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This thesis studies gray-level distance transforms, particularly the Distance Transform
on Curved Space (DTOCS). The transform is produced by calculating distances on a
gray-level surface. The DTOCS is improved by defining more accurate local distances,
and developing a faster transformation algorithm. The Optimal DTOCS enhances the
locally Euclidean Weighted DTOCS (WDTOCS) with local distance coefficients, which
minimize the maximum error from the Euclidean distance in the image plane, and pro-
duce more accurate global distance values. Convergence properties of the traditional
mask operation, or sequential local transformation, and the ordered propagation ap-
proach are analyzed, and compared to the new efficient priority pixel queue algorithm.

The Route DTOCS algorithm developed in this work can be used to find and visual-
ize shortest routes between two points, or two point sets, along a varying height surface.
In a digital image, there can be several paths sharing the same minimal length, and the
Route DTOCS visualizes them all. A single optimal path can be extracted from the
route set using a simple backtracking algorithm.

A new extension of the priority pixel queue algorithm produces the nearest neighbor
transform, or Voronoi or Dirichlet tessellation, simultaneously with the distance map.
The transformation divides the image into regions so that each pixel belongs to the re-
gion surrounding the reference point, which is nearest according to the distance definition
used.

Applications and application ideas for the DTOCS and its extensions are presented,
including obstacle avoidance, image compression and surface roughness evaluation.

Keywords: distance transforms, gray-level distance transforms, nearest neighbor trans-
forms, shortest paths, minimal geodesics, image analysis
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SYMBOLS AND ABBREVIATIONS

Gray-level value of pixel p
Calculation area and its complement,

Set of 4-connected edge neighbors of pixel p (also called face or square
or horizontal/vertical neighbors)

Set of all 8 neighbors of pixel p (4 edge neighbors, 4 vertex neighbors)
Set of vertex neighbors of pixel p (also called diagonal neighbors)
Local distance between subsequent pixels p; and p;—; on a digital path

Local distance between mask pixel p and mask center pixel

Distance value of pixel z before distance transformation

Distance value of x after one pass of sequential local transformation
Final distance value of x

Distance value of x calculated from reference pixel a

Distance value of x calculated from reference pixel set A

Route distance image F; (x) + F; (x) or Fj(x) + Fi(x)

Shortest route between pixels a and b

Shortest route between pixel sets A and B



1D

2D

3D

DT

DTOCS

FDT

GRAYMAT

MM

NNT

PDT

SKIZ

SLT

WDTOCS

One dimensional

Two dimensional

Three dimensional

Distance Transform

Distance Transform on Curved Space
Fuzzy Distance Transform
Gray-weighted Medial Axis Transform
Mathematical Morphology

Nearest Neighbor Transform
Propagated Distance Transform
Skeleton by Influence Zones

Sequential Local Transformation

Weighted Distance Transform on Curved Space
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CHAPTER [

Introduction

Distance is a fundamental concept in image analysis. The size and shape of an object
can be used to detect or classify the object in a machine vision application, and distance
information can be utilized in measuring both features. A distance transformation, as
introduced already in 1966 by Rosenfeld and Pfaltz [47], is an operation, which determines
the distance from every picture element, or pixel, to a given subset of pixels. The result,
which is called a distance transform (DT), or a distance map, is an image, where the value
of a pixel indicates its distance to the nearest feature or background pixel, depending on
how the calculation area is defined. If distances are calculated from the background into
the object, the maximum distance value provides an approximation of the size, or the
smaller dimension of the object, like the width of an elongated object.

DTs belong to the fields of digital geometry and mathematical morphology. Digital
geometry, or the geometry of the computer screen, is an application of discrete geometry.
Digital images are inherently discrete, as they are represented using an evenly spaced
grid of pixels. The resolution of the computer screen or the printer determines how fine
shapes can be drawn, but regardless of how high the resolution is, Euclidean geometry
dealing with continuous lines and shapes is not directly applicable.

Mathematical morphology (MM) is a theory for the analysis of spatial structures [62,
p. 1]. The term morphology refers to the shape or the structure of an object, and is used
in biology for the branch that deals with the form of living organisms and their parts. MM
aims at analyzing the shape of objects using mathematical tools, like set theory, integral
geometry, and lattice algebra. Originally, MM was defined for continuous Euclidean
spaces, but image analysis techniques rely on the extension of MM to discrete spaces.
The basic morphological operations, the erosion, which effectively peels off pixel layers
from an object, and the dilation, which expands the object, are closely linked to DTs. In
the case of binary images, the simplest DT is a sequence of erosions, where the number
of erosions needed to remove a pixel from the object set, defines its distance value.

The aim of this thesis is to study DTs and transformation algorithms, with an emphasis
on gray-level DTs. Particularly, the Distance Transform on Curved Space (DTOCS) is
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12 1. Introduction

Figure 1.1: A 3D object (left) and a 3D visualization of the gray-level surface
representation of the same shape (right).

studied, and developed further. The DTOCS, developed by Toivanen [68], [69], approx-
imates distances along a gray-level surface, when gray-levels are understood as height
values. The images are treated as height maps, where low gray-values (black and dark
pixels) indicate low areas, and high gray-values (white and light pixels) indicate high
areas. The distance values resemble geodesic distances defined in geography, that is, the
distance between two points on a surface is the length of the shortest path along the
varying height terrain between the points. The length of a digital path is approximated
by summing the lengths of local steps between pixels along the path, and the step lengths
are defined using two terms, one for the horizontal displacement and one for the height
difference between the two pixels.

Gray-level surfaces, for which the DTOCS is defined, are slightly simpler than digital
surfaces in general, as there can be only one height value for each coordinate in the
image plane. Digital surfaces of 3D objects consist of all the object voxel faces, which
are connected to the background in the 3D space, and these voxel faces are called surface
pixels [46]. An example of a 3D object consisting of 22 voxels is shown to the left in
Figure 1.1. Representing the object requires a volume of size 3 x 3 x 4, and each voxel
face visible from any direction belongs to the 3D surface of the object. For example,
the single voxel on top has 5 visible faces, contributing to 5 surface pixels in the 3D
surface of the object. The gray-level surface of the same 3D shape is visualized to the
right in Figure 1.1. The gray-level image representing the surface consists of only 3 x 3
pixels, whose values correspond to the heights of the vertical boxes shown in the image.
A gray-level surface can always be transformed into a 3D voxel image, but a 3D object
can be represented as a gray-level surface only if it is a so called umbra, a solid set which
extends unbroken indefinitely in the negative z-direction [63]. In practise, the object
must extend unbroken until its flat base, so that the third dimension can be described
with a single parameter, the height z of the object at coordinates (x,y). If any part of
an object is not visible when viewing the object in the direction of the negative z-axis,
the object is not an umbra, and the DTOCS approach can not be applied.

The DTOCS can be applied to any gray-level images, but true distances are approximated
only if the image is a height map representing a 3D surface. In practise, range images,
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where each gray-value corresponds to the height z of the surface at location (z,y) in the
image plane, must be used. Range images, which are also referred to as depth images,
surface profiles, or 2 1/2 dimensional images, fulfill the conditions of an umbra, and can be
acquired by special sensors, like sonars or laser scanners [71, pp. 16, 41]. Similar surface
images can be constructed, for example, by interpolating altitude contours in a terrain
map. The height information, or the distance from the sensor to the measured surface, is
scaled and represented using gray-levels so that the difference between consecutive gray-
levels corresponds to the horizontal distance between pixels. Alternatively, the input
image can be scaled to make height differences and horizontal distances comparable.

Other gray-level DTs use the gray-value as the cost of traversing the pixel, so if the gray-
level image is viewed as a height map, low lying paths are preferred, rather than shortest
paths along the surface. The paths are not stored by the basic transformation algorithms.
Only the distance values, that is, the lengths of the shortest paths are calculated. The
Route DTOCS algorithm presented in this thesis finds and visualizes the shortest paths.
Obvious applications are in terrain navigation, for example, in orienteering, or in planning
a route for a new railroad or highway. Obstacle avoidance, with obstacles that can
be crossed with a higher cost in addition to completely restricted areas, can also be
implemented using the DTOCS.

In distance transformations, distance values are typically calculated by conveying local
distances inside a mask to obtain the sum of the local distances between pixels along a
digital path. In DTs of binary images, the local distances are defined based on distances
between pixels in the flat image plane. The transforms are here often called binary DTs,
even though the resulting distance maps are gray-level images. In the DTOCS and other
gray-level DTs, the pixel values in the gray-level input image are used in the local distance
definitions. In this work, the DTOCS was improved by redefining the local distance values
to obtain more accurate approximations for global distances. Also, a new priority pixel
queue algorithm for calculating the DTOCS was developed, and demonstrated to be
more efficient than the traditional chamfering, or sequential local transformation (SLT).
The main focus of this basic research is on analyzing and improving the DT itself, but
practical image processing applications were also explored. Image compression was the
first, and before this research the only application of the DTOCS. It is based on the idea
that the DTOCS measures the amount of variation on the image surface, so that more
data can be stored from locations with abrupt changes [68], [70]. Similar ideas can be
utilized in evaluating surface roughness, and a DT based method for measuring surface
roughness is outlined in this thesis.

The thesis is divided into eight chapters. Chapter 2 explains the basic concepts behind
DTs, including the definition of the DTOCS, and an overview of other gray-level DTs.
Chapter 3 describes chamfer distances used in binary DTs, and the new more accurate
modifications of the DTOCS defined in this work. Chapter 4 reviews distance transfor-
mation algorithms, and introduces the new priority pixel queue algorithm for calculating
the DTOCS, and its simple extension, the nearest neighbor transformation. In Chap-
ter 5, the Route DTOCS algorithm for finding shortest routes along gray-level surfaces
is described, and compared to similar approaches found in the literature. Applications
utilizing the DTOCS, image compression and surface roughness evaluation, are described
in Chapter 6. Chapter 7 contains conclusions and discussion, and Chapter 8 corrections
to minor errors in the publications.
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Summary of publications

In Publication I, the DTOCS is used in image compression. Compression results are
improved by selecting control points from the derivative image instead of the original
image. The author of this thesis was involved in developing the method based on Ville
Kyrki’s idea, performed the experiments, and took part in writing the article.

Publication II presents the Route DTOCS algorithm for finding shortest routes along
a varying height surface. The routes found on the gray-level surface are like minimal
geodesics in geography, that is, shortest routes along a terrain of varying height. The
WDTOCS is demonstrated to provide more accurate global distances than the chessboard
DTOCS, and the v/2-DTOCS is presented as a hybrid DT combining locally Euclidean
distances in the flat image plane with gray-level height differences. The author developed
the algorithm and wrote the article.

In Publication III, the Route DTOCS algorithm is applied to the problem of finding routes
between sets of points rather than single end-points. The article was first published in
the Pattern Recognition and Image Analysis (PRIA) conference held in St. Petersburg
in October 2004. An identical version included in the PRIA journal was selected for this
thesis, as information about it can be found on the publisher’s web page, whereas the
conference is little known outside of Russia. The author carried out the research based
on an idea provided by Professor Longin Jan Latecki, and wrote the article.

Publication IV is an extended journal version of Publication II and most of the mate-
rial, except the v/2-DTOCS, is repeated. In addition, the Route DTOCS algorithm is
redefined with new more accurate versions of the DT, the 3-4-DTOCS, and the Optimal
DTOCS. An algorithm for extracting a single path from the set of pixels on the route is
also presented. Benefits of calculating distances along the gray-level surface rather than
on the 3D representation of it are discussed. The method is also demonstrated to be
useful in obstacle avoidance applications. The author developed and implemented the
algorithms, and wrote the article.

Publication V presents a new efficient priority pixel queue algorithm for calculating the
DTOCS. The pixel queue algorithm is compared to the SLT and the ordered propagation
approach. At the same time, convergence properties of the SLT are analyzed more
thoroughly than before. The individual work of the author was inspired by a reviewer of
Publication IV, who suggested to abandon the chamfering.

In Publication VI, the priority pixel queue algorithm is extended to calculate the nearest
neighbor transform (NNT) simultaneously with the distance map. The NNT according
to DTOCS distances results in each pixel being assigned to the region surrounding the
reference pixel, to which the distance along the varying height surface is the shortest.
An application idea, where DTs are combined with the nearest neighbor transform to
evaluate surface roughness, is briefly introduced. The author implemented the method
and wrote the article.



CHAPTER I

Distance Transforms

A distance transformation is an operation, which transforms an image to a distance
image, where the value of a pixel indicates its distance to the nearest reference pixel.
The set of reference pixels is typically defined as the set of feature pixels, that is, the
distances are calculated from the nearest feature pixel. Alternatively, distances can be
calculated from the background into the object, and in that case the background pixels
form the reference set, and the object pixels form the calculation area. DTs of binary
images approximate straight line distances, but in a discrete grid, the definition of a
straight line is not trivial, unless the line is exactly horizontal, vertical or diagonal. In
practice, distances are approximated by summing local pixel steps, which form a digital
path between the source and the destination point. The steps can be defined between
immediate pixel neighbors, or using longer steps in a larger neighborhood. The distance
value of a pixel is by definition the distance calculated along the shortest path, or one of
several equally short paths, to the nearest reference pixel.

This chapter defines basic distances and neighborhoods used in DTs, including the
DTOCS. Chamfer metrics, which produce improved distance approximations, are de-
scribed in Chapter 3. The properties of metrics are reviewed to distinguish DTs based on
distance functions, which are metrics, from pseudometric DTs. An overview of gray-level
DTs is included, even though the basic and constrained DTs of binary images provide
more of a foundation for this research than the gray-level DTs known before the DTOCS.
The DTOCS approximates actual distances, whereas most gray-level distance transfor-
mations calculate minimal cost paths using gray-levels as cost values. This chapter also
describes the mechanism of propagating local distances to produce the DT. Detailed
descriptions of the distance transformation algorithms are provided in Chapter 4.

2.1 Basic Distance Measures

The basic distance measures, or distance functions, used in image processing are listed,
for example, in [45, p. 209]. The Euclidean distance between points P = (x,y) and

15



16 2. Distance Transforms

i b Sa: b | : Pw Pn I:)nei Mask Mo

Larora ;LfF;x:\fi/:””‘ flsﬂ‘rﬁpﬁl
a0 a4 RrR Ao e
;L”b”‘r””\r”bﬂl T o "””/;Z*/FS\””;
1 | ai | Mask M1 ' Powi Ps 1 Pee!

Figure 2.1: Pixel neighborhoods and masks used in DTs.

Q@ = (u,v), where z and y (resp. u and v) are the coordinates of pixel P (resp. Q), is:

de(P,Q) = /(z — u)? + (y — v)? (2.1)

DTs are typically based on distance functions, which are easier to calculate than the
Euclidean distance. The city block, or Manhattan distance, is defined as:

da(P,Q) = |z —ul + |y — v| (2.2)
and the chessboard distance as:

ds(P, Q) = max(|x — ul, |y — v|) (2.3)

The distances d., ds and d, are globally defined in the sense that distances from one
feature pixel can be calculated in a straightforward manner just from the coordinate
difference of the feature pixel and all other pixels in the image. However, as the nearest
feature pixel is not known beforehand, a brute force method would have to calculate the
distance from each pixel in the calculation area to each feature pixel, and then select
the minimum. The idea behind basic DTs is to propagate local distances defined within
the small neighborhood of a pixel. The masks for distance propagation in Figure 2.1
and the propagation mechanism are described in Section 2.2. The most common 3 x 3
neighborhood, with local distances a and b from the center pixel, which has distance
value 0 to itself, can be seen to the left in Figure 2.1. Here, the pixels with value
a are called edge neighbors of the mask center pixel, and the pixels with value b are
called vertex neighbors. In the publications, the edge neighbors are also called face or
square neighbors, and the vertex neighbors are generally referred to as diagonal neighbors.
The chessboard distance dg, which is also called the 8-neighbor distance, is calculated
by propagating local distances a = b = 1, and the city block distance function using
a =1 and b = oco. The city block distance can also be called the 4-neighbor distance,
as a pixel, in practice, has four neighbors. These n-neighbor distances are the fastest
and the simplest to implement, but produce the worst approximations of the Euclidean
distance [5]. The city block distance is an overestimate, and the chessboard distance an
underestimate of the true Euclidean distance, unless the two points between which the
distance is calculated differ only by one coordinate.

The basic distance definitions are visualized in Figure 2.2. There are several equally
long digital paths of 7 steps according to the city block definition, some of which are
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Figure 2.2: Example paths using the city block (left) and the chessboard (right)
distance definition.

shown to the left of the figure. In this example, the chessboard distance of 4 steps is
the same along two different paths, as shown to the right of the figure. The Euclidean
distance can not be measured as the sum of local pixel steps like the other basic distance
functions, as it corresponds to the length of a straight line, which generally does not
coincide with a digital path. Using local distances a = 1 and b = /2 results in the
so called locally Euclidean distance, which corresponds to the actual length of a digital
path, as the exact length of the diagonal displacement from a pixel to its vertex neighbor
is used. The shortest paths according to the locally Euclidean distance coincide with the
paths of the chessboard distance in the example in Figure 2.2. Their lengths, however,
are 1 4 3v/2 ~ 5.24 instead of the corresponding chessboard distance 4. The locally
Euclidean distance is one of the so called chamfer distances discussed in Section 3.1.

The distance functions define the distance values between single pixel pairs. In distance
transforms, the distance value is determined for all image pixels. Feature or reference
pixels, that is, pixels from which distances are calculated, have a distance value zero.
The distance value of a pixel corresponds to its distance to the nearest feature pixel, or
its distance to the nearest pixel in the background, depending on how the reference set
is defined. The pixels, which do not belong to the reference set, that is, the pixels which
obtain a distance value larger than zero, are said to belong to the calculation area X,
and the reference pixels belong to the complement, X, of the calculation area. Figure
2.3 shows a binary feature image, and three of its different DTs. Each distance value
corresponds to the distance from the nearest feature pixel according to the distance
definition used. Chessboard distance values in Figure 2.3 (b) indicate the number of
pixel steps required to reach the feature set in the 8-connected square grid. The two
shortest paths from the bottom left corner point to the nearest feature pixel are shown
in Figures 2.3 (b) and (c), and the corresponding Euclidean distance is visualized in
Figure 2.3 (d). The chessboard and the piecewise Euclidean distances are approximations
of the Euclidean distance shown with rounded values in Figure 2.3 (d). None of the
approximations are very good, but nevertheless, the DTOCS and its locally Euclidean
modification, the WDTOCS, are based on them. More accurate approximations are
achieved by using so called chamfer or quasi-Euclidean distances described in Section 3.1.
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(a) Feature image (b) Chessboard DT

2.83 3.61 4.12

2.83 3.83 4.41

(c) Piecewise Euclidean DT (d) Euclidean DT

Figure 2.3: Distance transforms of a binary feature image.

2.2 Distance Propagation

The best known approach to propagating local distances to produce a DT is the SLT
algorithm presented by Rosenfeld and Pfaltz [47], which calculates the distance value of
a pixel as the number of steps from the pixel to the nearest feature pixel in a binary
image. The algorithm is described for the city block DT, where a pixel effectively has
only four neighbors, the edge neighbors, but the idea is presented also for the chessboard
DT, where the steps to the vertex neighbors are included. In the following, a modification
of the SLT, which can handle any local distances a and b is presented. In the SLT, the
pixel neighborhood is divided into two masks as shown in the middle of Figure 2.1, and
the image is scanned sliding one mask at a time row-wise across the image. The first
computation pass proceeds using the mask M7 = {Pnw, Pn, Pre, Pw from the top left
corner of the image, substituting the value of center pixel p., F(p.), with the distance
value:

Fi(pe) = min[F(pe), min (Alp) + 77 (p))] (2.4)

The mask configuration ensures that all the pixels in mask M; are already processed,
when calculating the distance value for the center pixel p.. The distance value propagates
to pixel p. from one of the mask pixels. The local distance A(p) between a mask pixel
p and the center pixel p. is determined according to the distance definition used. For
binary DTs the local distance is a if p and p. are edge neighbors, and b if they are vertex
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neighbors. The reverse pass, which proceeds row-wise from the bottom right corner of the
image with mask My = {pe, Dsw, Ps, Pse }, replaces the distance value Fy(p.) calculated
by the forward pass with:

F7(pe) = min[Fy (pe), min (A(p) + 77 (p))] (2.5)

The original SLT algorithm in [47] transforms a binary image to a distance image, where
each pixel with value 1 in the original image gets a value corresponding to its distance
from the nearest pixel with value 0 in the original image. The pixels with value 0 remain
unchanged, as their distance to themselves is 0. The first pass assigns a value larger
than any distance value that can appear in the image, for example, max(m,n) for the
chessboard distance in an image of size mn, to the pixel in the top left corner, where the
scanning starts. The large value propagates until the first reference pixel with distance
value 0 is reached, and correct distance values start propagating. In the reverse pass, the
large values are replaced by correct distance values. The modification presented above,
which is used for the DTOCS, needs an input F, where the reference pixels are set to 0
and the pixels in the calculation area to a value, which is larger than any distance value
that can appear.

The original SLT algorithm, in which distances are calculated only based on the mask
pixels, not including the pixel p. currently being processed, is based on the assumption
that the two passes produce the final DT. The modification presented above is applicable
for more complex DTs, where the two passes need to be iterated several times, using the
result F* of the reverse pass as the input F for the next forward pass. The minimum
operation in Equations 2.4 or 2.5 selects the distance value of the current pixel, if it
is smaller than the smallest distance calculated from the neighbors, for example, if the
current pixel p. is a reference pixel having value 0. The distance values remain unchanged,
until the mask reaches the first reference pixel.

The SLT is only one of several distance transformation algorithms, but the basic idea
of propagating local distances within a small neighborhood is applied also in the other
approaches discussed in Chapter 4. In Equations 2.4 and 2.5, the distance value of the
mask center pixel is determined by adding local distances to distance values of the other
mask pixels, that is, the distance propagates from one of the mask pixels to the center
pixel. Alternatively, the distance values can be propagated forward from the center pixel,
as visualized to the right in Figure 2.1. These alternative approaches can be categorized
as acquiring and deriving DTs [56]. In SLTs, distances are typically propagated in the
acquiring fashion, whereas the deriving approach is used in the priority pixel queue
algorithm described in Section 4.3.

2.3 DTOCS and WDTOCS

The DTOCS and the WDTOCS are calculated using the distance propagation mechanism
presented in Section 2.2. First, the image F used as input to Equation 2.4, is initialized
so that reference pixels get value 0 and pixels in the calculation area get value max
(the maximal representative number of memory). In the DTOCS, any pixels can be
selected as reference pixels, that is, distances can be calculated from single points on
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Figure 2.4: Local distance definition for the DTOCS (solid line) and the
WDTOCS (dashed line).

the surface, or from areas, and the calculation area can be connected or disconnected.
The propagated local distance values contain a horizontal component for the shift in the
image plane, and a vertical component defined by the gray-level difference between the
pixels. The difference corresponds to the change in altitude between the pixels. Figure 2.4
shows an example of how local distances are calculated on a surface segment containing
three pixels. The height of each bar indicates the gray-value of the corresponding pixel.
The DTOCS local distance is defined as the sum of the horizontal and the vertical
component of the displacement along the digital surface. The WDTOCS, originally
called the Euclidean DTOCS (EDTOCS) [67], uses the Euclidean distance between the
centers of the neighbor pixels calculated with Pythagoras’ theorem from the horizontal
and the vertical component. The horizontal component is always one in the DTOCS
based on the chessboard distance, whereas the locally Euclidean horizontal distances,
a=1and b = \/5, are used in the WDTOCS. The definitions for the local distance

values are:

DTOCS: d(psps_1) = 19(s) — Glpr1)| +1 (2.6)
. . _ \/|g(pz') —G(pi—1)P+1, pi—1 € Nua(pi)
WDTOCS:  d(pipi-1) = { V190 =G )P+ 2. prs € Na(pi) \ Na(p)>7

where G(p) is the gray-value of pixel p, and p; and p;_; are subsequent pixels on a digital
path. The DTOCS is a metric, as it fulfills the following three criteria [45, p. 209]:

1. The distance between two points P and @ is positive definite, that is, d(P, Q) > 0
and the equality holds only if P = Q.
2. The distance is symmetric, that is, d(P, Q) = d(Q, P).
3. The distance fulfills the triangle inequality d(P, R) < d(P, Q) + d(Q, R).
Positive definiteness is guaranteed by the fact that the local distance between two pixels

is strictly positive, as it contains a strictly positive term for the horizontal displacement,
and a non-negative term for the height difference between the pixels (see Equations 2.6
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and 2.7). Symmetricity also applies, as each local distance is symmetric, and the sum
of the local distances along a path is symmetric. The proof of the triangle inequality
d(P,R) < d(P,Q) + d(Q, R) follows directly from the definition of a DT. If d(P, Q) +
d(Q, R) < d(P, R), there must exist a path from pixel P via pixel @ to pixel R, and the
length of this path is less than d(P, R). This contradicts the definition of the DTOCS,
where the distance d(P, R) is the length of the shortest path from P to R.

The chessboard and city block distances, and the DTs based on them, are also metrics.
The Euclidean DT, the locally Euclidean DT, and the WDTOCS are by definition met-
rics, but the limited number of bits available for representing the floating point distance
values may lead to violations of the metrics criteria. Adding several square root terms
in calculating the distance from pixel P to pixel @) and the distance from @ to P may
result in values d(P, @) and d(Q, P), which differ in their least significant bits, leading to
a violation of the symmetricity criterion. In an unlucky case, the difference may result
in two values, which do not round up to the same integer (for example, 4.999... and
5.000...). The rounded Euclidean distance, which is calculated using only one square
root operation from integer coordinates, is a metric according to Soille [62, p. 46].

2.4 Properties of DTOCS Paths

In a discrete image, two points can be connected with numerous digital paths, and there
can be several paths sharing the same minimal length. The distance transformation
calculates the length of one of the shortest paths according to the distance definition
used. DTOCS paths are typically curved, as the straight line between two points can be
blocked with an obstacle consisting of higher or lower gray-values than the surrounding
area. Consequently, the concept of DT regularity is not applicable in the DTOCS setting,
as DT regularity is defined by Borgefors as follows:

“Consider two pixels that can be connected by a straight line, i.e., by using only one type
of step. If that line defines the distance between the pixels, i.e., is a minimal path, then
the resulting DT is semi-regular. If there are no other minimal paths, then the DT is
regular.” [9]

The unconstrained DT of a binary image is regular if the local distance to edge neighbors,
a, and the local distance to vertex neighbors, b, fulfill the inequality a < b < 2a, and semi-
regular if at least one of the inequalities is replaced by an equality [9]. The WDTOCS
weights a = 1 and b = /2 fulfill the regularity criterion in the horizontal plane, but due
to the height component, the WDTOCS is not regular. The DTOCS with chessboard
distances is only semi-regular even in the flat image plane without height differences.
As the length of steps between vertex neighbors is underestimated, the resulting paths
may not seem intuitively optimal. This is demonstrated in Figure 2.5, extracted from
Publication II. The straight line between points A and B is a minimal path but not
the only one according to the chessboard distance definition. The path via point x’ is
equally short as the straight path, that is, both paths consist of 10 pixel steps. Defining
the local distance values so that b < a would violate the semi-regularity criterion, as the
path via 'x’ would become shorter than the straight path. Regularity properties, which
are an important factor in developing chamfer distances producing more accurate DTs,
are discussed in mathematical detail in [29].
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Figure 2.5: Two of several shortest paths from pixel A to pixel B on a flat image
surface according to the chessboard distance definition.

Figure 2.6: The Euclidean distance (dotted line) and the geodesic distance (thick
curve) between two points on a surface of varying height.

Piper and Granum [40] state that a DT can be produced in two or at most four passes
of the SLT, if the transformed domain is convex. Any curvature in the gray-level surface
makes the surface non-convex, as a domain is convex if and only if any two points in
the domain can be joined by a digital straight line included in the domain. Figure
2.6 demonstrates how a straight line joining two surface points only crosses the surface
domain. The straight dotted line corresponds to the Euclidean distance between the two
points, whereas the thick curve represents the actual distance along the surface, which
the DTOCS tries to approximate.

2.5 Geodesic Distance Transforms

The basic DTs of binary images calculate the distance to the nearest feature pixel for
all pixels in the image, including the feature pixels themselves, as they maintain their
distance value 0 in the transformation. In constrained or geodesic DTs, some pixels are
restricted. Distances to constraint pixels are not calculated, and paths to other pixels
can not cross the restricted image areas. In other words, the paths linking pixels are
constrained to remain within a subset of the image plane [62, p. 219]. For example,
distances can be calculated inside non-convex objects by defining the background as the
constrained area [40]. The DTOCS fits well into the definition of a geodesic DT. The
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binary image, which is used to define the calculation area, is transformed into the distance
image, and the gray-level image only affects the result without being modified. Using
two input images, transforming one image, and restricting the result with another image,
the geodesic mask, is the approach taken in geodesic transformations. For example, in
planning the path of a robot, the geodesic mask corresponds to the regions where the
robot can move [62, p. 219]. In the DTOCS, the original image can be thought of as
the geodesic mask restricting paths to follow points at certain heights in the 3D scene
represented as a height map, and the binary image F used for selecting the reference
pixels is the one being transformed. Geodesic versions of morphological operations, like
dilation, erosion and skeletonization, can be found in [32], but this work is restricted to
geodesic distances.

The calculation area in geodesic or constrained DTs is non-convex, and paths become
curved. Figure 2.7 shows a small example of a constrained DT. To the left, the constraint
pixels are marked with 'x’, the only feature pixel has value 0, and pixels in the calculation
area have value 1. The constrained DT based on the chessboard metric can be seen to
the right. The path, along which distances propagate from the feature pixel to other
pixels in the image, is forced to go around the constraint pixels. An example of a curved
shortest path is shown on the transform image to the right. Constrained DTs are useful
in obstacle avoidance and path planning problems. The DTOCS can easily be used as a
constrained DT for flexible obstacle avoidance, as explained in Section 5.2.

Figure 2.7: A constrained domain (left), and its DT (right)

2.6 Gray-Level Distance Transforms

Gray-level DTs typically use the gray-value as the cost of traversing the pixel. The path
lengths in such transforms are sums, or weighted sums, of gray-values along the path.
Rutovitz proposed a transformation, where each pixel gets a distance value corresponding
to the sum of gray-values on the path to the nearest zero-valued pixel [50]. The original
image is thought of as a surface, where the gray-level corresponds to height, but low-lying
paths are preferred, as opposed to shortest paths along the surface found by the DTOCS.
The same applies to the geodesic time DT by Soille [61]. The Gray-weighted Medial Axis
Transform (GRAYMAT) by Levi and Montanari [34] uses weighting factors, which make
diagonal steps more costly than straight steps, but still paths with low gray-level sums
are found.
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The Fuzzy DT (FDT) is very similar to gray-level DTs calculating minimal cost paths,
even though it is defined for so called fuzzy images. In a fuzzy image, pixels have
values from zero to one, describing the membership value of each pixel. A pixel with
value one belongs to the object, and a pixel with value zero belongs to the background.
Intermediate values result from uncertainties, like data inaccuracies or limited image
resolution [52]. For example, the perimeter or the area of an object can be estimated
based on fuzzy borders introduced in segmentation of low resolution images [60]. In the
FDT, the membership values are used as local distance weights, so in practice, scaling
the fuzzy image into a gray-level image, and using a gray-level DT, like the GRAYMAT
or the geodesic time, would produce the same results apart from quantization errors
introduced by the scaling.

The topographical distance based on the concept of connection cost, and the differential
distance derived from the concept of deviation cost, consider the gray-level image as a
height map similarly as the DTOCS. The connection cost corresponds to the altitude of
the lowest neck of the mountain linking two valleys, and the deviation cost corresponds to
the cost to be paid in order to take a path deviating from the path of greatest slope [41].
The distance functions can be useful in analyzing the topography of gray-level images,
but do not approximate true distances.

Gray-level distances are generally not metrics, only pseudometrics, as the condition of
positive definiteness is violated. The GRAYMAT and the geodesic time distance can
be zero between points P and @ even if P # @, if the points are connected by a path
containing only pixels with value zero. For example, the distance value along the path
shown to the left in Figure 2.8 is 0 according to most gray-level DTs. Positive definite
distances can be achieved by requiring strictly positive values in the original image [61].
Zero valued pixels can be eliminated by adding value one to all image pixels, but the
resulting shortest paths are generally not the same. In Figure 2.8, the shortest path
consisting of several pixels with value zero is replaced with a path containing fewer
pixels, when all gray-values are increased by one. Gray-level DTs defined using the
sums of gray-values are linear with respect to scaling, and find the same shortest paths
regardless of the scaling of the input. However, as demonstrated here, they are not shift
invariant in the sense that the shortest paths would be the same after adding a constant
to the gray-values of the original image. The increase in length of each digital path
is proportional to the number of pixels on the path, so shortest paths, which contain
many pixels with low values, can be replaced with paths containing fewer pixels with
higher gray-values. The DTOCS, however, is invariant with respect to the addition of a
constant, but not linear with respect to scaling. The DTOCS can be scaled to produce
the same results for images with different gray-level scaling, provided that the scale is
known (see Section 3.4). The DTOCS also fulfills all three criteria for metrics unlike
most gray-level DTs, as shown in Section 2.3.

2.7 Salience Distance Transforms

Many DT applications are based on calculating distances from edges extracted from a
gray-level image. In template matching, the template or model can be superimposed on
a distance transformed edge image. The lower the average of the distance values lying
underneath the model is, the closer is the match. The hierarchical chamfer matching
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Figure 2.8: Examples of minimal cost paths, where the gray-value corresponds
to the cost of traversing the pixel.

algorithm presented in [7] is based on this idea. Another example of utilizing DTs of
edge images is a robot application, where metal sheets are picked from a pile. The best
locations for the magnetic grip are selected based on the fact that the largest distance
values appear at the centers of sheets, which are not covered by other sheets [22].

Applying DTs to edge images is problematic, as most edge detectors produce errors, both
false detections, and missed real edges. Salience DTs are based on introducing strength
values describing the importance, or salience, of edges. The underlying assumption is
that false detections produce weaker edges, and the most interesting edges get strong
salience values. Various approaches to incorporating the edge strength are presented
and compared in [49]. The edge weight can be propagated together with the distance
values during the transformation, so that final distance values can be normalized with
the corresponding weight. Pixels close to important edges get low values in the salience
DT. The idea of propagating additional information together with the distance values is
utilized in the nearest neighbor transformation presented in Section 4.4.

Alternatively, the edge pixels can be initialized with the negative of the weight magni-
tude, so that smaller distances propagate from strong edges. Consequently, weak edges
located near strong edges have little effect on the resulting DT [49]. Similar results can
be obtained using gray-level DTs on an image, where strong edges are indicated with
low gray-values, and weak edges with higher gray-values, resulting in smaller gray-level
distances propagating from the strong edges. The FDT is a way to achieve the same in
a more intuitive way, as the likelihood of a pixel belonging to an edge can be encoded
directly as the value of the pixel. The DTOCS can also be applied similarly by using
an input image, where the gray-level difference between weak edges and the background
is greater than the difference between strong edges and the background. Distances are
then more likely to propagate from the strong edges, decreasing the effect of the weaker
edges on the resulting DT.

This chapter reviewed the basic ideas and notions behind DTs, including the DTOCS,
which is used and developed further in this work. Modifications of the DTOCS, which
produce improved distance approximations, are discussed in the next chapter. The dis-
tance propagation mechanism for calculating the distances was also introduced here, but
transformation algorithms are discussed in more detail in Chapter 4, which presents the
new priority pixel queue algorithm developed in this work. The DTOCS can be viewed
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as an extension of the chessboard DT for binary images, as it calculates distances in a
similar way. Issues concerning gray-level DTs also affect this work significantly, as the
local distances of varying magnitude result in curved paths in all gray-level DTs. Even
though the shortest paths found by the DTOCS are inherently different from the minimal
cost paths found by other gray-level DTs, there are many similarities. In some applica-
tions, like the obstacle avoidance problems discussed in Section 5.2, either approach can
be used, if the gray-level image representing the scene with obstacles is created appropri-
ately. The DTOCS can be used to approximate true distances along a surface represented
as a range image, but the applications presented in Chapter 6 rely on the DTOCS as a
measure of the amount of gray-level variation in images, which are not necessarily height
maps.



CHAPTER III

DTOCS Modifications

In this chapter, the distance approximations produced by the DTOCS and the WDTOCS
are improved by redefining the local distances using so called chamfer metrics. Chamfer
metrics produce more accurate approximations of the Euclidean DT than the traditional
chessboard and city block metrics, and are beneficial also when introduced to the DTOCS
setting. The Optimal DTOCS developed in this work is the best approximation found
so far for distances along a gray-level surface. However, slightly better approximations
can be obtained by transforming the gray-level image into a 3D umbra, and calculating
distances on its top surface using 3D chamfer distances. Other DTOCS modifications
based on chamfer distances are also discussed. Furthermore, a generalization of the
DTOCS and the WDTOCS to anisotropic grids is presented, and issues concerning scaling
of the gray-level surfaces and the distances calculated along them are discussed.

3.1 Chamfer Metrics

In chamfer DTs the local distance a between pixels that are edge neighbors, and the local
distance b between vertex neighbors, can be any real numbers [5]. The locally Euclidean
distance introduced in Section 2.1 is a chamfer distance, and is sometimes called the
chamfer-Euclidean or the quasi-Euclidean distance. Neighborhoods larger than 3 x 3 can
also be used. Figure 3.1 shows the 5 x 5 neighborhood, which includes the so called
knight’s move with the local distance value ¢. The knight’s move is not meaningful for
the chessboard or the city block metrics, but can be defined to improve the distance
approximations obtained using chamfer distances.

Borgefors [6] derived local distance values, which minimize the maximum difference from
the Euclidean distance. The minimization is based on the fact that in a square grid, there
always exists a minimal path consisting of at most two straight line segments between
two points [37], provided that the minimal path is based on a regular DT, where a
diagonal step is longer than a horizontal or vertical step, but shorter than two such steps
(a < b < 2a). The Euclidean distance, which is the length of the straight line between
two points, is approximated using the sum of horizontal or vertical steps, which form one

27
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Figure 3.1: The 3x3 and the 5x5 neighborhood in chamfer distance calculations.

line segment, and diagonal steps, which form the other line segment. The error compared
to the Euclidean distance varies depending on the slope of the straight line between the
pixels, that is, on the relative number of diagonal steps on the minimal paths. The
geometrical basis for the optimization is visualized in Figure 3.2. The distance from the
origin to a pixel on the vertical line z = M is formulated as the sum of the diagonal and
the horizontal step lengths. An example of such a path is indicated using a solid line.
The difference between the length of the path and the Euclidean distance indicated with
a dotted line is:

Diff(y) =y(b—a) + Ma— /I 32, 0<y <M (3.1)

The absolute maximum of Dif f(y) is minimized, resulting in local distances [6]:

dopr = (V2VZ—241)/2  ~0.95509 (3:2)
bopt = V2+ (V2V2—2-1)/2 ~1.36930

The optimal coefficients, which equal the optimal parameter values for length estimates
of type [ =aAzx+ (b—a)Ay [3], are used in the Optimal DTOCS developed in this
work (Section 3.2). The local distance coefficients minimizing the maximum error from
the Euclidean distance can be derived similarly for the 5 x 5 neighborhood [8]. It should
be noted that the coefficients a,p: and b,p: are not identical to the ones used in the 3 x 3
neighborhood. The values used in the 5 x 5 neighborhood are aop: = 0.986, bopr ~ 1.414
and cope = 2.208. The value for by, can be selected from a small range producing the
same maximum error, and the locally Euclidean distance v/2 included in the range is
used in a 5 x 5 modification of the Optimal DTOCS presented in Section 3.2.

Verwer [76] minimized the maximum error based on distances to a Euclidean circle,
claiming that Borgefors’ approach of using distances between the origin and points on a
vertical line (z = M) causes the relative error in the diagonal direction to dominate the
optimization compared to the same relative error in another direction. Slightly different
coefficients minimizing the average difference from the Euclidean distance can be found
in [82]. In [65] effective errors are minimized by checking all integer weights a from 2
to 255 for the straight neighbor distance. Other chamfer distances in the large masks
are obtained by rounding the Euclidean distance scaled with a to the nearest integer.
Alternating city block, dy4, and chessboard distances, dg, in the octagonal distance trans-
formation [48] results in a better approximation of the Euclidean distance. Thiel and
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Figure 3.2: The geometry of the chamfer DT in the 3 x 3 neighborhood [6].

Montanvert [65] formulate the chamfer distance do = dydy + ds(dz — dy) as a linear
combination of chessboard and city block distances, and state that it induces a distance
only if the elementary displacements dx and dy fulfill the inequalities dz > dy > 0 and
dx > 0 within one octant of the neighborhood, called the influence cone. In general,
the differences between chamfer distances optimized based on different criteria are very
small, and all produce reasonable approximations for the Euclidean distance. Distances
can also be approximated using circular propagation, which produces discrete circles, if
the propagation starts from a single point [30].

The quasi-Euclidean distance calculations by Montanari [37] already contain the idea of
using larger neighborhoods than the 8 immediate neighbors of a pixel. Figure 3.3 shows
the steps available in one octant of a 7 x 7 neighborhood. The possible slopes of the
pixel displacements follow the so called Farey sequence, that is, the ordered sequence
of all rational numbers between 0 and 1 with denominators less than or equal to n. In
the example where n = 3, the sequence is: 0, %, %, % and 1. The distances in the
5 x 5 neighborhood shown in Figure 3.1 can be defined using the Farey sequence for
n = 2, as the possible slopes are 0 (local distance a), 1 (local distance c), and 1 (local
distance b). The Euclidean lengths of the displacements, or approximations of them,
can be used as step lengths. Using larger neighborhoods and longer Farey sequences
produce closer approximations of the Euclidean distance values. Setting n = m — 1
in an image of size m x m would produce Euclidean distances, but that would lead to
brute force calculation of distances between all feature and all non-feature pixels, which
is computationally expensive. In earlier DT research the direct approach was denounced
impossible, but the recently presented Fast Exact Euclidean Distance Transform [53],
and its weighted modification [72] make the brute force method feasible by restricting
the number of pixels taken into consideration. However, a direct approach based on
the coordinates of the path end-points does not exist for the DTOCS, similarly as it is
impossible to determine the driving distance between two cities based only on their earth
coordinates. The distances need to be calculated along the curved paths, which follow
the varying height surface.
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Figure 3.3: Connections between pixels in a 7 x 7 neighborhood for calculation
of quasi-Euclidean distance values.
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Figure 3.4: The neighborhood relations between two voxels in 3D space: face
neighbors (left), edge neighbors (middle) and vertex neighbors (right).

Chamfer distances can be defined also in 3D. A voxel in 3D space has 26 immediate
neighbors, 6 face neighbors, 12 edge neighbors and 8 vertex neighbors, as visualized in
Figure 3.4. The regularity criteria for DTs can be applied in the cubic grid to select ap-
propriate local distances a, b and ¢ to the three types of neighbors. Borgefors [10] derived
values a ~ 0.926, b ~ 1.341 and ¢ =~ 1.658, which minimize the maximum difference from
the Euclidean distance. The resulting DT is compared with the DTOCS and its varia-
tions in Section 3.2. Alternatively, the local distances can be optimized by minimizing
the mean squared error from the real Euclidean length before discretization [4].

3.2 Optimal DTOCS

In the WDTOCS, locally Euclidean distances are used instead of chessboard distances,
which are used to define the DTOCS. The lengths of the digital paths leading to the
smallest distance values are calculated just as in the chamfer or quasi-Euclidean distance
transformations of binary images. However, usually the objective is to approximate
lengths of true geodesics on a real surface rather than lengths of digital paths on the
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discrete approximation of the surface. In binary DTs, the difference between the true
distance between two points and the DT approximation of it, can be mathematically
analyzed as in [6]. Such a thorough analysis is not possible for the DTOCS. The shortest
path can be of any shape, so there is no basic assumption to follow, as in the case of
binary DTs, where a minimal path consisting of a horizontal or vertical, and a diagonal
line segment, always exists. Furthermore, there are numerous local distance values,
compared to typically one or two different values in binary DTs. In the DTOCS, the
number of different local distance values that can occur in the image equals the number
of gray-levels available, and in the WDTOCS and the Optimal DTOCS, this number
is doubled, as the same height difference can occur between edge neighbors and vertex
neighbors.

As paths are curved, the local distances can not be optimized based on lines of different
slopes, which is the basis for the optimization of the local distance coefficients for binary
DTs. However, the error can be decreased by minimizing the error in the horizontal im-
age plane. The Optimal DTOCS utilizes the coefficients, which minimize the maximum
difference from the Euclidean DT for binary DTs [6] listed in Section 3.1. Replacing
the horizontal local distance components 1 and /2 of the WDTOCS with these opti-
mal distance coefficients results in the local distance definition of the Optimal DTOCS
introduced in Publication IV:

\/|Q(Pi) —G(pi1)?+agy, 5 pi1 € Na(pi)

3.3
\/Ig(pi) —G(pi—1)>+ b2, , pim1 € Ns(pi) \ Na(ps) (33

d(pi,pi—1) =

In the case of real world images, which are only digital approximations of the surfaces
they represent, there is no correct path length available for comparison, unless true
geodesics can be measured on the original surface. In Publication IV distance definitions
are compared using a mathematically defined synthetic surface, a gray-scale half-sphere
(see Figs. 6. and 7. in Publication IV), and results of a similar experiment are shown
in Figure 3.5. The distance values calculated from the “poles” of the sphere should,
in theory, have equal values along the “equator” line, approximating one quarter of the
sphere circumference. Due to the discretization of the sphere, the values vary significantly,
and depend greatly on the distance definition used. The DTOCS underestimates lengths
of paths with many diagonal displacements. For example, all the routes between the
“poles”; which bypass the sphere along the background, are of the same undervalued
length. The WDTOCS, on the other hand, overestimates the sphere circumference along
the whole “equator” line. This is mostly due to the fact that only eight step directions
are available, so there is little flexibility in how the paths are formed. Increasing the
local neighborhood size provides new propagation directions. For example, in a 5 X 5
neighborhood, steps can be taken in 16 different directions.

In Figure 3.5 distances on the same sphere image are calculated using the Optimal
DTOCS with the 3 x 3 neighborhood, and with the 5 x 5 neighborhood, in which the
optimal coefficients aopt, bopt and copr derived in [8] are used as distance components
in the image plane. It can be seen that increasing the neighborhood size decreases
the error somewhat, but in the case of curved DTOCS paths, larger neighborhoods are
risky, as very narrow obstacles can be missed. Also, there is no guarantee that larger
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Figure 3.5: Comparison between the 3D DT, and the Optimal DTOCS with
3 x 3 and 5 x 5 neighborhood.

neighborhoods produce a more accurate approximation for the lengths of curved paths,
as straightness within the larger neighborhood is assumed in the optimization of local
distances [28].

A common approach to solving problems in gray-level morphology is transforming the
gray-level image into an umbra, that is, a voxel image representing the surface relief, and
then using well known binary morphological operations in 3D. For example, the convex
hull of a gray-level image can be calculated by filling concavities on the 3D surface repre-
sentation of the image [38]. The equivalence of gray-level images and umbrae is discussed
in [63], and visualized in Figure 1.1. Here, the DTOCS distances are compared to values
obtained using the 3D DT with the optimal local distances to the 26 immediate neighbors
of a voxel derived by [10], which are listed in Section 3.1. The 3D DT is calculated on
the top surface of the umbra, whose height z at each point (z,y) in the horizontal plane
corresponds to the gray-value of the corresponding pixel. The top surface is defined as
the set of voxels connected to the background. It can be seen in Figure 3.5 that the 3D
DT produces more accurate results, that is, the distance values along the equator line
show less variation than the corresponding values produced by the Optimal DTOCS.
The larger 5 x 5 neighborhood improves the DTOCS results, but not sufficiently. The
3D distance transformation has more propagation directions, so the formation of paths
is more flexible. The digital 3D approximation of the path could further be refined by
using more accurate length estimators of 3D curves [28], or by so called curve shortening
flow [27]. The memory requirement is considerably higher, when a 3D representation
of the surface is used, and consequently, the computational cost is higher. Thus, the
DTOCS provides efficient 2D solutions to some inherently 3D problems, as discussed in
Publication IV.
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3.3 Chamfer Variations of the DTOCS

Floating point operations can be executed efficiently with modern computers, but in ear-
lier work on image processing, integer operations have been a clear preference. Borgefors
multiplied the optimal local distances a,p,: and bey: with various integer factors, rounded
the resulting distances, and found that even though the approximations improve with
increasing scaling factors, factor 3 producing local distances 3 and 4 is sufficiently accu-
rate to be recommended for use [6]. These local distance values have been introduced
as the horizontal distance components in the 3-4-DTOCS presented in Publication IV.
When the height difference is scaled with 3 as well, the distance values approximate true
distances on a surface more accurately than the chessboard DTOCS. The main benefit is
that straight steps are preferred, so detours along diagonal steps are eliminated. Exam-
ples of how such detour paths are formed in the DTOCS, with equal distances to edge
neighbors and vertex neighbors, can be seen, for example, in Figures 3 (a) and 5 (a) in
Publication II.

The v/2-DTOCS adds locally Euclidean distances in the horizontal plane with gray-level
height differences. The resulting distance values correspond to the lengths of digital paths
consisting of horizontal steps in the zy-plane and vertical steps in the direction of the
z-coordinate of the 3D surface the gray-level height map represents. If approximations
of true geodesics are needed, the 3-4-DTOCS is more accurate, and also more efficient,
as only integer operations are needed. As pointed out in [64], efficiency is not the only,
or even the primary reason to prefer integer DTs. More importantly, the integer result
is easier to use in many basic applications, like skeletonization, or identifying centers
of maximal discs, and reconstructing shapes based on them. Also, the integer DTs are
metrics, whereas the limited accuracy in representing floating point distances can violate
the metrics criteria, as explained in Section 2.3.

Attempts to find integer approximations for the local distances of the WDTOCS and the
Optimal DTOCS have failed so far. Table 3.1 lists local distance values for various height
differences. For each height or gray-level difference, there is one local distance value for
the DTOCS, and two for the real valued modifications. It can be seen that the difference
between the straight and the diagonal local distance decreases when the height difference
increases. Using rounded local distance values as integer approximations would eliminate
the distinction between neighbors with the same gray-level value, and neighbors differing
by one gray-level. Also, the small but still significant difference between straight and di-
agonal neighbors would be lost. Even though the diagonal and the straight local distance
asymptotically approach each other, the small difference ensures that straight paths are
shorter than detour paths along diagonal steps, if no height difference is involved.

Multiplying all local distances by a factor, and then rounding the results, might produce
some usable approximations of local distance values. However, the difference between
straight and diagonal steps inevitably vanishes at some point. For example, using a
factor 2 results in local distances of 6 and 7 for a height difference of 3, but local distance
values for a height difference of 4 both round to 8. Analyzing the effect of different
scaling factors would require statistics on how often each gray-level difference appears in
the image, so optimizing the local distance values would become image dependent.
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Table 3.1: Local distance values for DTOCS, WDTOCS and Optimal DTOCS.

Height diff | DTOCS WDTOCS Optimal
0 1 1.000 1.414 0.955 1.369
1 2 1.414 1.732 1.383 1.696
2 3 2.236 2.449 2.216 2.424
3 4 3.162 3.317 3.148 3.298
4 5 4.123 4.243 4.112 4.228
5 6 5.099 5.196 5.090 5.184
10 11 10.050  10.100 | 10.046  10.093
20 21 20.025  20.050 | 20.023  20.047
40 41 40.012 40.025 40.011 40.023
80 81 80.006  80.012 | 80.006  80.012
160 161 160.003  160.006 | 160.003  160.006
255 256 255.002  255.004 | 255.002 255.004

3.4 DTOCS for Anisotropic Grids

When calculating distances along gray-level surfaces, it is important to consider the
scaling of the image. To approximate actual distances, the difference between consecutive
gray-levels must correspond to the image resolution in the zy-plane. For instance, if the
straight distance between pixel centers in the horizontal plane is 1 mm, the image should
be constructed so that one gray-level corresponds to 1 mm. This is not only an issue for
the DTOCS. If distances are calculated on the 3D umbra representation of the surface,
the resolution of the z-coordinate indicating the height of the umbra should be the same
as the resolution in the zy-plane. Instead of scaling the original image, a scaled version
of the DTOCS can be implemented. If one horizontal pixel displacement corresponds to
r gray-levels, the horizontal distance component in the DTOCS definition, Equation 2.6,
can be replaced with r. Similarly, if one gray-level corresponds to the length of r steps
in the horizontal plane, the height difference component in the local distance definition
can be multiplied by r.

Some scaling in the flat image plane might also be needed, if the resolution of the original
image is not the same in the z- and y-direction. In an anisotropic grid, the step length
in the z-direction can be r, and the step length in the y-direction r,. One approach
to transforming such images is interpolating additional values in the direction with the
lower resolution, but this leads to a considerably larger image size. A more efficient
solution is modifying the local distance definitions. The DTOCS local distances, which
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Figure 3.6: Example of the DTOCS and the WDTOCS in a rectangular grid,
where the pixels are three times longer in the z-direction than in the y-direction.

include the possibility for scaling the height with a factor r., become:

r:|G(pi) — G(pi—1)| + rs , pi—1 neighbor of p; in z-direction
d(pi,pi—1) = 7:1G(pi) — G(pi—1)| + ry , Pi—1 neighbor of p; in y-direction
r.1G(pi) — G(pi—1)| + max(ry, ry) , pi—1 diagonal neighbor of p;
(3.4)

Similarly, the WDTOCS can be generalized to rectangular grids:

V12|G(pi) — G(pi—1)|*> + 12, pi—1 neighbor of p; in z-direction
d(p;, pi_1) = \/7“§|Q(pi) = G(pi-1)|> +r§ , pi—1 neighbor of p; in y-direction (3 5
\/r§|g(pi) = G(pi-1)]? + 72+ 12, pi1 diagonal neighbor of p;

A small example, where the step length r, is three, and the step length r, and the height
scaling r, are one, is shown in Figure 3.6. The pixels in the original image are, in practise,
rectangular, as visualized in Figure 3.6 (a). The DTOCS and the WDTOCS calculated
in the rectangular grid are shown in Figures 3.6 (b) and (c).

This combination of scaling height differences, and scaling horizontal local distance com-
ponents produces a DT, which is applicable for any resolution, that is, for step lengths
ry and 7, in the horizontal plane, and for the unit height difference r, vertically. The
weights derived by Sintorn and Borgefors [58] for binary DTs in rectangular grids could
be exploited to modify the Optimal DTOCS for images with a different resolution in
the z- and y-direction. The weights minimize the error from the Euclidean distance for
linear trajectories, similarly as the coefficients a,p,: and b,y described in Section 3.1. The
discrete distance operator for rectangular grids in [15] is optimized based on circular tra-
jectories, resulting in slightly different local distances. Weighted 3D DTs for elongated
voxel grids have been developed in [59]. In [20] a method for systematic optimization of
chamfer distances in 3D anisotropic grids is presented.

The length units do not necessarily have to be integers. Even the DTOCS, which is
originally based on chessboard distances, can easily be modified to transform images
containing floating point height values, like profilometer data. The horizontal step lengths
r, and 7y defined by the image resolution can also be any real numbers. The DTOCS
calculates the local distance as the sum of the horizontal and the vertical step, while
the Euclidean distance between the pixel centers is calculated in the WDTOCS. The
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generalization of the DTOCS and the WDTOCS for anisotropic grids will be utilized in
future work on surface roughness measurement based on ideas presented in Section 6.2.

In conclusion, the DTOCS and the WDTOCS, which are the basis for this work, can be
improved significantly by using chamfer distances as the horizontal distance component
in the local distance definition. They can also be generalized to anisotropic grids, but
so far, the DTOCS and the WDTOCS for anisotropic grids have not been implemented
using local distance weights producing better approximations for the Euclidean distance
in the image plane. Table 3.2 lists the distance definitions used in this work, and their
important properties. The integer DTs are metrics, and the floating point DTs are by
definition metrics, but the limited number of bits available for representing them may
result in violations of the metrics criteria. Also, if the surface, along which distances
are calculated is represented using floating point values, or the resolution of the image
requires using non-integer step lengths, the resulting floating point distances are not
metrics according to the strict definition.

Table 3.2: Variations of the DTOCS and their properties.

| Algorithm | Local distance | regularity | Metric ? |

DTOCS chessboard in the image semi-regular in | metric (integer)
plane + height difference the image plane

WDTOCS Euclidean regular in the floating point

image plane

v2-DTOCS | Euclidean in the image regular in the floating point
plane + height difference image plane

3-4-DTOCS | chamfer in the image regular in the metric (integer)
plane + scaled height diff. image plane

DTOCS scaled chessboard in the image | semi-regular in | metric (integer)

anisotropic plane + scaled height diff. the image plane

WDTOCS Euclidean from scaled regular in the floating point

anisotropic differences image plane




CHAPTER [V

Transformation Algorithms

Distance transformation algorithms are based on propagating local distance values across
the image, as described in Section 2.2. In Euclidean DTs, the propagated information
is usually a combination of horizontal and vertical pixel differences [55], or in other
words, a vector pointing towards the nearest feature pixel [18], [17]. The vector norm
gives the distance value, when the transformation is finished. The propagation can
proceed either in parallel or sequentially, and the propagation order can be predefined,
as in the SLT, or it can be determined during the transformation based on previously
calculated distance values. The forward scan of a SLT typically proceeds row-wise from
top to bottom using a mask that propagates distances to the mask center pixel from its
top and left neighbors. The reverse scan proceeds with a mask designed to propagate
distances from pixel neighbors, which are located below or to the right of the current
pixel. Alternative mask configurations requiring three or four raster-scans have also been
used [40], and the Euclidean distance transformation by Ragnemalm uses four masks in
a 4-scan algorithm [44]. Also, a DT may be obtained by merging results of scanning rows
and columns separately [39]. In recursive and ordered propagation algorithms, as well as
in pixel queue approaches, the transformation begins at the reference pixels, and proceeds
towards pixels further away in the calculation area. Instead of propagating single distance
values, or vectors in the case of Euclidean DTs, segments of the propagating distance
boundary can be processed, resulting in a chain propagation algorithm [79].

This chapter explains the main approaches to distance propagation, and relates them to
the DTOCS setting, where paths typically are curved. In the earlier parts of this research,
which resulted in Publications I-IV, the SLT was used for calculating the DTOCS. The
sequential approach was found to be inefficient when calculating distances in situations,
where paths become long. For example, in the Route DTOCS algorithm finding the
shortest route between two points, distances need to be calculated from one point to
every other point in the image (Chapter 5). Producing the long curved paths require
several iterations of the sequential algorithm. This chapter presents a new more efficient
approach, the priority pixel queue DTOCS algorithm, which was introduced in Publi-
cation V, and extended to produce the nearest neighbor transform in addition to the
distance map in Publication VI.

37
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4.1 Sequential and Parallel Local Transformations

Even before the pioneering work in DTs by Rosenfeld and Pfaltz, digital images were
processed using local operations on picture neighborhoods [47]. Parallel local operations
affect each pixel independently, without taking into account the new values obtained for
the neighboring pixels in the same parallel scan. The method is based on the idea of
having a parallel computer with one processing element for each pixel. Some specialized
architectures, like pyramid machines [11], can be used to efficiently implement parallel
transforms, but advanced image processing today is typically done on sequential comput-
ers. SLT algorithms also transform each pixel using its neighborhood, but as the pixels
are processed sequentially rather than in parallel, the new values are used as soon as
they become available. In [47], the parallel and sequential approaches are shown to be
mathematically equivalent.

The sequential implementation of the DTOCS is based on the modification of the SLT
algorithm by Rosenfeld and Pfaltz [47] introduced in Section 2.2. In the DTOCS, any
pixels can be reference pixels, from which distances are calculated. To define the calcu-
lation area, a binary image F is needed for the transformation in addition to the original
gray-level image G. The calculation area X in F is initialized to maz (the maximal
representative number of memory) and the complement area, X, to 0. The zero valued
pixels indicate the source points for the distance calculations, that is, the feature pixels,
when distances are calculated from the nearest feature, or the background pixels, when
distances are calculated from the background into the object. Neither the calculation
area, nor the reference pixel set needs to be connected. The original gray-level image
is only used for calculating the local distance values between pixels, and remains intact
through the transformation. The binary image, which originally defines the calculation
area, is transformed into a gray-level image containing distance values.

The DTOCS algorithm proceeds according to the distance propagation defined by Equa-
tions 2.4 and 2.5 in Section 2.2. The distance between pixel p. and its neighbor p in one
of the two masks shown Figure 2.1, is A(p) = d(p, p.) according to the distance definition
used, for example, Equation 2.6 for the DTOCS and Equation 2.7 for the WDTOCS.
The A-notation is used to differentiate distances inside the calculation mask from local
distances along a digital path. The result of the first pass is used as input for the second
pass, that is, the binary image indicating the reference pixels in the first pass is replaced
with the unfinished distance image in the second pass, and also in subsequent iterations.
Similarly, the original SLT algorithm in [47] processes the same distance image both
in the forward and the reverse raster-scan, modifying the values obtained by the first
scan in the the second scan [47], but repeated iterations can not be performed. The
gray-weighted distance transformation algorithm by Rutovitz [50] transforms the origi-
nal image in the forward pass, and a copy of the original image in the reverse pass. The
result is obtained as the minimum of the two transformed images.

Figure 4.1 shows a simple example of how the sequential transformation proceeds when
calculating the DTOCS. Gray-values or distance values are shown on each square rep-
resenting a pixel. The reference pixel marked with ’x’ has gray-value 1 in the original
image, Figure 4.1 (a), and value 0 in the distance images, Figures 4.1 (b)—(d). In the
result of the first forward pass, Figure 4.1 (b), the pixels shown in white have not yet
been updated, that is, they still have value max. After the reverse pass, Figure 4.1 (c),
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(a) Original image  (b) Distance image after (c) Distance image after (d) Final distance image
1. pass (forward) 2. pass (reverse) after 3. pass (forward)

Figure 4.1: An example of a sequential distance transformation.

(a) Original image (b) Distance image after 2. pass (c¢) Distance image after 6. pass
(reverse) (reverse)

Figure 4.2: A sequential distance transformation requiring one pass for each
pixel on the longest path.

all pixels have obtained a distance value, but not necessarily the correct one. The final
DT, Figure 4.1 (d), is obtained in the forward pass of the second iteration.

The two passes of the DTOCS are repeated until the distance values converge, that
is, until no changes appear in the distance image. The size and the complexity of the
transformed domain affect the convergence. In practise, the resolution of the image is a
significant factor. In 2D convex integer domains, two or at most four passes produce the
final DT, but for non-convex domains of complex shape, the number of passes necessary
is generally greater [40]. As demonstrated in Section 2.4, varying height surfaces are
inherently non-convex domains, for which sequential distance transformations typically
require numerous iterations, and the number of iterations needed is quite unpredictable.
The number of pixels in the longest path is the theoretical upper limit for the number of
iterations. Figure 4.2 presents an example, where this limit is reached. The first forward
pass does not update any pixels on the diagonal path from the reference pixel in the top
right corner to the pixel in the bottom left corner of the image. In each subsequent pass,
correct distance values propagate only one step along the path. Figure 4.2 (b) is the result
after the first two passes. Four pixels on the path have distance values obtained along
paths, which are not minimal. The final distance values along the globally minimal path
are reached after three two-pass iterations, Figure 4.2 (c). A similar example is used in
[40] to demonstrate that even convex binary domains may require more than two passes
of a sequential transformation.
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In practical applications, the number of iterations rarely reaches the theoretical upper
limit. Convergence is reached in about 10-15 two-pass iterations in the experiments
presented in Publication IIT and in [69], but examples requiring approximately 80 itera-
tions can be found in Publication V, which presents convergence experiments on different
types of images at different resolution. As expected, a flat surface containing constant
gray-values can be transformed in two iterations, one for the transformation itself, and
another to detect convergence, just like most convex objects in the case of binary DTs.
In fact, the flat surface is a convex object according to the definition of convexity given
in [40], but introducing gray-level variation generally makes the surface non-convex, with
the exception of some special cases, like smooth gray-level slopes.

4.2 Recursive and Ordered Propagation

Instead of propagating distances in a predefined scanning order, the calculation can
be initiated at the reference pixels, propagating into the calculation area. Piper and
Granum [40] presented recursive and ordered propagation algorithms, and demonstrated
their efficiency compared to the SLT approach, which they call the propagated dis-
tance transformation (PDT). The recursive propagation is essentially a depth-first search,
whereas ordered propagation proceeds as a breadth-first search. Both start at the refer-
ence pixels, and the difference is in how they process the neighbors, which obtain new
distance values. The recursive propagation starts at one reference pixel, and recursively
processes each of its neighbors. The propagation is highly dependent on the order in
which the neighbors are processed. A fixed ordering can lead to the following unfortu-
nate scenario, visualized by the example in Figure 4.3:

The top right pixel in the 3 x 3 neighborhood is always processed first, and the propagation
starts from the bottom left corner of the image. The propagation shoots diagonally
across the image to the top right corner processing only pixels on the diagonal, and at
each step the recursion depth increases by one. The the propagation continues in the
direction of the next available neighbor to be processed. In this example, neighbor pixels
are processed in a clockwise order, starting from the top right pixel. Figure 4.3 (b)
shows the intermediate result after 9 recursive calls of the propagation. If the recursion
depth is not a problem, and the distance transformation propagates smoothly, that is,
the local distances are the same between all neighbor pixels, or vary only somewhat,
everything may work out fine. But if varying local distances are used, as in the DTOCS,
a shorter path to one of the already processed pixels is likely to exist. Then all the
distance values, which have propagated from that pixel, are erroneous, and need to be
recalculated. If the error appears early in the transformation, most of the image may
already be processed by the time the recursion returns to correct the value of the pixel,
from which the propagation of the erroneous distance values originated. Vast amounts
of reprocessing must be performed after updating the value. In Figure 4.3 (c) the pixel
with value 1 in the bottom row has just obtained its correct value, and the pixels to
the right of it still have erroneous values. Still after 125 recursive calls, the top left
pixel is untouched, and after obtaining the final result after 130 recursive calls, several
recursive calls are still needed to check that all distance values are final. In this example,
the recursive propagation function was called 344 times while processing the image with
only 25 pixels.
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Figure 4.3: Recursive propagation with a fixed processing order for pixel neigh-
bors. The white pixels in the intermediate results (b)—(d) have not yet received
a distance value. The number of recursive calls needed to produce each result is
indicated above each image.

The recursive propagation can be enhanced by exploiting the fact that distances typi-
cally propagate as fronts. Piper and Granum [40] devised an ordering, where the “back-
direction” of the previous propagation step is used, that is, if the distance value prop-
agated from the straight left pixel neighbor, the diagonal neighbors to the left of the
current pixel are explored first. In the scenario described above, this method would be
clearly beneficial, as distance values would slowly proceed from the corner of the image,
alternating different propagation directions, and concentrating first on the area near the
reference pixel. Some reprocessing may still be needed, but the risk of having to reprocess
most of the image area repeatedly is considerably smaller. Cyclic and random ordering
are additional options for determining which neighbor to recursively process next, but
less efficient than the specific order based on the propagation direction [40].

Ordered propagation utilizes a queue data structure instead of recursion. When a pixel
obtains a new distance value, its neighbors are enqueued to wait for processing in a
first-in-first out order. Pixel queue algorithms utilizing a first-in-first-out queue, for
example, in [80] and [57], are implementations of ordered propagation, or breadth-first
search. In the case of binary DTs, ordered propagation effectively performs successive
dilations from the reference set [40]. The contour processing method for dilation, erosion,
propagation and skeletonization by Vliet and Verwer [73], counts the number of pixels
enqueued at each iteration so that the whole propagating front can be dequeued in the
following iteration. In the case of the DTOCS, distances do not propagate as such
continuous fronts, as paths across image areas with much variation contain fewer pixels
than paths across smoother areas. If neighbors of updated pixels are reprocessed, the
ordered propagation, as well as the recursive propagation, produces correct results also
for the DTOCS. The ordered propagation typically requires less reprocessing than the
recursive propagation. The main problem with both approaches is that distance values
are propagated forward without knowing for sure whether they are final. The priority
pixel queue algorithm solves this problem, eliminating the need for reprocessing, and
recalculation of distance values.
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4.3 Priority Pixel Queue Distance Transformation

The priority pixel queue DTOCS algorithm developed in this work eliminates repetition
of local distance calculations by processing pixels in order of increasing distance values.
In sequential mask operations, and in recursive and ordered propagation of varying local
distance values, recalculations are inevitable, as distances do not propagate as smooth
fronts. Figure 4.4 shows an example, where distances from one reference pixel, marked
with ’x’, are calculated along a varying height surface. The pixels shown in white in
Figure 4.4 (b) have a distance value equal to 80 in the image of size 128 x 128. No
continuous equal distance curves are formed due to the highly varying local distances.
In Figure 4.4 (c) a continuous border is found by marking pixels which have at least one
edge neighbor with a distance value greater than 80, and at least one edge neighbor with
a distance value less than or equal to 80. The boundary limits the area in which the
pixels are processed by the time the distance reaches the given value, so all pixels inside
the border have a distance value of less than 80. Priority ordering is needed to cope
with this kind of propagation, which proceeds further in smooth areas than in areas with
much variation.

(a) Original image (b) Equal distance pixels (c) Equal distance border

Figure 4.4: Example of equal distance pixels and border in the DTOCS.

Various priority ordering approaches to distance transformations have been presented.
The geodesic time DT by Soille utilizes a priority value, which is incremented by one,
once all pixels with the current distance value have been processed [62, pp. 238-239]. As
it lists all possible distance values, it can be used only for numerable distance values. The
same applies to bucket sorting approaches [78], [17]. The contour processing algorithm
by Ragnemalm can handle floating point distance values as well as integers, as priority
ordering is achieved by maintaining an upper limit for distance values to be propagated
at each iteration [42]. Once applicable pixels are processed, the limit is increased by the
smallest possible local distance value. However, as local distance values vary greatly in
the DTOCS, scanning the contour set becomes inefficient. In the case of binary DTs,
with one or maybe two possible local distance values, most of the contour set can be
processed at each iteration. When transforming a highly varying image, only a fraction
of the pixels in the contour set is applicable after each update of the priority limit, so
numerous scans of the contour set are needed. In the worst case, all pixels, which are
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currently in the propagating contour, have different distance values, and only one pixel
is found applicable during each scan of the contour set.

In the new priority pixel queue algorithm developed in this work, priority ordering is
maintained using a queue implemented as a minimum heap. A minimum heap is a
binary tree, where the children of a node always have a larger value than their parent.
Consequently, the root of the tree contains the minimum value. Addition of a new node,
or updating the tree, when the root node is removed, takes O(logn,) time, where ng is
the length of the queue. Descriptions of the heap data structure can be found in almost
any basic book on algorithms, for example, [16]. The priority pixel queue algorithm
presented in Publication V is as follows:

0 ,x € XY (reference pixels)

1. Initialize the binary image F(z) = { maz e X (calculation area)

2. Put pixels with F(z) = 0 to priority queue Q.
3. While Q not empty

p = dequeue(Q), F4(p) was the smallest distance in Q.
If 7,(p) > F(p) (obsolete value), continue from step 3.
F(p) becomes F*(p) (value is final).

For neighbors z of p with F(x) > F*(p)

Compute local distance d(p, z) from the original image G
If 7*(p) + d(p,z) < F(x)

Set F(z) = F*(p) + d(p, x)

enqueue(x)
end if

end for

end while

The basic idea of the algorithm is that reference pixels are enqueued to the minimum
heap, and then dequeued for processing in priority order. Distance values are propagated
from the dequeued pixel to its neighbors, and neighbors, which obtain a new distance
value are enqueued. The priority ordering ensures that only final distance values are
propagated further. If a shorter path is found to a pixel, which has already been en-
queued, the distance value is replaced. Previous instances of the pixel in the queue
become obsolete, and can be discarded. When the queue is empty, all distance values are
final. The scenario described for the recursive propagation, where updating a distance
value can lead to significant amounts of reprocessing, can not occur in the priority queue
transformation. In fact, no local distance is calculated more than once. Numerous re-
dundant local distance calculations, including the reverse directions of already calculated
local distances, are eliminated by not calculating distances to neighbors, which already
have distance values less or equal to the value they could obtain in the next propagation
step. Local distances are calculated only in the possible propagation directions, as in the
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directed masks used by Ragnemalm [43] and in the bucket sorting algorithm by Verwer
et al [77], which eliminate the direction, from which the propagation arrived.

The priority pixel queue algorithm can handle floating point distances as well as numer-
able ones, and the magnitude of the distance values is not a problem, unless arithmetic
precision of the computer becomes a factor. In approaches based on enumerating dis-
tance values, for example, the priority queue designed for the geodesic time DT [62,
pp. 238-239] or the contour processing approach [42], the number of iterations needed is
proportional to the largest distance. In the chessboard DT, the maximum distance is the
length or the width of the image. The DTOCS can, in the worst case, result in a long
curved path, where each local distance equals the difference between the smallest and
the largest gray-level in the image plus one. The same problem applies to any gray-level
DT, and huge distance values are even more likely to appear in DTs summing gray-values
rather than gray-level differences along the path. Thus, the priority ordering would be
beneficial for any gray-level DT.

The main results from Publication V are shown in Figure 4.5. Distances were calculated
on four images, using two different resolutions for each image. In each run, one of 244
pre-selected pixels was used as the reference pixel, from which distances were calculated.
The results are averages of the 244 runs for each image, and each version of the algorithm.
The complexity of the images increases from the left to the right. The image named 'Flat’
contains only one constant gray-value, representing the smoothest surface possible. The
other three, which are shown in Figure 1. in Publication V, are increasingly complex,
so that the image named 'Merc’ contains the most variation. It can be seen that the
number of local distance calculations needed in the priority pixel queue algorithm (PQ
in Figure 4.5) is almost the same in all images of the same resolution. The upper limit is
known based on the fact that no local distance is calculated more than once. The SLT
requires numerous repetitions, as each local distance calculation is repeated twice in each
iteration consisting of one forward and one reverse pass, and the number of iterations
needed grows with the complexity of the image. The results include the extra iteration
needed to detect convergence, so the number of local distance calculations indicated for
the 'Flat’ image is the result of two iterations. The ordered propagation (OP) does some
reprocessing of distance values, when new shorter paths to previously processed pixels are
found. The amount of reprocessing needed increases with the complexity of the image,
but not as much as in the SLT.

The running times of the tests, which can be seen in Figure 2 of Publication V, indicate
that the running time of the priority pixel queue algorithm does increase slightly, when
the complexity of the image increases. The number of queue operations increases, and
also the length of the queue representing the propagating border increases, so queue
operations take more time. The length of the priority queue is generally of a smaller
magnitude than the problem size, that is, the number of pixels in the image. The
longest queues in the experiments in Publication V contained only a few percent of
the pixels in the image. The statistics of the Mercury surface test image, visualized in
Figure 6 in Publication V, are as follows: the longest queue in tests with the image of
size 256 x 256 contained 4527 =~ 6.9 % of the pixels in the image. In the images with
increased resolution, the longest queues were relatively shorter (9794 ~~ 3.7 % of 512 x 512
pixels, and 15755 a~ 2.7 % of 768 x 768 pixels), suggesting that the queue lengths grow
sub-linearly with the size of the image. A contributing reason for the sub-linear growth
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Figure 4.5: Average number of local distance calculations needed in DTOCS
(black bar) and WDTOCS (white bar) using Priority Queue, Sequential and Or-
dered Propagation algorithms.

is the use of resized versions of the same images, as increasing the image resolution does
not increase the complexity of the underlying surface. However, the experimental finding
is supported by the fact that the propagating distance front, which consists of the pixels
in the queue at any moment in the transformation, is a 1D structure in a 2D image. For
example, in a chessboard distance transformation starting from one pixel in the center of
a square image, the propagating front expands outward until it reaches the edges of the
image (see Figure 4.6). Consequently, the longest queue contains about 4n pixels in an
image of size n?. If the the number of pixels increases by a factor of k2, the circumference
of the square image, which provides an estimate of the maximum queue length, increases
only by a factor of k. The propagating front can become very curved in the DTOCS,
and may momentarily contain more pixels than the image circumference, but having one
less dimension than the image, its maximum length should not increase linearly with the
resolution of the image.

The propagating front can surround disconnected areas, if the set of reference pixels is
disconnected. An example can be seen in Figure 4.7, where intermediate results of a
distance transformation initiated from two reference pixels are shown. The white areas
indicate pixels, which have not yet been processed, and the borders of the gray areas
indicate the pixels in the propagating border. The distance values propagating from each
reference pixel are mixed in the priority queue. When the segments of the propagating
front meet, the transformation is final.



46 4. Transformation Algorithms

Figure 4.6: The propagating front in a priority queue chessboard DT.

'II.IH

Figure 4.7: The propagating front in a priority queue DTOCS transformation.

The original image is shown to the left, and final DT to the right. The two
reference pixels, from which the DT is initiated, are marked in each image.

In [73], an image pattern is presented, where the image consists of 3 x 3 pixel squares, and
in each square, the center pixel is a feature pixel, as shown in Figure 4.8. In such a case,
every ninth pixel is initially enqueued. Once all feature pixels have been dequeued, all
their neighbors, that is, 8/9 of the pixels in the image are in the queue. An even longer
queue can occur if more than 8/9 of the pixels are reference pixels, but then the queue
length decreases rapidly. Due to pathological cases like these, the implementation must
be able to handle queue lengths up to the number of pixels in the image. The memory
requirement of the algorithm is about three times the image size, as the original image
and the distance image, as well as the priority queue, must be handled simultaneously.
The sequential algorithm can be implemented using slightly less memory, that is, twice
the image size, plus a small constant amount for the mask operations.

The time complexity of the pixel queue algorithm is discussed in Publication V. The
time complexity is in O(nlogng), where n is the number of pixels in the image, and n,
the length of the queue, as the number of queue operations, enqueue and dequeue, is
in the order of O(n), and each queue operation is in O(logny). The queue length n,
varies throughout the transformation, but typically it is of a smaller magnitude than n,
so the worst case complexity of the priority pixel queue algorithm, O(nlogn) is a gross
overestimate. In most cases, the priority pixel queue algorithm is superior compared to
the sequential approach, as presented in Publication V.
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Figure 4.8: An image pattern, which results in a pixel queue containing 8/9 of the
image pixels, after the black reference pixels have been dequeued and processed.

4.4 Nearest Neighbor Transformation

The nearest neighbor transformation produces a tessellation image, in which each pixel
is marked with the identity of its nearest reference pixel. Thus, the image is divided into
regions so that each reference pixel is surrounded by pixels, which are closer to it than
any other reference pixel. Pixels at region borders, however, can be equally close to two
or more reference pixels. The nearest neighbor transform (NNT) is a discrete version
of the Voronoi diagram. The Voronoi diagram for a finite set of seed points in a plane
divides the plane to polygons, so that each point within a polygon is closer to the seed
point inside the polygon than any other seed point. The polygon of a seed point p; is
defined as V(p;) = {r|r € R* and d(r,p;) < d(r,p;),j # i} [33]. Voronoi diagrams can
be explained using the analogy of expanding waves:

“If a pebble is dropped into a still pond, circular waves move out from the point of impact.
If n pebbles are dropped simultaneously, the places where the wave fronts meet define
the Voronoi diagram.” [13]

DTs are closely related to Voronoi diagrams. In [2], the Voronoi diagram of a binary
digital image is computed by selecting edge pixels from the skeleton of the background,
called the exoskeleton, produced by a distance transformation from the foreground. The
Euclidean DT of a binary image in two or more dimensions can be calculated in linear
time from the corresponding Voronoi diagram [12], [36]. In gray-level DTs, there is no
such straightforward link from the Voronoi diagram to the DT, as values along the paths
define the distances. The NNT based on the DTOCS is described in Publication VI. It
divides the image into areas so that each pixel is assigned to the seed, which is nearest
according to the distance along the varying height surface.

Figure 4.9 shows a terrain height map divided into regions based on DTOCS distances
from three seed points. The implementation of the nearest neighbor transformation is
a simple extension of the priority pixel queue distance transformation algorithm. Each
reference pixel is assigned a seed number between 1 and ny, where ny is the number
of features, and the seeds are marked into the tessellation image. The seed values are
propagated together with the distance values. The mechanism could also be used in
a sequential algorithm, as discussed in [2], but the implementation of the propagation
according to Equations 2.4 and 2.5 would have to be modified to propagate the identity of
the mask pixel providing the minimum distance value. If a pixel is enqueued repeatedly,
that is, it obtains a new lower distance value, its seed value is replaced with the seed value
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(a) Original image with seeds (b) DTOCS image (c) Nearest neighbor regions

Figure 4.9: Nearest neighbor region boundaries on a terrain height map.

of the pixel, from which the new distance value propagated. The final seed value identifies
the feature, from which the propagation of the final distance value originated. The
idea of propagating seed values simultaneously with distance values is used for Dirichlet
tessellation of binary images in [6], but priority ordering is achieved using a parallel
distance transformation. The chain propagation distance transformation algorithm by
Vincent produces the Euclidean skeleton by influence zones (SKIZ), which is, in practise,
a NNT, by propagating labels together with the distance chains [79]. The geodesic SKIZ
by Soille is a NNT based on the gray-level DT calculating minimal cost paths [62, p. 227].
The morphological Voronoi tessellation algorithm for 3D volumes presented in [25] grows
each region by one voxel in all directions by propagating tessellation seeds.

A nearest neighbor transformation of a gray-level surface can produce regions, which
vary considerably in size, even if the seed points are equally spaced across the image, as
in Figure 1 in Publication VI. The region border between a seed point in a rough area
and a seed point in a smooth area is formed closer to the seed point in the rough area,
as paths can propagate further across image areas with less variation. This could lead
to some applications in segmentation, for example, separating highly varying textures
from smoother textures. In the segmentation algorithm called seeded region growing [1],
pixels are assigned to areas based on similar gray-level values. As local distances between
pixels with almost equal gray-values are small, the NNT based on the DTOCS could be
useful in a similar segmentation approach. Within the scope of this work, the NNT is
used only for producing the roughness map described in 6.2.

This chapter discussed the various approaches to distance propagation, and introduced
the priority pixel queue algorithm, which was developed in this work. The priority pixel
queue approach is beneficial in any DT with highly varying local distances, and curved
paths. The shortest route algorithm presented in the next chapter was implemented
using the SLT, but the priority queue transformation produces the same results more
efficiently.



CHAPTER V

Shortest Routes on Surfaces

DTs generally produce only distance values, and the path along which the distance is
calculated remains unknown. There can be more than one shortest path between two
points even in the case of regular distance definitions. In the DTOCS, which does not
follow the regularity principles, the number of equally short paths is quite unpredictable.
For example, the shortest path between pixels with coordinates (0,0) and (x,0) can
form a straight horizontal line, or consist of only diagonal steps and pass through pixel
(x/2,2/2), as in Figure 2.5, or combine both types of steps. The Route DTOCS algorithm
developed in this work can be used to find and visualize all minimal paths between two
points (Publication II, Publication IV') or between two point sets (Publication III). In
addition, a distinct shortest path can be extracted from the route, which is defined as
the set of points on any minimal path. The shortest routes found by the Route DTOCS
correspond to minimal geodesics defined in geography, that is, they are approximations
of shortest routes along varying height surfaces, like terrains.

5.1 Route DTOCS

The Route DTOCS algorithm for calculating shortest routes along varying height sur-
faces, first introduced in [23], and developed further in Publication II, Publication III and
Publication 1V, is based on calculating two distance maps, one for each end-point or end-
point set of the route. The idea of combining two distance maps to find the shortest
route between two points has previously been used both in the DT world [61], and in
the world of level sets [26]. Approaches utilizing modifications of the Dijkstra graph
search are presented, for example, in [27], [51]. If local distances are defined using gray-
level sums rather than differences, a minimal cost path is found. In such DTs, like the
GRAYMAT [34] and the geodesic time [61], the gray-value represents the cost of travers-
ing the pixel. The minimal cost paths, which follow low gray-values in the image, can
be used for example to find faint linear structures in noisy images [81]. A comparison
between DTOCS, WDTOCS and GRAYMAT routes shown in Figure 5.1 illustrates the
difference between minimal cost paths and shortest routes along surfaces. Figure 4 in
Publication IV shows a similar example.
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(a) DTOCS route (b) WDTOCS route (¢) GRAYMAT route

Figure 5.1: Shortest routes between two points based on the distance along the
surface (DTOCS and WDTOCS), and the minimal cost distance (GRAYMAT).

(a) Distance image F;(x) (b) Distance image 7, ()  (c) Route distance image Dg(x)

Figure 5.2: The intermediate steps in the Route DTOCS algorithm producing
the DTOCS route shown in Figure 5.1 (a).

The Route DTOCS algorithm is based on the fact that a minimal path consists of minimal
sub-paths. For each pixel x on a minimal path between pixels a and b, the sub-paths
between a and z, and between b and x are minimal as well (see Lemma 1. in [40]). To
find the shortest route, the lengths of all sub-paths starting from the end-points, a and b,
are determined by calculating two DTs, F(x) and F;(x). The two DTs used to produce
the DTOCS route in Figure 5.1 (a) are visualized in Figures 5.2 (a) and (b). In the
resulting distance images, the value of pixel x corresponds to the length of the shortest
path between x and the reference pixel a (resp. b). The sub-paths themselves are not
known, but knowing their lengths is enough. Summing the two distance images produces
a route distance image Dgr(x), as in Figure 5.2 (c), where the value of pixel x is the sum
of the lengths of the sub-paths between a and z, and b and z. Consequently, the value
of x is the length of the shortest path between a and b, which passes through pixel .
This means that if point x has a minimal value in the route distance image, it lies on a
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minimal path between a and b. Thus, the route R(a,b) is defined as the set of points,
for which the route distance value is minimal:

R(a,b) ={z | Dr(z) = minDg(z)} (5.1)
To summarize, the Route DTOCS algorithm is:

1. Calculate the distance image F.(x) from the source point a
2. Calculate the distance image Fj(x) from the destination point b

3. Calculate the route distance image Dr(x) = Fi(z) + Fi (x)

H~

. Mark pixels z with Dr(z) = minDg(x) as pixels on the shortest route R(a,b)
x

The correctness of the Route DTOCS algorithm can be proven based on the triangle
inequality, that is, d(a,b) < d(a,z) + d(z,b), as the DTOCS distance d is a metric. The
equality holds only for pixels x, which lie on a minimal path between a and b. The pixels
sharing the minimal value in the route distance image, Figure 5.2 (c), are marked as route
pixels in Figure 5.1. Instead of finding the absolute minimum, a threshold can be used
to find the points, which have a sufficiently low route distance value. This is necessary
when using the WDTOCS or the Optimal DTOCS, where the calculation accuracy of
floating point operations becomes a factor. The Route DTOCS can also be defined for
routes between sets of points. As DTs calculate distances to the nearest reference, the
two sub-path distance images can be calculated starting from point sets A and B. In
distance image F7 (z) the value of pixel = corresponds to the length of the shortest path
between x and the pixel in set A, which is nearest to x according to the distance definition
used. The route set then contains the pixels, which lie on any minimal path between the
route end-point sets.

The routes are typically wide, that is, there can be several minimal paths between two
points, and the width can increase even further in the case of finding routes between
sets. If there are equally short paths on both sides of an obstacle in the gray-level
surface, the route can appear to consist of two or more separate routes. The experiments
measuring route lengths across a gray-scale half sphere in Publication II (Fig. 5) and
Publication IV (Fig. 6) demonstrate this effect, as the routes lie symmetrically on both
sides of the sphere. The minimal route between sets may reach several points in the
end-point sets, that is, minimal paths can exist between more than one pair of points.
An alternative method for finding the shortest path between sets is an exhaustive search
for the shortest path from each point in set A, and from each point in set B. If the end-
point sets are large, an all-pairs algorithm may be more efficient than several shortest path
searches from single sources. The complexity of the Route DTOCS algorithm compared
to all-pairs approaches is discussed in Publication III.

The Route DTOCS is mainly just a visualization tool, that is, it can be used to visu-
alize the shortest routes, but not directly to obtain a chain coded shortest path. If a
distinct path is needed, it must be extracted from the route set. The simple extraction
algorithm described in Publication III and Publication IV is based on backtracking to-
wards decreasing distance values from point b in distance image F.(x), or from point
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a in distance image F; (). In binary distance transforms the backtracking can proceed
recursively from the current path pixel to the neighbor with the smallest distance value.
In other words, it can follow the direction of the steepest descending slope of the dis-
tance function. Due to the varying local distances in the DTOCS, the neighbor with
the smallest distance value may not belong to a minimal path. Thus, the route distance
image is used as a reference, and the backtracking proceeds towards decreasing distance
values within the route set. Alternatively, the backtracking can utilize the distance im-
age, and the original image, to find an appropriate neighbor. The distance value of the
neighbor must be smaller than the distance value of the current pixel. In addition, the
local distance between the pixels must match their distance value difference, in order for
the pixels to lie on the same minimal path.

5.2 Path Planning and Obstacle Avoidance

The most obvious applications for the Route DTOCS algorithm are in path planning
and obstacle avoidance. Shortest routes along a varying height terrain may be needed
in planning permanent constructions, like railroads and highways, or in hiking and ori-
enteering. In different types of scenes, like city maps or factory floor plans, obstacles
can be marked with very high values. In finding the fastest route through a city, some
lower level obstacles, like locations of traffic lights, can be marked as bumps on otherwise
smooth roads. Constrained distance transforms, which are otherwise applicable for path
planning, can not handle different levels of obstacles. The Route DTOCS can be used to
implement flexible obstacle avoidance, even in scenes, where the accessible areas are of
varying height.

Figure 5.3 shows a synthetic example, where a disk shaped robot navigates among ob-
stacles in a room. The obstacles are first dilated using a structuring element having the
same size and shape as the robot shown in the bottom right corner of Figures 5.3 (a) and
(d). Dilating the obstacles to make sure that routes are wide enough to accommodate
the moving object is known as the growing obstacles approach [35]. Alternatively, the
free regions can be eroded, as in the 3D path planning approach by Shih and Wu [56],
where the shortest path is traced from the Euclidean distance image calculated in the
constrained 3D domain. Once the obstacles are dilated, paths can be planned for a single
pixel representing the center of the robot. The shortest route to the destination marked
with ’x’ is found using the WDTOCS distance definition in the Route DTOCS algorithm.
In the first case a constrained binary DT can be used as well, but the DTOCS approach
shows its strength in the modified example. A slope is added to the floor of the room, as
visualized in Figures 5.3 (d) and (e). A different shortest route is found, as following the
flat surface around the obstacles yields a shorter path than climbing up and down the
slope. If it is more convenient to introduce the additional cost factors using pixel val-
ues rather than differences, the route method can be implemented with a gray-level DT
calculating minimal cost paths, as in [61]. DTOCS distances along an area of constant
gray-values are the same as geodesic time distances along an area with gray-value 1, so
in a scene consisting of obstacles and smooth paths, the same routes can be found with
both DT approaches, if the height map is modified accordingly.

The route distance image, from which the shortest route is extracted, contains the route
lengths for all pixels in the image, that is, the route distance value of pixel x corresponds
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(a) Scene with obstacles (b) Dilated obstacles (c) Shortest route
- x .

(d) Slope added to scene (e) 3D visualization (f) Shortest route

Figure 5.3: Robot navigation using Route DTOCS and dilated obstacles.

to the length of the shortest path from the source to the destination, which passes through
point z. If the shortest route found by the algorithm is not applicable for some reason, an
alternative route can be found by selecting an intermediate point with an acceptably low
route distance value, and running the Route DTOCS algorithm twice, from the source to
the intermediate point, and from the intermediate point to the destination. An example
of such a detour route is shown in Figure 9 in Publication IV, and another in Figure 5.4,
where the shortest route along a street map is found using the WDTOCS. Figure 5.4 (d)
demonstrates clearly that there can be several equally short paths in the same route set.
The destination of the route in Figure 5.4 was selected as the nearest of two destinations
by using the set of alternative destination points as the route end-point set. Figure 3 in
Publication III illustrates the method using three alternative destinations.

The route consists of pixels on any minimal path, and typically several alternative paths
exist. The algorithm for extracting a single path described in Publication III and Publica-
tion IV uses the route set as a reference in making sure the backtracking proceeds in the
right direction. The alternative approach of using the original image as a reference may
be more flexible, as the need to produce the second distance map containing sub-path
lengths from the destination is eliminated. For example, in a mobile robot application,
one distance map can be calculated using the location of one or several docking stations
as reference points. Then at any time, a path can be backtracked from the current loca-
tion of the robot to its nearest docking station. In addition to planning paths for mobile
robots in real space, DTs can be used more generally for robots, for example, for robot
arms, to find accessible paths in the state space [74].
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(c) Shortest route from source to intermediate (d) Shortest route from intermediate point to
point destination

Figure 5.4: A path planning example, where the shortest route from the source
’x’ to the nearest of two alternative destinations ’o’, is replaced with an alternative
route via a desired intermediate point '+’.

This chapter presented the Route DTOCS algorithm for finding and visualizing shortest
routes on a gray-level surface, and listed some application ideas, where it can be used.
If the surface, along which distances are calculated, represents a real surface, like a
terrain height map, the routes approximate geodesics on the surface. Similar approaches
utilizing other gray-level DTs find low-lying paths, as local distances are defined based
on the gray-levels themselves, not their differences. If the Route DTOCS algorithm is
applied to an image, which is not a height map, the route contains pixels on a minimal
cost path. The distance in the horizontal plane is combined with the cost introduced by
the gray-level differences, and the interpretation of the resulting route depends on the
application.
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Applications

So far, the DTOCS has mostly been applied to problems, where the distance along the
surface is used as a measure of surface variation. The first application, for which the
DTOCS was originally developed [68], was image compression. The compression method
codes the image by storing only a fraction of its pixels. The DTOCS and a distance
threshold is used in order to concentrate more of these so called control points into
areas with more gray-level variation. In the most recent application, which is still under
development, the DTOCS is used to evaluate the roughness of a surface. The underlying
idea is the same as in the compression method, that is, distance values are used as a
measure of the amount of variation in the gray-level image. The amount of gray-level
variation is assumed to correlate with the roughness of the surface the image represents.

6.1 Image Compression

Image compression aims at coding digital images using as few bits as possible. In loss-
less compression, an image identical to the original image must be obtained when de-
compressing the data. Lower storage size, and consequently higher compression ratios,
can be achieved when some data loss is allowed. Lossy compression is an optimization
problem with at least two conflicting objectives, as the image quality typically deterio-
rates with increasing compression ratios. Additional objectives can include minimizing
the complexity of the compression and decompression algorithms. A lossy compression
method utilizing the DTOCS is based on the idea of storing more information from image
locations with more variation. Control points are stored from locations, where the differ-
ence between the DTOCS distance and the corresponding chessboard distance exceeds
a predefined threshold. The gray-values and relative locations of the control points are
coded using Huffman coding, or arithmetic coding [21]. The image is then reconstructed
from the control points by interpolation. In the experiments in Publication I, linear
interpolation based on a Delaunay triangulation is used, but in [66] a non-linear interpo-
lation scheme is presented. The Delaunay triangulation is used only in the decoding, or
reconstruction, whereas the fractal image compression algorithm presented in [19] uses
Delaunay triangulation to find self-similar parts within an image for efficient encoding.
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A detailed description and analysis of the DTOCS compression algorithm can be found
in [68], which also includes various small improvements to the basic algorithm, for ex-
ample, selecting control points only at locations with coordinates divisible by two, and
storing patterns of control points instead of single control points. Both modifications
attempt to store more information without increasing the number of bytes needed to
encode the positions of the control points. In Publication I, the compression method was
improved by selecting control points from the derivative image instead of the original im-
age. Distances calculated along the original gray-level surface cause the control points to
be placed at locations, where the gray-value has changed enough. The gray-values in the
derivative image are calculated as the magnitude of the gradient Gyac = /G% + G%,
where Gx and Gy are the horizontal and vertical derivative components. The gray-
level difference used in the DTOCS local distance corresponds to the change in surface
curvature, so control points are placed at locations, where the curvature changes.

Figure 6.1 illustrates the compression and reconstruction method. The control points
selected by calculating distances on the original image are shown in Figure 6.1 (a),
and the control points selected from the derivative image are shown in Figure 6.1 (c).
The images reconstructed from the control points are shown in Figures 6.1 (b) and (d).
The example is produced with a high distance threshold resulting in quite few control
points, and the interpolation artefacts are clearly visible in the reconstructed images.
Increasing the number of control points by decreasing the distance thresholds results in
images of better quality, as visualized by the descending error curves in Figures 4-6 (a)
in Publication I. The control points in Figures 6.1 (a) and (c) are concentrated at edges
and other areas with high gray-level variation. This effect, which is the basic idea behind
DTOCS compression, is intensified in the derivative method, enhancing the quality of
the decompressed image, particularly in areas with rapid gray-level changes. Theoretical
basis and experimental evidence for the improvement are given in Publication I.

The implementation of the compression method utilizes the SLT algorithm, and bound-
aries, at which the distance value exceeds a given threshold, need to be extracted sepa-
rately. Finding the boundary is trivial using the priority pixel queue algorithm developed
in this work. As distance values propagate in priority order, the boundary consists of
pixels, which obtain a value exceeding the threshold during the transformation. When
a pixel is found to belong to the boundary, the propagation can be stopped by not en-
queueing the pixel neighbors. Excess processing is eliminated, as the transformation
terminates, when all boundary points have been found. Boundary tracing is needed only
in the second phase of each iteration. A 1D distance transformation is performed along
the boundary, and control points are placed at locations, where the difference between
the DTOCS distance and the corresponding straight distance calculated from the previ-
ously selected control point exceeds a threshold. The new control points can immediately
be enqueued into the priority queue as reference pixels for the next iteration.

6.2 Measuring Surface Roughness

As DTOCS distances along a highly varying surface are larger than distances along a
smooth surface, it is quite natural to try to use the DTOCS to evaluate surface rough-
ness. The underlying idea is quite similar as in the image compression method. In fact,
the number of control points found by the DTOCS compression algorithm could be used
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(a) Control points from original

(c) Control points from derivative (d) Reconstructed image (derivative)

Figure 6.1: Example of DTOCS image compression. Image (b) is reconstructed
from the 6944 control points shown in image (a), and image (d) from the 6847
control points shown in image (c¢). The original image contains 512 x 512 pixels,
so only about 2.6 % of the gray-values plus their relative locations are stored in
the compressed images.
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DTOCS avg roughness 1.34

1.80

(a) Paper surface image (b) Seeds for DT and NNT (c) Roughness map

Figure 6.2: A microscopic image of a paper surface, the seed point grid used in
the roughness measurement method, and the resulting DTOCS roughness map.

as an estimate on how much variation there is in the image. The idea behind the sur-
face roughness measurement method, which is still under development, is introduced in
Publication VI. A combination of the DT and the NNT is used to obtain estimates of
surface roughness both globally, and locally within regions of the image, as illustrated in
Figure 6.2. First, a grid of seed points is selected, as in Figure 6.2 (b), from which the
distance transformation and the corresponding nearest neighbor transformation are ini-
tiated. Region borders appear where the propagating fronts meet. Within each nearest
neighbor region, the distance values are normalized with, for example, the chessboard
distance to the seed of the region. The larger the normalized distance values are, the
more variation there is inside the region. The average of the normalized distances in a
region estimates the roughness locally, and a roughness map can be visualized by coloring
each region with its roughness value, as in Figure 6.2 (c¢). The average of all normalized
distances can be used as an estimate of the global roughness.

The method can be applied to microscopic images of paper, and also on profilometer
data representing the surface relief of the paper. The profilometer data is of unequal
resolution, so the generalization of the DTOCS or the WDTOCS for anisotropic grids is
needed. Better known approaches for measuring the roughness of paper include statis-
tical analysis, like kurtosis [24], and analysis based on the fractal dimension [31]. The
main problem is that roughness properties differ greatly between different paper types.
The DTOCS seems to measure small scale roughness quite well, but waviness, which is
roughness of larger scale, has a clearly smaller effect on the distance values measured
along the surface, as distance values along a smooth slope are only slightly larger than
distances along a flat plane. This means that the average of normalized DTOCS dis-
tances can not be used as the only measure for roughness. For the method to be useful
in the paper industry, the DTOCS roughness measure needs to be combined with cost
factors designed to extract waviness properties. Only the idea for the method has been
published (Publication VI), and results will be presented in future work.



CHAPTER VII

Discussion

The basis for this thesis was the Distance Transform on Curved Space, and the objective
was to analyze and improve the transform, and to find applications for it. The starting
point was the method, as opposed to research projects, which start with a problem,
and aim towards developing a method to solve it. The original plan was to focus on
applications, but the topic evolved towards theoretical advances.

The gray-level differences, which are used in the DTOCS local distance definition, do not
necessarily have to correspond to differences in altitude. In terrain navigation, difficult
areas, like swamps, can be marked with higher values. In obstacle avoidance problems,
like the labyrinth application in Publication II and Publication IV, one option is to scale
the original image so that obstacles are high enough, but another is to scale the gray-level
difference used in the local distance definition so that the high cost of moving from the
legal path to an obstacle prevents illegal shortcuts. The local distances can be redefined
to contain a cost factor, like energy expenditure [51]. Steep slopes can introduce a higher
cost than the same distance along gradually shifting planes. In the DTOCS such a cost
factor could be included by redefining the local distance using a non-linear function,
like the squared gray-level difference. In the priority pixel queue algorithm, where the
propagation order coincides with the paths, different costs could be defined for upward
and downward pointing local distances. The only restrictions are that local distances
must be non-negative for the algorithm to work, and strictly positive to be considered
metrics. Extensions to 3D images may be considered in future work, if an application is
found, where the gray-level difference between neighbor voxels is meaningful. A minimal
cost path according to some other gray-level DT in 3D space could, for example, be used
to find the path with the lowest density through a 3D object, where the value of a voxel
indicates its density. If the DTOCS was used in a similar way, the path with the least
density variation would be found.

The publications included in this thesis are in chronological order. Publication I provides
a link to the history of the DTOCS research, as the transform was originally developed
for image compression [68]. The experiments only demonstrate how one version of the
DTOCS compression algorithm improves when the derivative image is used as input
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instead of the original image. No comparison to other compression methods was made.
Even if the compression algorithm does not lead to a real application, the idea behind
it might be of interest in some other image processing problems, for example, detecting
image areas with high variation. The basic idea of comparing the curved DTOCS distance
with the corresponding straight distance could be useful in measuring features from range
images in various applications, for example, in face recognition. The curved distance
between the inner corners of the eyes measured from a 3D model of a face represented
as a height map could provide some information about the profile of the nose. The
possibility of using the DTOCS in such applications will be explored in future work.

Publication II describes the Route DTOCS algorithm originally presented in [23], and
redefines it with the WDTOCS to produce more accurate approximations of distances
and routes. The Optimal DTOCS defined in Publication IV produces the most accurate
distance approximations found so far. To further improve them, methods used for length
estimation of digital curves could be applied. A recent evaluation of length estimators
of digital curves in 2D can be found in [14], and some of the estimators can be extended
to 3D. Paths in the DTOCS setting are essentially 3D curves, even though they are
represented in 2D. Ideas presented for obstacle avoidance and robot navigation will be
implemented and tested in the future. A distance transformation using the destination
or alternative destinations of the robot as reference pixels, produces a map, where the
distance to the nearest destination is known in each location. The path to the destination
can be found by backtracking on the distance map.

The idea to use DTs to find routes between point sets is not as new as Publication III in-
sinuates. In [81], the minimal cost path between two regions of an image is computed
to find faint linear features running from one region to the other. However, Publica-
tion I1I demonstrates how the scaling of the original image can affect the paths, and
contains discussion about the complexity of the sequential distance transformation, which
is relevant for the later work presented in Publication V.

Publication V presents the priority pixel queue algorithm for calculating the DTOCS.
Propagating distances in priority order is not a new idea, but gray-level distance trans-
formations implemented using a minimum heap have not been found in the literature.
In [28], distances along digitized 3D surfaces represented as voxel images are calculated
using a minimum heap, but the advantage of using priority ordering instead of ordered
propagation is probably quite small in binary images, where local distances vary only
based on the propagation direction within the neighborhood. In the DTOCS and other
gray-level DTs, where local distances vary considerably, the minimum heap provides an
efficient, and a very flexible approach, as it can handle any distances, including floating
point values. Publication V also includes experiments on the convergence properties
of the sequential transformation, and the ordered propagation. It is well known that
transforming non-convex domains, like gray-level surfaces, requires several iterations of
the sequential transform, but no records on how high the iteration number can become
have been found. The experiments made for Publication V demonstrate a clear trend,
that is, the number of iterations grow both with the resolution of the image and with
the complexity of the surface, and tens or hundreds of iterations may be needed. The
ordered propagation was demonstrated to be applicable for smooth and simple surfaces,
but clearly inferior to the priority pixel queue in the case of complex images.
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The priority pixel queue distance transformation is very similar to the fast marching
algorithm for calculating forward propagating level sets, and it would be interesting to
make a comparison between DTs and evolving interfaces defined within the mathematical
framework of level sets described, for example, in [54]). It is clear that there are many
similarities, but DTs are defined directly for the discrete geometry inherent for digital
image processing, so the calculations are simpler. In [75], a straightforward connection
between wavefronts and DTs is found by showing that the gray-weighted distance trans-
form can be used to approximate the Eikonal equation, which is a core concept in level
set theory. The speed of the propagating front is used in the calculation of level sets, and
the local distance used in the DTOCS can be viewed as the inverse of the speed, since
large local distances slow down the propagation.

In Publication VI, the priority pixel queue transformation algorithm is extended to pro-
duce the NNT simultaneously with the distance map. Discrete approximations of Voronoi
or Dirichlet tessellations have been done for binary images in 2D and 3D, but the DTOCS
divides the image to regions in a new way. Possible applications for NNTs of gray-level
images could be in cost minimization. For example, an area of varying height terrain
could be divided into regions surrounding two or more support points, so that mainte-
nance tasks could be assigned to the nearest support point. If the division should be
based on actual distances along the terrain, the DTOCS NNT should be used. If the
pixel values represent the cost of traversing the terrain, a NNT based on calculating
minimal cost paths should be used instead. Some applications for NNTs of gray-level
surfaces might be found in the telecommunications field, like planning the locations of
base stations for mobile communication.

To summarize, the contributions of this thesis are as follows:

e The Route DTOCS algorithm for finding shortest routes on surfaces.

e The new variations of the DTOCS with more accurate local distance definitions:
the v2-DTOCS, the 3-4-DTOCS and the Optimal DTOCS.

e The generalization of the DTOCS and the WDTOCS to anisotropic grids.
e The new efficient propagation algorithm based on a priority pixel queue.

e The experimental analysis on the convergence of the sequential and ordered prop-
agation algorithms in complex domains.

e The nearest neighbor transform based on distances along varying height surfaces.

Hopefully, one result of this thesis is taking gray-level DTs another step closer to real
applications in modern image processing. Most of the basic research in the field has
been done in the 1980s, when computers possessed only a fraction of the computation
power available today. Any home computer can now be used to transform large images
in little time. High resolution images can be processed, and large distance values, or
distance values of floating point accuracy, present no problems. Even the input image
can contain floating point values, like profilometer data, instead of gray-levels, so the
scope of possible applications widens. The DTOCS and the WDTOCS generalized to
anisotropic grids need to be refined using more accurate distance definitions if they are to
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be used for approximating real distances along surfaces. In measuring surface roughness,
the coarse approximation is probably sufficient, as the distance values are used only to
estimate the amount of variation in the surface. The research on using the DTOCS and
its modifications to estimate the surface roughness of paper based on profilometer data
or microscopic images of the paper surface is currently going on, and future work will
focus on finding more applications.



CHAPTER VIII

Errata

The word “noise” has been left out in all three figure captions presenting signal to noise
ratios of reconstructed images in Publication I.

The reference list in Publication II contains the article “Salience Distance Transforms”
by Rosin and West [49], which is not cited in the text.

In Publication IV the concept of Geodesic Time is described as the sum of gray-values
along a path. Even though the inventor Pierre Soille himself uses that definition in the
abstract of [61], the exact definition of the path length ¢; is the sum of the mean of the
gray-values taken two at a time along the path P:

! -1
t4(P) = Z f(Pi71)2+ f(pi) _ f(§0) i f(;’l) n Zf(}?i)
i=1 i=1

Reference [9] in Publication IV is by G. Borgefors (erroneous initial).
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8. Errata
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ABSTRACT

In this paper, a new image compression method is pre-
sented using the Distance Transform on Curved Space
(DTOCS) and derivative information in finding posi-
tions for control points. In previous work it has been
shown that the control points are not in exactly opti-
mal positions. This paper presents theoretical consider-
ations according to which the new method enhances the
decompressed image quality particularly in the areas of
rapid changes. The obtained results shown verify the
correctness of the theoretical considerations. The re-
constructed image quality is clearly better measured by
error criteria. Also visually the difference is significant.

1 INTRODUCTION

Image compression techniques are commonly divided
into first and second generation methods [6]. The sec-
ond generation methods can further be divided into two
groups. The first group is characterized by the use of
local operators. Pyramidal coding [1] and anisotropic
nonstationary predictive coding [11] are the main ex-
amples of this groups of methods. The second group
methods attempt to describe an image in terms of con-
tour and texture. Directional decomposition-based cod-
ing [4] and segmentation-based coding [5] are two major
examples of this second group of methods.

A recently introduced image compression method is
based on the linear wavelet theory. With this method
it is possible to obtain both time and space resolution
at the same time giving better compression ratios than
classical methods [2].

In [10] the min-max-Medial Axis Transfrom is used
for image compression giving 1.0 and 2.5 bits per pixel
for noisy chromosome images. Such rates are compa-
rable with those typically obtained in interpolative and
transform coding schemes.
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Commonly distance transforms are used in feature ex-
traction in pattern matching and learning. Their use in
image compression is very rare. The proposed gray-level
image compression method is based on the use of the
Distance Transform on Curved Space (DTOCS), which
is a distance transform for gray-level images. The def-
inition of the DTOCS and a sequential two-pass algo-
rithm to calculate it is presented in [8]. Previously the
DTOCS has been applied to gray-level image compres-
sion [9] with fairly good results. In [9], the DTOCS is
used as part of a compression algorithm to find as opti-
mal as possible locations for control points, i.e., points
that are considered fundamental for the reconstruction
of the image. The algorithm is applied directly to the
original image. In this paper, the original image filtered
with a derivative filter before the compression algorithm.
giving somewhat better results thane those in [9].

This paper is divided as follows. Section 1 is an in-
troduction on the subject. Section 2 presents the un-
derlying theory of using derivative information with the
DTOCS in compression algorithm. Section 3 presents
the compression algorithm. Results are shown in sec-
tion 4. Finally, section 5 is a conclusion.

2 THEORY

The Distance Transform on Curved Space (DTOCS) is
a distance transform for gray-level images [8]. It can be
utilized in control point based image compression [9].
The compression algorithm presented in [9] is essentially
a 2-dimensional algorithm. However, the main problems
in it, related to finding curves along which new control
points are placed, are 1-dimensional. Therefore, and
for simplicity, the following distance transform formulas
are presented for a 1-dimensional case. The new method
presented in this paper corrects the main problem also
for the 2-dimensional algorithms.

Let a € Z and b € Z. The DTOCS distance transform
can be represented in one-dimension as

dy(a,b) = flz =1l +1) (1)
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fl=Dll +b-10a) ,(2)

where d(a,b) represents the distance between points a
and b, and f(z) is the signal to transform. Likewise, the
chessboard distance transform can be defined as in [§],
as the binary image distance transform on digital grid.
Thus, the 1-dimensional function for the chessboard dis-

tance is ,
Y l=b-a. (3)
r=a+1

The difference between the distances is thus
6(a,b, f) = di(a,b) —do(a,b) (4)

b
||f fl@a=Dl) . ()

Equation 4 can be understood as the sum of the absolute
values of discrete first derivatives from a to b, when the
derivative of f(x) is defined as

f'(@) = f(a) = flz = 1). (6)

A similar distance transform can be defined for the
derivative of the signal using the Equation 5. The
derivative distance ¢, is defined as

51(a7b7 f) = D(a7b7fl) (7)
b
= > (f'@-f@-1l) , (8)
r=a+1

where f'(z) is defined as above.

The compression method based on the DTOCS tries
to place the control points in a way to preserve maxi-
mal amount of image information in decompression, as
the decompression is perfomed using linear interpola-
tion. New control points are placed in such locations,
where the value of the difference function § is greater
than some predefined threshold. See Figure 1.(a). The
open circles denote the positions for the control points
given by the existing algorithms [9]. No points are in
the ideal bending points.

This problem can be solved by using the derivative
distance function §;. Figure 1 presents an example of
this approach. Figure 1.(a) shows an example signal,
Figure 1.(b) is the derivative of the signal shown in Fig-
ure 1.(a). The black dots in Figure 1.(a) in the bending
points of the signal denote the ideal positions for the
control points from the reconstruction point of view, in
which linear interpolation is used. Since the signal is
monotonously increasing, its derivative is zero or posi-
tive. The control points of the compression are placed
along the increasing part of the function slope with equal
distances. It can be seen that the distance function re-
sponds to changes in the function value. If the points are

placed using the derivative, the places are determined by
the changes in the second derivative, i.e., the curvature
of the signal. The new distance measure ¢; is actually
the cumulative sum of the absolute differences of the
derivative. It is presented in Figure 1.(c), which shows
that the only points of interest are those, where the value
of the first derivative changes, i.e., the bending points
of the original signal, marked with black dots in Fig-
ure 1.(a). This is unlike the original method, where the
points are selected whenever the signal value is chang-
ing enough. Thus, in the new method, more points are
devoted to areas, where the curvature changes rapidly.
Theoretically, this should enhance the decompressed im-
age quality, since the decompression is perfomed by lin-
ear interpolation.

|deal—

(a) (b) (c)

Figure 1. a) Input signal and original distance func-
tion, b) Derivative of the input, ¢) Distance function
1.

This approach of using the derivative as the base sig-
nal can be extended to two-dimensional images. In
this study, the image was first filtered with 3 x 3 spa-
tial Sobel filters presented in [3]. Next, the magni-
tude of the gradient was calculated using the formula
Guac = /G% + G5, where Gpa¢ is the magnitude,
Gx and Gy are the corresponding horizontal and ver-
tical components. The result was then used with the
standard DTOCS compression algorithm to select the
control points.

3 THE COMPRESSION ALGORITHM

Let us make the following definitions for the compres-
sion algorithm. Let G(z,y) be the original gray-level
image and F'(z,y) be a binary image which determines
the area of calculation. Let H(x,y) be the original image
filtered using the derivative filter. In this paper, F(z,y)
= maximum integer if G(z,y) > 0, and F(z,y) = 0 oth-
erwise. The found control points with their gray values
are stored in C' = {c1,¢2,...,cn}. Let the chessboard
distance be denoted by dp and the distance generated
by the DTOCS on image H be Dy, correspondingly.
The compression algorithm:

1. Select a proper threshold e. Pick randomly some
initial control points ¢; = (x;, v, G(zi, y;)) from the
borders of the original image and V¢; : ¢; < 0. Put
the picked points to C' = {¢;}. F'\ C < mazint.

2. Filter the original image G using a suitable deriva-
tive filter to obtain the derivative image H.



3. Calculate the DTOCS and the chessboard binary
distance transform. Then scan the images until a
point is found for which |Dg(z,y) — du(z,y)| > €.

4. Resume scanning and form a curve R on those
points for which |Dg(x,y) — du(z,y)| > € holds.
The curve R ends when a point |Dg(z,y) —
di(z,y) < €| is found.

5. Go along the curve R and calculate the DTOCS and
the chessboard distance transform for each curve
pointin R. If |Dg(x,y)—du(z,y)| > € put a control
point to (z,y) in image C. Set the corresponding
pixels in C to G(z,y) and all the processed pixels
in F to 0. Set all the other pixels in F' to maximum
integer. Goto 5 until the entire curve R has been
handled.

6. Goto phase 3.

7. Code every control point using Huffman coding for
both its relative distance from the previous point
and for its gray value.

The decompression starts by unfolding the Huffman
code. Delaunay triangles [7] are formed among the con-
trol points. The gray value of each point inside a tri-
angle is calculated in the following way. Let G(x) be
the gray value of a pixel z = (z,,z,) in the image.
A, B, C are the three corner points of the Delaunay tri-
angle and a, b, ¢ are the three weights of pixel z in tri-
angle AABC. We have a set of equations, Equations
9-12, from which G(z) can be calculated for all pixels
z = (zq,2y) € AABC :

Ty = aAg+bB;+ cCy (9)

zy, = aAy+0bB,+cCy (10)
a+b+c = 1 (11)
)

G(z) = aG(A)+bG(B)+cG(C) (12

4 RESULTS

The obtained results show that for all numbers of control
points, i.e., for all compression ratios, the error criteria
show lower values and the images look better than in
previous work [9]. Figure 1.(a) shows the original Lena
image of size 512 x 512 x 8 bits. Figure 1.(b) shows
the original airplane image and Figure 1.(c) the original
peppers image of the same size. Figure 2.(a) depicts a
decompressed Lena image which has been compressed
using a standard DTOCS-based compression algorithm
presented in [9]. It has 13459 control points. The signal-
to noise ratio is 22.32 dB and the compression ratio is
1:25 using the star pattern presented in [9]. Without
the stars with same number of points the ratio would be
1:17. Figure 2.(b) shows the same for the airplane image
and Figure 2.(c) for the peppers image. Figure 3.(a)
shows the decompressed Lena image using the derivative

filter. Figures 3.(b) and 3,(c) show the same for the
airplane and the peppers image.

In Figures 4-6 the dashed lines represent the results
obtained with the original image without derivative fil-
tering. The solid line represents the results with deriva-
tive filtering. Figure 4.(a) shows the mean average error
versus number of control points for the Lena image. It
can be seen that for normal amounts of control points
the new method gives lower error. Figure 4.(b) depicts
peak signal-to noise ratio. Also it is clearly higher with
the new method. Visually the difference is significant,
since the use of the derivative filter corrects many de-
fects near the edges of the image. This can be seen when
comparing Figures 2.(a) and 3.(a), Figures 2.(b) and
3.(b), and Figures 2.(c) and 3.(c). Figure 5.(a) shows the
mean average error and Figure 5.(b) the peak signal-to
noise ratio for the airplane image. In the airplane image,
the new method reproduces little details better than the
original method. Finally, Figure 6.(a) depicts the mean
average error and Figure 6.(b) depicts the peak signal-to
noise ratio for the peppers image.

(@) b @
Figure 2. Decompressed images without derivative fil-
tering.

(b) (c)
Figure 3. Decompressed images with derivative filter-
ing.
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Figure 4.(a) Mean average error,(b) Peak signal to ra-
tio vs. number of control points for the Lena image.
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Figure 5.(a) Mean average error,(b) Peak signal to ra-
tio vs. number of control points for the airplane image.

(a) (b)
Figure 6.(a) Mean average error,(b) Peak signal to ra-
tio vs. number of control points for the peppers image.

5 CONCLUSION

In this paper, a new image compression method is pre-
sented. It is based on the use of derivative information
together with the Distance Transform on Curved Space
(DTOCS) and the chessboard distance transform. The
compression algorithm is applied to an image which has
first been filtered by a derivative filter. The underly-
ing theory is presented in analytical form, according to
which the decompressed image quality is enhanced par-
ticularly in the areas of rapid changes. The improve-
ment of the reconstructed image quality is clear with all
compression ratios. This is verified by calculating peak
signal to noise ratios and mean average errors, and by
visual inspection.
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Abstract. This article presents an algorithm for finding and visualizing
the shortest route between two points on a gray-level height map. The
route is computed using gray-level distance transforms, which are varia-
tions of the Distance Transform on Curved Space (DTOCS). The basic
Route DTOCS uses the chessboard kernel for calculating the distances
between neighboring pixels, but variations, which take into account the
larger distance between diagonal pixels, produce more accurate results,
particularly for smooth and simple image surfaces. The route opimiza-
tion algorithm is implemented using the Weighted Distance Transform
on Curved Space (WDTOCS), which computes the piecewise Euclidean
distance along the image surface, and the results are compared to the
original Route DTOCS. The implementation of the algorithm is very
simple, regardless of which distance definition is used.

1 Introduction

Finding the shortest path between two points on a three dimensional surface
is a common optimization problem in many practical applications, e.g. robotic
and terrain navigation, highway planning, and medical image analysis. By con-
sidering the digitized surface as a graph, variations of Dijkstra’s classical path
search algorithm become feasible (e.g. [4], [10]). A dynamic programming-based
algorithm for computing distances of fuzzy digital objects is presented in [9].

This article presents an algorithm for finding optimal routes, or so called
minimal geodesics, between two points on a gray-level height map. Other dis-
tance map approaches for path optimization include level sets propagation [3],
and morphological grassfire algorithms [5]. Our algorithm is based on the Dis-
tance Transform on Curved Space (DTOCS presented in [13]), which calculates
distances on a gray-level surface, when the gray-levels are understood as height
values of the image surface. The Route DTOCS, first presented in [2], is de-
veloped further by using distance definitions, which give more accurate values
for the global distances compared to the original chessboard distance transform.
Particularly the piecewise Euclidean distance calculated with the Weighted Dis-
tance Transform on Curved Space (WDTOCS [13]) produces reliably optimal
routes.

I. Nystrom et al. (Eds.): DGCI 2003, LNCS 2886, pp. 308-[318, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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2 Definitions for Route DTOCS and WDTOCS

In the distance image produced by the DTOCS or the WDTOCS, every pixel
in the calculation area X has a value which corresponds to the distance of that
pixel to the nearest background pixel in X¢. The definition of the DTOCS for
any calculation area X can be found in [13]. In the Route DTOCS the same
distance metrics apply, but the complement area X© is restricted to a single
point, and the distance can be calculated according to the following, slightly
simplified, definitions.

A discrete gray-level image is a function G : Z2 — N, where N is the set of
positive integers.

Definition 1. Let Ng(p) denote the set of all 8 neighbors of pizel p in Z2. Pizels
p and q are 8-connected if ¢ € Ng(p). Let Ny(p) denote the set of 4-connected
neighbors, and Ng(p) \ Nu(p) the set of diagonal neighbors. A discrete 8-path
from pizel p to pizel s is a sequence of pixels p = po,p1,...,Pn = S, where every
p; is 8-connected to p;—1, 1 =1,2,...,n..

Definition 2. Let ¥(x,y) denote the set of all possible discrete 8-paths linking
points © € X andy € X©. Let v € ¥(x,y) and let v have n pizels. Let p; and
Dit1 be two adjacent pizels in path . Let G(p;) denote the gray value of pizel p;.

The length of the path ~ is defined by A(y) = Z?:_ll d(pi, pi+1), where the
definition of d(p;, pi+1), i.e. the distance between neighbor pixels p; and p;41
on the path, depends on the distance transform used. The Weigthed Distance
Transform on Curved Space (WDTOCS) uses the Euclidean distance calculated
with the Pythagoras’ theorem from the height difference and the horizontal
displacement of the two pixels:

) — VIG(pi) —G(pis1)]?2 + 1, pit1 € Na(ps)
Apepin) { VIG(0i) — Gpis1)> + 2, piy1 € Ns(pi) \ Na(pi) (1)

In the chessboard DTOCS the distance is defined as the height (gray-level)
difference between the pixels, plus one for the horizontal displacement:

d(pi,pi+1) = |G (i) — G(Piy1)| +1 (2)

The distance can also be defined using separate height and pixel-to-pixel
displacements as in DTOCS, but using the accurate horizontal distance between
diagonal neighbors:

o _JIG:i) = Gpir)| + 1, pit1 € Na(pi)
AWperPisr) = { G(pi) — G(pis1)| + V2, pis1 € Na(pi) \ Na(p:) 3)

Definition 3. The distance image F*(x) when X = {y} is

min(A , v e X
Fra) = {8@( () 3 i e @
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The same distance image definition is used for the WDTOCS, the DTOCS
and for the distance transform using v/2 as the horizontal displacement between
diagonal neighbors. The definition of neighbor-distances d(p;, p;+1) used in cal-
culating the path length A(~y) determines which version of the distance transform
is produced by the algorithm.

3 The Distance Transformation Algorithms

The two-pass algorithm (see [13]) for calculating the DTOCS or the WDTOCS
image F*(z) is a sequential local operation (see [7]). The algorithm requires
two images: the original gray-level image G(x) and a binary image F(x), which
determines the region(s) in which the transformation is performed. The calcula-
tion area X in F(zx) is initialized to maz (the maximal representative number
of memory) and the complement area X to 0.

The first computation pass proceeds using the mask M1 = {pnw, Pns Pne, Pw |
in figure [l rowwise from the top left corner of the image, substituting the middle
point F(p.) with the distance value

Fi(pe) = min[F(pc), min (A(p) + 77 (p))] ()

The distance A(p) between pixels p. and p is calculated according to the
definition of the distance transformation that is used:

pc |2+1 p€N4( )

WDTOCS: A(p) — {\/|g

VG G(pe)|?+2, p € Ns(pe) \ Na(pe)
DTOCS: A(p) = G(p) — G(po)] +1 (7)
. _ |g(p) - g(p(‘)| + 1 , D S N4(pc)
VEDTOCS: Alp) = { G0) — Gl + V2, p € Ns(po) \ i)~ O

The backward pass uses the mask My = {pe, Psw, Ps; Pse | in figure [replacing
the distance value F; (p.) calculated by the forward pass with the new value

F*(pe) = min[Fy (pe), min (A(p) + 77 (p))] 9)

If the original gray-level map is complex, the two calculation passes may
have to be repeated several times to get the perfect distance map (see [L1]).
The distance image F*(z) is used instead of the binary image F(x) for the next
computation pass repeatedly until the DTOCS algorithm has converged to the
globally optimal distances.

4 The Shortest Route Algorithm

The shortest route algorithm is based on calculating two distance maps, one
for each endpoint of the desired route. Assuming we have a gray-level map G(x)
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Pnw|Pn |Pne
Pw |(Pe) (pe)| pe
Psw Ps|Pse

Fig. 1. The masks for calculating the DTOCS. The left mask M; is used in the forward
calculation pass, and the right mask M> in the backward pass.

and want to find an optimal route from point a with gray-level value (i.e. height)
G(a) to point b with value G(b), we initialize the binary images F,(x) and Fp(x)
with X¢ = {a} and X = {b} respectively. Using these two images, we calculate
the distance images F;(x) and F;(z) with one of the distance transformation
algorithms. In the resulting distance maps each value corresponds to the distance
between point = and point a (or b respectively) along an 8-connected path that
is optimal according to the distance definition of the used algorithm, WDTOCS,
DTOCS or v/2-DTOCS. It can be noted that F;(b) as well as F;(a) equals the
length of the shortest route between points a and b, but the route itself can not
be seen in the separate maps. Using the two maps we define the route distance:

Dr(x) = Fo(x) + Fy(x) (10)

For each point x the value Dg () is the length of the shortest path from point
a to b that passes through point . The value Ff(x) is the shortest distance from
a to z, and F; (z) is the shortest distance from z to b, and these optimal subpaths
form an optimal path (see [6]). The equal distance propagation curves in [3] are
combined similarly to form minimal geodesics. Now the optimal route from a
to b is the set of points, for which the route distance is minimal. We define the
route:
R(a.b) = { 2| D (z) = min D (x)} (1)

There can be several optimal paths, and the set R(a,b) contains all points
that are on any optimal path, so this method does not provide an analytical
description of a distinct route (e.g. a sequence of pixels). However, the routes
can be visualized by marking the set of pixels R(a,b) on the original image.
In WDTOCS and v/2-DTOCS real values are used in the calculations, but the
route distance Dg () is rounded up to nearest integer before finding the points
with the minimal distance. To summarize, the shortest route algorithm is:

Calculate the distance image F;(z) from source point a

Calculate the distance image F; (z) from destination point b

Calculate the route distance D (x) = F; (z) + F; (x)

Mark points with Dg(x) = mxinD =(x) as points on optimal route R(a,b)

Ll e

5 Experiments and Results

This section demonstrates how the shortest route algorithm works, and com-
pares the results of implementations with different distance definitions. Figure
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presents a step by step application of the algorithm. Figure 2l a) is the origi-
nal gray-level image. Figures 21b) and Bl ¢) show the DTOCS-images F(x) and
Fi(x) calculated from the endpoints a and b (marked with 'x’). As the distance
function is symmetrical, it does not matter which endpoint corresponds to a
and which to b. Figure 21 d) shows the route distance image, i.e. the sum of the
DTOCS-images. Images I b)—d) are scaled to gray-levels, but original distance
values, which can be beyond 255, are used in the calculation of Dg (z). Figure
e) presents the final result, i.e. the points in set R(a, b). Figure 21f) presents the
same route calculated with the WDTOCS. It can be seen that for the complex
image surface representing varying terrain the route is very similar, but sharper
than the route by the DTOCS.

d) e)

f)

Fig. 2. a) Original image, b) distance from source point, ¢) distance from destination
point, d) sum of distance images, e) route by DTOCS, f) route by WDTOCS.

A sample application, where the shortest route idea is used to solve a
labyrinth, was presented in [2]. Figure[3 a) shows the route through a labyrinth
produced by the original Route DTOCS. The algorithm needs a threshold seg-
mented image, where labyrinth paths get value zero and walls get a very high
value. Then the shortest path from the entrance to the exit of the labyrinth is the
route through the labyrinth. It can be seen in figure[3 a) that the route makes
seemingly extra 90° corners when calculated with the chessboard DTOCS.

The explanation to this problem is visualized in figure ] The route from point
A to B that passes through point z is just as short as as the intuitively optimal
straight route, as there are as many pixel-to-pixel displacements on both routes.
Consequently, there are several optimal discrete 8-connected paths through the
labyrinth, and as the route is defined as the set of all points that are on any
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optimal path, the visualized route becomes wide. Figure Bl b) shows how the
route width decreases when the longer distance between diagonal pixels is taken
into account according to equation [3.

Fig. 3. a) Route through labyrinth by DTOCS b) Route through labyrinth by DTOCS
with v/2 diagonal distances.

Fig. 4. Two of several possible routes from point A to B on a flat image surface
according to the chessboard distance definition. The DTOCS distance is the same
along the route through point = as along the straight line, as there are as many pixels
on both routes (each square represents a pixel).

Tests with a gray-scale-ball image show similar results. The routes between
the endpoints of the horizontal diameter of the half-sphere are too wide, when
calculated with the basic Route DTOCS (figure [ a), but introducing the v/2-
factor to the diagonal neighbor distances makes the routes as optimal as can
be expected of discrete 8-connected paths (figure [ b). Using the Euclidean
neighbor distances of the WDTOCS changes the result dramatically, i.e. the
algorithm finds the route across the half-sphere rather than around it (figure
¢). The differing route lengths are partly a result of the digitization of the sphere
function. Figure [6] shows a cross-section and a horizontal projection of a digital
ball with few pixels. The digitization error is smaller but still present when
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using a higher resolution ball image. Another big factor is that the variation in
surface height increases the WDTOCS-distances less than the distances of the
transforms that add the height difference to the horizontal displacement. The
DTOCS-distance across the ball along the route the WDTOCS algorithm finds
optimal (as in figure [ ¢) would be clearly longer than the WDTOCS-distance,
as each neighbor-distance v/d? + 1 is replaced with d + 1, where d is the height
difference of the neighbor pixels.

When gray-level variations, i.e. height differences are large, the effect the
horizontal displacements have on the distance value decreases in WDTOCS,
whereas it stays constant in DTOCS and v/2-DTOCS. The application deter-
mines which approach is better. If the transformation is used to approximate
actual distances along a real surface, using the piecewise Euclidean distance of
WDTOCS is justified. If the gray-level differences represent a different type of
cost than the horizontal displacements, the transformations adding horizontal
and vertical distances may work better and be more easily scalable. To modify
the effect the height differences have on the distance transform, the original im-
age can be scaled before applying the transformation. Alternatively, a weighting
factor can be added to the height difference in equations [Il 2] and Bl

a) c)

Fig. 5. a) Route by DTOCS, b) Route by DTOCS with /2 diagonal distance, c) Route
by WDTOCS.

6 Discussion

In previous work, the DTOCS algorithm has mostly been used to calculate local
distances. For example in image compression (see e.g. [12]) distance values are
used to measure the variation of the image surface. More control points need to
be stored from image areas, where local distances are high, i.e where gray-level
values change rapidly. In such applications the chessboard distance transform
works well enough, and the use of integer approximations of distance values is
justified to save computation time and space. However, the route optimization
algorithm computes global distances across the whole image, and the approx-
imation error of the chessboard distance accumulates. Particularly on smooth
and simple image surfaces, the chessboard Route DTOCS performs poorly, and
using the WDTOCS produces more reliable optimal routes.
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)

Fig. 6. a) Cross section of digititized ball with the WDTOCS route across the ball.
The height of the bars corresponds to gray-level values. b) flat projection of digitized
ball with the v/2-DTOCS route around the ball, and the shape of the WDTOCS-route
marked with dashed line for comparison. Each square represents a pixel.

The distance transform using v/2 as the diagonal pixel-to-pixel displacement
is an interesting hybrid of chessboard and Euclidean distance definitions, as the
locally Euclidean distance is used as the horizontal pixel-to-pixel displacement,
but the height difference is calculated just as in the chessboard DTOCS. The
theoretical basis for this hybrid distance transform may not be as solid as for
the DTOCS and the WDTOCS, but in route optimization it can give some
interesting results. For example in the labyrinth application the horizontal dis-
placements form the desired route, and the values of the gray-level differences
are not significant, as long as distances along low paths are clearly shorter than
distances over high walls. Other obstacle avoidance problems can be solved us-
ing the route optimization algorithm, and treating the horizontal and vertical
displacements differently can be practical.

Using the piecewise Euclidean distances of WDTOCS gives the most accu-
rate approximations for distances along the image surface. If the slightly heavier
computation of floating point values instead of integers is not a problem, the
WDTOCS algorithm should be used to get the best results in route optimiza-
tion. A question for future research is whether we can define integer kernel
distances, which approximate the Euclidean distance more accurately than the
DTOCS. Borgefors [1] showed that using local distances 3 and 4 for square and
diagonal neighbors in binary images actually gives a better approximation of
FEuclidean distance along the horizontal image plane than the distances 1 and
V2 used here. Extending the ideas to gray-level images requires further inves-
tigation into how the height differences affect, and how they should affect the
distance transformation.
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This article presents a distance transform based algorithm for finding shortest routes along
gray-level surfaces. Finding the shortest path between two point sets using a point-to- point
shortest path algorithm would require a minimum path search for each possible end-point
pair. The new distance transform approach finds the route consisting of all optima paths
between two point sets as easily as the route between a fixed pair of points, in near-linear
time. It is an efficient 2D solution to the 3D path optimization problem

Introduction

The shortest path along a surface is needed in
many types of applications. Paths can be
computed on images representing actua
surfaces, like height maps in terrain navigation
applications, or on surfaces representing a cost
function. Shortest paths could be found with a

graph search, but the complexity O(n®) of the
basic Dijkstra algorithm is a problem in large
images, where each pixel represents a vertex.
As edges exist only between neighbor pixels,
more efficient sparse graph agorithms are
applicable, but the complexity is dtill

O(nlay n) for computing one single source
shortest path. Shortest paths between sets of
points could be found by computing single
source shortest paths for each point in the
source point set, or, if the point sets are large,
more efficiently with an all-pairs agorithm.
Our agorithm computes the optima route
between sets of points in near-linear time by
combining distance transform maps. Here the
route is defined as the set of points, which
belong to any optimal path. If a distinct path is
needed, it can be extracted with a simple
backtracking algorithm.

Shortest Route Algorithm

The Distance Transform on Curved Space
(DTOCS) computes distances along a gray
level surface, when gray-levels are understood
as height values [9]. The distance maps
describing the distance of each point to the

nearest background or feature point are
produced with a sequential local transformation
similar to the Chamfer agorithms presented in
[1]. The DTOCS just adds the difference
between gray-levels G(p) and G(p) to the local

horizontal distance between the neighbor pixels
pand p. (mask center pixel):

Alp) = 1G(p) = G(pe)| +1 @

The Weighted DTOCS (WDTOCY) uses piece-
wise Euclidean local distances computed with
the Pythagoras theorem from the horizontal
displacement and the height difference:

AD) {\/|Qp PJE+1 ,peNsip) @
VIG() — G2 +2 , pe Np(po),

where Ns(p;) denotes the set of sguare
neighbors of pixel pe, and No(pc) the set of
diagona neighbors. The WDTOCS produces
clearly more accurate global distarces than the
DTOCS, which underestimates the length of
diagonal steps compared to straight steps. The
sequential distance propagation passes need to
be repeated until the transformation converges
to the globally optimal distance map F ().

The Route DTOCS agorithm, first presented in
[5] and refined by using the WDTOCS in [4],
requires two distance maps F 4(x) and F p(X).
The route end-point a (resp. b) is the feature,
from which al distances are computed. From
the distance maps, a route distance image &
calculated by a simple addition:



Dr(x) = Folz) + Fy(x) 3

The value Dgr(X) is the distance between the
route end-points along the shortest path pass-
ing through point x. Consequently, the points
with the minimal route distance value form the
desired route, so the definition for the shortest
route between the two pointsaand b is

R(a,b) = { | Dale) = mn Dyfa)} (@

The same idea has been used in [7] for a
distance transform adding gray-level values
aong the path. Such a distance definition
produces minima cost paths, which are
inherently different than routes along surfaces.

Finding Routes between Point Sets

The origina Route DTOCS and WDTOCS
were designed to find the route between two
single points, but it is quite natura to extend
the idea to find routes between point sets, or
areas of the image. In fact, the single point-pair
route is just a specia case of a more generd
route between sets. The DTOCS and the
WDTOCS, like common distance transforms
for binary images, compute the distance to the
nearest feature, i.e. the distance to the nearest
point or points in the feature point set. The
route between point sets is found by calculating
distance maps F"a(X) and F g(x), where A and
B are the point sets between which we want to
find an optimal route. The points with minimal
values in the resulting route distance image
form the optimal route between the point sets.
The end-points of the routes are the points,
which belong both to the route set, and one of
the original end-point sets. There can be severa
optimal paths, so the resulting routes are rarely
one pixe wide.

Extracting a Distinct Path

Finding al optimal paths as one route can be
sufficient in many applications, but extracting a
distinct path, which can be described for
example with a chain code, can aso be
necessary. A path can be found from a binary
distance transform map simply by following

decreasing distance values from the target point
towards the source point. However, in the
DTOCS setting, the step lengths vary, and the
neighbor pixel with the smallest distance value
is not necessarily the next pixel on an optimal
path. The route set defined by the Route
DTOCS can be utilized in backracking a path.
The backtracking starts from a destination point
b belonging to the route set. The next path pixel
is chosen among the neighbors, which aso
belong to the route, and have a smaller distance
vaue on the map F A than the current pixel. As
there usualy is more than one optimal path,
different paths are found depending on which
neighbor is chosen. To extract al paths,
recursive backtracking from each feasible
neighbor pixel would be required.

Experiments

Figure 1 demonstrates how the shortest route
algorithm proceeds, when finding the shortest
route between two point sets on the image seen
with the resulting route in figure 1(d). Here one
st is the top line of the image, and the
distances from that set to al other points in the
image can be seen in figure 1(a). The other set
is the bottom line of the image producing the
distance map in figure 1(b). The route distance
image, i.e. the sum of the two distance images
can be seen in figure 1(c). The resulting route
can be seen in figure 1(d), where aso an
example of a distinct path extracted with the
path backtracking algorithm is included.

Anocther example can be seen in figure 2. The
route between a point near the center of the
twirl to anywhere on the rightmost column of
the image is found using the WDTOCS. In
figure 2(@) the surface is used as it is, and in
figure 2(b) it is scaed with two, so that the
largest height value 253 becomes 506, doubling
aso the height differences. The effect the
height differences should have depends on the
application. If the image represents an actual
surface, and real distances need to be
calculated, the height values should be scaled
so that one unit in gray-level difference
corresponds to the horizontal distance between
sguare neighbor pixels.



(c)Dg (d) WDTOCS Route

Fig. 1. Finding the shortest route between any point on
the top line of the image to any point on the bottom line.
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(a) (b)
Fig. 2. Route from center to rightmost column

The end-point sets do not have to be connected.
Figure 3 presents a navigation example, where
the objective is to find the nearest of three
destinations, marked with '0' in figure 3(a),
starting from one source point marked with 'X'.
The dternative destination points form one
end-point set. Figure 3(b) shows the result, i.e.
the route to the nearest destination. The lengths
of the shortest routes to the other destinations
can be read directly from the distance map
computed with the source point as ~feature",
but to visualize the routes a new distance map
from each destination would be needed. In this
street map example the graylevels do not

correspond to height, but the image is scaled so
that the height difference between roads and
other aeas are clear enough to make sure all
paths follow the roads. The image could also be
segmented to a binary image with roads having
one value, and background another. Then either
the two vaues in the binary image can be
significantly different (e.g. one zero and the
other very large), or the height difference in the
local distance can be scaled with a large value
to prevent illegal shortcuts. Applying the Route
DTOCS to this kind of an obstacle avoidance
problem is very smilar to the idea of the
constrained distance transform, where a path
along aternary image, with feature, nonfeature
and constraint pixels are found with a binary
distance transform modified to avoid the
constraint pixels, see eqg. [2] for a good
example. The DTOCS approach makes it
possible to use severa different levels of
obstacles, i.e. ones that can absolutely not be
crossed marked with infinite values, and others
that can be crossed but at a higher cost. Only
the input image must be edited and the
algorithm works without any changes. The
constrained distance transform can cope only
with the absolute obstacles marked with
constraint pixels.
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(a) (b)
Fig. 3. Path planning example, where the route to
the nearest of three destinations is computed.
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Complexity Analysis

The complexity analysis of the algorithm is not
straightforward. One two-pass iteration of the
WDTOCS is clearly of O(n), where n is the
number of pixels. Adding the distance maps as
well as finding the minimum can also be done in
linear time. The problematic part is estimating the
number of WDTOCS iterations needed to



produce the final distance maps, as it depends on
the size and the complexity of the surface. The
theoretical worst case situation would be that the
distance to the pixel with most pixels on its
shortest path to nearest feature propagates only
one pixel forward a each iteration, i.e. the
number of pixels on the path with most pixels is
an upper limit on the number of iterations. In
practice, much fewer iterations are usually
required. The example in figure 1 needed 15
iterations for the first distance map and 13
iterations for the second, the examplesin figure 2
needed 11 and 12 iterations for the left image and
15 and 13 for the right image, and the example in
figure 3 needed 14 and 12 iterations. The
numbers include the extra iteration needed to
detect convergence.

When comparing this method to a graph search
algorithm, the gray-level image corresponds to a
sparse graph with a large amount of vertices. The
complexity of a sparse graph modification of
Dijkstrais in O(n log n) for computing the path
between one end-point pair. Thisis comparable to
the complexity of the Route DTOCS if the
number of iterations needed for a globally
optimal distance map is around log(n), which isa
reasonable estimate (e.g. image size n = 128*128
® log(n) = 14). So the Route DTOCS computes
al optimal routes between two point sets with a
similar complexity as a graph search calculates
only one shortest path candidate between the sets.

Discussion

This paper presented the Route DTOCS, a
distance transform based method for finding the
shortest route along a gray-level surface. The
shortest route between sets of points can be
found as easily as the shortest route between
single end-points. The algorithm is very simple,
and runs in near-linear time. In some practical
applications the estimate of the shortest route
achieved by one or a constant small number of
iterations of the distance transformation could
be accurate enough, which would make the
running time linear.

Distances adong a gray-level surface could be
computed also by transforming the 2D gray-
level image to an umbra or surface relief in 3D,
see e.g. [8]. Distances aong the top surface of
the umbra can be computed with well known

binary distance transformations in 3D, see e.g.
[3], constrained to the surface. Also graph
search combined with estimation of lengths of
digital curves could be used [6]. However,
keeping the computation in 2D with the
DTOCS approach has its benefits, as the
increase in problem size, which is inevitable
when transforming to 3D, can be avoided. With
the most naive representation of the umbra the
problem size is multiplied with the number of
gray-levels in the used range (e.g. problem size
n¥n can grow to 255*m*n). Even if only the
top surface of the umbra is stored, the number
of voxels is considerably higher than the
number of pixels in the original image, unless
the surface is very smooth. Paths aso consist of
fewer pixels in 2D than voxels in 3D. The
Route DTOCS for finding routes between sets
of points is thus a simplification in two ways -
finding all paths as easily as a single source
path, and solving a 3D problem in a less
complex 2D setting.
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Abstract

The distance transform on curved space (DTOCS) and its locally Euclidean modification weighted DTOCS (WDTOCS) calculate
distances along gray-level surfaces. This article presents the Route DTOCS algorithm for finding and visualizing the shortest route
between two points on a gray-level height map, and also introduces new distance definitions producing more accurate global distances.
The algorithm is very simple to implement, and finds all optimal paths between the two points at once. The Route DTOCS is an efficient 2D
approach to finding routes on a 3D surface. It also provides a more flexible solution to obstacle avoidance problems than the constrained

distance transform.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Finding the shortest path between two points along a
surface of varying height is an optimization problem in
many practical applications, for example in terrain naviga-
tion and medical image analysis The shortest path is a
widely researched problem, with many known solutions.
Variations of Dijkstra’s path search algorithm can be used
by modifying the path optimization problem to a graph
search, as presented, for example, in Refs. [1,2]. A dynamic
programming-based algorithm for computing distances of
fuzzy digital objects is presented in Ref. [3].

This article presents an algorithm for finding shortest
routes, or so called minimal geodesics, between two points
on a surface described with a gray-level height map. The
algorithm is based on gray-level distance transforms, which
are variations of the distance transform on curved space
(DTOCS) presented in Ref. [4]. Other distance map
approaches for path optimization include level sets
propagation as in Ref. [5], and morphological grassfire
algorithms as in Ref. [6]. The DTOCS calculates distances

* Corresponding author.
E-mail address: leena.ikonen@lut.fi (L. Ikonen).

0262-8856/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.imavis.2004.06.010

on a varying height surface represented as a gray-level
image, where gray-levels correspond to height values. The
Route DTOCS algorithm, first presented in Ref. [7], and
refined in Ref. [8], utilizes the distance maps to find optimal
routes. The original chessboard algorithm underestimates
diagonal local distances, and better results are achieved
using the integer approximations three and four for optimal
neighbor distances well known from Ref. [9]. The weighted
distance transform on curved space (WDTOCS) with
Euclidean local distances presented in Ref. [4] produces
more accurate global distances than the integer approxi-
mations, and the new Optimal WDTOCS introduced in this
article improves the results even further by utilizing local
distances proven to be optimal for binary distance trans-
forms by Ref. [9]. The simple Route DTOCS finds all
optimal paths between two points at once, even if there are
alternative paths with the same length. The algorithm does
not extract a single digital path, which could be described
for example with a chain code. Instead it finds the route,
which we define as the set pixels belonging to any optimal
path. If a distinct path is needed, it can be extracted from the
distance maps with a simple backtracking algorithm.

An option for computing distances along a gray-level
surface would be to transform the 2D gray-level image to
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a binary umbra or surface relief in 3D. A pixel with
gray-value z at location (x, y) in the 2D image corresponds
to the point (x, y, z) in 3D space, and coordinate z is the
height of the umbra at that point (Ref. [10]). Distances along
the top surface of the umbra can be computed with binary
distance transformations in 3D constrained to the surface
(Ref. [11]) or with graph search techniques combined with
estimation of digital curve lengths (Ref. [12]). However,
keeping the computation in 2D with the DTOCS approach
has its benefits, as the increase in problem size, which is
inevitable when transforming to 3D space, can be avoided.
With the most naive representation of the umbra the
problem size is multiplied with the number of gray-levels in
the used range (e.g. problem size m Xn can grow to 255X
mXn). Even if only the top surface of the umbra is stored,
the number of voxels is considerably higher than the number
of pixels in the original image, unless the surface is very
smooth. Also the paths consist of fewer pixels in 2D than
voxels in 3D, as each neighbor pixel is reachable with one
step, whose length depends on the height difference. The
same connection in 3D requires a number of voxel steps
corresponding to the gray-level difference.

We will compare the accuracy of different distance
definitions, and show with an example that at least for some
types of surfaces, the WDTOCS produces more accurate
distance values than the best 3D distance transforms. The
WDTOCS and the new Optimal WDTOCS can actually
smooth down some of the discretization error in digital
images, and produce good estimates of distances on the
continuous surfaces the images represent.

2. Definitions for distance transforms

In the distance image produced by the DTOCS or the
WDTOCS algorithm, every pixel in the calculation area X
has a value which corresponds to the distance of that pixel to
the nearest background pixel in X©. The definition of the
DTOCS for any calculation area X can be found in Ref. [4].
In the Route DTOCS, the same distance metrics apply, but
the complement area X© consists of a single point, which
slightly simplifies the definitions.

Definition 1. Let Ng(p) denote the set of all eight neighbors
of pixel p. Pixels p and g are 8-connected if g € Ng(p). Let
N4(p) denote the set of 4-connected neighbors, and
Ng(p)\W4(p) the set of diagonal neighbors. A discrete
8-path from pixel p to pixel s is a sequence of pixels
P=PpoP1>----Pn=S5, Where every p; is 8-connected to p;_,
i=1,2,....n.

Definition 2. Let ¥ (x,y) denote the set of all discrete 8-paths
linking points x€X and yEXC. Let yEW(x,y) and let y
have n pixels. Let p; and p;_; be two adjacent pixels in path
v. Let GQ(p;) denote the gray value of pixel p;. The length of
the path vy is A(y)=> %, d(p;,p;—1), where the distance

d(p;, pi—1) between neighbor pixels p; and p;_; on the path is
defined according to the distance transform used.

In the chessboard DTOCS, the neighbor pixel distance is
defined as the height difference between the pixels, plus one
for the horizontal displacement:

dpi.pi-) = |G@) — Gl +1 (D

Obviously, the DTOCS underestimates the length of
diagonal steps. Distance estimates can be improved by
using neighbor distances 3 and 4 shown to be the best
for binary distance transforms in Ref. [9]. To treat
height differences and horizontal displacements in a
similar manner, the gray-level difference is scaled with

three. We call this new distance transform the
3-4-DTOCS:

3IG(P) — Gpi— Dl +3, pi—i EN4(p))

31IG(p) — Gpi— ) +4, pi 1 ENg(P)\Na(p;)
2)

The WDTOCS uses the piecewise Euclidean distance

calculated with the Pythagoras’ theorem from the height
difference and the local distance in the xy-plane:

d(pi.pi—1)= {

VIG®) =GP + 1. pimy €Nutr)

VIG®) = G- +2. pimy €Ng(p)\WNa(p)
3

The WDTOCS defines the horizontal displacement
between diagonal pixels as /2, which despite being the
locally Euclidean distance, does not produce the best
approximations of global distances. The algorithm can be
improved by introducing these optimal local distances
derived in Ref. [9]:

d(pipi—1) =

Aopr = (V 24/2 =2 + 1)/2 =0.95509 for square neighbors
Dopt = V2 + (V242 — 2 — 1)/2 = 1.36930 for diagonal neighbors

As the WDTOCS algorithm itself requires floating
point computation, the accurate optimal values can
easily be introduced without increasing computation time.
The new distance transform Optimal WDTOCS is defined as:

VIG®) =GP + @ it ENu)

VIG0) = G0i D + B it ENsIN(p)
)

dpi,pi—1) =

Definition 3. The distance image F*(x) is

. { min(A(y)), x€X
Fix) =4 =¥ 5
0, xeXx€

The same distance image definition applies for all the
variations of the DTOCS. The definition of the local
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distances d(p;,p;—1), which add up to the path length /(y),
determines which transform the algorithm produces.

3. The distance transformation algorithms

The two-pass algorithm for calculating the distance
image F*(x) is performed by applying sequential local
operations as presented in Ref. [13], computed similarly as
the Chamfer distance maps in Ref. [9]. In addition to the
original gray-level image ((x) a binary image F(x) is
needed to determine the region or regions in which the
transformation is performed. The calculation area X in
image F(x) is initialized to max (the maximal representative
number of memory) and the complement area X to 0. In DT
literature describing distance as the distance from nearest
feature, e.g. Ref. [9], the features correspond to our
complement or background area.

The first computation pass proceeds using the mask
M ={p,sPnPnesPw} In Fig. 1 rowwise from the top left
corner of the image, substituting the middle point F(p.)
with the distance value

F1(p.) = min[F (p.), Igréiéll(A(P) +F ()] (6)

The distance A(p) between pixels p. and p is calculated
according to the definition of the distance transformation
that is used:

DTOCS :
Alp) = 1G(p) = Gpo)l +1
3 —4 —DTOCS :

3|1G(p) — Gp, 3, Ny(p.
A(p)Z{ |4(P) J(pL)|+ P EN4(p.)

3|g([7) - g(pc)l + 4’ V4 ENS(pc)\N4(pc)
WDTOCS :

V160 = GwaP + 1. penp

IGO) = Grol +2. p €NspO\WNs(po)
Opt. WDTOCS :

®)

o VIG®) = GOl + k. p €Ny
VIG®) — GOl + B p € Ng(p\WNy(po)

pmu p}’l pil(,‘

Pu (pe) (p.) Pe

Psw Dy Pse

Fig. 1. The masks for calculating the DTOCS. The left mask M, is used in
the forward calculation pass, and the right mask M, in the backward pass.

The backward pass with mask M= {p..psPsPse} N
Fig. 1 replaces the distance value F;(p.) calculated by
the forward pass with:

F*(p.) = min[F| (p.)s min(A(p) + F*(p)] (7)

The two calculation passes may have to be repeated
several times, using the distance image F* (x) as the ‘binary
image’ for the next computation pass, until the algorithm
converges to the globally optimal distances, Ref. [14]. The
number of passes required for convergence is typically
around 10, but depends on the size and the complexity of the
image surface, and on the number of pixels on the paths. The
worst case scenario would be an image and a path requiring
one iteration for each pixel in the path.

4. The Route DTOCS algorithm

The shortest route algorithm requires two distance maps,
one for each endpoint of the route. Assuming we have a
gray-level image G(x) and want to find an optimal route
from point a with gray-level value G(a) to point b with value
G(b), we initialize the binary images F,(x) and F,(x) with
X$={a} and X§ ={b}, respectively. Using these two
images, which in practice have the single pixel a or b set
to 0 and all other pixels to max, we individually calculate the
two distance images F,(x) and F,(x). In the resulting
distance maps each value corresponds to the distance
between point x and point a (or b, respectively) along an
optimal 8-connected path. It can be noted that the values
Fa(b) and F, (a) equal the length of the shortest route, but
the route itself is not known. Using the two DTOCS images,
we define the route distance:

Dr(x) = Fa(x) + F, () ®)

For each point x the value Dg(x) is the length of the
shortest path from point a to b that passes through point x.
The value F,(x) is the shortest distance from a to x, and
9’; (x) is the shortest distance from x to b, and the optimal
subpaths form an optimal path as proved in Ref. [15]. In
Ref. [5] equal distance propagation curves are combined
similarly to form minimal geodesics. The same idea for
computing minimal paths was presented in Ref. [16], but
with the distance defined as the sum of gray-values along the
path. The resulting minimal cost routes are inherently
different than the actual routes along a surface found by the
Route DTOCS.

The set of points, for which the route distance is minimal,
form the shortest route from a to b, i.e. the route definition is:

R(a,b) = {x| Dy (x) = min Dy (0)} €))

To summarize, the shortest route algorithm is:

(1) Calculate the distance image 7 (x) from source point a
(2) Calculate the distance image F Z(x) from destination
point b
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(3) Calculate the route distance Dg(x) = F,(x) + F, (x)
(4) Mark points with @Dg(x) = min, Dg(x) as points on
optimal route R(a, b)

In the WDTOCS, floating point values are used in the
calculations, so there must be some tolerance in finding
points with the minimum value. In the experiments, the
route distance values were rounded up to the nearest integer.
Instead of finding points with the single minimum value,
a threshold can be used to find points on paths that are
short enough.

There can be several optimal paths, and the route set
R(a, b) contains points on any optimal path, and can directly
be used only for visualizing the route. If a single path, i.e. a
sequence of pixels, is needed, one can be extracted with a
simple backtracking algorithm:

(1) Start from pixel b on distance map F

(2) Move from current pixel x,, to its neighbor x,,_ |, which
fills the criteria:
(a) Decreasing distance: F(x,_) < F4(x,)
(b) Point on route: x,_; € R(a,b), ie. Fulx,_)+

Fy (Xpe1)= Dr(x,—1)

(3) Repeat from step 2 until point a with distance value 0

is reached.

The distinct path found by backtracking depends on how
step (2) of the algorithm is implemented, as there can be
several neighbor pixels, which can be the next point along
an optimal digital path. Recursive backtracking from each
neighbor fulfilling the path pixel criteria would be required

to find all the paths. The first criterion for acceptable path
pixel guarantees that the path search proceeds from the
destination point b towards the source point a. The second
criterion is needed to make sure the tracking stays on a
globally optimal path. The most obvious solution to the path
tracking problem would be to start from the destination
point b on distance map F, and follow decreasing distance
values towards the source point a, as in the path finding
example for a constrained binary DT in Ref. [17]. This
approach, however, does not work in the DTOCS setting, as
step lengths vary. Checking that the local distance matches
the distance value difference between the two path pixels
would be needed to get correct paths. The same thing is
achieved by the second criterion for acceptable path pixel in
the backtracking algorithm.

5. Route optimization results

The algorithm was tested on several height map images,
and this section presents some results. Each step of the
algorithm is included in the example in Fig. 2 to
demonstrate how the algorithm proceeds. Fig. 2(a) is
the original gray-level image, and Fig. 2(b) and (c) show
the DTOCS-images F,(x) and F,(x) calculated from the
end points a and b (marked with ‘x”). Fig. 2(d) shows the
route distance image, i.e. the sum of the DTOCS-images,
and Fig. 2(e) the optimal route by the DTOCS. It can be seen
in Fig. 2(f) that the corresponding WDTOCS-route is
sharper than the DTOCS-route.

(d) Dyla)

(e} Rprocs(ab)

(f) Rwprocs(ab)

Fig. 2. (a) Original image, (b) DTOCS distance from source point, (¢) DTOCS distance from destination point, (d) sum of distance images, (¢) DTOCS route

and (f) corresponding WDTOCS route.
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Fig. 3. Two different optimal paths on the same DTOCS route.

Fig. 3 shows two different results of the path tracking
algorithm, i.e. two distinct optimal digital paths connecting
the end-points of the same DTOCS route as in Fig. 2(e). The
difference is caused by a different choice of path pixel
among neighbors fulfilling the path pixel criteria in step 2 of
the path tracking algorithm. Both paths consist of pixels
belonging to the route set.

The effect of narrowing the route with more accurate
local distances can be seen in Fig. 4(a) and (b). Fig. 4(c) is
included to demonstrate clearly how the routes computed
with the DTOCS transforms differ from routes that could be
computed with other gray-level distance transforms. Here
the GRAYMAT algorithm was used, which is similar to the
geodesic time distance used in Ref. [16], i.e. it adds gray-
level values along the path. In a terrain navigation
application such a distance transform would be quite
meaningless. It would prefer routes passing via deep
valleys, even though the real shortest route follows a high
ridge, as in the example image. The distances are inherently
different in minimal cost paths, where gray-levels corre-
spond to the cost of traversing the pixel, and in the DTOCS
paths, where actual distances along the varying height
surface are estimated using gray-level differences.

A sample application of solving a labyrinth with the
Route DTOCS (Fig. 5) also shows how using accurate local
distances improve the results. The labyrinth image was
segmented into low ‘paths’ and very high ‘walls’, and the
Route DTOCS was used to find a path through the labyrinth.
In the WDTOCS route, the extra 90° corners seen in the
DTOCS route are eliminated. Using the Route DTOCS in

(a) DTOCS route

(b) WDTOCS route

an obstacle avoidance problem like this is very similar to the
idea of the Constrained DT, Ref. [15]. The constraint pixels
are marked with very high values, and paths avoid the
obstacles without any changes in the algorithm. The
DTOCS approach also provides a possibility for several
levels of obstacles, i.e. some that can absolutely not be
crossed marked with infinite values, and others that can be
crossed but with a higher cost. This is not a feasible option
with constrained distance transforms.

The test image in Fig. 6 is a gray-scale ball constructed as
a digitization of a mathematical sphere. The height or gray-
value at the center corresponds to the radius of the sphere,
and the values decrease toward the edges reaching zero at
the circumference of the sphere. The tests demonstrate the
same differences between the distance transform definitions
as the previous examples.

The routes between the ‘north pole’” and the ‘south pole’
of the half-sphere are too wide, when calculated with the
chessboard DTOCS (Fig. 6(e)), but introducing the factors 3
and 4 to the square and diagonal neighbor distances makes
the route as narrow as can be expected of discrete
8-connected paths around the ball (Fig. 6(f)). Using the
WDTOCS with Euclidean local distances changes the result
dramatically, i.e. the algorithm finds the route across the ball
rather than around it (Fig. 6(g)). The route by the new
Optimal WDTOCS looks quite similar (Fig. 6(h)), but at
closer look, the route distance values are more accurate.

As the distances between the poles of a sphere should be
the same, 7r, along any ‘longitude’, one way to estimate
how well the different transforms approximate the distances
is to compare these route lengths. Fig. 7 shows the lengths of
all routes passing through the ‘equator’ of the sphere, i.e.
the route distance values Dy (x) along the middle row of
Fig. 6(a)-(d). It can be seen that all the distance
transformations produce overestimates of the correct route
length, except the DTOCS, which overestimates distances
across the ball but underestimates distances around it.
The 3-4-DTOCS produces the largest overestimates of
distances across the sphere, but the route lengths around the
sphere along the horizontal plane are quite accurate, as they
should be, according to the results on best neighbor
distances in Ref. [9]. The error of the 3-4-DTOCS increases

(¢) GRAYMAT route

Fig. 4. Terrain height map representing a ridge surrounded by valleys.
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L

(a) DTOCS Route

(b) WDTOCS Route

Fig. 5. An obstacle avoidance example: labyrinth solving with DTOCS.

quickly, when there is some height variation involved. The
WDTOCS route lengths are clearly more accurate than
the integer approximations produced by the DTOCS and the
3-4-DTOCS. The Optimal WDTOCS produces the best
results, approximating both the route length across the ball
and around the ball more accurately than the other
transforms. The route length straight across the ball with
no diagonal displacements is very close to the accurate
value 7rr, i.e. the optimal weight ap, for the local horizontal
distance almost eliminates the digitization error.

When height differences increase, the effect the hori-
zontal displacements have on the distance values decreases
in the WDTOCS and the Optimal WDTOCS, whereas it
stays constant in the DTOCS and the 3-4-DTOCS.
The application determines which approach is better.
If the transformation is used to approximate actual distances
along a real surface, the piecewise Euclidean distances of
the WDTOCS produces more accurate distance estimates,
and the Optimal WDTOCS can decrease the error in the
horizontal component of the distance values. If, on the other

) Route dist.
I)x 3-4-DTOCS

(a) Route dist.
by DTOCS

hand, the height differences represent another type of cost
than the horizontal displacements, the DTOCS and the
3-4-DTOCS, in which the height difference is treated as a
separate term, can work better and be more easily scalable.
To modify the effect the height variation has on the distance
values, the original image can be scaled before applying
the transformation. Alternatively, the height difference in
Egs. (1)—(4) can be weighted with a suitable factor.

Fig. 8 demonstrates a simple surface, where the
WDTOCS algorithm gives more accurate distance values
than could be achieved with a 3D distance transform on the
corresponding umbra. The image represents a slope, where
the height difference between neighbor pixels is 2. The
WDTOCS path from the point (x,y) with gray-level value z
to the point (x+2,y) with gray-level value z+4 consists of
two steps of length /2% + 1, i.e. the length of the path is
2+/5 =4.47. The corresponding path length using the 3D
distance transform with local distances 3 and 4 by Ref. [11]
would require four steps, two of length 3 and two of length
4, and scaled down with 3, the distance becomes
14/3=4.67. Even with the accurate optimal values for
neighbor distances aqp and by, the distance is over-
estimated (=4.65) compared to the WDTOCS value. If the
image is a digitization of a surface with a constant slope
representable with a rational number (whole pixels),
the WDTOCS distance is an errorfree estimate. At best,
the WDTOCS and the Optimal WDTOCS can smooth away
some error caused by digitization of an object, and compute
distances, which are good approximations of geodesic
distances on the original continuous surface.

An obstacle avoidance problem similar to the labyrinth is
presented in Fig. 9, showing an example of route
optimization through a city. The gray-levels do not
correspond to actual heights, but the differences between

(¢) Route dist.
by WDTOCS

(d) Route dist
by Opt. WDTOCS

(e) Route by
DTOCS

(f) Route by
3-4-DTOCS

(¢) Route by
WDTOCS

(h) Route by
Opt. WDTOCS

Fig. 6. Route distances and resulting routes with various distance definitions: DTOCS, 3-4-DTOCS, WDTOCS and Optimal WDTOCS.
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Fig. 7. Comparison of route lengths from pole to pole on a digital sphere
using different distance transform definitions. The correct route length is
«(r is also plotted for comparison.
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Fig. 8. A simple slope represented with gray-level values (left) and with a
top surface of an umbra in 3D, marked with coordinates of the
voxels (right).

roads and other image areas must be large enough to make
sure the shortest paths follow the roads. The example
demonstrates how the Route DTOCS algorithm, in addition
to finding all shortest paths between two points, simul-
taneously computes all route lengths between the points.
For example, here the length of the optimal route is
193 units. The length of the shortest route passing through

[ B }"" L B
Ay L‘
e/ M ﬁ‘i’ 1 bia

(a) Route by DTOCS

(b) Detour subroute 1

the point marked with ‘x” in Fig. 9(a) is the value of the
route distance at that point, i.e. 281 units. If the value is
good enough (it is worth making the detour) optimal
subroutes can be computed by calculating the Route
DTOCS distance from the source point to the detour
point, and from the detour point to the destination, as can be
seen in Fig. 9(b) and (c).

6. Discussion

The DTOCS algorithm has previously been used to
approximate distances locally, in small parts of the image. In
image compression, Ref. [18], distance values provide an
estimate on how much variation there is on the image
surface. More control points are stored from image areas,
where gray-level values change rapidly. In such applications,
the chessboard distance transform works well enough.
However, the route optimization algorithm computes global
distances across the whole image, and the approximation
error of the chessboard distance accumulates. If the slightly
heavier computation of floating point values instead of
integers is not a problem, the WDTOCS or the Optimal
WDTOCS algorithm should be used to get the best results in
route optimization. A question for future research is whether
we can define integer kernel distances, which approximate
the Euclidean distance well enough. The local horizontal
distances 3 and 4 for square and diagonal pixel neighbors
improve the results significantly compared to the chessboard
DTOCS, but not enough to achieve the performance of the
WDTOCS. Ideas from 3D distance transforms as in Ref. [11]
could be applied, but the problem with the DTOCS approach
is that there is a large number of different step lengths, i.e.
two for each possible height difference value. When height
differences are large, the relative effect of the horizontal
displacement is so small that in practice integer approxi-
mations of square and diagonal local distances would be the
same, unless very large integer factors are used.

Improving global distances by increasing the mask size is
also an option for the DTOCS algorithms, but cannot be
applied without some risks. A very narrow peak, in practice
a one pixel wide obstacle, could be missed when using

’* L b l.
te s, %
¢ ¢
(- e § i
ré" dﬂr Hﬁa’p’h r':'.:l

(¢) Detour subroute 2

Fig. 9. Navigation example, where the route via a detour point is found.
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a 5X 5 mask with the ‘knight’s move’ (Ref. [17]). The same
problem makes analysis of distance transform regularity
not directly applicable to the DTOCS algorithms. Distance
transforms are defined to be regular or semi-regular if a
straight line represents the distance between two
pixels (Ref. [11]). In the DTOCS transforms, the straight
line distance can be blocked with pixels that are higher
or lower than the surrounding pixels, and the shortest path
goes around the obstacle. This feature complicates
analysis of the transform, but can also be useful in some
applications. Obstacle avoidance can easily be implemented
with several different levels of obstacles, separating
completely illegal paths, and paths that should be avoided
but not at any cost. Constrained distance transforms
can only handle one type of constraints, pixels which
cannot be crossed.

The Route DTOCS presented in this article is an
exceptionally simple method for finding shortest routes
along a surface. Despite the simple implementation, the time
complexity analysis of the algorithm is not straightforward.
Each iteration of the DTOCS and its variations can be done in
linear time, as well as the addition of the distance images, and
finding the points with the minimal route distance value. But
repeating the distance transformation passes until the
globally optimal distance map is produced introduces an
unpredictable factor to the complexity, as the size and
variance of the image surface, as well as the lengths of the
paths affect the convergence. The worst case scenario would
require as many iterations as there are pixels on the path with
the most pixels. Typically convergence is reached in about 10
iterations, or for very complex surfaces in about 20-30. This
is still a small number compared to the number of pixels in the
images, i.e. the complexity is considerably lower than the
©O(n?) of the basic Dijkstra algorithm, when the n pixels
represent n vertices in the graph search. The graphs
corresponding to digital images are sparse, however, as
there are edges only between neighbor pixels, and the time
complexity of Route DTOCS is comparable to more efficient
shortest path algorithms applicable for sparse graphs.

A question for future research is how much the route
distance values change during subsequent iterations of the
distance transformation, i.e. in some applications the first
estimate of the route computed with just one or a few
iterations may be good enough. This provides a possibility
for progressive path optimization. Another option to get a
more efficient method would be to abandon the chamfering,
and compute the distance transform for example with
a modification of the ordered propagation algorithm in
Ref. [15] or the pixel-queue algorithm in Ref. [19]. The
implementation would, however, be more complex for the
DTOCS than for binary distance transforms, as steps have
different lengths. The pixel queue would have to be
implemented as a priority queue to process the pixel with
the smallest current distance first. Otherwise paths with
many short steps might be missed, and wrong distance

values via paths with few longer steps might end up in the
final distance map.

The DTOCS algorithms process two-dimensional
images, which essentially represent three-dimensional
surfaces. As distance transforms for three-dimensional
images are well known, and thoroughly researched, it is a
tempting—and a quite feasible—option to transform the
gray-level height map back to its original domain, a
surface in 3D space. We suggest the opposite approach—
computing distances along 3D surfaces using 2D gray-
level images, as a more efficient and in some cases more
accurate method than the 3D distance transforms. Further
research on the new Optimal DTOCS is required to
estimate how well it performs generally compared to the
well-established 3D distance transforms with optimal local
distances.
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Abstract. Geodesic distance transforms are usually computed with se-
quential mask operations, which may have to be iterated several times
to get a globally optimal distance map. This article presents an efficient
propagation algorithm based on a best-first pixel queue for computing
the Distance Transform on Curved Space (DTOCS), applicable also for
other geodesic distance transforms. It eliminates repetitions of local dis-
tance calculations, and performs in near-linear time.

1 Introduction

Distance transformations were among the first operations developed for digital
images. Sequential local transformation algorithms for binary images were pre-
sented already in the 1960s [§], and similar chamfering techniques have been
used successfully in 2D, 3D and even higher dimensions, see e.g. [2], [3], [I.
By modifying the definitions local distances, the chamfering can be applied to
gray-level distance transforms as well. The Distance Transform on Curved Space
(DTOCS) and its locally Euclidean modification Weighted DTOCS (WDTOCS),
which compute distances to nearest feature along a surface represented as a gray-
level height map, have been implented as mask operations [12].

Instead of propagating local distances in a predefined scanning order, the dis-
tance transformation can begin from the set of feature pixels, and propagate to
points further away in the calculation area. A recursive propagation algorithm
was presented in [7], where the distance value propagates from the previously
processed neighbor. If the new value is accepted into the distance map, i.e. it
is smaller than the previous distance value of the same pixel, the procedure is
repeated recursively for each neighbor. The efficiency of the recursive propa-
gation is highly dependent on the order in which the neighbors are processed.
An unwise or unlucky choice of propagation order causes numerous repetitions
of distance calculations, as shorter paths are found later on in the transforma-
tion. The ordered propagation algorithm, also presented in [7], eliminates some
of the repetitions. First the boundary of the feature set, and then neighbors
of already processed pixels, are placed in a queue, from which they are then
taken to be processed in order. Similar pixel queue algorithms are also presented
in [9] and [I4].

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 228-239] 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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The recursive and ordered propagation, and pixel queue algorithms, can be
seen as applications of graph search, where each pixel represents a vertex, and
edges exist between neighbor pixels. Local distances can be defined as weights
of connecting edges. The recursive propagation proceeds as a depth-first-search,
and first-in-first-out pixel queue algorithms are applications of breadth-first-
search. This article presents a best-first-search algorithm for computing gray-
level distance transforms based on a priority queue, which is implemented effi-
ciently as a minimum heap. A distance transform algorithm utilizing the priority
queue idea was presented in [I3]. Bucket sorting is used to find the pixel with
the smallest current distance. The algorithm is applicable only for integer dis-
tances, as a separate storing bucket is needed for each distance value. Our heap
based priority queue works for any distance values, including the real valued
modifications of the DTOCS. Experiments demonstrate that convergence of the
sequential transformation as well as the ordered propagation algorithm is highly
dependent on the image size and complexity, whereas the near-linear pixel queue
algorithm slows down only slightly with increasing surface variance.

2 Distance Transforms

The Distance Transform on Curved Space (DTOCS) calculates distances along
a gray-level surface, when gray-levels are understood as height values. Local
distances are defined using gray-level differences. The basic DTOCS simply adds
the gray-level difference to the chessboard distance in the horizontal plane, i.e.
the distance between neighbor pixels is:

d(pispi-1) = |G(pi) — G(pi—1)| +1 (1)

where G(p) denotes the gray-value of pixel p, and Pi—1and p; are subsequent pixels
on a path. The locally Euclidean Weighted DTOCS (WDTOCS) is calculated
from the height difference and the horizontal distance using Pythagoras:

VIG(pi Pz D)2+ 1, pic1 € Na(ps)
d 19 1— 2
(P pi-1) {wg G P42, pis € No(p)\ Na(p) D

The diagonal neighbors of pixel p are denoted by Ng(p) \ N4(p), where Ng(p)
consists of all pixel neighbors in a square grid, and N4(p) of square neighbors.
More accurate global distances can be achieved by introducing weights, which
are proven to be optimal for binary distance transforms, to local distances in the
horizontal plane. The Optimal DTOCS is defined in [6] as

\/|g —G(pi—1))? + a(Q)pt , Di—1 € Nu(ps)
d(pi, pi-1) 5
\/|g —G(pi—1)? + b2, » pi-1 € Ns(pi) \ Na(ps)

where appr = (V2v2 -2+ 1)/2 =~ 0.95509 and by = v2 + (V22 -2 —

1)/2 = 1.36930 as derived in [2] by minimizing the maximum difference from the
Euclidean distance that can occur between points on the binary image plane.

(3)
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3 Pixel Queue Transformation Algorithm

Pixel queue algorithms are simple to implement for binary distance transforms.
With equal step lengths the distances propagate smoothly from the feature set
outwards, and the distance corresponds to the number of steps. As step lengths
vary in the DTOCS transformations, several short steps along a smooth area
of the image can create a shorter path than just one or a few steps along an
area with high variance. Distances can not propagate as pixel fronts moving
outwards from the feature set, or a path with a few long steps might be found
instead of a shorter path consisting of many short steps. Both recursive and
ordered propagation algorithms can compute the correct global distances also in
the DTOCS setting, if neighbors of updated pixels are processed whether or not
they have been processed before. However, this is very inefficient, as numerous
repetitions of local distance calculations are needed. The new efficient pixel
queue algorithm utilizes a priority queue implemented as a minimum heap:

1. Define binary image F(x) = 0 for each pixel z in feature set, and F(z) =
max for each z in calculation area.
2. Put feature pixels (or boundary) to priority queue Q.
3. While Q not empty
p = dequeue(Q), F4(p) was the smallest distance in Q.
If 7,(p) > F(p) (obsolete value), continue from step 3.
F(p) becomes F*(p) (value is final).
For neighbors x of p with F(z) > F*(p)
Compute local distance d(p, z) from original image G
If 7*(p) + d(p,x) < F(x)
Set F(z) = F(p) + d(p, x)
enqueue(x)
end if
end for
end while

The initialization of the queue can be implemented in two different ways
without affecting the result. Only feature boundary pixels need to be enqueued
in the initial step, but enqueueing all feature pixels yields the same result. Pro-
cessing non-boundary feature pixels does not cause any changes in the distance
image, and hence no further enqueueings of neighbor pixels. The application de-
termines which approach is more efficient, e.g., if distances from the background
into a small object are calculated, the external boundary of the object should
be used rather than enqueueing the whole background.

The best-first approach eliminates repetition of local distance calculations.
Using the priority queue ensures that the propagation always proceeds from a
point, which already has its final distance value. As local distances, which by
definition are non-negative, are added to distance values taken from the queue,
the currently smallest distance can never decrease further. So once a pixel is
dequeued, it will not be enqueued again. However, as step lengths vary, a distance
value that has propagated from a point with a final optimal value, may still be
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replaced with a smaller one. Small local distances can create new shorter paths.
This will cause the same pixel to be enqueued repeatedly, first with a larger
distance value and then with smaller ones, before the first instance has been
dequeued. Once the final distance value is dequeued, other instances of the pixel
in the queue become obsolete, and could be removed. However, it is easier to just
discard them when they are dequeued in the normal priority queue order. Not
processing neighbors x of point p, which already have a distance value smaller
or equal to F(p), eliminates a significant amount of local distance calculations,
including the reverse directions of previously calculated distances, i.e., if d(p;, p;)
is calculated during the transformation, d(p;, p;) will never be needed.

The local distances are treated similarly as in the pixel queue transforma-
tion in [J]. The current pixel is considered the source point, and new distance
values are assigned to all neighbors, for which the path via the source point is
the shortest found so far. The recursive and ordered propagation algorithms in
[7] as well as the sequential transforms view the current point as the destina-
tion with each neighbor as a possible source. Local distances from all neighbors
within mask must be calculated to obtain one new distance value. The “greedy”
approach of calculating distances forward from a source point was tested also
for the sequential algorithm, but the effect on convergence was insignificant.

4 Complexity Analysis

The forward and reverse pass of a sequential local transformation can be done in
linear time, as there is a constant number of operations per pixel. The problem
with the complexity analysis is that the number of passes needed varies a lot
depending on the size and the complexity of the image surface. Smooth and
simple images can usually be transformed in just a few iterations, but it is
possible to construct example images, which require one iteration for each pixel
on the path with the most pixels. Typical values for test images in our previous
works have been about 10-15 two-pass-iterations, which for an image of size
128 x 128 is in the ballpark of logn = 14, which would make the whole algorithm
about O(nlogn). However, with larger images and more complex surfaces, the
number of iterations needed increases. The Experiments section will present
512 x 512 example images converging in about 70 iterations, which is clearly
more than logn = 18.

The priority queue transformation propagates local distances from each pixel
only when it is dequeued with its final distance value. This means that each
local distance in the image is computed only once, or some not at all, if neigh-
bor pixels can be discarded due to already smaller distance values. Sequential
algorithms recalculate each local distance at each iteration, which can be very
costly, especially in transformations requiring heavier floating point calculations,
like the WDTOCS. Updating the priority queue adds a factor to the computation
time, as each enqueueing and dequeueing takes O(logn,) time, where ng is the
number of pixels in the queue. The value n, varies through the transformation
representing the boundary of the area, where distances are already calculated.
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An upper limit on the complexity can be estimated using the fact that at
each step after dequeueing one pixel, at most 7 pixels can be enqueued. The
path through the current point must come from somewhere, so at least one
neighbor must already have its final value. At each step one pixel value becomes
final, so the number of efficient steps is n — ny, where ny is the number of
feature pixels. Even with the extra enqueueings, and dequeueings of obsolete
pixels, the number of steps is in O(n), which makes the complexity of the whole
algorithm O(nlogng), or worst case complexity O(nlogn). The theoretically
maximal queue length, about 6n, is a gross overestimate, as distances propagate
locally as pixel fronts, which means that in practise only about half the neighbors
of a pixel are enqueued with new distance values. Also after the n — ny efficient
steps leaving one final distance value, the queue should be empty, and certainly
not at its maximum length. Experimental results will provide a more realistic
estimate on the number of queue operations and the average length of the queue.

5 Experiments

The priority queue algorithm was tested on gray-level images with varying sur-
face complexity to compare with the sequential local transformation, and also
with the ordered propagation algorithm implemented with a first-in-first-out
pixel queue, like in [9]. The distance images were compared to make sure they
were identical - and at first they were not. The sequential implementation cal-
culated distances only at points, where the whole mask fit on the image, so
errors appeared in areas, where the shortest path from the feature passed via
edge pixels. Instead of modifying the mask at the edges, the border effects were
corrected by adding an extra row or column to each edge before the mask trans-
formation, copying the edge values to the corresponding extra row or column.
With this correction the distance images were identical for the DTOCS, and
within calculation accuracy tolerance for the WDTOCS. The pixel queue algo-
rithms propagate distances to existing neighbors, so distances near edges are
calculated correctly without tricks.

The performance of the algorithms was compared using the images seen in
Fig. Ml The Mercury height map, Fig. [l a), and the Lena image, Fig. [ b),
represent highly varying surfaces. The Lena image is obviously not an actual
height map, but is used similarly in these tests. The Ball image, Fig. [ ¢), is
constructed as a digitization of the sphere function, i.e. the highest gray-value in
the center corresponds to the radius of the sphere. The fourth test image, Flat,
consists of a constant gray-value representing the smoothest surface possible.
Testpoint grids were created (see example on the Ball image, Fig. [l ¢), and
distances from one testpoint to everywhere else in the image were calculated. The
grids contained 244 points, and averages calculated from these 244 independent
runs are visualized in figures[2]- [6l The sequential algorithm was faster only for
the integer DTOCS on the Flat images. The larger and more complex the surfaces
were, the more clearly the pixel queue algorithm outperformed the sequential
transformation, and also the ordered propagation. The ordered propagation was
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(a) Mercury (b) Lena (c) Ball

Fig. 1. Test images used. An example of a test point grid is shown on the Ball image
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Fig. 2. Average run times of DTOCS (black bar) and WDTOCS (white bar) using
Priority Queue, Sequential and Ordered Propagation algorithms

slightly faster than the sequential algorithm in most cases, as despite numerous
repeated pixel enqueuings, processing all pixels several times in the sequential
transformations is more costly. For very smooth surfaces where distances proceed
evenly as pixel fronts, the ordered propagation is faster than the priority queue,
as first-in-first-out queue operations take constant time.

The run times (Fig. 2]), and the number of local distance calculations (Fig. B])
are proportional to the number of iterations in the sequential algorithms, and
the number of iterations needed grows with the size and the complexity of the
image (Fig. ). The pixel queue transformation eliminates a lot of computation
by calculating only those local distances, which are needed. If each local dis-
tance was calculated exactly once, the 256 % 256 images would require 260610
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local distances, and the 512x512 images 1045506 (rows * (columns — 1) horizon-
tal, columns * (rows — 1) vertical, and 2 x (rows — 1) * (columns — 1) diagonal
distances). Each iteration of the sequential transformation calculates each of
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these local distances twice, once in both directions. Some local distance cal-
culations could have been eliminated from the first iteration by scanning the
image to the feature pixel without calculating distances, saving about half an
iteration.

The only source for repetition in the priority pixel queue algorithm is the
calculation accuracy of floating point distance transforms. A distance value may
be considered new, and consequently the pixel enqueued, even if it is smaller
than the previous value only because of computation accuracy. Despite adding
a threshold to the comparisons (the new value must be 0.001 smaller to be ac-
cepted as new), a few pixels ended up being enqueued repeatedly in the complex
surfaces, e.g., the number of enqueueings minus the number of obsolete pixels
found from the queue was at most 262190 for the 512 % 512 Mercury surface of
262144 pixels. In the WDTOCS transformations of the smooth images, and of
course in all the DTOCS transformations, the number of enqueueings minus the
number of obsolete pixels equals the number of pixels.

The running times of C-implementations of the algorithms on a Linux com-
puter with an AMD Athlon 1.678 GHz processor indicate that particularly for
the floating point WDTOCS distances the pixel queue algorithm is superior-
ior. The speed of the priority queue operations, enqueue and dequeue, is not
affected by the choice of floating point versus integer distances, so the rela-
tive cost of repeating the local distance calculations in numerous iterations is
higher when using floating point values. In addition, the WDTOCS typically
requires a few more iterations, causing even more repetitions. For example for
the Mercury height map of size 512 % 512 the speedup of the pixel queue trans-
form compared to the sequential transform is 3.94/0.30 =~ 13 for the integer
DTOCS and 14.49/0.43 = 34 for the floating point WDTOCS. The Optimal
DTOCS was not tested here, as one integer and one floating point distance
transform were enough to demonstrate the efficiency of the pixel queue algo-
rithm. The advantage would be even more clear in the case of the Optimal
DTOCS, which requires an additional multiplication operation to calculate each
local distance.

The number of iterations marked for the pixel queue algorithm in Fig. H
is calculated as the number of sequential iterations that could have been per-
formed in the time consumed by the pixel queue algorithm. As the running time
for one iteration should be constant for a certain image size and local distance
definition, the comparison number can be used to estimate how much the per-
formance of the pixel queue algorithm depends on the complexity of the image
surface. The value ranged in the DTOCS tests of 512 % 512 images from 3.54
(Flat image) to 5.39 (complex Mercury surface), while the number of iterations
of the sequential DTOCS ranged from 2 to 71.50. This means that the running
time of the pixel queue algorithm is much better predictable. One larger image,
the Mercury 768 x 768 surface, was tested to provide experimental basis to the
claim of near-linear complexity. The average runtimes were 0.66 and 1.01 sec-
onds for the priority queue DTOCS and WDTOCS, and 9.52 and 41.72 seconds
for the sequential DTOCS and WDTOCS. Compared to the 256 % 256 images,
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the corresponding 512 % 512 images took about 4 times longer to transform with
the priority pixel queue algorithm, and the fact that the 768 x 768 Mercury im-
age took about 9 times longer than the 256 * 256 image suggests a continuing
linear trend.

Priority pixel queue, 256x256 images Ordered propagation, 256x256 images
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Fig. 5. Number of pixel enqueuings in DTOCS (black bar) and WDTOCS (white bar)
for the priority queue (left) and the ordered propagation (right). The horizontal line
on each bar indicates the number of pixels in the image, so the section of the bar above
the line shows how many pixels get enqueued repeatedly. Notice the different scales

More statistics on the pixel queue transformation are shown in Fig. [ and
Fig.[6l The number of enqueued pixels, i.e. the number of enqueue and dequeue
operations, is somewhat larger than the number of pixels. The more complex
the surface, the more pixels get enqueued repeatedly when new shorter paths
are found. The number of pixel enqueuings in the ordered propagation algorithm
is in a larger magnitude, and also grows very rapidly with the size and complex-
ity of the image (see Fig. Bl). The average and maximum queue lengths (Fig. [6)
are calculated from the average and maximum queue lengths recorded at each
run. The largest average and the largest maximum queue length for each test
image is indicated as lines on top of the bars. The average queue lengths for the
768 x 768 Mercury surface not included in the graphs were 5295 for the DTOCS
and 6073 for the WDTOCS, and the longest queue encountered contained 14069
pixels < n = 768 x 768 = 589824. In general, the queue lengths seem to grow
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sublinearly with the size of the image. As queue lengths are in a clearly smaller
magnitude than the number of pixels, the algorithm is in practise linear.

6 Discussion

The DTOCS algorithms have been presented as geodesic distance transforms
without proper explanation on how and why they may be called geodesic. The
DTOCS distances resemble geographical geodesic distances. Discrete paths fol-
low the gray-level surface like the shortest path between two cities follow the
surface of the geoid. In image analysis the term geodesic distance refers to a
situation where paths linking image pixels are constrained to remain within a
subset of the image plane [IT]. In the DTOCS setting paths can cross any areas
of the image, but path lengths can become huge. The DTOCS can be used in
the same manner as constrained distance transforms, marking constraint pix-
els with values differing so much from the rest of the image plane that the
shortest paths will never cross those pixels. In such a situation the distances
propagate similarly as in a geodesic, i.e. constrained, distance transform. The
pixel queue algorithm could be used to calculate both types of transforms, as
well as gray-level distance transforms calculating minimal cost paths, e.g. the
geodesic time transform with distances defined as the sum of gray-values along
the path [I0].

The presented pixel queue algorithm was demonstrated to be efficient, out-
performing the sequential algorithm in almost all test cases. The running times
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do grow a bit with increased surface complexity, but not nearly is much as the
running times of the sequential transformation. The complexity of the algorithm
is O(nlogng), but as ny < n it performs in near-linear time. The number of
local distance calculations is minimized, i.e. each local distance in the image is
computed at most once, which is a clear benefit compared to the iterated sequen-
tial transforms, particuarly if the local distances require heavier floating point
computations.

Previous DTOCS experiments have been made on quite small images. The
experiments here demonstrate the expected effect of increasing the image size,
i.e. the number of iterations needed for convergence becomes quite unpredictable.
The sequential transformation may still be useful, but in applications with high
resolution images, the pixel queue algorithm is more efficient. Another benefit
of the pixel queue approach is that distances are calculated exactly where they
are needed. If, for example, an image of an object on a background is trans-
formed, the sequential transformation calculates unnecessary distances on the
background. The pixel queue algorithm naturally proceeds from the border into
the object. Also, as distance values are known to be final once they are dequeued,
a real time application could utilize some values before the whole transforma-
tion is done. If the feature set is disconnected, the distance values propagated
from each feature will be mixed in the priority queue, but distance values near
each feature will be calculated early in the transformation. When the propa-
gating fronts meet, the transformation is final. This idea could be utilized for
developing a tesselation method.

Another approach, which ensures that obtained distance values are immedi-
ately final is presented in [4]. The parallel implementation is based on the fact
that in binary distance transforms each pixel with distance value N must have a
neigbor with distance value N —a or N —b, where a and b are the local distances
to square and diagonal neighbors. Pixels with a 0-valued neighbor are updated
first, and then pixels with a neighbor of each possible successively increasing dis-
tance value. Thus, the distance values propagate similarly as in the pixel queue
transformation presented here.

Pixel queue algorithms can be implemented also in higher dimensions. For
binary voxel images in 3D, as well as for binary images in 2D, where distances
propagate as smooth fronts, ordered propagation with a first-in-first-out queue
would probably work as well or even better than the priority queue approach.
However, if the voxels have values other than 0 and 1, and path lengths are
defined using voxel values on the path resulting in varying local distances, the
priority queue algorithm could be useful. Larger neighborhoods, for example 55
in 2D or 5% 5 %5 in 3D, could be introduced to the pixel queue algorithm, but
in the DTOCS setting larger neighborhoods need to be used with care, as they
can result in illegal paths across very narrow obstacles.

The pixel queue algorithm could easily be modified to record the path of the
shortest distance, by storing the direction from which the path propagated to
each pixel. However, only the first found path would be recorded even though
there are usually several equally short paths. The Route DTOCS algorithm for
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finding the route between two points [6] or point sets [5] requires two distance
maps, one for each end-point set. The route consists of points on any optimal
path, and a distinct path can be extracted using backtracking. In shortest route
applications large complex images with long paths are typical, so the priority
pixel queue algorithm improves the method significantly.
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Abstract. This article presents a nearest neighbor transform for gray-
level surfaces. It is based on the Distance Transform on Curved Space
(DTOCS) calculated using an efficient priority pixel queue algorithm. A
simple extension of the algorithm produces the nearest neighbor trans-
form simultaneously with the distance map. The transformations can be
applied for example to estimate surface roughness.

1 Introduction

Nearest neighbor, or nearest feature transforms, are closely related to distance
transforms, and should preferably be achieved using the same algorithm. In the
case of binary images, distance transforms can be derived from nearest neighbor
transforms, but not vice versa [8]. Distance transformations were among the
first image processing algorithms. Rosenfeld [I0] presented a sequential local
transformation algorithm for calculating distances in binary images in 1966, and
similar chamfering techniques have been applied widely in the field, e.g., [I],
[9], [13]. The transformations propagate local distance values across the image
with a mask operation, which may have to be iterated several times to achieve
globally optimal distances for gray-level images.

Alternatives to chamfering include ordered and recursive propagation [9],
and pixel queue algorithms [11], [16]. The recursive propagation proceeds like
a depth first search, while ordered propagation and pixel queue algorithms are
applications of breadth first search. The efficiency of the depth first search is
highly dependent on the propagation order, and breadth first approaches elim-
inate some of the repetition of distance calculations caused by finding shorter
paths later on in the transformation. Gray-level distance transforms with varying
local distances can be calculated correctly with ordered or recursive propagation,
if neighbors of updated pixels are reprocessed. However, this is very inefficient
for gray-level distance transforms of complex surfaces with highly curved paths.
The ordered propagation seems to be more efficient in calculating the Distance
Transform on Curved Space (DTOCS) [13] than the chamfering approach, but
the priority pixel queue algorithm, which corresponds to a best first search,
clearly outperforms both in large complex images [4]. A priority pixel queue
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idea by Verwer [15] is implemented with bucket sorting, which is applicable
only with integer distances. Bucket sorting is also utilized in the transforma-
tion algorithm by Cuisenaire and Macq [3], where Euclidean distance values are
obtained by gradually increasing the propagation neighborhood. The priority
queue algorithm for calculating the geodesic time by Soille [12] also enumerates
all possible distance values. The priority value is increased with one when no pix-
els with the current priority value are found in the queue. As the geodesic time
sums gray-values along digital paths, the distance values can become very large,
which also means a lot of priority values must be tested. Our minimum heap
based transformation is applicable for any positive distances, including floating
point distance values, and processes only distance values, which are needed. The
priority queue approach enables easy implementation of the nearest neighbor
transform, which can be calculated simultaneously with the distance transform.
The unified distance transformation algorithm by Paglieroni [§] also calculates
the nearest neighbor and distance transformation simultaneously using horizon-
tal and vertical scans in a parallel architecture.

This article is organized as follows. The distance transforms are presented in
Section 2] and the pixel queue transformation algorithm in Section Bl Section [4]
presents the nearest neighbor transform, and Sections [l and [l some application
ideas. Section [7] contains conclusions and discussion.

2 The Distance Transforms

The Distance Transform on Curved Space (DTOCS) calculates distances along
a gray-level surface, when gray-levels are understood as height values. Local dis-
tances, which are summed along digital paths to calculate the distance transform
values, are defined using gray-level differences:

d(pi,pi-1) = 1G(pi) — G(pi—1)| + 1 (1)

where G(p) denotes the gray-value of pixel p, and p;_1 and p; are subsequent pix-
els on a path. The locally Euclidean Weighted DTOCS (WDTOCS) is calculated
from the height difference and the horizontal distance using Pythagoras:

V60 )P +1, pisi € Na(pi)
d(pzapz 1 {\/|g _ )|2_|_2 , Pi_1 € Ng( z) \N4(pi) (2)

The diagonal neighbors of pixel p are denoted by Ns(p) \ Na(p), where Ns(p)
consists of all pixel neighbors in a square grid, and N4(p) of square neighbors.
More accurate global distances can be achieved by introducing weights, which
are proven to be optimal for binary distance transforms, to local distances in the
horizontal plane. The Optimal DTOCS is defined in [5] as

190 = G2 + a%yy , picr € Napi)
d(pl7pl 1 9 (3)
\/‘g —G(pi—1)? + b2, , pi-1 € Ns(p:i) \ Na(pi)
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where agpr = (V/2v/2 — 241)/2 & 0.95509 and by = V24 (v/2V2 —2-1)/2 ~
1.36930 as derived by Borgefors [I] by minimizing the maximum difference from
the Euclidean distance that can occur between points on the binary image plane.

3 Pixel Queue Distance Transformation Algorithm

The DTOCS has previously been calculated with a mask operation, which has to
be iterated several times before the distance map converges [I3]. The larger and
more complex the image surface is, the more iterations are needed, whereas the
pixel queue approach slows down only slightly with increased surface complexity
[4]. The efficient pixel queue algorithm eliminates repetition of local distance
calculations by using a priority queue implemented as a minimum heap:

1. Define binary image F(z) = 0 for each pixel z in feature set, and F(x) =
max for each non-feature x.
2. Put feature pixels to priority queue Q.
3. While Q not empty
p = dequeue(Q), F4(p) was the smallest distance in Q.
If ,(p) > F(p) (obsolete value), continue from step 3.
F(p) becomes F*(p) (value is final).
For neighbors = of p with F(x) > F*(p)
Compute local distance d(p, z) from original image G.
It F*(p) + d(p, ) < F(z)
Set F(z) = F(p) + d(p, x)
enqueue(x)
end if
end for
end while

If the feature point sets are large and connected, it can be beneficial to
enqueue only the feature boundary pixels in step 2. of the algorithm, but the
same result is achieved as when enqueuing all feature pixels. The priority queue
approach for calculating distances ensures that distance values are final when
they are dequeued, and propagated further. Repeated enqueuings are possible if
a new shorter path is found, but previous instances of the pixel in the queue can
be eliminated based on obsolete distance values. The local distance calculation
between two pixels is never repeated, as only pixels with final distance values
can be source points, and pixel pairs, where the destination point already has a
smaller distance value than the source point are also eliminated. The complexity
of the pixel queue algorithm is in O(nlogn,), where n, is the length of the
queue, which varies throughout the transformation. Typically, ny < n, so the
algorithm is in practise near-linear [4].

4 Nearest Neighbor Transform

The nearest neighbor transform can be viewed as a discretized version of the
Voronoi diagram dividing the image to polygons around the feature or site points,
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so that each pixel belongs to the region of the closest site. In fact, Voronoi dia-
grams can be used to calculate Euclidean distance transforms for binary images
[2], including voxel images in arbitrary dimensions [7]. The nearest neighbor
transform assigns to each pixel the identity of its nearest feature pixel. The
nearest site is here determined according to DTOCS distances, i.e. distances
along the varying height surface, but the same algorithm works for any distance
transforms with non-negative distance values. As local distances based on gray-
values can vary a lot, the nearest neighbor transform can result in any shapes
of regions around each site.

The nearest neighbor transformation produces a tesselation image, which is
initialized to zero at non-feature pixels, and to a unique seed value 1..ny at each
of the ny feature pixels. A simple extension of the priority pixel queue algorithm
calculates the nearest neighbor transform simultaneously with the distance trans-
form. When a pixel with a new distance value is enqueued, the corresponding
pixel in the tesselation image gets the seed value of the pixel from which the
distance value propagated. If the same pixel is enqueued repeatedly, the seed
value is replaced with the new one. The final seed value identifies the feature
pixel from which the propagation path of the final distance value originated.
Points equally distant from two or more seed points will end up in the region
from which the distance propagated first. A similar region growing algorithm
for Voronoi tesselation of 3D volumes resolves collisions of neighboring regions
using Euclidean distances [6], but in the DTOCS with curved paths, the Eu-
clidean distance between the pixels does not correspond to the real distance the
transformation approximates.

An example of a nearest neighbor transform can be seen in Fig. [II The
familiar "Lena’ image represents a varying height surface, and a nearest neighbor
transform using an evenly spaced grid of seed points is calculated. The original
image is shown with the seed points in Fig. [Il a), and the resulting nearest
neighbor transform is shown in Fig.[[lb) with seed values marked on each region.
As distances are calculated along the surface with the DTOCS, seed points in
areas with more variation are surrounded by small regions (e.g. seed value 23).

a) Orig. with grid points  b) Nearest Neighbor Transf. ¢) DTOCS roughness map

Fig. 1. Nearest neighbor transform and roughness map from an even grid of points
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In smooth areas distances can propagate further, covering more pixels. Region
borders are more likely to appear near locations, where there are abrupt changes
in gray-values, causing large local distances. This can be seen for example in
regions 21, 16 and particularly 11, where the brim of Lena’s hat is clearly visible.
This suggests that the nearest neighbor transform could be applied to segmenting
highly varying textures from smoother ones. The roughness map in Fig. [l ¢) will
be explained in Section [l

5 Propagation Visualization

The nearest neighbor transform can be used to visualize propagation of distance
values. The points in the feature set can be numbered as seed points for the
nearest neighbor transform, and when the distance values propagate, the seed
values propagate as well. When the distance map is final, the tesselation map
shows from which feature point each distance value has propagated. On a varying
image surface with several feature points, some feature seed values propagate
only in a small area, or not at all, if distance values spread fast from points in
the vicinity of the point. The order in which feature pixels are enqueued, and
in which neighbors of the dequeued pixel are processed, affect the propagation
order. Equal distances could be achieved along several different paths, but the
seed values indicate via which points the values have in practise propagated.

P

a) Original image b) DTOCS image ¢) Nearest neighbor transf.

Fig. 2. Example surface with its distance transform and propagation tesselation

Figure 2 shows a height map, its distance image and the propagation tes-
selation map, when the feature point set consists of all points in the leftmost
column. The color of an area in Fig. 2] ¢) identifies the feature point from which
the distance value has propagated. It can be seen that the number of different
seed values propagating decreases towards the end of the distance transforma-
tion, i.e. when the highest distance values towards the right edge of the image
are reached, only two different seed values are left of the original 128 feature
point values used in the 128 % 128 surface image. The feature points with the
three furthest spread seed values are marked with 'x’ on the tesselation image.



Distance and Nearest Neighbor Transforms of Gray-Level Surfaces 313
6 Roughness Measurement

The distance and nearest neighbor transforms can be combined into a method
estimating the roughness of a gray-level surface. Figure [Il ¢) shows an exam-
ple of a roughness map, where the values marked on each region of the nearest
neighbor transform indicate the average roughness of that region. The values are
calculated as the average of normalized distance values within each region. The
normalized values are obtained by dividing the curved DTOCS distances calcu-
lated from a grid of feature points with the corresponding straight distances. The
straight distance, or chessboard distance, is simply the larger of the coordinate
differences between the point in question and its nearest neighbor grid point.
The more variation there is around the grid point, the larger are the normalized
distances, and subsequently the roughness value of the region. An estimate of
the global roughness of the image surface can be calculated as the average of all
normalized distances. In future works, the method will be applied to measuring
roughness of paper from microscopic gray-level images.

7 Discussion

The main contribution of this paper is the new nearest neighbor transform algo-
rithm for gray-level surfaces based on the priority pixel queue distance transfor-
mation. The algorithm is very simple, and fast, as its complexity is near-linear.
The nearest neighbor transform is calculated simultaneously with the distance
transformation, and the value of a pixel is known to be final once it is dequeued.
This means that intermediate results can be used in time critical applications,
or if a complete distance transformation is not needed. For instance, if the dis-
tance transforms are used to find a route along a surface, as presented in [5],
the transformation starts from the source point, and can be interrupted once the
destination point is reached, that is, when the destination point is dequeued. Ob-
viously, the path of the shortest distance could be recorderd during the distance
transformation by storing the direction from which the distance propagates to
each pixel, but only a single path would be found, whereas the Route DTOCS
algorithm [5] finds points on any path. The nearest neighbor transform could
also be utilized in some shortest path problems. The actual path is not found,
but the nearest of several destinations can be selected by calculating the near-
est neighbor transform with the alternative destinations as features, and then
selecting the destination with the seed value, which the source point obtained in
the transformation.

An application idea of using the distance and nearest neighbor transforma-
tions for surface roughness evaluation was also presented. Generally, the DTOCS
is well suited for measuring the amount of variation in a gray-level image. The
first application of the DTOCS involved selecting control points for image com-
pression [I4]. To store information from locations, where gray-levels change, the
control points were selected from boundaries, at which the curved DTOCS dis-
tances normalized with the corresponding chessboard distances exceed a given
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threshold. The priority queue approach could produce the boundary in a straight-
forward manner by not enqueuing pixels after reaching the threshold. The im-
plementation utilizing sequential DTOCS has to search for the boundary in the
transformed image. In general, equal distance curves can be found easily with
the priority queue approach, and also limiting the transformation to some maxi-
mum distance value is trivial, unlike in mask operations, where the whole image
must be processed to be sure distance values are globally optimal.

The curved DTOCS paths are similar to paths formed in constrained dis-
tance transforms, see for instance [9], and in fact, the DTOCS can be used as a
constrained distance transform. Constraint pixels are marked with values differ-
ing so much from other image areas, that paths to other pixels will generally not
cross them. The same idea can also be implemented by multiplying the gray-level
difference used in the local distance definition by a large factor. A maximum dis-
tance value can be set, so that the transformation finishes without calculating
the distances to the constraint pixels, which otherwise would get huge values.
The DTOCS can be applied in obstacle avoidance problems with several levels
of obstacles, for example areas that can be crossed with a higher cost in addition
to completely constrained areas. All accessible areas in an obstacle avoidance
setting could be found by using the DTOCS or the nearest neighbor transform
with a maximum allowed distance, and at the same time, the shortest path to
the destination could be found in a navigation application.
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