
Lappeenranta University of Technology, Department of Information Technology

USING TIME AND STOCHASTIC MODELS FOR SOFTWARE RE-

LIABILITY FORECASTING AND ANALYSIS

The topic of the master’s thesis has been confirmed by the Department Council of

the Department of Information Technology on 14 June 2000

Examiner: Prof. Jan Voracek

Supervisor: Prof. Jan Voracek

Lappeenranta 6 November 2000

Evgenya Salganik

Ruskonlahdenkatu 13-15 B 14

53850 LAPPEENRANTA

+358 40 7435506

 ii

TIIVISTELMÄ

Tekijä Evgenya Salganik

Työn nimi Ajallisten ja stokastisten mallien käyttäminen ohjelmien luo-

tettavuuden ennustamista ja analyysia varten

Osasto Tietotekniikan osasto

Vuosi 2000

Paikka Lappeenranta, Finland

Diplomityö. Lappeenrannan teknillinen korkeakoulu. 78 lehteä, 12 kuvaa, 10 tau-

lukkoa ja 3 liitettä. Tarkastajana apulaisprofessori Jan Voracek.

Hakusanat: software reliability, reliability models, software testing

Tämä työ luo katsauksen ajallisiin ja stokastisiin ohjelmien luotettavuus malleihin

sekä tutkii muutamia malleja käytännössä. Työn teoriaosuus sisältää ohjelmien

luotettavuuden kuvauksessa ja arvioinnissa käytetyt keskeiset määritelmät ja met-

riikan sekä varsinaiset mallien kuvaukset. Työssä esitellään kaksi ohjelmien luo-

tettavuusryhmää. Ensimmäinen ryhmä ovat riskiin perustuvat mallit. Toinen ryh-

mä käsittää virheiden ”kylvöön” ja merkitsevyyteen perustuvat mallit.

Työn empiirinen osa sisältää kokeiden kuvaukset ja tulokset. Kokeet suoritettiin

käyttämällä kolmea ensimmäiseen ryhmään kuuluvaa mallia: Jelinski-Moranda

mallia, ensimmäistä geometrista mallia sekä yksinkertaista eksponenttimallia. Ko-

keiden tarkoituksena oli tutkia, kuinka syötetyn datan distribuutio vaikuttaa malli-

en toimivuuteen sekä kuinka herkkiä mallit ovat syötetyn datan määrän muutok-

sille. Jelinski-Moranda malli osoittautui herkimmäksi distribuutiolle konvergaatio-

ongelmien vuoksi, ensimmäinen geometrinen malli herkimmäksi datan määrän

muutoksille.

 iii

ABSTRACT

Written by Evgenya Salganik

Title Using Time and Stochastic Models for Software Reliability

Forecasting and Analysis

Department Department of Information Technology

Year 2000

Place Lappeenranta, Finland

Diploma Thesis, Lappeenranta University of Technology, 78 pages, 12 figures, 10

tables and 3 appendices. Examiner Associate Professor Jan Voracek.

Keywords: software reliability, reliability models, software testing

The aim of the present study was to provide a survey of time and stochastic soft-

ware reliability models, and also to investigate some of these models in practice.

The theoretical part of the study contains basic definitions and software metrics,

used to describe and evaluate software reliability, and the description of the mo-

dels as such. The paper provides a survey of two software reliability model

groups: risk function based models – the first group, and error ”seeding” and tag-

ging and input data structure based models – the second group.

The practical part contains the description and results of experiments, which were

done using three models of the first group – Jelinsky-Moranda model, the first

geometrical model and the simple exponential model. The purpose of the experi-

ments was to investigate, how the input data distribution affects the model’s func-

tionality, and also how sensitive the models are to the input data size changes.

Jelinsky-Moranda model turned out to be the most critical to the distribution be-

cause of convergence problems, and the first geometrical model – the most sensi-

tive to the data size changes.

 iv

ACKNOWLEDGEMENTS

I would like to thank Associate Professor Vladimir Kirjanchikov from Saint-

Petersburg Electrotechnical University for being, in fact, my unofficial supervisor

in the present work.

Also I would like to thank Dr. Jan Voracek from Lappeenranta University of

Technology for supervising my work and giving valuable comments, that helped

me to complete this master’s thesis in time.

Besides, I would like to thank Maija Hulkkonen and her company “Kirjansitoja

Maija Hulkkonen” for helping me to get the thesis bound within a short time and

at a relatively low price.

And finally, last, but not least, I would like to thank Mari Pajunen for translating

my abstract into Finnish, and also my roommate Mia Niemi, for recommending

Mari to me.

Lappeenranta 6 November 2000

Evgenya Salganik

 1

TABLE OF CONTENTS

LIST OF SYMBOLS AND ABBREVIATIONS...2
1. INTRODUCTION..6
2. BASIC SOFTWARE RELIABILITY METRICS..8
3. RISK FUNCTION BASED MODELS ..12

3.1. Jelinski-Moranda model. ..12
3.2 Simple exponential model. ..17
3.3. Shick-Wolverton model..21
3.4. Lipov models. ...24
3.5. Geometrical models. ...28
3.6. Schneidewind model...33
3.7. Model, based on Weibull distribution law..36
3.8. Duan model...39

4. ERROR “SEEDING” AND TAGGING AND INPUT DATA STRUCTURE
BASED MODELS ...41

4.1 Error ”seeding” and tagging models. ...41
4.2 Nelson model. Applying sequential Wald analysis to reduce the
number of program runs...43
4.3 La Padula growth model. ...50
4.4 Model , proposed by IBM company professionals.51

5. RESULTS ...56
5.1 Testing results for Jelinski-Moranda model.57
5.2 Testing results for the first geometrical model.62
5.3 Testing results for the simple exponential model.67
5.4 Discussion of the results. ...72

6. CONCLUSION..74
REFERENCES ..76

APPENDICIES

 Appendix 1. Complete result tables for Jelinski-Moranda model.

Appendix 2. Complete result tables for the first geometrical model.

Appendix 3. Complete result tables for the simple exponential

model.

 2

LIST OF SYMBOLS AND ABBREVIATIONS

a A risk function parameter, used in the simple exponen-

tial model

A A convergence criteria in Jelinsky-Moranda model

b Another risk function parameter, used in the simple

exponential model

B Number of errors, remaining in the program

B̂ An estimation of B

C A parameter, used for matrix form representation of the

simple exponential model

CMi Number of modules with number of corrections less

than 10 in the i-th version

CORi Total number of corrections, made in the modules in

the i-th version

d A scaling coefficient in Scheidewind model risk func-

tion

id Error detection rate in Schneidewind model

D a risk function parameter, used by some of the models

D1 A designation, used to calculate variance in Shick-

Wolverton model

E Software input data space

Ei A subset of software input data space

f A function, used to simplify calculations in Jelinsky-

Moranda model¨

if Number of errors, detected on the i-th interval

 3

F(Ei) Required output of the program, obtained with an input

from Ei

F’(Ei) Actual output of the program, obtained with an input

from EI

=
=
M

i
iM fF

1

 Total number of errors, detected within M testing in-

tervals

1−sF Summarized number of errors, detected from the first

to (s-1)-th intervals

g A function, used to simplify calculations in Jelinsky-

Moranda model

i Error detection interval’s number

K A scaling coefficient, used by some of the models

K̂ An estimation of K

L The likelihood function

m Number of “seeded” detected errors in Mills model

2,1m Number of detected errors in Rudner model

M Total number of detected errors in Mills model

Mi Number of modules in the i-th version

MCMi Multiple correction modules in the i-th version

n Total number of error detection intervals

in number of errors, corrected on the i-th interval

N Number of operators in Beisin model

N(t) The number of errors, detected by moment t

NMi System growth (number of new modules) in the i-th

version

OCMi Number of old corrected modules in the i-th version

 4

P Probability of the fact, that no error will occur on a

time interval

q Density of fault probability

Q Probability of at least one software fault during a time

interval

()mQ̂ Statistical estimation of software fault probability

during m runs

r Software purity level in the first geometrical model

R Risk function on a time interval

is The number of successful tests in La Padula growth

model

t Time

avt Average time of software working before a fault

occurrence

it i-th error detection moment

MT Total duration of testing

v Number of “natural” detected errors in Mills model

iX Length of i-th error detection interval

1ˆ
+nX An estimation of (n+1)-th interval between errors

β A parameter of Schneidewind model risk function

δ Acceptable Q̂ estimation error of fault probability Q

i∆ Acceptable limit of software output deviation

iϕ Binary indicator of a program fault

φ A scaling constant coefficient, used in the third geo-

metrical model

 5

CM Number of modules with number of corrections less

than 10

COR Total number of corrections, made in the modules

M Number of modules in the i-th version

MCM Multiple correction modules

NM System growth (number of new modules)

OCM Number of old corrected modules

OS/360 Operation system 360 (a product of IBM company)

 6

1. INTRODUCTION

Software programs typically contain errors. In the most general way a program

error can be defined as a situation when a function, included into the program’s

specification, is not actually performed by the program. Software reliability can be

defined (also generally) as the ability of software to perform predefined functions

under predefined conditions, and using predefined hardware resources. The extent

of software reliability can be estimated using some of software metrics. Software

reliability models are aimed to predict the values of these metrics, and thus give a

possibility to evaluate reliability on various stages of software testing. For exam-

ple, if a significant number of errors has already been detected and corrected, it

may cause the impression, that the testing process is nearly over, i.e. just very few

errors are left in the software. However, it may be far from being true, and reliabil-

ity models may help to clarify this situation.

The purpose of this work is to provide a survey of time and stochastic software

reliability models and investigate some of the models in practice. The paper pre-

sents two groups of models: the first group - risk function based models and the

second group - error “seeding” and tagging and input data structure based models.

Models of the first group have both time and stochastic elements, and models of

the second group are purely stochastic.

In the practical part only models of the first group will be investigated, because

models of the second group are much more difficult to test. They cannot be tested

on generated data, but require real software projects. Models of the first group,

which will be tested, are Jelinski-Moranda model, the first geometrical model and

 7

the simple exponential model. They were selected as typical representatives of this

group. Testing will be done on two kinds of data – real data, taken from literature

sources (published results of software testing), and also generated data. The latter

will be used not only because of the lack of real data, but it also because it allows

to investigate the influence of input data distribution on the models’ functionality.

Another aspect, investigated in the practical part, will be sensitivity of various

software reliability models to the changes in the input data size (and content, cor-

respondingly, because if the size is changed, the content does not remain the

same).

In section 2 the software metrics, which can be used to evaluate and analyze soft-

ware reliability, are listed and described. Section 3 provides a survey of the first

group models, based on the risk function estimation, and section 4 – of the second

group modes, based on error “seeding” and tagging, and also on input space struc-

ture. In section 5 results, obtained in the practical part, are presented and dis-

cussed. Section 6 contains the conclusion of this document.

 8

2. BASIC SOFTWARE RELIABILITY METRICS

In this section basic concepts of software reliability are listed and defined, and

these concepts will be used further in the paper. So the concepts are: software er-

ror; number of errors, remaining in the program (i.e. errors, passed to the user);

probability of software faultless work; error detection intensity (or risk function); a

run of the program; a fault of the program.

It is not so easy to give a strict definition of software error, because this definition,

in fact, is a function of the program itself, because it depends of the program’s

functionality, expected by the user. For this reason instead of a strict definition

only the indications will be listed, which help to identify software errors:

��occurrence of a wrong operand or operator during programming;

��incorrespondence of the functions, performed by software, to its specification,

as well as an error in the specification, requiring some corrections to the soft-

ware;

��calculation errors (e.g. overflowing etc.);

��corrections to software, improving its user interface;

This list can be considered open, because it can be continued by developers as

they get more and more experience in reliability improvement. It is incorrect to

consider as an error, for example, creation of codes, replacing a program part,

which is missing just temporarily, or program recompilation, caused by correc-

tions in other modules.

The number of errors, remaining in the program, is the potential number of errors,

which can be detected on later stages of the life cycle, after corrections, made on

the current life cycle stage. This number of errors in the program (later denoted by

B), is one of the most important software reliability metrics.

 9

Let P(t) be the probability of the fact, that no error will occur on [0,t] interval.

Then probability of at least one fault during this period is Q(t) = 1 – P(t), and the

density of fault probability can be presented as

() () .dttdPdtdQtq −==

Let us consider risk function R(t), as conditional probability density of software

fault at time moment t, under condition, that there were no faults before this mo-

ment:

() ()[] () ()[] () .1,lim
0>−∆
−=∆∆+=

t
dttdPtPttPtttQtR (2.1)

The risk function has dimension [1/time], and is very useful for basic

distributions’ classification. Distributions with increasing risk function correspond

to the situations, when staticstical reliability characteristics get worse with time.

And vise versa, distributions with decreasing risk function correspond to the

opposite situation, when reliability is improving with time, as a result of error

detection and correction process.

It is clear from equation (2.1), that () () ()dttRtPtdP −= , and, consequently,

() () ,ln
0

−=
t

dttRtP

or

 () () .exp
0

�
�

�
�
�
−=
t

dttRtP (2.2)

Equation (2.2) is one of the most important in reliability theory. It will be shown

further, that various ways of risk function’s behaviour in time yield various

possibilities for building software reliability models. Error detection intensity (risk

function), together with software faultless work probability and the number of

 10

errors, remaining in the program, are the most important softwre reliability

indicators.

A program run is a set of actions, including: inputting of one of the possible

combinations Ei of the input data space E (EEi ∈); execution of the program,

which ends either with obtaining a result F(Ei) or with a fault.

For some of the sets Ei of the input data, its output result’s (F’(Ei)) deviation from

the required output F(Ei) lies within an acceptable limit i∆ , i.e. the following

inequation holds:

() () ,' iii EFEF ∆≤− ()3.2

and for all the other Ei, forming a subset EEi ⊂ , the program execution does not

provide an acceptable result, i.e.

 () () ,' iii EFEF ∆>− ()4.2

Cases, described by inequality (2.4), are also called program faults.

Let us consider a binary variable iϕ :

 �
�

=
otherwise. 1,

holds; (2.3) if,0
iϕ

Then the statistical estimation of software fault probability during m runs will be:

 () .1ˆ
1=

=
m

i
im

mQ ϕ ()5.2

Let us denote as δ acceptable Q̂ estimation error of fault probability Q . Then the

required number of program runs m must be proportional to the value of () 12 −δQ ,

where Q is the given software fault probability. It means, that if, for example, the

relative error of estimation (2.5) is required to be 1.0%10 ==δ , and the required

 11

(desired) value of 310−=Q , then the number of independent runs m should be not

less, than 523 101010 =⋅≈m , which is, of course, not so easy to realize in

practice. A solution to this problem can be applying the procedure of sequential

Wald analysis (its examples are given in section 4.2).

And finally one more reliability metric, which will be used in this paper – average

time of software working before a fault occurrence:

 ()
∞

=
0

.dttPtav

 12

3. RISK FUNCTION BASED MODELS

3.1. Jelinski-Moranda model.

This is one of the first and simplest models of classical type, which was a basis for

further development in this direction. The model was used in rather important and

noticeable software projects, such as Apollo program (some of its modules) [2].

Jelinski-Moranda model is based on the following assumptions:

1. The intensity of error detection R(t) is proportional to the current number of

errors in the program, i.e. initial number of errors minus number of already de-

tected errors.

2. All errors occur with equal probability, and are independent on each other.

3. All errors are considered as equally serious.

4. Time, remaining until the next program fault, is distributed exponentially.

5. Software working environment is close to its real working environment.

6. Error correction is done without making any new errors.

7. R(t) = const between any two adjacent moments of error detection.

According to these assumptions, the risk function can be represented as:

()[].1−−= iBKR

In this formula t is a random moment between (i-1)-th and i-th error detection; K

is an unknown scaling coefficient; B is initial (also unknown) number of errors,

remaining in the software.

 13

Thus, if during a time interval of length t (i-1) errors were detected, it means, that

B-(i-1) errors still remain undetected in the software.

Assuming, that

nittX iii ,1,1 =−= −

and using assumption 7, and also equation (1.2), we can conclude, that all Xi have

exponential distribution:

() ()[]{ }ii XiBKXP 1exp −−−=

and fault probability density equals, correspondingly,

() ()[] ()[]{ }ii XiBKiBKXq 1exp1 −−−−−=

Then likelihood function (according to assumption 2) is

() ()∏
=

=
n

i
in XqXXL

1
1 ,.., ()1.3

or, in terms of likelihood function logarithm, we have:

() ()[]
=

+−−+−=
n

i
in XiBKiBKXXL

1
1 .)1()1(ln,..,ln (3.2)

Likelihood function’s maximum can be found using the following conditions:

.0
1

1ln
1

=�
��

� −
+−

=
∂

∂
=

n

i
iKX

iBB
L

 (3.3)

;0)1(1ln
1

=���

� +−−=
∂
∂

=

n

i
iXiB

KK
L

 (3.4)

From equation (3.3) we can get K maximum likelihood estimation:

() ()
.

1ˆ1ˆ
1 11 = ==

−+
=

+−
= n

i

n

i
ii

n

i
i iXXB

n

XiB

nK (3.5)

Substituting equation (3.5) into (3.4), we find a non-linear equation for calculation

of B̂ – maximum likelihood estimation for B:

 14

()=

= =

=

−+
=

+−

n

i
n

i

n

i
ii

n

i
i

iXXB

Xn

iB1

1 1

1

1ˆ1ˆ
1

 (3.6)

Authors of papers [3,4] recommend to solve equation (3.6) using numerical meth-

ods, for example Newton-Rafson method. It is possible to simplify this equation

before looking for a solution, if we write it as:

() (),,1ˆ1ˆ ABgBf nn +=+ (3.7)

where

 () ()
=

=

==+=
−

=
−

=
n

i
n

i
i

n

i
i

nn

X

iX
ABm

Am
nAmg

im
mf

1

1

1;1ˆ;,;1

Since only integer B̂ values really make sense, functions from equation (3.7) can

be considered only for integer arguments. Moreover, 1+≥ nm , because n errors

are already detected.

Thus an estimation of B can be obtained by calculating of initial values of func-

tions fn(m) and gn(m) for m=n+1, n+2…, and analyzing the difference fn(m)-

gn(m). Both f and g functions are monotonically decreasing on this m value range.

This is obvious for gn(m), and fn(m) can be easily calculated by a recursive equa-

tion:

() .11)(1 �
�
�

� −
−

−=+
mnm

mfmf nn

Since both right and left part of equation (3.7) are similarly monotonic, it causes a

problem of unique solution existence, and solution existence in general. In paper

[5] it is shown, that a finite solution B̂ in the area of nB ≥ˆ exists if, and only if

holds

 15

() n

X

i

Xi
n

i
i

n

i

n

i
i

=

=

= >
−

−
1

1

1

1

)1(
 (3.8)

Otherwise the only maximum likelihood estimation will be .ˆ ∞=B Condition (3.8)

can be rewritten in a more convenient way:

() ,2/1+> nA (3.9)

where A is the same as in equation (3.7). It is important to notice, that A is an in-

tegral characteristic of n observations of software errors, and represents (in statis-

tical sense) the set of intervals Xi between errors.

Another problem of equation (3.7) solution finding is related to instability of the

estimation, because of possible multimodality of the likelihood function. If A is

large enough, then the obtained estimation approaches n – the number of errors,

detected by the current time. This makes an optimistic impression, that testing

process is nearly completed, whereas the real B may be much larger than n. In pa-

per [6] a solution to this problem is offered.

Let us consider an example of Jelinski-Moranda model usage, applying it to ex-

perimental data, obtained in software testing process, described in paper [7]. Dur-

ing 250 days 26 errors were detected; intervals between error detection are pre-

sented in table 3.1. For the given data we have n=26 and

==

===
26

1

26

1
.032.17,4258,250

i
i

i
i AiXX Condition (3.9) holds, and thus maxi-

mum likelihood equation has a unique solution. Table 3.2 presents initial values of

functions, comprising (3.7), for argument range .1+≥ nm

 16

The best suitable solution of (3.7) is m=32 (semi bold line in the table gives

minimum absolute value of the difference, which must be as close to zero as pos-

sible) , i.e. B̂ = m-1=31. From equation (3.5) we have K̂ = 0.007.

Average time 1
ˆ

+nX (time remaining until (n+1)-th error detection) is inverted es-

timated intensity for the previous error:

() ().ˆˆ
1

ˆ
1

1 nBKtz
X

n
n −

==+

In this example, daysX
est

2927 = , and total time remaining until testing will be

concluded, is
= =

===
31

27

5

1

.3261
ˆ
1ˆ

i i
ik days

iK
Xt Although the obtained estimation

of B is a bit overoptimistic (paper [7] contains information, that 8 more errors

were detected on software testing and exploiting stages), detection of the first five

errors took totally 290 days, which is rather near kt value, predicted by the model.

Table 3.1. Intervals between error detection cases.

i Xi i Xi i Xi i Xi

1 9 8 8 15 4 21 11

2 12 9 5 16 1 22 33

3 11 10 7 17 3 23 7

4 4 11 1 18 3 24 91

5 7 12 6 19 6 25 2

6 2 13 1 20 1 26 1

7 5 14 9

 17

Table 3.2. Function values

m ()mf26 ()Amg ,26 () ()Amgmf ,2626 −

27 3.854 2.608 1.246

28 2.891 2.371 0.520

29 2.427 2.172 0.255

30 2.128 2.005 0.123

31 1.912 1.861 0.051

32 1.744 1.737 0.007

33 1.608 1.628 -0.020

34 1.496 1.532 -0.036

3.2 Simple exponential model.

The main difference of this model from Jelinski-Moranda model, discussed in pre-

vious section, is in not using assumption 7, and thus allowing the risk function not

to be constant between error detection moments any more, so that it can change.

Let N(t) be the number of errors, detected by moment t, and let the risk function

be proportional to the number of errors, remaining in our software after moment t.

() ()()tNBKtR −=

Let us differentiate both parts of this equation with respect to time:

() () .
t
tNK

t
tR

∂
∂−=

∂
∂

Taking into account, that () ttN ∂∂ / is R(t) (number of errors, detected per every

time unit), we obtain a differential equation for R(t)

 18

() () .0=+
∂
∂ tKR
t
tR (3.10)

If we consider initial conditions N(0)=0, R(0)=KB, then the solution for (3.10)

will be

() { }KtKBtR −= exp (3.11)

Let us use the following designation: a = ln (KB); b = - K. Using these designa-

tions, equation (3.11) can be presented in form

() { }.exp btatR +=

Taking logarithm of the both parts of this equation, and using discrete t values, we

obtain a set of equations:

() .,1;ln nibtatR ii =+= (3.12)

Equation set (3.12) can be presented in matrix form

 AX = C,

where

()
()

()

.

ln

ln
ln

;;

1

1
1

1

2

1

2

1

�

�
�
�
�

�

�

=

�
�

�
�

�
=

�
�
�
�
�

�
�
�
�

�

�

=

tR

tR
tR

C

b
a

X

t

t
t

A

n

Λ

ΛΛ

According to the least square method, we can transfer these equations to the nor-

mal form:

,CAAXA TT = (3.13)

where T means matrix transposing.

The solution to (3.13) will is

 19

[] ,1 CAAAX TT −=

or, in more detail,

() ()
2

11

2

111

1

ln1ln
ˆ

�
�
�

�−

�
�

�
�

�−
=−=

==

===

n

i
i

n

i
i

n

i
i

n

i
i

n

i
ii

t
n

t

ttR
n

tRt
Kb (3.14)

()
= =

�
�
�

�−=
n

i

n

i
ii bt

n
tR

n
a

1 1
;1ln1 (3.15)

()
K
aB ˆ

expˆ = (3.16)

Let us consider an example of using the simple exponential model. This example

is based on a fragment of a dairy, containing information about changes made to

really developed software, and some of these changes were classified as errors,

according to the definition given in this paper. Volume of this software in Assem-

bler code lines is 32 K [8]. Time unit, used in this experiment, was 1 month. Dur-

ing testing it was calculated, how many errors were detected for each of 20 month

interval (R(ti)), included into the general debugging stage (table 3.3). Table 3.3

shows, that for the first month intensity was 53 errors per month, for the second

month 74 errors per month etc. After calculation using equations (3.14), (3.15)

and (3.16) the following estimations for B and K values were found:

.097.0ˆ,713ˆ == KB

Thus, the estimated risk function for this example is

() { }.097.0exp1.69ˆ
ii ttR −=

Based on this risk function estimation, a forecast was done for the next four

months of debugging process (numbers 21,22,23,24 in table 3.4). At the same

time, debugging and testing processes went on, and the next intensity values R(ti)

 20

were obtained. As it can be seen from table 3.4, the forecast was confirmed well

enough by experimental data.

Using (3.11) it is possible to determine time, needed to decrease error occurrence

to one per month:
() () .ˆ/ˆ/ˆˆln1 KaKBKt ==

For our example we have () 7.431 ≈t (months from debugging start). Thus, we can

conclude, that the model is working, in spite of some roughness and simplicity,

and can be applied successfully in software development.

Table 3.3 Risk function estimation for each of 20 months.

it ()itR it ()itR it ()itR it ()itR

1 53 6 50 11 24 16 34

2 74 7 14 12 36 17 23

3 38 8 43 13 46 18 11

4 21 9 69 14 11 19 1

5 27 10 48 15 28 20 10

Table 3.4 Estimations and observations for the next 4 months.

it ()itR̂ ()itR

21 9 4

22 8 9

23 7 11

24 7 9

Sum 31 33

 21

3.3. Shick-Wolverton model.

This model, described in work [9], is based on the assumption, that risk function is

proportional not only to the number of errors in software, but also to testing time

duration. It is also assumed, that the longer software is tested, the more chances

are to detect next errors, because some parts of the software are “cleaned”, and it

makes further testing process easier.

The model is based on the following assumptions:

1. All errors occur with equal probability, and are independent on each other.

2. All errors are considered to be equally serious

3. Software working environment is close to its real working environment

4. Error correction is done without making any new errors.

This model’s risk function is

() ()[] .1 iXiBKtR −−=

In this equation Xi is testing time from moment 1−it of (i-1)-th error detection, to

it - current moment.

Probability, that the software will have no faults on Xi interval, is:

() ()[] �
�

�
�
�

−−−=
2

1exp
2
i

i
X

iBKXP ,

which yields fault probability density

() ()[] ()[] �
�

�
�
�

−−−−−=
2

1exp1
2
i

ii
X

iBKXiBKXq

 22

Likelihood function for Xi is defined by equation (3.1). Differentiating its parts’

logarithm with respect to K and B, we will obtain the following maximum likeli-

hood conditions:

[]
=

=
+−

−=
∂
∂ n

i

iXiB
K
n

K
L

!

2

;0
2

1ln

[] .0
21

1ln
1

2

1
=−

+−
=

∂
∂

==

n

i

i
n

i

X
K

iBB
L

From these equations we obtain K and B estimations:

 (3.17)

().ˆˆ2 nBK
tav −

= π

For large values of n dispersions and covariances of estimations can be found us-

ing following equations:

[] [] ;1ˆ
1

ˆvar
1

1
2

D
iBK

n

i= +−=

[] ;ˆ
ˆvar

1
2DK
nB =

[] ,ˆ,ˆcov
1

1

2

D

X
KB

n

i
i

=

−
=

where

[]
;

1ˆ
ˆ

1

2

=

+−
= n

i
iXiB

nK

[]=

==
+−

n

i

n

i
iX

K
iB1

1

2

;
2

ˆ
1ˆ

1

 23

[] .

2
ˆ

1ˆ

1

2
2

1
2

1

=

=

−

+−=
n

i

i

n

i

XK

iB

n

D

Now let us apply this model to the example, used for Jelinski-Moranda model

(section 3.1). After (3.17) transform, we will have an equation, similar to equation

(3.7):

() (),, 'Amgmf nn = (3.18)

where

() () .;1ˆ;,;1

1

2

1

2

'

1
'

'

=

=

=

=+=
−

=
−

= n

i
i

n

i
in

i
nn

X

iX
ABm

Am
nAmg

im
mf

Equation (3.18) differs from (3.7) only by the formula for calculation of integral

characteristic A’. Thus, solution analysis method, described in section 3.1, is also

applicable for (3.18). For n=26 from table 3.1 we have
=

=
26

1

2 10314
i

iX ;

=

==
26

1

'2 .477,22;231828
i

i AiX Condition (3.9) holds, so we can expect exis-

tence of a unique decision. Table 3.5 contains initial values of functions from

(3.18) for .1+≥ nm It is easy to see, that the absolute value of () ()', Amgmf nn −

is monotonically increasing, and does not have a minimum value for finite values

of n. For this reason Shick-Wolverton model can be considered as unsuitable for

the given experimental data. Besides this conclusion, it is also possible to add an

upper limit Amax to (3.9) condition, situated, obviously, between A and A’.

Calculations, done by a computer, have shown, that with value Amax = 20.25 (for

n=26) () ()', Amgmf nn − does not change the sign.

 24

Table 3.5. Initial values of functions from equation (3.18) .

m ()mf26 ()Amg ,26 () ()Amgmf ,2626 −

27 3.854 5.748 -1.894

28 2.891 4.708 -1.817

29 2.427 3.986 -1.559

30 2.128 3.456 -1.328

60 0.574 0.693 -0.119

3.4. Lipov models.

These models, described in works [10,11], are a generalization of Jelinski-

Moranda and Shick-Wolverton models. Opposed to these two models, Lipov

models allow more than one error within one testing interval, and also correction

of not all of the errors, detected in this interval is allowed. The first Lipov model

(Jelinski-Moranda model generalization) is based on the following assumptions:

1. All errors occur with equal probability, and are independent on each

other.

2. All errors are considered to be equally serious.

3. Error detection intensity is the same on the entire testing interval.

4. Software working environment is close to its real working environ-

ment.

5. On the i-th testing interval if errors are detected, but only in of them

are corrected.

The last, fifth assumption makes this model quite different from previously con-

sidered models. Thus, risk function can be represented by the equation:

 () [] ,; 11 iii tttFBKtR ≤≤−= −−

 25

where
−

=
− =

1

1
1

i

j
ji nF - total number of errors, corrected by moment 1−it , and it is the

time of the i-th testing interval end (measured in a usual way or by the processor

timer). Another difference from Jelinski-Moranda model is that it intervals are

fixed, and not random.

Assuming, that the number of faults (errors, detected in the software) is a random

value with Poisson distribution, we have the following equation for the likelihood

function:

() []{ } []{ }∏
=

−− −−−=
m

i i

ii
f

ii
M f

XFBKXFBKffL
i

1

11
1 !

exp,,Κ

Considering, just like in previous models, partial derivatives of lnL, and assigning

them zero values, we can obtain a set of equations to find K and b maximum like-

lihood estimations. These estimations are:

[] ;
1ˆ

MM

M

CBT
FK

−+
=

= −−
=

−+

M

i i

i

M

M

M

FB
f

T
CB

F
1 1

,ˆ
1ˆ

where
=

=
M

i
iM fF

1

 - total number of errors, detected within M testing intervals;

()
=

− +=
M

i
MiiM TXFC

1
1 ;1 - total duration of testing,

=
=

M

i
iM XT

1
. (3.19)

M.Lipov gives the following expressions for variance and covariance of the found

estimations:

 26

{ } ()
;

ˆ
ˆvar

1
2

1

D
FB

f

K

M

i i

i

= −−
= (3.20)

{ } ;ˆ
ˆvar

2DK
FB M= (3.21)

() ;,cov 1

D

X
KB

M

i
i

== (3.22)

() .
ˆˆ

2

11
2

1
2

�
�
�

�−
�
�
�

�
�

�

�

−
=

==
−

M

i
i

M

i
i

iM X
FB

f
K
F

D (3.23)

If ()Mifi ,11 == , i.e. on the given time interval only one error is detected and

11 −=− iFi (all detected errors have been corrected), then obtained estimations

and their variance coincide with once of Jelinski-Moranda model.

The second Lipov model (Shick-Wolverton model generalization) is based on the

following assumption. Error detection rate is proportional to the current number of

errors in the software and total time, spent on its testing, including also “average”

searching time for the error, detected in the current testing interval. Considering

this, the risk function can be represented by expression:

() () ,,
2 1

1

1
1 ii

i

j

i
ji ttt
X

XFBKtR <<
�

�
�
�

�
+−= −

−

=
− (3.24)

where 1−iF is total number of errors, corrected by 1−it moment. Equation (3.24)

differs from the first Lipov model by the second factor -
�

�
�
�

�
+

−

=

1

1 2

i

j

i
j
X

X , reflecting

testing interval change.

Estimations, done similarly to previous ones, by maximum likelihood method,

yield equations:

 27

[]
��
�

�

�

−
=

−+

−+
=

= −

M

i i

i

M

M

M

MM

M

FB
f

T
CB

F
CBT

FK

1 1
'

'

''

,ˆ
1ˆ

;
1ˆ

ˆ

 (3.25)

where

() ;
2

1
1

1

1
1

'

=

−

=
−

�
�
�
�

�
++=

M

i

i

j

i
jiiM
X

XXFC

=

−

=

�
�
�
�

�
+=

M

i

i

j

i
jiM
X

XXT
1

1

1

' .
2

Variance of estimations K̂ and B̂ can be described by expressions (3.20) –

(3.23), if in these expressions Xi will be replaced by
�

�
�
�

�
+

−

=

1

1 2

i

j

i
ji
X

XX .

Let us consider as an example data from section 3.1 (Jelinski-Moranda model).

Integral characteristic for the second Lipov model is

,

2

2

1

1

1

1

1

1''

=

−

=

=

−

=

�
�
�
�

�
+

�
�
�

�
�
�

�
+

=
n

i

i

j

i
ji

n

i

i

j

i
ji

X
XX

XXiX
A

and it equals A’’ = 21.419 for n=26, which is greater, than Amax. Just like in the

case of Shick-Wolverton model, there is no sensible solution, and the second

Lipov model is inapplicable to the given data.

 28

3.5. Geometrical models.

In this section three geometrical models will be discussed. The first and the third

models were proposed by P.B. Moranda [12] (the first one is a modification of

Jelinski-Moranda model). The second model, proposed by M. Lipov [11] , extends

the first one.

In the first model it is assumed, that the initial number of errors in the program B

is not a fixed value (not limited), and moreover, not all errors occur with equal

probability. It is also assumed, that the longer software has been debugged, the

more difficult it becomes to detect errors in this software, and thus software will

never be absolutely free of errors. The basic assumptions of this model are as fol-

lows.

1. Total number of errors is unlimited;

2. Errors do not have equal probability;

3. Error detection process does not depend on errors;

4. Software working environment is close to its real working envi-

ronment.;

5. Error detection intensity forms a geometrical progression, but be-

tween error detection cases the intensity does not change.

Based on these assumptions, risk function can be described by the following equa-

tion:

() ,1−= iDKtR

where t is the time interval between (i-1)-th and I-th error detection. Initial value

of this function is R(0) = D, and the risk function is decreasing at the rate of geo-

metrical progression (0<K<1) with error detection process. Changing rate of R(t)

is proportional to inverted value of constant K:

 29

,11
1

21

>=
−
−

−

−−

KDKDK
DKDK

ii

ii

which leads to decreasing of R(t) changing step size with error detection progress.

Thus, later errors are more difficult to detect and they have less influence to error

flow decreasing, than previous ones. If again we let 1−−= iii ttX (time interval

between (i-1)-th and i-th error detection), then, in accordance with second and

third assumptions, Xi are exponentially distributed with distribution density

() { }.exp 11
i

ii
i XDKDKXq −− −=

Likelihood function for Xi is defined by expression (3.1), and its logarithm is

() ()
= =

−−−+=
n

i

n

i
i

i
n XKDKiDnXXL

1 1

1
1 .ln1ln,,ln Κ

Maximum likelihood estimations for K and D can be found from the following

equations:

=

− =−=
∂
∂ n

i
i

i XK
D
n

D
L

1

1 ;0ln

() ()
=

−

=
=−−−=

∂
∂ n

i
i

i
n

i
XKiD

K
i

K
L

1

2

1
.011ln

Solving these equations, we get:

.
2

1

ˆ

ˆ
;

ˆ

ˆˆ

1

1

1

+==

=

=

=

n

XK

XKi

XK

nKD n

i
i

i

n

i
i

i

n

i
i

i

Average time from detection of n-th error until detection of (n+1)-th error can be

estimates as follows.

() ().ˆ/1ˆ
1

n
nav KDt =+

This model does not allow to find, how many errors remain in the software, but it

is possible to find its “purity level”. “Purity level” is a relation

 30

() ()
() .1

0

0 n
n

n
software K

D
DKD

tR
tRtR

r −=−=
−

= (3.26)

Maximum likelihood estimation of this value is .ˆ1ˆ n
software Kr −=

Now let us consider the second geometrical model (Lipov model modification). Its

author aimed to weaken the assumption that the number of errors in the software

is unlimited. Here the risk function is presented by the following expression:

() ,; 1
1

ii
n tttDKtR i ≤≤= −
−

where D and K (0<K<1) are defined similarly to the previous case, 1−in is the total

number of errors, detected on all testing intervals. Maximum likelihood estima-

tions are the following:

;
ˆ

ˆ

1
1

=
−

= m

i
i

n
i XK

nD

= =

−
−−

−=
m

i

m

i
i

n
ii XKnDn

K
i

1 1

1
11 ,ˆˆ

ˆ
1

1

where m is the number of testing intervals with lengths Xi (mi ,1=), and

=
=

m

i
inn

1

 is the total number of detected errors. It is noteworthy, that this model

transforms into previously described model, if .11 −=− ini

The probability of faultless working for our software is defined by the following

expression:

() (){ } ,;ˆˆexpˆ tttKDtP m
nm <−=

and the average time from (m-1)-th to m-th fault is defined by expression:

 31

() .ˆˆ
1

mnmav KD
t =

And finally the last, third geometrical model, proposed for the case, when soft-

ware error notifications come periodically. Here, just like in previous model, only

the total number of errors, detected during each testing interval, is required. How-

ever, opposed to the previous geometrical models, this model uses an assumption,

that all testing intervals have the same length, measured by one day, one month

etc.

This model is applicable, when the interval length is small compared to the entire

testing period. The model is based on the following assumptions:

1. The number of errors in software is unlimited;

2. Error detection is an independent process;

3. Error detection is equally probable for all errors;

4. Software working environment is close to its real working environment;

5. The number of errors if , detected during the i-th testing interval, has Pois-

son distribution with parameter 1−iDφ , where D is the initial error detec-

tion rate, and φ is a scaling constant coefficient ()10 << φ ;

6. Every detected error is either corrected, or not taken into account any

more.

From assumption 5 it is clear, that error detection rate is changing as a geometrical

progression, i.e.

() 1−Φ= iDtR (3.27)

for ii ttt <<−1 , i.e. for i-th testing interval (interval length is fixed here).

 32

Likelihood function for the number of detected errors if looks like:

() () { }∏
=

−− Φ−Φ=
m

i i

ifi

m f
DDffL

i

1

11

1 !
exp,,Κ

and, consequently,

() ()
= = = =

−Φ−−Φ−+=
m

i

m

i

m

i

m

i

i
iii DfifDfL

1 1 1 1

1.!lnln1lnln

Then the equation, from which maximum likelihood estimations can be found, is:

=

−= =Φ−=
∂
∂ m

i

i

m

i
i

D

f

D
L

1

11 ;0ln

()
()

=

−= =Φ−−
Φ

−
=

Φ∂
∂ m

i

i

m

i
i

iD
if

L
1

21 .01
1

ln

From these equations we get the following expressions for the estimations:

;ˆˆ
1

1

1

�
�
�

� Φ�
�

�
�

�=
=

−

=

m

i

i
m

i
ifD (3.28)

()
()()
() .ˆˆ1ˆ

ˆ1ˆ1

1
1

1

1
mm

m

m

i
i

m

i
i

mmif

f

Φ−Φ−+Φ
Φ−Φ−=

−
+

=

= (3.29)

Variance of these estimations can be approximately evaluated as follows:

()() ;ˆ21ˆ
ˆ
ˆˆvar

1

1

0

1
3

�
�
�

� Φ−−+Φ
Φ∆

=
=

−

=

+ i
m

í

m

i

i iiiDD

{ } ;ˆˆˆvar
1

1 D
m

i

i ∆Φ=Φ
=

−

() ;ˆ,ˆcov
1

0

1 ∆�
�
�

� Φ−=Φ
−

=

−
m

i

iiD

 33

()() .ˆˆ21ˆ
ˆ

ˆ 21

0

1

1

1

0

1
3

1

1

�
�
�

� Φ−��
�

� Φ−−+Φ
Φ

Φ
=∆

−

=

−

=

−

=

+=

−
m

i

i
m

i

i
m

i

i

m

i

i

iiii

As an example let us consider application of the third geometrical model to the

data from section 3.2. We have m=20, ()ii tRf ≡ in table 3.3. Expression (3.29)

can be rewritten as

()
()() ,

11
11

1

1
1

A
f

if
mm

m

i
i

m

i
i

m

mm

==
Φ−Φ−

+Φ+−Φ

=

=
+

 (3.30)

where A is an integral characteristic for the statistical data of the example. Look-

ing for the solution of the polynomials in the left part of the equation (3.30) for

10 <Φ< , it can be found, that the only solution is .9392.0ˆ =Φ From (3.28) also

D estimation can be found: 224.56ˆ =D . Purity level (3.26) is =softwarer

.118.0ˆ1 2 =Φ−

Using (3.27), it is possible to calculate the moment, when average error occur-

rence intensity reaches one error per month rate:
() ,2.65ˆlnˆln11 ≈Φ−= Dt

i.e. after 65 months of testing. Compared to the conclusions of the example in sec-

tion 3.2, this estimation is rather pessimistic.

3.6. Schneidewind model.

This model [13] includes the third geometrical model as a particular case. The ba-

sic approach in this model is that occurrence of later errors has more significant

 34

influence on error prediction process. Let us assume, that there are m testing in-

tervals, and let if errors be detected in the I-th interval. Then there are three pos-

sible approaches:

1. Use data about errors on all m intervals;

2. Kick out data about all errors, detected during first (s-1) intervals, and use

only data of intervals from s-th to m-th;

3. Use summarized number of errors, detected from the first to (s-1)-th inter-

vals, i.e.
−

=
− =

1

1
1

s

i
is fF , and individual errors from s-th to m-th intervals.

It is proposed to use approach 1 in those cases, when data from all the intervals are

necessary to have for future software state prediction. Approach 2 - when there

are reasons to consider, that some significant change has happened in error detec-

tion process, and only the last m – (s-1) interval data are needed for prediction.

And finally, approach 3 is a compromise between first two approaches.

The model is based on the following assumptions:

1. The number of errors on a testing interval does not depend on the number

of errors on other testing intervals;

2. The number of detected errors is decreasing from one interval to another;

3. All testing intervals are of the same length;

4. Error detection rate is proportional to the number of errors, contained in

the software at the current time moment.

Error detection process is supposed to be non-uniform Poisson process with expo-

nentially decreasing error detection rate. Decreasing rate is given by the formula:

{ }tddi β−= exp

for i-th interval, where d > 0 and 0>β are the model’s constant characteristics.

 35

Total number of errors is defined by the following expression:

{ }[],exp1 iDi β
β
α −−=

and thus the number of errors in the I-th interval is

()() ()[].exp1exp1 iiDDm iii ββ
β
α −−−−=−= − (3.31)

Assuming, that Poisson’s process takes place, we obtain likelihood function:

() { } { }
,

!
exp

!
exp

,,
11

11
1

1

∏
=−

−− −−
=

− m

i i

i
f
i

s

s
F
s

m f
mm

F
MM

ffL
is

Κ

where 1−sM is the number of errors in the interval from 1 to (s-1), and ms ≤≤2

(s is an integer value).

Using the fact, that

(){ }[],1exp11 ββ
α −−−��
�
�=− sM s

we obtain:

{ } ();lnˆ;ˆexp1

ˆ

ˆ 1 y
m

f
m

i
i

=
−−

�
�
�

�

= = β
β

β
α

Here y is the solution of the polynomial equation:

()
,

111
1 ,
1

1 G
y
mF

y
F

y
Fs

m
mms

s
s =

−
−

−
+

−
−
−

−

where

()
−

= =
+ =−+=

sm

i

m

i
imsis fFfisG

0 1
, .;1

If s=1 and
=

==
m

i
imms fFF

1
, , then

() () .11 GymFyF m
mm =−−−

 36

In this case we have the following simplification for y=1:

() () () .01 =−++−++−+
mmm

m
m

m mFFGyGmFyFGGy

There is a certain relation between this model and the third geometrical model.

Really, if we assume, that

() () Φ−=−Φ−= ln;1ln βα DD

and substitute them into (3.31), we will obtain the third geometrical model. And

vice versa, if we assume, that

() ()[] ()βββα −=Φ−−= exp;exp1D

and substitute them into equation (3.27), then we will obtain Schneidewind model.

3.7. Model, based on Weibull distribution law.

Risk function for this model is presented as:

() ()() ,1−= abtbatR

where a>0 and b>0 are the model constant characteristics, and 0≥t has the mean-

ing of faultless work interval. If a>1, then error detection rate grows with time,

and if a<1, then it decreases; if a=1 then risk function is constant. Fault distribu-

tion density (time until the first error occurrence) is described by Weibull distribu-

tion:

() ()() (){ },exp 11 −− −= aa btbtbatq

and, correspondingly, for fault probability we have the Weibull distribution func-

tion:

() () (){ }.exp1
0

a
t

btdxxqtQ −−== (3.32)

 37

Average time until fault occurrence in a general case can be expressed by the

gamma-function:

() ()
∞

Γ==
0

.1 a
a
bdttPtav

Work [36] contains the following method for evaluation of unknown constants a

and b. Let in be the total number of errors on each testing interval, ()kidi ,1= -

the length of this testing interval, k – the total number of intervals, and M – the

total number of errors, detected by the current moment -
=

=
k

i
inM

1

. Let us use

the least square method to obtain a and b estimations.

Let us consider, that:

() (),1ˆ;ln;
1

0 +
�

�
�
�

�
=−==

=

MntQbabam
i

j
ji

where ()itQ̂ is the normalized total number of errors, detected by moment it - the

beginning of i-th testing interval (empirical distribution function).

Let

.ln
1

�
�
�
�

�
=

=

i

j
ii dX (3.33)

From expression (3.32) we have:

()() (){ }.exp11 abttQ =−

Taking logarithm of the both parts of this equation, we obtain:

() bata
tQ

lnln
1

1lnln −=
�

�
�

�
��
�

�
��
	

−

or

,0bmXY += (3.34)

 38

where

()()[] tXtQY ln,1lnln =−= .

Least square estimation of m and 0b can be obtained from the discrete set of

points:

,,;,;, 2211 kk YXYXYX Κ

where

()
,ˆ1

1lnln
�

�
�
�

�

�
�

�

�

�
�

	

−
=

i
i tQ
Y (3.35)

and Xi is defined by equation (3.33).

Then the least square estimations for the parameters of the line, described by equa-

tion (3.34), are defined by the following dependencies:

()()
()

;ˆ

1

2

1

=

=

−

−−
= k

i
i

k

i
ii

XX

XXYY
m

,ˆˆ
0 XmYb −=

where

==

==
k

i
i

k

i
i Y

k
YX

k
X

11
.1;1

The estimations for a and b are, correspondingly:

{ },ˆˆexpˆ;ˆˆ 0 mbbma −==

which yields the following expression for the probability of software faultless

working:

() ;ˆexpˆ
ˆ
�
�
�

��

�
�
�

�
�

	

�

�−=
a

b
ttP (3.36)

 39

.
ˆ
1

ˆ

ˆ �
�
�

�Γ=
aa

btav (3.37)

Let us consider an example of application of this model to the data from section

3.1. We have all 1=in and ii Xd = in table 3.1. The empirical distribution func-

tion looks like () ,
1+

=
n
itF i where n=26.

Applying the least square method for a number of points, defined by expressions

(3.34) and (3.35), we can obtain the estimations of Weibull distribution parame-

ters: a = 1,458 and b = 109,001. Then from equation (3.36) we can define the

probability of software faultless work after 25026 =t days from the beginning of

testing: () ,035,026 =tP and average time before fault occurrence (3.37) is

84,98=avt days.

3.8. Duan model.

This model [22] was proposed for reliability growth evaluation purposes. To es-

timate this growth the relation of error detection intensity to the total testing time

is considered. Assumptions, on which this model is based, are the following:

1. Detection of all errors is equally probable, and all errors are considered to

be equally serious;

2. Error occurrence is an independent process;

3. The total number of errors, detected by moment t, B(t), is distributed ac-

cording to Poisson law with average value m(t), where () βα ttm = .

Consequently,

() .exp
tperiodtimetestingtotal

tperiodforerrorsofnumberected
t
t

t
tm ==

βα

 40

Taking logarithm of the both parts of this equation, we obtain:

() () ,ln1lnln t
t
tmY −+=��

�

�= βα

or

,bXaY +=

where .ln;1;ln tXba =−== βα

Least square estimations for a and b look like:

;ˆˆ XbYa −=

,ˆ
2

11

2

111

�
�
�

�−

�
�

�
�

�
�
�

�
�

�−���
�

�

=

==

===

n

i
i

n

i
i

n

i
i

n

i
i

n

i
ii

XXn

YXXYn
b

where () .ln;ln
�

��
�

�
==

i
iii t

iYtX

The only necessary thing to know for the realization of this model is the time mo-

ments of error occurrence - it .

 41

4. ERROR “SEEDING” AND TAGGING AND INPUT DATA STRUC-

TURE BASED MODELS

Methods of software reliability estimation, based on error “seeding” and labeling

models, will be considered on three model examples (Mills, Beisin and simple

heuristic model). Methods, based on input data structure, are based on the model,

proposed by Nelson, which was applied in practice only after its development

based on application of sequential statistical Wald analysis. Also in this section

will be considered two other models – reliability growth model and model of the

IBM company.

4.1 Error ”seeding” and tagging models.

Let us start considering this group of models with Mills model. According to the

methodology, proposed by Mills [14], a program is initially “seeded” by a known

number of certain errors - M. The basic assumption of this model is that the

“seeded” errors are distributed in the same way, as natural errors of the software,

and, consequently, the probability of detection of a “seeded” error is the same as

for a natural error. After that the software testing process starts. Let (m+v) errors

be detected during the testing process, where m – is the number of generated or

“seeded” errors, and v – the number of natural errors. Then, according to the

maximum likelihood method, the initial number of errors in the software can be

estimated as follows: ()vmMBM = .

A serious disadvantage of this model is the assumption concerning similarity of

distribution of generated and natural errors, which is impossible to verify, espe-

 42

cially on later stages of software development, when many of simple errors (such,

as syntax errors, for example) are already excluded, and only the most difficult for

detection errors still remain in the software.

Now let us consider the Beisin model. This model is described in work [17]. Let a

software product contain Nk instructions. From these Nk instructions n instruc-

tions are selected randomly, and an error is injected into each of these n instruc-

tions. After that r instructions are randomly selected for testing. If during testing

m “seeded” and v natural errors have been detected, it means, that by the maxi-

mum likelihood method the initial number of errors can be estimated as follows:

,
1

sin
��

−
+−

=
mr
nN

vB k
Bei

where by][is denoted the integer part of a number.

Procedures in this and in the previously described model have something in com-

mon with technology of animal labeling in a certain region, and releasing them on

the same territory again. Later, based on the total number of caught animals, and

the percent of labeled animals among them, it is possible to make conclusions

about the population of this animal in the region.

When using this kind of procedure, tagging level (i.e. average number of tagged

errors) has to exceed 20, to be sure that the obtained estimations are objective

enough. These procedures can be applied at any stage after software coding is

completed.

Now let us consider the simple heuristic model. This model was proposed by B.

Rudner [15]. This model allows to get rid of the main disadvantage of the Mills

 43

model. Here testing is realized in parallel way, by two independent groups of soft-

ware developers.

Let 1m and 2m be the number of errors, detected by the first and the second

groups, correspondingly, and 2,1m will be the number of common errors, i.e. er-

rors, detected by both groups, first and second. The initial number of errors, con-

tained by software, can be estimated using hypergeometrical distribution and

maximum likelihood method:

.
2,1

21

m
mmBRudner =

4.2 Nelson model. Applying sequential Wald analysis to reduce the number of

program runs.

The model, proposed by E.Nelson [16], is based on taking into account of the pro-

gram input data structure. In the easiest case (as it was shown in section 1.2), an

input data set Ei, selected randomly from input space E, has a priori equal prob-

ability with other sets, contained by E, and this yields an estimation of fault prob-

ability, described by (2.5).

If we also consider different probabilities ip for each input data set, then estima-

tion (2.5) will be transformed as follows.

() ,ˆ
1=

=
m

i
iipmQ ϕ

which allows to write the following expression for a successful run probability:

().1
1=

−=
m

i
iipp ϕ (4.1)

 44

Then, the probability of successful performing of m runs, with input data sets for

each run selected independently, and in accordance with the distribution, defined

by (4.1), will equal:

() () .1ˆ
1

mm

i
ii

m ppmP �
�
�

� −==
=

ϕ (4.2)

Model (4.2) allows to give the following definition to software reliability: reliabil-

ity of software is the probability of m faultless runs of this software.

The next step in development of this model will be to admit, that in practice it is

typically not valid that input data set selection is independent for each run. Excep-

tions of this rule may be only run sequences with gradually increasing of an input

variable, or using a certain order of procedures (like in some real-time systems, for

example).

Taking these circumstances into account, it is necessary to redefine the distribu-

tion (4.1) in terms of probabilities pij of selection Ei data set for j-th run from a

certain run sequence. Then the fault probability for the j-th run is:

.
1=

=
m

i
iijj pQ ϕ

Correspondingly, the probability of faultless execution of m runs can be estimated

by the following expression:

() ()∏
=

−=
m

j
jQmP

1

.1ˆ

This expression can be also presented in another form:

() () ,1lnexpˆ
1

�
�

�
�
�

−=
=

m

j
iQmP

 45

and if Qi<<1, then () .expˆ
1

�
�

�
�
�

−=
=

m

j
jQmP

Let us denote jt∆ - time of j-th software run execution, and
=

∆=
j

k
kj tt

1

- summa-

rized time, spent on execution of j runs, and let us use the following risk function

expression:

() ()
,

1ln

j

j
j t

Q
tR

∆
−

−=

then we have:

() () ()3.4.expˆ
1

�
�

�
�
�

∆−=
=

m

j
jj ttRmP

If 0 →∆ ∞→m
jt , then the sum is transforming into an integral, and equation (4.3)

turns into the fundamental relation (1.2):

() () �
�

�
�
�
−=
t

dttRtP
0

exp

of the main reliability rule.

Two categories of difficulties occur when applying Nelson model in practice. The

first one is related to finding of ijp - input data distribution parameters. The sec-

ond one is related to the necessity of execution of a significant number of software

runs (tens and hundreds of thousands) to obtain acceptable accuracy of the corre-

sponding reliability estimations (fault or faultless work probability).

In practice ijp is defined by splitting the whole input data space into subspaces,

and definition of probabilities, that a selected data set Ei may belong to a particu-

lar subspace. Estimation of these probabilities is based on the evaluating of the

 46

probabilities of occurrence of each set Ei in the real working environment of the

software. After probabilities ijp are found, a random selection of m input data

sets in accordance with distribution ijp is made, using an artificial random num-

ber generator. It is also important, that experiments (runs) should be held without

interruption, and errors should not be corrected until the completion of all m runs.

Now about the second difficulty of this model – a large number of required runs.

This problem can be solved applying a well-known in statistics method, the se-

quential analysis, proposed by Wald [17]. Briefly the idea of this method is the

following (applied to software reliability problem [18]). In the sequential analy-

sis it is assumed, that if successful run probability P is close enough to 0p , then

the risk of taking a wrong decision is sufficiently small. A wrong decision is un-

derstood here as either the decision to reject a working program, or the decision to

accept an unreliable program. A programmer, testing the software, has to define

the following variables before the start of experiments:

1. minimal acceptable probability of software faultless working: Pmin = p’;

2. probability Pmax = p’’, which makes him is nearly sure, that software will

succeed in testing, and thus ''' 0 ppp << ;

3. probability α of the first type error, i.e. probability of rejecting reliable

software { }()''Pr pP ≥=α ;

4. probability β of the second type error, i.e. probability of acceptance of un-

reliable software { }()'Pr pP ≤=β .

The choice of α and β should be based on compromise considerations, because

with decreasing these values the number of required runs is increased.

The idea of sequential analysis for 0H hypothesis (software reliability 0pP =) is

comprised of verification of two competing hypothesis: ()'' pPH = and

 47

()'''' pPH = . Here faultless work probability is still understood as probability of

m faultless runs’ execution. Let us consider a binary variable iϕ :

�
�

=
...,)4.1(,0

;..,)3.1(,1
runtheduringoccuredfaultaeiholdsif

successfulisruntheeiholdsif
iϕ

Then, based on m runs’ results, we will obtain a set of ones and zeros:

mϕϕϕ Κ,2,1 . The probability of m faultless runs can be presented as the probabil-

ity of obtaining a set mϕϕϕ Κ,2,1 , in which md elements equal to zero:

() () .1 mm ddm ppmP −= −

If hypothesis H’ holds, then the probability of obtaining this kind of set P’(m) will

be the following:

() () () .'1'' mm ddm ppmP −= −

Similarly, if hypothesis H’’ holds, then we have

() () () .''1'''' mm ddm ppmP −= −

Let us construct the likelihood relation:

()
() .

'1
''1

'
''

'
'' mm ddm

p
p

p
p

mP
mP �

��
�

�

−
−

��
�

��
�

�
=

−

Sequential analysis (i.e. testing process) should be continued until the following

inequalities start to hold:

()
() .1

1 '

''

α
β

α
β −<<
− mP

mP (4.4)

If after m-th run we will have

()
() ,1

'

''

α
β−≥

mP
mP (4.5)

then software can be considered unreliable.

 However, if we have after m-th run, that

 48

 ()
() ,

1 '

''

mP
mP≤

−α
β (4.6)

then software can be accepted as reliable.

The inequalities (4.4), (4.5) and (4.6) can be rewritten in a more comprehensive,

and thus more acceptable way. After taking logarithms and some other simple

transformations, we can obtain new variables:

 () () ;lnln1ln1ln ''''''
0 ppppc +−−−−=

 () ;lnln 0
''' cpp −=γ

 ()() ;1lnln 00 ca αβ −−=

 ()() ;ln1ln 00 cb αβ −−=

in coordinates mdm, we can build two lines γγ mbbmaa mm +=+= 00 ; .

Now for the number of unsatisfactory experiments (experiments, resulting in

faults) we have relations mmm bda << . If mm bd ≥ , then software is unreliable,

and if mm ad ≤ , then software can be accepted as reliable.

Thus it is necessary to perform the following steps:

��define values of βα ,,, ''' pp before the start of experiments;

��build lines ma and mb ;

��during the testing place points mdm, on the same 2D coordinate plane;

��if the current point mdm, lies higher than mb line, than the testing process is

interrupted, and the software is considered to be unreliable (not satisfying the

given reliability requirements).

��If the current point mdm, lies lower, than ma line, then testing process is inter-

rupted, and software is accepted as reliable.

 49

��If the current point mdm, lies between the two lines, than the process has to be

continued.

It is possible to evaluate the average number of runs 'm provided that hypothesis

'H is true, and the average number of runs ''m provided that hypothesis ''H is

true. In the first case we have:

()[] ,ln1ln '' µββ ABm −+=

where () () ';1;1 µαβαβ −=−= BA - mathematical expectation of random

variable () ()mPmP ''' lnln −=µ , provided that 'H hypothesis is true. It is possi-

ble to show, that .ln '' p−=µ

In the second case we have:

 ()[] ,ln1ln '''' µαα BAm −+=

where ''µ is the mathematical expectation of µ , provided that hypothesis ''H is

true. In this case .ln '''' p−=µ

Let us consider an example of average run number estimating. Let

.99.0,98.0;10,10 '''24 ==== −− ppβα Then we have:

;21.9ln;9999
10

101
4

2

==−= −

−

AA

;6.4ln;1.0
9999.0

01.0 −=== BB

;01.0ln;02.0ln ''' −=−= pp

() ;449
02.0

21.999.06.410 2
' =⋅+−=

−

m

 50

() .458
01.0

6.49999.021.910 4
'' =

−
−+⋅=

−

m

If we exchange the values of α and β , and leave p’ and p’’ unchanged, then we

will obtain the following result: 902;228 ''' == mm .

4.3 La Padula growth model.

The idea of the model, proposed by L. La Padula [19], is in constructing reliability

curve by the least square method, according to the observed numbers of faults on

various testing stages. In this model testing is arranged as series of N stages.

Every stage is characterized by some correction or modification of the program.

On each stage ()Nini ,1= tests are performed, is of which have been successful.

The number of tests on a stage is not fixed in advance. After the completion of N-

th stage (which is not known in advance by itself) the data is substituted into the

growth curve equation:

() () ,iAuPiP −=

where P(i) is software reliability during the i-th testing stage.; P(u) is the limit of

P(i) if ∞→i ; A is a growth parameter.

If A>0, then software reliability is increasing, otherwise it is decreasing. Let us use

the least square method for P(u) and A evaluation. The following value has to be

minimized:

() ()
= =

�
��
�

�
−−=��

�
��
�

�
−=

N

i

N

i i

i

i

i

n
s

i
AuP

n
s

iPs
1

2

1

2

.

Calculating partial derivatives of s with respect to P(u) and A, we obtain a two

equations, from which we can get the least square estimations:

 51

;
11

1

ˆ

1
2

2

1

111
2

�
�
�

�−�
�

�
�

�

�
�
�

	
�

�
�
�

�
��

�
��
�

�
−

=

==

===

N

i

N

i

N

i

N

i i

i
N

i i

i

i
N

i

in
s

n
s

N
A

() .1ˆ1ˆ
1 1

�
�
�

�
+=

= =

N

i

N

i i

i

n
s

i
A

N
uP

Naturally, it is necessary to know the number of runs in , executed on each stage,

and the number of successful runs on each stage - is . A testing stage is supposed

to end and the next testing stage to begin when some changes are made in the

software, related to error correction, or some program modifications, or to some

other reasons.

4.4 Model , proposed by IBM company professionals.

During the exploitation of the current software version by the user, the developer

typically performs active maintenance of this software, i.e. makes some amend-

ments and bug fixes in this version without expecting the user’s requirement for it.

And this maintenance may include also creation of new functions for the software.

From some moment, when the developer considers his tasks to be completed, pas-

sive maintenance starts, i.e. corrections are done only after the user’s requests.

During software maintenance a considerable amount of new errors is added to

every new version, together with amendments and modifications, which leads to

corrections in the next version also. The developers of well known American

company IBM tried to forecast such kind of corrections from version to version,

based on a large number of experimental data, gathered during operational system

OS/360 maintenance [3,4]. The model, proposed by IBM developers, is based on

 52

observations of the software system development history, and the hypothesis of

statistical stability of dependence between some parameters, characterizing vari-

ous system versions. As the basic measurement unit of software complexity was

selected a software module. Module creation rules were standardised.

The volume of the i-th version is presented by the number Mi of modules, in-

cluded into this version. When releasing the i -th version, a parameter OCMi is

changed (the number of old corrected modules), and a parameter NMi is added

(the number of new modules), so that iii NMMM += −1 .

During the i-th version improving (the period of (i+1)-th version preparation) fur-

ther correction of modules is happening. These corrected modules are divided into

two groups: the first group is characterised by a parameter MCMi – multiple cor-

rection modules (10 or more corrections per module), and the second group – by

CMi, modules with number of corrections less than 10. This classification is

needed for simpler calculations, and also because of the fact, that small number of

corrections is done to most of the modules.

It is also noteworthy, that the CM group does not require any special debugging

tools, whereas the MCM group may require some additional efforts during de-

bugging.

During analysis of the maintenance history of IBM’s OS/360 it was established,

that there is a considerable correlation between parameters, characterizing the ex-

tent of changes and (correspondingly) error level (in CM and MCM groups), and

parameters, characterizing complexity and volume of the next version (OCM,

NM). Applied to OS/VS1 this statement looked as follows.

.15.09.0 iii OCMNMCM += (4.7)

 53

.06.015.0 iii OCMNMMCM += (4.8)

If we suppose that terms “correction” and “error” are identical, than the model of

evaluation of the total number of errors in software, proposed by IBM profession-

als and based on the given explanations, looks as follows:

,223 iii CMMCMCORB +== (4.9)

where CORi is the total number of corrections, made in the modules (or, in other

words, the total number of expected errors), and coefficients 23 and 2 are the av-

erage amount of corrections per module in MCM and CM groups, correspond-

ingly.

The forecast is based on the planned number of corrections to old modules and

added new modules (OCMi, NMi) for the realization of the new required functions

of the software. If the number of actually done corrections is less than the pre-

dicted number of corrections, then there are probably still a lot of undetected er-

rors in the software. The following conclusions can be made from the IBM’s

model:

��during passive maintenance stage (CMi = 0, OCMi is small), then the number

of corrected modules and the number of corrections inside these modules are

decreasing rapidly from one version to another;

��the number of expected errors in the next version may increase compared to

the older version, if many enough of old modules have been changed (OCM),

and/or many enough new modules have been added (NM).

��adding of new modules has a stronger effect on new errors’ number increas-

ing, than corrections, made to old modules; at the same time, if it is possible to

create a new module instead of making corrections to a few older modules (5

or more), this leads to decreasing of the number of expected errors. In other

words, on a certain maintenance stage it becomes no longer effective to mod-

ify old modules, and creation of a new module is required.

 54

Let us consider an example, illustrating application of the reliability model, pro-

posed by IBM, which is described by equations (4.7), (4.8) and (4.9). Work [19]

contains data related to maintenance of 19 versions of the OS/360 system. By the

time of 19-th version release, its volume reached 4800 modules, which was four

times as much as the volume of the first version, released 4.3 years earlier. Table

4.1 contains the initial data of the last five versions.

To use the data from table 4.1, it is necessary to make some additional calcula-

tions. Knowing the size of the 19-th version, it is possible to calculate volumes Mi

of the four previous versions using the first table row. This allows to evaluate the

total number of modified modules (NMi + OCMi), using their part of the total vol-

ume (row 2 of in table 4.1) . For verification of the calculation correctness it is

possible to multiply the data of the 3-rd and 4-th rows, or use the last row. This

kind of “verification” gives a less accurate result, because of decreased number of

decimals in the initial data. After finding the values of NMi and OCMi we are able

to use the model, i.e. the equations (4.7), (4.8) and (4.9). The final results are

summarized in table 4.2. Unfortunately, work [20] doesn’t allow to make any con-

clusions about correspondence of scientific estimations and actual error amount,

because of the company’s security considerations. In work [21], however, it is

mentioned, that every new version of OS/360 contains more than 1000 errors; it is

also mentioned, that one of the last versions contained 11000 errors. This confirms

indirectly the estimations, given in table 4.2, and it is an argument in favor of the

reliability model, proposed by IBM.

 55

T able 4.1. The initial data used for model application.

Version number
Parameter

15 16 17 18 19

System growth (number of

new modules NMi)
135 171 183 354 410

Changed modules (part of the

total volume
0.33 0.43 0.48 0.50 0.55

Change rate (modules/day) 12.5 12.0 9.6 9.9 9.6

Duration of a version

development (days)
96 137 201 221 275

OCMi/CMi relation 7.9 8.6 10.0 5.1 5.4

T able 4.2. The results of IBM’s model application.

Version number
Parameter

15 16 17 18 19

Version volume Mi number of modules) 3682 3853 4036 4390 4800

Total number of corrections (NMi + OCMi) 1215 1657 1937 2195 2650

Number of new modules (NMi) 135 171 183 354 410

Number of old changed modules (OCMi) 1080 1486 1754 1841 2240

Number of corrected modules (CMi) 284 377 428 595 705

Number of many times corrected modules

(MCMi)
85 115 133 164 196

Total number of corrected modules CORi (the

number of expected errors in the software)
2523 3399 3915 4962 5918

 56

5. RESULTS

This section contains the testing results for some of the models, described in sec-

tion 3. Experiments were done with three models: Jelinski-Moranda model, the

first geometrical model, and also simple exponential model. The data, which was

used in these tests, were of two kinds – real data, taken from literature sources,

and generated data. In this situation it was not possible to obtain real data by ex-

periments, because it would require long-time observations of significant soft-

ware projects. Data from section 3.1 example was used to test Jelinski-Moranda

model and the first geometrical model, and simple exponential model was tested

using example from section 3.3. The rest of testing data was generated using three

different distributions: exponential, normal and uniform. It was done with the pur-

pose to investigate influence of distribution change on models’ functionality. All

the tests were done not only for a single data set, but also for its reduced forms. In

the first experiment the whole data set was used, but later – 95, 90, 85, 80 etc. per-

cents of this data set. The purpose of it was to investigate, how sensitive are the

models to the input data set size. For most of the experiments reduction of the data

set was regular – from 100 to 5 percents, with step 5. For Jelinski-Moranda model,

however, it was not possible, because of convergence problems. This model gave

a finite output not for all possible input sets, but just for some of them, so tests

were done for those percents of initial size, with which the model converged.

In order to estimate the extent of models’ sensibility to the data size change, corre-

lation coefficient was calculated between percent of data used and the model’s

output. A correlation coefficient is a number between -1 and 1 which measures the

degree to which two variables are linearly related. If there is perfect linear rela-

 57

tionship with positive slope between the two variables, we have a correlation

coefficient of 1; if there is positive correlation, whenever one variable has a high

(low) value, so does the other. If there is a perfect linear relationship with negative

slope between the two variables, we have a correlation coefficient of -1; if there is

negative correlation, whenever one variable has a high (low) value, the other has a

low (high) value. A correlation coefficient of 0 means that there is no linear

relationship between the variables.

Output values of the models, for which correlation coefficients were calculated

and diagrams built, were not the same for all three models, because there is some

difference in their way of result’s presentation form. For Jelinski-Moranda model

the output values of predicted total number of remaining errors and time left until

the next error detection were used. For the first geometrical model – average time

until the next error detection and software purity level (this model is based on the

assumption, that the total number of errors is unlimited, and thus it can’t be used

to predict its value). For the simple exponential model as the output values were

used the total number of errors in the program and (the most sensible for this

model) the number of errors, detected on the next testing interval.

Section 5.1 reviews results of the Jelinski-Moranda model testing, section 5.2 –

the first geometrical model testing results, and section 5.3 -results for the simple

exponential model. In section 5.4 the testing results are discussed

5.1 Testing results for Jelinski-Moranda model.

The Jelinski-Moranda model was tested on four different input data sets: the data

set used in example from section 3.1 of 26 samples and three generated data sets

 58

of 50 samples each. They were generated using exponential distribution (with mu

= 0.5), normal distribution (with mu = 50 and sigma = 20), and uniform distribu-

tion with A = 0 and B = 100. Figures 5.1-5.4 depict the resulting diagrams, ob-

tained from testing of data sets from section 3.1, exponentially , normally, and

uniformly distributed data sets, correspondingly. Table 5.1 contains correlation

coefficients, calculated for all the testing sets, between the percent of data size,

used for testing, and the output values of the model (i.e. total number of errors and

time left until the next error occurrence). A complete set of testing results for this

model can be found in Appendix 1.

Reduction of data set size (80-100%)

20

30

40

50

60

70

80 85 90 95 100 105

Percent of data used

Pr
ed

ic
te

d
nu

m
be

r o
f

er
ro

rs

Reduction of data set size (80-100%)

0
10
20
30
40
50
60

80 85 90 95 100 105

Percent of data used

Pr
ed

ic
te

d
tim

e
to

 n
ex

t
er

ro
r,

da
ys

Figure 5.1. Test results for the dataset from section 3.1. Diagrams for predicted

number of errors and time to the next error.

 59

Reduction of data set size

0

200

400

600

800

0 20 40 60 80 100

Percent of data used

Pr
ed

ic
te

d
nu

m
be

r o
f

er
ro

rs

Reduction of data set size

0.00

0.50

1.00

1.50

2.00

2.50

0 20 40 60 80 100

Percent of data used

Pr
ed

ic
te

d
tim

e
to

 n
ex

t
er

ro
r,

da
ys

Figure 5.2. Test results for the exponentially distributed dataset. Diagrams for pre-

dicted number of errors and time to the next error.

 60

Reduction of data set size

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Percent of data used

Pr
ed

ic
te

d
nu

m
be

r o
f e

rro
rs

Reduction of data set size

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00

0 20 40 60 80 100 120

Percent of data used

Pr
ed

ic
te

d
tim

e
to

 n
ex

t
er

ro
r,

da
ys

Figure 5.3. Test results for the normally distributed dataset. Diagrams for pre-

dicted number of errors and time to the next error.

 61

Reduction of data set size

0
50

100
150
200
250
300
350
400

0 10 20 30 40 50

Percent of data used

Pr
ed

ic
te

d
nu

m
be

r o
f e

rro
rs

Reduction of data set size

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00

0 10 20 30 40 50

Percent of data used

Pr
ed

ic
te

d
tim

e
to

 n
ex

t e
rro

r

Figure 5.4. Test results for the uniformly distributed dataset. Diagrams for pre-

dicted number of errors and time to the next error.

Table 5.1. Correlation coefficients for Jelinski-Moranda model.

 Total number of errors, B Time to next error, Xnext

Example from 3.1 -0.8 0.6

Exponential 0.4 -0.4

Normal 0.5 -0.2

Uniform 0.6 -0.5

 62

5.2 Testing results for the first geometrical model.

The first geometrical model was tested on the same datasets, as the Jelinski –

Moranda model. The only difference in testing was that the percent values of used

data size was changed on regular basis – from 100 to 5 with step 5. It became pos-

sible for this model, because it has no convergence problem – the output can be

obtained for any data set. Figures 5.5 – 5.8 depict the diagrams, obtained after

testing the same four examples, as for Jelinski-Moranda model. Table 5.2 contains

the correlation coefficients between the percent of data size used and the model’s

output values: average time to the next error occurrence and software purity level.

A complete set of testing results for this model can be found in Appendix 2.

 63

Reduction of data set size

0.00

20.00

40.00

60.00

80.00

100.00

5 15 25 35 45 55 65 75 85 95

Percent of data used

Av
er

ag
e

tim
e

to
 n

ex
t e

rro
r,

da
ys

Reduction of data set size

-0.500

-0.250

0.000

0.250

0.500

0.750

0 20 40 60 80 100

Percent of data used

So
ftw

ar
e

pu
rit

y
le

ve
l

Figure 5.5. Test results for the dataset from section 3.1. Diagrams for predicted

time to the next error occurrence and software purity level.

 64

Reduct ion of data set size

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

5 25 45 65 85 105

Percent of data used

Av
er

ag
e

tim
e

to
 n

ex
t e

rro
r,

 d
ay

s

Reduct ion of data set size

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80 100

Percent of data used

So
ftw

ar
e

pu
rit

y
le

ve
l

Figure 5.6. Test results for the exponentially distributed dataset. Diagrams for pre-

dicted time to the next error occurrence and software purity level.

 65

Reduct ion of data set size

0.00

20.00

40.00

60.00

80.00

100.00

5 15 25 35 45 55 65 75 85 95

Percent of data used

Av
er

ag
e

tim
e

to
 n

ex
t

er
ro

r,
da

ys

Reduction of data set size

-0.500

-0.250

0.000

0.250

0.500

0 20 40 60 80 100

Percent of data used

So
ftw

ar
e

pu
rit

y
le

ve
l

Figure 5.7. Test results for the normally distributed dataset. Diagrams for pre-

dicted time to the next error occurrence and software purity level.

 66

Reduc tion of da ta set size

0.00

20.00

40.00

60.00

80.00

100.00

5 15 25 35 45 55 65 75 85 95

Percent of da ta used

Av
er

ag
e

tim
e

to
 n

ex
t e

rro
r,

da
ys

Reduc tion of d a ta set size

-0.500

-0.250

0.000

0.250

0.500

0.750

0 20 40 60 80 100

Perc ent of da ta used

So
ftw

ar
e

pu
rit

y
le

ve
l

Figure 5.8. Test results for the normally distributed dataset. Diagrams for pre-

dicted time to the next error occurrence and software purity level.

Table 5.2. Correlation coefficients for the first geometrical model.

 Time to next error, avrt Software purity level, r

Example from 3.1 0.03 -0.55

Exponential 0.03 -0.12

Normal 0.07 -0.25

Uniform -0.14 0.17

 67

5.3 Testing results for the simple exponential model.

This model was also tested on four data sets, but the first example was not from

section 3.1, but from section 3.3., however it is also a real-life example. The other

three examples were also of three distributions (exponential, normal and uniform),

but the sets were generated separately (thus, the datasets were not the same, as for

the two previous models, only distribution was the same). They were generated

using exponential distribution (with mu = 5), normal distribution (with mu = 50

and sigma = 20), and uniform distribution with A = 1 and B = 100. Figures 5.9-

5.12 depict the testing results for the four datasets, and table 5.3 contains correla-

tion coefficients for the predicted values of total number of errors and next value

of the risk function (or probable next number of detected errors). A complete set

of testing results for this model can be found in Appendix 3.

 68

Reduc tion of da ta set size

-1000

0

1000

2000

3000

4000

5000

6000

0 50 100 150

Percent of data used

Pr
ed

ic
te

d
nu

m
be

r o
f e

rro
rs

Red uc tion of da ta set size

0.000

20.000

40.000

60.000

80.000

100.000

120.000

0 20 40 60 80 100 120

Percent of data used

Pr
ed

ic
te

d
ne

xt
 ri

sk

fu
nc

tio
n

va
lu

e

Figure 5.9. Test results for the dataset from section 3.3. Diagrams for the total

number of errors and predicted time to the next error occurrence.

 69

Reduc tion of da ta set size

- 16000.000

- 12000.000

- 8000.000

- 4000.000

0.000

4000.000

0 50 100 150

Percent of data used

Pr
ed

ic
te

d
nu

m
be

r o
f e

rro
rs

Reduc tion of da ta set size

0.000

2.000

4.000

6.000

8.000

0 50 100 150

Percent of data used

Pr
ed

ic
te

d
ne

xt
 ri

sk

fu
nc

tio
n

va
lu

e

Figure 5.10. Test results for the dataset of exponential distribution. Diagrams for

the total number of errors and predicted time to the next error occurrence.

 70

Reduc tion of da ta set size

- 40000

- 20000

0

20000

40000

60000

0 50 100 150

Percent of data used

Pr
ed

ic
te

d
nu

m
be

r o
f e

rro
rs

Red uc tion of da ta set size

0

20

40

60

80

0 20 40 60 80 100 120

Percent of data used

Pr
ed

ic
te

d
ne

xt
 ri

sk

fu
nc

tio
n

va
lu

e

Figure 5.11. Test results for the dataset of normal distribution. Diagrams for the

total number of errors and predicted time to the next error occurrence.

 71

Reduc tion of da ta set size

- 30000.000

- 20000.000

- 10000.000

0.000

10000.000

20000.000

30000.000

0 50 100 150

Percent of data used

Pr
ed

ic
te

d
nu

m
be

r o
f e

rro
rs

Reduc tion of da ta set size

0.000
10.000
20.000
30.000
40.000
50.000
60.000
70.000

0 20 40 60 80 100 120
Percent of data used

Pr
ed

ic
te

d
ne

xt
 ri

sk
 fu

nc
tio

n
va

lu
e

Figure 5.12. Test results for the dataset of uniform distribution. Diagrams for the

total number of errors and predicted time to the next error occurrence.

 72

Table 5.3. Correlation coefficients for the simple exponential model.

Total number of errors, B

Next risk function value,

Rnext

Example from 3.3 0.24 -0.49

Exponential -0.25 0.13

Normal 0.33 -0.45

Uniform -0.51 0.08

5.4 Discussion of the results.

For Jelinski-Moranda model it is possible to say, that the worst for its convergence

is uniform distribution. It was almost impossible to make it work with this data

set, and only for a few cases (a few values of the percent of used data size) the ex-

periments succeeded. Exponential distribution was much better (which was

expectable, because the model is built under the assumption of this distribution),

and for normal distribution the result for the total number of errors was quite close

to one for exponential case. Even the shape of the corresponding diagrams is

nearly similar. The other two models are much less sensitive to data distribution,

in the sense, that they don’t have convergence problems at all. For any input data

set they give some output. The examples, taken from “real life” (opposed to the

generated ones) can be used to confirm that all of the three models are usable,

because the results given by them are close to reality (see sections 3.1 and 3.3 for

details about these examples). As to the reduction of data set size, the best results

have been shown by the simple exponential model. The result, obtained by this

model (Rnext – the next predicted risk function value) is the most stable with

respect to the size of input dataset, which can be easily seen from the diagrams

 73

size of input dataset, which can be easily seen from the diagrams (figures 9-12).

For Jelinski-Moranda model it seems, that the predicted time left until the next

error occurrence is more stable to the data set size changes, than the total number

of errors (figures 2-4). It can be well seen from diagrams in figures 2-4, but not in

figure 5.1, because in the test case, depicted in figure 5.1 (example from section

3.1) the data size was initially small (26 samples), and after reduction of this data

size the model did not converge in most of the cases. The first geometrical model

seems to be the most sensitive to the data size change, because it gave the most

unstable results (figures 5-8). This can be also concluded from the correlation co-

efficients (table 11). The coefficients for tavr (average time until the next error)

have quite small values, which means, that the result is changing nearly independ-

ently on the data size used, and thus even a small change in the initial data can

yield an unpredictable influence on the predicted tavr. Of course, sensitivity to the

data size in this context means sensitivity to initial data in general, because if the

data set is reduced, not only its size, but also its content is changed.

 74

6. CONCLUSION

In this paper a survey of two software reliability model groups has been provided:

risk-function based models, and models, based on error “seeding” and tagging

and input space structure. Also practical work was done on investigation of the

first group models, and its results were presented and discussed. The investigated

models were Jelinski-Moranda model, the first geometrical model and the simple

exponential model. The results were discussed from two viewpoints: how the

models handle various input data distributions, and how sensitive they are to

changes in the input data size. The most certain conclusions on the distribution

problem were done about Jelinski-Moranda model – uniform distribution is defi-

nitely not suitable for this model, and exponential distribution seems to be the best

for it. The simple exponential model turned out to be the most stable, i.e. not very

sensitive to the changes in the input data size, and the first geometrical model –

vice versa, the most unstable. For Jelinski-Moranda model the total number of er-

rors turned out to be more sensitive to the data size changes, than the time, left

until the next error detection.

It is impossible to say, which of the models is the best applicable for software reli-

ability evaluation. In practice it is recommended to “try on” each of the pre-

selected models to the particular problem (to the error flow), and choose the most

adequate one. It is important to pay attention to the assumptions, on which the

models are based, and their requirements to the input data. After that each of the

suitable models can be applied to the problem. In order to be able to estimate, if

the result was correct or not (to select the best suitable of the models), it is reason-

able to apply the models not to all data available, but only to some part of it (about

 75

75-80%), and the rest would serve as a test set, to verify the correctness of the re-

sults, given by the models. The model, which gives the best result, can be applied

further for this problem.

 76

REFERENCES

[1] Pressman, R.: Software Engineering: A Practitioner's Approach.

New York: McGraw-Hill, Inc, 1997.

[2] Jelinski Z., Moranda P.B. Software reliability research // Statistical

Computer Performance Evaluation/ W. Freibenger. – New York:

Academic Press, 1972. P. 465-484.

[3] Липаев В. В. Качество программного обеспечения. - М.

Финансы и статистика, 1983. – 263 с.

[4] Майерс Г. Надежность программного обеспечения. – М.: Мир,

1980. – 360 с.

[5] Littlewood B., Verall B. J. A Bayesian reliability growth model for

Computer Software // Journal of the Royal Statistical Society. -

Ser.C. – Vol. 22. – 1978. – N3. – P. 332 – 346.

[6] Forman E. H., Singpurwalla N. D. Optimal Time Intervals for Test-

ing Hypotheses on Computer Software Error // IEEE Transactions on

Reliability. – Vol R-28. – 1979. – N3. – P. 250 – 258.

[7] Goel A., Okumoto K. Time-Dependent Error Detection Rate Model

for Software Reliability and Other Performance Measures // IEEE

Transactions on Reliability. – Vol. R-28, 1979. – N3. – P. 206 - 211

[8] Никандров А. В., Полонников Р. И. Анализ надежности

программного обеспечения // Вопросы радиоэлектроники. –

1989. – N 3 (14). C. 88 –92.

[9] Schick G. J., Wolverton R. W. An Analysis of Computing Software

Reliability Models // IEEE Transactions on Software Engineering.

Vol. SE – 4, 1978. – N 2. – P. 104 – 120.

 77

[10] Lipow M. Model of Software Reliability // Proceedings of the Win-

ter Meeting of the Aerospace Division of the American Society of

Mechanical Engineers. 1978. –78 – WA/Aero-18. – P. 1-11

[11] Lipow M. Some Variations of a Model of Software Time-to-Failure

// TRW System Group. – August, 1974. – Correspondence ML-74-

2260-1 – P. 9-21

[12] Moranda P.B. Event-Altered Rate Models for General Reliability

Analysis // IEEE Transactions on Reliability. Vol. R-28, 1979. N5.

P. 376-381.

[13] Schneidewind N.F. Analysis of Error Processes in Computer Soft-

ware // Sigplan Not. Vol. 10, 1975. N6. P. 337 - 346

[14] Mills H. D. On the statistical Validation of Computer Programs //

FSC-72-6015, IBM Federal System Division. -

[15] Rudner B. Seeding / Tagging Estimations of Software: Models and

Estimates, RADC TR 77-15, Rome Air Development Center

A036655, 1977.

[16] Nelson E. Estimating Software Reliability From Test Data // Microe-

lectronics and Reliability. Vol. 17, 1978. – N1. – P. 67 – 73.

[17] Вальд А. Последовательный анализ. – М.: Физматгиз, 1960. – 3

 28 с.

[18] Бочаров В. П. Последовательный анализ надежности

программной продукции. // Программирование. – 1988. – N4. –

C. 93 – 98.

[19] La Padula L. J. Engineering of Quality Software Systems, vol. V111.

– Software Reliability Modeling and Measurement Techniques. //

Mitre Corp., RADC TR 74 – 325. Rome Air Development Center,

1976.

 78

[20] Леман М. М. Программы, жизненные циклы и законы эволюции

ПО // Гр. Института инженеров по электротехнике и

радиотехнике. – 1980. – Т. 68. – N9. – c. 26 – 45.

[21] Йодан Э. Структурное проектирование и конструирование

программ. – М.: Мир, 1979. 416 с.

[22] Duan J. T. Learning Curve Approach to Reliability Monitoring //

EEE Transactions on Aerospace. – Vol. 2, 1964. – P. 563 – 566.

[23] Fenton N. "Software Metrics: A Rigorous Approach", Chapman &

Hall, 1991.

[24] Kan S. H. "Metrics and Models in Software Quality Engineering",

Addison-Wesley Publishing Compagny, 1994.

[25] Schneidewind N. "Methodology for Validating Software Metrics",

IEEE Transactions on Software Engineering, Vol. 18, no. 5, , May

1992. - pp. 410-442.

