

LAPPEENRANTA UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

AGILE METHODS IN SMALL SOFTWARE PROJECTS

The subject of the thesis has been approved in the department council meeting

of the Department of Information Technology in Lappeenranta University of

technology on 13.12.2006.

Examiners: Professor Kari Smolander and M.Sc. Pasi Venäläinen

Instructor: M.Sc. Markus Runonen

Lappeenranta 2.12.2007

Lassi Romanainen

Tuulimyllynkatu 5 as. 3

53500 Lappeenranta

Lassi.Romanainen@quicknet.inet.fi

ABSTRACT

Author: Romanainen, Lassi

Subject: Agile Methods in Small Software Projects

Department: Information technology

Year: 2007

Place: Lappeenranta

Master’s Thesis. Lappeenranta University of Technology, 67 pages, 7 figures

and 7 tables.

Supervisor: Professor Kari Smolander

Keywords: Agile methods, software development, small software projects

Agile software development methods are attempting to provide an answer to the

software development industry’s need of lighter weight, more agile processes

that offer the possibility to react to changes during the software development

process.

The objective of this thesis is to analyze and experiment the possibility of using

agile methods or practices also in small software projects, even in projects

containing only one developer.

In the practical part of the thesis a small software project was executed with

some agile methods and practices that in the theoretical part of the thesis were

found possible to be applied to the project. In the project a Bluetooth proxy

application that is run in the S60 smartphone platform and PC was developed

further to contain some new features.

As a result it was found that certain agile practices can be useful even in the

very small projects. The selection of the suitable practices depends on the

project and the size of the project team.

TIIVISTELMÄ

Tekijä: Romanainen, Lassi

Nimi: Ketterät menetelmät pienissä ohjelmistoprojekteissa

Osasto: Tietotekniikan osasto

Vuosi: 2007

Paikka: Lappeenranta

Diplomityö. Lappeenrannan teknillinen yliopisto. 67 sivua, 7 kuvaa ja 7

taulukkoa.

Tarkastaja: Professori Kari Smolander

Hakusanat: Ketterät menetelmät, ohjelmistonkehitys, pienet ohjelmistoprojektit

Ketterät ohjelmistonkehitysmenetelmät yrittävät tarjota vastauksen

ohjelmistotuotantoalan tarpeeseen saada kevyempiä ja ketterämpiä

ohjelmistonkehitysmenetelmiä, jotka antavat mahdollisuuden reagoida

muutoksiin kehitysprosessin aikana.

Tämä työ käsittelee ketterien ohjelmistonkehitysmenetelmien ja niiden

määrittelemien käytäntöjen hyödyntämisen mahdollisuutta pienissä, jopa vain

yhden ohjelmistokehittäjän projekteissa.

Työn käytännön osassa toteutettiin pieni ohjelmistoprojekti, jossa valittiin

käytettäväksi tietyt teoriaosan analysoinneissa mahdollisiksi havaitut ketterien

menetelmien käytännöt. Projektissa jatkokehitettiin S60 –älypuhelinalustalla

sekä PC:llä ajettavaa Bluetooth proxy-ohjelmistoa.

Lopputuloksena havaittiin, että tietyt ketterien menetelmien käytännöt voivat

toimia myös todella pienissä ohjelmistoprojekteissa. Sopivien käytäntöjen

valinta riippuu projektista sekä projektin koosta.

FOREWORDS

This thesis is written in SYSOPENDIGIA Finland Ltd in Lappeenranta for the

Lappeenranta University of Technology.

I want to thank the inspector of this thesis, Professor Kari Smolander for all the

good comments and advices and for the interest towards this subject and

thesis.

I would also like to thank my instructor, Markus Runonen and the second

inspector Pasi Venäläinen from SYSOPENDIGIA Finland, for all the great

pointers and words of advice about the Bluetooth proxy implementation and

thesis work generally.

Last but not least, big thanks go to Noora for her patience and support during

this quite long writing and graduation process, and to my family for always

believing in my possibilities and supporting me with the choices I have made.

ALKUSANAT

Tämä työ on kirjoitettu Lappeenrannassa, SYSOPENDIGIA Finland Oy:ssä,

Lappeenrannan teknillisen yliopiston tietotekniikan osastolle.

Kiitän diplomityöni tarkastajaa, professori Kari Smolanderia, hyvistä neuvoista ja

kommenteista sekä mielenkiinnosta työtäni ja sen aihetta kohtaan.

Haluan myös kiittää työni ohjaajaa, Markus Runosta sekä toista tarkastajaa

Pasi Venäläistä SYSOPENDIGIA Finland Oy:sta, asiantuntevista neuvoista

sekä aihetta, että yleisesti diplomityötä koskevissa kysymyksissä.

Lopuksi haluaisin kiittää Nooraa hänen kärsivällisyydestään ja tuestaan tämän

pitkähkön kirjoitus- sekä valmistumisprosessin aikana, sekä myös vanhempiani

ja perhettäni siitä, että he ovat aina uskoneet mahdollisuuksiini ja tukeneet

minua valinnoissani.

 1

TABLE OF CONTENTS

1 INTRODUCTION ...7

1.1 Objectives of the thesis...7

1.2 Structure of the thesis...7

2 SOFTWARE DEVELOPMENT METHODS AND SMALL PROJECTS.......9

2.1 What is a method?..9

2.2 Software development methods ...9

2.3 What is an agile method? ...10

2.4 Why agile methods? ...11

2.4.1 Agile method survey ..12

2.4.2 Piloting XP in four mission critical projects13

2.5 Features of small software projects ..14

2.6 Methods and small projects ..15

3 AGILE SOFTWARE DEVELOPMENT METHODS16

3.1 Extreme Programming (XP)..16

3.1.1 XP Process..16

3.1.2 Practices..18

3.1.3 Using XP..20

3.2 Scrum ...21

3.2.1 Scrum Process ..21

3.2.2 Practices..24

3.3 Feature Driven Development..27

3.3.1 Process ...27

3.3.2 Practices..31

3.4 Dynamic Systems Development Method ..33

3.4.1 DSDM process ..34

3.4.2 DSDM Roles..36

3.4.3 DSDM Principles ...36

 2

4 AGILE METHODS IN SMALL PROJECTS...39

4.1 Extreme Programming (XP)..40

4.1.1 Pros ...40

4.1.2 Cons ..40

4.2 Scrum ...41

4.2.1 Pros ...41

4.2.2 Cons ..41

4.3 Feature Driven Development..41

4.3.1 Pros ...41

4.3.2 Cons ..41

4.4 Dynamic Systems Development Method ..42

4.4.1 Pros ...42

4.4.2 Cons ..42

4.5 Practices suitable for small projects..42

5 CASE: FURTHER DEVELOPMENT PROJECT OF BLUETOOTH PROXY
APPLICATION..46

5.1 Introduction...46

5.2 Symbian and S60 mobile operating systems......................................46

5.3 Bluetooth Proxy for S60..47

5.4 The project..49

5.4.1 Requirements included in the further development project..........49

5.4.2 Stakeholders..50

5.5 Agile practices for the project ...50

5.6 Project execution ..53

5.7 Project success...56

5.8 Agile practices in action ..57

5.8.1 High level design and planning..57

5.8.2 Product backlog list ...57

5.8.3 Separate Sprint cycles for the separate features.........................58

5.8.4 Daily scrum meetings ..58

5.8.5 Test driven development ...59

 3

5.8.6 40 hours week ...59

5.8.7 Coding standards ..59

5.8.8 Configuration Management ...60

6 DISCUSSION ..61

6.1 Recommendations for the future...62

6.2 Further research possibilities..62

7 CONCLUSIONS ..64

REFERENCES ...65

 4

LIST OF FIGURES

Figure 1 Extreme Programming process..17

Figure 2 Scrum process diagram...22

Figure 3 Sequential processes of FDD ..27

Figure 4 The lifecycle of a DSDM project...34

Figure 5 Modern S60 mobile device, Nokia N95..47

Figure 6 Functionality of the Bluetooth Proxy...48

Figure 7 New features of the Bluetooth Proxy..50

 5

LIST OF TABLES

Table 1 Characteristics of the responded firms in the survey...........................12

Table 2 Roles and responsibilities ...24

Table 3 FDD Roles and responsibities...29

Table 4 Feasible agile practices...43

Table 5 Stakeholders in the project..50

Table 6 Agile practices for the project ..52

Table 7 Initial schedule for the project ...53

 6

ABBREVIATIONS

DSDM Dynamic Systems Development

FDD Feature Driven Development

GPRS General Packet Radio Service

HTTP Hypertext Transfer Protocol

IP Internet Protocol

KAELOC Thousand (kilo) assembler-equivalent lines of code (Drobka et al.,

2004)

KESLOC Thousand (kilo) equivalent source lines of code computed using

formulas that normalize reused and modified code in terms of new

lines of code (Reifer, 2002b).

PC Personal Computer

TCP Transmission Control Protocol

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

XP Extreme Programming

TERMS

Localhost A reference to the same machine where the software is running. IP

address of the localhost is 127.0.0.1

 7

1 INTRODUCTION

1.1 Objectives of the thesis

The purpose of this thesis is to study if we could benefit from the use of agile

methods also in very small software projects. Another goal is to enhance an

existing software product with new features.

In the case project, a proxy application running on a smartphone will be updated

to support User Datagram Protocol (UDP) traffic and two-way Transmission

Control Protocol (TCP) traffic. Smartphone is an advanced mobile phone with

personal computer –like functionality.

The application is used in for example testing the Java environment

implementation on the smartphone, because it enables running tests using

Bluetooth connection instead of General Packet Radio Service (GPRS) via the

Internet. This is more cost-efficient and is more secure, because GPRS traffic is

expensive and slower than Bluetooth and also requires opening certain ports of

the test machine to the internet.

A combination of agile practices will be used to test how they could benefit a

small one-developer software project, or do they just cause problems or

unpredictable behavior.

1.2 Structure of the thesis

First there will be a short brief about software development methods as a whole

and how they are expected to work with small software projects; are there some

special features regarding those projects.

 8

After that, some of the most common agile methods and practices are

introduced and they are analyzed if they could be applied also to small software

projects.

The practical part of the thesis will contain a further development project of a

Bluetooth proxy application for the Symbian smartphone operating system.

According to the analysis in the previous chapters, some of the agile practices

are chosen and taken into use in the case project.

After the execution of the case project, the results and findings regarding the

agile methods or practices are analyzed and recommendations are given for the

future appliers. Also the further research possibilities are documented.

In the end, a final conclusion of the use of agile methods in small projects

according to this study will be given.

 9

2 Software development methods and small projects

2.1 What is a method?

Quite a variety of different terms are in use in the field of software development.

One of the most common terms is method. Many researchers and writers have

written a definition for it. Fitzgerald et al. (2002) describes method as

“A coherent and systematic approach based on a particular philosophy of

systems development, which will guide developers on what steps to take, how

these steps should be performed and why these steps are important in the

development of an information system.”

2.2 Software development methods

Also the term of software development method is quite fuzzy; there are many

similar terms like software development model, software life-cycle model,

software process model et cetera. In practice, all of these terms refer to

approximately same idea; defining the steps how to create software.

The earliest models of software evolution date back to the 1950s and 1960s.

The purpose of these early software life-cycle models was to provide a

conceptual scheme for rationally managing the development of software

systems. Probably the most common example of these life-cycle models is the

waterfall model, where software evolution proceeds through an orderly

sequence of transitions from one phase to the next in order. (Marciniak, 2002)

In contrast to the life-cycle models, software process models are seen as a

networked sequence of activities, objects, transformations and events that

 10

embody strategies for accomplishing software evolution. Such models can

describe the software life-cycle activities in a more precise and formal way.

Software development methods and processes are nowadays a key element in

successful software projects. For example Lockheed cut development costs

75%, shortened time-to-market for 40% and cut the amount of errors in their

software 90% by improving their development processes during five years

(McConnell, 1997).

Small projects set certain restrictions for the use of predefined software

development methods. These issues are discussed in the chapter 2.6.

2.3 What is an agile method?

Agile software development methods have risen as a reaction against the

“traditional”, heavyweight methods that are sometimes seen as strictly

regulated, bureaucratic and slow. In this study the word “traditional” refers to the

older, commonly used methods like the waterfall model. These traditional

software development methods are also often criticized to be far from the real

ways software engineers use to efficiently develop software.

In February 2001 a group of software consultants and practitioners gathered

together and signed the Agile Software Development Manifesto, which started a

whole new movement in the software development industry (Beck et al., 2001):

“Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan” (Beck et al., 2001)

 11

The manifesto summarizes quite well the core elements of agile software

development; the goal is to create working software, not to fulfill the predefined

development process. Agile development should also make it easy to react to

changes, which are very common in current project environments. The power of

communication and collaboration is also highly valued asset within the agile

methods.

Many of the agile methods also contain similar practices; constantly updated

requirement lists, incremental and iterative development and small, frequent

deliveries.

On one hand, agile methods are gaining support among software developers all

over the world; the ability to create software without heavy, bureaucratic

processes or thorough documentation easily draws attention within the ranks of

the developers and project managers. On the other hand agile methods have

raised much debate and criticism; is it really possible to create good quality

software with such light processes?

Real life experience has shown that it is possible (see chapters 2.4.1 and 2.4.2)

at least in some project environments. Success of an agile project depends on

many factors, for example are the project team members and customers

accepting the new ways of working, is the organization supporting the change

and is the selected agile method suitable for the problem or the project

environment.

2.4 Why agile methods?

Agile methods are relatively new software development methods, so there are

relatively small amount of publications about the real world performance of agile

methods, though the amount is increasing as the interest towards agile methods

is continuing. Few of those released papers are introduced in this chapter.

 12

2.4.1 Agile method survey

Donald J. Reifer executed a survey in 2002, in which 14 firms answered to a list

of questions about their usage of agile techniques. In the Table 1 these firms

are introduced by their industry. In the State of progress column Pilot means a

first project to prove that agile method works, Pathfinder is used to determine

how to integrate the agile method to the company processes and Production

means an agile method is used in a normal production project. (Reifer, 2002b)

Table 1 Characteristics of the responded firms in the survey (Reifer, 2002b)

Industry Firms
using

agile
methods

Projects Year first
tried

State of
progress

Average
size

(KESLOC)

Aerospace 1 1 2001 Pathfinder 23

Computer 2 3 2000 Pilot 32

Consultants 1 2 2000 Pilot 25

E-business 5 15 2000 Production 33

Researchers 1 1 2000 Pilot 12

Scientific 0 0 2000 Pilot N/A

Software 2 4 2000 Production 25

Telecom 2 5 2000 Production 42

Total 14 31 Average 31,8

In the survey, seven of the 14 organizations had collected hard cost,

productivity and quality data. Five of these organizations had benchmarks from

the earlier projects, so they could compare the performance of the usage of

agile methods to the traditional methods. According to this data: (Reifer, 2002b)

 13

- Productivity was improved 15 to 20 percent, compared to published

industry benchmarks (Reifer, 2002a).

- Costs were reduced by 5 to 7 percent on average, as compared to

published industry benchmarks (Reifer, 2002a).

- Time-to-market was improved by 25 to 50 percent compared to previous

projects in the participating firms.

- Quality of the software remained on par with their earlier projects, if

compared by the defect rates.

Although these results were positive, it has to be taken into account that these

were small, low-risk projects staffed by selected teams under controlled

situations. The results might scale neither to larger projects nor higher-risk

situations.

2.4.2 Piloting XP in four mission critical projects

In 2004, Jerry Drobka, David Noltz and Rekha Raghu from Motorola reported in

the IEE Software magazine about piloting Extreme Programming (XP) on four

mission-critical projects on 18-month period. (Drobka et al., 2004)

They used a slightly tailored XP process to fit their company needs, because

few aspects of the process did not work with the type of the product they were

developing. They also hired an experienced outside XP consultant as their

coach to implement the XP process in the projects. (Drobka et al., 2004)

The results in this study were very positive. The productivity was measured

using the formula (total KAELOC) / (total staff effort). KAELOC means

thousand (kilo) assembler-equivalent lines of code.

The increase in productivity ranged from 162% to 385% when compared to the

waterfall model. Also the work enjoyment seemed to increase, as 85% of the

developers enjoyed using XP, 68% stated that using XP increased their job

 14

enjoyment and 79% would choose to work with XP again if possible. (Drobka et

al., 2004)

The test coverage of the projects was also very high, unit test coverage ranged

from 73% to 95%. Quality of the code was measured by formula: (total number

of defects found in the system testing) / (total KAELOC). This kind of metric was

used because similar data was also available for previous projects so

comparison was possible. The increase in quality when using XP ranged from

51% to 74%. Majority of the developers (80%) were also more confident in the

design and code they generated while pair programming than when they work

alone. (Drobka et al., 2004)

Overall the XP pilot projects were seen as a positive experience though a few

challenges with certain practices such as pair programming were encountered.

The pilot program convinced the writers that it is possible to use agile process

such as XP to develop complex mission-critical systems with long life cycles

and that the productivity gains that XP provides make it an attractive

development process for most object oriented projects. (Drobka et al., 2004)

2.5 Features of small software projects

Classifying a software project as a small project is not an easy task. It depends

on many environmental factors, like the size of the organization; if the company

has 10 000 employees, a project of “just” 50 people can appear small to them.

Also the complexity of the project can be one criterion. A complex domain

usually requires a more detailed project structure and experienced staff. (Russ

and McGregor, 2000)

A detailed description for a small software project could not be found from the

literature within the timeframe of this project, so here are listed some criteria for

a small software project:

 15

- Very few or just one developer

- Low amount of interaction between personnel

- Short time frame

- Low complexity

- Small amount of work to do

These characteristics, especially the small amount of developers, bring

challenges when predefined development methods are used in a small project

because process models are usually designed for a bigger project organization.

2.6 Methods and small projects

Small software projects have some restrictions when using software

development methods. Most of the restrictions relate to the small amount of

developers or project personnel. For example, it is not possible to implement a

practice that involves a developer reviewing the work done by other developer,

if there is only on developer in the project.

Also the time frame of the project may be restrictive; some practices may take

so much time to implement that they do not provide enough value in short

projects. Some practices can be also aimed to cope with the complexity of the

domain or problem, but some small projects may include only low level of

complexity.

In this thesis some of the most common agile methods are analyzed based on

how they would fit in a small software project. The methods are inspected

practice by practice, if they contain something that is not possible to implement

in a small project, or if some practices are useless or too heavy in small

projects.

 16

3 AGILE SOFTWARE DEVELOPMENT METHODS

In this chapter there will be introduced some of the most common agile methods

which are later analyzed if they could possibly be applied to even the smallest

software projects.

3.1 Extreme Programming (XP)

Extreme Programming methodology arose from the problems caused by the

long development cycles of the traditional development models (Beck, 1999). It

started as “simply an opportunity to get the job done” (Haungs, 2001) with

practices that had been found effective in software development in the earlier

decades. After many successful trials in practice the XP methodology was

“theorized” on the key principles and practices. The individual practices used in

XP are not new as such, but they have been collected and lined up to function

with each other in a new way, so that they can be seen to form a new

methodology. The term “Extreme” comes from taking these common sense

practices into extreme levels. (Abrahamsson, 2002)

3.1.1 XP Process

The Extreme Programming process consists of six separate phases, as

illustrated in figure 1. Here the phases are introduced according to

Abrahamsson (2002).

 17

Figure 1 Extreme Programming process (Abrahamsson, 2002)

In the Exploration phase, so called User stories are created. The customers

write out things they would like to see in the first release of the software on a

story card. Each story card contains one feature. Simultaneously the project

team familiarizes itself with the tools and technologies needed in the project.

The Exploration phase takes from few weeks to few months, depending on how

well the programmers know the technology.

In the Planning phase the User stories will be arranged to priority order and the

contents of the first small release is agreed. Programmers make effort

estimates for the stories and the schedule is agreed upon those estimates. The

planning phase takes a couple of days and the first release usually takes no

more than two months.

The ‘Iterations to release’ phase consists of several iterations of the system to

create the first release. The first iteration creates the basic architecture of the

system by implementing the user stories that enforce building the structure for

CONTINUOUS REVIEW

Effort
estimates

FEEDBACK

TEST COLLECTIVE
CODEBASE

SMALL
RELEASE

UPDATED
RELEASE

FINAL
RELEASE

CONTINUOUS
INTEGRATION CUSTOMER

APPROVAL

PR
O

D
U

C
TI

O
N

IZ
IN

G

PH
A

SE

M
A

IN
TE

N
A

N
C

E
PH

A
SE

D
EA

TH

PH
A

SE

DESING

PLANNING
FOR

TESTING

TESTING

PLANNING
PHASE

ITERATIONS TO RELEASE
PHASE

EXPLORATION
PHASE

STORIES

STORIES

FOR NEXT

ITERATION

Priorities

PAIR PROGRAMMING

ANALYSIS

REGULAR
UPDATES

 18

the whole system. The customer decides the stories to be implemented in the

iteration. The functional tests created by the customer are run at the end of

every iteration cycle. After the last iteration, the system is ready for production.

In the Productionizing phase additional testing and checking is conducted

before the system is released to the customer. New changes can still be found

at this phase and it has to be decided if they are included in the current release.

The implementation iterations for the changes may need to be shortened from

three weeks to one week. If some changes are postponed, they are

documented for later implementation e.g. in the maintenance phase.

In the Maintenance phase, after the first release is productionized and taken

into use, the XP project has to keep the system running whilst implementing

new features. This requires an effort for the customer support tasks also, which

may decelerate the implementation pace of the new features. The Maintenance

phase may require incorporating new people into the project team and changing

the team structure.

The Death phase is reached when the customer does not have any stories to

be implemented, i.e. the customer is satisfied with the system. In the Death

phase the necessary documentation of the system is finally written as no more

changes to the architecture, design or code are made. Death may also occur if

the project is terminated for some reason; e.g. the system cannot deliver the

desired outcome or it becomes too expensive for further development.

3.1.2 Practices

Extreme Programming is a collection of known and already existing practices.

These are introduced in the following according to Abrahamsson (2002).

 19

The Planning game includes close interaction between the customer and the

programmers. Programmers make the effort estimates for the customer stories

and the customer then decides the scope and timing of the releases.

XP also features small and short releases. A simple system is

“productionized” rapidly; at least once in every 2 to 3 months. After the first

release new versions are released even daily or at least monthly.

In XP, the system is defined by a metaphor or a set of metaphors, created

together with the programmers and the customer. It guides the whole

development by describing how the system works.

The emphasis in design is to get the simplest possible solution that is

implementable at that moment. Any unnecessary complexity or extra code is

removed immediately.

Software development is test driven; unit tests for the code are written before

the code and are run continuously. Customer writes the functional tests.

The developed system gets often refactored; e.g. duplicate code is removed,

communication is improved, code is simplified and made more flexible.

Pair programming is also distinctive for XP. In pair programming two

programmers write code on one computer. They also analyze, design and write

tests together (Beck, 2005).

In XP, the codes are collectively owned, i.e. anyone can change any part of

the code at any time.

New pieces of code are integrated to the code-base as soon as they are

ready. The system is built many times a day, and all tests are run. Tests have

to be passed for the changes in the code to be accepted.

 20

Working week is 40 hours in maximum. Two overtime weeks in a row is

handled as a problem to be solved.

Extreme programming states that customer has to be present in the same

premises than the developers. Customer has to be available full-time for the

team.

Coding standards are in use and followed by the programmers.

Communication through the code is encouraged.

The XP team has its own set of rules that are followed. The rules can also be

changed any time, but the changes have to be agreed upon and their impacts

assessed.

3.1.3 Using XP

Kent Beck suggests that when an organization has already been developing

software with its own practices, XP should be applied gradually by adding XP

practices that meet organizations goals and values. (Beck, 2005)

In the latest edition of the book (Beck, 2005), Beck also distinguishes primary

XP practices and corollary practices. The adaptation to XP practices should be

started with the primary practices such as weekly planning cycle, test first, pair

programming etc. After the primary practices are in use properly and without

any trouble, corollary practices like daily deployment and real customer

involvement can be applied also. The reason for this is that for example

deploying the system daily into customer use straight away, without lowering

the defect rate first with pair programming, automated tests and daily

integration, could cause a disaster. (Beck, 2005)

 21

3.2 Scrum

The term ‘scrum’ originates from a term used in the game of rugby, where it

means “getting an out-of-play ball back in to the game” with teamwork

(Schwaber, 2002). Scrum has been developed for managing the systems

development process; it does not define any specific software development

techniques. It concentrates on how the team members should function to

produce the system flexibly in a constantly changing environment.

(Abrahamsson, 2002)

Scrum aims to enhance the used practices in the organization by using frequent

management activities; for example short frequent meetings with the

development team. The purpose of these activities is to find any deficiencies in

the development process or practices as fast as possible. (Abrahamsson, 2002)

3.2.1 Scrum Process

The Scrum process is presented briefly, according to the definitions of

Schwaber and Beedle (2002) and Abrahamsson et al. (2002).

The process contains of three phases: pre-game, development and post-game

(see figure 2)

 22

Figure 2 Scrum process diagram (Abrahamsson 2002)

The pre-game phase is a preliminary phase, which contains two sub-phases;

planning and architecture / high level design.

In planning phase the system is defined and a Product Backlog list which

contains all the currently known requirements is created. The requirements are

prioritized and effort estimates are generated. The items in Backlog are

constantly updated to be more accurate and new ones can be added. Planning

also includes defining the project team, tools and other resources, risk

assessment and management, training needs and verification management

approval. The updated Backlog is reviewed by the Scrum Team(s) at every

sprint phase to gain their commitment for the sprint.

In the architecture phase the high level design and architecture is done based

on the current items in the Backlog list. After this, a design review meeting is

held and decisions of the implementation are done on the basis of this review.

Also preliminary plans for the contents of the releases are prepared.

No more requirements

Effort
estimates

Analysis
Design

Evolution
Testing
Delivery

Product
Backlog

List
Planning

Regular
updates

DEVELOPMENT PHASEPREGAME PHASE

Priorities

Sprint

Backlog
List

System

testing

Integration

Final release

Documentation

Final release

Standard
Conventions
Technology
Resources
Architecture

High level design

Architecture

SPRINT

Requirements

POSTGAME PHASE

 23

The development phase is called the agile part of the Scrum process. It is

treated as a “black box”, where unpredictable changes are expected. This

means that all the environmental and technical variables (e.g. time frame,

quality, requirements and resources) are identified, observed and controlled

through Scrum practices during the Sprints. Usually these matters are taken

into consideration only at the very beginning of the project, but Scrum aims to

control them constantly to be able to flexibly adapt to these changes.

In the development phase the system is developed in Sprints. Sprints are

iterative cycles which consist of the traditional phases of software development:

requirements, analysis, design, evolution and delivery. Also the architecture and

the design of the system evolve during the Sprints. One Sprint is targeted to last

from one week to one month. One system development project can contain for

example three to eight Sprints, before the system is ready for distribution.

The post-game phase contains the closure of the release. This phase is

entered when it is agreed that all the environmental variables (for example

requirements) have been completed. In this phase, no more items can be

added or old ones modified. This phase also includes tasks like integration,

system testing and documentation. The system is now ready for distribution.

Scrum identifies six different roles with different responsibilities. These roles are

Scrum Master, Product Owner, Scrum Team, Customer, User and

Management. The most important roles are presented in the table 2 according

to Schwaber and Beedle (Schwaber, 2002).

 24

Table 2 Roles and responsibilities

Role Responsibility

Scrum Master Takes care that the project is carried through according to

the Scrum rules and practices. Is responsible for removing

any impediments from the process.

Product Owner Officially responsible for the project, managing, controlling

and making visible the Product Backlog list. Is selected by

the Scrum Master, the customer and the management.

Makes all the final decisions related to the Product Backlog,

participates in creating the effort estimates and turns the

backlog items into features to implement.

Scrum Team The project team, which has the authority to organize itself

and make the necessary decisions to achieve the goals of

each sprint. Is involved in the effort estimation, creating the

Sprint Backlog, reviewing the Product Backlog list and

suggesting the impediments that need to be removed from

the project.

Customer Participates in the tasks related to Product Backlog items.

Management Responsible of the final decisions along with the charters,

standards and conventions to be followed in the project.

Participates also in setting the goals and requirements for

the project, in gauging the progress, in selecting the Product

owner and reducing the backlog with the Scrum Master.

3.2.2 Practices

Scrum does not require or provide any specific software development practices.

Instead, it requires certain management practices and tools to be used to avoid

the chaos caused by unpredictability and complexity. (Schwaber 1995) In this

chapter the most important practices of Scrum are presented as described by

 25

Abrahamson et al. (Abramson 2002) and Schwaber and Beedle (Schwaber

2002)

Product Backlog contains everything that is needed in the final product based

on the current knowledge. It defines all the work that has to be done in the

project. It is a prioritized and constantly updated list of requirements for the

system. Product Backlog can contain items such as features, functions, bug

fixes, defects, requested enhancements and technology upgrades. This practice

includes all the tasks regarding the backlog from creating the Product Backlog

list to updating and controlling it consistently. The Product Owner is responsible

of maintaining the Product Backlog.

In Scrum, effort estimation is also an iterative process, where initial effort

estimates are defined more accurately when more information is available. The

Product Owner and the Scrum Team(s) are together responsible for the effort

estimation.

Sprint is the procedure of adapting to the changing environmental variables

(such as requirements, time frame, resources, knowledge or technology). The

Scrum team organizes itself to produce a new executable product increment in

a Sprint that takes time from one week to one month.

A Sprint Planning meeting is a two-phase meeting organized by the Scrum

Master. In the first phase of a Sprint Planning meeting the customers, users,

management, product owner and Scrum team decide the goals and the

functionality of the next sprint. In the second phase the Scrum Master and the

Scrum Team focus on how the product increment is implemented during the

Sprint.

Sprint Backlog is a list of Product Backlog items that are selected to be

implemented in the next sprint. The items are selected by the Scrum Team with

the Scrum Master and the Product Owner in the Sprint Planning meeting, on the

 26

basis of the prioritized items and goals set for the Sprint. Unlike the Product

Backlog, the Sprint Backlog is stable until the Sprint is completed. When all the

items in the Sprint Backlog are completed, a new iteration of the system is

delivered.

Daily Scrum meetings are held to keep track of the progress of the Scrum

Team continuously and to solve any problems that have arisen during the

Sprint. All the members of the Scrum team must attend to this meeting. Also

other people can attend, for example to check the progress of the sprint, but

they must remain silent; only members of the Scrum team and the Scrum

Master are allowed to speak. Any deficiencies or impediments in the

development process are looked for, identified and removed to improve the

process. The meeting lasts approximately 15 minutes, and every member of the

Scrum Team tells what he/she has done since the previous meeting, what

problems he/she may have encountered and what he/she will do before the

next scrum meeting. Scrum meetings are arranged by the Scrum Master.

Sprint Review meeting is held on the last day of the Sprint. There the results

of the Sprint are presented to the management, customers, users and the

Product Owner by the Scrum team and the Scrum Master. The participants

evaluate the results and make decisions what to do next. The meeting can bring

up new items to the Product Backlog and even change the direction of the

system being built.

 27

3.3 Feature Driven Development

Feature Driven Development (FDD) is an agile method for developing systems,

but it does not cover the whole development process; it focuses on the design

and implementation phases (Palmer and Felsing, 2002). However, it has been

designed to work with the other activities of the process. FDD emphasizes

quality aspects throughout the process, frequent and tangible deliveries and

accurate monitoring of the progress of the project. FDD also claims to be

suitable for delivering critical systems, unlike some other agile methods.

(Abrahamsson, 2002)

3.3.1 Process

FDD process consists of five sequential processes; Develop an overall model,

Build a feature list, Plan by feature, Design by feature and Build by feature

(figure 3). The iterative design and build by feature part supports agile

development by quickly adapting to late changes in requirements or business

needs. (Abrahamsson, 2002)

Figure 3 Sequential processes of FDD

When the Development of an overall model begins, the domain experts are

already aware of the scope, context and requirements of the system to be built.

Develop

an overall

model

Build a

features

list

Plan by

feature

Design

by

feature

Build by

feature

 28

Also use cases and functional specifications are likely to exist at this phase. The

domain experts present a so called “walkthrough” for the team members and

the chief architect

The domain is then further divided into separate domain areas. A more detailed

walkthrough is held for each of the domain areas by the domain members. After

the walkthroughs, development teams in the domain areas work in small groups

to create object models for the domain areas. Simultaneously, an overall model

for the whole system is being developed.

In the build a features list process, the walkthroughs, object models and

existing requirements form a good basis for building a features list for the

system. The list consists of client valued functions that need to be included in

the system. The list is divided into so called major feature sets, which include

functions for a certain domain area. Major feature sets are also divided into

feature sets, which represent features within that domain area. The features list

is reviewed by the users and the sponsors of the system to assure its

completeness and validity.

During the plan by feature process a high level plan for the system is created,

where the feature sets are sequenced according to their priority and

dependencies. Feature sets are also assigned to Chief programmers who are

responsible of the smaller teams implementing those features. Furthermore the

classes that were identified in the “develop an overall model” process are

assigned to individual developers. Those developers become “class owners” for

the classes. Also schedule and biggest milestones can be set for the project at

this point.

Design by feature and build by feature are iterative processes, during which

the features are designed and implemented. The length of iteration should be

from few days to a maximum of two weeks. A small group of features is

selected from the feature set(s) and feature teams are formed to develop the

 29

selected features. There can be multiple feature teams developing their features

concurrently. The iterative process includes such tasks as design, design

inspection, coding, unit testing, code inspection and integration. If the iteration is

successful, the completed tasks are promoted to the main build and a new

iteration begins with a new set of features taken from a feature set.

Roles and their responsibilities in FDD method are described in table 3.

Table 3 FDD Roles and responsibities

Role Responsibility

Project Manager Administrative and financial leader of the project. Protects

the team from outside distractions and provides appropriate

working conditions. Has the ultimate say on the scope,

schedule and staffing of the project.

Chief Architect Responsible of the overall design of the system. Runs also

the workshop design sessions with the team. Makes also

the final decisions on all design issues. This role can be

divided into the roles of domain architect and technical

architect if necessary.

Development
Manager

Leads daily development activities and solves any conflicts

that may rise within the team. Handles also the resourcing

problems. Tasks of this role can be combined with the roles

of the chief architect or project manager.

Chief
Programmer

An experienced developer, who participates in the

requirement analysis and design of the projects. Is

responsible for leading small teams in the analysis, design

and development processes of the new features. Selects

also the features to be developed in the next iteration from

the feature sets and identifies the classes and class owners

that are needed in the feature team during that iteration.

 30

Class Owner Works under the guidance of the chief programmer,

designing, coding, testing and documenting the new

features. Is responsible for the development of the class

that he has been assigned to own. Class owners form the

feature teams.

Domain Expert A user, a client, a sponsor, a business analyst or a mixture

of these. Possesses the knowledge of the real world

domain, e.g. how the software requirements should perform.

They pass the knowledge to the developers to ensure that a

competent system is delivered.

Domain
Manager

Leader of the domain experts. Resolves the arguments that

may rise within the ranks of the experts.

Release
Manager

Controls the progress of the process by reviewing the

progress reports from the chief programmers and by having

short progress meetings with them. Reports the progress to

the project manager.

Language
Lawyer /
Language Guru

A team member who possesses a thorough knowledge of a

certain programming language or technology. Particularly

important role when the development team has to work with

some technology that is new to them.

Build Engineer Responsible for setting up, maintaining and running the

build process. Manages the version control system and

publishes documentation for it.

Toolsmith Builds tools for the development, test and data conversion

teams in the project. May also be working with setting up

and maintaining of the databases and Web sites for the

project.

System
Administrator

Configures, manages and troubleshoots the servers,

workstations and development and testing environments

that are needed in the project. May also take part in the

productionization of the system being developed.

 31

Tester Verifies that the system will meet the requirements of the

customer. Testers may be working in an independent team

or as a part of the project team.

Deployer Converts the existing to a format required by the new

system. Participates also in deploying the system. May be

working in an independent team or as a part of the project

team.

Technical Writer Prepares the user documentation. May form an independent

team or work as part of the project team.

3.3.2 Practices

FDD includes a set of so called “best practices” which are not new as such but

developers of the method claim that the specific mix of the practices makes

them unique.

Domain object modeling is a technique to explore and explain the domain of

the problem. The outcome is a framework where the features can be added.

Developing by feature is a practice where development and progress tracking

is done with a list of small functionally decomposed and client-valued functions.

Individual Class Ownership means that each class in the system has a

predefined owner who is responsible for the consistency, performance and

conceptual integrity of the class.

Feature teams are small, dynamically formed implementation teams.

Inspections are used to catch the defects in for example designs or codes.

 32

Regular builds are in use in the FDD project. The practice ensures that there is

always a running, demonstrable system available. Regular builds form a

baseline on top of which the new features can be added.

Configuration management is used to enable identification and historical

tracking of the different versions of the source code and other files.

Progress reporting is done by reporting completed work to all necessary

organizational levels.

FDD states that all the above practices have to be in use to comply with the

FDD development rules, although the project team can adapt them according to

their level of experience.

 33

3.4 Dynamic Systems Development Method

Dynamic Systems Development Method (DSDM) was developed in the United

Kingdom in the mid-1990s. It can be seen as an extension of rapid application

development practices. The DSDM features the best-supported training and

documentation of any Agile software development ecosystems, at least in

Europe. (Highsmith, 2002)

DSDM is a framework based on the best practices and lessons learnt gathered

by DSDM Consortium members since 1990. The DSDM Consortium is a non-

profit, vendor independent organisation which owns and administers the

framework. (DSDM, 2007).

DSDM states that more projects fail because of people issues than technology.

The framework focuses to help people to work effectively together to achieve

the business goals. It is also a technologically independent framework so it can

be used in any business or technical environment without tying the users of the

method to a particular vendor. (DSDM, 2007)

One fundamental assumption of DSDM is also that nothing is built perfectly first

time, but that 80% of the complete solution can be produced in 20% of the time

that it would take to build the complete solution. (DSDM, 2007)

DSDM also assumes that all previous steps can be revisited later on, because

of the iterative nature of DSDM, so the current step need be completed only

enough to move to the next step. It can be finished in a later iteration. The

reasoning for this is, that the business requirements are likely to change

anyway as the understanding increases, so the further work would have been

wasted. (DSDM, 2007)

 34

The framework is based on nine Underlying Principles that are said to enable

projects to deliver what the organisation needs when it needs it. The principles

are introduced in the chapter 3.4.3 (DSDM, 2007)

3.4.1 DSDM process

In this chapter, DSDM process is introduced according to DSDM Consortium

(DSDM, 2007)

DSDM process consists of five phases: Feasibility Study, Business Study,

Functional Model Iteration, Design and Build Iteration and Implementation.

It is not mandatory to have the project lifecycle exactly as described in figure 4;

actually it is not expected to meet the requirements of a particular project.

Figure 4 The lifecycle of a DSDM project (DSDM, 2007)

Agree Plan

Review Prototype

Implementation

User approval &
user guidelines

Review
business

Train
Users

Identify Design
Prototypes

Create Design
Prototype

Agree
Plan

Review
Design

Prototype

Identify
Functional
Prototype

Create
Functional
Prototype

Functional Model
Iteration

Implementation

Design & build
iteration

Business Study

Feasibility

 35

In the Feasibility Study phase it is first assessed if DSDM is at all the right

approach for the project. If DSDM will be used, the problem is defined, the costs

of the project evaluated and also the technical feasibility of delivering a system

to solve the business problem. The duration of this phase should be relatively

short.

Like the Feasibility Study, the Business Study phase it is as short as possible

while achieving sufficient understanding of the business requirements and

technical constraints to safely move forward.

Each of the requirements identified in the Feasibility or Business study phases

has to be prioritized and recorded in the Prioritized Requirements List so that

the requirements with the highest priority get implemented first.

During the Functional Model Iteration phase the business based high-level

processing and information requirements identified during the Business Study

are analyzed further and a Functional Model is created. Functional Model

consist of software parts, such as functional prototypes which are later

integrated to the system if possible, class models and data models and also

supporting documentation for the prototypes and a textual description of some

system aspects e.g. system start-up and closedown. Functional Model Iteration

is the first iterative phase in the process. Continuous testing is also done during

this phase.

The Design and Build Iteration is the phase where the system is engineered

in iterations to a sufficient quality level to be handled to the users. The main

output from this phase is a Tested System, which does not necessarily have to

fulfil all the requirements, but the requirements agreed for the current increment.

Testing is done throughout the phase, so it is not treated as a separate activity.

In the Implementation phase the system is transferred from the development

environment to the real operational environment. This phase includes training

 36

the users, completing the user documentation and creating the Increment

Review Document, which summarizes how well the project achieved the short

term objectives and requirements.

The Post-Project phase includes maintaining the system, which in DSDM can

be seen as continuing development. Maintenance can be handled with the

same method as the project itself, e.g. starting again from the beginning and

going quickly pass the Business Study phase.

3.4.2 DSDM Roles

DSDM specifies lots of different roles and responsibilities for the project. The

main concept in DSDM is that a developer should always work with a user in

pair. This helps creating strong user/developer partnership. The team can also

include two users and one or two developers. (DSDM, 2007)

Other roles in a DSDM project include Executive sponsor, Visionary,

Ambassador User, Advisor User, Project Manager, Technical Co-ordinator,

Team Leader, Tester and a Scribe. More special roles are Facilitator and

various specialist roles. (DSDM, 2007)

3.4.3 DSDM Principles

DSDM sets its foundations in the nine principles. These principles are explained

in the following by the DSDM Consortium (DSDM, 2007):

1. Active user involvement is imperative. DSDM is a very user-centred

method. If the real users are not closely involved in the development, delays will

occur because the developers will make decisions without consulting the users,

and the users may feel that the solution is imposed by the developers and/or

 37

their management. In DSDM the users are active participants of the

development process.

2. DSDM teams must be empowered to make decisions. DSDM teams

consist of both developers and users, and they must be empowered to make

decisions as the requirements refine and get possibly changed. It must be

realized that certain levels of functionality, usability etc. are acceptable without

the frequent consultation of the higher management.

3. The focus is on frequent delivery of products. The work of a DSDM team

focused on delivering products in an agreed period of time. These are not

complete solutions, but just iterations towards the full product. This causes the

team to select the best possible solution that can be achieved in the given

timeframe. The periods of time are kept short so it is easy to decide which

activities are needed to make the product.

4. Fitness for business purpose is the essential criterion for acceptance of

deliverables. DSDM focuses to deliver the necessary functionality in the given

time. The system can be more rigorously engineered later on, if agreed so.

Traditionally the focus has been on fulfilling the documented requirements, even

though the preset requirements are often inaccurate.

5. Iterative and incremental development is necessary to converge on an
accurate business solution. DSDM allows systems to grow incrementally, so

developers can fully use the feedback from the users. Also partial solutions can

be delivered to satisfy immediate business needs.

When rework is not explicitly recognized in the development lifecycle, it may be

difficult to return to a previous step because of the controlling procedures.

Rework is built into the DSDM process so it is easy to go back to a previous

step, which speeds up the implementation.

 38

6. All changes during development are reversible. To control the evolution of

all products (documents, software, test products, etc.), everything must be in a

known state at all times. So the configuration management must be all-

pervasive. Backtracking is a feature of DSDM. The ability to reverse changes is

limited to current increment.

7. Requirements are baselined at a high level. This means “freezing” and

agreeing the purpose and scope of the system at a level that allows

investigating of what the requirements mean. More detailed requirement

baselines can be introduced later in the development, but the scope should not

change significantly.

8. Testing is integrated throughout the lifecycle. Testing is not treated as a

separate activity, but is integrated to the development process. During the

development the system is reviewed and tested by developers and users

incrementally to validate that the development is going to the right direction,

both technologically and business wise. In the early phases of DSDM the

business needs and priorities are validated and later testing focus shifts towards

verifying that the system functions correctly and efficiently.

9. A collaborative and co-operative approach between all stakeholders is
essential. In DSDM the low level requirements are not necessarily fixed when

the developers start their work. This requires that the short term direction for the

project must be decided quickly without recourse, so all stakeholders have to

have a collaborative and co-operative attitude.

 39

4 AGILE METHODS IN SMALL PROJECTS

In the previous chapters some agile methods were presented that could

possibly be applied to small software projects. In the following, these agile

methods are analyzed in order to see how well they would fit into a project

which consists of:

- a “black box” project with predefined requirements and time frame

- an offsite customer organization

- a project manager

- a developer

The major asset missing from this kind of project arrangement is the team

dynamics and synergy of multiple developers, users and testers working in the

same team, which is something most of the agile methods aim to harness.

Also the user participation is usually emphasized when using agile methods. In

the case project of the thesis the customer is offsite and cannot participate so

much to the development work. But the communication is possible using

telephone and email and should help in the questions that will arise during the

project. The project arrangement is not the most common for agile methods, so

it will be interesting to see how the agile methods perform.

The following agile methods are analyzed in this chapter by finding practices or

parts of the process that cannot and those that can be used in very small

projects. All the possible practices will be listed in the end of the chapter.

 40

4.1 Extreme Programming (XP)

4.1.1 Pros

The basic process structure (life cycle) of XP looks like it could adapt also to

very small projects also. However, when having only one developer, pair

programming and continuous review practices have to be dropped out.

Applicable practices include planning game, small/short releases, Metaphor,

simple design, test driven development, refactoring, continuous integration, 40

hours week, coding standards and just rules.

4.1.2 Cons

Pair programming, that is very important practice in XP, cannot be applied to

one-developer-projects. Customer collaboration is also not as strong as XP

suggests when the customer is working offsite.

Collective ownership of code cannot be harnessed with one developer and also

design/code reviews require an extra/external resource. Testing of the software

is also done by the same person that is writing the code; all the possible

problems may not be found because the developer knows how the application

works.

 41

4.2 Scrum

4.2.1 Pros

Basic process structure of Scrum could also fit small projects; creating small

working releases with sprints. In the case project, the requirements are

gathered; they could be prioritized to form the initial product backlog list

Daily scrum meetings with the scrum master (project manager) could be useful.

30 day release cycles would also fit in the case project

4.2.2 Cons

Customer is offsite and tight customer collaboration is not possible. Also

improved team dynamics enabled by Scrum are not available in one-developer-

project.

4.3 Feature Driven Development

4.3.1 Pros

Basic structure of the FDD process is applicable to small projects; plan by

feature, design by feature and build by feature can be applied. Individual code

ownership is also easy to arrange, when there is only one developer. Regular

builds of the software are also possible.

4.3.2 Cons

Certain parts of the process seem to be targeted to the bigger projects; Domain

object modeling is done with group of domain experts and presentations are

held for the development teams. FDD describes also many different roles and

 42

responsibilities for project personnel. Design and code inspections require

another developer or external reviewer.

4.4 Dynamic Systems Development Method

4.4.1 Pros

Although the DSDM process is a bit heavier than for example XP and Scrum

with lots of pre-studies etc. all the phases of the process seem possible to be

used even in very small projects with some tailoring. Case project is also time

constrained as DSDM requires.

4.4.2 Cons

DSDM requires and is based on active user involvement which is not possible in

the case project, and DSDM also defines many different roles and

responsibilities for project team members.

4.5 Practices suitable for small projects

In the table 4 are listed all the agile practices that were found feasible in a small

project described in the beginning of the chapter. Descriptions of the practices

can be found from the chapter 3.

 43

Table 4 Feasible agile practices

Method Practice Comments and limitations

XP Planning game Requires interaction with the

customer.

 Small/short releases No known limitations.

 Metaphor Requires interaction with the

customer.

 Simple design No known limitations.

 Test driven development Customer writes functional tests.

 Refactoring Refactoring must be done by the

same person that wrote the code;

not so effective.

 Continuous integration May require too much time to

implement if time frame is limited,

but otherwise a good practice.

 40 hours week No known limitations.

 Coding standards Will provide more value in a bigger

team, but also useful in a one-man-

project.

 Just rules Will provide more value in a bigger

team.

Scrum Product Backlog Can be used in the small projects

also, as long there is a Product

Owner managing the Product

Backlog.

 Effort Estimation No known limitations.

 Sprint No known limitations.

 Sprint Planning meeting Usually requires interaction with the

customer.

 Sprint Backlog No known limitations.

 44

 Daily Scrum meeting No known limitations.

 Sprint Review meeting Can be used, as long there is a

customer and users involved in the

meetings.

FDD Domain Object Modeling The developer must act as a domain

expert and build the overall model.

 Developing by Feature No known limitations.

 Individual Class Ownership Suits a small project very well.

 Regular Builds Requires some effort to implement,

but can be a valuable practice also

with one developer. Can include

running all module and unit tests

and building all the components.

 Configuration Management Enables tracking of changes made

to the code or documents.

 Progress Reporting No known limitations.

DSDM The focus is on frequent

delivery of products

Is used for getting accurate

feedback from users, requires

testing efforts from the customer.

 Fitness for business purpose

is the essential criterion for

acceptance of deliverables

No known limitations.

 Iterative and incremental

development is necessary to

converge on an accurate

business solution

Makes possible to react to changing

requirements.

 All changes during

development are reversible

Requires configuration

management.

 Requirements are baselined

at high level

No known limitations.

 45

 Testing is integrated

throughout the lifecycle

No known limitations.

 A collaborative and co-

operative approach between

all stakeholders is essential

No known limitations.

 46

5 CASE: FURTHER DEVELOPMENT PROJECT OF

BLUETOOTH PROXY APPLICATION

5.1 Introduction

This project was taken as an example of a really small development project,

consisting of only four stakeholders: client, project manager, developer and the

part time technical aid person.

The aim of the thesis is to study how agile methods or certain parts of them can

be used in small projects and do they give any advantages over traditional

software development processes. Also the disadvantages or problems will be

documented.

5.2 Symbian and S60 mobile operating systems

The software application in the project will be developed for the S60 platform

which is briefly presented in this chapter. Symbian OS is an operating system

designed for mobile devices, such as mobile phones. Symbian was formed from

Psion Software in 1998 by Ericsson, Motorola and Nokia to provide a common

standard and to enable mass marketing of the new generation of wireless

devices.

From the very beginning, the goal of Symbian was to create an operating

system and software platform for advanced mobile phones; so called

smartphones (figure 5). EPOC operating system developed by Psion formed the

foundations of Symbian OS. EPOC was a modular 32-bit operating system with

multitasking capabilities and it was designed for mobile devices. (Digia, 2003)

 47

Symbian develops and licenses the Symbian OS containing the base

(microkernel and device drivers), middleware (system servers), a large set of

communication protocols and a test user interface. Licensees develop their own

user interfaces to suit their needs, and they can also license their user interface

and application set on top of the Symbian OS to the other Symbian licensees –

as Nokia has done with the S60 platform. (Digia, 2003)

Figure 5 Modern S60 mobile device, Nokia N95 (Nokia, 2007)

S60, formerly known as Series 60, is a smartphone platform that runs on

Symbian OS. S60 can be seen as a user interface for Symbian OS. S60 is

primarily developed by Nokia and licensed to other manufacturers, such as

Lenovo, LG, Panasonic and Samsung. Symbian and S60 allows user to install

new applications to the device, so the system can be expanded after the

purchase of the device. (Digia, 2003)

5.3 Bluetooth Proxy for S60

The software which is to be developed further is the Bluetooth Proxy

application, which can be used instead of GPRS, Universal Mobile

Telecommunications System (UMTS) etc. over the air data transmission

techniques to establish TCP connections to a computer. It is used in for

 48

example testing Java environment implementation in a S60 enabled mobile

phone. The reasons to use Bluetooth Proxy instead of GPRS are that it does

not use the mobile network, so it does not cost anything and it is also faster

than GPRS or UMTS.

The Bluetooth Proxy currently transfers the normal TCP and Hypertext Transfer

Protocol (HTTP) traffic over Bluetooth to PC-side proxy, which then relays the

traffic to the application running on the same PC or to the internet, as illustrated

in the figure 6.

Figure 6 Functionality of the Bluetooth Proxy

The application consists of two main components, the phone side proxy

application and the PC-side proxy application. PC-side proxy includes the router

program that handles the normal TCP traffic and a separate freeware HTTP

proxy, TinyHTTPProxy developed by Suzuki Hisao.

BTProxy

Client 1:
localhost:9090

(direct connection)

Client 2:
localhost:8080

(via HTTP proxy)

Smartphone PC

9090

Local test harness

9090 8080

PCSideProxy

HTTPProxy

8000

PAN / Intranet

google.com

Internet

Bluetooth

www80

Ext. test harness

 9090 8080

x.y.z.n

8080 8000

(via HTTPproxy)
www.google.com:80

Client x:

 49

The phone side proxy application is written in Symbian C++, and the PC-side

proxy in Python. Python was chosen for its simplicity and portability.

5.4 The project

5.4.1 Requirements included in the further development project

The project includes the following high level requirements, which are also

represented in the figure 7.

- two way TCP-connection support; connections can be created from the

PC-side also

- UDP-protocol support

BTProxy

Smartphone PC

Local test harness

5556

PCSideProxy

PAN

Bluetooth

xxxx xxxx

Client

xxxx

5555

xxxx5555 5556

5556

xxxx

UDP UDP

xxxx

TCP

TCP

 50

Figure 7 New features of the Bluetooth Proxy

Implementing the new features in the BT-proxy –protocol means also that the

protocol handling has to be redesigned to support a new protocol (UDP) and

new TCP commands like opening and closing TCP connections.

5.4.2 Stakeholders

Following roles and persons are involved in this project (table 5).

Table 5 Stakeholders in the project

Role Responsibilities

Customer Requirements and time frame

Project

manager

Customer relations, requirement and time frame

negotiations, project monitoring and decisions.

Developer
Time table, design, implementation, testing, documentation

and deliveries.

Technical Aid
Provides technical support in design and development

issues (previous developer of BT-proxy)

5.5 Agile practices for the project

All the agile methods described earlier define at least one team of developers

by default, so some tailoring is required to fit them into a one-man-project. It

would have been challenging to implement all the possible agile practices

presented in the chapter 4.5, so some qualification was necessary.

Here are described the arguments why certain agile methods and practices

were chosen for this project. Practices were analyzed and selected from the list

of possible practices for small projects, described in table 6.

 51

Scrum method was chosen to be the overall method for the project and tailored

to fit in the project. Scrum was chosen because it contains so many practices

that can be implemented even without a big project team and does not have

any practices that are clearly designed for bigger projects.

Chosen practices of Scrum include:

- High level design and planning according to the predefined requirements

- Product backlog list

- Separate Sprint cycles for the separate features, so that implementation

will be done feature by feature. When a feature is ready, it will be

delivered to the customer immediately.

- Daily scrum meetings with the project manager

Also the test driven development practice from XP was chosen to be used. This

involves writing the tests before the actual implementation and filling in the

implementation so that the tests will pass. This would suit the distributed

environment of the Bluetooth Proxy application, because debugging an

application which communicates with its counterpart over Bluetooth can be a

tedious task.

Extreme Programming in whole was considered also, but the lack of pair

programming possibilities, collective code ownership and the fact that XP

suggests very strong customer collaboration seemed bigger downsides than the

missing team dynamics of the scrum method.

Feature driven development contains many practices that are targeted to bigger

projects; domain object modeling that is suggested to be done by domain

experts and many roles and responsibilities, so it was not chosen for this

project. DSDM was not selected because it requires tight collaboration with the

users, which was not possible in the case project and also specifies lots of

different roles and responsibilities.

 52

Table 6 Agile practices for the project

Method Practice Notes

Scrum High level design and planning

according to the predefined

requirements

 Product backlog list

 Separate Sprint cycles for the separate

features, so that implementation will be

done feature by feature. When a feature

is ready, it will be delivered to the

customer immediately.

 Daily scrum meetings With project manager

and developer

XP Test driven development Tests are written before

the actual

implementation.

 40 hours week To keep working hours

sensible and productivity

high.

 Coding standards Company has coding

conventions for S60

programming.

FDD Configuration Management

 53

5.6 Project execution

Project started with a high level design phase for the features. A preliminary

product backlog list was created from the list of tasks that was compiled earlier

by the previous developer and the customer. This phase included asking lots of

questions from the previous developer who also reviewed some of the main

design ideas. The initial schedule for the project which is presented in table 7

was agreed in the high level design phase also.

Table 7 Initial schedule for the project

Week Task

wk 45: Requirement gathering

 Set up the development environment

 Preliminary timetable and planning

wk 46 Refactoring of the protocol module

 o design

 o update unit tests

 o implementation

wk 47 Refactoring of the protocol module

 o implementation

 o run tests

 Two way TCP traffic

 o design

wk 48 Two way TCP traffic, phone side

 o design

 o unit tests

 o implementation

 54

wk49 Two way TCP traffic, PC-Side

 o design

 o implementation

 o testing

 Testing with real customer environment

wk 50 UDP support

 o design

 UDP support, phone side

 o design

 o update unit tests

wk 51 UDP support, phone side

 o update unit tests

 o Implementation

 UDP-support, PC-side

 o design

 o update unit tests

 o Implementation

wk 52 UDP-support

 o Implementation

 Testing with real customer environment

 Update documentation

 - design docs

 - user guide

Daily scrum meetings were held regularly every day at 9 o’clock in the morning.

Participants included the developer and the project manager. These meetings

felt a bit stressing at first, but after realizing that they really help to solve

possible problems right away, they started to feel like a good idea.

 55

After the high level design phase was completed and a rough idea of the high

level architecture was documented, a more detailed design was created for the

first feature. The first of the two features was adding support for the two-way

TCP connections.

Next phase was to implement the two-way TCP connections –feature. The

implementation started with writing unit and module test cases for the new

features, and adding the real implementation to make these tests pass. This

proved to be a very effective practice in this project, because the project

included communication over Bluetooth and following a predefined protocol in

this communication. Some problems were encountered when certain classes

seemed impossible to test, and the implementation was done without testing it

first. This caused some errors to slip in to the implementation and the errors

were corrected with time consuming debugging between the phone and the PC

counterpart. Later on it turned out that testing those classes would have been

possible. The debugging caused the project to slip from the initial schedule for

about a week, and the next tasks were moved ahead accordingly.

After the first feature was finalized the first delivery was made to the customer.

The customer started testing the new feature right away and some errors were

corrected. The communication with the customer was conducted via email and

telephone.

While the customer started experimenting with the new feature, the design and

implementation of the second feature, UDP protocol support, was initiated. A

more detailed design was done for the feature and the implementation was

done the same way as with the first feature; by writing the test cases first and

then filling in the implementation.

During the second implementation phase, some problems were encountered

when testing the implementation with the customer test environment. The

 56

configuration of the test environment was difficult because there was no prior

experience on that particular case within the company.

Finally the delivery of the second and last feature of the project was made,

about two weeks behind the initial schedule.

5.7 Project success

The main objective, the additional functionality for the BT Proxy software was

accomplished and the software was taken into use by the customer. The

implementation itself did not go as smoothly as it was thought in the beginning

and caused the project to slip a few weeks from the predefined timeframe. This

was a setback, and the reasons for the delay are analyzed in the following.

New features were first tried to test with customers test suites. This left too

much room for configuration errors with the test suites. Also the insufficient

amount of knowledge about the functionality of the test cases was a problem.

These problems combined caused some delays in the schedule of the project. It

would have been a better choice to make particular test applications that test

two way TCP connection and UDP connections. They were actually done after

the trials with the test suites.

Not enough design before implementation in certain cases. This caused for

example a situation, where in the middle of UDP implementation it was realized

that it is not possible to listen to a UDP port and send UDP packets to the same

port; doing so causes a packet to loop within the proxy application.

“Test first” practice was not followed at all times. In a few cases, wrong

assumptions were made that it is not possible to test the certain functionality

with unit tests. Also the test applications for the connection testing which were

implemented on the later part of the project would have helped a lot if they had

 57

been available during the implementation of the UDP and two way TCP

features.

However, these problems can be seen more of as normal software

development mishaps rather than caused by the use of agile practices.

5.8 Agile practices in action

Here are described how each of the applied agile practices succeeded.

5.8.1 High level design and planning

In this case project the high level planning was not so difficult, because the

requirements had been gathered before the project started. The requirements

were added to the product backlog list, and the list was prioritized to see what

should be done first. Also high level architecture for the new features was

drawn. Some of the design ideas were also reviewed by the previous developer

of the Bluetooth Proxy application.

The high level design and planning phase itself worked fine in the project and

proved to be effective. After the project had been finished, it became obvious

that more time spent in the design and planning saves time in the

implementation phase. Good examples of this were the problems in the UDP

implementation phase, described in the chapter 5.7.

5.8.2 Product backlog list

All the predefined and new requirements were gathered to the product backlog

list during the project and were also updated when new information became

available. This appeared as a worthy practice, because the changes in the

 58

requirements were immediately visible to the developer and the project

manager. No problems were encountered with this practice.

5.8.3 Separate Sprint cycles for the separate features

This practice worked well in many aspects; the development was consistent,

customer was happy to receive a working product relatively fast when the first

feature was ready and the customer could also start testing the new feature

right away. It was also easier to focus on the implementation, when the goal for

the sprint was fixed.

One thought that came up after the project was that could shorter sprint cycles

have helped when designing and implementing a feature? The implementation

of a feature could have been divided into two separate sprint cycles. However,

with that approach it would have been hard to deliver an executable product

increment after the sprint execution.

5.8.4 Daily scrum meetings

Daily Scrum meetings were held with the developer and project manager every

morning at 9 o’clock. They kept the project manager on track with the project

and the problems that arose during the sprints could be solved quickly.

The only downside was that the developer felt the constant monitoring a bit

uncomfortable at first but it eased up when he realized that it really helped in

solving the problems. Overall, it was found to be a very effective way to

enhance communication in the project.

 59

5.8.5 Test driven development

The practice of writing the module and unit tests before the actual

implementation proved to be really effective especially in the distributed

environment of the case project. A set of tests could be run for the application

after altering the code to assure that the change had not broken something in

the application.

As reported in the chapter 5.7, the more accurate following of this practice

would have saved time during the implementation. Overall, this was seen as a

very good practice in the case project, and did not cause any trouble.

5.8.6 40 hours week

The working hours for the developer were kept strictly within the limit of 40 hour

per week, no overtime was allowed. A few times, when the initial effort

estimates were exceeded, there was an urge to do longer days. This would

have most likely caused decrease in productivity on the next day.

This seems to be a valuable practice, although it was not tested what would

have happened if the developer had done for example 60 hours per week.

5.8.7 Coding standards

Coding standards and company coding conventions were in use during the

whole project. This made it easy for the developer to write code that other

people in the company can read easily and also to free the developer from

wondering how to write comments, how to indent blocks and so on, so it

actually saves time from the implementation phase.

 60

5.8.8 Configuration Management

The initial version of the software that was to be developed further in the case

project, was stored in a configuration management system already, so the same

system was used in the case project.

Because there was only one developer, the benefits of the configuration

management included keeping the source code safe and backed up, change

history for the files and the possibility to label different configurations of the

source code, for example releases.

If there would have been more developers involved in the project, one benefit of

the configuration management would have been also preventing two or more

people changing same files and overwriting each others changes.

 61

6 DISCUSSION

After the agile practices for the project were chosen and the implementation

part of the project began, some questions and improvement ideas emerged.

These issues, recommendations for the future and further research possibilities

are discussed in this chapter.

First thing that came up was that it would have been possible to follow almost

the whole Scrum process in the project, although it would have required more

effort to break away from the usual project practices.

The length of the sprints was also one issue which was considered; shorter

sprints would maybe made it easier to plan tasks for the sprint, but on the

downside, it would not been possible to deliver an executable product increment

after each sprint. The use of shorter sprints could be tested in the future

projects.

A tool for following the project progress and the state of the product backlog, for

example free of charge ScrumWorks Basic (Danube, 2007), would have been a

good addition to the project. It helps also when updating the effort estimates

and planning the Sprints.

The results of this study were positive and the developer found the use of the

agile method and practices enjoyable, which corresponds to the results

published in the agile method surveys introduced in the chapter 2.4. To get

broader scale results of the use of agile methods and practices in small

projects, further research work, as presented in the chapter 6.2, has to be

conducted.

 62

6.1 Recommendations for the future

On the basis of this study, it can be stated that agile practices can be useful

also in the small, and even “black box”-projects. Because this study consisted of

only one project, it is not possible to say agile methods and practices provide

good results in every small project, but it was a good start.

Although the study was made with just one project, the results were very

promising and agile methods and practices should be tested and taken into use

in other small projects also to get some broader scale results. Performance data

should be gathered from the projects, also from the non-agile ones, to make

further analysis and comparison with other methods.

SYSOPENDIGIA Finland Ltd has a dedicated software development process,

which can be used as a base for the development process in new projects. The

improvement of the company’s software development process is a continuous

task and the results of this study should be used also as material for this

development work.

6.2 Further research possibilities

Comparing the performance of the software development methods is always

hard, because the projects are unique. Every time a project is executed, there

are some variables that differ from the previous projects. However, there are

some values that could be measured.

To obtain more information about the performance of the agile methods and

practices in small projects, some statistical data about for example productivity

and quality aspects should be gathered and the sample size of the projects

should be significant.

 63

Performance data should be gathered also from the projects that are using

traditional software development methods to be able to compare them with the

agile projects.

Also using other possible agile methods in the small projects could be

experimented. It would be possible to try all the methods described in chapter 4,

with some customization and tailoring.

 64

7 CONCLUSIONS

The aim of this thesis was to test if agile methods and practices would bring

value even to the smallest software projects, which consist of only one

developer. According to the findings in the case project, agile practices were

useful in the one developer project. However, because the study contained only

one development project, broader scale results cannot be stated yet.

It was found that the benefits of agile methods in small projects depend on the

project environment, on the selection of agile practices and their suitability to

the problem at hand and also on the attitude of the team members and

customer towards agile methods. But with appropriate tailoring agile practices

can be useful. Some very useful agile practices were found that can be applied

to a project, regardless of the size of the project. These practices were listed

and documented in the table 4.

In this test run there was no obvious possibility to test how a traditional software

development method like the waterfall model would have performed against the

agile method and practices, but the goal was to test how the agile practices

affect the work in a project like this, not so much to compare them with the

traditional methods.

According to this study also agile methods and practices should be taken into

the consideration when choosing the right software development method or

practices for a small, even one-developer project.

 65

REFERENCES

 (Abrahamsson, 2002)

Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.

2002. Agile software development methods. VTT

Publications 478. ISBN 951-38-6010-8

(Beck et al., 2001) Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,

Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,

Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.,

Mellor, S., Schwaber, K., Sutherland, J. and Thomas, D.

2001. Manifesto for Agile Software Development.

http://agilemanifesto.org, checked 6.5.2007.

(Beck, 1999) Beck, K. 1999. Embracing Change With Extreme

Programming. IEEE Computer, volume 32, issue 10, Oct.

1999: pages 70-77.

(Beck, 2005) Beck, K., Andres, C. 2005 Extreme Programming

Explained: Embrace Change – Second Edition. Pearson

Education, Addison-Wesley. ISBN 0-321-27865-8

(Danube, 2007) Danube Technologies, Inc., 2007. ScrumWorks Basic.

http://danube.com/scrumworks, checked 8.5.2007.

(Digia, 2003) Digia Inc., 2003. Programming for the Series 60 platform

and Symbian OS. John Wiley & Sons. ISBN 0-470-84948-

7.

(Drobka et al., 2004) Drobka, J., Noltz, D., Raghu, R. 2004. Piloting XP on Four

Mission-Critical Projects. IEEE Software, December 2004.

Pages 70-75. 0740-7459/04.

 66

(DSDM, 2007) DSDM Consortium, 2002-2007. DSDM Public Version

4.2. www.dsdm.org, checked 14.4.2007.

(Fitzgerald et al., 2002)

 Fitzgerald, B., Russo, N. L., Stolterman, E. 2002.

Information systems development: Methods in action. MC

Graw-Hill Education, ISBN: 007709836 6.

(Highsmith, 2002) Highsmith, J., 2002. What Is Agile Software

Development? STSC Crosstalk, The Journal of Defense

Software Engineering, October 2002 issue.

(Haungs, 2001) Haungs, J., 2001. Pair programming on the C3 project.

Computer, Vol. 34, Issue 2. IEEE Computer Society.

Pages 118-119.

(Marciniak, 2002) Marciniak, J. J..,2002. Encyclopedia of software

engineering, Vol 2. Wiley, New York.

(McConnell, 1997) McConnell, S. 1997. Software Project Survival Guide,

Microsoft Press. ISBN: 1-57231-621-7.

(Nokia, 2007) Nokia, 2007. Press photo archive, www.nokia.com,

checked 30.4.2007.

(Palmer and Felsing, 2002)

Palmer, S. R., Felsing, J. M. 2002. A Practical Guide to

Feature-Driven Development, Upper Saddle River, NJ,

Prentice-Hall.

(Reifer, 2002a) Reifer, D. J. 2002. Let the numbers do the talking. STSC

Crosstalk, March 2002. Pages 4-8. 0740-7459/02.

 67

(Reifer, 2002b) Reifer, D. J. 2002. How Good Are Agile Methods? IEEE

Software, July/August 2002. Pages 16-18. 0740-7459/02.

(Russ and McGregor, 2000)

 Russ, M. L., McGregor, J. D. 2000. A Software

Development Process for Small Projects. IEEE Software,

September/October 2000. Pages 96-101. 0740-7459/00.

(Schwaber, 2002) Schwaber, K., Beedle, M. 2002. Agile Software

Development With Scrum. Upper Saddle River, NJ,

Prentice-Hall.

