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Tämä työ luo katsauksen ajallisiin ja stokastisiin ohjelmien luotettavuus malleihin 

sekä tutkii muutamia malleja käytännössä. Työn teoriaosuus sisältää ohjelmien 

luotettavuuden kuvauksessa ja arvioinnissa käytetyt keskeiset määritelmät ja met-

riikan sekä varsinaiset mallien kuvaukset. Työssä esitellään kaksi ohjelmien luo-

tettavuusryhmää. Ensimmäinen ryhmä ovat riskiin perustuvat mallit. Toinen ryh-

mä käsittää virheiden ”kylvöön” ja merkitsevyyteen perustuvat mallit. 

 

Työn empiirinen osa sisältää kokeiden kuvaukset ja tulokset. Kokeet suoritettiin 

käyttämällä kolmea ensimmäiseen ryhmään kuuluvaa mallia: Jelinski-Moranda 

mallia, ensimmäistä geometrista mallia sekä yksinkertaista eksponenttimallia. Ko-

keiden tarkoituksena oli tutkia, kuinka syötetyn datan distribuutio vaikuttaa malli-

en toimivuuteen sekä kuinka herkkiä  mallit ovat syötetyn datan määrän muutok-

sille. Jelinski-Moranda malli osoittautui herkimmäksi distribuutiolle konvergaatio-

ongelmien vuoksi, ensimmäinen geometrinen malli herkimmäksi datan määrän 

muutoksille.   
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ABSTRACT 

 

Written by Evgenya Salganik 

Title Using Time and Stochastic Models for Software Reliability 

Forecasting and Analysis 

Department Department of Information Technology 

Year 2000 

Place Lappeenranta, Finland 

 

Diploma Thesis, Lappeenranta University of Technology, 78 pages, 12 figures, 10 

tables and 3 appendices. Examiner Associate Professor Jan Voracek. 

 

Keywords: software reliability,  reliability models, software testing 

 

The aim of the present study was to provide a survey of time and stochastic soft-

ware reliability models, and also to investigate some of these models in practice. 

The theoretical part of the study contains basic definitions and software metrics, 

used to describe and evaluate software reliability, and the description of the mo-

dels as such. The paper provides a survey of two software reliability model 

groups: risk function based models – the first group, and error ”seeding” and tag-

ging and input data structure based models – the second group.  

 

The practical part contains the description and results of experiments, which were 

done using three models of the first group – Jelinsky-Moranda model, the first 

geometrical model and the simple exponential model. The purpose of the experi-

ments was to investigate, how the input data distribution affects the model’s func-

tionality, and also how sensitive the models are to the input data size changes.   

Jelinsky-Moranda model turned out to be the most critical to the distribution be-

cause of convergence problems, and the first geometrical model – the most sensi-

tive to the data size changes. 
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LIST OF SYMBOLS AND ABBREVIATIONS 

 

a A risk function parameter, used in the simple exponen-

tial model 

A  A convergence criteria in Jelinsky-Moranda model 

b Another risk function parameter, used in the simple 

exponential model 

B  Number of errors, remaining in the program 

B̂   An estimation of B 

C A parameter, used for matrix form representation of the 

simple exponential model 

CMi Number of modules with number of corrections less 

than 10 in the i-th version 

CORi Total number of corrections, made in the modules in 

the i-th version 

d  A scaling coefficient in Scheidewind model risk func-

tion 

id   Error detection rate in Schneidewind model 

D  a risk function parameter, used by some of the models 

D1 A designation, used to calculate variance in Shick-

Wolverton model  

E  Software input data space 

Ei   A subset of software input data space 

f A function, used to simplify calculations in Jelinsky-

Moranda model¨ 

if   Number of errors, detected on the i-th interval 
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F(Ei) Required output of the program, obtained with an input 

from Ei 

F’(Ei) Actual output of the program, obtained with an input 

from EI 

=
=
M

i
iM fF

1

 Total number of errors, detected within M testing in-

tervals 

1−sF  Summarized number of errors, detected from the first 

to (s-1)-th intervals 

g A function, used to simplify calculations in Jelinsky-

Moranda model 

i  Error detection interval’s number 

K  A scaling coefficient, used by some of the models 

K̂   An estimation of K 

L  The likelihood function 

m  Number of “seeded” detected errors in Mills model 

2,1m   Number of detected errors in Rudner model 

M  Total number of detected errors in Mills model 

Mi  Number of modules in the i-th version 

MCMi Multiple correction modules in the i-th version 

n  Total number of error detection intervals 

in   number of errors, corrected on the i-th interval 

N  Number of operators in Beisin model 

N(t)  The number of errors, detected by moment t 

NMi System growth (number of new modules) in the i-th 

version 

OCMi Number of old corrected modules in the i-th version 
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P Probability of the fact, that no error will occur on a 

time interval 

q  Density of fault probability 

Q Probability of at least one software fault during a time 

interval 

( )mQ̂  Statistical estimation of software fault probability 

during m runs 

r  Software purity level in the first geometrical model 

R  Risk function on a time interval 

is  The number of successful tests in La Padula growth 

model 

t  Time 

avt  Average time of software working before a fault 

occurrence 

it   i-th error detection moment  

MT   Total duration of testing 

v  Number of “natural” detected errors in Mills model 

iX   Length of i-th error detection interval 

1ˆ
+nX   An estimation of (n+1)-th interval between errors 

 

β   A parameter of Schneidewind model risk function 

δ   Acceptable Q̂  estimation error of  fault probability Q  

i∆   Acceptable limit of software output deviation 

iϕ   Binary indicator of a program fault 

φ  A scaling constant coefficient, used in the third geo-

metrical model 
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CM Number of modules with number of corrections less 

than 10 

COR  Total number of corrections, made in the modules 

M  Number of modules in the i-th version 

MCM  Multiple correction modules 

NM  System growth (number of new modules)  

OCM  Number of old corrected modules 

OS/360  Operation system 360 (a product of IBM company) 
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1. INTRODUCTION 

 

Software programs typically contain errors. In the most general way a program 

error can be defined as a situation when a function, included into the program’s 

specification, is not actually performed by the program. Software reliability can be 

defined (also generally) as the ability of software to perform predefined functions 

under predefined conditions, and using predefined hardware resources. The extent 

of software reliability can be estimated using some of software metrics. Software 

reliability models are aimed to predict the values of these metrics, and thus give  a 

possibility to evaluate reliability on various stages of software testing. For exam-

ple, if a significant number of errors has already been detected and corrected, it 

may cause the impression, that the testing process is nearly over, i.e. just very few 

errors are left in the software. However, it may be far from being true, and reliabil-

ity models may help to clarify this situation.  

 

The purpose of this work is to provide a survey of time and stochastic software 

reliability models and investigate some of the models in practice. The paper pre-

sents two groups of models: the first group - risk function based models and the 

second group - error “seeding” and tagging and input data structure based models. 

Models of the first group have both time and stochastic elements, and models of 

the second group are purely stochastic.  

 

In the practical part only models of the first group will be investigated, because 

models of the second group are much more difficult to test. They cannot be tested 

on generated data, but require real software projects. Models of the first group, 

which will be tested, are Jelinski-Moranda model, the first geometrical model and 
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the simple exponential model. They were selected as typical representatives of this 

group. Testing will be done on two kinds of data – real data, taken from literature 

sources (published results of software testing), and also generated data. The latter 

will be used not only because of the lack of real data, but it also because it allows 

to investigate the influence of input data distribution on the models’ functionality. 

Another aspect, investigated in the practical part, will be sensitivity of various 

software reliability models to the changes in the input data size (and content, cor-

respondingly, because if the size is changed, the content does not remain the 

same).  

 

In section 2 the software metrics, which can be used to evaluate and analyze soft-

ware reliability, are listed and described. Section 3 provides a survey of the first 

group models, based on the risk function estimation, and section 4 – of the second 

group modes, based on error “seeding” and tagging, and also on input space struc-

ture. In section 5 results, obtained in the practical part, are presented and dis-

cussed. Section 6 contains the conclusion of this document.   
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2. BASIC SOFTWARE RELIABILITY METRICS 
 

In this section basic concepts of software reliability are listed and defined, and 

these concepts will be used further in the paper. So the concepts are: software er-

ror; number of errors, remaining in the program (i.e. errors, passed to the user); 

probability of software faultless work; error detection intensity (or risk function); a 

run of the program; a fault of the program. 

 

It is not so easy to give a strict definition of software error, because this definition, 

in fact, is a function of the program itself, because it depends of the program’s 

functionality, expected by the user. For this reason instead of a strict definition 

only the indications will be listed, which help to identify software errors: 

��occurrence of a wrong operand or operator during programming; 

��incorrespondence of the functions, performed by software, to its specification, 

as well as an error in the specification, requiring some corrections to the soft-

ware; 

��calculation errors (e.g. overflowing etc.); 

��corrections to software, improving its user interface; 

This list can be considered open, because it can be continued by developers as 

they get more and more experience in reliability improvement. It is incorrect to 

consider as an error, for example, creation of codes, replacing a program part, 

which is missing just temporarily, or program recompilation, caused by correc-

tions in other modules.  

 

The number of errors, remaining in the program, is the potential number of errors, 

which can be detected on later stages of the life cycle, after corrections, made on 

the current life cycle stage. This number of errors in the program (later denoted by 

B), is one of the most important software reliability metrics.  
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Let P(t) be the probability of the fact, that no error will occur on [0,t] interval. 

Then probability of at least one fault during this period is Q(t) = 1 – P(t), and the 

density of fault probability can be presented as  

( ) ( ) .dttdPdtdQtq −==  

Let us consider risk function R(t), as conditional probability density of software 

fault at time moment t, under condition, that there were no faults before this mo-

ment: 

( ) ( )[ ] ( ) ( )[ ] ( )  .1,lim
0>−∆
−=∆∆+=

t
dttdPtPttPtttQtR                     (2.1) 

The risk function has dimension [1/time], and is very useful for basic 

distributions’ classification. Distributions with increasing risk function correspond 

to the situations, when staticstical reliability characteristics get worse with time.  

And vise versa, distributions with decreasing risk function correspond to the 

opposite situation, when reliability is improving with time, as a result of error 

detection and correction process.  

 

It is clear from equation (2.1), that ( ) ( ) ( )dttRtPtdP −= , and, consequently,  

( ) ( ) ,ln
0

−=
t

dttRtP  

or 

 ( ) ( ) .exp
0

�
�

�
�
�
−=
t

dttRtP                                                                  (2.2) 

Equation (2.2) is one of the most important in reliability theory.  It will be shown 

further, that various ways of risk function’s behaviour in time yield various 

possibilities for building software reliability models. Error detection intensity (risk 

function), together with software faultless work probability and the number of 
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errors, remaining in the program, are the most important softwre reliability 

indicators.  

 

A program run is a set of actions, including: inputting of one of the possible 

combinations Ei of  the input data space E ( EEi ∈ ); execution of the program, 

which ends either with obtaining a result F(Ei) or with a fault.  

 

For some of the sets Ei of the input data, its output result’s (F’(Ei)) deviation from 

the required output F(Ei) lies within an acceptable limit i∆ , i.e. the following 

inequation holds: 

( ) ( ) ,' iii EFEF ∆≤−                                                                   ( )3.2  

and for all the other Ei, forming a subset EEi ⊂ , the program execution does not 

provide an acceptable result, i.e.  

 ( ) ( ) ,' iii EFEF ∆>−                                                                  ( )4.2  

Cases, described by inequality (2.4), are also called program faults.  

 

Let us consider a binary variable iϕ : 

 �
�

=
otherwise. 1,

holds; (2.3) if,0
iϕ  

Then the statistical estimation of software fault probability during m runs will be: 

 ( ) .1ˆ
1=

=
m

i
im

mQ ϕ                                                                           ( )5.2  

Let us denote as δ acceptable Q̂  estimation error of  fault probability Q . Then the 

required number of program runs m must be proportional to the value of ( ) 12 −δQ , 

where Q is the given software fault probability. It means, that if, for example, the 

relative error of estimation (2.5) is required to be 1.0%10 ==δ , and the required 
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(desired) value of 310−=Q , then the number of independent runs m should be not 

less, than 523 101010 =⋅≈m , which is, of course, not so easy to realize in 

practice. A solution to this problem can be applying the procedure of sequential 

Wald analysis (its examples are given in section 4.2). 

 

And finally one more reliability metric, which will be used in this paper – average 

time of software working before a fault occurrence:  

 ( )
∞

=
0

.dttPtav  
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3. RISK FUNCTION BASED MODELS 

 

3.1. Jelinski-Moranda model. 

 

This is one of the first and simplest models of classical type, which was a basis for 

further development in this direction. The model was used in rather important and 

noticeable software projects, such as Apollo program (some of its modules) [2].  

Jelinski-Moranda model is based on the following assumptions: 

1. The intensity of error detection R(t) is proportional to the current number of 

errors in the program, i.e. initial number of errors minus number of already de-

tected errors. 

2. All errors occur with equal probability, and are independent on each other. 

3. All errors are considered as equally serious. 

4. Time, remaining until the next program fault, is distributed exponentially. 

5. Software working environment is close to its real working environment. 

6. Error correction is done without making any new errors. 

7. R(t) = const between any two adjacent moments of error detection.  

 

According to these assumptions, the risk function can be represented as: 

( )[ ].1−−= iBKR  

In this formula t is a random moment between (i-1)-th and i-th error detection; K 

is an unknown scaling coefficient; B is initial (also unknown) number of errors, 

remaining in the software.  
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Thus, if during a time interval of length t (i-1) errors were detected, it means, that  

B-(i-1) errors still remain undetected in the software.  

Assuming, that   

nittX iii ,1,1 =−= −  

and using assumption 7, and also equation (1.2),  we can conclude, that all Xi have 

exponential distribution:  

( ) ( )[ ]{ }ii XiBKXP 1exp −−−=  

and fault probability density equals, correspondingly,  

( ) ( )[ ] ( )[ ]{ }ii XiBKiBKXq 1exp1 −−−−−=  

Then likelihood function (according to assumption 2) is 

( ) ( )∏
=

=
n

i
in XqXXL

1
1 ,..,                                                      ( )1.3  

or,  in terms of likelihood function logarithm, we have:  

( ) ( )[ ]
=

+−−+−=
n

i
in XiBKiBKXXL

1
1 .)1()1(ln,..,ln      (3.2) 

Likelihood function’s maximum can be found using the following conditions: 

 

.0
1

1ln
1

=�
��

� −
+−

=
∂

∂
=

n

i
iKX

iBB
L

                            (3.3) 

;0)1(1ln
1

=���

� +−−=
∂
∂

=

n

i
iXiB

KK
L

                                         (3.4) 

From equation (3.3) we can get K maximum likelihood estimation: 

( ) ( )
.

1ˆ1ˆ
1 11 = ==

−+
=

+−
= n

i

n

i
ii

n

i
i iXXB

n

XiB

nK                                  (3.5) 

Substituting equation (3.5) into (3.4), we find a non-linear equation for calculation 

of B̂  – maximum likelihood estimation for B: 
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( )=

= =

=

−+
=

+−

n

i
n

i

n

i
ii

n

i
i

iXXB

Xn

iB1

1 1

1

1ˆ1ˆ
1

                                                  (3.6) 

Authors of papers [3,4] recommend to solve equation (3.6) using numerical meth-

ods, for example Newton-Rafson method. It is possible to simplify this equation 

before looking for a solution, if we write it as: 

( ) ( ),,1ˆ1ˆ ABgBf nn +=+                                             (3.7) 

where 

 ( ) ( )
=

=

==+=
−

=
−

=
n

i
n

i
i

n

i
i

nn

X

iX
ABm

Am
nAmg

im
mf

1

1

1;1ˆ;,;1
 

Since only integer B̂ values really make sense, functions from equation (3.7) can 

be considered only for integer arguments. Moreover, 1+≥ nm , because n errors 

are already detected.  

 

Thus an estimation of B can be obtained by calculating of initial values of func-

tions fn(m) and gn(m) for m=n+1, n+2…, and analyzing the difference fn(m)-

gn(m). Both f and g functions are monotonically decreasing on this m value range. 

This is obvious for gn(m), and fn(m) can be easily calculated by a recursive equa-

tion: 

( ) .11)(1 �
�
�

� −
−

−=+
mnm

mfmf nn   

Since both right and left part of equation (3.7) are similarly monotonic, it causes a 

problem of unique solution existence, and solution existence in general. In paper 

[5] it is shown, that a finite solution B̂  in the area of nB ≥ˆ  exists if, and only if 

holds  
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( ) n

X

i

Xi
n

i
i

n

i

n

i
i

=

=

= >
−

−
1

1

1

1

)1(
                                                                  (3.8) 

Otherwise the only maximum likelihood estimation will be .ˆ ∞=B Condition (3.8) 

can be rewritten in a more convenient way: 

( ) ,2/1+> nA                                                                              (3.9) 

where A is the same as in equation (3.7). It is important to notice, that A is an in-

tegral characteristic of n observations of software errors, and represents (in statis-

tical sense) the set of intervals Xi between errors.  

 

Another problem of equation (3.7) solution finding is related to instability of the 

estimation, because of possible multimodality of the likelihood function. If A is 

large enough, then the obtained estimation approaches n – the number of errors, 

detected by the current time. This makes an optimistic impression, that testing 

process is nearly completed, whereas the real B may be much larger than n. In pa-

per [6]  a solution to this problem is offered.  

 

Let us consider an example of Jelinski-Moranda model usage, applying it to ex-

perimental data, obtained in software testing process, described in paper [7]. Dur-

ing 250 days 26 errors were detected; intervals between error detection are pre-

sented in table 3.1. For the given data we have n=26 and 

==

===
26

1

26

1
.032.17,4258,250

i
i

i
i AiXX  Condition (3.9) holds, and thus maxi-

mum likelihood equation has a unique solution. Table 3.2 presents initial values of 

functions,  comprising (3.7), for argument range .1+≥ nm   
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The best suitable solution of (3.7) is m=32 (semi bold line in the table gives 

minimum absolute value of the difference, which must be as close to zero as pos-

sible) , i.e. B̂ = m-1=31. From equation (3.5) we have K̂  = 0.007.   

 

Average time 1
ˆ

+nX  (time remaining until (n+1)-th error detection) is inverted es-

timated intensity for the previous error: 

( ) ( ).ˆˆ
1

ˆ
1

1 nBKtz
X

n
n −

==+  

In this example, daysX
est

2927 = , and total time remaining until testing will be 

concluded, is 
= =

===
31

27

5

1

.3261
ˆ
1ˆ

i i
ik days

iK
Xt  Although the obtained estimation 

of B is a bit overoptimistic (paper [7] contains information, that 8 more errors 

were detected on software testing and exploiting stages),  detection of the first five 

errors took totally 290 days, which is rather near kt   value, predicted by the model.  

 

Table 3.1. Intervals between error detection cases.   

 

i Xi i Xi i Xi i Xi

1 9 8 8 15 4 21 11

2 12 9 5 16 1 22 33

3 11 10 7 17 3 23 7 

4 4 11 1 18 3 24 91

5 7 12 6 19 6 25 2 

6 2 13 1 20 1 26 1 

7 5 14 9     
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Table 3.2. Function values 
 

m ( )mf26  ( )Amg ,26 ( ) ( )Amgmf ,2626 −

27 3.854 2.608 1.246 

28 2.891 2.371 0.520 

29 2.427 2.172 0.255 

30 2.128 2.005 0.123 

31 1.912 1.861 0.051 

32 1.744 1.737 0.007 

33 1.608 1.628 -0.020 

34 1.496 1.532 -0.036 

 

3.2 Simple exponential model. 

 

The main difference of this model from Jelinski-Moranda model, discussed in pre-

vious section, is in not using assumption 7, and thus allowing the risk function not  

to be constant between error detection moments any more, so that it can change. 

Let N(t) be the number of errors, detected by moment t, and let the risk function 

be proportional to the number of errors, remaining in our software after moment t.  

( ) ( )( )tNBKtR −=  

Let us differentiate both parts of this equation with respect to time: 

( ) ( ) .
t
tNK

t
tR

∂
∂−=

∂
∂  

Taking into account, that ( ) ttN ∂∂ /   is R(t) (number of errors, detected per every 

time unit), we obtain a differential equation for R(t) 
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( ) ( ) .0=+
∂
∂ tKR
t
tR                                                                       (3.10) 

If we consider initial conditions N(0)=0, R(0)=KB, then the solution for (3.10) 

will be  

( ) { }KtKBtR −= exp                                                                    (3.11) 

Let us use the following designation: a = ln (KB); b = - K. Using these designa-

tions, equation (3.11) can be presented in form 

( ) { }.exp btatR +=  

Taking logarithm of the both parts of this equation, and using discrete t values, we 

obtain a set of equations: 

( ) .,1;ln nibtatR ii =+=                                                             (3.12) 

Equation set (3.12) can be presented in matrix form 

 AX = C, 

where  

( )
( )

( )

.

ln

ln
ln

;;

1

1
1

1

2

1

2

1

�

�
�
�
�

�

�

=

�
�

�
�

�
=

�
�
�
�
�

�
�
�
�

�

�

=

tR

tR
tR

C

b
a

X

t

t
t

A

n

Λ

ΛΛ

 

According to the least square method, we can transfer these equations to the nor-

mal form: 

,CAAXA TT =                                                                             (3.13) 

where T means matrix transposing.  

 

The solution to (3.13) will is 
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[ ] ,1 CAAAX TT −=  

or, in more detail, 
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1 1
;1ln1                                                     (3.15) 

( )
K
aB ˆ

expˆ =                                                                                  (3.16) 

Let us consider an example of using the simple exponential model.  This example 

is based on a fragment of a dairy, containing information about changes made to 

really developed software, and some of these changes were classified as errors, 

according to the definition given in this paper. Volume of this software in Assem-

bler code lines is 32 K [8]. Time unit, used in this experiment, was 1 month. Dur-

ing testing it was calculated, how many errors were detected for each of 20 month 

interval (R(ti)), included into the general debugging stage (table 3.3). Table 3.3 

shows, that for the first month intensity was  53 errors per month, for the second 

month 74 errors per month etc.  After calculation using equations (3.14), (3.15) 

and (3.16) the following estimations for B and K values were found: 

.097.0ˆ,713ˆ == KB  

 

Thus, the estimated risk function for this example is 

( ) { }.097.0exp1.69ˆ
ii ttR −=  

Based on this risk function estimation, a forecast was done for the next four 

months of debugging process (numbers 21,22,23,24 in table 3.4). At the same 

time, debugging and testing processes went on, and the next intensity values R(ti) 
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were obtained. As it can be seen from table 3.4, the forecast was confirmed well 

enough by experimental data.  

 

Using (3.11) it is possible to determine time, needed to decrease error occurrence 

to one per month: 
( ) ( ) .ˆ/ˆ/ˆˆln1 KaKBKt ==  

For our example we have ( ) 7.431 ≈t  (months from debugging start). Thus, we can 

conclude, that the model is working, in spite of some roughness and simplicity, 

and can be applied successfully in software development.  

 

Table 3.3 Risk function estimation for each of 20 months.  

 

it  ( )itR  it  ( )itR  it  ( )itR  it  ( )itR  

1 53 6 50 11 24 16 34 

2 74 7 14 12 36 17 23 

3 38 8 43 13 46 18 11 

4 21 9 69 14 11 19 1 

5 27 10 48 15 28 20 10 

 

Table 3.4 Estimations and observations for the next 4 months.  

 

it  ( )itR̂  ( )itR  

21 9 4 

22 8 9 

23 7 11 

24 7 9 

Sum 31 33 
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3.3. Shick-Wolverton model. 

 

This model, described in work [9], is based on the assumption, that risk function is 

proportional not only to the number of errors in software,  but also to testing time 

duration. It is also assumed, that the longer software is tested,  the more chances 

are to  detect next errors, because some parts of the software are “cleaned”, and it 

makes further testing process easier.  

 

The model is based on the following assumptions: 

1. All errors occur with equal probability, and are independent on each other. 

2. All errors are considered to be equally serious 

3. Software working environment is close to its real working environment 

4. Error correction is done without making any new errors. 

This model’s risk function is 

( ) ( )[ ] .1 iXiBKtR −−=  

In this equation Xi is testing time from moment 1−it   of (i-1)-th error detection, to 

it  - current moment.  

 

Probability, that the software will have no faults on Xi interval, is: 

( ) ( )[ ] �
�

�
�
�

−−−=
2

1exp
2
i

i
X

iBKXP , 

which yields fault probability density 

( ) ( )[ ] ( )[ ] �
�

�
�
�

−−−−−=
2

1exp1
2
i

ii
X

iBKXiBKXq  
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Likelihood function for Xi is defined by equation (3.1). Differentiating its parts’ 

logarithm with respect to K and B, we will obtain the following maximum likeli-

hood conditions: 
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∂
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From these equations we obtain K and B estimations: 

                                                            (3.17) 

 

 

 

 

 

( ).ˆˆ2 nBK
tav −

= π  

For large values of n dispersions and covariances of estimations can be found us-

ing  following equations: 
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Now let us apply this model to the example, used for Jelinski-Moranda model 

(section 3.1). After (3.17) transform, we will have an equation, similar to equation 

(3.7): 

( ) ( ),, 'Amgmf nn =                                                                       (3.18) 

where  

( ) ( ) .;1ˆ;,;1
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Equation (3.18) differs from (3.7) only by the formula for calculation of  integral 

characteristic A’. Thus, solution analysis method, described in section 3.1, is also 

applicable for (3.18). For n=26 from table 3.1 we have 
=

=
26

1

2 10314
i

iX ; 

=

==
26

1

'2 .477,22;231828
i

i AiX  Condition (3.9) holds, so we can expect exis-

tence of a unique decision. Table 3.5 contains initial values of functions from 

(3.18) for .1+≥ nm  It is easy to see, that the absolute value of ( ) ( )', Amgmf nn −  

is monotonically increasing, and does not have a minimum value for finite values 

of n. For this reason Shick-Wolverton model can be considered as unsuitable for 

the given experimental data.  Besides this conclusion, it is also possible to add an 

upper limit Amax to (3.9) condition, situated, obviously, between A and A’. 

Calculations, done by a computer, have shown, that with value Amax = 20.25 (for 

n=26) ( ) ( )', Amgmf nn −  does not change the sign.  
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Table 3.5. Initial values of functions from equation (3.18) . 

 

m ( )mf26  ( )Amg ,26 ( ) ( )Amgmf ,2626 −

27 3.854 5.748 -1.894 

28 2.891 4.708 -1.817 

29 2.427 3.986 -1.559 

30 2.128 3.456 -1.328 

60 0.574 0.693 -0.119 

 

3.4. Lipov models. 

 

These models, described in works [10,11], are a generalization of Jelinski-

Moranda and Shick-Wolverton models. Opposed to these two models, Lipov 

models allow more than one error within one testing interval, and also correction 

of not all of the errors, detected in this interval is allowed. The first Lipov model 

(Jelinski-Moranda model generalization) is based on the following assumptions: 

1. All errors occur with equal probability, and are independent on each 

other. 

2. All errors are considered to be equally serious. 

3. Error detection intensity is the same on the entire testing interval. 

4. Software working environment is close to its real working environ-

ment. 

5. On the i-th testing interval if errors are detected, but only in  of them 

are corrected.  

The last, fifth assumption makes this model quite different from previously con-

sidered models. Thus, risk function can be represented by the equation: 

 ( ) [ ] ,; 11 iii tttFBKtR ≤≤−= −−
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where 
−

=
− =

1

1
1

i

j
ji nF - total number of errors, corrected by moment 1−it , and it is the 

time of the i-th testing interval end (measured in a usual way or by the processor 

timer). Another difference from Jelinski-Moranda model is that it  intervals are 

fixed, and not random.  

 

Assuming, that the number of faults (errors, detected in the software) is a random 

value with Poisson distribution, we have the following equation for the likelihood 

function: 

( ) [ ]{ } [ ]{ }∏
=

−− −−−=
m

i i

ii
f

ii
M f

XFBKXFBKffL
i

1

11
1 !

exp,,Κ  

Considering, just like in previous models,  partial derivatives of lnL, and assigning 

them zero values, we can obtain a set of equations to find K and b maximum like-

lihood estimations. These estimations are: 
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where 
=

=
M

i
iM fF

1

 - total number of errors, detected within M testing intervals; 

( )
=

− +=
M

i
MiiM TXFC

1
1 ;1 - total duration of testing, 

=
=

M

i
iM XT

1
.                                                                                (3.19) 

M.Lipov gives the following expressions for variance and covariance of the found 

estimations: 
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If ( )Mifi ,11 == , i.e. on the given time interval only one error is detected and 

11 −=− iFi  (all detected errors have been corrected), then obtained estimations 

and their variance coincide with once of Jelinski-Moranda model.  

 

The second Lipov model (Shick-Wolverton model generalization) is based on the 

following assumption. Error detection rate is proportional to the current number of 

errors in the software and total time, spent on its testing, including also “average” 

searching time for the error, detected in the current testing interval. Considering 

this, the risk function can be represented by expression: 

( ) ( ) ,,
2 1

1

1
1 ii

i

j

i
ji ttt
X

XFBKtR <<
�

�
�
�

�
+−= −

−

=
−                          (3.24) 

where 1−iF  is total number of errors, corrected by 1−it  moment. Equation (3.24) 

differs from the first Lipov model by the second factor - 
�

�
�
�

�
+

−

=

1

1 2

i

j

i
j
X

X , reflecting 

testing interval change.  

 

Estimations, done similarly to previous ones, by maximum likelihood method, 

yield equations: 
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( ) ;
2

1
1

1

1
1

'

=

−

=
−

�
�
�
�

�
++=

M

i

i

j

i
jiiM
X

XXFC  

=

−

=

�
�
�
�

�
+=

M

i

i

j

i
jiM
X

XXT
1

1

1

' .
2

 

Variance of estimations K̂  and B̂  can be described by expressions (3.20) – 

(3.23), if in these expressions Xi will be replaced by 
�

�
�
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�
+

−

=

1

1 2
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j

i
ji
X

XX . 

 

Let us consider as an example data from section 3.1 (Jelinski-Moranda  model). 

Integral characteristic for the second Lipov model is  

,

2

2

1

1

1

1

1

1''

=

−

=

=

−

=

�
�
�
�

�
+

�
�
�

�
�
�

�
+

=
n

i

i

j

i
ji

n

i

i

j

i
ji

X
XX

XXiX
A  

and it equals A’’ = 21.419 for n=26, which is greater, than Amax. Just like in the 

case of Shick-Wolverton model, there is no sensible solution, and the second 

Lipov model is inapplicable to the given data.  
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3.5. Geometrical models. 

 

In this section three geometrical models will be discussed. The first and the third 

models were proposed by P.B. Moranda [12] (the first one is a modification of 

Jelinski-Moranda model). The second model, proposed by M. Lipov [11] , extends 

the first one.  

 

In the first model it is assumed, that the initial number of errors in the program B 

is not a fixed value (not limited), and moreover, not all errors occur with equal 

probability. It is also assumed, that the longer software has been debugged, the 

more difficult it becomes to detect errors in this software, and thus software will 

never be absolutely free of errors. The basic assumptions of this model are as fol-

lows.  

1. Total number of errors is unlimited; 

2. Errors do not have equal probability; 

3. Error detection process does not depend on errors; 

4. Software working environment is close to its real working envi-

ronment.; 

5.  Error detection intensity forms a geometrical progression, but be-

tween error detection cases the intensity does not change.  

Based on these assumptions, risk function can be described by the following equa-

tion: 

( ) ,1−= iDKtR  

where t is the time interval between (i-1)-th and I-th error detection. Initial value 

of this function is R(0) = D, and the risk function is decreasing at the rate of geo-

metrical progression (0<K<1) with error detection process. Changing rate of R(t) 

is proportional to inverted value of constant K: 
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which leads to decreasing of R(t) changing step size with error detection progress. 

Thus, later errors are more difficult to detect and they have less influence to error 

flow decreasing, than previous ones. If again we let 1−−= iii ttX  (time interval 

between (i-1)-th and i-th error detection), then, in accordance with second and 

third assumptions, Xi are exponentially distributed with distribution density 

( ) { }.exp 11
i

ii
i XDKDKXq −− −=  

Likelihood function for Xi is defined by expression (3.1), and its logarithm is 

( ) ( )
= =

−−−+=
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n XKDKiDnXXL

1 1

1
1 .ln1ln,,ln Κ  

Maximum likelihood estimations for K and D can be found from the following 

equations: 
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Solving these equations, we get: 
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Average time from detection of n-th error until detection of (n+1)-th error can be 

estimates as follows. 

( ) ( ).ˆ/1ˆ
1

n
nav KDt =+  

This model does not allow to find, how many errors remain in the software, but it 

is possible to find its “purity level”. “Purity level” is a relation 



 30

( ) ( )
( ) .1

0

0 n
n

n
software K

D
DKD

tR
tRtR

r −=−=
−

=                              (3.26) 

Maximum likelihood estimation of this value is .ˆ1ˆ n
software Kr −=   

 

Now let us consider the second geometrical model (Lipov model modification). Its 

author aimed to weaken the assumption that the number of errors in the software 

is unlimited. Here the risk function is presented by the following expression: 

( ) ,; 1
1

ii
n tttDKtR i ≤≤= −
−  

where D and K (0<K<1) are defined similarly to the previous case, 1−in  is the total 

number of errors, detected on all testing intervals. Maximum likelihood estima-

tions are the following: 
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where m is the number of testing intervals with lengths Xi ( mi ,1= ), and 

=
=

m

i
inn

1

 is the total number of detected errors.  It is noteworthy, that this model 

transforms into previously described model, if .11 −=− ini  

 

The probability of faultless working for our software is defined by the following 

expression: 

( ) ( ){ } ,;ˆˆexpˆ tttKDtP m
nm <−=  

and the average time from (m-1)-th to m-th fault is defined by expression: 
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( ) .ˆˆ
1

mnmav KD
t =  

 

And finally the last, third geometrical model, proposed for the case, when soft-

ware error notifications come periodically. Here, just like in previous model, only 

the total number of errors, detected during each testing interval, is required. How-

ever, opposed to the previous geometrical models, this model uses an assumption, 

that all testing intervals have the same length, measured by one day, one month 

etc.  

 

This model is applicable, when the interval length is small compared to the entire 

testing period. The model is based on the following assumptions: 

1. The number of errors in software is unlimited; 

2. Error detection is an independent process; 

3. Error detection is equally probable for all errors; 

4. Software working environment is close to its real working environment; 

5. The number of errors if , detected during the i-th testing interval, has Pois-

son distribution with parameter 1−iDφ , where D is the initial error detec-

tion rate, and φ  is a scaling constant coefficient ( )10 << φ ;  

6. Every detected error is either corrected, or not taken into account any 

more.  

 

From assumption 5 it is clear, that error detection rate is changing as a geometrical 

progression, i.e. 

( ) 1−Φ= iDtR                                                                                (3.27) 

for ii ttt <<−1 , i.e. for i-th testing interval (interval length is fixed here). 
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Likelihood function for the number of detected errors if  looks like: 
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Then the equation, from which maximum likelihood estimations can be found, is: 
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From these equations we get the following expressions for the estimations: 
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Variance of these estimations can be approximately evaluated as follows: 
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As an example let us consider application of the third geometrical model to the 

data from section 3.2. We have m=20, ( )ii tRf ≡  in table 3.3. Expression (3.29) 

can be rewritten as  
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where A is an integral characteristic for the statistical data of the example. Look-

ing for the solution of the polynomials in the left part of the equation (3.30) for 

10 <Φ< ,  it can be found, that the only solution is .9392.0ˆ =Φ  From (3.28) also 

D estimation can be found: 224.56ˆ =D . Purity level (3.26) is =softwarer  

.118.0ˆ1 2 =Φ−   

 

Using (3.27), it is possible to calculate the moment, when average error occur-

rence intensity reaches one error per month rate: 
( ) ,2.65ˆlnˆln11 ≈Φ−= Dt  

i.e. after 65 months of testing. Compared to the conclusions of the example in sec-

tion 3.2, this estimation is rather pessimistic.  

 

3.6. Schneidewind model. 

 

This model [13] includes the third geometrical model as a particular case. The ba-

sic approach in this model is that occurrence of later errors has more significant 
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influence on error prediction process.  Let us assume, that there are m testing in-

tervals, and let if  errors be detected in the I-th interval. Then there are three pos-

sible approaches: 

1. Use data about errors on all m intervals;  

2. Kick out data about all errors, detected during first (s-1) intervals, and use 

only data of intervals from s-th to m-th; 

3. Use summarized number of errors, detected from the first to (s-1)-th inter-

vals, i.e. 
−

=
− =

1

1
1

s

i
is fF , and individual errors from s-th to m-th intervals.   

 

It is proposed to use approach 1 in those cases, when data from all the intervals are 

necessary to have for future software state prediction. Approach 2  - when there 

are reasons to consider, that some significant change has happened in error detec-

tion process, and only the last m – (s-1) interval data are needed for prediction. 

And finally, approach 3 is a compromise between first two approaches.  

 

The model is based on the following assumptions: 

1. The number of errors on a testing interval does not depend on the number 

of errors on other testing intervals; 

2. The number of detected errors is decreasing from one interval to another; 

3. All testing intervals are of the same length; 

4. Error detection rate is proportional to the number of errors, contained in 

the software at the current time moment. 

Error detection process is supposed to be non-uniform Poisson process with expo-

nentially decreasing error detection rate. Decreasing rate is given by the formula: 

{ }tddi β−= exp  

for i-th interval, where d > 0 and 0>β   are the model’s constant characteristics.  
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Total number of errors is defined by the following expression: 

{ }[ ],exp1 iDi β
β
α −−=   

and thus the number of errors in the I-th interval is 
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Assuming, that Poisson’s process takes place, we obtain likelihood function: 
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where 1−sM  is the number of errors in the interval from 1 to (s-1), and ms ≤≤2  

(s is an integer value).  

 

Using the fact, that  
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Here y is the solution of the polynomial equation: 
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In this case we have the following simplification for y=1: 

( ) ( ) ( ) .01 =−++−++−+
mmm

m
m

m mFFGyGmFyFGGy  

 

There is a certain relation between this model and the third geometrical model. 

Really, if we assume, that 

( ) ( ) Φ−=−Φ−= ln;1ln βα DD  

and substitute them into (3.31), we will obtain the third geometrical model. And 

vice versa, if we assume, that 

( ) ( )[ ] ( )βββα −=Φ−−= exp;exp1D  

and substitute them into equation (3.27), then we will obtain Schneidewind model.  

 

3.7. Model, based on Weibull distribution law. 

 

Risk function for this model is presented as: 

( ) ( )( ) ,1−= abtbatR  

where a>0 and b>0 are the model constant characteristics, and 0≥t  has the mean-

ing of faultless work interval. If a>1, then error detection rate grows with time, 

and if a<1, then it decreases; if a=1 then risk function is constant. Fault distribu-

tion density (time until the first error occurrence) is described by Weibull distribu-

tion: 

( ) ( )( ) ( ){ },exp 11 −− −= aa btbtbatq  

and, correspondingly, for fault probability we have the Weibull distribution func-

tion: 

( ) ( ) ( ){ }.exp1
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a
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btdxxqtQ −−==                                               (3.32) 
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Average time until fault occurrence in a general case can be expressed by the 

gamma-function: 

( ) ( )
∞
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0
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a
bdttPtav  

Work [36] contains the following method for evaluation of unknown constants a 

and b. Let in  be the total number of errors on each testing interval, ( )kidi ,1=  - 

the length of this testing interval, k – the total number of intervals, and M – the 

total number of errors,  detected by the current moment - 
=

=
k

i
inM

1

. Let us use 

the least square method to obtain a and b estimations.  

 

Let us consider, that: 
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where ( )itQ̂  is the normalized total number of errors, detected by moment it  - the 

beginning of i-th testing interval (empirical distribution function).  
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From expression (3.32) we have: 

( )( ) ( ){ }.exp11 abttQ =−  

Taking logarithm of the both parts of this equation, we obtain: 
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where 

( )( )[ ] tXtQY ln,1lnln =−= . 

Least square estimation of m and 0b  can be obtained from the discrete set of 

points: 
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and Xi is defined by equation (3.33). 

 

Then the least square estimations for the parameters of the line, described by equa-

tion (3.34),  are defined by the following dependencies: 
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The estimations for a and b are, correspondingly: 

{ },ˆˆexpˆ;ˆˆ 0 mbbma −==  

which yields the following expression for the probability of software faultless 

working: 
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Let us consider an example of application of this model to the data from section 

3.1. We have all 1=in  and ii Xd =  in table 3.1. The empirical distribution func-

tion looks like ( ) ,
1+

=
n
itF i  where n=26.  

 

Applying the least square method for a number of points, defined by expressions 

(3.34) and (3.35), we can obtain the estimations of Weibull distribution parame-

ters: a = 1,458 and b = 109,001. Then from equation (3.36) we can define the 

probability of software faultless work after 25026 =t   days from the beginning of   

testing: ( ) ,035,026 =tP  and average time before fault occurrence (3.37) is 

84,98=avt  days.  

 

3.8. Duan model. 

 

This model [22] was proposed for reliability growth evaluation purposes.  To es-

timate this growth the relation of error detection intensity to the total testing time 

is considered. Assumptions, on which this model is based, are the following: 

1. Detection of all errors is equally probable, and all errors are considered to 

be equally serious; 

2. Error occurrence is an independent process; 

3. The total number of errors, detected by moment t,  B(t), is distributed ac-

cording to Poisson law with average value m(t), where ( ) βα ttm = . 

Consequently,  

( ) .exp
tperiodtimetestingtotal

tperiodforerrorsofnumberected
t
t

t
tm ==

βα  
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Taking logarithm of the both parts of this equation, we obtain: 

( ) ( ) ,ln1lnln t
t
tmY −+=��

�

�= βα  

or 

,bXaY +=  

where .ln;1;ln tXba =−== βα  

 

Least square estimations for a and b look like: 
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The only necessary thing to know for the realization of this model is the time mo-

ments of error occurrence - it .  
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4.  ERROR “SEEDING” AND TAGGING AND INPUT DATA STRUC-

TURE BASED MODELS 

 

Methods of software reliability estimation, based on error “seeding” and labeling 

models, will be considered on three model examples (Mills, Beisin and simple 

heuristic model). Methods, based on input data structure, are based on the model, 

proposed  by Nelson, which was applied in practice only after its development 

based on application of sequential statistical Wald analysis. Also in this section 

will be considered two other models – reliability growth model and model of the 

IBM company.  

 

4.1 Error ”seeding” and tagging models.  

 

Let us start considering this group of models with Mills model. According to the 

methodology, proposed by Mills [14], a program is initially “seeded” by a known 

number of certain errors  - M. The basic assumption of this model is that the 

“seeded” errors are distributed in the same way, as natural errors of the software, 

and, consequently, the probability of detection of a “seeded” error is the same as 

for a natural error. After that the software testing process starts. Let (m+v) errors 

be detected during the testing process, where m – is the number of generated or 

“seeded” errors, and v – the number of natural errors. Then, according to the 

maximum likelihood method, the initial number of errors in the software can be 

estimated as follows: ( )vmMBM = . 

 

A serious disadvantage of this model is the assumption concerning similarity of 

distribution of generated and natural errors, which is impossible to verify, espe-
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cially on later stages of software development, when many of simple errors (such, 

as syntax errors, for example) are already excluded, and only the most difficult for 

detection errors still remain in the software.   

 

Now let us consider the Beisin model. This model is described in work [17]. Let a 

software product contain Nk instructions. From these Nk instructions n instruc-

tions are selected randomly, and an error is injected into each of these n instruc-

tions.  After that r instructions are randomly selected for testing. If during testing 

m “seeded” and v natural errors have been detected, it means, that by the maxi-

mum likelihood method the initial number of errors can be estimated as follows: 

,
1

sin
��

−
+−

=
mr
nN

vB k
Bei  

where by ][ is denoted the integer part of a number.  

 

Procedures in this and in the previously described model have something in com-

mon with technology of animal labeling in a certain region, and releasing them on 

the same territory again.  Later, based on the total number of caught animals, and 

the percent of labeled animals among them, it is possible to make conclusions 

about the population of this animal in the region.  

 

When using this kind of procedure, tagging level (i.e. average number of tagged 

errors) has to exceed 20, to be sure that the obtained estimations are objective 

enough.  These procedures can be applied at any stage after software coding is 

completed.  

 

Now let us consider the simple heuristic model. This model was proposed by B. 

Rudner [15]. This model allows to get rid of the main disadvantage of the Mills 
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model. Here testing is realized in parallel way, by two independent groups of soft-

ware developers.  

 

Let 1m  and 2m  be the number of errors, detected by the first and  the second 

groups, correspondingly, and 2,1m  will be the number of common errors, i.e. er-

rors, detected by both groups, first and second. The initial number of errors, con-

tained by software, can be estimated using hypergeometrical distribution and 

maximum likelihood method: 

.
2,1

21

m
mmBRudner =  

 

4.2 Nelson model. Applying sequential Wald analysis to reduce the number of 

program runs. 

 

The model, proposed by E.Nelson [16], is based on taking into account of the pro-

gram input data structure.  In the easiest case (as it was shown in section 1.2), an 

input data set Ei, selected randomly from input space E,  has a priori equal prob-

ability with other sets, contained by E, and this yields an estimation of fault prob-

ability, described by (2.5).   

 

If we also consider different probabilities ip  for each input data set, then estima-

tion (2.5) will be transformed as follows.  

( ) ,ˆ
1=

=
m

i
iipmQ ϕ  

which allows to write the following expression for a successful run probability: 

( ).1
1=

−=
m

i
iipp ϕ                                                                           (4.1) 
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Then, the probability of successful performing of m runs, with input data sets for 

each run selected independently, and in accordance with the distribution, defined 

by (4.1), will equal: 

( ) ( ) .1ˆ
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m ppmP �
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� −==
=

ϕ                                                      (4.2) 

Model (4.2) allows to give the following definition to software reliability: reliabil-

ity of software is the probability of m faultless runs of this software.  

 

The next step in development of this model will be to admit, that in practice it is 

typically not valid that input data set selection is independent for each run.  Excep-

tions of this rule may be only run sequences with gradually increasing of an input 

variable, or using a certain order of procedures (like in some real-time systems, for 

example).  

 

Taking these circumstances into account, it is necessary to redefine the distribu-

tion (4.1) in terms of probabilities pij of selection Ei data set for j-th run from a 

certain run sequence. Then the fault probability for the j-th run is: 

.
1=

=
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i
iijj pQ ϕ  

Correspondingly, the probability of faultless execution of  m runs can be estimated 

by the following expression: 
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This expression can be also presented in another form: 
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and if Qi<<1, then ( ) .expˆ
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Let us denote jt∆  - time of j-th software run execution, and 
=

∆=
j

k
kj tt

1

- summa-

rized time, spent on execution of j runs, and let us use the following risk function 

expression: 
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If 0 →∆ ∞→m
jt , then the sum is transforming into an integral, and equation (4.3) 

turns into the fundamental relation (1.2): 
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of the main reliability rule.  

 

Two categories of difficulties occur when applying Nelson model in practice. The 

first one is related to finding of ijp  - input data distribution parameters. The sec-

ond one is related to the necessity of execution of a significant number of software 

runs (tens and hundreds of thousands) to obtain acceptable accuracy of the corre-

sponding reliability estimations (fault or faultless work probability).    

 

In practice ijp  is defined by splitting the whole input data space into subspaces, 

and definition of probabilities, that a selected data set Ei may belong to a particu-

lar subspace. Estimation of these probabilities is based on the evaluating of the 
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probabilities of occurrence of each set Ei in the real working environment of the 

software.  After probabilities ijp  are found, a random selection of m input data 

sets in accordance with distribution ijp  is made, using an artificial random num-

ber generator.  It is also important, that experiments (runs) should be held without 

interruption, and errors should not be corrected until the completion of all m runs. 

Now about the second difficulty of this model – a large number of required runs. 

This problem can be solved applying a well-known in statistics method, the se-

quential analysis, proposed by Wald [17].  Briefly the idea of this method is the 

following (applied to software reliability problem [18]).    In the sequential analy-

sis it is assumed,  that if successful run probability P is close enough to 0p , then 

the risk of taking a wrong decision is sufficiently small. A wrong decision is un-

derstood here as either the decision to reject a working program, or the decision to 

accept an unreliable program. A programmer, testing the software, has to define 

the following variables before the start of experiments: 

1. minimal acceptable probability of software faultless working: Pmin = p’; 

2. probability Pmax = p’’, which makes him is nearly sure, that software will 

succeed in testing, and thus ''' 0 ppp << ; 

3. probability α  of the first type error, i.e. probability of rejecting reliable 

software { }( )''Pr pP ≥=α ; 

4. probability β  of the second type error, i.e. probability of acceptance of un-

reliable software { }( )'Pr pP ≤=β . 

The choice of α  and β  should be based on compromise considerations, because 

with decreasing these values the number of required runs is increased.  

 

The idea of sequential analysis for 0H  hypothesis (software reliability 0pP = ) is 

comprised of verification of two competing hypothesis: ( )'' pPH =  and 
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( )'''' pPH = . Here faultless work probability is still understood as probability of 

m faultless runs’ execution. Let us consider a binary variable iϕ  : 

�
�

=
...,)4.1(,0

;..,)3.1(,1
runtheduringoccuredfaultaeiholdsif

successfulisruntheeiholdsif
iϕ  

Then, based on m runs’ results, we will obtain a set of ones and zeros: 

mϕϕϕ Κ,2,1 . The probability of m faultless runs can be presented as the probabil-

ity of obtaining a set mϕϕϕ Κ,2,1 , in which md  elements equal to zero: 

( ) ( ) .1 mm ddm ppmP −= −  

If hypothesis H’ holds, then the probability of obtaining this kind of set  P’(m) will 

be the following: 

( ) ( ) ( ) .'1'' mm ddm ppmP −= −  

Similarly, if hypothesis H’’ holds, then we have 

( ) ( ) ( ) .''1'''' mm ddm ppmP −= −  

Let us construct the likelihood relation: 
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Sequential analysis (i.e. testing process) should be continued until the following 

inequalities start to hold: 

( )
( ) .1

1 '

''

α
β

α
β −<<
− mP

mP                                                                 (4.4) 

If after m-th run we will have 

( )
( ) ,1

'

''

α
β−≥

mP
mP                                                                             (4.5) 

then software can be considered unreliable. 

 

 However, if we have after m-th run, that 
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 ( )
( ) ,

1 '

''

mP
mP≤

−α
β                                                                                        (4.6) 

then software can be accepted as reliable.  

 

The inequalities (4.4), (4.5) and (4.6) can be rewritten in a more comprehensive, 

and thus more acceptable way. After taking logarithms and some other simple 

transformations, we can obtain new variables: 

 ( ) ( ) ;lnln1ln1ln ''''''
0 ppppc +−−−−=  

 ( ) ;lnln 0
''' cpp −=γ  

 ( )( ) ;1lnln 00 ca αβ −−=  

 ( )( ) ;ln1ln 00 cb αβ −−=  

in coordinates mdm,  we can build two lines γγ mbbmaa mm +=+= 00 ; . 

 

Now for the number of unsatisfactory experiments (experiments, resulting in 

faults) we have relations mmm bda << . If mm bd ≥ , then software is unreliable, 

and if mm ad ≤ , then software can be accepted as reliable.  

 

Thus it is necessary to perform the following steps: 

��define values of βα ,,, ''' pp  before the start of experiments; 

��build lines ma  and mb ; 

��during the testing place points mdm,  on the same 2D coordinate plane; 

��if the current point mdm,  lies higher than mb  line, than the testing process is 

interrupted, and the software is considered to be unreliable (not satisfying the 

given reliability requirements). 

��If the current point mdm,  lies lower, than ma  line, then testing process is inter-

rupted, and software is accepted as reliable.  
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��If the current point mdm,  lies between the two lines, than the process has to be 

continued. 

 

It is possible to evaluate the average number of runs 'm  provided that hypothesis 

'H  is true, and the average number of runs ''m  provided that hypothesis ''H  is 

true.  In the first case we have: 

( )[ ] ,ln1ln '' µββ ABm −+=  

where ( ) ( ) ';1;1 µαβαβ −=−= BA - mathematical expectation of random 

variable ( ) ( )mPmP ''' lnln −=µ , provided that 'H  hypothesis is true. It is possi-

ble to show, that .ln '' p−=µ  

 

In the second case we have: 

 ( )[ ] ,ln1ln '''' µαα BAm −+=  

where ''µ  is the mathematical expectation of µ , provided that hypothesis ''H  is 

true. In this case .ln '''' p−=µ  

 

Let us consider an example of average run number estimating. Let 

.99.0,98.0;10,10 '''24 ==== −− ppβα  Then we have: 

;21.9ln;9999
10

101
4

2

==−= −

−

AA  

;6.4ln;1.0
9999.0

01.0 −=== BB  

;01.0ln;02.0ln ''' −=−= pp  

( ) ;449
02.0

21.999.06.410 2
' =⋅+−=

−

m  
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( ) .458
01.0

6.49999.021.910 4
'' =

−
−+⋅=

−

m  

If we exchange the values of α  and β , and leave p’ and p’’ unchanged, then we 

will obtain the following result: 902;228 ''' == mm . 

 

4.3 La Padula growth model. 

 

The idea of the model, proposed by L. La Padula [19], is in constructing reliability 

curve by the least square method, according to the observed numbers of faults on 

various testing stages. In this model testing is arranged  as series of N stages.  

Every stage is characterized by some correction or modification of the program.  

 

On each stage ( )Nini ,1=  tests are performed, is  of which have been successful. 

The number of tests on a stage is not fixed in advance. After the completion of N-

th stage (which is not known in advance by itself) the data is substituted into the 

growth curve equation: 

( ) ( ) ,iAuPiP −=  

where P(i) is software reliability during the i-th testing stage.; P(u) is the limit of 

P(i) if ∞→i ; A is a growth parameter.  

 

If A>0, then software reliability is increasing, otherwise it is decreasing. Let us use 

the least square method for P(u)  and A evaluation. The following value has to be 

minimized: 
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.  

Calculating partial derivatives of s with respect to P(u) and A, we obtain a two 

equations, from which we can get the least square estimations: 
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Naturally,  it is necessary to know  the number of  runs in , executed on each stage, 

and the number of successful runs on each stage - is . A testing stage is supposed 

to end and the next testing stage to begin when some changes are made in the 

software, related to error correction, or some program modifications, or to some 

other reasons.  

 

4.4 Model , proposed by IBM company professionals. 

 

During the exploitation of the current software version by the user, the developer 

typically performs active maintenance of this software, i.e. makes some amend-

ments and bug fixes in this version without expecting the user’s requirement for it. 

And this maintenance may include also creation of new functions for the software. 

From some moment, when the developer considers his tasks to be completed, pas-

sive maintenance starts, i.e. corrections are done only after the user’s requests.  

 

During software maintenance a considerable amount of new errors is added to 

every new version, together with amendments and modifications, which leads to 

corrections in the next version also. The developers of well known American  

company IBM tried to forecast such kind of corrections from version to version, 

based on a large number of experimental data, gathered during operational system 

OS/360 maintenance [3,4]. The model, proposed by IBM developers, is based on 
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observations of the software system development history, and the hypothesis of 

statistical stability of dependence between some parameters, characterizing vari-

ous system versions. As the basic measurement unit of software complexity was 

selected a software module. Module creation rules were standardised.  

 

The volume of the i-th version is presented by the number Mi of modules, in-

cluded into this version. When releasing the i -th version, a parameter OCMi is 

changed (the number of old corrected modules), and a parameter NMi is added 

(the number of new modules), so that iii NMMM += −1 .  

 

During the i-th version improving (the period of (i+1)-th version preparation) fur-

ther correction of modules is happening. These corrected modules are divided into 

two groups: the first group is characterised by a parameter MCMi – multiple cor-

rection modules (10 or more corrections per module), and the second group – by 

CMi, modules with number of corrections less than 10. This classification is 

needed for simpler calculations, and also because of the fact, that small number of 

corrections is done to most of the modules.  

 

It is also noteworthy, that the CM group does not require any special debugging 

tools,  whereas the MCM group may require some additional efforts during de-

bugging.   

 

During analysis of the maintenance history of IBM’s OS/360 it was established, 

that there is a considerable correlation between parameters, characterizing the ex-

tent of changes and (correspondingly) error level (in CM and MCM groups), and 

parameters, characterizing complexity and volume of the next version (OCM, 

NM).  Applied to OS/VS1 this statement looked as follows. 

.15.09.0 iii OCMNMCM +=                                                        (4.7) 
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.06.015.0 iii OCMNMMCM +=                                                    (4.8) 

If we suppose that terms “correction” and “error” are identical, than the model of 

evaluation of the total number of errors in software, proposed by IBM profession-

als and based on the given explanations, looks as follows: 

,223 iii CMMCMCORB +==                                                    (4.9) 

where CORi is the total number of corrections, made in the modules (or, in other 

words, the total number of expected errors), and coefficients 23 and 2 are the av-

erage amount of corrections per module in MCM and CM groups, correspond-

ingly.  

 

The forecast is based on  the planned number of corrections to old modules and 

added new modules (OCMi, NMi) for the realization of the new required functions 

of the software. If the number of actually done corrections is less than the pre-

dicted number of corrections, then there are probably still a lot of undetected er-

rors in the software. The following conclusions can be made from the IBM’s 

model: 

��during  passive  maintenance stage (CMi = 0, OCMi is small), then the number 

of corrected modules and the number of corrections inside these modules are 

decreasing rapidly from one version to another; 

��the number of expected errors in the next version may increase compared to 

the older version, if many enough of old modules have been changed (OCM), 

and/or many enough new modules have been added (NM).   

��adding of new modules has a stronger effect on  new errors’ number increas-

ing, than corrections, made to old modules; at the same time, if it is possible to 

create a new module instead of making corrections to a few older modules (5 

or more), this leads to decreasing of the number of expected errors.  In other 

words, on a certain maintenance stage it becomes no longer effective to mod-

ify old modules, and creation of a new module is required.  
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Let us consider an example, illustrating application of the reliability model, pro-

posed by IBM, which is described by equations (4.7), (4.8) and (4.9). Work [19]  

contains data related to maintenance of 19 versions of the OS/360 system. By the 

time of 19-th version release, its volume reached 4800 modules, which was four 

times as much as the volume of the first version, released 4.3 years earlier. Table 

4.1 contains the initial data of the last five versions.  

 

To use the data from table 4.1, it is necessary to make some additional calcula-

tions. Knowing the size of the 19-th version, it is possible to calculate volumes Mi 

of the four previous versions using the first table row. This allows to evaluate the 

total number of modified modules (NMi + OCMi), using their part of the total vol-

ume (row 2 of in table 4.1) . For verification of the calculation correctness it is 

possible to multiply the data of the 3-rd and 4-th rows, or use the last row. This 

kind of “verification” gives a less accurate result, because of decreased number of 

decimals in the initial data. After finding the values of NMi and OCMi we are able 

to use the model, i.e. the equations (4.7), (4.8)  and (4.9). The final results are 

summarized in table 4.2. Unfortunately, work [20] doesn’t allow to make any con-

clusions about correspondence of scientific estimations and actual error amount, 

because of the company’s security considerations. In work [21], however, it is 

mentioned, that every new version of OS/360 contains more than 1000 errors; it is 

also mentioned, that one of the last versions contained 11000 errors. This confirms 

indirectly the estimations, given in table 4.2, and it is an argument in favor of the 

reliability model, proposed by IBM.    
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T able 4.1. The initial data used for model application. 

 

Version number 
Parameter 

15 16 17 18 19 

System growth (number of 

new modules NMi) 
135 171 183 354 410 

Changed modules (part of  the 

total volume 
0.33 0.43 0.48 0.50 0.55 

Change rate (modules/day) 12.5 12.0 9.6 9.9 9.6 

Duration of a version  

development (days) 
96 137 201 221 275 

OCMi/CMi relation 7.9 8.6 10.0 5.1 5.4 

 

T able 4.2. The results of IBM’s model application. 

 

Version number 
Parameter 

15 16 17 18 19 

Version volume Mi number of modules) 3682 3853 4036 4390 4800

Total number of corrections (NMi + OCMi) 1215 1657 1937 2195 2650

Number of new modules (NMi) 135 171 183 354 410 

Number of old changed modules (OCMi) 1080 1486 1754 1841 2240

Number of corrected modules (CMi) 284 377 428 595 705 

Number of many times corrected modules 

(MCMi) 
85 115 133 164 196 

Total number of corrected modules CORi (the 

number of expected errors in the software) 
2523 3399 3915 4962 5918
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5.  RESULTS 

 

This section contains the testing results for some of the models, described in sec-

tion 3. Experiments were done with three models: Jelinski-Moranda model, the 

first geometrical model, and also simple exponential model. The data, which was 

used in these tests, were of two kinds – real data, taken from literature sources, 

and generated data. In this situation it was not possible to obtain real data by ex-

periments, because it would require long-time observations of  significant soft-

ware projects.  Data from section 3.1 example was used to test Jelinski-Moranda 

model and the first geometrical model, and simple exponential model was tested 

using example from section 3.3. The rest of testing data was generated using three 

different distributions: exponential, normal and uniform. It was done with the pur-

pose to investigate influence of distribution change on models’ functionality. All 

the tests were done not only for a single data set, but also for its reduced forms. In 

the first experiment the whole data set was used, but later – 95, 90, 85, 80 etc. per-

cents of this data set. The purpose of it was to investigate, how sensitive are the 

models to the input data set size. For most of the experiments reduction of the data 

set was regular – from 100 to 5 percents, with step 5. For Jelinski-Moranda model, 

however, it was not possible, because of convergence problems. This model gave 

a finite output not for all possible input sets, but just for some of them, so tests 

were done for those percents of initial size, with which the model converged.  

 

In order to estimate the extent of models’ sensibility to the data size change, corre-

lation coefficient was calculated between percent of data used and the model’s 

output. A correlation coefficient is a number between -1 and 1 which measures the 

degree to which two variables are linearly related. If there is perfect linear rela-
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tionship with positive slope between the two variables, we have a correlation 

coefficient of 1; if there is positive correlation, whenever one variable has a high 

(low) value, so does the other. If there is a perfect linear relationship with negative 

slope between the two variables, we have a correlation coefficient of -1; if there is 

negative correlation, whenever one variable has a high (low) value, the other has a 

low (high) value. A correlation coefficient of 0 means that there is no linear 

relationship between the variables.  

 

Output values of the models, for which correlation coefficients were calculated 

and diagrams built, were not the same for all three models, because there is some 

difference in their way of result’s presentation form.  For Jelinski-Moranda model 

the output values of predicted total number of remaining errors and time left until 

the next error detection were used. For the first geometrical model – average time 

until the next error detection and software purity level (this model is based on the 

assumption, that the total number of errors is unlimited, and thus it can’t be used 

to predict its value). For the simple exponential model as the output values were 

used the total number of errors in the program and (the most sensible for this 

model) the number of errors, detected on the next testing interval.  

 

Section 5.1 reviews results of the Jelinski-Moranda model testing, section 5.2 – 

the first geometrical model testing results, and section 5.3  -results for the simple 

exponential model. In section 5.4  the testing results are discussed 

 

5.1 Testing results for Jelinski-Moranda model.  

 

The Jelinski-Moranda model was tested on four different input data sets: the data 

set used in example from section 3.1 of 26 samples and three generated data sets 
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of 50 samples each. They were generated using exponential distribution (with mu 

= 0.5), normal distribution (with mu = 50 and sigma = 20), and uniform distribu-

tion with A = 0 and B = 100. Figures 5.1-5.4 depict the resulting diagrams, ob-

tained from testing of data sets from section 3.1, exponentially , normally, and 

uniformly distributed data sets, correspondingly. Table 5.1 contains correlation 

coefficients, calculated for all the testing sets, between the percent of data size, 

used for testing, and the output values of the model (i.e. total number of errors and 

time left until the next error occurrence). A complete set of testing results for this 

model can be found in Appendix 1.  
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Figure 5.1. Test results for the dataset from section 3.1. Diagrams for predicted 

number of errors and time to the next error.  
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Figure 5.2. Test results for the exponentially distributed dataset. Diagrams for pre-

dicted number of errors and time to the next error.  
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Figure 5.3. Test results for the normally distributed dataset. Diagrams for pre-

dicted number of errors and time to the next error.  
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Figure 5.4. Test results for the uniformly distributed dataset. Diagrams for pre-

dicted number of errors and time to the next error.  

 

Table 5.1. Correlation coefficients for Jelinski-Moranda model. 

 

 Total number of errors, B Time to next error, Xnext

Example from 3.1 -0.8 0.6 

Exponential  0.4 -0.4 

Normal 0.5 -0.2 

Uniform 0.6 -0.5 
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5.2 Testing results for the first geometrical model.  

 

The first geometrical model was tested on the same datasets, as the Jelinski –

Moranda model. The only difference in testing was that the percent values of used 

data size was changed on regular basis – from 100 to 5 with step 5. It became pos-

sible for this model, because it has no convergence problem – the output can be 

obtained for any data set.  Figures 5.5 – 5.8 depict the diagrams, obtained after 

testing the same four examples, as for Jelinski-Moranda model. Table 5.2 contains 

the correlation coefficients between the percent of data size used and the model’s 

output values: average time to the next error occurrence and software purity level. 

A complete set of testing results for this model can be found in Appendix 2. 
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Figure 5.5.  Test results for the dataset from section 3.1. Diagrams for predicted 

time to the next error occurrence and software purity level.  

 



 64

Reduct ion of data set  size

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

5 25 45 65 85 105

Percent of data used

Av
er

ag
e 

tim
e 

to
 n

ex
t e

rro
r,

 d
ay

s

 

Reduct ion of data set  size

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80 100

Percent of data used

So
ftw

ar
e 

pu
rit

y 
le

ve
l

 
Figure 5.6. Test results for the exponentially distributed dataset. Diagrams for pre-

dicted time to the next error occurrence and software purity level.  
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Figure 5.7. Test results for the normally distributed dataset. Diagrams for pre-

dicted time to the next error occurrence and software purity level.  
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Figure 5.8. Test results for the normally distributed dataset. Diagrams for pre-

dicted time to the next error occurrence and software purity level.  

 

Table 5.2. Correlation coefficients for the first geometrical model.  

 

 Time to next error, avrt Software purity level, r 

Example from 3.1 0.03 -0.55 

Exponential  0.03 -0.12 

Normal 0.07 -0.25 

Uniform -0.14 0.17 
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5.3 Testing results for the simple exponential model.  

 

This model was also tested on four data sets, but the first example was not from 

section 3.1, but from section 3.3., however it is also a real-life example. The other 

three examples were also of three distributions (exponential, normal and uniform), 

but the sets were generated separately (thus, the datasets were not the same, as for 

the two previous models, only distribution was the same).  They were generated 

using exponential distribution (with mu = 5), normal distribution (with mu = 50 

and sigma = 20), and uniform distribution with A = 1 and B = 100. Figures 5.9-

5.12 depict the testing results for the four datasets, and table 5.3 contains correla-

tion coefficients for the predicted values of total number of errors and next value 

of the risk function (or probable next number of detected errors ). A complete set 

of testing results for this model can be found in Appendix 3. 
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Figure 5.9. Test results for the dataset from section 3.3. Diagrams for the total 

number of errors and predicted time to the next error occurrence.  
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Figure 5.10. Test results for the dataset of exponential distribution. Diagrams for 

the total number of errors and predicted time to the next error occurrence.  
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Figure 5.11. Test results for the dataset of normal distribution. Diagrams for the 

total number of errors and predicted time to the next error occurrence.  
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Figure 5.12. Test results for the dataset of uniform distribution. Diagrams for the 

total number of errors and predicted time to the next error occurrence.  
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Table 5.3. Correlation coefficients for the simple exponential model.  

 

 
Total number of errors, B 

Next risk function value, 

Rnext 

Example from 3.3 0.24 -0.49 

Exponential  -0.25 0.13 

Normal 0.33 -0.45 

Uniform -0.51 0.08 

 

5.4 Discussion of the results.  

 

For Jelinski-Moranda model it is possible to say, that the worst for its convergence 

is uniform distribution. It was almost impossible to make it work with this data 

set, and only for a few cases (a few values of the percent of used data size) the ex-

periments succeeded.  Exponential distribution was much better (which was 

expectable, because the model is built under the assumption of this distribution), 

and for normal distribution the result for the total number of errors was quite close 

to one for exponential case. Even the shape of the corresponding diagrams is 

nearly similar. The other two models are much less sensitive to data distribution, 

in the sense, that they don’t have convergence problems at all.  For any input data 

set they give some output. The examples, taken from “real life” (opposed to the 

generated ones) can be used to confirm that all of the three models are usable, 

because the results given by them are close to reality (see sections 3.1 and 3.3 for 

details about these examples). As to the reduction of data set size, the best results 

have been shown by the simple exponential model. The result, obtained by this 

model (Rnext – the next predicted risk function value) is the most stable with 

respect to the size of input dataset, which can be easily seen from the diagrams 
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size of input dataset, which can be easily seen from the diagrams (figures 9-12). 

For Jelinski-Moranda model it seems, that the predicted time left until the next 

error occurrence is more stable to the data set size changes, than the total number 

of errors (figures 2-4).  It can be well seen from diagrams in figures 2-4, but not in 

figure 5.1, because in the test case, depicted in figure 5.1 (example from section 

3.1) the data size was initially small (26 samples), and after reduction of this data 

size the model did not converge in most of the cases. The first geometrical model 

seems to be the most sensitive to the data size change, because it gave the most 

unstable results (figures 5-8). This can be also concluded from the correlation co-

efficients (table 11). The coefficients for tavr  (average time until the next error) 

have quite small values, which means, that the result is changing nearly independ-

ently on the data size used, and thus even a small change in the initial data can 

yield an unpredictable influence on the predicted tavr. Of course, sensitivity to the 

data size in this context means sensitivity to initial data in general, because if the 

data set is reduced, not only its size, but also its content is changed.  
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6. CONCLUSION 

 

In this paper a survey of two software reliability model groups has been provided:  

risk-function based models, and  models, based on error “seeding” and tagging 

and input space structure. Also practical work was done on investigation of the 

first group models, and its results were presented and discussed. The investigated 

models were Jelinski-Moranda model, the first geometrical model and the simple 

exponential model. The results were discussed from two viewpoints: how the 

models handle various input data distributions, and how sensitive they are to 

changes in the input data size. The most certain conclusions on the distribution 

problem were done about Jelinski-Moranda model – uniform distribution is defi-

nitely not suitable for this model, and exponential distribution seems to be the best 

for it. The simple exponential model turned out to be the most stable, i.e. not very 

sensitive to the changes in the input data size, and the first geometrical model – 

vice versa, the most unstable. For Jelinski-Moranda model the total number of er-

rors turned out to be more sensitive to the data size changes, than the time, left 

until the next error detection.  

 

It is impossible to say, which of the models is the best applicable for software reli-

ability evaluation. In practice it is recommended to “try on” each of the pre-

selected models to the particular problem (to the error flow), and choose the most 

adequate one. It is important to pay attention to the assumptions, on which the 

models are based, and their requirements to the input data. After that  each of the 

suitable models can be applied to the problem. In order to be able to estimate, if 

the result was correct or not (to select the best suitable of the models), it is reason-

able to apply the models not to all data available, but only to some part of it (about 
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75-80%), and the rest would serve as a test  set, to verify the correctness of the re-

sults, given by the models.  The model, which gives the best result, can be applied 

further for this problem.  
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