite the use of a cubic polynomial along x, the bending moment distribution along 

the longitudinal coordinate x is constant [44]. This observation demonstrates that the element has 
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the feature of exhibiting linear bending behavior and it is useless and computationally wasteful to 

use the interpolation polynomials of a different order for different directions with the continuum 

mechanics approach. The term linear bending behavior refers in this study to the fact the bending 

moment distribution along the longitudinal coordinate of the beam is constant as in the beam 

element that uses linear interpolation polynomials.  

 

As pointed out by Hughes [45], elements that are based on theories which accommodate 

transverse shear strain and require only C0 –continuity are increasingly being favored over 

elements that require C1 –continuity. The reason for this is clear: the demand for C1 –continuity 

generally leads to more complicated formulations and consequently to inefficient computation. 

Particularly, it is not wise to use elements requiring C1 –continuity if they behave similarly to 

elements requiring only C0 –continuity. Therefore, this study focuses on shear deformable 

formulations, such as the Timoshenko beam, which require only C0 –continuity for shape 

functions. Based on these features, it is natural to use linear interpolation. 

 

In order to obtain a computationally more appropriate element for the absolute nodal coordinate 

formulation, this study proposes a simplified linear element. The better efficiency of the proposed 

element as compared to the previously introduced absolute nodal coordinate finite elements [34, 

36] is achieved by simpler implementation due to the use of linear interpolation polynomials and 

a reduced amount of slope coordinates. The smaller number of nodal coordinates leads to reduced 

degrees of freedom in the finite element leading to computational advantages in structural 

analysis. 

 

It is important to note that beam element formulations that omit shear deformation, such as the 

Bernoulli beam, often employ curvature in the description of elastic forces. These formulations 

use derivations of the displacement field in the description of rotational deformation. In such 

cases linear interpolation will lead to difficulties in the moment description. On the other hand, 

beam formulations that account for shear deformation, such as the Timoshenko beam, are not 

based on the curvature in the description of rotational deformation. Instead, rotational 

deformation is described by a rotational coordinate that is interpolated in the element. In this case 

the rotational coordinate is independent from the position description. The proposed element does 
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not employ the curvature in the calculations of elastic forces and, accordingly, the proposed 

linear element is able to carry bending loading. 

 

In the following, a continuum mechanics based element is briefly reviewed in order to shed light 

on the proposed element. 

 

2.1 Continuum Mechanics Based Elements in the Absolute Nodal Coordinate 

Formulation   

 

Using the absolute nodal coordinate formulation, the global position vector r of an arbitrary 

particle in a planar element, shown in Figure 2.1, can be written as 
 

eSr ),(  yx= ,         (2.1)  

 

where S is the element shape function matrix, x and y are the local coordinates of the element and 

e is the vector of the nodal coordinates. Due to the use of local parameterization, the x coordinate 

is associated to the longitudinal axis of the element and the y coordinate to the transversal axis of 

the element. 

X

Y
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Figure 2.1 Description of a particle in the absolute nodal coordinate formulation. 
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The assumed displacement field of the existing two-dimensional shear deformable element 

.    (2.2) 

 

s can be seen from Equation (2.2), there is a cubic interpolation polynomial in the longitudinal 

proposed by Omar and Shabana can be defined in a global coordinate system by using the 

following polynomial expression [36]: 
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direction and it includes 12 unknown polynomial coefficients. Consequently, six nodal 

coordinates are needed for each node of a two-noded (I, J) beam element. In this case the nodal 

coordinates Ie , can be written as 

 
TT T

T I I
I I x y

⎡ ⎤∂ ∂
= ⎢ ⎥∂ ∂⎣ ⎦

r re r ,       (2.3) 

         

where are the slopes Ir  is the global position vector of node I and vectors xT
I ∂∂ /r  and yT

I ∂∂ /r

of node I. As illustrated in Figure 2.1, vector /T
J x∂ ∂r  def  glob ntation of the 

centerline of the beam, and vector /T
J y∂ ∂r  defines the orientation of the height coordinate of the 

cross-section of the beam [36], [41]

 

ines the al orie

.  

o prove that the element of Omar and Shabana [36] has the feature of exhibiting linear bending T

behavior, i.e. constant bending moment distribution along the longitudinal coordinate, the strain 

distributions in the beam element are studied using cubic interpolation polynomials along the 

longitudinal coordinate. In this example, only linear strain components are studied. It is important 

to note, however, that adding the nonlinear components for strain expressions does not solve the 

inherit problem related to element formulation proposed by Omar and Shabana. The strains can 

be defined using the deformation gradient D or the displacement vector gradient D . By assuming 

that the element is initially straight and coincident with the global coordinate system, the 

displacement gradient can be written as follows: 
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∂
=

uD ,                                                     
∂x

                                                 (2.4)  

 

where the local coordinate vector [ ]Tx y=x  and the displacement vector u is defined as:  

 

[ ]Tx y= −u r .                                                                                       (2.5)  

 

The strain tensor that can ten as 

llows: 

 describes the linear strain-displacement relationship  be writ

fo

 

( )1
2

lin T= +ε D D .         (2.6)  

 

Note that the nonlinear term

all deformations. The strain tensor of  is symmetric, and therefore, only three strain 

lin lin lin
xx yy xyε

s, i.e. the second order terms, would be insignificant in the case of 

sm linε

components are needed for identification. Components for linear strain terms can be written in 

vector form as 

 

lin ε ε
 

2
T

⎡ ⎤ .                (2.7) 

By using the shape functions of d S bana 6] and the nodal coordinate vector e, which 

an be written for a two-node two-dimensional beam element as 

= ⎣ ⎦ε

 

Omar an ha [3

c

 

[ ]1 2 12, ,...,
TT TT TTT T T T J JI I⎡ ⎤∂ ∂∂ ∂⎡ ⎤ r rr r T

I J I J e e e
x y x y

= = =⎢ ⎥⎣ ⎦ ∂ ∂ ∂ ∂⎣ ⎦
e r r , (2.8)         

 

the strain component 

e e

lin
xxε  can be written as follows: 
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lin
xx

yex x x xe e
l l l l l

x x x x yee e
l l l l l

ε
⎛ ⎞ ⎛ ⎞

= − + + − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

+ − + − + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,                     (2.9) 

 

here l is the length of the element. This strain component is the longitudinal strain of the 

2.1.1 Kinematics of the Proposed Element 

 this section, the kinematics of the proposed beam element is introduced. The proposed beam 

w

element. Components that depend on the y coordinate are strains due to bending and components 

that depend only on x are axial strains. It can be seen that bending strain does not depend on the 

longitudinal coordinate, x, of the beam. This fact demonstrates that the element of Omar and 

Shabana exhibits linear bending behavior even though the third order interpolation polynomial is 

used. On the other hand, axial strain is unnecessarily described using quadratic polynomials. In 

summary, the use of the element of Omar and Shabana requires extra computation, which can be 

avoided using the proposed element with linear interpolation polynomials. 

 

 

In

element uses linear polynomials instead of cubic polynomials to interpolate both the transverse 

and longitudinal components of displacement. The use of linear polynomials leads to eight 

unknown polynomial coefficients and for this reason the slope coordinates /T x∂ ∂r  can be 

neglected. It is important to reiterate that the reduced amount of nodal coordinates leads to a 

smaller number of degrees of freedom in each node of the finite element. 

 

The assumed displacement field of the two-dimensional shear deformable element can be defined 

.      (2.10) 

 

our nodal coordinates can be chosen for each node of a two-noded beam element as follows: 

in a global coordinate system using the following linear polynomial expression: 
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TT

T I
I I y

⎡ ⎤∂
= ⎢ ⎥∂⎣ ⎦

re r .        (2.11) 

 

he element shape function matrix S can be expressed by using the nodal coordinates and the 

4321 SSSS= .       (2.12) 

In Equation (2.12), I is a 2 × 2 identity matrix and the element shape functions S1…S4 can be 

T

interpolating polynomial of Equation (2.10) as follows:  

 

[ ]IIIIS

written as 

ξ−=11S , )(2 ξηη −= lS , ξ=3S ,  ξηlS =4 , 

where l is the length of the element in the initial configuration and the non-dimensional 

 

quantities, ξ and η, are defined as 

l
x

=ξ  , 
l
y

=η . 

he shape functions contain only one quadratic term, xy, while the remaining shape functions are 

2.2 The Elastic Forces of the Beam Element 

he definition of the elastic forces for the absolute nodal coordinate beam element can be 

obtained by using a continuum mechanics approach [36, 40]. In this study, a nonlinear strain-

 

T

products of one-dimensional linear polynomials. It is clear, that using this formulation the 

proposed linear beam element can not guarantee the continuity of longitudinal slopes at nodes. 

However, this is a general feature of C0 elements which require only the continuity of the 

displacement but not the continuity of its derivatives. For this reason, the element is able to 

predict the accurate position of the structure only at the nodes, which has to be taken into account 

when the element is used. 

 

 

T
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displacement relationship is employed for the elastic forces. By utilizing the fact that vector r 

defines an arbitrary particle on the element in the global coordinate system, the deformation 

gradient can be defined as 

 

( ) ( ) 1

-1
0

−
⎤

= =⎢ ⎥∂ ∂⎣ ⎦
D JJ

x x
.      (2.13) 

 

In Equation  (2.13), the vectors of the nodal coordinates in the deformed and initial 

configuration are presented by e and e0. Matrix J is the position vector gradient and matrix J0 a 

 

nsor as follows: 

0⎡∂ ∂Se Se

constant transformation matrix. If the element has an arbitrary initial configuration, matrix J0 

must be taken into account in the formulation of the elastic forces. Matrix J0 is the identity matrix 

in the case of a straight element with the initially coincident local and global coordinate systems. 

 

The Green Lagrange strain tensor mε  can be written using the right Cauchy-Green deformation

te

 

(1m T=ε D )2
−D I .        (2.14) 

 

The strain tensor of  is symmetric, and therefore, only three strain components are needed to 

entify it. These components can be written in vector form as 

  (2.15) 

 

Using matrix E, which conta e 

strain energy can be written as follows: 

mε

id

 
 

2
Tm m m

xx yy xyε ε ε⎡ ⎤= ⎣ ⎦ε .     

ins the elastic coefficients of the material, the expression of th

 

∫= T dVU  Eεε 1 .   
V2

     (2.16) 

 



 31

Matrix E can be express λ 

and µ, as follows: 

⎢⎣

+
µ

µλ
00

02 .       (2.17) 

 

In Equation (2.17), E

ed for an isotropic homogenous material in terms of Lame’s constants, 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎡ +

= λ
λµλ 02

E

/[(1 )(1 2 )]λ ν= +ν ν−  and /[2(1 )]Eµ ν= + , where E is Young’s modulus 

of elasticity and ν  Poisson’s ratio of the material. 

 

pling of strain compon mThe kinematical cou ents ,  , and m m
xx yy xyε ε  ε

nding [41, 46]. Poisson’s locking is caused by 

sidual transverse normal stresses that contribute to the axial strain. This problem is known to 

re a linear disp

may lead to Poisson’s locking 

especially in the case of thin beams undergoing be

re

exist for instance in the solid-shell elements, whe lacement assumption is used in 

thickness direction [47]. In the element of Omar and Shabana and in the proposed element, the 

displacement interpolations are linear in the transverse direction y. The transverse normal strain 
m
yyε , which is constant over the cross-section, is coupled via Poisson’s ratio with the axial strain 

m
xxε , which varies linearly over the cross-section. This leads to linearly varying transverse normal 

 the case of a thin beam where all strain 

ponents except the axial become zero.  

 

By neglecting Poisson’s effect, which is the source of Poisson’s locking in the element of Omar 

and Shabana, the strain energy U can be w

stress over the cross-section that causes an overly stiff behavior in bending. This problem, which 

is known as Poisson’s locking, is accentuated in

com

ritten using Young’s modulus of elasticity E and the 

ear modulus G as follows [48]: sh

 

( )2 2 21   4  
2

m m m
xx yy

V

U E E k G dVε ε ε= + +∫ .      (2.18) s xy
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It is important to note that Poisson’s ratio ν  is s 

G as follows: 

still contributing to the value of the shear modulu

 

 
2(

EG
1 )ν

= .          (2.19) 
+

minimize the error between the constant and the known true parabolic shear strain contributions.  

 

 

In order to obtain the correct shear strain energy, the shear correction factor ks is needed to 

 

The vector of the elastic forces, Qe, can be defined as the derivative of the strain energy 

expression with respect to the element nodal coordinate vector as follows: 

T

e
U∂⎛ ⎞= − 2.20) 

 

It is important to note th

shear forces for the beam formulations that use derivations of the displacement field over the 

ngitudinal coordinate in the description of rotational deformation. When employing the 

⎜ ⎟∂⎝ ⎠
Q

e
.         (

at the linear interpolation leads to difficulties in terms of the continuity of 

lo

derivation of the displacement field, the shear force q is described using the third derivative of 

vertical displacement as follows: 

 
3

3  
A

wq G dA
x

∂
=

∂∫ ,        (2.21) 

 

where w is a vertical displacem

independent from the position description while the curvature is not used in the calculations of 

lastic forces. Consequently, the calculation of shear forces is employed using the following 

ent. In the proposed element, the rotational coordinate is 

e

equation: 

 

 xyq G dAε= ∫ .         (2.22) 
A
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Only the first deriva o 

higher degree derivatives are required to solve the shear force. Shear strain in the proposed 

element when using the linear strain-displacement relationship can be written as follows: 

tive of the position vector is needed to evaluate the shear strain while n

 

I node: 62
30, 0

1 1 1
2 2 2xy y x

ee e
l l

ε = = = −

(2.23) 

+ + , 

J node: 62
70,

1 1 1
2 2 2xy y x L

ee e
l l

ε = = = − + + . 

 

On the nd, the shear strain of the 

displacement relationship can be written as follows: 

 other ha proposed element when using the nonlinear strain-

 

I node: 5 61 2
30, 0

1 1
2 2xy y x

e ee ee
l l l

ε = =
⎛ ⎞ ⎛ ⎞= − + + − +⎜ ⎟ ⎜
⎝ ⎠ ⎝

4e
l ⎟
⎠

, 

(2.24) 

J node: 5 61 2
7 80,

1 1
2 2xy y x L

e ee ee e
l l l l

ε = =
⎛ ⎞ ⎛= − + + − +⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

 

It is im o note that in the case of the Mindlin beam element [49], which also uses the 

linear shape functions, the shear strain is: 

. 

portant t

 

I node: 1 2 2
0, 0xy y x

w w l
l

θε = =

− + −
= , 

           (2.25) 

J node: 1 2
0,xy y x L

w w l
l

1θε = =

− + −
= , 

 

where tion of a node of the element. From Equation (2.25), the analogy to the proposed 

element with the linear strain-displacement relationship can be observed and the shear force of 

e Mindlin beam element is also evaluated using Equation (2.22). It can be seen from Equations 

q is a rota

th
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(2.23), (2.24) and (2.25), that the shear strain depends on the coordinates of both nodes of the 

elements. For this reason, the continuity of the shear force between the adjacent elements is not 

guaranteed in the cases of the proposed linear beam element and the Mindlin beam element if 

external forces are applied to the elements. This is a general feature of the C0 –continuous beam 

elements which does not prevent the convergence. 

 

The mass matrix given by the absolute nodal coordinate formulation is constant and symmetric. 

Using the element shape function given by Equation (2.12), the mass matrix M can be written as 

 

 

where ρ and V are the ma

 

2.2.1 Selective Integration of the Strain Energy 

The shape functions of the proposed two-dimensional shear deformable beam element include 

ment is able to exhibit only a rectangular 

eformation shape. This characteristic results in parasitic shear strain under pure bending.  

  T

V

dVρ= ∫M S S ,        (2.26) 

terial density and volume of the finite element, respectively.  

 

 

only one quadratic term, xy. Therefore, the ele

d

Consequently, the element stores excess shear strain energy. Due to this feature, the bending 

moment needed for a given bending deformation is higher than the correct value [49]. It is 

important to point out that the element of Omar and Shabana is able to exhibit pure bending 

deformation without the parasite shear strain excluding the case of the linearly varying bending 

moment [41]. This is due to the fact that cubic interpolation polynomials are capable of 

describing the correct deformed shape under pure bending.  In pure bending, shown in Figure 2.2 

a, the strain components of the rectangular block are: 

 

1 1

1 1

,                ,                   0m m m
xx yy xy

y y
l l
θ θε ε ν ε= − = = . 

 

In the case of the block in Figure 2.2 b, the element strains are: 
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2 2

2 2

,                   0,                       m m
xx yy xy

y x
l l

mθ θε ε= − = = −ε . 

s can be seen in Figure 2.2 b, the top and bottom sides of the block remain straight. Strain in the 

x-direction is still exact while strain in the y-direction is exact only if Poisson’s ratio ν is zero. 

However, it is important to note that the shear strain component is non-zero. For this reason, the 

roposed element generates the shear strain in bending. This feature combined with exact 

 

A

p

integration with equal and especially with linear interpolation for all directions of the elements 

leads to stiff behavior, which is known as shear locking [50, 51]. Due to shear locking, the 

bending of the element is penalized by high strain energy of the unwanted shear mode. 

 

M M
x

y M M
x

y

q2

l2

 

q1

l1

                (a)              (b)  

Figure 2.2 (a) The correct deformation mode of a rectangular block in pure bending. 

(b) The shear locking of the element results in the incorrect deformation mode of a 

rectangular block in pure bending. 

t able to 

receive analyti

cases of thin bea g results in overly small displacement in 

omparison with the exact values. 

 

If the exact integration of all the integrals of the strain energy is used, the model is no

cal values of displacement, even if hundreds of elements are used. Especially in 

m structures, element shear lockin

c
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The shear locking can be avoided using many different approaches. Among these approaches are, 

for instance, mixed formulations and reduced integrations. To avoid the accompanying defects of 

purious shear strain in the proposed element, selective integration is adopted within the 

train components of the element. The use of a low number of 

tegration points has a softening effect and may also introduce some spurious modes, such as 

ntegration method with 

ne Gauss point is used to evaluate the contribution of strains in the axial direction. Due to this 

s

numerical integration method for its simplicity and computational efficiency. It was perceived 

that the use of one Gauss point to evaluate the contribution of shear strain in the equation of 

strain energy, whereas two Gauss points are used to evaluate the contribution of normal strains, 

led to problems in convergence when the number of elements in the dynamic model was 

increased. Decreasing the height of the beam and setting the value of Poisson’s ratio to 0.3 

instead of zero improved the convergence of the beam element. When a small number of 

proposed elements was used, the model had a tendency to converge larger deformations in 

comparison to the other models. 

 

These results can be explained as a consequence of using a low number of integration points in 

the selective integration of the s

in

zero-energy deformation or hourglass modes. The spurious modes incorporated by the stiffness 

matrix of the element can deactivate the resistance to nodal loads. As a result, spurious zero 

energy modes are activated in the element [49]. The convergence problem was solved by 

increasing the number of Gauss points from one to two when evaluating terms, which are 

functions of y, of the shear strain in the strain energy equation. The disadvantage of this method 

is that only rectangular cross-sections of the elements are easy to model.  

 

In the final form, integration in closed form is used to evaluate the contribution of normal and 

shear strains over the cross-section of the element while the numerical i

o

technique, the cross-section of the beam can be arbitrary. Integration in closed form does not 

work with the rational functions and this mathematical fact makes the use of the technique above 

with initially curved elements difficult. 
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2.3 Equations of Motion 

Using the constant mass matrix and the elastic force vector, which includes a nonlinear strain-

isplacement relationship when continuum mechanics is used, the equations of motion of the 

2.27) 

 

where  is the vector of the generalized external nodal forces. Since the mass matrix is 

t, th

numerical procedures on the following equation: 

2.28) 

 

The kinematic constraints that depend on the nodal coordinates and possibly on time in the 

 can be written in vector form as [52] 

2.29) 

 

where C is the vector of linearly independent constraint equations, e the nodal coordinate vector 

t time. The equation of motion that accounts for the constraints can be defined using 

 

In Equation (2.30),  is the Jacobian matrix that is the partial derivative of the constraint vector 

a quadratic velocity vector is zero in the elements based on the absolute nodal coordinate 

 

d

deformable finite element can be written as [32] 

 

 ,        (e k=Me Q +Q

kQ

constan e vector of the accelerations e  of Equation (2.27) can be efficiently solved using 

 
-1 ) .          (e k=e M (Q +Q

multibody system

 

( , )t =C e 0 ,         (

and 

Lagrange’s equation in matrix form by employing an augmented formulation as follows: 

 
T .        (2.30) e k+ =eMe C λ Q +Q

T
eC

with respect to the nodal coordinate vector, and λ is the vector of Lagrange multipliers. Note that 

formulation. The unknowns λ and e  of Equation (2.30) can be determined by differentiating the 

constraints of Equation (2.29) twice with respect to time: 
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( ) 2tt t d= − − − =e e e eC e C C e e C e Q  ,      (2.31) 

and writing a system of differential and alg

 

ebraic equations in matrix form as follows: 

 
T⎡ ⎤

d

⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦e QλC 0
,       (2.32) 

 

where . It is important to note that Equation (2.32) can be easily extended to the 

ystems of interconnected rigid and flexible bodies as follows [32]: 

=e QeM C

e k=Q Q +Q

s

 
T⎡ ⎤r r r r
T

e

dr

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

q

e

q e

q Q
0 M C e Q

C C 0 λ Q
,      (2.33) 

  

where M refers to a mass sub-matrix, subscripts r and e refer to rigid body and absolute nodal 

ordinates, respectively, and Qr is the generalized forces associated with the rigid body 

 Numerical Results of the Linear Beam Element 

 

i deformable beam element is studied in 

tatic and dynamic problems. In the static problems, the simple beam structures of Figure 2.3 and 

M 0 C

co

coordinates. It is important to note that this kind of combination of different formulations may 

lead to a nonlinear description of inertia. 

 

2.4

In th s section, the performance of the proposed shear 

s

Figure 2.4 are studied. The cross-section of the beam is rectangular and the length of the beam 

2.0 m. The material of the structure is assumed to be isotropic, the Young’s modulus of the 

material is 112.07 10⋅  N/m2 and the mass density 7850 kg/m3. The results of the examples for the 

proposed beam element are compared to those of the analytical solutions and/or to the solutions 

obtained using a commercial finite element code ANSYS as well as a two-dimensional shear 
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deformable beam element proposed by Omar and Shabana [36]. The strain energy of the 

proposed beam element is calculated using Equation (2.18) by employing a shear correction 

factor ks = 5/6. Equation (2.16) is used to determine the strain energy in the case of the element 

proposed by Omar and Shabana.  

 

For both element types, integration in closed form is used to evaluate the contribution of normal 

nd shear strains over the cross-section of the element. The numerical integration method with 

example, the linear deformations are considered using the simply supported beam 

ructure shown in Figure 2.3. The boundary conditions are given to eliminate the horizontal and 

a

one Gauss point is used for the proposed element to evaluate the contribution of strains in the 

axial direction, while four Gauss points are used for the element of Omar and Shabana. This is 

due to the fact that the element proposed by Omar and Shabana uses third order polynomial 

expansion. 

 

In the first 

st

vertical displacements of the first node and the vertical displacement of the last node. The cross-

section of the beam is a 0.1-m-sided square and a vertical load, F = 1000 N, is applied to the mid-

point of the beam. The vertical displacements of the midpoint are studied using different numbers 

of elements for two values of the Poisson’s ratio, 0.0 and 0.3. In the analytical solution, in the 

BEAM188 model in ANSYS [53], which uses linear interpolation and large rotation theory, and 

in the BEAM3 model in ANSYS, the effect of the shear deformation is considered. The results of 

the first example are shown in Table 2.1 and Table 2.2. 

 

F

l = 2.0 m

0.1 m

0.1 m

y

x

 
Figure 2.3 A simply supported beam for linear deformations. 
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Table 2.1  The vertical positions of the mid-point of the beam for a Poisson’s ratio of 0.0. 

 

Table 2.2  The vertical pos e mid-point of the beam for a Poisson’s ratio of 0.3. 

 

It can be seen in Table 2.1 that in the case of zero Poisson’s ratio, the behavior of all the linear 

elements is very similar. The beam element of Omar and Shabana predicts the most 

Mid-point vertical position [mm] Number of 

elements ANSYS: 

BEAM188 

The ANCF 2D 

beam element 

of Omar and 

Shabana 

Proposed ANCF 

2D beam element 

The difference 

between the analytical 

result and the result of 

the proposed element  

[%] 

2 -0.076623 -0.072893 -0.073043 24.453 

4 -0.092050 -0.091034 -0.091159 6.213 

8 -0.095060 -0.095578 -0.095688 1.554 

16 -0.096871 -0.096717 -0.096821 0.388 

itions of th

32 -0.097112 -0.097005 -0.097104 0.097 

64 -0.097172 -0.097078 -0.097174 0.025 

The analytical result: -0.09719 : -08, ANSYS BEAM3 .097021 

Mid al position [mm] -point verticNumber of 

ments F 2D 

ent 

nd 

 ANCF 

element 

erence 

n the analytical 

and the result of 

posed element 

ele ANSYS: 

BEAM188 

The ANC

beam elem

of Omar a

Shabana 

Proposed

2D beam 

The diff

betwee

result 

the pro

[%] 

2 -0.077871 -0.054388   -0.073217 24.740

4 -0.092491 -0.067879 -0.091333 6.118 

8 -0.096146 -0.071262 -0.095862 1.463 

16 -0.097060 -0.072112 -0.096995 0.298 

32 -0.097288 -0.072327 -0.097278 0.007 

64 -0.097345 -0.072382 -0.097348 0.065 

The analytical result: -0.097285, ANSYS BEAM3: -0.097142 
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ent in comparison with the analyt . In every elemen

ment is co

er of elemen

t, and for this re
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ytical result pro
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Ta  that when t oisson’s rat he material o, the m

Sh  from resid transverse n l stresses [4

defo comparison th the result e other models. The proposed beam ele

wel AM188 ele t converge ightly large ations 

solu demonstrate ightly exces exible behavior.  

In

used, the BEAM3 model, the results of which are independent from the number of elements, 

predicts deformations more accurately in comparison with the other models. However, it is 

important to point out that the BEAM3 model is based on the linear theory of small deformations 

and infinitesimal rotations and it is not applicable to the prediction of large deformations of 

nonlinear analysis due to convergence problems. The proposed element is developed especially 

for large rotations and deformations and the example of small deformations is presented only to 

verify the convergence of the element. 

 

In the second example, large nonlinear deformations of the simple cantilever structure shown in 

Figure 3 are considered and compared to the nonlinear solution of the BEAM188 model in 

ANSYS [41, 53]. The other end of the beam is clamped by boundary conditions that eliminate the 

horizontal and vertical displacement and slopes 1 /r y∂ ∂  and 2 /r y∂ ∂  of the first node. The vertical 

displacements of the endpoint are examined using different numbers of elements for the two 

ifferent cantilever models: In the first model (Model 1), the beam has a 0.1-m-sided square d

cross-section and the value of the Poisson’s ratio is 0.3, whereas in the second model (Model 2), 

the height h of the beam is increased from 0.1 m to 0.5 m while the Poisson’s ratio is 0.0. A 

vertical force, F = 8 35.0 10 h− ⋅ ⋅ N, is applied to the free end of the cantilever. The results of the 

second problem are shown in Table 2.3 and Table 2.4. 
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Figure 2.4 The cantilever beam model for nonlinear deformations. 

 

Table 2.3 The positions of the beam endpoint in Model 1.  

Tip Position (x, y), [m] Number of 

elements The ANCF 2D beam 

elem r and 

Shabana 

Proposed ANCF 2D 

beam element 

ANSYS: BEAM188 

ent of Oma

2  1.95536, -0.37731 1.88480   -0.62126 1.87080, -0.65671 

4  1.91970, -0.50932 1.86351   -0.66320 1.85918, -0.67485 

8  1.91344, -0.53035 1.85696   -0.67691 1.85618, -0.67947 

16  1.91276, -0.53267 1.85537   -0.68018 1.85540, -0.68069 

32  1.91264, -0.53309 1.85500   -0.68091 1.85520, -0.68100 

64  1.91262, -0.53319 1.85491   -0.68109 1.85515, -0.68108 

 

As can be seen in Table 2.3, in the case of Model 1 the beam element of Omar and Shabana 

erly small displacements. 

he predicted displacements of the proposed model and the BEAM188 model are very similar 

cep

 

 

 

 

 

seems to suffer from residual transverse normal stresses leading to ov

T

with the ex tion of the case of two elements. 
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Table 2.4 Th am en

), [m] 

e positions of the be dpoint in Model 2. 

Tip Position (X, YNum  of 

ele s The ANCF 2D beam 

el  

Proposed ANCF 2D A  

ber

ment

ement of Omar and

Shabana 

beam element 

NSYS: BEAM188

2  1.86909, -0.64098 1.87307   -0.65134  1.86749, -0.67783 

4  1.84841, -0.69436 1.85001   -0.69591 1.85551, -0.69700 

8  1.84498, -0.70341 1.84412   -0.70709 1.85246, -0.70179 

16  1.84407, -0.70573 1.84271   -0.70970 1.85169, -0.70299 

32  1.84378, -0.70643 1.84237   -0.71034 1.85150, -0.70329 

64  1.84367, -0.70667 1.84228   -0.71050 1.85145, -0.70337 

 

According Table 2.4, the results of the proposed element and the element of Omar and Shabana 

re in good agreement, but the BEAM188 model slightly underestimates displacements in 

omparison to the other models. It is important to note that, in this problem, computer times in 

erations with the proposed element were two times shorter than with the element of Omar and 
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the proposed element is related to computational efficiency within the h-method. For non-linear 
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deformations, the discrepancies between the different models increased when the height of the 

beam was increased, which enhanced the significance of the role of shear strain.  

 

In the first dynamic problem, the dynamic behavior of a simple planar pendulum, which consists 

of one beam, shown in Figure 2.5, is studied using different numbers of proposed two-node two-

dimensional shear deformable beam elements. The pendulum is connected to the ground by a 

revolute joint, and the only force acting on the system is gravity, which is equal to 9.81 m/s2. The 

cross-section of the beam is a 0.1-m-sided square, while the length of the beam is 2.0 m. The 

material of the structure is assumed to be isotropic and the Young’s modulus of the material is 
72.07 10⋅  N/m2, the Poisson’s ratio 0.0 and the mass density 7850 kg/m3.  

 

l = 2.0 m

0.1 m

y

x
0.1 m

mg

 
Figure 2.5 A free falling flexible pendulum for dynamic verification in the initial position.  

 

The initial position of the beam is horizontal with zero initial velocity. The vertical displacement 

of the beam endpoint for different numbers of elements is shown in Figure 2.6. As can be seen 

from the figure, the solutions for 8 and 16 elements are almost identical while the solution for 4 

 is in good agreement with them. elements
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Figure 2.6 Vertical displacement of the falling flexible beam tip point using 2, 4, 8 and 16 

elements. 

 

The energy balance of the beam should remain constant due to the fact that the free-falling 

pendulum is a conservative system. This can be written as follows: 

 

,       (2.34) 

 

where n is the number of elements of the system,  the kinetic energy,  the potential energy 

and  the strain energy of the element i [40]. The energy components of the pendulum made up 

ents are shown in Figure 2.7. It can be seen that the energy balance remains constant 

with excellent accuracy. In this case, the greatest deviation of the sum from the constant is 

 J. 

( ) constant
n

i i i

i

T V U+ + =∑

iT iV
iU

of 4 elem

40.62 10−⋅
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Figure 2.7 The energy components and energy balance of the falling flexible beam modeled 

using 4 elements. 

 

A comparison of the vertical displacement between the proposed element and that presented by 

Omar and Shabana is shown in Figure 2.8. The results are obtained using 8 elements and good 

agreement can be observed between the models. Using the proposed beam element, a significant 

saving in computation time can be achieved in comparison to using the beam element presented 

by Omar and Shabana. This is due to the fact that fewer nodal coordinates and simpler 

polynomials are needed to identify the element, and the dimensions of the vectors and matrices in 

the calculation are smaller. A comparison of the performance of the elements in terms of relative 

computer time is shown in Table 2.5. 

 

Number of 

lements 

 for the element of 

Omar and Shabana 

CPU time for the proposed 

element 

Table 2.5 The performance of the elements in terms of relative computer time. 

CPU time

e

4 100 % 65 % 

8 100 % 68 % 
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Figure 2.8 A comparison of the vertical displacement between the proposed element and that 

presented by Omar and Shabana using 8 elements. 

 

In the second dynamic problem, the centrifugal stiffening effect in the spinning cantilever beam 

modeled with the proposed elements is under examination. A proper definition of beam 

deformation for the spinning beam demands coupling of the axial force with a bending moment. 

The capability of capturing this so-called geometrical or centrifugal stiffening effect is examined 

by modeling a rapidly spinning flexible beam in Figure 2.9 using the parameters and angular 

displacements reported by Wu and Haug [55]. The beam has a length of 8 m, a width of 1.986·10-

3 m, a height of 3.675·10-2 m, a modulus of elasticity of 6.895 ·1010 N/m2 and a density of 

2766.67 kg/m3. The angular displacement is given as follows: 

 
2

2s s
s

s s

1 2cos 1 ,        
2 2

T tt t T
T
π

π
⎡ ⎤

s
s,                                              

2s

T

Tt t T

ω

θ

ω

⎧ ⎛ ⎞⎛ ⎞⎛ ⎞+ −⎪ <⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟
⎪= ⎨
⎪ ⎛ ⎞− ≥⎜ ⎟⎪ ⎝ ⎠⎩

  (2.35) ⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦  . 
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According to Equation (2.35), the steady state angular velocity is reached after Ts seconds. The 

beam is modeled using three elements and the parameters above. It is important to note that when 

a nonlinear strain-displacement relationship is used instead of a linear relationship for the elastic 

forces of the element, there does not exist any critical angular velocity that could induce unstable 

behavior. This has been demonstrated by Berzeri et al. [56]. The difference between the global 

vertical positions of the endpoints of the modeled beam and the straight shadow beam obtained 

using an angular velocity ωs of 4 rad/s and an acceleration time Ts of 15 s during the simulation 

f 20 s is illustrated in Figure 2.10.  

 

o

l = 8.0 m

y

x

θ (t)

 
Figure 2.9 A rotating flexible cantilever beam. 
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Figure 2.10 The difference of the endpoint vertical displacements between the modeled beam 

 

 useful indicator of the capability of capturing the geometrical stiffening effect is the steady 

and the straight shadow beam.  

A

state axial extension of the beam. The exact solution for the axial extension ux of the beam can be 

written in the following form [57]: 

 

( )
x

tan
1

al
u l

al
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

,        (2.36) 

where 

s
Aa

EA
ρ ω= .         (2.37) 

 

In Equation (2.37) ωs is the steady state angular velocity. The analytical value of the axial 

extension of the beam at the steady state phase in this case is 1.09545·10-4 m. The difference 

between the global horizontal positions of the endpoints of the modeled beam and the straight 
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shadow beam and the value of the axial extension of the beam at the steady state phase are 

depicted in Figure 2.11. 

 

1.095·10-4 m

 
Figure 2.11 The difference of the endpoint horizontal displacements between the modeled 

beam and the straight shadow beam and the axial extension of the rotating beam. 

 

The results shown in Figure 2.11 are in good agreement with the results of References [55, 57]. 

There exist small vibrations during the steady state phase, which was expected in the results of 

Reference [58], where the centrifugal stiffening effect using the absolute nodal coordinate 

formulation is studied. As can be seen from Figure 2.11, the axial extension of the beam 

corresponds with the analytical value with good accuracy. On the basis of these results, a 

capability of automatic accounting of the centrifugal stiffening effect of a spinning beam can be 

reached by using the proposed elements.  
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3 MODELING OF TWO-DIMENSIONAL BELT-DRIVES 

 

The elements [36], [37] and [39], which use the continuum mechanics in the description of the 

elastic forces, suffer from several problems leading to inaccuracies in computation. These 

problems can be listed as follows [41], [43]: 1. Poisson’s locking due to the residual transverse 

normal stresses. 2. Curvature thickness locking due to the element shrinking in bending. 3. Shear 

locking due to the inability of the element to describe constant shear strain if the bending moment 

is linearly varied. 4. Inaccurate description of bending. As shown in the previous chapter, the 

proposed linear element avoids the problems 1…3 and is one possibility to improve the 

performance of the elements based on continuum mechanics. It is usable in most of the 

applications but has still a problem with accuracy in the description of bending because of 

linearity. This problem reduces the effectiveness of the element in the cases where the description 

of the behavior related to bending is a dominant feature. In addition, when the linear elements are 

used to model belt-drives, the contact forces should be solved only at the nodes without the use of 

the distributed contact forces. Therefore, in order to achieve the required accuracy, the number of 

elements should be high in comparison with the use of higher order elements. In fact, the use of 

the proposed linear element in the modeling of belt-drives represents the same category of 

research as the belt-drive studies proposed by Leamy and Wasfy. In the computationally 

reasonable modeling of belt-drives the elements used must be able to be curved along the circular 

shape of pulleys. In order to achieve this feature with a small number of elements, recently 

introduced higher order elements are chosen to be utilized for modeling of belt-drives.  

 

3.1 Formulation of the Shear Deformable Two-Dimensional Belt Element  

 

In the belt-drive applications the belts exhibit a non-isotropic behavior that cannot be captured 

using a conventional beam element. For this reason, it is desirable to formulate an element that 

allows for reducing the bending stiffness of the element. The beam finite element used in this 

study is based on a two-dimensional element originally proposed by Dufva et al. [54]. This shear 

deformable element is based on the absolute nodal coordinate formulation and it includes an 

accurate expression of the elastic forces. In the element, a continuum mechanics approach is 
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utilized in the exact displacement field of the shear deformable beam. This leads to the capability 

of accurately predicting the nonlinear deformations without suffering from shear or Poisson’s 

locking. 

 

The behavior of the belts strongly depends on the kinds of loads they are subjected to. In most of 

the cases, the stiffness of the belt in bending is usually much lower than in axial deformations due 

to the use of the composite material. For this reason, the beam element proposed by Dufva et al. 

[54] is slightly modified to obtain an element with reduced bending stiffness. In the following, 

kinematics and strain measures used to obtain the elastic forces of the element are introduced. 

The position Pr  of an arbitrary particle P in the element can be defined as follows: 

 

vAArr ψγ+= cP .        (3.1) 

 

In Equation (3.1), is the global position of the centerline of the element and the transformation 

matrices 

cr

ψA  and γA  are due to the rotation of the centerline and shear deformation, respectively. 

In Equation (3.1), vector v contained in the cross-section can be written as 

 

[ ]0 Ty=v ,         (3.2) 

 

where y is the location of the particle P on the cross-section of the beam. In the absolute nodal 

coordinate formulation, slopes and displacements are used as the nodal coordinates instead of 

finite or infinitesimal rotations. Due to this fact, the components in rotation matrixes ψA  and γA  

can be described straightforwardly with the help of the shape function matrix and the nodal 

coordinates. The rotation matrix ψA  can be expressed as follows: 

 

ψ ψ ψ⎡= ⎣A t n ⎤⎦ .        (3.3) 
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In Equation (3.3) the vectors ψt  and ψn , shown in Figure 3.1, depend only on the longitudinal 

coordinate x and can be expressed using the global position of the centerline as follows: 

 

c

c

x

x

ψ

∂
∂=
∂
∂

r

t
r

,         (3.4) 

 

ψ ψ=n It ,         (3.5) 

 

where 

 

 .         (3.6)  
0 1
1 0

−⎡
= ⎢
⎣ ⎦

I ⎤
⎥

 

In Equation (3.4) .  denotes the L2 norm. Since the angle that characterizes the shear 

deformation is small, matrix γA  can be calculated by assuming the rotation to be infinitesimal. In 

this case, the rotation matrix γA  can be written as 

 

 ( sinγ )γ≈ +A I I ,        (3.7) 

 

where γ  is a shear angle as shown in Figure 3.1  

 

The position Pr  of an arbitrary particle P of the element in Figure 3.1 can also be defined as 

follows: 
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 P c y= +r r rs ,          (3.8) 

 

where the position of an arbitrary particle P has been decomposed as the sum of the position of 

the point where the centerline intersects the cross-section and a vector contained in the cross-

section. Vectors  and  are not functions of the transverse coordinate y and can be written as 

follows: 

cr sr

 

 
0c y=

=r Se ,            (3.9) 

( )sins ψγ= +r I I It .        (3.10) 

 

In Equation (3.9), S  is the element shape function matrix, which in the case of a shear 

deformable planar beam element contains cubic terms in x and linear terms in y as follows [54]: 

 

[ ]1 2 3 4 5 6S S S S S S=S I I I I I I ,     (3.11) 

where 

2 3
1 1 3 2S ξ ξ= − + , 2 3

2 ( 2S l )ξ ξ ξ= − + ,     ( )3S l η ξη= − , 

2 3
4 3 2S ξ ξ= − , 2 3

5 ( 2 )S l ξ ξ= − + ,     6S lξη= , 

where the non-dimensional quantities are defined as 

 
l
x

=ξ  , 
l
y

=η . 

 

In Equation (3.10), I is an identity matrix, γ  is a shear angle as shown in Figure 3.1 and ψt  is a 

vector that defines the tangent of the beam’s centerline. 
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Figure 3.1 Description of the position of an arbitrary particle, P. 

 

In Equation (3.10), vector rs is obtained by two successive rotations over vector ψt . First, vector 

ψt  is rotated 90 degrees using matrix  leading to a vector I ψn  shown in Figure 3.1 and after 

that, an angle of γ  due to shear deformation.  

 

The linear distribution of the shear angle can be obtained using a method that resembles the 

mixed interpolation technique as follows: 

 

 sin (sin ) (1 ) (sin )I Jx x
l l

γ γ γ≈ − + .      (3.12) 

 

In Equation (3.12), (sin )Iγ  and (sin )Jγ  are related to the nodal points I and J of the element, 

respectively, and x is the longitudinal coordinate of the element [54]. Initially the beam is 

assumed to be coincident with the global coordinate system and not curved. The strain 

components m
xxε  and m

xyε  can be calculated using Green-Lagrange measures as follows: 

 

1 1
2

T
m
xx x x
ε

⎡ ⎤∂ ∂
= ⎢ ∂ ∂⎣ ⎦

r r
− ⎥ ,        (3.13) 
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 1
2

T
m
xy x y

ε
⎡ ⎤∂ ∂

= ⎢ ∂ ∂⎣ ⎦

r r
⎥ .        (3.14) 

 

The strain component m
yyε  in the transverse direction of the beam can be defined employing the 

slope vector ∂r/∂y at the nodal points together with linear interpolation functions, as explained in 

Reference [54]. After algebraic manipulations and excluding the superscripts that refer to the 

number of elements, the terms involved in Equation (2.18) can be rewritten as follows: 

 

 

( ) ( )( )

( ) ( )( )

( )( ) ( )

22
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2 2
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23 4
, , , , , ,

1 1 1
4
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4
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xx c x c x c x c x c x s x

T T T
c x s x c x c x s x s x

T T T
c x s x s x s x s x s x

y

y

y y

ε = − + −

⎡+ + −⎢⎣ ⎦

+ +

r r r r r r

r r r r r r

r r r r r r

+

⎤ +⎥ ,    (3.15) 

 

( ) ( )( ) ( )22 2
, , , ,

1 1 1
4 2 4

m T T T T
xy c x s c x s s x s s x syε = + +r r r r r r r r

2
y .    (3.16) 

 

In Equations (3.15) and (3.16) the term  , where i = c, s is the partial derivative of vector  

with respect to x. Loads that cause bending as well as those that cause elongation of the element 

induce strains in the longitudinal direction. For this reason, the strain energies due to axial and 

bending solicitations are both contained in the first term of Equation (2.18). It is important to note 

that the strain due to axial loads is supposed to be constant along the thickness of the element 

and, consequently, the strain energy per unit of volume due to elongation of the element must be 

independent of the coordinate y.  Moreover, the elongation 

,i xr ir

lε  of the centerline of the element can 

be written as follows [40]: 
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 ( 1
2
1

,, −= xc
T

xcl rrε ) .        (3.17) 

 

According to Equation (3.17), the part of 2m
xxε  corresponding to the strain energy associated with 

an elongation of the element can be easily identified in Equation (3.15). Therefore, in order to 

modify the bending stiffness of the element, coefficients 1α  and 2α  are included determining the 

importance of each term in the equation of the strain energy. Due to the symmetry of the cross-

section of the element, terms that are multiplied by y and y3 in Equations (3.15) and (3.16) vanish 

after integration over the y coordinate. Thus, using Equations (3.15) and (3.16), the first and last 

terms on the right hand side of Equation (2.18) can be written as follows: 

 

 
( ) ( )

( )( ) ( )

2 22 1
, , 2 , ,

22 42
, , , , , ,

1 1
2 2 4

1  1
2 4

m T T
xx c x c x c x s x

V V

T T T
c x c x s x s x s x s x

EE dV

y y

αε α

α

⎡ ⎡= − + +⎢ ⎢⎣⎣

⎤⎤+ − + dV⎥⎥⎦ ⎦

∫ ∫ r r r r

r r r r r r
,  (3.18) 

 

 ( ) ( )2 22 22 2
, ,

1 4 2
2 4 4

m T T
s xy s c x s s x s

V V

k G dV k G y dVα αε ⎡= +⎢⎣ ⎦∫ ∫ r r r r ⎤
⎥ .   (3.19) 

 

Note that since there should be no tangential deformation m
xyε  in a pure axial strength state, the 

part of the energy due to transverse strain is affected by coefficient 2α . As can be seen from 

Equations (3.18) and (3.19), parameters 1α  and 2α can be used to modify the Young modulus 

used to calculate the elastic forces due to axial elongation and the Young modulus used in 

bending deformation. In the case of small strains, parameters 1α  and 2α  linearly affect the axial 

and bending stiffness of the element.  
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3.2 Modeling of the Frictional Contact 

 

In power transmission systems that use belts and pulleys, the belt is constrained to move over the 

surface of the pulley. The contact between both solids must include frictional forces, which are, 

in fact, responsible for the transmission of motion from the pulley to the belt and vice versa. In 

this study, frictional contact between the pulleys and the belt is modeled applying a method that 

is based on the studies of Leamy and Wasfy [1, 25]. In this method, a penalty formulation is 

applied with a Coulomb-like tri-linear creep-rate dependent friction. The advantages of the law 

are numerical stability and physical relevance in the case of small sliding velocity [23].  

 

In the models proposed by Leamy and Wasfy [1, 25], the forces are applied to the nodes of the 

low order elements. A normal reaction force and a tangential friction force are generated when a 

node on the finite element is in contact with the surface of the constraint. The contact forces 

depend significantly on the closest distance between the node and the contact surface. The 

contact exists when the node is inside the contact body. The results of their models, where low 

order elements are used, are based on the discretizations from 38 (154 degrees of freedom) up to 

100 (202 degrees of freedom) elements per half pulley. It is important to reiterate that one of the 

main objectives in this study is to use the absolute nodal coordinate formulation in order to 

decrease the number of the needed elements and degrees of freedom. 

 

In contrast to the study of Leamy and Wasfy, the two-dimensional high order elements used in 

this study are capable of reproducing curved shapes using a small number of elements. It is 

shown in Reference [54] that the use of only four elements enables the bending of a cantilever 

beam into a circle when a certain concentrated moment is applied at the free end. Since the 

element can be curved over the surface of the pulley, in contrast to the linear low order element 

used in the models proposed by Leamy and Wasfy [1, 25], the contact forces do not need to be 

applied at the nodes only. The use of a high order element enables the distribution of the contact 

forces along the length of the element. Although the main idea of the model of the contact forces 

remains the same as in the models of Leamy and Wasfy, the procedure used in this study is subtly 

different, as it is shown in detail in this section. 
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In the contact description, the element is allowed to penetrate the pulley at a certain distance d as 

depicted in Figure 3.2, and, as a result of this penetration, a force which is perpendicular to the 

surface of the pulley and directed along vector n, appears. This force is proportional to the 

penetration d and to its time-derivative . Due to the capability of the high order element of 

adopting a curved configuration, the penetration is a function of the longitudinal coordinate of the 

element, x, and as a consequence, the normal and tangential contact forces also depend on x. Thus 

the distributed normal reaction force  between the pulley and the belt can be written as follows: 

d

nf
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In Equation (3.20), n is the unit normal vector at the contact surface, d denotes the closest 

distance between an arbitrary particle in the element and the contact surface and kp and cp are the 

stiffness and damping coefficient per unit length of the penalty force, respectively.  

 

 
Figure 3.2 Description of the distributed contact forces. 
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Contact searching is executed through evaluation of the penetration distance d of an arbitrary 

particle in the centerline of the element, which can be defined using the following equations: 

 

( ) ( )T
Od R= − − −r r r rO

)

.       (3.21) 

        

In Equation (3.21) R is the radius of the circular constraint, r  the location of an arbitrary particle 

in the centerline of the element, which can be evaluated using the shape function and the vector 

of the nodal coordinates of the element and  is the location of the center of the constraint in the 

global coordinate system. Superscripts that refer to the number of elements have been eliminated 

for simplicity. 

Or

 

The normal unit vector n to the surface of the circular constraint can be expressed as follows: 
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O
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−
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− −

r rn
r r r r

.       (3.22) 

 

In the Coulomb model, tangential forces due to friction are point-wise proportional to the 

modulus of the normal forces. However, considering the pure Coulomb model, the integration of 

the equation of motion results in a cumbersome process. The use of a tri-linear creep-rate law that 

depends on the relative velocity between the contacting surfaces alleviates the friction model 

difficulties; therefore, the resulting system of equations is, in a computational sense, less 

expensive to integrate. 

 

The tangential friction force is governed by the creep-rate dependent frictional law and can be 

expressed as follows: 

 

( )t tvµ= −f nf t .        (3.23) 
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In Equation (3.23) is the distributed tangential friction force, tf ( )tvµ  is the friction coefficient 

that depends on the relative tangent velocity . In addition,  is the unit vector perpendicular to 

the normal  as shown in Figure 3.2, and can be calculated as 

tv t

n

 

 ,          (3.24) =t In

 

where  can be written as introduced in Equation (3.6). The tangent relative velocity between the 

surfaces in contact can be calculated in a straightforward manner since the pulleys are assumed to 

rotate around their center of masses. Assuming that the angular velocity of the pulley is 

I

ω , the 

relative tangent velocity of an arbitrary particle in the centerline of the element can be written as 

follows: 

 

 .        (3.25) (T
tv ω= −t r t)R

        

The dependency of the friction coefficient on the tangent velocity is shown in Figure 3.3. 

 

 
 

Figure 3.3 Tri-linear creep-rate dependent law [23]. 
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The parameter  in Figure 3.3 is the slope of the friction force with respect to tangent velocity at 

small sliding velocities. The angular velocity 

sv

ω  of the pulley is usually an explicit function of 

time for a driver pulley. In contrast, for a driven pulley, the moment equilibrium equation can be 

included in the system of equations of motion considering the angle rotated by the pulley as a 

generalized coordinate. This equation can be written as follows: 

 

 ( )
1 0

( ) ( )
iln

t i
i

aI R d dx Tθ
=

= − × − +∑∫ n f .      (3.26) 

 

In Equation (3.26) I is the mass moment of inertia of the driven pulley, θ  the angular 

acceleration, index i refers to the number of elements, li the length of the element i and Ta the 

possible opposing torque applied by the driven accessories on the constraint. 

 

It is important to note that the model does not place any restriction for the possible slippage of a 

particle in the centerline. The use of the slopes as nodal coordinates enables the element to adopt 

curved configurations. Due to this feature the normal and friction forces can be different from 

particle to particle and, indeed, it should be possible to find areas of slippage and areas of sticking 

within the same element. However, only the kinetic friction is applied in the model excluding the 

existence of adhesion in the contact regions of the belt and the pulleys [23].  

 

The virtual work done by the frictional contact forces can be used to obtain the expression of the 

generalized frictional contact forces. Thus the virtual work of the friction forces can be written as 
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where  is the shape function matrix of the element evaluated at the centerline of the beam 

element, that is,  and  the generalized contact force vector. The integral in Equation 

(3.27) is complicated to evaluate symbolically and, for this reason, a Gaussian quadrature 

integration formula is employed to solve the integral of the virtual work. Since the normal and 

friction forces are not smooth functions, a high enough number of integration points must be 

used. In addition, the number of integration points is related to the accuracy of the definition of 

the slippage area of the element, as long as the information of sliding is obtained at the 

integration points.  

0S

0=y cQ

 

In the finite element assembling procedure, the distributed contact forces are converted to the 

generalized friction contact forces (i.e. equivalent nodal force) as expressed in Equation (3.27). 

This is accomplished using the shape function matrix and it is a crucial step if the belt is modeled 

using a low number of elements. Naturally, in the finite element sense, the use of the distributed 

contact force could be replaced by a large number of discrete forces [11, 23, 25]. The use of the 

distributed contact forces with the high order elements allows reducing the number of elements 

and, therefore, the number of degrees of freedom since the curving of the elements into the 

circular shape of the pulley is no longer vis major. It is worth remarking the importance of using 

a small number of elements to model the contact between the pulley and the belt. The reason 

being that in belt and pulley applications, the distance between the centers of the pulleys, the span 

length, is usually much larger than the arc length of the pulleys. It is also usual that the pulleys 

are very different in size because of changes in velocities and torques. In this case, the smallest 

pulley forces to use an excessive number of elements for the larger one. Hence the total number 

of elements in the model can be considerably decreased with a reduction in the number of 

elements needed per pulley. Since, when using the Lagrangian mesh, all the elements of the belt 

have to come in contact with the pulleys sooner or later, there is no possibility to use different 

element lengths.  

 

When using the absolute nodal coordinate formulation, it is also easy to detect the possibility of 

the element contact before the contact calculation procedure. Then, if the element cannot be in 

contact with a pulley due to its location in the middle of one of the spans, there is no reason to 
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check the forces in the integration points. Neither is there need to find the limits of the contact 

area a priori since eventually the integration point is checked when evaluating the integral in 

Equation (3.27). Based on these features, the proposed model leads to the inclusion of contact in 

a systematic manner using a set of external forces. 

 

3.3 Numerical Examples of the Two-Dimensional Belt-Drive 

 

In this section, the applicability of the absolute nodal coordinate formulation in the modeling of 

belt-drives is demonstrated using static and dynamic examples. The belt is discretized using 

elements that are straight in their initial configuration. Thus once the belt is forced over the 

surface of the pulleys it is expected to have some initial stresses. Then, it is easy to imagine that if 

the belt were released from the pulleys, it would obtain a circular shape in the equilibrium 

configuration due to the bending stiffness even if it has been reduced, as long as all the elements 

have the same properties.  

 

In order to show the capabilities of the absolute nodal coordinate formulation, a static analysis is 

carried out to find the equilibrium configuration. In this example, the belt is studied without the 

pulley contact. The material of the belt is assumed to have a Young’s modulus of 8  N/m 1.0 10⋅ 2, 

a Poisson’s ratio of 0.3 and a mass density of 1,036 kg/m3. The cross-section of the belt is a 0.01-

m-sided square and the length of the belt is assumed to be 1.276 m. Since the static analysis 

involves the numerical solution of a nonlinear system of equations, an initial estimation of the 

solution is needed. In this analysis, the initial configuration of the belt is working conditions, 

which can be seen in Figure 3.4.  In this configuration, the global coordinates of the centers of the 

pulleys, O1 and O2, are (-0.191441 m, 0.0 m) and (0.191441 m, 0.0 m), respectively, and the 

radiuses R1 and R2 of the pulleys are 0.08125 m. 

 

In order to carry out the static analysis, the rigid body motion of the belt must be constrained. To 

this end, point A of the belt is constrained by boundary conditions that eliminate the horizontal 

and vertical displacement. In addition, the boundary conditions are given to eliminate vertical 
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displacement of the node in point B, as shown in Figure 3.4. The belt is discretized using ten 

elements leading to 60 degrees of freedom while the axial and the bending stiffness of the 

elements are affected by the parameters 11 =α  and 2 0.01α = . In Figure 3.5, four different 

configurations of the belt corresponding to different iterations of the Newton-Raphson procedure 

are shown. As can be seen, when convergence is achieved, the configuration of the belt is fully 

circular as expected. It is important to note that the use of only 10 elements enables an accurate 

representation of the initial configuration, iteration 1 in Figure 3.5, and a perfect circle after 

convergence, iteration 55 in Figure 3.5. 

 

 
Figure 3.4 Sketch of the belt in the initial configuration. 

 

 

Figure 3.5 Four shapes of the belt during the iteration process of the static analysis. 
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The use of a set of global variables as nodal coordinates is an advantage in the treatment of 

contact with fixed boundaries. This is due to the fact that the evaluation of the entities involved in 

contact, such as penetration or normal vectors, can be estimated in a very straightforward manner.  

In fact, the pulleys can be treated as circular boundaries, which are in contact with the belt. In 

addition, the absolute nodal coordinate formulation uses a global measure of deformations and 

does not use reference conditions. Thus the absolute nodal coordinate formulation appears to be a 

very suitable approach for the modeling of belt-drives. 

 

In the following examples the performance and the applicability of the absolute nodal coordinate 

formulation for modeling the belt-drive systems is studied using a simple two-pulley belt-drive 

system shown in Figure 3.6. Two identical pulleys compose the belt-drive with similar values for 

center locations O1 and O2, and radiuses, R1 and R2, as in the static example. However, in order to 

generate an initial normal force between the pulleys and the belt that allows the frictional forces 

to transmit the motion, the used length of the belt, 1.2727 m, is slightly smaller than in the static 

example. The parameters of the belt-drive system are shown in Table 3.1.  

 

Lagrange equations can be used to obtain the equations of motion of the belt-drive system. In this 

study, the belt is essentially treated as a beam or a plate whose ends are joined together forming a 

closed loop structure. Due to the use of absolute nodal coordinates, the constraints that come 

from the rigid joint are linear. These linear constraints can be added to the equations of motion by 

the use of Lagrange multipliers. It is worth remarking the convenience of using the absolute 

nodal coordinate formulation when dealing with the Jacobian of the elastic forces [59]. From 

Equation (2.32), it is possible to eliminate the Lagrange multipliers and write the acceleration 

vector of the nodal coordinates as follows:  
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Since the mass matrix and the Jacobian of the constraints, if the linear constraints are not 

eliminated, are constant matrices, the terms in brackets in Equation (3.28) are constant during the 

evaluation of , which is a valuable feature of the absolute nodal coordinate formulation. 

This feature allows for calculating constant terms once in advance and evaluating 

( t,,eeg )
( )t,,eeg  and, 

more significantly, its Jacobian with a small computational cost during the integration. 

 

For belt-drive models, a further simplification of the equations of motion can be achieved when 

using absolute nodal coordinates since it is possible to eliminate the linear constraint equations in 

a straightforward manner. To this end, the first and last element of the belt can be defined in such 

a way that they share the coordinates of the common node. Thus, after eliminating the constraint 

equations, the system equations of motion can be simply written according to Equation (2.27). 

However, no excessive effort is required if the linear constraints are not eliminated. As can be 

seen, both Equations (2.27) and (3.28) present a very simple structure that facilitates the use of 

any standard integrator. 

 

 

 
Figure 3.6 Two-pulley belt-drive system. 
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Table 3.1 Parameters of the studied two-dimensional belt-drive system. 

Belt-drive parameter Symbol Assigned value 

Radius of the driver pulley R1 0.08125 [m] 

Radius of the driven pulley R2 0.08125 [m] 

Span length ls 0.382882 [m] 

Coordinates of the center of the driver pulley O1 (-0.191441, 0.0) [m] 

Coordinates of the center of the driven pulley O2 (0.191441, 0.0) [m] 

Density of the belt material r 1036 [kg/m3] 

Zero-strain cross-section of the belt A 0.01-m-sided square 

Young’s modulus E 1.0 ◊ 108 [N/m2] 

Poisson’s ratio ν 0.3 

Stiffness coefficient of the penalty spring-damper kp 1.0 ◊ 107 [N/m2] 

Damping coefficient of the penalty spring-damper cp 1.0 ◊ 101 [Ns/m2] 

Friction coefficient between the belt and the 

pulley 
m 1.2 

Mass moment of inertia of the driven pulley I 0.1 [kgm2] 

Friction creep-rate factor Sv  1.0 ◊ 105 [ ] kg/m s⋅

Axial stiffness parameter  1α  1.0 

Bending stiffness parameter  2α  0.01 

 

 

The driven pulley only has freedom to rotate about its center and the angular velocity of the 

driver pulley is subjected to the following velocity profile: 

 

 driver
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Due to Equation (3.29), the angular velocity of the driver pulley is linearly ramped from 0 to 12 

rad/s in 0.55 seconds. After that, a constant driver pulley angular velocity is maintained until a 

final simulation time is reached. 

 

Figure 3.7 shows the angular velocity of the driver and driven pulleys during the simulation for 

discretizations of different numbers of elements. As can be seen in the figure, the results obtained 

using 20 (120 degrees of freedom), 25 (150 degrees of freedom) and 30 (180 degrees of freedom) 

elements for the whole belt are practically equal. This observation indicates that convergence is 

achieved with a relatively low number of elements. Based on this result, the model of 20 

elements is considered to be accurate enough for this study and is used in the following examples 

to introduce some comparisons. Thus the model uses only four elements (30 degrees of freedom) 

to discretize half of the pulley, which is significantly smaller than the number of elements and 

degrees of freedom used in the models of Leamy and Wasfy [1, 25].  

 

The amplitude of the oscillations of the angular velocity of the driven pulley around the velocity 

of the driver pulley can be reduced if the stiffness of the belt is increased as shown in Figure 3.8. 

Two different values of the Young modulus, 1.0 ◊ 108 N/m2 and 1.0 ◊ 109 N/m2, have been used to 

obtain the results shown in Figure 3.8, while the other parameters of the model have not been 

changed. 
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Figure 3.7 Angular velocities of the pulleys for different numbers of elements. 

 

 

Figure 3.8 Influence of the stiffness of the belt. 
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Another important parameter of the model is the friction creep-rate factor  since small values 

of this parameter lead to a more computationally efficient integration procedure. However, the 

results can not be acceptable for certain values of  since it may lead to excessive slippage of 

the belt over the pulley and even the inability of the model to react to the changes of the angular 

velocity in the driver pulley. The results of two simulations using the elements with a Young 

modulus of 1.0 ◊ 10

Sv

Sv

9 N/m2 and two different values of , 1.0 ◊ 10Sv 4  and 1.0 ◊ 10kg/m s⋅ 5 

, are shown in Figure 3.9. As can be observed from the figure, the smaller value of  

conduces to a delay in the velocity of the driven pulley when the angular velocity is increasing 

while the higher value of  reduces the slippage leading to more accurate results.  

kg/m s⋅ Sv

Sv

 

 

Figure 3.9 Influence of the parameter . Sv

 

In order to study the friction and normal force distributions over the belt length of the belt-drive, 

the opposite torque Ta is applied to the driven pulley. This torque is implemented using a 

trigonometric expression as follows: 
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In this example, the angular velocity of the driver pulley is increased to the value of 120 rad/s, 

which is a typical running velocity in automotive applications. Furthermore, the initial length of 

1.24437 m, parameter 2α  of 0.001 and the elastic modulus of 1.0 ◊ 109 N/m2 are used in this 

example. The time history response curves of the vertical position of the belt at the midpoint of 

the tight and slack spans for the belt-drive model are shown in Figures 3.10…3.11. When the 

belt-drive system is accelerated, the tight free span has larger vertical displacements than the 

slack free span. The vertical vibration of the belt is smoothly decreased for both spans after the 

driver pulley has obtained the final angular velocity 120 rad/s. The typical tensile force 

distributions of the belt during the acceleration and steady state are illustrated in Figure 3.12. As 

can be concluded from the tension distributions, the difference in the tension of the slack and 

tight free spans corresponds to the torque required by the opposing torque and the mass moment 

of inertia of the driven pulley. The changes of tensions at the inlet and exit regions of the pulleys 

exist as consequences of momentary accelerations and decelerations of the belt. However, these 

changes are essentially smoothed in the steady state.  
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Figure 3.10 Vertical position of the midpoint of the tight span of the belt. 

 

 
Figure 3.11 Vertical position of the midpoint of the slack span of the belt. 
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Figure 3.12 A belt tension in acceleration (t = 0.428 s) and in steady state (t = 0.976 s).  

 

Figure 3.13 and Figure 3.14 illustrate the friction and normal force distributions over the belt 

length of the belt-drive when 30 elements (42 degrees of freedom per half a pulley) and the 

friction creep-rate factor of 1.0 ◊ 104 kg/m s⋅  are used. Correspondingly, Figure 3.15 and Figure 

3.16 show force distributions when the friction creep-rate factor is increased to a value of 1.0 ◊ 

105 . The x-axis of the figures is the belt extended along the horizontal axis. The results 

have been taken at a simulation time of 1 second when the belt and pulley system under 

consideration has achieved the steady state running condition. As can be seen in the figures, the 

creep-rate factor plays an important role in terms of the normal and friction force distributions. 

When the friction creep-rate factor is 1.0 ◊ 10

kg/m s⋅

4 kg/m s⋅ , the force distributions have an 

approximately linear pattern with the exception of the tangential force distribution of the driver 

pulley. The force distributions become more nonlinear when the creep-rate factor is increased to 

1.0 ◊ 105 . This occurrence can be also found from the studies of Leamy and Wasfy [1, 

23, 25]. In this study, however, the friction force has peaks on the arriving (inlet) and leaving 

(exit) zones of the driver pulley. This pattern is emphasized when the creep-rate factor increases. 

In the case of the large creep-rate factor, the peaks in the friction force distribution can be seen 

also in the driven pulley.   

kg/m s⋅
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Figure 3.13 Friction forces for driver and driven pulleys,  = 1.0 ◊ 10Sv 4 . kg/m s⋅

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Normal forces for driver and driven pulleys,  = 1.0 ◊ 10Sv 4 . kg/m s⋅
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Figure 3.15 Friction forces for driver and driven pulleys,  = 1.0 ◊ 10Sv 5 . kg/m s⋅

 

 
Figure 3.16 Normal forces for driver and driven pulleys,  = 1.0 ◊ 10Sv 5 . kg/m s⋅

 

If the value of the friction creep-rate factor  is increased to 1.0 ◊ 10Sv 5 , the sign of the 

relative velocity between the belt and the surface of the driven pulley is changed at the inlet and 

kg/m s⋅
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exit regions of the driven pulley rapidly as illustrated in Figure 3.17. In the figure, the pulley arc 

coordinate is measured counter-clockwise from the inlet contact position. As a consequence, the 

sign of the friction force is changed due to the used tri-linear creep-rate dependent friction law. In 

the steady state, the belt slightly penetrates the pulleys and when a node first contacts and then 

penetrates the surface of a driven pulley, the activating x-component of a normal force slows 

down the velocity of the belt so that the velocity of the belt is temporarily less than the velocity of 

the surface of the driven pulley. In the exit regions, the movement of the belt from the pulley is 

opposed due to a damping force, which causes similar deceleration of the belt as in the inlet 

region. The change of the sign of friction force does not exist on the driver pulley, because the 

velocity of the surface of the driver pulley is permanently at least as high as the velocity of the 

belt. Neither does this feature exist if  has a value of 1.0 ◊ 10Sv 4 , because then the 

velocity of the surface of the driven pulley remains constantly and clearly slower than the 

velocity of the belt due to larger sliding. The angular velocities of the pulleys for different values 

of the parameter  are illustrated in 3.18. 

kg/m s⋅

Sv

 

 
Figure 3.17 Relative velocities of the belt and the pulleys (t = 1 s). 
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Figure 3.18  Angular velocities of the pulleys for different values of the parameter sv . 

 

Figures 3.19…3.20 illustrate the normal force distributions for driven and driver pulleys at five 

different time steps of the simulation. Based on these curves, the positions of the inlet and exit 

points of the contact area do not change significantly. Particularly, the steady state positions of 

the points remain very close to each other.  

 

 
Figure 3.19 Normal force distribution for driven pulley at different time steps. 
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Figure 3.20 Normal force distribution for driver pulley at different time steps. 

 

It is important to note that the belt and pulley system introduced by Leamy and Wasfy [1, 23, 25] 

is different from the one used in this study. In this study, the belt is assembled to the pulleys 

employing the initial strain while in the study of Leamy and Wasfy the assembling is 

accomplished by the spring tensioner. In addition, the interpretation of the friction creep-rate 

factor is different in this study as compared to the study of Leamy and Wasfy. In this study, the 

friction creep-rate factor is referred to as force per unit length being the distributed parameter. In 

the studies of the friction and normal force distributions, the number of integration points used in 

the evaluation of the generalized contact forces was varied. In these examples 5, 7 and 11 

integration points produce identical solutions. 

 

The proposed model is not restricted to pulleys with the same radius and it is capable of 

simulating different variations including, for example, more than two pulleys of different sizes. 

As an example, using the values of the first belt-drive simulation and changing only the radius of 

the driven pulley from 0.08125 m to 0.1218 m, it is possible to show that the quotient between 

the angular velocities approaches the inverse of the quotient of the radiuses, as it is expected. The 

result of this example is illustrated in Figure 3.21. 
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Figure 3.21 Quotient of the angular velocities of pulleys of different sizes. 

 

As demonstrated by numerical examples in this section, the absolute nodal coordinate 

formulation is a potential approach to the analysis of the belt and pulley system. The use of the 

proposed computation procedure for the belt and pulley leads to reduced degrees of freedom as 

compared to previously proposed methods. It is noteworthy, however, that it is not a trivial task 

to find an objective measure for computational efficiency. Even often used CPU time can easily 

be misleading due to different implementation techniques. In the case of the absolute nodal 

coordinate formulation, a number of studies have recently been focused on the improvement of 

the numerical performance of the formulation [59, 60]. Utilizing these improvement proposals, 

the computer implementation of the absolute nodal coordinate formulation can be carried out 

more efficiently in a computational sense. 
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4 MODELING OF THREE-DIMENSIONAL BELT-DRIVES 

 

It is important to point out that in the case of a wide elastic belt and pulleys that have large 

dimensions in the lateral direction, accurate modeling of the system can not be realized by using 

beam elements. This is mainly due to the fact that the nodes of beam elements as well as the 

integration points used to obtain the distribution of the contact forces are located on the centerline 

of the element. In order to be able to accurately describe the geometry of the contact regions, the 

finite elements used must allow a surface description in order to have integration points that can 

be used to obtain an accurate distribution of the contact forces [61].  

 

The objective of this chapter is to develop more general formulations for the nonlinear dynamic 

finite element analysis of belt-drives by proposing three-dimensional belt-like beam and plate 

finite elements based on the absolute nodal coordinate formulation. The plate element relies upon 

a thin plate theory including the effect of geometric nonlinearities that arise from the large 

rotation and deformation of the belt. Bending stiffness can systematically be included in or 

excluded from the element formulation, thereby allowing the studying of the effect of bending on 

the nonlinear dynamics of the belt-drive system. The performance of the belt-like plate element 

formulation is examined by using a simple belt-drive system to study the angular velocities of the 

pulleys, speed and tension of the belt. The finite element solutions are also compared with the 

solutions obtained using simplified analytical techniques. The use of a cable element in the 

modeling of belt-drives is studied in Reference [61]. Due to the simplicity of the formulation of 

the cable element, the cable element based model [62] is more efficient compared to the beam 

element model. However, the cable element model does not include several deformation modes 

that are captured by the beam element, and therefore the use of the cable element in belt-drive 

models is limited. 

 

4.1 Analysis of the Analytical Formulation for the Belt-Drive 

 

In this section, an analytical formulation for the belt-drive is discussed and the main assumptions 

used in this analytical formulation are summarized in order to have an understanding of the basic 
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differences between the simplified analytical formulation and the more general finite element 

solution presented later in this chapter. The material presented in this section is a summary of the 

work presented by Bechtel et al. [5], where a planar model for an extensible belt-pulley system, 

shown in Figure 4.1, is considered. The model includes the effect of inertia, including the 

acceleration due to stretching. Bechtel et al. [5] pointed out that it is important to include the 

effect of the change of the belt stretch since the tension is not uniform and the change in tension 

is accompanied by change in the strain. When the stretching acceleration term is included, the 

two momentum equations in the normal and tangential directions become coupled differential 

equations. In order to be able to solve these equations, one must specify the constitutive equation 

that relates the belt tension to the strain. The radius of the pulleys, the transmitted moment, the 

angular velocity of driving pulley, the initial tension in the belt, the stiffness of the belt, and the 

coefficient of friction between the belt and the pulleys are considered to be specified. Then the 

problem is solved for the angular velocity of the driven pulley, the belt tension and speed, the 

normal and friction forces with the slipping zones on the driving and driven pulleys. The belt 

dynamic equations are formulated in several regions including the slip and stick regions of 

contact between the belt and the driver and driven pulleys and the tight and slack free spans as 

shown in Figure 4.1.  
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Figure 4.1 Assembly of the belt-drive mechanism [5]. 
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Figure 4.2 Portion of belt on pulley [5]. 

 

The analytical equations for determining the belt tension and speed at different contact zones and 

free spans for given values of the velocities in terms of the angular velocities of the pulleys are 

briefly introduced in the following. In the analytical solution, it is assumed that the motion is 

steady in such a way that the conditions at location s shown in Figure 4.1 are independent of 

time. 

 

A free-body diagram of a portion of the belt of length ds at location s, subtending an angle dθ is 

shown in Figure 4.2. The relationship between the axial force and speed of the belt can be written 

as follows [5]: 

 

( )( ) 1o
o

v sT s T k
v

⎛ ⎞
= + −⎜

⎝ ⎠
⎟ .       (4.1) 

 

In Equation (4.1), T is the axial strain in the belt (To in the reference state), k an elastic modulus 

with units of force, v the speed of the belt (vo in the reference state) and s the location of a portion 

of the belt. 

 

The following equation can be determined from the equilibrium of the forces in the tangential and 

normal directions in a portion of the belt: 

 

( )d T Gv d
T Gv

µ θ−
= ±

−
.        (4.2) 
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In Equation (4.2), G is the mass flow rate, dθ  an infinitesimal bending angle of a portion of the 

belt and µ  the coefficient of friction. Equations (4.1) and (4.2) can be solved to determine the 

belt tension and speed at different contact zones.  

 

A free-body diagram of a portion of the belt of length ds at s in the free span is illustrated in 

Figure 4.3. An equilibrium of the forces leads to 

 

T Gv c= + ,         (4.3) 

 

where c is a constant of integration. Note that the constitutive relationship of Equation (4.1) can 

be written as follows: 

 

( ) ( ) ( )o
o

kT s T v s T k
v

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠
o .      (4.4)  

 

By comparing the preceding two equations one can conclude that the mass flow rate G will not, 

in general, be equal to the elastic modulus divided by the reference speed. Therefore, the values 

for T and v in the free spans must be constant. 

 

The values of T and v for a portion of the belt in the free span can be determined by solving 

Equations (4.3) and (4.4). The solutions obtained are presented in detail in the literature [5]. 

 

T dT+

v dv+

ds

v

T

 
Figure 4.3 Portion of belt in a free span [5]. 
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The equations of the belt when it is in contact with the pulleys and during the free span motion 

can be solved to obtain the belt tension and speed for a given radius of the pulleys, a transmitted 

moment angular velocity of the driving pulley, the initial tension in the belt and the coefficient of 

friction. The belt tension and speed as a function of the belt length obtained using the analytical 

model summarized in this section are shown in Figures 4.4 and 4.5. The data used for this model 

are according to Model 2, shown in Table 4.1. The results presented in these figures are obtained 

assuming a belt stiffness k equal to 25 kN. 

 

 
Figure 4.4 Analytical results of the belt speed for a stiff belt (k = 25 kN), Model 2 [5]. 
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Figure 4.5 Analytical results of the belt tension for a stiff belt (k = 25 kN), Model 2 [5]. 

 

The following features of the analytical model can be listed from the formulations and results 

presented in this section and from the more detailed analysis presented in [5] [61]:  

 

1. It is assumed that the motion is steady so that the conditions at location s are 

independent of time. 

 

2. The normal belt acceleration is always zero and there is no separation between the belt 

and the pulleys. This assumption allows obtaining an algebraic equation for the 

equilibrium of the forces in the normal direction. 

 

3. There is no sliding of the belt on the pulleys in the no slip zone. This assumption 

allows using simple boundary conditions to solve the resulting belt equations. 

 

4. The tension and speed in the free spans are constant. These assumptions must hold as 

the result of the used equilibrium and constitutive equations. 
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5. The belt bending and other deformation modes, except for the extension, are 

neglected. 

 

6. The analytical formulation is limited to a simple configuration in which the dynamics 

can not be a function of more general displacements of the pulleys and belt. 

 

In order to eliminate some of the limitations of the analytical model, more general finite element 

formulations that can be implemented in flexible multibody algorithms are used in this study.  

 

Table  4.1 Parameters of the studied belt-drive system. 

Belt-drive parameter Assigned values, Model 1 Assigned values, Model 2  

R 0.10 [m] 0.05 [m] 

ls πR [m] πRp [m] 

lbelt 4πR [m] 4πRp [m] 

w 0.08 [m] 0.04 [m] 

h 0.01 [m] 0.003 [m] 

kp 1.0ּ107
 
[N/m3] 8.0ּ107

 
[N/m3] 

cp 2000 [Ns/m3] 2000 [Ns/m3] 

vs 1.0ּ105 [kg/m2ּ s]  2.0ּ105 [kg/m2ּ s]  

µ 1.2 0.6 

ρ 1036 [kg/m3] 166.667 [kg/m3] 

ν 0.3 0.3 

t0 0.05 [s] 0.05 [s] 

t1 0.60 [s] 1.00 [s] 

ω0 12.0 [rad/s] 500.0 [rad/s] 

I 0.25 [kgm2] 0.00025 [kgm2] 
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4.2 Correlation with the Finite Element Solution 

 

A three-dimensional belt-like large deformation nonlinear finite plate element formulation is 

considered in this study. In the formulation, a thin plate element with four nodes and 36 nodal 

coordinates is used. In order to draw a correlation between the simplified analytical formulation 

discussed in the preceding section and the more general computational finite element formulation 

to be presented in the following sections, one must be able to obtain the tension, i.e. the axial 

force T and the speed v of the particles on the belt. The finite element coordinates and their time 

derivatives are readily available from the solution of the differential equations of motion. Using 

the coordinates and the assumed shape functions of the finite element, one can obtain the Green-

Lagrange strain tensor  of Equation (2.14) at an arbitrary particle on the element. mε

  

It is important to note that in belt drive applications, the belt has an initial stress field and possible 

pre-tensioning when it is wrapped over the pulleys. In order to introduce the initial stress of the 

element, the reference configuration used in Equation  (2.13) is taken as the initial 

undeformed element configuration. From continuum mechanics theory, the Green-Lagrange 

strain tensor must satisfy the following equation [32]: 

 

 
2

1 ( ) 1
2

T m
o

o

dl s
dl

⎧ ⎫⎛ ⎞⎪ ⎪− =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

t ε to ,       (4.5) 

  

where dl(s) is the length of an infinitesimal portion of the belt at location s, dlo is the length of the 

portion in the reference state and to is a unit vector along which dlo is measured. In the case of the 

belt drive, to is considered as the unit tangent vector ,

,

o x
o

o x
=

r
t

r
 with the assumption that x is in 

the direction of the length s of the belt. Note that in the absolute nodal coordinate formulation, 

 is a vector defined in the global frame, which is the same frame in which the Green-

Lagrange strain tensor is defined. The axial strain as a function of the length s can be written as 

follows: 

,o xr
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( )( ) 1
o

dl ss
dl

ε = −

0

o

.        (4.6) 

 

 Using Equations (4.5) and (4.6), one can write the following quadratic equation for the strain: 

 
2 2ε ε α+ − = ,        (4.7) 

 

where . The preceding quadratic equation has the following two solutions: 2 T m
oα = t ε t

 
1
21 (1 )ε α= − ± + .        (4.8) 

 

The second solution is not physically possible because it does not represent a rigid body motion. 

Therefore, the strain ε can be evaluated using the components of the Green-Lagrange strain tensor 

obtained using the finite element solution as  

 
1
21 (1 )ε α= − + + .        (4.9) 

 

This equation will be used to define the belt stretch in the finite element model. Using the 

preceding equation and the longitudinal stiffness of the belt, one can define the belt tension used 

in the analytical formulation. One may also choose to use another definition of the strain, true 

strain tε , as follows: 

 

  t odl dl
dl

ε −
= .         (4.10) 

 

Following a similar procedure as the one used to obtain Equation (4.9), one can present the 

Almansi strain  Aε : 

 
1
21 (1 )A

Aε = − + +α ,        (4.11) 
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where ,

,
2 ,  xT e

A t t t
x

α = =
r

t ε t t
r

 is the tangent defined in the current configuration, and 

( 1 11
2

Te − −= −ε I D D )  is the Eulerian or Almansi strain tensor. The use of the Green strain ε, true 

or engineering strain εt  and Almansi strain Aε  will be examined in this study.  

 

Similarly, the finite element solution can be used to define the velocity vector. In the absolute 

nodal coordinate formulation, the absolute velocity vector v of the particle on the element can be 

written as 

 

= =v r Se ,         (4.12) 

 

and the velocity component v along the tangent to the belt can be obtained as follows: 

 
T
tv = t v .         (4.13) 

 

A speed, i.e. the length of the tangential velocity obtained using the finite element solution, of the 

belt will be compared with the speed predicted using the simplified analytical formulation 

presented in this section. 

 

4.3 Thin Plate Element Formulation 

 

In this section, the plate element based on the absolute nodal coordinate formulation with 36 

degrees of freedom is reviewed [63]. The global and local coordinates used to define the absolute 

position and gradient coordinates for this element are shown in Figure 4.6.  
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Figure 4.6 Plate element dimensions and coordinates [63]. 

 

The use of the thin plate assumption which does not consider the deformation along the element 

thickness is justified for the modeling of belt-drives. Using this assumption, one can develop a 

low order plate element with 36 degrees of freedom since the displacement field of the element 

becomes independent on the spatial coordinate z. It is important to note that the more general 

plate element which can capture shear deformation has 48 degrees of freedom [39]. The normal 

to the mid surface of the plate can be redefined using a cross product of the vectors ,xr  and , 

where subscripts x and y refer to partial derivatives. The nodal coordinate vector for node A of the 

low order plate element is defined as follows: 

, yr

 
TT TA ATA A

x y

⎡ ⎤∂ ∂⎢=
∂ ∂⎢ ⎥⎣ ⎦

r re r ⎥

⎤
⎥⎦

.       (4.14) 

 

The vector of the element nodal coordinates can be written as follows: 

 
TT T T TA B C D⎡= ⎢⎣

e e e e e .      (4.15) 
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The continuity of the gradients at the interface between adjoined elements is not ensured due the 

nonconformity of the element. However, this disadvantage can be avoided if the shape functions 

are tailored for the element by applying the same technique as the one used for the general shell 

element based on the absolute nodal coordinate formulation [39]. 

 

4.3.1 The Elastic Forces of the Plate Element 

 

As presented in Equation (2.20), the element strain energy can be used to construct the vector of 

elastic forces of the element. In the classical nonlinear plate theory [64] the strain energy density 

function is obtained by superimposing components from axial and bending stiffness and thereby 

neglecting the coupling between the axial and bending stiffness. The assumptions of Kirchhoff’s 

thin plate theory lead to the plane stress conditions and deactivation of the effect of the transverse 

shear forces. Using the plane stress assumption, the bending stiffness is expressed in terms of the 

curvatures of the element mid plane [63, 65], the stress components along the thickness direction 

are assumed to be zero and the strains in the thickness direction are a function of the strains 

related to the element mid surface. In this study, belt material is assumed to be isotropic and the 

total strain energy is decomposed as the sum of strain energies due the axial elongation and the 

bending stiffness. The strain energy due to the axial elongation of the element can be defined as 

follows [64]:  

 

( ) ( ) ( )
22

2

12 1
42 1

m m m m m
xx yy xx yy xy

A

EhU dε ε ε ν ε ε ε
ν

⎧ ⎫⎪ ⎪⎛ ⎞= + − − −⎨ ⎬⎜ ⎟
⎝ ⎠− ⎪ ⎪⎩ ⎭

∫ A .  (4.16)  

 

The strain energy function due to the bending stiffness is written as follows [64]:  

 

( ) ( )({ )}2 22 1
2 xx yy xx yy xy

A

DU dκ κ κ ν κ κ κ= + − − −∫ A ,    (4.17) 
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where D is defined as Eh3/12. Nonlinear curvatures obtained using x and y coordinates are 

derived from elementary differential geometry and can be defined using the second derivatives of 

the position vector:  

 

,

, ,

1 , , or
T
ij

ij
i j

i j x yκ = =
r n
n r r

,      (4.18)   

 

where , where i, j = x or y, are second derivatives of the position vector r, n is the normal to 

the element mid surface, 

,ijr

, ,x y= ×n r r  and the vectors ,xr  and , yr  are gradient vectors defined by 

differentiation with respect to the x and y coordinates of the element, respectively. 

 

Accordingly, the total strain energy function of the element is written as follows [63]:  

 

U U Uε κ= + .         (4.19) 

 

The bending stiffness may have an effect on the transverse vibrations and stability of the belt [25] 

although it is obvious that considerably thin belts are used in many applications and in such cases 

the role of the membrane stress is dominant.   

 

4.4 Three-Dimensional Shear Deformable Belt Element Formulation 

 

In this section, the formulations of two three-dimensional shear deformable beam elements are 

introduced in order to obtain elements which can be utilized in the modeling of V-belts. The first 

formulation is a three-dimensional generalization of the linear two-dimensional shear deformable 

beam element introduced in Chapter 2. Using the absolute nodal coordinate formulation, the 

global position vector r of an arbitrary particle in a spatial case can be written as 
 

eSr ),,(  zyx= .        (4.20)  

    

Nine nodal coordinates can be chosen for the node I of a two-node beam element as follows: 
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TT T

T I I
I I y z

⎡ ⎤∂ ∂
= ⎢ ∂ ∂⎣ ⎦

r re r ⎥

]

,       (4.21) 

 

where vector  defines the orientation of the width coordinate of the cross-section of the 

beam [41]. Note that this three-dimensional element resembles the beam formulation introduced 

in Reference [46]. 

zT
I ∂∂ /r

 

The element shape function matrix S can be expressed by using the nodal coordinates and the 

interpolating polynomial as follows:  

 

[ IIIIIIS 654321 SSSSSS=  .     (4.22) 

 

In Equation (4.22), I is a 3 × 3 identity matrix and the element shape functions S1…S6 are 

ξ−=11S ,  )(2 ξηη −= lS ,  )1(3 ξζ −= lS ,  

ξ=4S ,  ξηlS =5 ,   ξζlS =6 , 

where the non-dimensional quantities ξ, η and ζ are defined as follows: 

 
l
x

=ξ  , 
l
y

=η ,  
l
z

=ζ . 

 

The shape functions contain both quadratic terms and terms that are products of one-dimensional 

linear polynomials.  

 

In order to be able to model curved shapes in an efficient way, the element can be modified by 

adding an extra node in the middle of the element as introduced as a planar case in Reference 

[43] or the higher order element recently proposed by Dufva et al. [66] can be used. The element 

proposed by Dufva et al. is based on a similar theory with the two-dimensional shear deformable 
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beam used for the two-dimensional belt-drive examples in Chapter 3. In the element, the position 

 of an arbitrary particle P can be defined as follows: Pr

 
y y y z z z

P c γ ψ γ ψ= + +r r A A v A A v .       (4.23) 

 

In Equation (4.23), the vector  can be written as cr

 

, 0c y z=
=r Se ,         (4.24) 

 

where the vector e for the node I of the element is 

 
TT T T

T I I I
I I x y z

⎡ ⎤∂ ∂ ∂
= ⎢ ∂ ∂ ∂⎣ ⎦

r r re r ⎥ .       (4.25) 

 

The transformation matrices α
γA  and α

ψA , where ,y zα = , are due to the rotation of the centerline 

and shear deformation in the y- and z-directions, respectively. Vectors  and  contained in 

the cross-section of the beam in the initial position can be written as: 

yv zv

  

[ ]0 0y y=v  T ,        (4.26) 

 

[ ]0 0  z Tz=v ,        (4.27) 

 

where y and z are the local coordinates of the particle P in the cross-section of the beam. The 

orthogonal rotation matrices y
ψA  and z

ψA  created from the tangent frames can be expressed as 

follows: 

 
y y y y
ψ ψ ψ ψ⎡= ⎣A t n b ⎤⎦ ,        (4.28) 
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z z z z
ψ ψ ψ ψ⎡= ⎣A t n b ⎤⎦ .        (4.29) 

 

In Equations (4.28…4.29) the vectors α
ψt , α

ψn  and α
ψb , where ,y zα = , can be written as: 

 

,

,

xy

x
ψ =

r
t

r
, ,

,

y
xy

y
x

ψ
ψ

ψ

×
=

×

t r
b

t r
, y y y

ψ ψ ψ= ×n b t , 

 

z y
ψ ψ=t t , ,

,

z
xz

z
x

ψ
ψ

ψ

×
=

×

r t
n

r t
, z z z

ψ ψ ψ= ×b t n . 

 

Since the angles that characterizes the shear deformations are small, the rotation matrices y
γA  and 

z
γA  can be determined with the help of linearized Rodriquez formula as follows: 

 

1 0 sin
0 1 0

sin 0 1

y

y

y
γ

γ

γ

⎡ ⎤
⎢= ⎢
⎢ ⎥−⎣ ⎦

A ⎥
⎥

0

1

⎥
⎥

,       (4.30) 

 

1 sin
sin 1 0

0 0

z

z z
γ

γ
γ

⎡ ⎤−
⎢= ⎢
⎢ ⎥⎣ ⎦

A .       (4.31) 

 

The components of the shear angles shown in Figure 4.7 are simply interpolated over the element 

as follows: 

 

sin (sin ) (1 ) (sin )y y I y Jx x
l l

γ γ γ≈ − + ,     (4.32) 

 

sin (sin ) (1 ) (sin )z z I z Jx x
l l

γ γ γ≈ − + .      (4.33) 



 97

yγ zγ

Tangential plane
Cross-sectional plane

X
Y

Z

 
Figure 4.7 The shear angles of the element. 

 

The strain energy is expressed with the components of the strain tensor as follows: 

 

( )2 2 2 2 2 21  (  ) 4 (  
2 xx yy zz s xy s xz yz

V

U E G k kε ε ε ε ε ε⎡ ⎤= + + + + +⎣ ⎦∫ dV .   (4.34) 

 

Initially the beam is assumed to be coincident with the global coordinate system and not curved. 

The strain components m
xxε  and m

xyε  are calculated using Equations (3.13) and (3.14). Accordingly, 

the strain component m
xzε  can be written in the following form: 

 

 1 1
2

T
m
xz x z
ε

⎡ ⎤∂ ∂
= ⎢ ∂ ∂⎣ ⎦

r r
− ⎥ .        (4.35) 

 

The rest of the strain components of Equation (4.34) are approximated using linear interpolation 

[54]. For example, the strain component m
yyε  can be defined as follows: 

 

 1
I J

m
yy

x x
l y l y

ε ∂ ∂⎛ ⎞= − + −⎜ ⎟ ∂ ∂⎝ ⎠

r r 1 .      (4.36) 
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The strain components achieved using Green-Lagrange measures are modified in order to obtain 

a belt-like element with reduced bending stiffness around the y- and z-axis by adding coefficients 

1α  and 2α  to determine the magnitude of each term of the strain energy similarly to the 

procedure introduced in Chapter 3. According to Figure 4.8, the following definition for the 

position vector r can be used: 

 
y

c sy z= + +r r r r z
s ,        (4.37) 

 

where  

 

0
1
0

y y y
s γ ψ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

r A A ,        (4.38) 

 

0
0
1

z z z
s γ ψ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

r A A .        (4.39) 

X

Y

Z

P

Pr

cr

y
syr

y
sr

z
szr

z
sr

Tangent plane
Cross -section plane

 
Figure 4.8 Description of the position of an arbitrary particle P on the cross-section of the 

element. 
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m
xxε , m

xyε  and m
xzεThe terms of Equation (4.34) which are related to the strain components  can be 

written as follows: re

 

( )

( )( )( )(
( ) ( ))

( )

2
2 1 2

, , , ,
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2
, , , , , ,

2 2
, , , , , ,

2 42
, ,

1 E 1
2 2 4

1
4

4

m T zT z
xx c x c x c x c x

V V

T zT z yT y
c x s x c x s x s x s x

T zT y yT z
c x s x s x s x c x s x

yT y
s x s x

E dV z

z z

z z y

y dV

α αε
α

α

α

⎡ ⎛ ⎞⎛ ⎞⎢= + + − +⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎝ ⎠⎣

+ + + − +

+ + + +

⎤+ ⎥⎦

∫ ∫ r r r r

r r r r r r

r r r r r r

r r

,  (4.40) 

 

( )( )22 2 22
, , ,

1 4 2
2 4

m T zT y yT y
s xy s c x s x s s x s

V V

k G dV k G z y dVαε ⎡ ⎤= + +⎢ ⎥⎣ ⎦∫ ∫ r r r r r2 2 ,  (4.41) 

 

( )( )22 2 22
, , ,

1 4 2
2 4

m T zT z yT
s xz s c x s x s s x s

V V

k G dV k G z y dVαε ⎡ ⎤= + +⎢ ⎥⎣ ⎦∫ ∫ r r r r r2 2z .  (4.42) 

  

It is essential to note that the beam element can be used to analyze V-belts since the three-

mensional element can take surface forces into account. It is also noteworthy that the beam 

 Modeling of the Frictional Contact 

 

lt and the pulley surface used in this section is based 

n the model proposed by Wasfy and Leamy [1, 25] and the generalization of the use for higher 

di

element can describe the deformation of a cross-section [41]. The implementation of these 

elements to the models of belt-drives is not carried out in this work and should be done in the 

future. 

 

4.5

The frictional contact force between the be

o

order elements based on the absolute nodal coordinate formulation with the distributed frictional 

forces used to derive the equivalent nodal forces [31]. The penetration at the point of contact 
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between the belt and the pulley is used in the formulation of the normal forces which are included 

in the dynamic formulation by the penalty method. 

 

The penetration d and the time rate d  of penetration are defined in the direction of the surface 

ormal n. The penetration at a contact point can be determined as follows:  n

 

pd R= − N ,         (4.43) 

where N defines the p e 

lley. In a general three-dimensional case, the normal vector N can be defined as illustrated in 

−r r p p .        (4.44) 

 

In Equation (4.44) r p e 

lobal position vector of the pulley center and p a unit vector along the pulley axis. 

  

 position of an arbitrary particle on the element and R is the radius of th

pu

Figure 4.9: 

  

=N ( )T
n n

n p= −r r , r is a global position vector of a particle on the element, r  th

g

 

r nr
pRN
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Figure 4.9 Definition of the contact point [61]. 

 

 of a plate element with the length l and the 

idth w can be written as [31]: 

The virtual work of the contact forces in the case

w
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w l

T ( ) ( )
0 0 0 0

w l
T T T

n t n t cW dxdy dxdy∂ = ∂ + =∂ + = ∂∫ ∫ ∫ ∫r f f e S f f e Q .  (4.45) 

 

Generally contact conditions, velocities and forces are different from one particle to another on 

e element and therefore it is essential to determine the contact forces at different locations. In 

 Numerical Examples of the Three-Dimensional Belt-Drive 

 

onsists of two pulleys and a 

exible belt as shown in Figure 4.1. In order to produce the initial stress in the belt, the 

terial parameters of Model 2 are approximated from the data presented in 

eference [5], where the analytical formulation with assumptions of planar configuration and a 

th

the numerical implementation, the contact forces can be calculated using Gauss integration points 

[31] or other discrete points [61]. 

 

4.6

The three-dimensional belt-drive used in the numerical examples c

fl

undeformed configuration is used as the reference configuration for the evaluation of the elastic 

forces of the element. As can be seen in Table 4.1 shown in Section 4.1, differences between the 

two models used, Model 1 and Model 2, are related to the values of the parameters, while the 

structures are identical. 

 

The geometrical and ma

R

steady state condition is studied. The number of discrete points used to evaluate the contact 

forces is 81 in every following example. In the numerical examples presented in this section, the 

angular velocity of the driving pulley is determined according to Equation (3.29) with varying 

values for nominal angular velocity of the driving pulley and time. Since the tension of the belt 

has an essential role on the contact forces between the belt and pulleys, it is important to achieve 

sufficient initial tension. In Model I, the belt tension is controlled at the beginning of the 

simulation by defining the displacement of the driver pulley in the x -direction using the 

following function:  
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0
0

0

0

,   

,     

u t t t
tu
u t t

⎧ <⎪= ⎨
⎪ >⎩ 0

,        (4.46) 

 

here u0 is the steady state displacement of the driver pulley.  

 the first example, Model 1, Young’s modulus is  and the initial displacement u0 

r the angular velocity of the driven pulley 

w

 

In 7 21.0 10  N/m⋅

of the driver pulley is 0.0025 m. The solution fo

obtained using 16 plate elements (288 degrees of freedom) is shown in Figure 4.10. The low 

value of Young’s modulus can be seen as a noticeable difference between the angular velocities 

of the driver and driven pulleys due to the slipping during the acceleration period. This result 

agrees well with the results reported in the section of the two-dimensional belt-drive, where the 

connections between the velocities of the driver and driven pulleys, Young’s modulus and the 

coefficient vs were presented. 

 

 
Figure 4.10 Angular velocity of the driven pulley using 16 plate elements [61]. 

 



 103

In order to study the dynamics of the high-speed belt-drive, the parameters of Model 2 are used 

with Young’s modulus of . The effect of the bending deformation is neglected 

in this example due to the thinness of the belt. In addition, the initial tension, i.e. the axial force, 

of the belt is obtained by using a belt length shorter than the length required by the drive 

geometry instead of moving the driven pulley. According to Reference [5], the initial axial force 

in the belt is 50 N. The opposite torque T

61.6667 10  N/m⋅ 2

a is applied to the driven pulley using the following 

trigonometric expression: 

 

0,                         0.05                             

1 cos ,           0.05 1.0 .                 
1.0

2,                        0.6                                

a

if t
tT if t

if t

π
≤⎧

⎪⎪= − < ≤⎨
⎪

<⎪⎩

   (4.47) 

 

The analytical belt tension according to Reference [5] is illustrated in Figure  4.11, while Figure 

4.12 shows the belt tension obtained using 20 plate elements (360 degrees of freedom) with three 

different strain descriptions. The analytical result and the finite element prediction of the belt 

speed distribution are displayed correspondingly in Figures 4.14 and 4.15. Strain and speed 

distributions are computed along the belt edge (y = 0) using 20 points on each element of the belt. 

 

 
Figure 4.11 Analytical distribution of tension for a compliant belt (k = 0.2 kN), Model 2 [5]. 
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Figure 4.12 Tension on the belt for a compliant belt (k = 0.2 kN) using different strain 

definitions, Model 2 [61]. 

 

 
Figure 4.13 Determinant of the Jacobian, Model 2 [61].  

 



 105

 
Figure 4.14 Analytical distribution of belt speed for a compliant belt (k = 0.2 kN), Model 2 [5]. 

 

 
Figure 4.15 Belt speed distribution of the belt-drive model for a compliant belt (k = 0.2 kN), 

Model 2 [61]. 
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Figures  4.11…4.15 illustrate that the belt-drive model predicts higher values of the tension and 

speed of the belt for the slack free span region, but otherwise the results agree satisfyingly. The 

different assumptions in the analytical and numerical models can be seen as the main source for 

the differences in the results. As usual, the behavior of the belt-drive model is not as stable as 

predicted by the analytical model; some oscillation can be perceived in the results of Figures 4.12 

and 4.15. The remarkable differences between the three strain definitions used can be explained 

by the large deformations in the belt. It is commonly known that the strain measures may lead to 

significant differences in cases of large deformation. The determinant of the Jacobian, shown in 

Figure 4.13, illustrates the magnitude of the deformation along the belt length. The more the 

value of the determinant differs from 1, the more deformation and larger differences between 

different strain measures exist. It can also be noted, that the tensions provided by the different 

strain measures do not satisfy the torque equilibrium of the driven pulley with the applied 

opposing torque of 2 Nm. The Green strain measure provides only the torque of 1.4 Nm while the 

other measures predict even smaller values of the torque. Due to the constant velocity of the 

driven pulley during the steady state, it can be concluded that the contact model used produce 

higher torque on the driven pulley than depicted by the tension distributions of the belt. 

 

The results presented in Figure 4.16 show clearly that the belt is not able to transmit the moment 

required by the opposing torque without considerable slipping between the belt and driven pulley. 

The angular velocity of the driven pulley in the steady state is approximately 10 % lower in 

comparison to the corresponding value of the driver pulley. In Reference [5] it is assumed that the 

belt attaching the driver or driven pulley does not slip and therefore the angular velocity of the 

pulleys are determined as follows: 

 

,    tight slack
driver driven

v v
R R

ω ω= = .       (4.48) 

 

In Equation (4.48)  are the speeds of tight and slack free spans, respectively. 

According to Figure 4.14 and Equation (4.48), the angular velocity of the driven pulley in the 

steady state condition can be found to be approximately 14.6 % lower than the angular velocity of 

 and tight slackv v
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the driver pulley. Therefore, the analytical model predicts even more slipping on the driven 

pulley than the numerical belt-drive model. 

 

 
Figure 4.16 Angular velocity of the pulleys of the belt-drive model, Model 2 [61].  

 

The distributions of the friction and normal contact forces over the belt length of the belt-drive 

using two different analytical models and the plate element formulation are illustrated in Figures  

4.17…4.18. The difference between the analytical full and capstan models is that in the analytical 

capstan model the inertia contributions in the momentum equations are neglected. The force 

distributions are computed along the centreline of the element (y = 0.02 m). As can be seen, there 

exist some oscillation of the friction force provided by the numerical model, and the force 

distributions of the numerical model agree more accurately with the analytical capstan model 

than the analytical full model. It is important to note, that when the friction force is integrated 

over the active contact area of the driven pulley and multiplied by the radius of the pulley, the 

moment corresponding to the applied opposing torque is achieved. The overshoots of the normal 

force distribution of the numerical model are due to negative damping forces and do not have an 

impressive effect to the global response as explained in Reference [5]. 
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Figure 4.17 Friction force distributions for the analytical and numerical models for a compliant 

belt (k = 0.2 kN), Model 2 [5], [61]. 

 

 
Figure 4.18 Normal force distributions for the analytical and numerical models for a compliant 

belt (k = 0.2 kN), Model 2 [5], [61]. 
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Based on the results presented in this section, it can be concluded that by using the thin plate 

element based on the absolute nodal coordinate formulation, belt-drives can be modeled with a 

significantly low number of elements. In the future, the belt-drive with stiffer belt modeled using 

the plate elements would be worth of studying in order to find out the effect of the strain 

magnitude to the results, especially to tension distributions. However, with the advanced features 

of the absolute nodal coordinate formulation, the models of the belt-drives become more efficient 

in comparison to the models with traditional finite elements and also with the plate elements 

based on the general absolute nodal coordinate formulation that employ full parameterization. 
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5 CONCLUSIONS 

 

The first objective of this study was to develop a computationally efficient two-dimensional shear 

deformable beam element based on the absolute nodal coordinate formulation. It was perceived 

that although the displacement field of the previously proposed beam element based on the 

absolute nodal coordinate formulation includes a cubic interpolation polynomial in the axial 

direction of the displacement, the element exhibits linear bending behavior, i.e. a constant 

bending moment distribution along the longitudinal coordinate. Therefore, the advantage of the 

third-order polynomial expansion is debatable. The proposed beam element uses a linear 

displacement field neglecting higher-order terms and a reduced number of nodal coordinates, 

which leads to fewer degrees of freedom in a finite element. In the proposed element, the 

expression of the elastic forces is nonlinear. The accompanying defects of the phenomenon 

known as shear locking were avoided through the adoption of selective integration within the 

numerical integration method. For the proposed element, integration in closed form was used to 

evaluate the contribution of normal and shear strains over the cross-section of the element while 

the numerical integration method with one Gauss point was used to evaluate the contribution of 

strains in the axial direction. By using this combination, the element locking was eliminated and 

an accurate and fast convergence was achieved. In addition, the use of complicated cross-sections 

of the elements was not restricted. 

 

Several numerical examples, including both static and dynamic tests, were used to demonstrate 

the functionality and usability of the proposed beam model. The results were compared to the 

results of a commercial finite element code ANSYS, the results of the previously published beam 

element model by Omar and Shabana and analytical results. Generally, the results in the cases of 

linear and non-linear deformations were in good agreement. On the other hand, it is clear that 

neither the proposed elements nor the element of Omar and Shabana achieve good results with 

one element. However, the use of elements as simple as possible is popular due to their 

straightforward implementation and computational efficiency. For non-linear deformations, the 

discrepancies between the different models increased when the height of the beam 

simultaneously with the role of shear strain was increased. In the studied cases, the computing 
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times of the iterations were two times faster using the proposed elements than using the elements 

of Omar and Shabana.  

 

In the case of a simple pendulum, the results of the proposed beam element demonstrated good 

functionality. The energy balance of the dynamic model remained exactly constant, and the 

results were in good agreement with the beam model of Omar and Shabana with less 

computational effort. The results of the spinning beam showed that realistic modeling of large 

rigid body motion and a capability of automatic accounting of the centrifugal stiffening effect of 

a spinning beam were reached by using the proposed elements. For these reasons, the proposed 

beam element is potential and provides groundwork for future development of the absolute nodal 

coordinate formulation. 

 

The second objective of this study was to find out the applicability of the absolute nodal 

coordinate formulation to model the simple belt-drive system as two- and three-dimensional 

cases. The general requirements for the successful and efficient analysis of the belt-drive system 

are the exact modeling of the rigid body inertia during an arbitrary rigid body motion, the 

consideration of the effect of the shear deformation, the exact description of the highly nonlinear 

deformations and a simple and realistic description of the contact. All these requirements were 

fulfilled by utilizing a recently proposed two-dimensional shear deformable beam element [54]. 

Based on this element, a belt-like element was developed in this study. The new element allows 

the user to control the axial and bending stiffness through the use of two parameters. Thus the 

new element is capable of presenting a very high stiffness in axial solicitation as well as of 

opposing a small resistance to bending, just as a piece of a typical belt. The formulations of two 

three-dimensional shear deformable beam elements, which could be applied to the modeling of 

V-belts, were also presented. 

 

The use of a thin plate element based on the absolute nodal coordinate formulation in the 

nonlinear dynamic analysis of belt-drives was also studied in this work. This reduced order 

element has a constant mass matrix and is able to describe an arbitrary rigid body displacement. 

Therefore it can be used with a non-incremental solution procedure and can be implemented in 

general purpose flexible multi-body algorithms. The effect of bending can be included or 
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excluded and the element provides additional degrees of freedom that can be important in the 

future in the study of three-dimensional dynamics phenomena that result, for example, from the 

rotation of the belt about its longitudinal axis. The plate formulation also allows using a surface 

distribution of the contact forces which can not be obtained using beam elements since these 

elements are represented by their centerline.  

 

The implementation in flexible multi-body algorithms is crucial, particularly when more general 

belt- drive configurations and loading conditions are considered. The equations of motion of the 

belt-drive were developed using the Lagrangian formulation. The contact between the belt and 

the pulleys was modeled using an elastic approach which is based on a tri-linear Coulomb-like 

friction model previously proposed in the literature. This procedure uses the penetration of the 

belt inside the pulley to calculate the normal and friction forces involved in contact. Therefore, no 

constraint equations need to be added to the equations of motion of the system. Due to the use of 

high order elements, the contact forces can be distributed along the length of the beam and along 

the surface of the plate element instead of concentrating them at the nodes as it has been done in 

the literature [1, 23, 25]. With this contribution to the contact model there was no need to use a 

high number of nodes for the realistic representation of the boundary of the pulley. 

 

Several numerical examples, including both static and dynamic tests, were used to demonstrate 

the functionality and usability of the absolute nodal coordinate formulation in the modeling of the 

belt-drive system. The numerical results showed that by using the distributed contact forces and 

high order elements based on the absolute nodal coordinate formulation, the realistic behavior of 

the belt-drives can be obtained with a significantly smaller number of elements and degrees of 

freedom in comparison to the previously published finite element models of belt-drives. The 

results of the examples demonstrated a good functionality and suitability of the absolute nodal 

coordinate formulation for the computationally efficient and realistic modeling of belt-drives. 

 

It is interesting to notice the analogy between the belt-drives and calendaring in the paper making 

process. There are many critical and challenging applications in paper and metal industry, where 

the passage of an elastic strip or sheet of material through the nip between different kinds of 

rollers is included. The theory and methods used in modeling the belt-drives are potentially 
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utilizable and worth extending to the modeling of calendering in the paper making process. It is 

clear that further studies of more complex belt-drive applications require also investing energy in 

the development of numerical procedures, especially in the area of numerical integration 

methods, and extensive and careful verifications of the responses from the numerical and 

analytical models with measurements from suitable prototypes. In addition, more realistic friction 

descriptions and the models of composite materials are the essential areas of the research in the 

future. 
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