Lappeenrannan teknillinen yliopisto
Lappeenranta University of Technology

Pdivi Ovaska

STUDIES ON COORDINATION OF SYSTEMS
DEVELOPMENT PROCESS

Acta Universitatis
Lappeenrantaensis

214

Thesis for the degree of Doctor of Science
(Technology) to be presented with due
permission for public examination and
criticism in the Auditorium 1383 at
Lappeenranta University of Technology,
Lappeenranta, Finland, on the 12%
August, 2005, at noon.

Supervisors Professor Matti Rossi
Department of Management Information Systems Science
Helsinki School of Economics
Finland

Professor Jouni Lampinen

Department of Information Technology
Lappeenranta University of Technology
Finland

Reviewers Professor Jan Pries-Heje
Institute of Design and Use of IT
IT University of Copenhagen
Denmark

Professor Eija Karsten

Department of Information Technology
University of Turku

Finland

Opponents Professor Joe Nandhakumar
School of Management
University of Bath
United Kingdom

Professor Jan Pries-Heje
Institute of Design and Use of IT
IT University of Copenhagen
Denmark

ISBN 952-214-063-5
ISBN 952-214-064-3 (PDF)
ISSN 1456-4491
Lappeenrannan teknillinen yliopisto

Digipaino 2005

Abstract

Paivi Ovaska

Studies on coordination of systems development process
Lappeenranta, 2005

83 p.

Acta Universitatis Lappeenrantaensis 214
Diss. Lappeenranta University of Technology
ISBN 952-214-063-5, ISBN 952-214-064-3 (PDF), ISSN 1456-4491

This thesis examines coordination of systems development process in a contemporary
software producing organization. The thesis consists of a series of empirical studies in
which the actions, conceptions and artifacts of practitioners are analyzed using a
theory-building case study research approach. The three phases of the thesis provide
empirical observations on different aspects of systems development. In the first phase
is examined the role of architecture in coordination and cost estimation in multi-site
environment. The second phase involves two studies on the evolving requirement
understanding process and how to measure this process. The third phase summarizes
the first two phases and concentrates on the role of methods and how practitioners
work with them.

All the phases provide evidence that current systems development method
approaches are too naive in looking at the complexity of the real world. In practice,
development is influenced by opportunity and other contingent factors. The systems
development process is not coordinated using phases and tasks defined in methods
providing universal mechanism for managing this process like most of the method
approaches assume. Instead, the studies suggest that managing systems development
process happens through coordinating development activities using methods as tools.

These studies contribute to the systems development methods by emphasizing the
support of communication and collaboration between systems development
participants. Methods should not describe the development activities and phases in a
detail level, but should include the higher level guidance for practitioners on how to
act in different systems development environments.

Keywords: information systems development, software architecture, requirement
elicitation, case study, grounded theory

UDC 004.414 : 004.2

Acknowledgements

Carrying out this research has been an interesting journey for me. It has offered me
the excitement of searching, enjoyment in finding and understanding. I have learned a
lot about research work and systems development. Now, when this journey is almost
finished, I feel that I have learned more that I could originally expect. But I would
never been able to go on with this journey alone. Many people and organizations have
helped me to focus and to see things differently. I will try to express my gratitude to
most of the people and organizations that helped make this thesis happen.

During the research process, a number of publications were written and published in
various international forums. This would not have been possible had I not received
guidance from my supervisor Matti Rossi in the preparation of the publications. It was
from him that I learned that there are a number of ways a paper can be “shot down”.
Thank You Matti, for encouraging me to go on despite of all the difficulties especially
in the beginning of the publishing process. Emeritus professor Pertti Jarvinen deserves
special thanks for sending me “just the right” papers. I would also like to thank my
co-writers, Matti Rossi, Kari Smolander, Pentti Marttiin and Alexandre Bern for their
help. Especially with the journal articles their help in writing and focusing was
crucial.

The work of the external reviewers of this thesis, professors Eija Karsten and Jan Pries-
Heje is gratefully acknowledged.

I wish to express my sincerest gratitude to Kari Smolander, Uolevi Nikula and Hanna-
Kaisa Lammi, friends of mine and colleagues following a similar path to the
dissertation with whom I had the opportunity of sharing the joys of doing research
and university life. Kari’s expertise also provided me with a platform for thoughts in
this thesis.

I also would like to thank my former employer, TeliaSonera Corporation and all my
colleagues working there at that time. I wish to address my thanks especially to Ari
Tolonen, Juha Marjeta, Marketta Gland, Mika Kataikko, Ari-Pekka Mattila, Esa
Nyman and Marja-Leena Heikkinen.

As with any scientific research, the role of empirical data is invaluable. I am therefore
forever grateful to the company I received the data from and the personnel whom I
had contact with. Since the anonymity is to be preserved, no names are cited here.
Without these people, however, the claims made in thesis could not have been

empirically explored. I want to thank my daughter, Katariina, for transcripting the
interviews into written text.

I am grateful about the support provided by Lappeenranta University of Technology
and especially my supervisor Jouni Lampinen, Pekka Toivanen, Kirsimarja Blomqvist
and Jarmo Partanen. I also appreciate Tiina Kauranen and Riikka Ketonen for their
professional help in editing the language of this thesis.

The financial support provided by South Carelia Polytechnic and especially by Antti
Lehmusvaara and Mikko Huhtanen is highly appreciated.

The financial support by the The Foundation of William and Ester Otsakorpi (William
ja Ester Otsakorven saatio) and The Research Foundation of Lappeenranta University
of Technology (Lappeenrannan teknillisen korkeakoulun tukisditio) is also gratefully
acknowledged.

I see this thesis as a learning process continuing my whole lifetime, not only as a
couple of years’ study process. Already my mother Sirkka and my father Yrjo gave me
good groundings to my life. Also my brother Matti has influenced my life immensely.
I'wish that You, my dear mother, could share this moment with me.

Finally, I would like to express my gratitude to my dearest ones, my husband Harri
and my children Valtteri, Katariina and Simo, for supporting and helping me. You are
my source of energy and meaning of my life.

Suuret kiitokset isalleni Yrjolle ja Airalle sekd appivanhemmilleni Liisalle ja Vdinolle
saamastani tuesta ja avusta.

Lappeenranta, June 2005

Pdiivi Ovaska

List of publications

IL

II1.

IV.

Ovaska, P, M. Rossi, P. Marttiin (2004): “Architecture as a Coordination
Tool in Multi-site Software Development”, in Software Process Improvement
and Practice, 8(4), pp. 233-248, John Wiley & Sons Ltd.

Ovaska, P, A. Bern (2004):” Architecture as a Predictor of System Size — A
Metaphor from Construction Projects”, in Proceedings of the 16%
International Conference on Advanced Information Systems Engineering
(CAISE '04 Forum), Riga, Latvia, June 7-11, Riga Technical University, pp.
193-203.

Ovaska, P, M. Rossi, K. Smolander (accepted): “Filtering, Negotiating and
Shifting in the Understanding of Information Systems Requirements”,
Scandinavian Journal of Information Systems, IRIS Association.

Ovaska, P. (2004):"Measuring Requirement Evolution — A Case Study in
the E-commerce Domain”, in Proceeding of the 6" International Conference on
Enterprise Information Systems (ICEIS(3)), Porto, Portugal, April 14-17,
INSTICC, pp. 669-673.

Ovaska, P. (forthcoming in 2005): “Working with Methods: Observations
on the Role Methods in Systems Development”, in Information Systems
Development: Advances in Theory, Practice and Education, ISD 2004, edited by
O. Vasilecas, A. Caplinskas, W. Wojtkowski, W.G. Wojtkowski, J.
Zupancic, Springer, pp. 185-197.

Symbols and abbreviations

ANSI/SPARC used to refer to the three-level database systems architecture, literally

ANSI/Systems Planning and Requirement committee

CASE Computer Aided Software Engineering
CMM Capability Maturity Model

CcoOM Component Object Model

CORBA Common Object Request Brokering Architecture
CSCW Computer Supported Cooperative Work
EJB Enterprise Java Beans

ER Entity Relationships

FP Function Point

GT Grounded Theory

HCI Human-Computer Interaction

IS Information Systems

ISD Information Systems Development

LOC Lines of Codes

OMT Object Management Technique

RAD Rapid Application Development

SDLC Systems Development Life Cycle

SE Software Engineering

SMS Short Message Service

SPI Software Process Improvement

SPICE

SSM

UML

XML

XSLT

Software Process Improvement and Capability Determination
Soft Systems Methodology

Unified Modeling Language

Extensible Markup Language

Extensible Stylesheet Language Transformation

Contents

1

2

INTRODUCTION 13
1.1 MOTIVATIONuniiiveiieeeeeeetiee e eeeeeeett e e e eeeeetaeeeeeeeeeeetaareeeeeeesnaraseseeeeeessrareeeeeeennees 13
1.2 ABOUT THESE STUDIESuuvtttiieeieeiiitieeeeeeeeeeiitteeeeeeeeeeiitsreeeeeeeeeesssseseeeeessisssseeeseseesnnes 16

MANAGING SYSTEMS DEVELOPMENT PROCESS 18
2.1 INFORMATION SYSTEMS DEVELOPMENT METHODS........cuvviieieeeiiiiiirieeeeeeeeeinreeeeeeeeennns 18
2.2 PROCESS MODELS. ...ttt sssnnnnnnnnnnnnnnnnnnnnnn 22
2.3 SYSTEM MODELSuuutiiiiiiieiiieiieteeeeeeeeeeeeeeeeeesessenaaeeeeeesessensseteesessessnsseeeeesssssnnnreeees 24
24 ACTORS AND COORDINATION ISSUESuuuuuuuuniiunenennns 25
2.5 RELATED RESEARCH........cccouutttiieiiieiitieeeeeeeeeeeiteeeeeeeeesiataeeeeeeeeesnnsseseeesesssnssrsneeesessnnnes 26
2.6 SUMMARY .ottt ettt ee ettt e e e e et e e e e e e st aaeeeeeeesesaateeeeeessensaaaaeeeeeesensnnerenes 29

RESEARCH GOAL AND METHODOLOGY 30
3.1 THE RESEARCH PROBLEM AND ITS SHAPINGvvviiiieeiiiireeieeeeeeeiiireeeeeeeeeininereeeseeennnns 30
3.2 THE SELECTION OF RESEARCH METHODS........uuuviviiiieeiiiiieeieeeeeeiiinereeeeeeeinsrereeeseesnnnnns 32
33 RESEARCH PROCESScooiiuttttiieeeeeeetteeeeeeeeeeeiaeeeeeeeeesetaeeeseeeeesnasaseseeeeesssraseeesessennes 35

3.3.1 Preparing for the STUAIESccccccoiciiiiiiiioiiiiiiiit et 35

3.3.2 DAEA COIICCTION ... 36

333 DaAta ARALYSIS........o.oeieieiee e 37

334 Shaping the RYPOINESISccccceiiiiiiiee et 47

335 Finishing and reporting the StUdies.................ccoccceioeioieiiiiciiiiiieie e 47
34 SUMMARY .ottt ee ettt e e e e ettt e e e e e e st aaeeeeeeesesaateeeeeessensaaaaeeeeeeseesanereees 49

SUMMARY OF THE PUBLICATIONS 51
4.1 ABOUT THE JOINT PUBLICATIONSuvvvviiiieieiiiiieeteeeeeeiiiseeeeeeeeessssreseeeeseessssnseessesssnnnns 51
4.2 PUBLICATION I: ARCHITECTURE AS A COORDINATION TOOL IN MULTI-SITE SOFTWARE
DEVELOPMENT ...oviiiiiiiittteeeee e e eeeetteee e e e e eeeeaaeeeeeeeeestaaaereeeeeeesestsareeeeeeeastsaseseeeeesasssrereseseennnes 53

4.2.1 Research objectives and MEthOdScc.ccccovevcieviiecieciiaieeieeieeeeeie e 53

4.2.2 REOSUILS .o, 53

4.2.3 RelQtion 10 the WROLE ..o 54
4.3 PUBLICATION II: ARCHITECTURE AS A PREDICTOR OF SYSTEM SIZE - A METAPHOR
FROM CONSTRUCTION PROJECTS ...vvviiiiiiiieieeiieeeeeeeeeeeeeeeeeeeeeesaaeeeeesessesaaaeseeesssesnnsasesesssennns 55

4.3.1 Research objectives and methodsc.cccooeioiaicianiiieiiesieee e 55

4.3.2 ROSUILS oo, 55

4.3.3 Relation 10 the WROLE...............ooeeeeeeeeeeeeeeeeeeeeeeee 56

4.4 PUBLICATION III: FILTERING, NEGOTIATING AND SHIFTING IN THE UNDERSTANDING OF

INFORMATION SYSTEMS REQUIREMENTScceeeiiiirrrieeeeeieeiitreeeeeeeeeinnreeeeeeeeesissreseseeeessnnsneness 57
44.1 Research objectives and MEthOdScc.ccccoveviivieciieciieieeieeeeee e 57
4.4.2 REOSUILS .o, 57
4.4.3 RelQtioN 10 the WROLE ... 58

4.5 PUBLICATION IV: MEASURING REQUIREMENT EVOLUTION - A CASE STUDY IN THE E-

COMMERCE DIOMAINcuttiiiiiiieiieieeeee et e et e e e s e et e e e e e e seessaaaeeeessssssnseaeeeeeeesnnnres 59
4.5.1 Research objectives and methodsc.cccooeioiiiiiiniiieiiieieeeeee e 59
4.5.2 ROSUILS .o, 59
4.5.3 Relation 10 the WROLE................oooeee e 59

4.6 PUBLICATION V: WORKING WITH METHODS - OBSERVATIONS ON THE ROLE OF

SYSTEMS DEVELOPMENT METHODSvvvviiiiiiiiiierieeeeeeeiiieeeeeeeeeeeiaaeeeeeessesssnseeessesssnsnsresseesens 61
4.6.1 ReSArch ODJECHIVEScc.ccveeeieiieiiiieeieecie et 61
4.6.2 REOSULLS <.t 61
4.6.3 Relation 10 the WROIE..................ooeeeeeeeeeeeeeeeeeeeee e 61

5 DISCUSSION AND IMPLICATIONS 62

5.1 DISCUSSION ...ttt ettt e e e ettt e e e e e eeeeatareeeeeeeeesaaseeeeeeeenanes 62

52 IMPLICATIONS FOR RESEARCHccuuvviiieeeeeeiiiteeeeeeeeeeiitaeeeeeeeeeeiiaseseeeeeeesssnsseeeseeeennns 65

53 IMPLICATIONS FOR PRACTICEooiiuuviieieeeieeceiieeeeeeeeeeeieeeteeeeeesnnaeeeeeesessnnsssneeeseesnnnnes 66

5.4 IMPLICATIONS FOR SYSTEMS DEVELOPMENT METHODSccceoviiiiiiiieeeeeieiieieeeeeeeeeenns 68

6 CONCLUSIONS 70

6.1 SUMMARY AND CONTRIBUTIONSccoiiiiiiiuieeieeeeeeiinieeeeeeeeeeisnneeeeseessenssnneeesseesssnnnnresees 70

6.2 LIMITATIONS OF THESE STUDIESuuuvtttiiieiiiiitiieeteeeeeeiiineeeseeeeesssrereeeessssssssereessesssnnnes 71

6.3 FUTURE RESEARCHc.ooiittieriieeeeeeetieeeeeeeeeeeaeee e e e eeeeaaeeeeeeeeeeataaeeeeeesenasssseeseeeennans 72

REFERENCES 73

APPENDIX I: PUBLICATIONS 83

1 Introduction

1.1 Motivation

Information systems play an ever-increasing role in today’s society and industry. We
regularly use many kinds of information systems, such as electronic mail and the
Internet, mobile phones, cars controlled by computer and digital TV sets.
“Information systems has also become an essential part of the modern organizations
that enables new products and services and innovative ways to deliver products and
services faster” (Weill and Broadbent 1998).

These information systems, such as mailing or security management systems, are
planned, designed and implemented by people (systems developers). The competence
needed of systems developers is diverse: they need to understand the requirements of
the problem domain (such as security control) at some level, know the possibilities
that different implementation technologies (such as mobile networks or the Internet)
can offer them and to communicate their ideas and solution proposals to a large set of
people, even between different languages. This is a different situation than in the
1950’s and early 1960's when the systems were more monolithic and systems
developers were thus able to master their development work in smaller groups.

During thirty years of history, planning, designing and implementing, the information
systems have faced a great deal of productivity problems. These productivity
problems include slipping schedules and cost overruns (Boehm 1987; Brooks 1995),
and low systems quality with increased maintenance costs (Boehm 1987). According
to Standish Group’s 1998 survey, only 26% of systems development projects were

13

delivered on time, on budget, and with promised functionality, wasting billions of
dollars annually; 46% were completed over budget and behind schedule, with fever
functions and features than originally specified (Keil and Robey 2001). Another study
reported that between 30-40% of all systems development projects went over budget
and exceeded their time schedule (Keil, Mann et al. 2000). Many researchers have even
gone as far as to speak of a “software crisis” or a “system crisis” (Brooks 1987).
Software crisis is characterized by projects that are “always over budget, behind
schedule, and unreliable” (Glass 1994). These kind of problems forced information
systems (IS) and software engineering (SE) communities to direct their efforts towards
improvement of software quality and productivity.

In response to these productivity and quality problems, researchers have developed
different methodical approaches. Methods are seen important elements in both
disciplines and method approaches are based on the strong belief that methods
provide universal consistent mechanism for achieving the management and control of
the systems development process. This belief is criticized by (Nandhakumar and
Avison 1999; Truex, Baskerville et al. 2001). We can classify these methods approaches
into three categories based on how their view of the reasons and solutions for the
software crisis: system modeling and architecture approaches, process approaches,
and socio-technical approaches. Next, we will briefly look at how each of these
approaches has dealt with the software crisis.

Traditionally, the software crisis has been considered a consequence of the increased
technical complexity of the systems. For example, Dijkstra wrote already in 1972: “The
major course of a software crisis is that the machines have become several orders of
magnitude more powerful! To put it quite bluntly: as long as there were no machines,
programming was no problem at all. When we had a few weak computers,
programming became a mild problem, and now that we have gigantic computers,
programming has become an equally gigantic problem “(Dijkstra 1972). Dijkstra along
with many other researchers considered the system as a technical system (Hirschheim,
Klein et al. 1995). Creating conceptual, more abstract models of the system has been
one approach to decrease the complexity of systems. Traditional structured methods
such as Yourdon’s Structured Analysis (Yourdon 1989) as well as object-oriented
methods such as OMT (Rumbaugh, Blaha et al. 1990) are trying to resolve the software
crisis by modelling the system. The basic principles for architecting software-based
systems is the approach that use these system models (Smolander 2003). The concepts
of the structured approach, such as information hiding (Parnas 1972), functional
decomposition, cohesion and coupling (DeMarco 1978), are the basic principles of
these system modeling and architecture approaches.

Especially, the software engineering (SE) community holds the view that the quality of
products depends on the quality of the production process (Georgiadou 2003). This process

14

encompasses both technical and managerial concerns, including technical
development, project management, data and configuration management, and quality
assurance and control. Suggested benefits of process structuring include improved
productivity through standardisation, and easier division of labour by breaking
processes down into tasks (Dowson 1993). Besides, this approach is based on a strong
belief that a well defined and documented systems development process can lay
foundation for improving long term productivity. The earlier life-cycle model
(Walters, Broady et al. 1994) approaches have developed such models as the waterfall,
prototyping and iterative models (Boehm 1988). These models define the order of
software development activities in software production, beginning with a statement of
the software requirements and ending with a description of its operation and
maintenance (Blom 1994). The later approach, software process improvement (SPI)
approach, such as CMM (Paulk, Curtis et al. 1993; Herbsleb, Zubrow et al. 1997;
Kuilboer and Ashrafi 2000), sees that explicit and coherent processes and their
improvement increase the effectiveness and predictability of the software projects and
software products’” quality. This approach has gained lately much attention especially
in practical systems development organizations (Glass 1999).

More recently, in the information systems (IS) field, the system has been seen more as
a social system that is technically implemented (Hirschheim, Klein et al. 1995).
Already the classical view of user participation in ETHICS (Mumford 1983) and Soft
System Methodology (Checkland 1981; Checkland and Scholes 1990) considered both
social and technical aspects of systems development. The other views, such as
Scandinavian trade unionist approach (Nygaard and Bergo 1974) focuses primarily on
the structure and power of economic power relationships in systems development.
These approaches, which we can call socio-technical approaches, are supported by the
observations that many of the problems encountered during system development are
not technical, but more related to insufficient user involvement, evolving
requirements or coordination of development work. Those challenges deal more with
social interaction and communication (Hirschheim, Klein et al. 1995) emphasizing
productivity problems as a consequence of the growing social complexity of the systems. These
approaches are mostly identified by the academic community and are not much
recognized by practitioners (Lyytinen 1987b).

Paradoxically, despite the efforts devoted to methodical approaches, systems have
continued to fail (Georgiadou 2003). The status of methods as a whole has been
described as a “method jungle”, as “an unorganized collection of methods more or
less similar to each other” (Jayaratna 1994). Methods are not fully accepted among
practitioners, and there is evidence of significant problems with the use of these
methods (Russo, Wynekoop et al. 1995; Wynekoop and Russo 1995; Fitzgerald 1998;
livari and Maansaari 1998; Nandhakumar and Avison 1999; Fitzgerald 2000). The
development of new methods has tended to be technology-driven, being often

15

influenced by the introduction of improved techniques and software tools
(Nandhakumar and Avison 1999). Only a few studies concentrate on the process of
systems development in their organizational context (Curtis, Krasner et al. 1988;
Orlikowski 1993; Nandhakumar and Avison 1999; Beynon-Davies and Williams 2003).
Systematic surveys of the existing literature in both IS (Wynekoop and Russo 1997)
and SE (Glass, Vessey et al. 2002) fields revealed that most of the research papers in
these fields consist of normative research in which concept development is not based
on empirical grounding or theoretical analysis, but merely upon the author’s opinions.
Many researchers (Curtis, Krasner et al. 1988; Orlikowski 1993; Fitzgerald 1996;
Introna and Whitley 1997; Glass, Vessey et al. 2002) call for more empirical studies in
order to understand how information systems are developed in today’s organizations
and how well methods are used before proposing improvements or new methods.

1.2 About these studies

As stated above, there are too few empirical studies that concentrate on the process of
systems development in the organizational context. Therefore, this thesis aims to fill
this gap by further clarifying how systems development process is managed in
practice. This objective is reached by conducting a series of empirical studies of two
systems development projects in a contemporary organization that competes in the
information technology business. We study the early systems development, which we
consider to be most important phases in solving the software crisis: architecture
design and requirement elicitation. In these studies the actions, conceptions and
artifacts of practitioners are interpreted and analyzed using theory-building case
study approach. The objective for this research is twofold: 1) to understand how
practitioners manage the systems development process and 2) to make a contribution
to the theory and practice of systems development.

The studies of this thesis highlight the problems in the current approaches to systems
development, which still largely assume that systems development is effectively
managed by system developers and managers, and methods provide universal
mechanism for achieving this management. Instead, our studies suggest that there is
no universal method for managing the systems development process, but
development is coordinated through the methods appropriate to the situation. In this
development process, methods play an important role as tools, which guide the
practitioners to understand the final system in different situations.

Using the metaphor ‘Trukese navigator’ we can describe systems development in
general as a process of Trukese navigation to the island in the following way:

16

“The Trukese navigator begins his navigation with an objective to proceed to a particular
island without a reference to any explicit principles and without any planning, unless the
intention to proceed to a particular island can be considered a plan. He sets off toward the
objective and responds to the conditions as they arise in an ad hoc fashion. He utilizes
information provided by the wind, the waves, the tide and current, the fauna, the stars, the
clouds, the sound of the water on the side of the boat, and he steers accordingly. His effort is
directed to doing whatever is necessary to reach the objective.” (Suchman 1987).

The rest of this thesis is divided into two parts, an introduction and an appendix
including five scientific publications. The first part (introduction) is composed of six
chapters. Chapter 2 defines the context of these studies. Chapter 3 describes the
research area, problem and research methodology. In Chapter 4, the publications
included in the appendix are summarized. Chapter 5 discusses the research results
along with their implications for research, practice and systems development
methods. Finally, Chapter 6 of the introduction summarizes the whole thesis, lists its
contributions, identifies its limitations and suggests topics for further research. The
appendix is composed of five publications that have gone through a scientific referee
process. These publications present the results of this thesis in detail.

17

2 Managing systems development process

The aim of this chapter is to give a general orientation to the subject of this thesis by
describing the terminology and concepts around managing systems development
process. This chapter includes also the description of related research. The chapter
ends with a summary of the scope of this thesis.

2.1 Information systems development methods

In this thesis, we study the information systems development process and its
coordination in practice. We first define Information Systems Development (ISD), as
being a change process taken with respect to an object system in an environment by a
development group using tools and an organized collection of methods to produce a target
system (Lyytinen 1987a; Lyytinen 1987b). In the following figure (Figure 1) the
elements of this environment are presented.

18

facilitate
@ Methods and process

models

use
support &
)

ide
follow

e —— \/

l produce,
use

Figure 1. Systems development environment. Adapted from (Marttiin 1998)

Systems development environment is a composition of different factors: actors, methods,
processes and tools, system models, and the relationships of these. These factors
should determine the methods, process models and supporting tools used in systems
development (Marttiin 1998). In this environment, the set of contingency factors or
contingencies (Kast and Resenzweig 1974; van Slooten and Schoonhoven 1996)
influence the composition of actors, methods and supporting tools. These contingency
factors include economic resources (time and money available), organization and
stakeholder related factors (e.g. managerial commitment, clarity of goals, importance
of system, and knowledge, experience, and resistance of users), and project and user
related factors (e.g. project size, skill, dependencies with other projects, and
developers’ familiarity with the application area, methods and tools). We can say that
each development process is unique. Methods as situation based artifacts are
discussed in (Sol 1983; Avison and Fitzgerald 1988; Curtis, Krasner et al. 1988; Kumar
and Welke 1992). Their message is that there is no best way to develop a system, and
no method is suitable for all development situations.

Lyytinen’s definition emphasizes the process that takes place in an organization. We
can notice the situation dependency of the systems development process when
looking at the details of the definition. The change process can be described as an event,
where the development groups acts on, formulates and alters current object systems guided by
multiple objectives (Hirschheim, Klein et al. 1995). An object system consists of phenomena,

19

which the development group is observing. Object systems are perceptions of the target of
change, which may vary among the members of the development group (Hirschheim,
Klein et al. 1995). We emphasize also the latter part of Lyytinen’s definition, which
states that development group uses methods and tools to describe the system.

It is generally believed that the power of methods comes from Descartes, who
proposed that truth is more a matter of the proper method than genial insight or
divine inspiration (Hirschheim, Klein et al. 1995). Influenced by Descartes, the concept
of method entered mathematics and natural sciences. As these sciences have defined
what counts as knowledge in the Western world, the concept of method has deeply
influenced policies and practices in industrial societies and the managing of technical
or social change (MacKenzie and Wajsman 1999). Therefore, the majority of
disciplined approaches to systems development follow some methodical guidelines.

Systems development methods have been developed primarily to formalize the
systems development activities and to allow effective sharing of information through
standardized notations and models of views of systems (Rossi 1998). The simplest
way to see methods is “the way of doing things” (Angell and Straub 1993), which is a
popular view among system development practitioners (Wynekoop and Russo 1995).
In these studies, we define methods as “a predefined and organized collection of techniques
and a set of rules which state by whom, in what order, and in what way the techniques are
used” (Smolander, Tahvanainen et al. 1990; Tolvanen 1998). There exist many other,
quite similar, definitions of methods. The most widely used method definitions are
exemplified in the following table (Table 1).

20

Table 1. Examples of widely used definitions of systems development method

Source Method definition
Hirschheim et | An organized collection of concepts, methods, beliefs, values
al. and normative principles supported by material resources
(Hirschheim,
Klein et al.
1995)
Avison and A collection of procedures, techniques, tools and
Fitzgerald documentation aids which will help the systems developer in
(Avison and | their efforts to implement a new information system. A method
Fitzgerald will consist of phases, themselves consisting of subphases,
1995) which will guide the systems developers in their choice of the
techniques that might be appropriate at each stage of the
project and also help them plan, manage, control and evaluate
information systems project. It is usually based on some
‘philosophical’ view.
Wynekoop A systematic approach to conducting at least one complete
and Russo phase (e.g. requirement analysis, design) of systems
(Wynekoop development, consisting of a set of guidelines, activities,
and Russo techniques and tools, based on a particular philosophy of
1995) systems development and the target system
Rumbaugh 1) a set of fundamental modeling concepts to capture
(Rumbaugh semantic knowledge about a problem and its solution
1995) 2) a set of views and notions for presenting the underlying
modeling information
3) astep-by-step iterative process for constructing models
and implementation of them
4) a collection of hints and rules of thumb for performing
development

Almost all the methods include a process aspect describing tasks for actors to carry
out. Many methods include process models describing sequences and concurrency of
tasks related to the production of system models and documents (like in (Yourdon

1989)).

Two terms frequently mentioned in connection with methods are techniques and
tools. A technique is a way to accomplish the desired state of affairs by a series of steps

21

(Welke 1983). We can use modeling techniques, such as Data Flow Diagramming
(DeMarco 1978) to support systems analysis and design, brainstorming techniques in
co-operation and reviewing techniques to gather information. Description languages,
such as UML (Jacobson, Booch et al. 1999), make the conceptualization of the object
system shareable among the members of the development group. Tools, such as CASE
(Bubenko, Langefors et al. 1971; Orlikowski 1993) and CSCW (Lee and Malone 1990;
Grudin 1994a; Grudin 1994b), are used to support methods and development work
(Wijers 1991). These automated tools provide support for data analysis, design and
implementation phases in systems development as well as for managing the systems
development (Nandhakumar and Avison 1999).

2.2 Process models

The process model aspects of the method can be distinguished based on several
criteria, but most often they include modeling related processes (way of working) and
management related processes (way of controlling) (Olle, Hagelstein et al. 1991). The
former describes how the method produces results, the outcomes of the method use,
and the latter how the project is planned, organized and managed.

Process models have been used as management tools in systems development since
the early days of information systems (IS) and software engineering (SE) fields. Early
models were called life cycle models (SDLC) until the term software process was
introduced and gained popularity. For example, in the year 1987, the whole
conference of ICSE (International Conference on Software Engineering) was dedicated
to the theme of software process (ICSE 1987). Lifecycle models present the ideal
structure of systems development process focusing on sequences between the
activities (e.g. requirement elicitation, analysis, architecture design, detailed design,
testing, maintenance), deliverables (specification or document, such as requirement
specification) produced in these activities and possible iterations between them
(Bubenko 1986). The oldest model, waterfall, models the systems development as a
definite set of steps (stages or levels), all the deliverables from one stage being passed
to the next level just as water cascades from one level to the next in a natural waterfall
without backflow (Georgiadou 2003). As an answer to the pitfalls of the waterfall
model, there have been number of improvement to it towards more iterative
development, like prototyping (Kautz, Kuhlenkamp et al. 1992) and spiral model
(Boehm 1988). Waterfall and spiral models are shown in the following figure (Figure
2).

22

Determine objectives, Evaluate aftermatives;
altematives identify, resolve risks System feasibility] ~
constraints A
N
N
[Productdesin~,
Iy - -

REVIEW . Detailed design N

Requirements plan _Simulations models/benchm:arks Y
\ Life eycle plan Operation \

i
f_______‘g_na\ysws

Risk analysis

Fisk
analysiz

C oncepts

Development |[Nequirement design o sin - | Integration |~

-_‘_‘H‘—ﬂipvalidatwon’ Code
G i = T _ fipemenaia]
Flan nex phaN et "Etaes?'atlﬂ Develop, verify X
Samica Al%c;ztaptance nextevel product ‘ o and it ‘
1= X

Figure 2. Waterfall (right) and spiral (left) models of the software process. Adapted
from (Boehm 1988)

Software process approaches can be classified into software process improvement
(SPI) approaches. SPI approaches aim at increasing the maturity and quality of
software processes in organizations (Humphrey 1989; Zahran 1998). Kontio (Kontio
1995) points out that the basic philosophy behind these approaches is similar. They are
based on Crosby’s maturity concept (Crosby 1979) for assessing the maturity of
quality management of an organization. SPI and maturity models are founded in the
following principles:

1) the product quality is dependent on the process quality

2) the maturity of the process can be characterized by analyzing the
existence of a set of practices, and

3) there is an optimal, universal order for implementing these features and
compliance to this order determines the maturity of an organization

The most widely known and used maturity model is the Capability Maturity Model
(CMM) (Humphrey 1989; Paulk, Curtis et al. 1993) developed by the Software
Engineering Institute (SEI). The CMM describes 5 levels of maturity (initial,
repeatable, defined, measurable, and optimizing) which indicate process capability.
Other SPI models includes ISO 9001 (ISO 1991), Bootstrap (Koch 1993) and Spice
(Dorling 1993). The main purpose of SPI approaches is to change the way practitioners
develop software emphasizing problem solving, knowledge creation, participation,
integrated leadership and continuous improvement in an organization (Mathiassen,
Pries-Heje et al. 2002).

The investment in process improvement has been reported to give significant business
benefits to organizations, such as improved product quality, reduced time to market,

23

enhanced productivity (Zahran 1998), increased organizational flexibility, along with
employee satisfaction (Yamamura 1999). Glass (1999) has evaluated financial gains of
different software technologies — structured techniques, fourth generation languages
(4GL), computer aided software engineering (CASE), formal methods, the cleanroom
method along with object orientation and process models — concluding that the
process model data reflects a consistent pattern of improvement gained. Most of these
reports originate in the US and there is no empirical evidence on their applicability
elsewhere (Abrahamsson 2002). Although many SPI approaches are generally known
in Europe, they are not widely used (Kautz and Larsen 2000; Abrahamsson 2002).

2.3 System models

Basically, modeling grew out of techniques of data organization and file design that
led to the development of database technology around the mid-1960s (Hirschheim,
Klein et al. 1995). We define modeling generally as “the act of purposely abstracting a
model from a part of the universe” and a model “as a purposely abstracted and unambiguous
conception of a domain” (Proper, Verrijn-Stuart et al. 2005). By system modeling we
mean abstracting a model from a part of the information system, and system model as an
abstracted conception of a information system domain. System modeling is connected with
data abstraction from programming languages (Brodie 1979), evolution of knowledge
representation and artificial intelligence (Senko 1975). The best-known system
modeling approaches are entity-relationships (ER) modeling (Chen 1976) and object-
oriented modeling (Booch 1986; Rumbaugh, Blaha et al. 1990; Jacobson, Booch et al.
1999). The late 1970s and 1980s saw a dramatic growth in the number of system
models. Semantic models, interpretive predicate logic models and dynamic models
were proposed (Hirschheim, Klein et al. 1995). During the 1990’s the architecture
modeling and architecture descriptions have gained attention in modeling large and
complex systems (Zachman 1987; Bernus, Mertins et al. 1998; Boar 1999; Bosch,
Gentleman et al. 2002).

During system modeling a perceived object system is defined using a conceptual
structure. A conceptual structure includes “a set of concepts and relationships forming a
vocabulary to define system models” (Neches, Fikes et al. 1991). Modeling techniques are
based on a subset of the conceptual structure, and thus modeling may stress data,
process, behavior, organization or problems aspects of a system (Olle, Sol et al. 1982).
The conceptual structure applied in system modeling is typically represented by
semiformal graphical notations (e.g. data flow diagrams (Gane and Sarson 1979)), text
(e.g. root definitions (Checkland 1981)) or formal languages (e.g. Z (Spivey 1988)).

These system models have one main purpose: to specify the system as early in the
development process as possible for the purpose of better understanding the system,

24

validating the requirements and verifying the design and implementation (Bubenko
1986). In this way the system models have a connection between requirement
specification and architecture description, which form the system models of the
requirements and architecture of the system.

Requirement specification contains a system model of the real world and specifies its
problems and requirements. Requirement elicitation is a process, which deals with
detecting and representing requirements of the system. It is a part of the requirement
development activities in requirement engineering. Requirement specification has
been considered an important part of the requirement elicitation process. It serves as a
means of communication between the user and the systems developer and represents
in a systematic fashion the current state of the real world, its problems and its future
requirements (Pohl 1994; Kotonya and Sommerville 1998).

By architecture in this thesis we mean “the structure of the components of a system, their
interrelationships and principles and governing their design and evolution over time” (Garlan
2001). The use of architecture descriptions and architecture modeling provides a
number of important benefits, such as acting as communication and negotiation
vehicle between stakeholders, and capturing design decisions and the global structure
of the system (Bass, Clements et al. 1998; IEEE 2000).

2.4 Actors and coordination issues

In most cases, systems need to be developed in teams. As Winograd and Flores (1986)
observed, collaboration and communication exist in all human action except for the
simplest tasks. Teamwork requires tight coordination among all efforts involved in the
development process. Kraut and Streeter (1995) argued that coordination becomes
much more difficult as project size and complexity increases. Empirical studies show
that goup work causes difficulties in projects; for example, communication bottlenecks
and breakdowns are common in systems development projects (Curtis, Krasner et al.
1988).

Most systems development methods and process models only give an overview of
human interactions. They characterize possible roles for actors to participate in
development (Kruchten 2000). Some methods address communication problems far
more deeply based on either a political conflict — co-operation game, or a continuous
exchange of arguments (Lyytinen 1987b). Communication difficulties between users
and developers have been tackled especially in the UTOPIA project (Bodker, Ehn et al.
1987) and ETHICS (Mumford 1983).

25

The terms communication, collaboration, control and coordination in managing
systems development are sometimes mixed. Some definitions separate them, like
(Henderson and Cooprider 1994; Vessey and Sravanapudi 1995). Yang (Yang 1995)
defines coordination as ordering of activities in the process, collaboration as
management of shared data, and communication as an exchange of information
between users. Sabherwal (Sabherwal 2003) defines control as improving performance
relative to a certain goal when the goals of activities differ from those of the larger
overall entity. We use in this thesis the definition of coordination that combine
communication, control, collaboration and coordination. We define coordination
using the definition by Malone and Crowston (1994): Coordination is management of
interdependencies between activities. Here, activities can be activities or objects;
everything that has dependencies requires coordination (Malone and Crowston 1994).
Malone and Crowston (Malone and Crowston 1994) describe four basic coordination
processes, which include collaboration and coordination; and support processes
including communication and control. A more detailed description of these basic
coordination and support processes is given in the publication I of the appendix.

2.5 Related research

“Reality is the murder of a beautiful theory by a gang of ugly facts “ (Glass 1996; Glass 1997)

As observed in this thesis, the systems development methods used by practitioners
have a set of common concepts originating in the structured techniques of the 1960s
and 1970s (Fitzgerald 2000). These concepts include life cycle thinking (Curtis, Krasner
et al. 1988), design strategies such as functional decomposition (Gane and Sarson
1979) and information hiding (Parnas 1972). Some studies argue that even object-
orientation can be traced back to this period and the definition of the Simula
programming language (Nygaard and Dahl 1966; Fitzgerald 2000). In the organization
of these studies, they used object-oriented method (Booch, Rumbaugh et al. 1998) and
combined it with waterfall process model. Recently, agile methods in general and
Extreme Programming (XP) in particular have gained a strong following among
system development practitioners. Agile methods have been developed by
practitioners as an alternative for the complicated traditional methods. Agile methods
emphasize communication, development speed, lighter documentation and team
effectiveness (Cockburn 2001; Abrahamsson, Warsta et al. 2003). However, no
empirical evidence of their practicability or effectiveness exists (Herbsleb, Zubrow et
al. 1997, Abrahamsson, Warsta et al. 2003). Although the research community has
developed advanced socio-technical approaches to meet the social and human
problems in systems development, these are not much used by practitioners (Lyytinen
1987b).

26

The use of methods in practice is reported limited (Russo, Wynekoop et al. 1995;
Wynekoop and Russo 1995; livari and Maansaari 1998; Nandhakumar and Avison
1999; Fitzgerald 2000), a phenomenon discovered also in this thesis. Some system
developers state not using any method whereas others argue that they tend to use
parts of methods rather than following all the steps required by a particular method
(Fitzgerald 1996). Previous studies have reported method usage rates from 62 to 87
percent (Russo, Wynekoop et al. 1995; Fitzgerald 1998). These studies assume that if a
method is not followed in detail, it is not used at all (Fitzgerald 1998). This does not
mean that the method does not have any influence on the development.

Distinctions between levels of method use are important, especially the borders
between systematic, ad-hoc, and no use of methods. What does it actually mean when
practitioners say that they follow some method? For example how fully should
method use be defined and documented, how completely should a method be
followed, and how widely spread should the use of an obligatory method be in an
organization before we can claim that methods are actually used. Fitzgerald
(Fitzgerald 1996) suggests a distinction between formalized and non-formalized
methods: a formalized method denotes a commercial or a documented method, and a
non-formalized one a non-commercial or an undefined method. By considering only
the use of formalized methods the rate of method use drops considerably: from 40 to
20 percent (Fitzgerald 1996). A field study by Smolander et. al (Smolander,
Tahvanainen et al. 1990) partly confirms these findings by observing that the methods
applied are mostly a collection of loosely coupled informal techniques. Instead, our
studies suggest that methods are used as tools that are picked up and chosen
according to the situation. These kinds of methods use can be categorized as ad-hoc
use of methods.

Some studies suggest that systems development in practice is not done according to
any formalized method, but rather by providing learning and guidelines for
development participants on how to organize their work (Baskerville, Travis et al.
1992; Mathiassen, Munk-Madsen et al. 1996). This claim supports our findings.
Cockburn argues that methods reside in the tacit understanding held between
participants, and in their habits of conversation (Cockburn 2001). Nandakumar and
Avison (Nandhakumar and Avison 1999) go as far as to say that methods are “treated
primarily as a necessary fiction to present an image of control or to provide a symbolic
status in today’s organization”. In contrast, Undhelkas and Mandapur (1995) propose
the metaphor of a “road map” for development methods, suggesting that methods
may not be able to recognize all situational factors and are more useful for a
“foreigner” than for a “seasoned” practitioner.

27

The following reasons have been reported for the limited use of methods:

e methods do not address the most troublesome aspects of development,
especially thin spread of application domain knowledge, conflicting
requirements and breakdowns of the communication process (Curtis,
Krasner et al. 1988),

e methods do not deal with distributed development (Bubenko 1986)

e methods are too mechanistic and detailed (Nandhakumar and Avison

1999),

e methods do not take into account different development situations
(Fitzgerald 1998),

e methods do not consider individual creativity and intuition (Fitzgerald
1998),

e methods do not respect learning over time (Fitzgerald 1998),
¢ by using methods one might lose sight of the fact that the real objective is
the development of the actual system, not the methods (Fitzgerald 1998).

The surveys indicate that local methods are more popular than their commercial
counterparts (Russo, Wynekoop et al. 1995). Surveys suggest that from 40 to 60
percent of organizations using methods have developed the methods in-house (Hardy,
Thompson et al. 1995, Russo, Wynekoop et al. 1995). Therefore, although
organizations develop their own methods, the methods need to be adapted to
different use situations in the same way as third-party methods. One of the better
known examples of this kind of in-house method is Nokia’'s OMT++, which has been
enhanced from OMT to be used for designing network management systems for
mobile phones (Aalto and Jaaksi 1994). The organization described in this thesis had
also developed its own mixture of “textbook” methods, which were aimed to be
adapted to every project. However, the organization’s methods did not guide the
adaptation at all. Unfortunately, there is no evidence of whether these in-house
methods are used more successfully than textbook methods (Tolvanen 1998). Studies
of in-house method development indicate that the selection of methods, their
development and their introduction seems to be done in an ad-hoc manner without
any control over the adaptations (Smolander, Tahvanainen et al. 1990; Russo,
Wynekoop et al. 1995), a finding that is also supported by our studies.

Our studies support Introna and Whitley’s (Introna and Whitley 1997) arguments of
the use of methods that emerges as a part of our understanding and involvement in
the problem situation, and not merely because of the required steps of the methods.
Prototyping (Kautz, Kuhlenkamp et al. 1992), for instance, was developed for a
situation where the users’ information need cannot be sufficiently specified. Various
researchers have gone even so far as to develop special contingency frameworks

28

(Naumann, Davis et al. 1980) determining the relationship between situational factors
and the best fitting development strategies.

2.6 Summary

In this chapter, the scope of this thesis and the general orientation to the managing
and coordinating systems development process was presented. The chapter started
with the description of the information systems development based on Lyytinen’s
framework, proceeding further to the different methodical approaches to systems
development. These methodical approaches were mostly based on the modelling
concept: modelling systems development process or object system. We defined
coordination with Malone and Crowston’s coordination theory, which emphasizes
coordination, collaboration, communication and control in managing systems
development process in modern development environments.

As a summary, based on the literature and our findings, it can be argued that there is a
clear difference between development goals in industry and those in academic
research. While industry is looking for practical and simple methods to be able to
coordinate and guide the development work, research in academic environments
emphasizes new and better multi-stage, heavy and more or less linear universal
methods.

29

3 Research Goal and Methodology

During the research, the shaping of the research goals and problems has been an
inseparable part of my learning process. The research started with the analysis of how
architecture affects a development project in a software producing company, but
continued with the study of the social and technical complexities of systems
development. At the end of the process the research turned into a study of how
practitioners work with systems development methods. The phenomena have
revealed themselves gradually through data, literature, and discussions with
industrial practitioners and university researchers. In this chapter, I shall explain how
this process has shaped the goals, problems and methodology during the research. I
will start by describing how the research problem has been shaped during the process.
After that, the research method and the process of the research will be explained.

3.1 The research problem and its shaping

This research project included three phases: studies on how architecture affects a
multi-site development project, studies on how requirements were shaped and
interpreted during the systems development and how this process is to be estimated,
and a study on how practitioners work with systems development methods. Next I
will briefly explain how these three phases shaped the research problem:

1. Studies on how architecture affects multi-site coordination of development

The objective of this phase was to clarify the systems development problems
related to software architecture and investigate how practitioners cope with

30

these problems in systems development. This phase consisted of two parts: a
qualitative study about social complexities and a quantitative study about
technical complexities. During the analysis, the problems analyzed in the
qualitative study evolved more to coordination and communication problems
for which architecture provided a tool. In the quantitative study, the
understanding of the architecture as a size predictor in the project cost
estimation got its basic shape. In the same time the analysis method changed
from an evolutionary algorithm approach (Zelinka and Lampinen 1999) to a
traditional statistical analysis (Lawson and Hansen 1974). This happened
during the discussions with university researchers, who were experts in
statistical analysis. They advised me to use the traditional and simpler way to
analyze the correlation between architecture metrics and development effort
for our purposes.

2. Studies of the requirement understanding process

In the beginning of phase two, I was trying to find coordination problems or
problems related to software architecture, but I observed that the problems
were more related to requirement understanding and organizational conflicts.
This observation shaped my research problem towards the interpretation of
the requirement understanding process and how this could be measured to
get better estimates of the project timetable along with the architecture
measures from the phase one.

At the end of this phase, the observations so far suggested that methods in the
organization played an important role in the case study projects. This led me
to shape the study towards the interpretation of the role of methods and their
use in the studied organization.

3. Study on how practitioners work with systems development methods

In the beginning of this phase I started to compare the results of phase one
and phase two according to their similarities and differences (cross-case
analysis). During this analysis, it appeared that the coordination and the
requirements understanding in the projects were the result of using and
adapting methods based on the practitioner’s background, experience and the
development situation at hand.

Although Eisenhardt suggests that early identification of the research question is
important, it is equally important to recognize that it may shift during the research
process (Eisenhardt 1989). After the constantly varying learning process during the
research, the final research questions can be formulated as follows:

31

How is systems development process managed in practice?

Based on the use of methods and their support for the management of the systems
development in our case projects, the research question can be decomposed into the
following subquestions:

1) How do practitioners use methods?
2) Do methods give support to systems development practitioners?
3) Do theories support practice in systems development?

In the beginning of my research, I regarded the information (architecture and
requirements of the system) as a given input to the systems development and
considered software engineers as passive recipients and technical developers of this
information. During the research process I observed that software developers are, in
practice, more knowledge workers creating new information and knowledge, both of
which are increasingly important resources to the modern organizations (Schultze
2000). The knowledge is created through communication, social interaction and
negotiation between development participants.

Each of the publications included in this thesis approaches these questions from a
distinctive point of view as described later in Chapter 4.

3.2 The selection of research methods

“The proper place to study elephants is the jungle, not the zoo” (McLean 1973)

According to Jarvinen's classification (Jarvinen 2000a; Jarvinen 2000b) of research
approaches this research can be categorized into empirical theory-building approach.
Jarvinen (Jarvinen 2000a) defines research approach as a “set of research methods that
can be applied to the similar research objects and research questions”. According to Jarvinen,
theory-building approach includes, among others, case study and grounded theory
methods. One futher method, action research (Avison, Lau et al. 1999; Baskerville and
Pries-Heje 1999), could also be a possible method for these studies. According to
action research method, the researcher can be a participant in the systems
development in an organization, simultaneously evaluating the use and role of
methods. Action research generates a theory that is grounded in action (Susman and
Evered 1978). Action produces knowledge to guide practice, which is achieved by
modifying the reality as part of the research process itself. However, action research
method was not appropriate for this thesis due to the situation the organization faced
at the time the research study started.

32

My background as an engineer and my deep familiarity with the research context
(Nandhakumar and Jones 1997) clearly had an influence on the selection of research
methods. I had worked in the case study company for five years before starting the
research study. When I started my dissertation, I took a leave of absence from the
company, which enabled me to get some distance to the projects and data
(Nandhakumar and Jones 1997). The main idea in selecting the research methods was
that I wanted to look at the data from different perspectives, and perhaps in phases
one and two be more convinced of information accuracy also discussed in (Yin 1994).
I chose the quantitative and qualitative perspectives. Factors mentioned above
favored the case study approach (Eisenhardt 1989; Yin 1994). However, we used
grounded theory method for analyzing the qualitative data in the phases one and two.

Before going further, a brief description of the case study approach and grounded
theory is necessary. A brief description of the quantitative method used in these
studies is also given.

A case study is a research approach, which focuses on understanding the dynamics
present within single settings (Eisenhardt 1989). Bembasat, Goldstein and Mead (1987)
give the following definition of case study research:

“A case study examines a phenomenon in its natural setting, employing multiple methods of
data collection to gather information from one or a few entities (people, groups, or
organizations)”

Case studies can involve either single or multiple cases, and numerous levels of
analysis (Yin 1994). Case studies typically combine data collection methods such as
archives, interviews, questionnaires and observations. Evidence may be qualitative,
quantitative, or both (Eisenhardt 1989; Yin 1994). Finally, case studies can be used to
accomplish various aims: to provide a description (Kidder 1982; Eisenhardt 1989), test
a theory (Pinfield 1986; Eisenhardt 1989) or generate a theory (eg. (Gersick 198§;
Eisenhardt 1989). Theory-building case study research can use a priori constructs to
help shape the initial design of the theory-building process (Eisenhardt 1989).
However, Eisenhardt makes a distinction between within-case analysis and cross-case
analysis, which is a specific feature of the theory-building case study research
approach (Eisenhardt 1989). Within-case study analysis typically involves detailed
case study write-ups for each site. The cross-case analysis compares the data with
different techniques across cases, thus improving the researcher’s ability to process
information in novel ways (Eisenhardt 1989).

Grounded theory is a research method developed originally for social sciences by
Glaser and Strauss in the 1960s (Glaser and Strauss 1967). It was later developed
further and reinterpreted by the original authors (Strauss and Corbin 1990) and others
(e.g (Eisenhardt 1989; Locke 2003)). The basic tenet of this approach is that a theory

33

must emerge from data, or in other words, a theory must be grounded in data. Hence
the method is more inductive than deductive. As defined by two of its major
proponents (Strauss and Corbin 1990), “the grounded theory is a qualitative research
method that uses a systematic set of procedures to develop an inductively derived grounded
theory about a phenomenon” (p. 24). The intent is to develop an account of a
phenomenon that identifies the major constructs or categories in grounded theory
terms, their relationships, and the context and process, thus providing a theory of the
phenomenon that is much more than a descriptive account.

Grounded theory requires that theory is emergent from data, but does not see these as
being separate. Data collection, analysis and theory formulation are regarded as
reciprocally related, and the approach incorporates explicit procedures to guide them.
Research questions are open and general rather than specific hypotheses, and the
emergent theory should account for a phenomenon which is relevant and problematic
for those involved. Analysis involves three processes from which sampling
procedures are derived and which may overlap: open coding, where data is broken up
to identify relevant categories; axial coding, where categories are refined, developed
and related; and selective coding, where the "core category", or central category that ties
all other categories in the theory together, is identified and related to other categories
(Glaser and Strauss 1967). Data collection is guided by theoretical sampling, or sampling
on the basis of theoretically relevant constructs. Two key procedures, asking questions
and making comparisons, which Glaser and Strauss call constant comparison (Glaser
and Strauss 1967), are specifically detailed to inform and guide analysis and to aid
theorizing. Other procedures, such as memo writing and the use of diagrams, are also
incorporated as essential parts of the analysis, as are procedures for identifying and
incorporating the interaction and process. The need for a high level of theoretical
sensitivity on the part of the researcher is explicitly promoted. The method of the
grounded theory is iterative, requiring a steady movement between concept and data,
as well as comparative, requiring a constant comparison across types of evidence to
control the conceptual level and the scope of the emerging theory (Locke 2003).

Case study research is the most common empirical approach used in studying
information systems (Orlikowski and Baroudi 1991; Alavi and Carlson 1992). Most
famous examples of cases studies can be exemplified as (Markus 1983; Curtis, Krasner
et al. 1988; Broadbent and Weill 1993; Earl 1993; Orlikowski 2002). The grounded
theory approach is applied in a number of information systems studies, such as those
by Orlikowski (1993), Scott (1998), Calloway (1991), Priese-Heje et. al. (Pries-Heje,
Baskerville et al. 2004) and software engineering studies (Coplien and Devos 1999;
Purao, Rossi et al. 2002).

The quantitative analysis method was chosen based on the study question and chosen
data, as recommended in (Chelimsky 1992). The research aim was a correlation

34

analysis and the method was a simple linear regression model. We used this simple
linear regression model to calculate the correlation between the metrics of the system
and the development effort. The other purpose of the quantitative analysis was to
demonstrate the use of metrics in project timetable estimation. In this method, it is
assumed that the correlation is linear between metrics, and the systems development
effort is linear. We chose this linear model because of the small sample of data and
also to demonstrate how prediction can happen with this kind of simple model. In
reality, the systems development is not linear, and the effort estimation should happen
with non-linear methods, such as in studies of Venkatachalam and Pedrycz (1993),
Peters et al. (1999). We could get sufficiently reliable results for the correlation analysis
although for the effort estimation this analysis was only the first attempt to estimate
the project timetable and effort. In phase one, we complemented the quantitative
analysis with metaphorical analysis (Lakoff and Johson 1980; Frost and Morgan 1983;
Schultze and Orlikowski 2001) to better understand the studied phenomenon.

3.3 Research process

In this chapter, a detailed description of the three phases of the research process is
given. First, the preparations made for the studies are described. Then, the processes
of data collection, data analysis and hypothesis shaping are characterized. In the end,
we discuss the finishing and reporting procedure of the research studies.

3.3.1 Preparing for the studies

The beginning of theory-building studies includes an initial definition of the research
question, a specification of a priori constructs, a selection of cases and crafting
instruments and protocols (Eisenhardt 1989). The shaping of the research question is
already discussed in Chapter 3.2, but the others need more clarification in the
following.

Specification of a priori constructs can help shape theory-building research (Eisenhardt
1989). This is also identified later in the grounded theory approach as a form of seed
category (Miles and Huberman 1984). In phase one, a notion of the common object
from Malone and Crowston’s coordination theory (Malone and Crowston 1990;
Malone and Crowston 1994) was used as a starting point to interpret the coordination
in the project. In phase two, the concept of a technology frame of reference
(Orlikowski and Gash 1994) was used to interpret the requirement understanding in
the project. Quantitative studies in phases one and two included hypotheses testing
studies, and the interpretations from the qualitative studies (in phase on coordination
problems and in phase two requirement evolution) were used as a priori constructs.

35

The selection of cases relied on the theoretical sampling principle (Glaser and Strauss
1967), in which cases are chosen as extreme situations and polar types in which the
process of interest is “transparently observable”. The sampling plan of the current
study was designed to be built around projects displaying problems in systems
development, big problems that caused delays to the project’s timetable. Within these
projects in the studied organization, we chose projects of polar types: one project had
problems inside the project, the other problems with the customer; one was smaller
and the other one bigger; they both produced service platforms for different business
areas. The analysis revealed that the projects had even more different features, such as
the orientation, attitudes and experience of the participants, and the communication
between participants that extended the emergent theory (Eisenhardt 1989). To
facilitate iteration and comparison, which is an inevitable feature of the grounded
theory method (Locke 2003), these two projects were analyzed one by one, a strategy
also adopted by (Orlikowski 1993).

Crafting instruments and protocols. A combination of qualitative and quantitative data
collection methods were used in both case projects, which is typical for theory-
building researchers (Eisenhardt 1989). The relationship between qualitative and
quantitative data was two-way: the qualitative data was used for understanding the
metrics and their relationships in quantitative analysis and quantitative data was
useful for the visualization of the phenomena found in the quantitative data.
Mintzberg describes their relationships in the following way: “We uncover all kinds of
relationships in our hard data, but it is only through the use of this soft data that we
are able to explain them” (Mintzberg 1979). In both quantitative studies, the multiple
investigators were used in the analysis, but also in the interpretation of the results.
They often had complementary insights and different perspectives also on the
qualitative studies that gave novel insights into the data, and they also enhance the
confidence in the findings (Eisenhardt 1989).

3.3.2 Data collection

During the studies, most of the data was collected from project extensive
documentation based on the dynamic process of data collection (Glaser and Strauss
1967), where samples were extended and focused according to the emerging needs of
the theoretical sampling. In both case projects, the project documentation data was
complemented with interviews among project participants. Table 2 shows the data
available from both the projects.

The interviews were all tape-recorded and completely transcribed. The length of the
interviews varied from half an hour (focused interviews) to two hours (group
interview). Several hundreds of pages of project documentation, the transcribed
interviews and 170 000 lines of source codes were analysed during the studies.

36

In phase one, a group interview was carried out in the form of a project kick-out
meeting. In the meeting, the project participants discussed what happened in the
project, what was good and bad, what the major problems were and how they would
do things differently next time. The comment ‘a lot of wasted work’ from one designer
in this kick-out meeting characterizes the feelings of the participants: a lot of useless
documentation, like use case descriptions and architecture and module design
documentation that were produced in the project. They could not keep all these
documents up-to-date and use them in the project. Also, the excessively ‘heavy’
process model and the lack of iterations were clearly mentioned as drawbacks of the
project in the group interview.

During phase two, focused interviews were conducted to identify the reasons for
changes in the requirements of the project. The project participants were asked to
reflect on the project’s history by showing the analysis and implementation models of
the system and to describe their understanding of what happened in the project
between the requirement analysis and implementation phases of the project.

The data for the quantitative statistical analysis in both phases one and two was
collected from the architecture and component design specifications, source code,
project management database and bills from subcontractors. In the project
management database, the data included the time spent on each task by the project
participants. These tasks were divided according to phases used in projects. In the
cases where foreign consultants were involved in the development work, the
development effort data was taken from the subcontractors’ bills.

3.3.3 Data analysis

In these studies, we used Eisenhardt’s principle of within-case and cross-case analysis
to interpret the findings in different phases of this thesis (Eisenhardt 1989). In the
within-case analysis “the overall idea is to become intimately familiar with each case
as a standalone entity” allowing unique patterns to emerge before trying to generalize
patterns across cases (Eisenhardt 1989). In the first two phases of the research the
qualitative data analysis was based on the grounded theory (Glaser and Strauss 1967;
Strauss and Corbin 1990). In those phases, quantitative data analysis with a simple
linear regression method (Lawson 1995) was carried out. I conducted the qualitative
analysis alone in all the phases, but, in phases one and two, two other researchers did
the quantitative data analysis and provided complementary insights (Eisenhardt 1989)
into the qualitative analysis in our discussions. As outsiders of the qualitative data
collection, they were able to look at the data more with greater objectivity
(Nandhakumar and Jones 1997) than I was, which facilitated a more reliable data
analysis as a whole.

37

In the first and second phase of the thesis, the qualitative data analysis started quite
early on in the studies, right after the data on the project meeting minutes was
collected. In the first phase, data collection continued with design specifications
simultaneously with the analysis of the data on the project meeting minutes. In phase
two, the collection of requirement specification data started while the analysis of the
data on the project meeting minutes was still being performed. The quantitative data
collection started as soon as some initial findings of the qualitative data analysis were
made. Such overlap of data collection and analysis is strongly recommended by
(Eisenhardt 1989) and (Strauss and Corbin 1990). Within qualitative data analysis in
both phases, the coding procedure included three phases: open coding, axial, coding
and selective coding, which proceeded iteratively through the analysis process (Glaser
and Strauss 1967). To help manage the quite extensive amount of information and the
analysis process, the Atlas.ti (Scientific Software 2001) tool was used. It helped in the
analysis process, for example in the retrieval of categories, memo making and
recording of semantic relationships.

The quantitative data analysis was hypotheses testing in nature and naturally used a
priori constructs. Both hypotheses were based on the initial findings of the
corresponding qualitative studies. To the statistical data analysis we used the Matlab
Optimization Toolbox (MathWorks Inc. 2003).

In the following we describe the data analysis process in the three phases of the thesis.

38

Table 2. Data available from the case projects

Data/Document/Artifact

Data/Document/Artifact

DS project EC project
15 Progress Report (from | |5 progress Reports (from Project Manager)
Project Manager)

Project management

Software: Plan vs. Actual
costs

Project management

Software (Niku Workbench): Plan vs. Actual costs,
development effort

11 Project Steering Group
Meeting Minutes

16 Project Steering Group Meeting Minutes

46 Project Group Meeting
Minutes

26 Project Group Meeting Minutes

Project Plan

Project Plans

Functional Specifications

Requirement Specification document

Requirement Catalogue

Project Quality Criteria document

Risk analysis document

Architecture Specification

Project Quality Criteria
document

26 Module Specifications

Architecture Descriptions

22 Tool subsystem UI specifications

Module Specifications

Kick-off presentation, Steering Group kick-out meeting
minutes

Group Interview with

project participants

Focused interviews of three BU members (development
manager, team leader, designer)

Group interview slides

Focused interviews of four IDU members (steering
group representative, project
designers)

architect, 2 project

Source code (Lines of

Codes) 138 000 LOC

Source code (Lines of Codes) 32 000 LOC

39

Phase one

An overview of the qualitative research process has been given in the Figure 3 of
Publication I. As we can see from this figure, the first phase of the data analysis was
open coding. Open coding started with the identification of problems and deviations
related to coordination and software architecture in the project progress, using mainly
project meeting minutes and the group interview. We further used architecture and
design specifications to help pinpoint the problems. We observed in total 329
deviations and problems related to software architecture and coordination.

In the axial coding phase, we used a notion of common object as a seed category (Miles
and Huberman 1984) based on Malone and Crowston’s coordination theory (Malone
and Crowston 1990; Malone and Crowston 1994) to help in the interpretation of
coordination problems in the project. We identified two types of common objects from
the study. The following example (Figure 3) shows a translated excerpt of a transcript
after axial coding. This example shows how common objects were interpreted from
the project material.

Technical orientation of the Server

”On the Server side, we gained experience from new technologies, . -
8 P & Common object: development activity

like XML, XSL and CORBA”

”We had a lot of problems with Client and Server synchronization.

The Client was first and the Server was behind, it should be wice versa ” | Interface anc} interdependence problems
Common object: component

”The Client-Server interface was dependent on core resources”

”AA and MS&LB need communication with architect and designer” Communication problems
Common object: development activity

| 55 =
M\m -
mn
}

//o | w - Interface problems

S =i P e Common object: component
o i Fuw
S| -

¢,,ﬁ

Bl

g o -2

| .
S
=t A
b [OJETR—
.
i | e St b S
coE

”The second actual buiold was made 24th August, FFE not ready for testing] Assembly order problems
Common object: development activity

Figure 3. Translated excerpt of a transcript after axial coding in the phase one

40

The interpretations that produced the categories on the right side of the example
(Figure 3) required much knowledge about the organization, its way of documenting
and the language used. For example, the UML diagram in the middle describing the
components and their interfaces was interpreted as an interface problem having many
interdependencies between components.

The analysis also included memoing, where hypotheses and important general
observations from the data were recorded (Strauss and Corbin 1990). The following
figure (Figure 4) shows an example of an early memo describing the observations on
the interdependencies between system components.

MEMO: Core architecture description: how CORE communicate with
FFE->60:2 (1 Quotation) (Super, 11.07.02 10:32:31)
P60: Core Components 1.JPG
173 - 363
No codes
No memos
Type: Commentary

description of Server services to describe the
interface between Server and Client is described in
Tech Spec Core services document. This was

ready in Server DP3 phase, Client DP3 was month
before, so Client implementation was going on one
month before they new what kind of services

Server is offering them.

Figure 4. Memo describing the observations on architecture as coordination tool in
phase one

In the selective coding phase, the identification of common objects helped in finding the
interdependencies between activities that caused coordination problems in the project.
We identified three interdependencies between components and three
interdependencies between development activities. After that, we made the cross-case
analysis (Eisenhardt 1989) to determine the differences between same-site and multi-
site coordination in these interdependencies.

In the quantitative analysis, we used metaphorical analysis (Lakoff and Johson 1980;
Frost and Morgan 1983; Schultze and Orlikowski 2001) to help understand the
architecture of the system. According to our metaphor of architecture drawing, we
identified three categories that described the architecture of our case study system
best. Within these categories, we attempted to select the properties, which were simple
and could be calculated based on project design specifications. We chose the simple
linear prediction model to analyze the correlation between architecture properties and
systems development effort. From these seven property values for six components, a

41

total of 42 property values were calculated. From these property values we calculated
coefficient values using Matlab Optimization toolbox. In the end of this quantitative
process, we calculated the model errors to determine the quality of our cost effort
estimation model and analyzed the results based on coefficient values.

Phase two

An overview of the qualitative research process is given in Figure 2 of Publication III.
As the figure indicates, open coding was the first phase in the data analysis. Open
coding started with the identification of problems and deviations in the project
progress. During the development, these were issues that were brought to the project
meetings for discussion and decision-making. The steering and project group meeting
minutes were the main sources for problem and change identification. We observed in
total 150 problems and deviations related to project progress. Most of the concerns
brought to the steering group were related to the other subsystem and its
requirements. Also the system development styles and strategies caused concerns.

To better understand the requirements of the system, we investigated in more detail
the requirements specification document. We were able to extract only four initial
requirements that were related to the other subsystem. Our analysis continued as we
used three conceptual models of both subsystems developed in the qualitative study.

Through these models, we were able to grasp how the subsystems evolved through
different phases of systems development. The content of these conceptual models
suggested to us that the other subsystem’s requirements changed considerably during
the process. This led us into investigating further why this subsystem’s requirements
changed so much, while the other subsystem’s requirements remained stable.

To answer this question, we made focused interviews among the project participants
to identify the reasons for these changes. Project participants were asked to reflect on
the project’s history by showing the analysis and implementation models of the
system and to describe their understanding of what happened in the project between
the requirement analysis and implementation phases. Four of the interviewed project
participants were from the development side and three from the business side.
Business side representatives were also asked about the competences and processes of
development side during the time the project was running and how these
competences and processes had evolved after that. The interviews were audio taped
and fully transcribed to preserve all the details.

Based on the interviews, we observed that requirements did not change that much
during the project, but the understanding of them changed. The open coding
proceeded in parallel, treating each interview as confirmation or further development
of results from earlier findings. During this process, the categories developed

42

gradually. First, we identified quite concrete concerns of system development. In
further analysis, we found more subtle contextual attitudes and expectations about
how systems development should be performed. These attitudes and expectations
were so strongly visible in the data that we could interpret them as technology frames
(Orlikowski and Gash 1994). In further analysis, we used technology frames as a
priori construct or lenses to the data. This further analysis consisted of group
analysis, cross-group analysis and re-examination of the categories. This iterative
examination of the data yielded five categories of technology frames, which were used
as a basis for the next phase, axial coding.

During the axial coding, we identified four processes of stereotypical “tensions”
between these attitudes and expectations, which affected how project participants
emphasized these frames of understanding in different phases of the project. Figure 5
shows a translated excerpt of a transcript after axial coding.

“...In the beginning of the project, we did not understand how
big the other subsystem was. The customer gave us few
sketches of user interfaces and we thought that it was like
these... We did not want to involve with UI things, we
concentrated on platform ... We left these user interfaces to the
UI designer, who came into the project during the design phase
according to our process model... When Ann and UI designer
came to project, we started to understand the tool functionality
better

System development capability:
Designers did not want to involve Ul
things

Frameshift: more Ul capable
resource to the project

Origins: processes

System development capability:
No capability of Ul development
Origins: technical education

»--- We did not know very much about designing UI. We had
some experience of the UI courses in the university and we
felt that it was time consuming and boring...*

System development capability:

“...Nobody wanted to be involved in the Ul thing... So we left | concentration on the platform

it out in the requirement gathering and concentrated on the
platform only ...”

“...We left these user interfaces to the Ul designer, who came
into the project in the design phase according to our process
model...”

Filtering: Lack of Ul expertise
Origins: company’s history

System development strategy: Use
of strict process model

Filtering: Inhibited the
understanding of requirements
Origins: processes

Figure 5. An example of a transcript after axial coding using Atlas.ti

In the selective coding phase, the causal relationships between categories were recorded
with Atlas.ti's semantic network capability. Figure 6 shows an example of such a
network diagram. In the figure, the boxes represent categories, the arrows the
interpreted causalities between them, and the lines simple associations between the

43

categories. The abbreviations BVSD (business value of system development), SPS
(system development strategy), SDC (system development capability) and SDRA
(system development resource allocation) correspond to the categories of frames of
understanding.

= ﬁBVSD: IDU as a technical resource
{¥BVSD:consultation of outsidecompany / N

\\ ﬁfFiltering: in
/ ¥ Filtering: influence /

= BVSD: use of IDU : d :
ﬂl ngVSD.Technlcal converstVSD: Business conversation

\ 5 L /

£¥Incongruence: different opinion $4SDS: process rel
ﬁ'lncongruence: different prefer /
=>
£4SDS: use of waterfall model ${Filtering: affect
\ £4SDS: use of interactiveliterative model
ﬁSDC: BU negative attitude towards -
competences of IDU ==/ !
\ /

ﬁlncongruence: different view

£¥SDC:IDU reliance on their capability £4SDC: Negative attitudes t

== ﬁ'SDRA: Resource allocation addording
process descriptions —_— =

== \
£4 SDRA: Lack of Ul expertis:
ﬁSDRA: Resource allocation based on
necessity of situation /

ﬁ' Incongruence: different attitude / /

Filtering: contribut
ﬁ'lncongruence: different point of view a genngzeoniroute

Figure 6. An example of semantic network diagram using Atlas.ti

Based on project material, interviews and analysis we formulated the project narrative
to trace how the participants’ attitudes and expectation influenced the systems
development process. In the end of the research process, the project narrative was sent
by email to the project manager to get her opinion on the correspondence of the
narrative with the reality. She adjusted some details, which did not affect the main
findings.

In the quantitative analysis, we formulated the metric describing the identified
requirement evolution in the project. The metric was quite simple: it calculated the
concepts found during the analysis and implementation models of the system. These
analysis and implementation models were formed based on the project specifications.

44

In the statistical analysis, we used the same simple prediction model as in phase one
of the study. The other metrics needed were chosen based on simplicity and wide
usage. Using this prediction model, we calculated the correlation between metrics
chosen and the development effort. In the end of the process, we formulated the
model errors to determinine the reliability of our prediction model and analyzed the
results.

Phase three

In phase three, we used cross-case analysis to interpret the final results in this thesis
(Eisenhardt 1989). We searched for cross-cased patterns to compare the multi-site and
same-site development by listing their similarities and differences (Eisenhardt 1989).
We selected pairs of cases and listed similarities and differences between each pair. In
this phase, the number of cases was actually three because one of the case projects
consisted of two subprojects. The cross-category table produced in this process is
shown in Table 3.

45

Table 3. Cross-category table between projects in the studies

meaning metric
(relative to
development
effort)

(NIC)

Category Case Project 1 |Case Project 1 Case Project 2
subproject A subproject B
Adaptation to |yes no yes
method
Problems minor technicalfinside project, conflicts with client,
inside project [coordination and [requirement understanding
architecture
understanding
Timetable no major problems problems
estimation problems
Orientation and |Architect’s Architect’s Designer’s positive attitude
attitudes technical business towards Ul and windows
orientation orientation
Experience Experienced |Unexperienced Unexperienced project group
project group [project group
Communicationjgood bad in the beginning bad, later good
Understanding [fairly good not very good in the beginning no, learning to
the system understand
[Understanding [yes no in the beginning no later yes
the
development
situation
Method communicationjmethod use failed |communication and learning
[purpose and
coordination
The most Coupling - Requirements Creep

46

3.3.4 Shaping the hypothesis

From the within-case analysis, the cross-case analysis and overall impressions,
tentative tenses and concepts and their relationships begin to emerge, which is called
hypothesis shaping (Eisenhardt 1989). The idea is that researchers constantly compare
emergent theory and “raw” data — iterating towards a theory with closely fit data
(Eisenhardt 1989).

In the hypothesis shaping, we used the semantic network diagram capability of
Atlas.ti software (Scientific Software 2001). This semantic network is shown in Figure
7 below. This network shows the relationships between the core categories used to
interpret the role of methods.

fforientation and attitudes ﬁ experience
—

\::

ﬁ method use
=> /'

—_—
£¥ coordination \
ﬁfcommunlcatlon
=>
ﬁlearnmg
==~

ff project planning

ﬁ architecture design
=

T %% object system

ff development situation __
= _—

—

$¥understanding -

ﬁ estimating
=7 ~ ==
’ ~—
ﬁftimetable ﬁ human resources

Figure 7. Semantic network of the role of methods produced with Atlas.ti
3.3.5 Finishing and reporting the studies

Eisenhardt (Eisenhardt 1989) distinguishes the phase “enfolding literature”. By this
phase Eisenhardt means the comparison of the findings with similar and conflicting
literature. The aim of this phase is to raise confidence, creative thinking, and the
validity, generalizability and conceptual level of the findings. Yin (Yin 1994) refers to

47

this as “analytic generalization” to distinguish it from the more typical statistical
generalization that generalizes from a sample to a population. In phase one, the main
comparisons were done with Malone and Crowston’s coordination theory (Malone
and Crowston 1990; Malone and Crowston 1994)(Publication I) and cost estimation
literature (Putnam 1978; Albrecht 1979; Boehm 1981; Verner and Tate
1992)(Publication II). The results in both studies were related to existing literature. The
comparisons of phase two (Publication III and Publication IV) were made with
traditional requirement engineering approaches (Pohl 1994; Kotonya and Sommerville
1998; Jarke, Rolland et al. 1999; Wiegers 1999) and existing socio-technical approaches
to requirement elicitation (van Lamsweerde 2000; Bergman, King et al. 2002; Davidson
2002; Tomayko 2002), especially the concept of a technological frame (Orlikowski and
Gash 1994; Davidson 2002). Both these provided conflicting and similar concepts and
patterns, which both provided an alternative and more creative view to our findings.
In phase three, the findings were compared to a few empirical studies of the role of
methods in systems development (Russo, Wynekoop et al. 1995; Unhelkas and
Mandapur 1995; Fitzgerald 1998; livari and Maansaari 1998; Nandhakumar and
Avison 1999; Fitzgerald 2000).

The reporting of this thesis included five publications. Reports from the first phase of
the thesis described the role of architecture as a coordination tool in multi-site
development (Publication I) and as a predictor of system size (Publication II). The
second phase of the thesis includes reports of the requirement understanding process
(Publication III) and of measuring the requirement understanding process
(Publication IV). Phase three was a summary of previous reports concentrating on the
role of methods in systems development (Publication V).

Nearing the end of the studies using the grounded theory, the researcher should
always ask the question “Are we reaching theoretical saturation in our study?”
Theoretical saturation simply means the point at which incremental learning is
minimal because the researchers are observing phenomena seen before (Glaser and
Strauss 1967). Quite often the practical reality poses some restrictions, such as time
and money (Eisenhardt 1989). Or as Locke states: “the practical reality is that as
researchers we will have to decide on and articulate the story our data makes it
possible to tell. My own experience is that after a time, analysts find that the
conceptual categories we have in process are developed at the point where they are
able to account pretty much for our data, and we come clear about our story” (Locke
2003). In my studies, the arguments against reaching the theoretical saturation were
that after phase two the interviews with practitioners in the organization gave me the
feeling that the systems development process in the organization was sufficiently
studied, and adding more cases from this particular organization would not add
much substance to the findings. At the end of phase three, I observed that the cross-
case analysis was quite suitable for our data and the story behind the role of methods

48

was quite clear. Extending the studies to include other organizations would give more
substance and diverging findings, but this is a topic for further studies. Perhaps based
on this argumentation, I can say that this thesis has reached its theoretical saturation.

3.4 Summary

This chapter described how the research problem has been shaped during the process,
explained the research methods and explicated their selection.

The research consisted of three phases following an empirical theory-building case
study approach. The whole research process included within- and cross-case analysis.
Phase one (within-case analysis) was the case study of the architecture and
coordination. Phases consisted of quantitative and qualitative studies reported in
Publications I and II. Phase two (within-case analysis) consisted of quantitative and
qualitative studies on requirement evolution and understanding, reported in
Publication III and Publication IV. In phase three of this thesis we interpret the final
result using cross-case analysis of phases one and two. The findings of this phase are
reported in Publication V.

Within each of these phases, we used different research methods. In within-case
analysis, we used grounded theory method to interpret the qualitative finding and
linear regression analysis for interpretation of quantitative findings. In phase three,
the final results were interpreted using cross-case analysis. Phase one consisted of one
case with two subcases, phase two of one case and phase three of all these cases. In
phases one and two we used a priori constructs. In all phases we used literature
analysis to compare the findings with similar or conflicting literature. Table 4
summarizes the essential methodical details and the publications including the
findings.

49

0g

A uonedIqn

AT uoneorqn ‘II uonesrqn g

I uonedr[qn ‘[uonedTqng

Sunproday

asn spoyjaw jo sarpmys [esrrduy

Gurreaurdus juswaiinbax
[e2TUYD9}-0100S pue JuLIeauI3uD
jusuwrarmbai feuonper],

3INJRIS}I[UOHFeWSd
3500 pue AI09} UOTJRUIPIOO))

(anyexeyny Sunpdrfyuod
10 IeIWIs Y3m s3urpuy ayj jo
uostredwod) arnjersy Surpjoyug

SYI0MJIIU DIJULWIDS ‘Sa[qe)

K10393e0-85010 “s1sATeue £1089)ed-sS01D)

qepeN
Gursn uonyezrumndo uorouny
‘[9pOow UOISSa13a1 1eaur]

SYI0M}U
dTUBWAS “SUTOWDIW T} SE[} Y
Gursn 1093 papunoin

sisATeue [eorroydejowr
‘qeyeq Sursn uonezrundo
uonOUNJ ‘(PO UOISSAIZAI Ieaur|

sa[qe} A108373ed-s50.10 “Gurowrowr
‘©yseqyy Suisn L1091y} papunoin)

sisf[eue ejeq

saseyd snoraaxd woiy eyeq

SMIIAIRIUT
Pasnd0j “uone;uawnNIOop 393(01]

MITAISJUL
dnoi8 ‘uonejusumoop alorg

uonda[0d ejeq

sased Areyuswrarduwod 991y,

oSed U

Sasedqns OMj yjIm ased au(

uonI[as ase))

310330 yuswdoPaap
m sajear10d dosd
syuauraxbaz yeyy stsaypod ALy

90ULIAJaI JO durery
A3orouypay jo 3daouod ay,

310339 yuawrdoranap
uo joedur sey uorsayod
pue Surdnod jey sisayjod A1y

193(qo uourwod Jo uoyou AL,

sponnsuod tond y

sisAeue ased-ssorD)

SIsATeue ased UIyiipn

sisATeue ased unpipy

yoeoxdde yoressay

22413 asvyd

0m] Isvy

JUO ISVY]

$5200.4d YI4DISIY

S9TPNJS S} Ul Pasn SpoY3}aW Jo Arewrwing ' a[qel.

4 Summary of the Publications

In this chapter, I will present short summaries of the publications that form the main
contribution to this thesis. The results of this research are presented in detail in the
appendix consisting of five publications. These publications have been published
separately in scientific conferences (Publications II, IV and V) and in scientific journals
(Publications I and III). The summaries are presented in a uniform manner, where first
the research objectives and methods are mentioned, then the results are overviewed,
and the relation to the whole thesis is summarized. Before the summaries, I will try to
sketch my contribution and relation to other researchers in the joint publications
(Publication I, Publication IT and Publication III).

The first article describes the role of architecture in coordinating distributed
development work. The second article presents the early ideas of architecture
possibilities to predict the system size and estimate systems development effort. In the
third article, the nature of the process of requirement understanding is characterized.
The fourth article expands the second article by presenting early ideas of how the
process of requirement understanding can be measured quantitatively and used for
estimating the project timetable. The fifth article summarizes the first four articles by
broadening the earlier findings with the systems development method use.

4.1 About the joint publications

Publications I, II and III are joint publications written together with other researchers.
Publication I was written with two other researchers, Matti Rossi and Pentti Marttiin.
They both brought a valuable contribution to the writing process. I completed the
analysis work and two earlier versions of the paper for the conferences on my own.

51

Pentti Marttiin elaborated the paper with more thorough literature analysis of
coordination and multi-site development, which also helped me see the results more
clearly. Matti Rossi helped with focusing the study and formulating the paper into an
acceptable form. Publication II was the result of work with another researcher,
Alexandre Bern, who wrote his Master’s thesis on this subject. Together we created the
metrics describing the architecture of the system during intensive conversations,
interaction and cooperative work. Alexandre Bern completed the actual calculations
with the data, I did the metaphorical analysis, and together we interpreted the results
and wrote the publications. Publication III was written with two other researchers,
Matti Rossi and Kari Smolander. My task as main author was to write the first version
of the paper. Matti Rossi contributed to the analysis of requirements engineering
approaches and Kari Smolander to the interpretation of the research results. Although
I completed the analysis work alone, Matti Rossi and Kari Smolander helped me with
focusing the results.

52

4.2 Publication I: Architecture as a Coordination Tool in
Multi-Site Software Development

This paper appeared in the scientific journal named Software Process: Improvement
and Practice., 8(4), pp. 233-248, John Wiley & Sons Ltd.

421 Research objectives and methods

This first publication aimed at understanding the role of architecture in multi-site
software development. The study was performed in a project that developed a
directory service platform for international markets. The development took place in
three different sites in Finland with foreign designers also participating in the project.
The project was divided into two subprojects to facilitate easier management. The
division was carried out on the basis of the architecture and technology: one
subsystem had a highly distributed, component-based architecture and the other was a
centralized subsystem, which handled authentication, authorization and user
interfaces. The functionality of the services required the subsystems to communicate
only through an easily extensible and configurable interface.

The situation and the goals in the project were topical: multi-site coordination, which
has become more common in the changing global environments (Castells 1996; Finholt,
Rocco et al. 1998), and information systems architecture (Zachman 1987; Karimi 1988)
that was considered a tool of managing the changes and uncertainties in technology
and business (Weill and Broadbent 1998). The focus of this study was twofold: First,
we studied the coordination problems in the project using grounded theory (Glaser
and Strauss 1967), identifying categories of processes that explained most of these
problems. Second, we used these categories to identify differences between same-site
and multi-site situation (Eisenhardt 1989). The actual interpretation of results was
based on the comparison of Malone and Crowston’s coordination theory (Malone and
Crowston 1990; Malone and Crowston 1994).

42.2 Results

We observed that it was not enough to coordinate only the activities and subsystems
(Curtis, Krasner et al. 1988; Kraut and Streeter 1995; Grinter, Herbsleb et al. 1999;
Herbsleb and Grinter 1999; Carmel and Agarwal 2001) in the multi-site environment,
but it was also important to coordinate the interdependencies between the activities to
achieve a working system (Malone and Crowston 1990). The main mechanism for
coordination was the architecture of the system that described the subsystems or
components and their interfaces (Garlan and Perry 1995). This kind of shifting of the

53

coordination interests from activities to their interdependencies required software
architects and designers to have a common understanding of the architecture. This
common understanding also required that the chief architect was capable of
maintaining the integrity of the architecture and communicating it (Smolander 2002).
Without this common understanding of architecture, the participants would have to
communicate the interfaces, which is naturally more difficult and time consuming
across distributed sites with cultural differences and long geographical distances.
When both communication and common understanding of the architecture failed, it
caused software integration problems (Herbsleb and Grinter 1999).

423 Relation to the whole

This study formed the basis of my notion of the role of methods. In this study, the
practitioners tried to follow the method phases strictly, but were not able to as the
methods did not guide the coordination work. The methods were used mainly for
communication purposes. The role of methods was mainly to support learning the
development situation at hand.

54

4.3 Publication II: Architecture as a Predictor of System
Size - A Metaphor from Construction Projects

This paper appeared in the Proceedings of the 16th International Conference on
Advanced Information Systems Engineering, the CAISE’ 04 Forum, pp. 193-203. The
earlier version of this paper was published in the Proceedings of the ACM ESEC/FSE
International Workshop on Intelligent Technologies for Software Engineering
WITSEOQ3, Helsinki, Finland, in September 2003. Here I will present the later version.

431 Research objectives and methods

This publication aimed at providing a different, quantitative view of the problems
observed in the first publication (Publication I). The objective of the publication was
twofold: 1) to create a metric suite to describe the architecture based on empirical data
from the directory service platform project and 2) to analyze the correlation between
the metrics and the actual development effort of each component. For the correlation
analysis we used an applied mathematical principle, namely the function optimization
method named non-negative least square problem analysis (Lawson 1995). By this, we
were aiming to get the first empirical evidence of the usability of the architecture as a
predictor of system size to be used for estimating the development effort in the project
(Putnam 1978; Albrecht 1979; Boehm 1981; Verner and Tate 1992; Boehm and Fairley
2000). The metaphorical analysis was used mainly for understanding the role of
architecture as a size predictor (Schultze and Orlikowski 2001) and to make better
sense of the new situation (Frost and Morgan 1983; Schultze and Orlikowski 2001).

43.2 Results

The findings of this study suggest that architecture as the size predictor of the system
considers the size of the system more widely than current LOC (Boehm 1981; DeMarco
1982; Jones 1986; Emrick 1987) or FP (Boehm 1981; Putnam and Myers 1992; Symons
1998; Boehm, Clark et al. 2000) approaches. This result can be interpreted to suggest
that more reliable estimates can be produced for the project effort and timetable if we
use architecture as size predictor. In the present project, the cost estimation methods
were based mostly on ‘comparison to similar, past projects based on personal memory’
(Heemstra 1992). This proved successful for the same-site subproject with a more
familiar situation, but not for the multi-site subproject.

55

4.3.3 Relation to the whole

The two studies reported in Publication I and Publication II supported each other in
the interpretation of the analysis results. The central notion of ‘Different
interpretations of the software architecture by project designers’ and Figure 4
(Publication I) was revealed in this study, just as a concrete example. The studies
provided each other with complementary views for coordination, views, which were
important for understanding the phenomena. This study contributed remarkably to
the understanding of the role of methods as a tool for estimating the project timetable.

56

4.4 Publication III: Filtering, Negotiating and Shifting in
the Understanding of Information Systems
Requirements

This paper was accepted into the Scandinavian Journal of Information Systems. An
earlier version of this paper was published in the proceedings of the Scandinavian
Conference of Information Systems, IRIS27. Here I will present a later version.

44.1 Research objectives and methods

In this publication, we studied a large electronic commerce platform development
project in order to examine the requirements understanding process by applying the
grounded theory research method (Glaser and Strauss 1967). The publication formed
the main contribution to two RE approaches in the literature: the traditional
requirements engineering approach that considers requirements understanding as
systematic techniques of requirement elicitation, documentation and management
(Pohl 1994; Kotonya and Sommerville 1998) and the resent socio-technical approaches
which see requirement elicitation as a political process (Bergman, King et al. 2002) or
as a socio-cognitive problem solving process (Davidson 2002). We approached the
subject technology frames (Orlikowski and Gash 1994) as an a priori construct and
claim to provide a new interpretation of how technology is collectively interpreted in
organizations.

4.4.2 Results

We observed that requirement understanding can be described as a social and
organizational process of filtering, negotiating and shifting. In the early phases of the
project, there was incongruence in the content of these frames between project
participants. This incongruence redirected the participants’ attention away from the
information and caused feedback aimed at filtering the understanding of project
requirements. The participants’ ability to resolve this incongruence in the later phases
of the project redirected their focus towards relevant information and led to a shift in
the understanding of requirements. The shift in the system context happened through
iteration between the solution and problem spaces when the participants increased
their understanding of the systems requirements iteratively. The project highlights
problems in current approaches to requirement elicitation and systems development in
general, which still largely assume that projects proceed with distinct phases and more
or less in a waterfall fashion from a vague understanding of the idea of the system into
a concrete system, which satisfies the originally found requirements. Instead, we
observed that the process of requirement understanding was filtering, negotiating and

57

shifting different attitudes and expectations about systems development through the
entire project. This process can be described as an ad-hoc and iterative process, where
the software requirements unfold during social interaction, communication and
negotiation between parties.

4.4.3 Relation to the whole

This publication was perhaps the most important publication contributing mainly to
the interpretation of the role of methods and of systems development in general. The
guiding role of methods was clearly apparent in this project and the change process
was highly conflict resolving and iterative which required mutual understanding and
learning from the participants. The participants perceived the object system as a
problem space system (Purao, Rossi et al. 2002; Smolander 2003) trying to understand
the requirements of the system. It could be observed that the role of methods was to
aid learning and understanding the system and its requirements.

58

4.5 Publication IV: Measuring Requirement Evolution - A
Case Study in the E-commerce Domain

This paper appeared in the Proceedings of the Sixth International Conference in
Enterprise Information Systems, ICEIS 2004, pp. 669-673.

45.1 Research objectives and methods

The purpose of the publication was to attempt to understand the requirement
understanding process in an e-commerce project (Publication III) from the quantitative
point of view. We developed a measurement for the emergent requirement evolution
process and analyzed it’s applicability for estimating the project effort and timetable.
For the analysis, we used correlation analysis and the non-negative least square
problem solving method (Lawson 1995). We calculated other measurements from the
system, like cohesion and coupling, and analyzed the correlation between these
measurements along with the requirements creep and development effort. From these
results, we interpreted the applicability of the requirements creep metrics for
estimating project costs and timetable.

45.2 Results

The developed quantitative measurement of requirement evolution, namely the
requirements creep, included provisions for the emergence of new requirements
during systems development, which cannot be anticipated in the requirement
elicitation and analysis phase. The existing quantitative approaches for measuring
requirement evolution assume that all the requirements exist and can be seen in the
requirement specification document (Andersson and Felici 2001; Andersson and Felici
2002). This requirement creep measurement had such a strong impact on the
development effort in our correlation analysis that the other measurements were
negligible. Based on these results, we suggest that measuring the requirement creep as
an emergent process of requirement understanding could be a helpful in estimating
the project effort and timetable. However, this would require an appropriate prediction
model that also considers other factors of systems development, for example the
scalability of the system and the capability of the project personnel.

45.3 Relation to the whole

This publication was used for interpreting the requirement understanding process,
along with Publication III. They complement one another by considering the process
from different perspectives, qualitative and quantitative, providing two valuable

59

perspectives on the same phenomenon. The three conceptual models formed for the
calculation of the requirement creep measurement (Figures 4, 5 and 7 in Publication
III) were used to identify the emergent requirement understanding process, just one
concrete example of the interaction of these two studies. This publication deepened the
understanding of the importance of method support for the project timetable
estimation. In this project, the organization’s methods did not directly support the
estimation, and the organization used the timebox method (Martin 1991; McConnell
1996). In other words, the customer gave the development time, and the project had to
fit as many features as possible inside this given timebox. The lack of a proper method
strengthened our understanding and interpretation of the role of methods as a tool for
estimating project duration.

60

4.6 Publication V: Working with Methods - Observations
on the Role of Systems Development Methods

This paper has been accepted to be published in Information Systems Development:
Advances in Theory, Practice and Education, ISD 2004, edited by O. Vasilecas, A.
Caplinskas, W. Wojtkowski, W.G. Wojtkowski, J. Zupancic, Springer, pp. 185-197.

4.6.1 Research Objectives

The aim of this paper was to provide a summary of the earlier studies, provide a view
of working with systems development methods and contribute to the empirical
research on the role of systems development methods (Nandhakumar and Avison
1999).

4.6.2 Results

The observations of our studies suggest that working with methods is more about
social interaction and mutual understanding between project participants than
progressing according to preset milestones and strictly following the prescribed phases
of the method. In our case studies, successful use of systems development methods
required good communication between project participants who then adopted the
method to the development situation at hand. Without this communication the
methods could not be used. When communication was successful, methods were used
for learning to understand the system and its requirements. Without a common
understanding of the system between project participants, the estimation of the project
timetable and resources became unrealistic and caused schedule overruns and wrong
timing of resources.

4.6.3 Relation to the whole

This summary paper formed the basis for the interpretation of the role of methods by
describing how practitioners work with methods.

61

5 Discussion and implications

5.1 Discussion

“There is no single development, in either technology or management technique, which by itself
promises even one order-of-magnitude improvement within a decade in productivity, in
reliability, in simplicity” (Brooks 1995)

Brooks (1987) locates in the 1950s a particular shift from writing software metaphor to
building software metaphor. Before 1950s, information systems were implemented
without the use of explicit methods (Walters, Broady et al. 1994). Computers were
mainframes with simple terminals, systems development was monolithic and
architectures were simple. System developers’ practices were impacted by writing
software metaphor (Brooks 1987; Bryant 2000). Hirschheim, Klein and Lyytinen (1995)
call this the pre-method era. In the late 1950s and early 1960s, when the first
methodical approach, the systems development lifecycle, was introduced, it was
impacted by the construction metaphor from engineering discipline (Bryant 2000). The
aim of this approach was to achieve a better manageability of the systems development
process. Since then, the construction metaphor has dominated research and practice.
Methodical approaches based on this metaphor and used by practitioners expect that
methods need to be followed strictly using predefined phases and milestones in order
to be able to manage the systems development process. These approaches are based on
the assumption of a universal mechanism for achieving management and control.

Current methodical approaches mainly suppose that system developer using methods
is like European navigator, an example given in Lucy Suchman’s book (Suchman 1987)
discussing the notion of situated action and its role in interaction between human and
machine interaction (HCI) in the following way:

62

“The European navigator begins with a plan — a course — which he has charted according to
certain universal principles, and he carries out his voyage by relating his every move to the
plan. His effort throughout his voyage is directed to remaining on course. If unexpected events
occur, he must first alter the plan, and then respond accordingly. Once the European navigator
has developed his operating plan and has available the appropriate technical resources, the
implementation and monitoring of his navigation can be accomplished with a minimum of
thought. He has simply to perform almost mechanically the steps dictated by his training and
by his initial planning synthesis.”(Suchman 1987)

On the contrary, the observations made during these studies suggest that method use
can be slightly different. Both projects studied in this thesis did not seem to follow the
process of taking up a method and using it as such to solve the problems projects
faced. These studies indicate that methods are not used for managing the development
process by progressing according to predefined milestones and strictly following
method stages. Rather, methods were used as tools for coordinating systems
development process whenever it was possible. Studies in phase one suggest that the
method for designing software architecture is the main tool for coordination and
software cost estimation. Studies in phase two implicate that social and organizational
requirements elicitation methods are tools for coordinating the systems development
process and estimating project’s duration and effort.

In these studies, practitioners seemed to choose the method based on the situation. To
them the question was when and how they should use the methods. Practitioners tried
to strictly follow the method phases, but they could not do it; they could use them
more as guidelines for development and learn development practices through them.
Methods, which only describe a series of development tasks provided little help in
analyzing how requirements should be negotiated, how multi-site development
should be coordinated and how these and other factors contributed to the project’s
timetable and costs. During the development, the participants’ general attitudes
towards methods changed and they started to regard methods as a set of tools. They
picked and chose the parts of methods they could use. Methods seemed to provide the
participants with tools for understanding the final system in different situations rather
than making them strictly follow some universal method.

A practitioner working with methods this way can be described by the story of the
Trukese navigator, who navigated to the island in the following way:

“The Trukese navigator started his navigation with an objective rather than a plan. He sets off
toward the objective and responds to conditions as they arise in an ad hoc fashion. He utilizes
information provided by the wind, the waves, the tide and current, the fauna, the stars, the
clouds, the sound of the water on the side of the boat, and he steers accordingly. His effort is
directed to doing whatever is necessary to reach the objective. If asked, he can point to his
objective at any moment, but he cannot describe his course”. (Suchman 1987)

63

Suchman (1987) discusses the relation between the plan and the situated action. She
advocates a view where action is always situated, i.e. dependent on and a result of the
specific circumstances of a situation. In the same way as our studies, her
argumentation denies the role of the general method as a way to improve practice.
Additionally, Schon (1983) argues that our common understanding of rationality has
little to do with rationality in practice. The “technical rationality”, the dominant
understanding of rationality in most of the systems development methods, is not well
suited for practitioners who operate in a complex, dynamic and messy world.

Clearly, the Trukese navigator is involved in instrumental action in getting from one
island to another, and just as clearly the European navigator relies upon his chart
regardless of his degree of expertise. Trukese navigator uses wind, stars and clouds as
tools to coordinate his navigation to the island, while European navigator relies on
planned phases in his navigation. The use of methods observed in our studies is more
like the Trukese than the European navigation inferring that there can be different
ways of acting depending on the nature of the activity and contingencies. In our
studies, the methods mainly described the course of development, but guided neither
the situation nor the understanding of the system and its requirements. Whenever a
project could not adapt to the situation and use a combination of these factors, it failed
to reach an acceptable objective - a system that meets customer requirements.

The situation and contingencies in the projects studied were contradictory: the object
systems were modern enterprise architecture for international markets, business area
were new at least partly and the systems development methods were extremely
traditional. In the project studied in phase one, the participants were distributed into
three different sites and the work was to be coordinated according to the architecture.
On the contrary, project participants in phase two had different opinions on business
values, development strategies and resource politics. The requirements in both projects
were demanding, including extensibility, high configurability and distribution. The
methods in the organization did not support architecture design and coordination in a
multi-site development environment and supposed that requirements exist and are
clear, ready just to be gathered into a requirement specification document. The
company’s process model based on the traditional waterfall life cycle model required
that requirements were ‘frozen” after requirement elicitation and documentation and
the design was based on this view of requirements. If there were changes to the
requirements in the later phases, the changes went through the change management
procedure in a attempt to manage systems development process in this way. The
architecture methods were based purely on UML descriptions which describe the
interfaces mainly at the technical level, like “TCP/IP” and “XML'. Projects did not have I
skills and past experiences from the same kinds of projects and situations.

Nevertheless, the studies in this thesis do not eliminate the role of methods, but rather
highlight their role as tools and guidelines that the developers can draw from in
diverging situations. Methods play a role as tools for communication, providing the

64

developers with a common language and bridging developers at different sites. When
one writes that “we’ll do that during the DP2”, as was the case in current studies, the
two developers understand what is expected in the DP2 as well as when it will arrive.
Methods also play a role as tools for collaboration in the form of requirements and
architecture. Methods support controlling by providing tools for estimation of
software timetable and cost. However, methods do not determine the outcome of
events very strongly, but rather remain at a fairly rough and tacit level. In this way, our
findings support the notion of software development as knowledge work, in which
methods form subjective know-how that allows people to act (Schultze 2000).

Based on these studies, we can claim that the productivity and quality problems
described in Chapter 1 are not solved by trying to manage and control the systems
development process with universal methods. By accepting the reality that systems
development can be a natural outcome of social interaction and communication
between development participants that can only be coordinated by methods, we have
a chance to solve at least a part of the software crisis. Highlighting understanding the
requirements and the architecture of a system as deeply as possible, and treating each
project as a unique situation, we can help practitioners improve their development
productivity. As a summary, by adopting a less naive view on methods, we can solve at
least part of the software crisis. As Introna and Whitely (Introna and Whitley 1997)
states “The question should not to be to get the method; it should be how to help the
developers to improvise in the situation in order to get the job done”.

5.2 Implications for research

As illustrated in this thesis, the whole systems development is slightly different than
many approaches and currently available methods assume. Current approaches still
largely assume that projects proceed through distinct phases and more or less in a
waterfall fashion from an understanding of the idea of the system to a concrete system,
which satisfies the originally found requirements. Most methods developers see
methodical development as following predefined method phases strictly to achieve the
quality of the final product. Socio-technical approaches like (Mumford and Weir 1979;
Walsham 1993) Soft System Methodology (SSM) (Checkland 1981; Checkland and
Scholes 1990) and Professional Work Practices methods (Hirschheim, Klein et al. 1995)
provide a wider view of systems development than traditional functional approaches.
They do not see a single reality, only different perceptions of it and they perceive of
systems requirements as socially constructed, emphasizing the early activities of
systems development. Our studies have consequences beyond this view. They suggest
that systems development is a coordination process, where the understanding of the
system unfolds during social interaction, communication and negotiation between
project participants during the whole project lifetime. In our case studies, traditional
methods did not guide the development group in new development environments or

65

in new and uncertain business areas, also highlighted by Curtis, Krasner et al. (1988),
Krasner et al. ,Baskerville, Travis et al. (1992) and Fitzgerald (1998). Methods were used
as a tool for coordination among systems development participants, not as a list of
phases to be adhered to in detail. Systems development is not so much a rational
process but depends on the circumstances and is more an ad hoc improvisation
process towards a working system. Methods serve as tools for systems development
but do not determine its course. The conflict between contemporary organizational
needs and traditional systems development methods used were obvious, highlighted
also in Baskerville, Travis et al. (1992).

As metaphors have a powerful impact on people’s practices (Brooks 1987), especially
regarding software, the studies of this thesis suggest that the building software
metaphor should be shifted towards coordinating software metaphor. The
coordinating software metaphor should emphasize the coordination, collaboration and
communication aspects of systems development. This kind of view of software has
important implications for systems development research.

Research, according to the findings of this thesis, should focus on systems
development approaches based on the situations of the development projects and how
to guide the practitioners in these situations. Systems development research should
examine systems development consisting of both technical and organizational aspects
and being a heterogeneous organizational process which continues through the whole
project lifetime instead of examining general universal approaches. When this
heterogeneous organizational process is understood more deeply, it is possible to
develop methods to guide the practitioners through this process. Resent research into
social and organizational processes in requirement elicitation by (Bergman, King et al.
2002; Davidson 2002) appears particularly promising in this regard.

5.3 Implications for practice

Recent findings showing that practitioners are not using methods as defined by their
originators, but rather are tailoring them, provide interesting evidence that practice
may be beginning to move in the direction of situation specific methods, without
waiting for research to show the way. However, our studies suggest that this is not
done in a conscious way and practitioners have no guidance for this tailoring process.
For that reason, the core challenge in organizational systems development seems to be
to find an appropriate way to use methods and to decide how to use them in the
diverging situations the projects face. It is crucial to understand the role and the use of
methods inside the organization. For example, the following questions are worth
clarifying: Are methods used for determining, regulating, supporting the action (livari
and Maansaari 1998), or to remind about the action (Ehn and Kyng 1987)? Do they
serve as a model of the ideal process highlighting the documentation (Parnas and
Clements 1986) or as a vehicle of learning (Checkland and Scholes 1990)? Our studies

66

highlight the guiding role of methods: they provide practitioners with tools to
coordinate the systems development process. In our case study projects, methods
were not used to determine the course of development, but more to provide guidance
and support in understanding the system and its requirements. When an organization
explicitly understands the role of their methods, it is easier to find or develop an
appropriate method and also guide its adaptation in different situations.

In practice, organizations should improve both their informal and formal
communications practices to make knowledge sharing in the projects more effective.
Organizations should pay special attention to developing team building,
communication and negotiation. In a multi-site environment, the informal
communication capabilities can be improved by, for example, more effective use of
electronic communication channels and CSCW (Computer Supported Cooperative
Work) technology (Lee and Malone 1990; Grudin 1994a; Grudin 1994b). Multi-site
coordination also requires a chief architect, who is capable of maintaining the integrity
of the architecture and communicating it to gain a common understanding of the
architecture among project stakeholders.

For the understanding the development situations and the developed systems itself,
software organizations should use metaphors (Kendall and Kendall 1993; Schultze and
Orlikowski 2001) and narratives (Davidson 1997). In our study, we used a metaphorical
analysis to help understand the size of the system. The use of metaphors can be worth
exploring to enable their use also in requirement elicitation. New metaphors can help
see the requirements of the system from a new point of view (as for instance the first
time you see yourself on video). A metaphor is nothing more or less than a model,
playing the same role in our understanding as a map that helps us find our way
through an unknown landscape. They can be useful in visualizing the invisible future
and making abstract matters more concrete. The use of narratives in an organization to
describe the success and failures of systems development can support and help
systems developers to understand the problems they face in practical situations and to
find ways to cope with these problems. Further, narratives can provide some expert
knowledge for inexperienced systems developers.

An important challenge in organizational systems development is recognizing and
explicitly acknowledging conflicting assumptions and expectations among
stakeholders inhibiting the understanding of requirements. It is especially important to
recognize assumptions that are not directly related to the system and its context, but
more to organizational issues. It is also important to understand that changes in the
understanding of some requirements during the project could have a far reaching
ripple effect on other requirements and the project itself. Instead of trying to identify
all the requirements in advance, requirement engineers should identify obstacles and
emerging opportunities of requirement understanding and improvise on, or around,
them (Nandhakumar, Rossi et al. 2003). Our studies also highlight the problems of

67

having too narrow a scope of requirement gathering or interpretation, which can lead
to the omission of key information by the developers.

5.4 Implications for systems development methods

As illustrated in this thesis, the profile of the development environment is different
from that which prevailed when many of the currently available commercial methods
were first proposed some 25 to 30 years ago. Thus, there is a need to put great effort
into updating our understanding of the use of development methods and concentrate
on developing methods more suited to the needs of the current practical development
climate. Current methods approaches believe that it is possible to understand and
solve a typical system development problem by using methods. Using methods as
tools does not mean anything if their usage and the situations in which they are used
are not understood. This means that it is important to understand the situation before
using a method, not vice versa as most of the method approaches currently assume.
This view highlights the methods’ role in understanding the situation, also stated by
Introna and Whitley (1997). This has several implications for future development
methods, which have an important role in guiding the practitioners to understand the
situations in the project. According to the studies of this thesis, four issues, in
particular, must be addressed in methods in order for them to guide practitioners in
different situations. In the following, these issues are summarized based on the
publications.

First, systems development methods should support coordination in different
environments. Especially, coordination and communication are the most important
aspects in multi-site development environment with geographically and culturally
dispersed teams. The methods should support communication, not be mere tools and
techniques for communication, but also themselves provide a common language for
the stakeholders. Curtis, Krasner and Iscoe discuss methods "serving as a boundary
object to which several stakeholders associate their particular meanings" (Curtis,
Krasner et al. 1988). In other words, methods provide a way and a language for
stakeholders to communicate and understand each other. Our studies emphasize the
architecture and architecture design as a multi-site coordination tool. Communication
requires methods that support informal communication. The use of architecture as a
coordination tool requires the use of multiple viewpoints or representations in
architecture design, a chief architect to communicate and coordinate architectural
structures, and an interface design activity early enough in the architecture design
phase.

Second, the requirement elicitation method should support and help the practitioner in
recognizing and explicitly acknowledging the conflicting assumptions and expectation
among systems development project participants. The concept of technology frame

68

could be a useful tool that methods support and guide when identifying these
organizational obstacles, assumptions and expectations. Further, the method should
guide the practitioner in the use of metaphors (Lakoff and Johson 1980; Frost and
Morgan 1983; Schultze and Orlikowski 2001) to increase the understanding of systems
requirement. New metaphors can help see the requirements of the system from a new
point of view (similarly to when you see yourself on video for the first time). A
metaphor is nothing more than a model, playing the same role in our understanding as
a map that helps us find our way through an unknown landscape. They can be useful
in visualizing the invisible future and making abstract matters more concrete.

Third, the project management methods should include guidelines for project’s cost
estimation. Our studies highlight the use of the architecture and requirement
understanding process as a basis for cost estimation. These include the collection of
history information to help the estimation. In order to get more reliable estimates of
the project timetable and costs, the methods should guide and assist the practitioners
in better understanding the complexity of both the system and the systems
development. In our study, we used metaphorical analysis to help understand the size
of the system. The use of metaphors in cost estimation (Kendall and Kendall 1993;
Schultze and Orlikowski 2001) can be worth exploring. The cost estimation model
should also take into account the non-linear nature of systems development, i.e the
non-linear effect of changes in the systems size to the development effort. More
empirical research should be conducted to achieve better estimation methods
appropriate for practical organizations in uncertain and turbulent business
environments. These methods should be sufficiently simple and take into account both
the increasing complexity of the systems and their development.

Fourth, as our studies indicate, the development lifecycle model and the development
strategy are situation dependent. Neither waterfall model nor prototyping and
iterative development are suitable for every situation. Rather, a strategy based on the
situation may be more appropriate. Our studies contradict the methodical steps and
their granularity. Rather than prescribing detailed of steps which developers are
expected to follow, the methods’ focus should be on higher level goals and
deliverables. The precise manner in which these are actually achieved should be left to
practitioner. However, practitioners need some guidelines as how to achieve these
goals in different situations. As our studies indicate, the questions ‘how” and ‘when’
are especially interesting, also the question ‘why’ would help the practitioner.
Furthermore, methods should guide in the use of narratives (Davidson 1997) to
describe the successes and failures of systems development. The use of narratives can
support and help systems developers to understand the problems they face in practical
situations and how to cope with these problems.

69

6 Conclusions

In this Chapter, I will present the summary and the main contribution of this thesis. In
the end of this Chapter, I will discuss the limitations of these studies and possible
future research topics.

6.1 Summary and contributions

This thesis has described a company competing in the information technology field
following two of its projects with a series of in-depth case studies. For the analysis of
the phenomena we used the theory-building case study approach with qualitative and
quantitative methods. The three phases of the thesis have provided empirical
observations about different aspects of systems development. In the first phase of the
thesis, we examined the role of architecture in coordination and cost estimation in a
multi-site software development from quantitative and qualitative viewpoints. The
second phase involved two studies, one qualitative and the other quantitative, on the
evolving requirement understanding process and the measurement of this process.
The third phase was a study based on the first two studies on the role of methods and
how practitioners work with them.

The answer to the research question presented in Chapter 3.1 is explained here as a
course of research phases.

The first phase of the thesis provided a view of coordination in a multi-site
development environment and of the way methods supported the participants in this
work. We observed that systems development process is coordinated using
architecture as a tool. The systems development participants would have needed
methods, which support multi-site coordination, but the methods provided them no

70

guidance. Our studies imply that, in a multi-site environment, it is not enough to
coordinate only development activities like current approaches assume, but it is also
important to coordinate the interdependencies between activities.

In the second phase, we studied the requirement understanding process. The studies
suggest that practitioners use the filtering, negotiating and shifting process of
requirement understanding as a tool for coordinating systems development process. In
this process, different attitudes and expectations about systems development changed
through the whole project lifetime. The project participants would have needed
methods to support them in resolving conflicts between participants and to help them
understand the requirements of the final system, but the methods were not able to
guide them in these problems. These studies highlight the problems in current
approaches to systems development, which still largely imply that projects proceed
with distinct phases and more or less in a waterfall fashion. These approaches are
mainly based on the assumption that systems development proceed from a vague
understanding of the idea of the system to a concrete system, which satisfies the
originally found requirements.

The third phase of the thesis includes an observation that working with methods is
social interaction and mutual understanding between project participants in using the
methods based on the development situation at hand. It is not so much progressing
according to milestones and strictly following the method’s phases like most of the
methods developers assume. Methods serve as tools for systems development but do
not determine its course.

The main contribution of this thesis is that systems development in a modern market
environment is much more complex and more driven by opportunity than
acknowledged by current development methods. Systems development is not
coordinated using activities and phases defined in methods. Instead, it is coordinated
using methods as tools that help practitioners achieve a common goal. Now, methods
should not describe the development activities and phases in a detail level, but should
include higher level guidance for practitioners on how to act in different situations.
Based on this thesis, the systems developer can be described as a knowledge worker
creating new information and knowledge in the organization.

6.2 Limitations of these studies

These studies have obvious weaknesses, as all studies do. The quantitative research
method has sought its form during the thesis. As we explained in Chapter 3.2, we first
used an evolutionary algorithmic approach and then turned to statistical analysis. The
main purpose of the quantitative analysis was to calculate the correlation between the
developed metrics and the development effort, and our statistical analysis fits this
purpose well. But it is too simplistic for cost estimation purposes, as noted in both

71

Publication II and Publication IV. Fortunately, this was only my secondary goal in the
quantitative analysis.

In general, combining quantitative and qualitative methods was not easy, mainly
because of the lack of the empirical examples in the literature. Some literature exists
under the subject of triangulation (Gable 1994; Markus 1994; Mingers 2001), but they
deal mainly with the analysis of surveys quantitatively and qualitatively forming a
different situation than in this thesis.

A critical issue for researchers concerns the generalizability of the results of their work,
and Yin (Yin 1994) notes that this issue is often raised with respect to case studies.
Different arguments for the generalizability of case study research have been given
(Eisenhardt 1989; Dutton and Dukerich 1991; Yin 1994; Walsham 1995), also discussed
in Chapter 3.3.5. It is argued that in case study research, the identified concepts and
categories are compared to theoretical concepts and patterns, unlike in statistical
generalization from a sample to a population. In phase one of the thesis, the identified
concepts were compared to Malone and Crowston’s theoretical concepts of
coordination (Malone and Crowston 1990; Malone and Crowston 1994), and in phase
two to existing socio-technical approaches in requirement elicitation (van Lamsweerde
2000; Bergman, King et al. 2002; Davidson 2002; Tomayko 2002), especially the concept
of a technological frame (Orlikowski and Gash 1994; Davidson 2002). In phase three,
the findings were compared to some empirical studies of the role of methods in
systems development (Russo, Wynekoop et al. 1995; Unhelkas and Mandapur 1995;
Fitzgerald 1998; livari and Maansaari 1998; Nandhakumar and Avison 1999; Fitzgerald
2000). Still, due to the nature of this thesis, in which the understanding of method use
was interpreted on the basis of separate phenomena found in one organization, the
generalization of the use of methods may be limited. Therefore, the understanding
gained in these studies provides a basis for understanding similar phenomena in the
same settings rather than enabling the understanding of phenomena in other contexts.

6.3 Future research

As mentioned earlier, there is a lack of empirical research on the role of methods in
practical organizational context. It is not useful to study the use or non-use of methods,
nor whether the methods used are text-book or in-house ones. This kind of knowledge
does not improve our understanding of how practitioners work with methods. Neither
is it worthwhile to develop new methods if they are not based on any empirical
grounding. These studies described the use of methods in one organizational context
and in one business area. In other contexts and in more mature business areas, the
findings could differ. When enough knowledge of the role of methods is acquired, the
developed methods could then be experimented with and developed further, for
example using action research as research method.

72

References

Aalto,].-M. and A. Jaaksi (1994). "Object-Oriented Development of Interactive Systems
with OMT++". Proceedings of the Technology of Object-Oriented Languages and
Systems (TOOLS 14), Santa Barbara, CA, August, Prentice-Hall: 205-218.

Abrahamsson, P,]. Warsta, M. T. Siponen and]. Ronkainen (2003). "New Directions on
Agile Methods: A Comparative Analysis". Proceedings of the 25 th International
Conference on Software Engineering, Portland, Oregon, May 23-28: 244.

Alavi, M. and P. Carlson (1992). "A review of MIS research and diciplinary
development", Journal of Management Information Systems, 8(4): 45-62.

Albrecht, A. J. (1979). "Measuring application development productivity". Proceedings of
the Joint SHARE/GUIDE/IBM Appl. Development Symposium, Monterey, CA,
October: 83-92.

Andersson, S. and M. Felici (2001). "Requirements Evolution: From Process to Product
Oriented Management". Proceedings of the 3rd International Conference on Product
Focused Software Process Improvement, Kaiserslautern, Germany, September 10-
13, Springer Verlag: 27-41.

Andersson, S. and M. Felici (2002). "Quantitative Aspects of Requirement Evolution".
Proceedings of the 26th Annual International Conference on Computer Software and
Applications Conference (COMPSAC 2002), Oxford, England, August 26-29, IEEE
Society: 27-32.

Angell and Straub (1993). "Though this be madness, yet there is method in't", Journal of
Strategic Information Systems, 2(1): 5-14.

Avison, D. and B. Fitzgerald (1988). Information Systems Development Methodologies:
Techniques and Tools, Oxford, Blackwell.

Avison, D. and B. Fitzgerald (1995). Information Systems Development: Methodologies,
Techniques and Tools, 2 nd edition, New York, McGraw-Hill.

Avison, D., F. Lau, M. D. Myers and P. A. Nielson (1999). "Action Research",
Communications of the ACM, 42(1): 94-97.

73

Baskerville, R.,]. Travis and D. P. Truex (1992). "Systems without method: The impact
of new technologies on information systems development projects", in
Transactions on the impact of computer supported technologies in information systems
development.].1.DeGross (eds.): 241-260.

Baskerville, R. L. and]. Pries-Heje (1999). "Grounded action research: a method for
understanding IT in practice", Accounting, Management and Information
Technology, 9(1): 1-23.

Benbasat, I., D. Goldstein and M. Mead (1987). "The case study research strategy in
studies of information systems", MIS Quarterly, 11(3): 369-386.

Bergman, M., L. King and K. Lyytinen (2002). "Large Scale Requirements Analysis
Revisited: The need for Understanding the Political Ecology of Requirements
Engineering", Requirements Engineering, 7(3): 152-171.

Beynon-Davies, P. and M. Williams (2003). "The diffusion of information systems
development methods", The Journal of Strategic Information Systems, 12(1): 29-46.

Bodker, S., P. Ehn, J. Kammersgaard, M. Gustafsson and L. Johansson (1987). "An
UTOPIAN experience: on design of poweful computer-based tools for skilled
graphic workers", in Computers and Democracy: A Scandinavian Challenge. G.
Bjerkenes, P. Ehn and M. Kyng (eds.). Aldershot, Avebury: 251-278.

Boehm, B. (1981). Software Engineering Economics, New Jersey, Prentice Hall.

Boehm, B. (1987). "Improving Software Productivity", IEEE Computer, 20(8): 43-58.

Boehm, B. (1988). "A Spiral Model of Software Development and Enhancement", IEEE
Computer, 21(5): 61-72.

Boehm, B., B. Clark, E. Horowitz, R. Madachy, D. Reifel, B. K. Clark, B. Steece, A. W.
Brown, S. Chulani and C. Abts (2000). Software Cost Estimation with COCOMO
II, New Jersey, Prentice Hall.

Boehm, B. and R. E. Fairley (2000). "Software Cost Estimation Perspectives", IEEE
Software, 17(6): 22-26.

Booch, G., J. Rumbaugh and I. Jacobson (1998). The Unified Modelling Language User
Guide, Massachusetts, Addison-Wesley.

Broadbent, M. and P. Weill (1993). "Improving business and information strategy
alignment: Learning from the banking industry", IBM Systems Journal, 32(1):
162-179.

Brooks, F. P.J. (1987). "No Silver Bullet: Essence and Accidents of Software
Engineering", IEEE Computer, 20(4): 10-19.

Brooks, F. P.J. (1995). The Mythical Man-Month - 20th Anniversary Edition, Boston,
Addison-Wesley.

Bubenko, J. A, jr., B. Langefors and A. Solvberg (1971). Computer-Aided Informations
Systems Analysis and Design, Lund, Studentlitteratur.

Calloway, L. J. and G. Ariav (1991). "Developing and Using Qualitative Methodology
to Study Relationships among Designers and Tools", in Information Systems
Research:Contemporary Approaches and Emergent Traditions. H. E. Nissen, H.
Klein and R. Hirschheim (eds.). Amsterdam, North-Holland: 175-193.

74

Carmel, E. and R. Agarwal (2001). "Tactical Approaches for Alleviating Distance in
Global Software Development", IEEE Software, 18(2): 22-29.

Castells, M. (1996). The Rise of the Networked Society, Malden, MA, USA, Blackwell
Publishers.

Checkland, P. (1981). Systems Thinking, Systems Practice, Chichester, UK, John Wiley &
Sons.

Checkland, P. and J. Scholes (1990). Soft System Methodology in Action, Chichester, UK,
John Wiley & Sons.

Chelimsky, E. (1992). Quantitative Data Analysis: An Introduction, United States
General Abbounting Offices, http://www.gao.gov/special.pubs/pel10111.pdf,
accessed May 6, 2005.

Cockburn, A. (2001). Agile Software Development, Boston, Addison-Wesley.

Coplien, J. O. and M. Devos (1999). "Architecture as Metaphor". Proceedings of the World
Multiconference on Systemics,Cybernetics and Informatics, Orlando, Florida, July
23-26, Institute of Informatics and Systemics: 737-742.

Curtis, B., H. Krasner and N. Iscoe (1988). "A Field Study of the Software Design
Process for Large Systems", Communications of the ACM, 31(11): 1268-1287.

Davidson, E. J. (1997). "Examining Project History Narratives: An Analytic Approach",
in Information Systems and Qualitative Research. A. S. Lee, J. Liebenau and D. J.I
(eds.). London, Chapman and Hall: 123-148.

Davidson, E.]. (2002). "Technology Frames and Framing: A Socio-Cognitive
Investigation of Requirement Determination”, MIS Quarterly, 26(4): 123-148.

DeMarco, T. (1978). Structured Analysis and System Specification, New Jersey, Prentice
Hall.

DeMarco, T. (1982). Controlling Software Projects: Management, Measurement and
Estimation, New Jersey, Prentice Hall.

Dijkstra, E. (1972). "The Humble Programmer", Communications of the ACM, 15(10): 859-
866.

Dowson, M. (1993). "Software Process Themes and Issues". Proceedings of the Second
International Conference on the Software Process, Berlin, Germany, February 25-26:
54-62.

Earl, M. J. (1993). "Experiences in Strategic Information Systems Planning", MIS
Quarterly, 17(1): 1-24.

Ehn, P. and M. Kyng (1987). "The Collective Resource Approach to Systems Design", in
Computers and Democracy. G. Bjerkenes, P. Ehn and M. Kyng (eds.). Aldershot,
Avebury: 17-57.

Eisenhardt, K. M. (1989). "Building Theories from Case Study Research", Academy of
Management Review, 14(4): 532-550.

Emrick, R. D. (1987). "In search of a better metric for measuring productivity of
application development". Proceedings of the International Function Point Users
Group Conference (IFPUG), San Antonio, Texas.

75

Finholt, T. A., E. Rocco, D. Bree, N. Jain and]. D. Herbsleb (1998). "NotMeeting: A field
trial of NetMeeting in a geographically distributed organization", SIGGROUP
Bulletin, 20(1): 66-69.

Fitzgerald, B. (1998). "An empirical investigation into the adoption of systems
development methodologies", Information & Management, 34(6): 317-328.

Fitzgerald, B. (2000). "Systems development methodologies: the problem of tenses",
Information Technology & People, 13(3): 174-185.

Frost, P. J. and G. Morgan (1983). "Symbols of sensemaking: the real-ization of the
framework", in Organizational symbolism. L. R. Pondy, P. J. Frost, G. Morgan and
T. C. Dandrike (eds.). New York, Wiley: 419-437.

Gane, C. P. and T. Sarson (1979). Structured Systems Analysis: Tools and Techniques, New
York, Prentice Hall.

Garlan, D. and D. Perry (1995). "Introduction to the Special Issue on Software
Architecture", IEEE Transaction on Software Engineering, 21(4): 269-274.

Georgiadou, E. (2003). "Software Process and Product Improvement: A Historical
Perspective", Cybernetics and Systems Analysis, 39(1): 125-142.

Gersick, C. (1988). "Time and transition in work teams: toward a new model of group
development", Academy of Management Journal, 31(1): 9-41.

Glaser, B. and A. L. Strauss (1967). The Discovery of Grounded Theory: Strategies for
Qualitative Research, Chicago, Adline.

Glass, R. (1994). "The Software Research Crisis", IEEE Software, 11(6): 42-47.

Glass, R. (1999). "The realities of software technology payoffs", Communications of the
ACM, 42(2): 74-79.

Glass, R., I. Vessey and V. Ramesh (2002). "Research in software engineering: an
analysis of the literature", Information and Software Technology, 44(8): 491-506.

Grinter, R. E.,]. D. Herbsleb and D. E. Perry (1999). "The Geography of Coordination:
Dealing with Distance in R&D Work". Proceedings of the International Conference
on Supporting Group Work (GROUP'99), Phoenix, Arizona, November 14-17,
1999, ACM Press: 306-315.

Grudin, J. (1994a). "Groupware and Social Dynamics: Eight Challenges for
Developers", Communications of the ACM, 37(1): 93-105.

Grudin, J. (1994b). "Computer-Supported Cooperative Work: History and Focus", IEEE
Computer, 27: 19-26.

Hardy, C., J. Thompson and H. Edwards (1995). "The use, limitations and
customization of structured development methods in United Kingdom",
Information and Software Technology, 37(9): 467-477.

Heemstra, F. J. (1992). "Software cost estimation", Information and Software Technology,
34(10): 379-382.

Henderson, . C. and J. G. Cooprider (1994). "Dimensions of IS Planning and Design
Aids: A Functional Model of CASE TEchnology", in IT and the Corporation of the
1990’s: Research studies. T. Allen and M. Scott-Morton (eds.). New York, Oxford
University Press: 221-248.

76

Herbsleb, J., D. Zubrow, D. Goldenson, W. Hayes and M. C. Paulk (1997). "Capability
maturity model and the software quality", Communications of the ACM, 40(6):
30-40.

Herbsleb, J. D. and R. E. Grinter (1999). "Architectures, Coordination, and Distance:
Conway's Law and Beyond", IEEE Software, 16(5): 63-70.

Hirschheim, R., H. Klein and K. Lyytinen (1995). Information Systems Development and
Data Modeling: Conceptual and Philosophical Foundations, Cambridge, Cambridge
University Press.

livari, J. and J. Maansaari (1998). "The usage of systems development methods: are we
stuck to old practices?" Information and Software Technology, 40(9): 501-510.

Introna, L. and E. Whitley (1997). "Against method-ism:exploring the limits of
method", Logistics Information Management, 10(5): 235-245.

Jarke, M., C. Rolland, A. Sutcliffe and R. Domges (1999). The Nature of Requirements
Engineering, Aachen, Shaker Verlag GmbH.

Jayaratna, N. (1994). Understanding and Evaluating Methodologies:NIMSAD a Systematic
Framework, New York, McGraw-Hill.

Jones, C. (1986). Programmer productivity, New York, McGraw-Hill

Jarvinen, P. H. (2000a). "Research Question Guiding Selection of an Appropriate
Research Method". Proceedings of the European Conference on Information Systems,
Vienna, July 3-5, Vienna University of Economics and Business
Administration: 124-131.

Jarvinen, P. H. (2000b). "On a variety of research output types". Proceedings of the
Scandinavian Conference on Information Systems (IR1S23): Doing IT Together,
Uddevalla, Sweden, August 20, Laboratorium for Interaction, University of
Trollhattan: 251-256.

Karimi, J. (1988). "Stratetic Planning for Information Systems: Requirements and
Information Engineering Methods", Journal of Management Information Systems,
4(4): 5-24.

Kast, F. E. and J. E. Resenzweig (1974). Organization and Management: A Systems
Approach. Second Edition, Tokyo, McGraw-Hill.

Kautz, R., K. Kuhlenkamp and H. Zullighoven (1992). Prototyping: An Approach to
Evolutionary Systems Development, London, Springer Verlag.

Keil, M.,]. Mann and A. Rai (2000). "Why Software Projects Escalate: An Empirical
Analysis and Test of Four Theoretical Models", MIS Quarterly, 24(4): 631-664.

Keil, M. and D. Robey (2001). "Blowing the Whistle on Troubled Software Projects",
Communications of the ACM, 44(4): 87-93.

Kendall, J. E. and K. E. Kendall (1993). "Metaphors and Methodologies: Living beyond
the Systems Machine", MIS Quarterly, 17(2): 149-171.

Kidder, T. (1982). Soul of a new machine, New York, Avon.

Kotonya, G. I. and Sommerville (1998). Requirement Engineering, New York, John Wiley
& Sons.

Kraut, R. E. and L. A. Streeter (1995). "Coordination in Software Development”,
Communications of the ACM, 38(3): 69-81.

77

Kruchten, P. (2000). The Rational Unified Process: An Introduction, New York, Addison-
Wesley.

Kuilboer, J. P. and N. Ashrafi (2000). "Software process and product improvement: an
empirical assessment", Information and Software Technology, 42(1): 27-34.

Kumar, K. and R. Welke (1992). "Methodology Engineering: A Proposal for Situation-
specific Methodology Engineering", in Challenges and Strategies for Research in
Systems Development. W. W. Cotterman and J. A. Senn (eds.). Chichester, Wiley:
257-269.

Lakoff, G. and M. Johson (1980). Metaphors We Live By, Chicago, The University of
Chicago Press.

Lawson, C. L. (1995). Solving Least Squares Problems, Society of Industrial and Applied
Mathematics.

Lawson, C. L. and R. Hansen (1974). Solving Least Squares Problems, New Jersey,
Prentice Hall.

Lee, J. and T. W. Malone (1990). "Partially shared views: A scheme for communicating
among groups that use different type hierarchies", ACM Transactions on
Information Systems, 8(1): 1-26.

Locke, K. (2003). Grounded Theory in Management Research, London, Sage.

Lyytinen, K. (1987a). "A taxonomic perspective of information systems development:
theoretical constructs and recommendations", in Critical issues in information
systems research. R. J. Boland and R. Hirschheim (eds.), John Wiley & Sons: 3-41.

Lyytinen, K. (1987b). "Different Perspectives on Information Systems: Problems and
Solutions", ACM Computing Surveys, 19(1): 5-46.

MacKenzie, D. and J. Wajsman (1999). The Social Shaping of Technology, Phidalelphia,
USA, Open University Press.

Malone, T. W. and K. Crowston (1990). "What is Coordination Theory and how can it
help design cooperative work systems?" Proceedings of the Conference on
Computer Supported Cooperative Work (CSCW "90), Los Angeles, October 7-10,
1990, ACM Press: 357-370.

Malone, T. W. and K. Crowston (1994). "The Interdisciplinary Study of Coordination",
ACM Computing Surveys, 26(1): 87-110.

Markus, M. L. (1983). "Power, Politics and MIS Implementation", Communications of the
ACM, 26(6): 430-444.

Martin, J. (1991). Rapid Application Development, New York, Macmillan Publishing.

Marttiin, P. (1998). Customisable Process Modelling Support and Tool for Design
Environment. Department of Computer Science, University of Jyvaskyla,
Ph.D.Dissertation.

Mathiassen, L., P. A. Munk-Madsen, P. A. Nielsen and]. Stage (1996). "Method
Engineering: Who's the Customer?" in Method Engineering. Principles of Method
Construction and Tool Support. S. Brinkkemper, K. Lyytinen and R. Welke (eds.).
London, Chapman & Hall.

MathWorks Inc. (2003). Matlab, http://www.mathworks.com, accessed May 5, 2005.

McConnell, S. (1996). Rapid Development, Microsoft Press.

78

McLean, E. (1973). "Comment on Empirical studies of management information
systems", Data Base, 4(4): 181.

Miles, M. B. and A. M. Huberman (1984). Qualitative Data Analysis: A Sourcebook of a
New Methods, Beverly Hills, Sage.

Mintzberg, H. (1979). "An emerging strategy of "direct" research", Administrative Science
Quarterly, 24(4): 582-5809.

Mumford, E. (1983). Designing Human Systems-the ETHICS Method, Manchester,
Manchester Business School.

Mumford, E. and M. Weir (1979). Computer Systems in Work Design: The ETHIC Method,
New York, Wiley.

Nandhakumar, J. and D. Avison (1999). "The fiction of methodology development: a
field study of information systems development", Information Technology &
People, 12(2): 176-191.

Nandhakumar, J. and M. Jones (1997). "Too close for comfort? Distance and
engagement in interpretive information systems research", Information Systems
Journal, 7(2): 109-131.

Nandhakumar, J., M. Rossi and J. Talvinen (2003). "Planning for "drift":
Implementation process of enterprise resource planning systems". Proceedings
of the 36 th Hawaii International Conference on Systems Sciences (HICSS), Big
Island, HI, USA, 7-10 January, IEEE Computer Society: 241-250.

Naumann, J. D., G. B. Davis and J. D. McKeen (1980). "Determining Information
Requirements: A Contingency Method of the Selection of a Requirements
Assurance Strategy"”, Journal of Systems and Software, 1(4): 273-281.

Nygaard, C. and O.-]. Dahl (1966). "Simula: an ALGOL-based simulation language",
Communications of the ACM, 9(9): 671-678.

Nygaard, K. and O. T. Bergo (1974). "The Trade Unions-New Users of Research",
Personell Review, 1(1): 5-10.

Orlikowski, W. J. (1993). "Case Tools as Organizational Change: Investigating
Incremental and Radical Changes in Systems Development", MIS Quarterly,
17(3): 309-340.

Orlikowski, W. J. (2002). "Knowing in Practice: Enacting a Collective Capability in
Distributed Organizing", Organization Science, 13(3): 249-273.

Orlikowski, W.]. and J. J. Baroudi (1991). "Studying Information Technology in
Organizations: Research Approaches and Assumptions", Information Systems
Research, 2(1): 1-28.

Orlikowski, W.]. and D. C. Gash (1994). "Technological Frames: Making Sense of
Information Technology in Organizations", ACM Transactions on Information
Systems, 12(2): 174-207.

Parnas, D. L. (1972). "On the Criteria To Be Used in Decomposing Systems into
Modules", Communications of the ACM, 15(5): 330-336.

Parnas, D. L. and P. C. Clements (1986). "A rational design process: how and why to
fake it?" IEEE Transactions on Software Engineering, 2(2): 251-257.

79

Paulk, M. C,, B. Curtis, M. B. Chrissis and C. V. Weber (1993). "The Capability Maturity
Model for Software: A Tutorial", IEEE Software, 12(1): 74-83.

Pedrycz, W., J. F. Peters and S. Ramanna (1999). "Fuzzy Set Approach to Cost
Estimation of Software Project". Proceedings of the IEEE Canadian Conference on
Electrical and Computer Engineering (CCECE 99), Edmonton, Canada, May 9-12:
1068-1073.

Pinfield, L. (1986). "A field evaluation of perspectives on organizational decision
making", Administrative Science Quarterly, 31(3): 365-388.

Pohl, k. (1994). "Three Dimensions of Requirements Engineering: framework and its
application", Information Systems, 19(3): 243-258.

Pries-Heje, J., R. Baskerville, L. Levine and B. Ramesh (2004). "The High Speed
Balancing Game: How Software Companies Cope with Internet Speed”,
Scandinavian Journal of Information Systems, 16(11): 11-54.

Purao, S., M. Rossi and A. Bush (2002). "Towards an Understanding of the Use of
Problem and Design Spaces during Object-Oriented System Development",
Information and Organization, 12(4): 249-281.

Putnam, L. H. (1978). "A General Empirical Solution to the Macro Software Sizing and
Estimation Problem", IEEE Transaction on Software Engineering, 4(4): 345-361.

Putnam, L. H. and W. Myers (1992). Measures for Excellence, Yourdon Press.

Rossi, M. (1998). Advanced Computer Support for Method Engineering. Department of
Computer Science, University of Jyvaskyld, Ph.D.Dissertation.

Rumbaugh, J. (1995). "What is a method?" Journal of Object-Oriented Programming, 8(6):
10-16.

Rumbaugh, J., M. R. Blaha, W. Lorensen, F. Eddy and W. Premerlani (1990). Object-
Oriented Modeling and Design, New Jersey, Prentice Hall.

Russo, N., J. Wynekoop and D. Waltz (1995). "The Use and Adaptation of System
Development Methodologies", in Managing Information & Communications in a
Changing Global Environment: Proceedings of the Information Resources
Management Association International Conference. M. Krosrowpour (eds.).
Atlanta, Idea Group Publishing: 162.

Sabherwal, R. (2003). "The Evolution of Coordination in Oursourced Software
Development Projects: a Comparison of Client and Vendor Perspectives",
Information and Organization, 13(3): 153-202.

Schultze, U. (2000). "A Confessional Account of an Ethnography About Knowledge
Work", MIS Quarterly, 24(1): 3-41.

Schultze, U. and W. J. Orlikowski (2001). "Metaphors of virtuality: shaping an
emergent reality", Information and Organization, 11(1): 45-77.

Scientific Software (2001). Atlas.ti-The Knowledge Workbench, http://www.atlasti.de/,
accessed May 5, 2005.

Scott, J. (1998). "Organizational Knowledge and The Intranet", Decision Support Systems,
23(1): 3-17.

Smolander, K. (2002). "Four Metaphors of Architecture in Software Organizations:
Finding out The Meaning of Architecture in Practice". Proceedings of the

80

International Symposium on Empirical Software Engineering (ISESE 2002), Nara,
Japan, October 3-4: 211-221.

Smolander, K. (2003). On the Role of Architecture in Systems Development. Department of
Information Technology, Lappeenranta University of Technology,
Ph.D.Dissertation.

Smolander, K., V.-P. Tahvanainen and K. Lyytinen (1990). "How to Combine Tools and
Methods in Practice - a Field Study". Proceedings of the Second Nordic Conference
CAISE 90, Stockholm, Sweden, May 8-10, Lecture Notes in Computer Science:
195-211.

Sol, H. G. (1983). "A Feature Analysis of Information Systms Design Methodologies:
Mehodological Considerations", in Information Systems Design Methodologies: A
Feature Analysis. T. W. Olle, H. G. Sol and C. J. Tully (eds.). Amsterdam,
Elsevier Science Publishers: 1-7.

Strauss, A. and J. Corbin (1990). Basics of Qualitative Research: Grounded Theory
Procedures and Applications, Newbury Park, CA, Sage.

Suchman, L. (1987). Plans and Situated Action, Cambridge, Cambridge University Press.

Susman, G. I. and R. D. Evered (1978). "An Assessment of the Scientific Merits of
Action Research", Administrative Science Quarterly, 23(4): 582-603.

Symons, C. R. (1998). "Function Point Analysis: Difficulties and Improvements", IEEE
Transaction on Software Engineering, 14(1): 2-11.

Tolvanen, J.-P. (1998). Incremental Method Engineering with Modeling Tools - Theoretical
Principles and Empirical Evidence. Department of Computer Science and
Information Systems, University of Jyvaskyld, Ph.D.Dissertation.

Tomayko, J. E. (2002). Engineering of Unstable Requirements Using Agile Methods,
http://www-di.inf.puc-rio.br/~julio/tcre-site/p1.pdf, accessed April 4, 2005.

Truex, D. P, R. Baskerville and J. Travis (2001). "Amethodical systems development:
The deferred meaning of systems development methods", Accounting,
Management and Information Technologies, 10(1): 53-79.

Unhelkas, B. and G. Mandapur (1995). "Practical aspects of using methodology: A road
map approach", Report of Object Analysis and Design, 2(2): 34-36,54.

Walsham, G. (1993). Interpreting Information Systems in Organizations, Chister, John
Wiley & Sons.

Walters, S. A, J. E. Broady and R. J. Hartley (1994). "A Review of Information Systems
Development Methodologies", Library Management, 15(6): 5-19.

van Lamsweerde, A. (2000). "Requirements engineering in the year 00: A research
perspective". Proceedings of the International Conference on Software Engineering
(ICSE 2000), Limerick, Ireland: 5-19.

van Slooten, K. and B. Schoonhoven (1996). "Contingent information systems
development", Journal of Systems and Software, 33(2): 153-161.

Weill, P. and M. Broadbent (1998). Leveraging the new Infrastructure, Boston, Harvard
Business School Press.

81

Venkatachalam, A. R. (1993). "Software Cost Estimation Using Artificial Neural
Networks". Proceedings of the International Joint Conference on Neural Networks,
IJCNN 93, Nagoya, Japan, October 25-29: 987-999.

Verner, . M. and G. A. Tate (1992). "A software size model", IEEE Transaction on
Software Engineering, 18(4): 265-278.

Vessey, I. and A. P. Sravanapudi (1995). "CASE Tools as Collaborative Support
Technologies", Communications of the ACM, 38(1): 83-94.

Wiegers, K. E. (1999). Software Requirements, Microsoft Press.

Wijers, G. (1991). Modeling Support in Information Systems Development, Amsterdam,
Thesis Publishers.

Winograd, T. and F. Flores (1986). Understanding computers and cognition, Norwood, NJ,
Ablex.

Wynekoop, J. and N. Russo (1995). "Systems development methodologies: unanswered
questions"”, Journal of Information Technology, 10(2): 65-73.

Wynekoop, J. and N. Russo (1997). "Studying system development methodologies: an
examination of research methods", Information Systems Journal, 7(1): 47-65.

Yang, Y. (1995). "Coordination for process support is not enough!" Proceedings of the 4 th
European Workshop on Software Process Technology, Noooedwijkerhout, Holland,
April 3-5, Lecture Notes in Computer Science: 205-208.

Yin, R. K. (1994). Case Study Research: Design and Methods (2nd ed.), Newbury Park,
Sage.

Yourdon, E. (1989). Modern Structured Analysis, London, Prentice Hall.

Zachman, J. A. (1987). "A Framework for Information Systems Architecture", IBM
Systems Journal, 26(3): 276-292.

Zelinka, I. and J. Lampinen (1999). "DELA: An Evolutionary Learning Algorithms for
Neural Networks". Proceedings of the 5th International Conference on Soft
Computing, Brno, Czech Republic, June 1-4: 410-414.

82

Appendix I: Publications

83

Publication I

Architecture as a Coordination Tool in Multi-site
Software Development

Ovaska, P, M. Rossi, P. Marttiin (2004): “Architecture as a Coordination Tool in Multi-
site Software Development”, in Software Process: Improvement and Practice, 8(4), pp. 233-
248, John Wiley & Sons Ltd.

© 2004 John Wiley& Sons, Ltd. Reprinted with permission.

Publication II

Architecture as a Predictor of System Size - A
Metaphor from Construction Projects

Ovaska, P, A. Bern (2004):” Architecture as a Predictor of System Size — A Metaphor
from Construction Projects”, Proceedings of the 16" International Conference on Advanced
Information Systems Engineering (CAISE "04 Forum), Riga, Latvia, June 7-11, Riga
Technical University, pp. 193-203.

Reprinted with permission.

Publication III

Filtering, Negotiating and Shifting in the
Understanding of Information Systems
Requirements

Ovaska, P, M. Rossi, K. Smolander (accepted): “Filtering, Negotiating and Shifting in
the Understanding of Information Systems Requirements”, Scandinavian Journal of
Information Systems, IRIS Association.

Printed with permission.

Publication IV

Measuring Requirement Evolution — A Case Study
in the E-commerce Domain

Ovaska, P. (2004):”Measuring Requirement Evolution — A Case Study in the E-
commerce Domain”, Proceedings of the 6" International Conference on Enterprise
Information Systems, Porto, Portugal, April 14-17, INSTICC, pp. 669-673.

© 2004 INSTICC. Reprinted with permission.

Publication V

Working with Methods: Observation on the Role of
Methods in Systems Development

Ovaska, P. (forthcoming in 2005): “Working with Methods: Observations on the Role
Methods in Systems Development”, Information Systems Development: Advances in
Theory, Practice and Education, edited by O. Vasilecas, A. Caplinskas, W. Wojtkowski,
W.G. Wojtkowski,]. Zupancic, Springer, pp. 185-197.

© 2004 Springer. Published with kind permission of Springer Science and Business
Media

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

1. ACTA UNIVERSITATIS LAPPEENRANTAENSIS

LI, XIAOYAN. Effect of mechanical and geometric mismatching on fatigue and
damage of welded joints. 2003. U.s. Diss.

OJANEN, VILLE. R&D performance analysis: case studies on the challenges
and promotion of the evaluation and measurement of R&D. 2003. U.s. Diss.

POLLANEN, RIKU. Converter-flux-based current control of voltage source
PWM rectifiers — analysis and implementation. 2003. 165 s. Diss.

FRANK, LAURI. Mobile communications within the European Union: the role of
location in the evolution and forecasting of the diffusion process. 2003. U.s.
Diss.

KOISTINEN, PETRI. Development and use of organizational memory in close
and long-term cooperation between organizations. 2003. 170 s. Diss.

HALLIKAS, JUKKA. Managing risk in supplier networks: case studies in inter-
firm collaboration. 2003. U.s. Diss.

LINDH, TUOMO. On the condition monitoring of induction machines. 2003.
146 s. Diss.

NIKKANEN, MARKKU. Railcarrier in intermodal freight transportation network.
2003. 217 s. Diss.

HUISKONEN, JANNE. Supply chain integration: studies on linking customer
responsiveness and operational efficiency in logistics policy planning. 2004.
151 s. Diss.

KUISMA, MIKKO. Minimizing conducted RF-emissions in switch mode power
supplies using spread-spectrum techniques. 2004. 190 s. Diss.

SOPANEN, JUSSI. Studies of rotor dynamics using a multibody simulation
approach. 2004. 91 s. Diss.

On the edge of fuzziness. Studies in honor of Jorma K. Mattila on his sixtieth
birthday. Editors Vesa A. Niskanen and Jari Kortelainen. 2004. 132 s.

VAISANEN, PASI. Characterisation of clean and fouled polymeric membrane
materials. 2004. U.s. Diss.

IKAVALKO, MINNA. Pas de deux of art and business: a study of commitment
in art sponsorship relationships. 2004. 277 s. Diss.

ENQVIST, YUKO. Comprehensive study of crystal growth from solution. 2004.
U.s . Diss.

183.
184.

185.

186.
187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

JAPPINEN, PEKKA. ME — mobile electronic personality. 2004. U.s. Diss.

HALME, TAPANI. Novel techniques and applications in generalised beam
theory. 2004. 101 s. Diss.

LOISA, ANTTI. Studies on integrating kinematic design method with
mechanical systems simulation techniques. 2004. 143 s., liitt. Diss.

2 Workshop on Applications of Wireless Communications. 2004. 74 s.

LI, XIAONING. Conflict-based method for conceptual process synthesis. 2004.
U.s. Diss.

LAURILA, LASSE. Analysis of torque and speed ripple producing non-idealities
of frequency converters in electric drives. 2004. 124 s. Diss.

NIKULA, UOLEVI. Introducing basic systematic requirements engineering
practices in small organizations with an easy to adopt method. 2004. 207 s.,
liitt. Diss.

TANNINEN, JUKKA. Importance of charge in nanofiltration. 2004. U.s. Diss.

VIHTONEN, TIINA. Tuote- vai liiketoimintaosaamista? Pienten ja keskisuurten
leipomoalan yritysten strategiset valinnat, liikkeenjohdon kaytannét ja
menestyminen. 2004. 238 s. Diss.

TURUNEN-SAARESTI, TEEMU. Computational and experimental analysis of
flow field in the diffusers of centrifugal compressors. 2004. 103 s. Diss.

SOLEYMANI, AZITA. Advanced topics in deformation and flow of dense gas-
particle mixtures. 2004. U.s. Diss.

SALLINEN, PETRI. Modeling dynamic behavior in tilting pad gas journal
bearings. 2004. 157 s. Diss.

HEILMANN, PIA. Careers of managers, comparison between ICT and paper
business sectors. 2004. 262 s. Diss.

AHMED, MOHAMMAD. Sliding mode control for switched mode power
supplies. 2004. U.s. Diss.

HUPPUNEN, JUSSI. High-speed solid-rotor induction machine —
electromagnetic calculation and design. 2004. 168 s. Diss.

SALMINEN, PIA. Fractional slot permanent magnet synchronous motors for
low speed applications. 2004. 150 s. Diss.

VARIS, JARI. Partner selection in knowledge intensive firms. 2004. U.s. Diss.

200. POYHONEN, AINO. Modeling and measuring organizational renewal
capability. 2004. U.s. Diss.

201. RATAMAKI, KATJA. Product platform development from the product lines’
perspective: case of switching platform. 2004. 218 s. Diss.

202. VIRTANEN, PERTTU. Database rights in safe European home: the path to
more rigorous protection of information. 2005. 425 s. Diss.

203. Saadoksia, systematiikkaa vai ihmisoikeuksia? Oikeustieteen paivat 19. —
21.8.2003. Toim. Marjut Heikkila. 2004. 350 s.

204. PANTSAR, HENRIKKI. Models for diode laser transformation hardening of
steels. 2005. 134 s., liitt. Diss.

205. LOHJALA, JUHA. Haja-asutusalueiden sahkonjakelujarjestelmien
kehittdminen — erityisesti 1000 V jakelujannitteen kayttdomahdollisuudet. 2005.
201 s., liitt. Diss.

206. TARKIAINEN, ANTTI. Power quality improving with virtual flux-based voltage
source line converter. 2005. U.s. Diss.

207. HEIKKINEN, KARI. Conceptualization of user-centric personalization
management. 2005. 136 s. Diss.

208. PARVIAINEN, ASKO. Design of axial-flux permanent-magnet low-speed
machines and performance comparison between radial-flux and axial-flux
machines. 2005. 153 s. Diss.

209. FORSMAN, HELENA. Business development efforts and performance
improvements in SMEs. Case study of business development projects
implemented in SMEs. 2005. 209 s. Diss.

210. KOSONEN, LEENA. Vaarinpidosta virtuaaliaikaan. Sata vuotta suomalaista
tilintarkastusta. 2005. 275 s. Diss.

211. 3rd Workshop on Applications of Wireless Communications. 2005. 62 s.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

