

LAPPEENRANTA UNIVERSITY OF TECHNOLOGY

Department of Industrial Engineering and Management

 Sami Kaukavuori

 Requirements Management in the

 Software Development Process

The subject of this thesis was approved by council of the Department of

Industrial Engineering and Management in the meeting of May 3, 2000.

Supervisor: Prof. Seppo Pitkänen

Instructor: Petri Nissinen

Espoo, August 30, 2000

Sami Kaukavuori

Vallikallionkuja 4 D 41

02600 Espoo

Tel. +358-40-7586841

i

ACKNOWLEDGMENTS

This Master's Thesis was written in Nokia Information Management during the

year 2000.

I would like to thank my instructor Petri Nissinen for the possibility to make

this thesis and for the interesting subject. I'd also like to thank all the other

people who have helped me during this project.

Special thanks to my parents for the confidence in me, and all the support

during, and most of all prior to, the making of this thesis.

Espoo, August 30, 2000

Sami Kaukavuori

ii

ABSTRACT

Author: Sami Kaukavuori

Title: Requirements Management in the Software Development Process

Department: Industrial Engineering and Management

Year: 2000 Place: Espoo

Master’s Thesis. Lappeenranta University of Technology.

107 Pages, 21 Figures, and 3 Tables

Supervisor Professor Seppo Pitkänen

Keywords: Requirements Management, Software Development, Software

Engineering

Hakusanat:Vaatimustenhallinta, ohjelmistokehitys

Software development is a complex process, and has a lot to do with the

requirements for the software product. These are several different kinds of

requirements, and they are presented in various levels; from intended functionality

of a certain part of the software to very detailed requirements.

Managing these requirements is also very complicated, although in literature it is

presented as a simple straightforward process, which consists of several distinct

phases.

The emphasis of this thesis was on how to handle changes in these requirements,

other feedback after the software has been released, and how the overall process

could benefit from using a requirements management tool.

Using a requirement management tool (RMT) does not solve any problems, but it

gives the means to improve requirements management considerably. Some

advantages of using RMT are: centralised storing of the requirements, using

different kind of access rights for different users concerning access to and

changing the data, structured handling of the change management process, impact

and traceability analysis, and access to the data using a web browser.

iii

TIIVISTELMÄ

Tekijä: Sami Kaukavuori

Työn nimi: Vaatimustenhallinta ohjelmistokehityksessä

Osasto: Tuotantotalous

Vuosi: 2000 Paikka: Espoo

Diplomityö. Lappeenrannan Teknillinen Korkeakoulu.

107 sivua, 21 kuvaa ja 3 taulukkoa

Tarkastajana professori Seppo Pitkänen

Hakusanat: Vaatimustenhallinta, ohjelmistokehitys

Keywords: Requirements Management, Software Development, Software

Engineering

Ohjelmistokehitys on monimutkainen prosessi. Yksi keskeisistä tekijöistä siinä on

ohjelmistolle asetettavat vaatimukset. Näitä vaatimuksia on hyvin monenlaisia, ja

eri tasoisia; toivotusta toiminnallisuudesta hyvinkin yksityiskohtaisiin

vaatimuksiin.

Näiden vaatimusten hallinta on myöskin hyvin monitahoista, vaikkakin se on

kirjallisuudessa esitetty selkeänä prosessissa, joka on sarja toisistaan erottuvia

vaiheita.

Työn painopiste oli näiden vaatimusten muutoksen ja valmiiseen ohjelmistoon

kohdistuvan palautteen hallinnassa, ja kuinka vaatimustenhallintaohjelmisto voisi

olla avuksi näissä prosesseissa.

Vaatimustenhallintatyökalun käyttö ei sinällään ratkaise mitään ongelmia, mutta

se suo puitteet parantaa vaatimusten hallitsemista. Työkalun käytöstä on muun

muassa seuraavia etuja: vaatimusten keskitetty varastointi, käyttäjäoikeuksien

määrittely koskien eri käyttäjiä ja heidän pääsyään näkemään tai muuttamaan

tietoa, muutoksenhallintaprosessin hallinta, muutosten vaikutuksen analysointi ja

jäljitettävyys ja pääsy tietoihin web-selaimella.

iv

INDEX

1. INTRODUCTION... 1

1.1 Background ... 1

1.2 Goals and Objectives .. 1

1.3 Scope and Limitations .. 2

1.4 Structure of Thesis .. 2

2. SOFTWARE QUALITY EVALUATION.. 3

2.1 Quality.. 3

2.2 Reliability... 6

2.3 Efficiency ... 7

2.4 User Perceived Quality and Quality of Use .. 7

2.5 Software Quality of Use.. 9

2.6 Context of Use ... 9

2.7 Approaches to Software Quality.. 11

2.8 Usability ... 13

2.9 Measurable Human Factors Goals .. 15

2.10 Documentation.. 16

2.11 Summary ... 19

3. SOFTWARE ENGINEERING... 21

3.1 Computed-Based Systems .. 21

3.2 Computer Systems Engineering .. 22

3.3 Phases in Software Engineering... 24
3.3.1 Definition Phase .. 25

3.3.2 Development Phase ... 26

3.3.3 Verification, Release, and Maintenance Phase .. 27

3.4 Different Approaches to Software Engineering ... 29
3.4.1 The Classic Life Cycle .. 29

3.4.2 Prototyping .. 30

v

3.4.3 The Spiral Model... 31

3.5 Summary.. 36

4. REQUIREMENTS MANAGEMENT .. 37

4.1 Requirements Management Tools... 37
4.1.1 High-End Requirements Management Tool Profiles... 39

4.1.2 General-Purpose Requirements Management Tools ... 40

4.2 Taming Scope Scourge.. 41

5. FEEDBACK .. 43

5.1 Positive Feedback.. 43
5.1.1 Service Activity vs. SLA Reports.. 44

5.2 User Satisfaction Monitoring ... 46
5.2.1 Focused Feedback ... 47

CASE NOKIA ... 48

6. NOKIA... 48

6.1 Nokia IM.. 48

6.2 Delivery Process Application Services (DPA)... 49

6.3 Sales Configurator .. 50

7. Present processes ... 52

7.1 Feedback Channels ... 53

7.2 Service Delivery... 54

7.3 Service Level Agreement .. 55

7.4 Global Support Model .. 57
7.4.1 Service User .. 58

7.4.2 Service Desk.. 59

7.4.3 Key User.. 60

7.4.4 Concept Owners (Regional) .. 60

7.4.5 Application Support... 61

7.4.6 Operation Center ... 61

7.4.7 On-Site Support ... 62

7.4.8 Local Computing ... 63

7.4.9 Concept Owner (Global) ... 63

vi

7.4.10 Advanced Application Support ... 64

7.4.11 Advanced Infra Support... 65

7.4.12 Configuration Owners ... 65

7.5 User Support.. 66
7.5.1 Levels of User Support and Issue Resolution Times ... 66

7.6 Training ... 67

7.7 CR and SIR Processes... 68
7.7.1 SIR Process.. 69

7.7.2 CR Process .. 73

7.8 RMT ... 78

7.9 Key User Workshop.. 79

7.10 Deployment.. 79

8. RESULTS .. 80

8.1 Requirements Management Tool Workshops .. 80

8.2 Requirements Management Process ... 81

8.3 Requirements Management Tool Advantages.. 83
8.3.1 Access Rights .. 83

8.3.2 DOORSnet... 83

8.3.3 Change Proposal System ... 83

8.3.4 Export and Import.. 84

8.3.5 History and Baselines .. 84

8.3.6 Links to Various Other Applications... 85

8.3.7 Attributes and Views ... 85

8.3.8 Traceability and Impact Analysis .. 86

8.3.9 Modifiability.. 86

8.4 Possible Problems Implementing Requirements Management Tool........ 86

9. CONCLUSION.. 87

REFERENCES.. 88

APPENDICES

APPENDIX 1. CR/SIR Fields ... 94

vii

TABLE OF FIGURES

Figure 1. ISO/IEC CD 9126-1 definitions.. 4

Figure 2. ISO/IEC 9126 quality model .. 5

Figure 3. Quality of use measures determined by the context of use 10

Figure 4. Approaches to software quality .. 12

Figure 5. Relationship between different types of quality 12

Figure 6. System elements... 22

Figure 7. Software engineering – definition phase ... 26

Figure 8. Software engineering – development phase 27

Figure 10. The classic life-cycle .. 30

Figure 11. Prototyping .. 31

Figure 12. The spiral model... 32

Figure 13. Representative software development life cycle............................ 35

Figure 14. Sales configuration... 51

Figure 15. Sales configurator; sell & deliver phase.. 51

Figure 16. Feedback channels ... 53

Figure 17. Global support model for Nokia IM.. 57

Figure 18. Change management process.. 68

Figure 19. SIR process .. 70

Figure 20. CR process ... 74

Figure 21. Requirements management process .. 82

LIST OF TABLES

Table 1. Levels of user support and issue resolution times:............................ 67

Table 2. SIR process responsibilities: .. 72

Table 3. CR process responsibilities:... 76

viii

ABBREVIATIONS AND ACRONYMS

AD Applications Development

API Application Programming Interface

APS Application Services

BMS Business Unit Marketing System

 Business Unit Logistics Management System

BU Business Unit

CAD Computer Aided Design

CASE Computer-Aided Software Engineering

CD Committee Draft

CIO Chief Information Officer

CPU Central Processing Unit

CR Change Request

DIS Draft International Standard

DOORS Dynamic Object Oriented Requirements System (product)

DPA Delivery Process Application Services

DXL DOORS eXtension Language

FSP Financial Services Platform

GSC Global Support Concept

HCI Human-Computer Interaction

HTML HyperText Markup Language

IEC International Electrotechnical Commission

IM Information Management

ISO International Organization for Standardization

IS Information System

IT Information Technology

MLS Modular Logistics System

NET (Nokia) Networks

NMP Nokia Mobile Phones

NSC Nokia Sales Configurator

OODB Object-Oriented DataBase

ix

OPC Operations Center

PDTR Proposed Draft Technical Report

RAD, R&D Research and Development

RM Requirements Management

RMT Request Management Tool

 Requirements Management Tool

RTF Rich Text Format

RTM Requirements Traceability Management

SAP Systems, Applications and Products (company)

SBM Service Business Management

SC Sales Configurator

SGML Standard Generalized Markup Language

SI Systems Integrators

SIR System Investigation Request

 Support/Investigate Request

SLA Service Level Agreement

SLATE System Level Automation Tool for Engineers (product)

SP Service Pack

SPICE Software Process Improvement and Capability dEtermination

SQL Structured Query Language

WH Warehouse

QA Quality Assurance

QSS Quality Systems & Software (company)

1

1. INTRODUCTION

1.1 Background

The problem is how to handle thousands of requirements that are coming

through different channels and are constantly changing, and do not necessarily

meet the users' needs.

The present requirements management process is mostly based on feedback

from the developers and users. Methods for gathering feedback are: Request

Management Tool (RMT), Change Request (CR) and System Investigation

Request (SIR) processes, Key User Workshops, Deployment phase, and

training sessions. Business Units (BUs) also have requirements concerning

different configurators and they have the rules and the product information for

the configurations. The role of the BUs has a more long-term effect on the

process than the other ways of collecting information.

1.2 Goals and Objectives

The goal of this thesis was to find out from the literature what are in theory the

characteristics of good software, and how the software engineering process and

requirements management are conducted.

Then it analyses the current process of requirements management in the case

company. The emphasis will be on how to manage changes to requirements

and on requirements coming from the actual users of the software.

One of the goals was to evaluate different requirements management tools, i.e.

software products designed to handle requirements, and find out how they

could be used to improve the management of requirements.

2

1.3 Scope and Limitations

The goal was to examine the current requirements management process,

compare it with the theoretical process presented in the literature, evaluate

requirements management tools, and see if they could help to solve the

problems.

1.4 Structure of Thesis

The second chapter is about software quality evaluation, what are the

components of a good software product, how they are defined, and how they

can be achieved. They are the reason for any requirement during the software

development process.

The third chapter deals with issues concerning software engineering and

design, i.e. what are the different theoretical approaches and phases in the

software engineering process, and what each phase includes.

The fourth chapter is about requirements management in general, and benefits

of requirements management tools.

The fifth chapter is about feedback and the importance of it in the software

development.

The empirical part first presents the current situation; what are the procedures

regarding feedback and requirements from users and other stakeholders for the

development team, and how are different kinds of issues handled differently.

And finally there is a model for the requirements management process, the

advantages of using a requirements management tool in the current situation,

and how could it be used.

3

2. SOFTWARE QUALITY EVALUATION

There is a close analogy between different interpretations of the term usability

and comparable interpretations of the term quality. Although the term quality

seems self-explanatory in everyday usage, in practice there are many different

views of what it means and how it should be achieved as part of a software

production process. (Bevan, 1994)

2.1 Quality

Garvin (1984) distinguishes between five overall approaches to defining

quality. A traditional view is that quality is transcendent: a simple

unanalyzable property which is recognized through experience. Although the

term quality often raises this pre-conception, it is an ideal view which does not

provide any indication of how quality can be achieved in practice. Garvin

distinguishes four other practical approaches to quality:

Product quality: an inherent characteristic of the product determined by the

presence or absence of measurable product attributes.

Manufacturing quality: a product which conforms to specified requirements.

User perceived quality: the combination of product attributes which provide

the greatest satisfaction to a specified user.

Economic quality: a product which provides performance at an acceptable

price, or conformance to requirements at an acceptable cost. (Bevan, 1994)

Rather than debate which (if any) of these definitions of quality is correct, they

should be recognized as distinctly different approaches, each of which has

value for its own purpose. (Bevan, 1994)

4

Quality is generally treated as a property of a product, thus the product view of

quality seeks to identify those attributes which can be designed into a product

or evaluated to ensure quality. ISO 9126 takes this approach and categorises

the attributes of software quality as: functionality, efficiency, usability,

reliability, maintainability and portability (Figure 1). (Bevan, 1994)

functionality: the capability of the software to provide functions which

meet stated and implied needs when the software is used under specified

conditions.

reliability: the capability of the software to maintain its level of

performance when used under specified conditions.

usability: the capability of the software to be understood, learned, used

and liked by the user, when used under specified conditions.

efficiency: the capability of the software to provide the required

performance, relative to the amount of resources used, under stated

conditions.

maintainability: the capability of the software to be modified.

Modifications may include corrections, improvements or adaptation of

the software to changes in the environment, and in requirements and

functional specifications.

portability: the capability of the software to be transferred from one

environment to another.

Figure 1. ISO/IEC CD 9126-1 definitions (van Veenendaal, 1997)

In order to evaluate software it is necessary to select relevant quality

characteristics. This can be done using a quality model which breaks software

quality down into different characteristics. ISO/IEC 9126 (1991) provides a

general-purpose model which defines six broad categories of software quality:

functionality, reliability, usability, efficiency, maintainability and portability.

5

These are further broken down into subcharacteristics which have measurable

attributes (Figure 2). (van Veenendaal, 1997)

functionality

accuracy
suitability

interoperability
compliance

security

reliability

maturity
fault tolerance
recoverability

usability

understandability
learnability
operability

efficiency

time behaviour
resource

utilisation

maintainability

analysability
changeability

stability
testability

portability

adaptability
installability
conformance
replaceability

Figure 2. ISO/IEC 9126 quality model (van Veenendaal, 1997)

Another approach to quality which has been widely taken up is the use of the

ISO 9000 standards to achieve manufacturing quality. (Bevan, 1994)

Economic quality is a broader approach which takes account of the need to

make trade-offs between cost and product quality in the manufacturing process,

or price and product quality when purchasing. (Bevan, 1994)

ISO 8402 defines quality as: Quality: the totality of characteristics of an entity

that bear on its ability to satisfy stated and implied needs. This definition is in

terms of the characteristics of a product. To the extent that user needs are well-

defined and common to the intended users, it implies that quality is an inherent

attribute of the product. However, if different groups of users have different

6

needs, then they may require different characteristics for a product to have

quality, so that assessment of quality becomes dependent on the perception of

the user. (Bevan, 1994)

2.2 Reliability

There is no doubt that the reliability of a computer program is an important

element of its overall quality. If a program repeatedly and frequently fails to

perform, it matters little whether other software quality factors are acceptable.

(Pressman, 1992, p. 581)

Software reliability, unlike many other quality factors, can be measured

directly and estimated using historical and developmental data. Software

reliability is defined in statistical terms as "the probability of a failure free

operation of a computer program in a specific environment for a specific time."

(Pressman, 1992, p. 581)

Whenever software reliability is discussed, a pivotal question arises: What is

meant by the term "failure"? In the context of any discussion of software

quality and reliability, failure is nonconformance to software requirements.

Yet, even within this definition there are gradations. Failures can be merely

annoying or they can be catastrophic. One failure can be corrected within

seconds while another requires weeks or even months to correct. Complicating

the issue even further, the correction of one failure may in fact result in the

introduction of other errors that ultimately result in other failures. (Pressman,

1992, p. 581)

7

2.3 Efficiency

In well-engineered systems, there is a natural tendency to use critical resources

efficiently. Processor cycles and memory locations are often viewed as critical

resources, and the coding step is seen as the last point where microseconds or

bits can be squeezed out of the software. Although efficiency is a

commendable goal, three maxims should be stated before we discuss the topic

further. First, efficiency is a performance requirement and should, therefore, be

established during software requirements analysis. Software should be as

efficient as required, not as efficient as is humanly possible. Second, efficiency

is improved with good design. Third, code efficiency, and code simplicity go

hand in hand. In general, don't sacrifice clarity, readability, or correctness for

nonessential improvements in efficiency. (Pressman, 1992, p. 540)

2.4 User Perceived Quality and Quality of Use

Most approaches to software quality do not deal explicitly with user-perceived

quality. User-perceived quality is regarded as an intrinsically inaccurate

judgement of product quality. For instance Garvin, 1984, observes that

"Perceptions of quality can be as subjective as assessments of aesthetics."

(Bevan, 1994)

However, there is a more fundamental reason for being concerned with user-

perceived quality. Products can only have quality in relation to their intended

purpose. For instance, the quality attributes of a racing car will be very

different from a family car. For conventional products this is assumed to be

self-evident. For general-purpose products it creates a problem. A text editor

could be used by programmers for producing code, or by secretaries for

producing letters. Some of the quality attributes required will be the same, but

others will be different. Even for a word processor, the functionality, usability

8

and efficiency attributes required by a trained user may be very different from

those required by an occasional user. (Bevan, 1994)

Work on usability has led to another broader and potentially important view of

quality which has been outside the scope of most existing quality systems.

This embraces user-perceived quality by relating quality to the needs of the

user of an interactive product: Quality of use: the extent to which a product

satisfies stated and implied needs when used under stated conditions. (Bevan,

1994)

This moves the focus of quality from the product in isolation to the particular

users of the product, the tasks and the context in which it is used. The purpose

of a product is to help the user achieve particular goals, which means that

measures of quality of use can be defined as: Quality of use measures: The

effectiveness, efficiency and satisfaction with which specified users can

achieve specified goals in specified environments. (Bevan, 1994)

A product meets the requirements of the user if it is effective (accurate and

complete), efficient in use of time and resources, and satisfying, regardless of

the specific attributes it possesses. (Bevan, 1994)

Specifying requirements in terms of performance has many benefits. This is

recognized in the rules for drafting ISO standards (ISO, 1992), which suggest

that to provide design flexibility, standards should specify the performance

required of a product rather than the technical attributes needed to achieve the

performance. (Bevan, 1994)

Quality of use is a means of applying this principle to the performance which a

product enables a human to achieve. (Bevan, 1994)

9

2.5 Software Quality of Use

The same principle can be applied to software. Software quality attributes will

determine the quality of use of a software product when it is used in a

particular context. Software quality attributes are the cause, quality of use the

effect. Quality of use is (or at least should be) the objective, software product

quality is the means of achieving it. (Bevan, 1994)

Experience has shown that it is almost impossible to accurately specify a set of

internal software attributes which will ensure that the requirements for quality

of use are met (i.e. that a given group of users will be able to carry out a

specified set of tasks effectively, efficiently and with satisfaction). (Bevan,

1994)

2.6 Context of Use

The quality of use is determined not only by the product, but also by the

context in which it is used: the particular users, tasks and environments. The

quality of use (measured as effectiveness, efficiency and satisfaction) is a result

of the interaction between the user and product while carrying out a task in a

technical, physical, social and organisational environment (Figure 3). (Bevan,

1994)

Measures of quality of use can be used to evaluate the suitability of a product

for use in a particular context. However the measures of quality of use also

depend on the nature of the user, task and environment - they are a property of

the whole "work system" (ISO, 1981). Measures of quality of use can thus

also be used to assess the suitability of any other component of the context.

For instance whether a particular user has the necessary training or skill to

operate a product, which tasks a product should be used for, or whether

10

changes in the physical environment (such as improved lighting) improve

quality of use. (Bevan, 1994)

Similarly the focus of the evaluation (element to be varied) may be a complete

computer system, the complete software, a specific software component, or a

specific aspect of a software component. Any relevant aspect of software

quality may contribute to quality of use, but for interactive software ease of use

is often a crucial issue. Quality of use thus provides a means of measuring the

usability of a product, and usability is defined in this way in ISO 9241-11.

(Bevan, 1994)

task
goals

social and
organisational
environment

user interaction

physical
environment

product

technical
environment

Context

Quality of
use measures

tasks

Satisfaction
Performance:
effectiveness
& efficiency

Figure 3. Quality of use measures determined by the context of use

(Bevan, 1994)

11

The definition of quality in ISO 8402 (Quality vocabulary): Quality: the

totality of characteristics of an entity that bear on its ability to satisfy stated and

implied needs. This is a “product” oriented view of quality (Garvin, 1984): “an

inherent characteristic of the product determined by the presence or absence of

measurable product attributes”. In this view, the quality of a software product

can be specified and built in as specific attributes of the code. The ISO/IEC

9126 definitions acknowledge that the objective of these attributes is to meet

user needs in the form of functionality, reliability, usability, efficiency,

maintainability and portability. But ISO 8402 makes it clear that a product-

oriented view of quality should not be confused with measures of the “degree

of excellence” resulting from the presence or absence of required attributes.

Yet the objective of quality from the user’s perspective is to achieve a degree

of excellence in a particular context of use. Despite the apparent user

orientation of ISO/IEC 9126, the definitions in terms of attributes imply that

software quality should be specified and measured on the basis of attributes of

the source code. (van Veenendaal, 1997)

2.7 Approaches to Software Quality

The link between the ISO 9241-11 (chapter 2.8) and ISO/IEC 9126 views of

usability, and “quality in use” was incorporated as a high level quality

objective into the revision to ISO/IEC 9126-1, and the related ISO/IEC 14598-

1 standard (Software product evaluation - General guide): Quality in use: the

extent to which a product used by specified users meets their needs to achieve

specified goals with effectiveness, productivity and satisfaction in a specified

context of use. The revised ISO/IEC CD 9126-1 now distinguishes three broad

approaches to improving the quality of a product (Figure 4):

Set criteria for process quality: attributes of the software development

processes, e.g. by application of ISO 9001, or ISO 15504 (SPICE).

12

Set criteria for product quality: attributes of the software (internal measures) or

the behaviour of the software when tested (external quality).

Set criteria for quality in use: the extent to which the code meets user needs for

effectiveness, productivity and satisfaction in use. (van Veenendaal, 1997)

life cycle
processes

internal
measures

external
measures

product

resources

effect of
the product

process quality product quality quality in use

contexts of use

Figure 4. Approaches to software quality (van Veenendaal, 1997)

Software product quality can be measured internally (typically by static

measures of the code), or externally (typically by measuring the behaviour of

the code when executed). The objective is for the product to have the required

effect in a particular context of use. Quality in use is the user’s view of quality.

Achieving quality in use is dependent on meeting criteria for external measures

of the relevant quality sub-characteristics, which in turn is dependent on

achieving related criteria for the associated internal measures (Figure 5). (van

Veenendaal, 1997)

internal
quality

external
quality

quality
in use

influences influences

depends on depends on

Figure 5. Relationship between different types of quality (van

Veenendaal, 1997)

13

Measures are normally required at all three levels, as meeting criteria for

internal measures is not usually sufficient to ensure achievement of criteria for

external measures, and meeting criteria for external measures of sub-

characteristics is not usually sufficient to ensure achieving criteria for quality

in use. (van Veenendaal, 1997)

The software quality characteristics in the revision of ISO/IEC 9126 (Figure 1)

have been redefined in terms of “the capability of the software”, to enable them

to be interpreted as either an internal or an external perspective. The definitions

also refer to “use under specified conditions” to make it clear that quality is not

an absolute property, but depends on the context of use. (van Veenendaal,

1997)

2.8 Usability

In ISO 9241-11, the ISO software ergonomics committee defined usability

based on the degree of excellence of a product: usability: the extent to which a

product can be used by specific users to achieve specified goals with

effectiveness, efficiency and satisfaction in a specified context of use. (van

Veenendaal, 1997)

ISO 9241-11 explains how usability can be measured in terms of the degree of

excellence in use: effectiveness (the extent to which the intended goals of use

are achieved), efficiency (the resources that have to be expended to achieve the

intended goals), and satisfaction (the extent to which the user finds the use of

the product acceptable). ISO 9241-11 also emphasises that usability is

dependent on the context of use and that the level of usability achieved will

depend on the specific circumstances in which a product is used. The context

of use consists of the users, tasks, equipment (hardware, software and

materials), and the physical and social environments which may influence the

usability of a product in a work system. Measures of user performance and

satisfaction thus assess the overall work system, and, when a product is the

14

focus of concern, these measures provide information about the usability of

that product in the particular context of use provided by the rest of the work

system. (van Veenendaal, 1997)

The term usability is sometimes used to indicate a particular approach to the

issues of Human-Computer Interaction (HCI). With this in mind, the concepts

that make up usability are considered, and a number of definitions of usability

are outlined and discussed. The usability approach is concerned with both

obtaining user requirements in the early stages of design, and with evaluating

systems that have been built. (Booth, 1989, p. 103)

The usability perspective might be characterized as an approach that first

addresses the practical issues and second theoretical issues, although some

might dispute this, and argue that the two go hand-in-hand. This focus on

usability does not just include information technology (IT) products, but also

other types of systems, devices, machinery or work environments. This may, in

part, account for why usability is such a commonly used term. (Booth, 1989,

pp. 103-104)

It seems as though the issue of usability has grown more important as greater

numbers of technically complicated products have become available to a wider

population of, what Eason (1976) has termed, naïve users. While

manufacturers have concentrated upon increasing the functionality of their

products (increasing the numbers of things they can do), users have grown

steadily more confused and frustrated that they cannot operate the machinery

that they have bought. (Booth, 1989, p. 104)

Within the IT industry this problem has been even more serious. Many

software products have had to be abandoned, not because they did not work,

but because the users could not or would not use them. This may be because IT

products are generally more complicated than household products such as

video recorders and washing machines. (Booth, 1989, p. 104)

15

Usability problems appear to afflict all manner of complicated products, from

complex IT systems to everyday household items. The issue of concern is how

to mitigate the effects of these usability difficulties, or better still, how to

ensure that usability problems never arise. This challenge is best expressed in

the statement: Today we are just as capable of producing an unusable product

or system as we have always been. In other words, the challenge is this:

although we might recognize usability as a central issue in the design of

complex products, how can we ensure that future products do not suffer from

these problems? (Booth, 1989, p. 104)

The usability approach has been characterized as one that begins by analyzing

the user's needs and setting usability goals for the intended system (or product).

The idea of setting usability goals for products has been well accepted within

both academia and industry. Unfortunately, the question of who sets usability

goals and how they are set, has received less attention. One argument is that a

system might only be as usable as its usability goals. In other words, if we

choose inappropriate goals then, no matter how well we meet these goals, the

system will fall short of being usable. Furthermore, the degree to which a

system fails to meet usability demands may be proportionate to the gulf

between the goals we set and the needs of the user. (Booth, 1989, p. 127)

2.9 Measurable Human Factors Goals

For each user and each task, precise measurable objectives guide the designer,

evaluator, purchaser, or manager. These five measurable human factors are

central to evaluation:

Time to learn: How long does it take for typical members of the target

community to learn how to use the commands relevant to a set of tasks?

Speed of performance: How long does it take to carry out the benchmark set of

tasks?

16

Rate of errors by user: How many and what kinds of errors are made in

carrying out the benchmark set of tasks? Although time to make and correct

errors might be incorporated into the speed of performance, error making is

such a critical component of system usage that is deserves extensive study.

Subjective satisfaction: How much did users like using aspects of the system?

This can be ascertained by interviews or written surveys that include

satisfaction scales and space for free comments.

Retention over time: How well do users maintain their knowledge after an

hour, a day, or a week? Retention may be closely linked to time to learn;

frequency of use plays an important role. (Shneiderman, 1987, pp. 14-15)

Every designer would like to succeed in every category, but there are often

forced tradeoffs. If lengthy learning is permitted, then task performance speed

may be reduced by use of complex abbreviations and shortcuts. If the rate of

errors is to be kept extremely low, then speed of performance may have to be

sacrificed. In some applications, subjective satisfaction may be the key

determinant of success, while in others short learning times or rapid

performance may be paramount. Project managers and designers must be

aware of the tradeoffs and make their choices explicit and public.

Requirements documents and marketing brochures should make clear which

goals are primary. (Shneiderman, 1987, p. 15)

2.10 Documentation

Learning anything new is a challenge. Although the challenge is usually joyous

and satisfying, when it comes to learning about computer systems many people

experience anxiety, frustration, and disappointment. Much of the difficulty

flows directly from the poor design of the commands, menus, display formats,

or prompts that lead to error conditions or simply from the inability of the user

to know what to do next. (Shneiderman, 1987, p. 358)

17

Documentation of a software product can be critical to the success or the

failure of the product (Galitz, 1984). Indeed, many software packages do fail in

the marketplace because they are very poorly documented. Documentation here

refers to users' manuals, tutorials, quick reference guides, job aids, and any

other materials (hardcopy or online) that inform the user about how to access

and exercise software functions and features. (Hartson, 1988, p. 145)

Even though increasing attention is being paid to improving the user interface

design, there will always be a need for supplementary materials that aid the

user. These materials include:

1. Traditional user manual: a paper document that describes the features of the

system. Many variations on this theme include:

a. Alphabetic listing and description of the commands

b. Quick reference card with a concise presentation of the syntax

c. Novice user introduction or tutorial

d. Conversion manual that teaches the features of the current system to

users who are knowledgeable about some other system.

2. Computer-based material, such as the:

a. Online user manual – an electronic version of the traditional user

manual. The simple conversion to electronic form may make the text

more readily available but more difficult to read and absorb.

b. Online help facility – the most common form of online help is the

hierarchical presentation of keywords in the command language, akin to

the index of a traditional manual. The user selects or types in a keyword

and is presented with one or more screens of text about the command.

c. Online tutorial – this potentially appealing and innovative approach

uses the electronic medium to teach the novice user by showing

simulations of the working system, by attractive animations, and by

interactive sessions that engage the user.

(Shneiderman, 1987, pp. 358-359)

18

Other forms of instruction or information acquisition include classroom

instruction, personal training and assistance, telephone consultation,

videotapes, instructional films, and audio tapes (Francas et al., 1982).

(Shneiderman, 1987, p. 359)

All users of interactive computer systems require some training. Many users

can learn from another person who knows the system, but training materials are

often necessary. Traditional printed manuals are sometimes poorly written, but

this medium can be very effective if properly prepared (Price, 1984). Many

designers are enticed by the notion of online help facilities and tutorials that

use the same interactive system to provide training and reminders about

specific features and syntax. (Shneiderman, 1987, p. 358)

Hartson (1988) represents a list of evaluation criteria to measure

documentation quality. The criteria fall into five categories, as follows:

Organisation – Thoughtful organisation greatly enhances the usefulness of

software documentation. Every manual should have a table of contents, index,

and tabs. Glossaries are extremely useful in defining new terms for the first

time or casual user. Chapter headings and introduction and summary sections

are more effective if they are presented in a task-oriented manner. For example,

use 'Saving a File' rather than 'File Storage Procedures'. (Hartson, 1988, p. 145)

Typography and Legibility – Even the best documentation efforts will fall short

if presented improperly to the user. Printed materials should be carefully

typeset, with attention given to font style, font size, layout, and use of

highlighting characteristics (italics, bold, etc.). (Hartson, 1988, p. 145)

Language – The style and level of written documentation can have an impact

on how quickly and accurately information is read and understood. Readability

is measured through a variety of indicators and readability formulas which

focus on the number of syllables in words, the number of words in sentences,

19

commonality of words, and so on. Whether or not sentences are in passive or

active voice can also have an impact on readability and comprehension.

Sentences using the passive voice can often be more difficult to understand.

(Hartson, 1988, p. 145)

Graphics and Illustrations – Illustrations, half-tones, and other graphic images

play a key role in documentation. They help to break up monotonous text and

can, in some cases, actually provide a more effective vehicle for

communicating ideas. (Hartson, 1988, pp. 145-146)

Physical Characteristics – One of the most obvious (but often overlooked)

features of software documentation is its size and shape. Large, bulky

documents are often perceived as uncomfortable and clumsy. Such documents

can intimidate or annoy users and discourage effective use. Documentation

materials should be easy to store and update, and should be made of durable

materials. (Hartson, 1988, p. 146)

2.11 Summary

There are several different ways to understand the term quality. Garvin (1984)

distinguishes five approaches to defining quality. A traditional view is that

quality is a simple unanalysable property which is recognised through

experience. Four other practical approaches are: product quality (determined by

measurable attributes), manufacturing quality (product conforms to specific

requirements), user perceived quality (greatest satisfaction to a specified user),

and economic quality (performance at an acceptable price). They are distinctly

different approaches, and each of them has value for its own purpose.

ISO 9126 categorises the attributes of software quality as: functionality,

reliability, usability, efficiency, maintainability, and portability. These are

attributes that can be designed into a product or evaluated to ensure quality. In

order to evaluate software quality, these categories can be broken down into

20

subcharacteristics which have measurable attributes (e.g. fault tolerance,

stability, installability).

ISO 8042 defines quality as: the totality of characteristics of an entity that bear

on its ability to satisfy stated and implied needs. If different groups have

different needs, they may require different characteristics for a product to have

quality, so that assessment of quality becomes dependent on the perception of

the user. For example a racing car and a family car have different kinds of

quality characteristics. Bevan (1994) defines quality of use as: the extent to

which a product satisfies stated and implied needs when used under stated

conditions (measured as effectiveness, efficiency, and satisfaction); and context

of use: quality of use is not determined only by the product, but also by the

context in which it is used: the particular users, tasks and environments, thus

dependent for example on the user's training and skills.

ISO 9241-11 defines usability: the extent to which a product can be used by

specific users to achieve specific goals with effectiveness, efficiency and

satisfaction in a specific context of use.

Software products have been abandoned, not because they did not work, but

because users could not or would not use them. Usability is very important, the

question is how can it be ensured. Shneiderman (1987) describes measurable

human factors: time to learn, speed of performance, rate of errors by user,

subjective satisfaction, retention over time. The goal is to succeed in all of

these factors, but naturally there are forced trade-offs for example between

time to learn and speed of performance.

When learning to use a new product, documentation is also very important, it

includes: users' manuals, tutorials, quick reference guides, job aids.

21

3. SOFTWARE ENGINEERING

3.1 Computed-Based Systems

The elements of a computer-based system (depicted in Figure 6) often include

the following:

Software: Computer programs, data structures, and related documentation that

serve to effect the logical method, procedure or control that is required.

Hardware: Electronic devices (e.g. CPU, memory) that provide computing

capability, and electromechanical devices (e.g. sensors, motors, pumps) that

provide external work functions.

People: Users and operators of software and hardware.

Database: A large, organized collection of information that is accessed via

software and is an integral part of system function.

Documentation: Manuals, forms, and other descriptive information that

portrays the use and/or operation of the system.

Procedures: The steps that define the specific use of each system element or

the procedural context in which the system resides. (Pressman, 1992, p. 132)

22

 Procedures

Documents Hardware

SoftwareDatabase

People

SystemInput Output

Figure 6. System elements (Pressman, 1988, p. 133)

3.2 Computer Systems Engineering

Computer system engineering is a problem-solving activity. Desired system

functions are uncovered, analyzed, and allocated to individual system elements.

The computer system engineer begins with customer-defined goals and

constraints, and derives a representation of function, performance, interfaces,

design constraints, and information structure that can be allocated to each of

the generic system elements. (Pressman, 1992, p. 134)

The genesis of most new systems begins with a rather nebulous concept of

desired function. Therefore, the system engineer must bound the system by

identifying the scope of function and performance that are desired. The

questions focus on function, performance, and information flow and content.

The system engineer does not ask the customer how the task is to be done;

rather, the engineer asks what is required. (Pressman, 1992, pp. 134-135)

The following trade-off criteria govern the selection of a system configuration

based on a specific allocation of function and performance to generic system

elements:

23

Project considerations. Can the configuration be built within preestablished

cost and schedule bounds? What is the risk associated with cost and schedule

estimates?

Business considerations. Does the configuration represent the most profitable

solution? Can it be marketed successfully? Will ultimate pay-off justify

development risk?

Technical analysis. Does the technology exist to develop all elements of the

system? Are function and performance assured? Can the configuration be

adequately maintained? Do technical resources exist? What is the risk

associated with the technology?

Manufacturing evaluation. Are manufacturing facilities and equipment

available? Is there a shortage of necessary components? Can quality assurance

be adequately performed?

Human issues. Are trained personnel available for development and

manufacture? Do political problems exist? Does the customer understand what

the system is to accomplish?

Environmental interfaces. Does the proposed configuration properly interface

with the system's external environment? Are machine-to-machine and human-

to-machine communication handled in an intelligent manner?

Legal considerations. Does this configuration introduce undue liability risk?

Can proprietary aspects be adequately protected? Is there potential

infringement? (Pressman, 1992, pp. 136-137)

24

3.3 Phases in Software Engineering

Computer programs, the software that is becoming an ever-larger part of the

computer system, are growing more and more complicated, requiring teams of

programmers and years of effort to develop. As a consequence, a new

subdiscipline, software engineering, has arisen. The development of a large

piece of software is perceived as an engineering task, to be approached with the

same care as the construction of a skyscraper, for example, and with the same

attention to cost, reliability, and maintainability of the final product. The

software-engineering process is usually described as consisting of several

phases, variously defined but in general consisting of: (1) identification and

analysis of user requirements, (2) development of system specifications (both

hardware and software), (3) software design (perhaps at several successively

more detailed levels), (4) implementation (actual coding), (5) testing, and (6)

maintenance. (Britannica)

Function and performance are allocated to software during system engineering.

In some cases, function is simply the implementation of a sequential procedure

for data manipulation. Performance is not explicitly defined. In other cases,

function is the internal coordination and control of other concurrent programs,

and performance is defined explicitly in terms of response and wait times.

(Pressman, 1992, p. 140)

To accommodate function and performance, the software engineer must build

or acquire a set of software components. Unlike hardware, software

components are rarely standardized. In most cases, the software engineer

creates custom components to meet the allocated requirements for the software

element of the system that is to be developed. (Pressman, 1992, p. 140)

The software element of a computer-based system is comprised of programs,

data, and documentation that is categorized as application software and system

software. Application software implements the procedure that is required to

25

accommodate information processing functions. System software implements

control functions that enable application software to interface with other

system elements. (Pressman, 1992, p. 140)

Figures 7, 8, and 9 illustrate the generic steps in the software engineering

process. The figures illustrate the steps that must be accomplished and the

various representations of software that are derived as it evolves from concept

to realization. (Pressman, 1992, p. 141)

3.3.1 Definition Phase

The definition phase of software engineering, depicted in Figure 7, begins with

the software planning step. During this step a bounded description of the scope

of software effort is developed; risk analysis is conducted; resources required

to develop the software are predicted; cost and schedule estimates are

established. The purpose of the software project planning step is to provide a

preliminary indication of project viability in relationship to cost and schedule

constraints that may have already been established. A Software Project Plan is

produced and reviewed by project management. (Pressman, 1992, p. 141)

The next step in the definition phase is software requirements analysis and

definition. During this step, the system element allocated to the software is

defined in detail. Requirements are analyzed and defined in one or two ways.

Formal information domain analysis may be used to establish models of

information flow and structure. These models are then expanded to become a

software specification. Alternatively, a prototype of the software is built and

evaluated by the customer in an attempt to solidify requirements. Performance

requirements or resource limitations are translated into software design

characteristics. Global analysis of the software element defines validation

criteria that will serve as the basis for test planning and will be used to

demonstrate that requirements have been met. (Pressman, 1992, p. 143)

26

Software requirements analysis and definition is a joint effort conducted by the

software developer and the customer. A Software Requirements Specification

is the deliverable document produced as a result of this step. (Pressman, 1992,

p. 143)

Software
functions

Software
project

planning
 Review

Requirements
analysis or
prototyping

Project
plan

Prototype Requirements
specification

 Review

Figure 7. Software engineering – definition phase (Pressman, 1992, p.

142)

3.3.2 Development Phase

The development phase (Figure 8) translates a set of requirements into an

operational system element that we call software. The first step of the

development concentrates on design. The design process for software begins

with a description of architectural and data design. That is, a modular structure

is developed, interfaces are defined, and a data structure is established. Design

criteria are used to assess quality. This preliminary design step is reviewed for

completeness and traceability to software requirements. A first-draft Design

Specification is delivered and becomes a part of the software configuration.

(Pressman, 1992, p. 143)

27

Procedural aspects of each modular component of the software design are

considered next. Each detailed procedural description is added to the Design

Specification after review. (Pressman, 1992, p. 143)

Coding occurs after design is complete. Software engineering methodology

views coding as a consequence of good design. Code is reviewed for style and

clarity, but should otherwise be directly traceable to a detailed design

description. A source language for each modular component of software is the

configuration deliverable for the coding step. (Pressman, 1992, pp. 143-144)

Data and
architectural

design
 Review Procedural

design

Preliminary design
specification

Prototype Detail design
specification

 ReviewCoding Review

Program
source code

Figure 8. Software engineering – development phase (Pressman, 1992, p.

142)

3.3.3 Verification, Release, and Maintenance Phase

During the last phase in the software engineering process (Figure 9), the

software engineer tests the software to find the maximum number of errors

before shipment, prepares the software for release, and then maintains the

software throughout its useful life. (Pressman, 1992, p. 144)

28

After the source code has been generated, a series of verification and validation

activities are conducted. Unit testing attempts to verify the functional

performance of individual modular component of software. Integration testing

provides a means for the construction of the software architecture, while at the

same time testing function and interfaces. Validation testing verifies that all

requirements have been met. After each of these testing steps, debugging – the

diagnosis and correction of defects – may occur. A Test Plan and Procedure

may be developed for the testing steps. A review of test documentation, test

cases, and results is always conducted. (Pressman, 1992, p. 144)

Once software testing is completed, the software is almost ready for release to

end users. However, before release occurs, a series of quality assurance (QA)

activities are conducted to ensure that appropriate records and internal

documents have been generated and cataloged, high-quality user

documentation has been developed, and appropriate configuration control

mechanisms have been established. The software is then distributed to end

users. (Pressman, 1992, p. 144)

As soon as software is released to end users, the software engineer's job

changes. Now, the focus changes from construction to maintenance – error

correction, environmental adaption, and function enhancement. Recognition of

this fact is the first step toward lessening the impact of a task that devours 50 to

70 percent of budget for many large software organizations. The tasks

associated with software maintenance depend upon the type of maintenance to

be performed. Modification of the software includes the entire configuration

(i.e., all programs, data, and documents developed in the definition and

development phases), not just the code. (Pressman, 1992, p. 144)

29

Unit,
integration and
validation tests

 Debugging
Release

and
distribution

Test plan,
test procedures,

test results

Operational
program

User documents

 ReviewMaintenance Review
(QA)

Modified
source code

Defects may cause return
to previous steps

Modified documents

Figure 9. Software engineering – verification, release, and maintenance phase

(Pressman, 1992, p. 142)

3.4 Different Approaches to Software Engineering

There are many different approaches to software engineering in the literature.

This chapter introduces some of them. Even though the models are in some

senses very different, the phases included are somewhat the same.

3.4.1 The Classic Life Cycle

Figure 10 illustrates the classic life-cycle paradigm for software engineering.

Sometimes called the "waterfall model", the life-cycle paradigm demands a

systematic, sequential approach to software development that begins at the

system level and proceeds through analysis, design, coding, testing, and

maintenance. (Pressman, 1992, pp. 24-25)

30

System
Engineering

Analysis

Design

Code

Testing

 Maintenance

Figure 10. The classic life-cycle (Pressman, 1992, p. 25)

3.4.2 Prototyping

Often, a customer has defined a set of general objectives for software, but has

not identified detailed input, processing, or output requirements. In other cases,

the developer may be unsure of the efficiency of an algorithm, the adaptability

of an operating system, or the form that human-machine interaction should

take. In these, and many other situations, a prototyping approach to software

engineering may offer the best approach. (Pressman, 1992, pp. 26-27)

31

Requirements
gathering and

refinement

Quick
design

Building
prototype

Customer
evaluation of prototype

Refining
prototype

Engineer
product

Start
Stop

Figure 11. Prototyping (Pressman, 1992, p. 27)

3.4.3 The Spiral Model

The spiral model for software engineering (Boehm, 1988) has been developed

to encompass the best features of both the classical life cycle and prototyping,

while at the same time adding a new element – risk analysis – that is missing in

these paradigms. The model represented by the spiral in Figure 12, defines four

major activities represented by the four quadrants of the figure:

1. Planning – determination of objectives, alternatives and constraints

2. Risk analysis – analysis of alternatives and identification/resolution of risks

3. Engineering – development of the "next-level" product

4. Customer evaluation – assessment of the results of engineering (Pressman,

1992, p. 29)

32

Planning Risk Analysis

Initial requirements gathering Risk analysis based on

and project planning initial requirements

Planning based on Risk analysis based on

customer comments customer reaction

 Go, no-go

 decision

 Toward a completed

 system

Customer evaluation Initial software prototype

 Next level prototype

 Engineered system

Customer evaluation Engineering

Figure 12. The spiral model (Pressman, 1992, p. 29)

An intriguing aspect of the spiral model becomes apparent when we consider

the radial dimensions depicted in Figure 12. With each iteration around the

spiral (beginning at the center and working outward), progressively more

complete versions of the software are built. During the first circuit around the

spiral, objectives, alternatives and constraints are defined and risks are

identified and analyzed. If risk analysis indicates that there is uncertainty in

33

requirements, prototyping may be used in the engineering quadrant to assist

both the developer and the customer. Simulations and other models may be

used to further define the problem and refine requirements. (Pressman, 1992,

pp. 29-30)

The customer evaluates the engineering work (the customer evaluation

quadrant) and makes suggestions for modifications. Based on customer input,

the next phase of planning and risk analysis occur. At each loop around the

spiral, the culmination of risk analysis results in a "go, no-go" decision. If risks

are too great, the project can be terminated. (Pressman, 1992, p. 30)

In most cases, however, flow around a spiral path continues, with each path

moving the developers outward toward a more complete model of the system,

and, ultimately, to the operational system itself. Every circuit around the spiral

requires engineering (lower right quadrant) that can be accomplished using

either the classical life-cycle or prototyping approaches. It should be noted that

the number of development activities occurring in the lower right quadrant

increases as activities move further from the center of the spiral. (Pressman,

1992, p. 30)

The spiral model paradigm for software engineering is currently the most

realistic approach to the development for large scale systems and software. It

uses an "evolutionary" approach (Gilb, 1988) to software engineering, enabling

the developer and the customer to understand and react to risks at each

evolutionary level. It uses prototyping as a risk reduction mechanism, but,

more importantly, enables the developer to apply the prototyping approach at

any stage in the evolution of the product. It maintains the systematic stepwise

approach suggested by the classic life-cycle, but incorporates it into an iterative

framework that more realistically reflects the real world. The spiral model

demands a direct consideration of technical risks at all stages of the project,

and if properly applied, should reduce risks before they become problematic.

(Pressman, 1992, p. 30)

34

But like other paradigms, the spiral model is not a panacea. It may be difficult

to convince large customers (particularly in contract situations) that the

evolutionary approach is controllable. It demands considerable risk assessment

expertise, and relies on this expertise for success. If a major risk is not

discovered, problems will undoubtedly occur. (Pressman, 1992, p. 30)

Muench, et al. describe yet another spiral model for software development with

four cycles and quadrants, as illustrated in Figure 13. The idea in this spiral

model is quite similar to that in Pressman's model:

- Proof-of-concept cycle – capture business requirements, define goals for

proof-of-concept, produce conceptual system design, design and construct

the proof-of-concept, produce acceptance test plans, conduct risk analysis

and make recommendations.

- First build cycle – derive system requirements, define goals for first build,

produce logical system design, design and construct the first build, produce

system test plans, evaluate the first build and make recommendations.

- Second build cycle – derive subsystem requirements, define goals for

second build, produce physical design, construct the second build, produce

system test plans, evaluate the second build and make recommendations.

- Final cycle – complete unit requirements, final design, construct final build,

perform unit, subsystem, system, and acceptance tests.

(Duncan, 1996, p. 15)

35

-

Figure 13. Representative software development life cycle (Muench,

1994)

36

3.5 Summary

The software-engineering process is usually described as consisting of several

phases, variously defined but in general consisting of: (1) identification and

analysis of user requirements, (2) development of system specifications (both

hardware and software), (3) software design (perhaps at several successively

more detailed levels), (4) implementation (actual coding), (5) testing, and (6)

maintenance. (Britannica)

There are three different kinds of approaches to how to combine these phases.

The classic life-cycle paradigm, also called the "waterfall model", demands a

systematic, sequential approach to software development that begins at the

system level and proceeds through analysis, design, coding, testing, and

maintenance in a straightforward manner (illustrated in Figure 10).

Often, a customer has defined a set of general objectives for software, but has

not identified detailed input, processing, or output requirements. In other cases,

the developer may be unsure of the efficiency of an algorithm, the adaptability

of an operating system, or the form that human-machine interaction should

take. In these, and many other situations, a prototyping approach to software

engineering may offer the best approach. (Figure 11) (Pressman, 1992, pp. 26-

27)

The spiral model for software engineering (Boehm, 1988) has been developed

to encompass the best features of both the classical life cycle and prototyping,

while at the same time adding a new element – risk analysis – that is missing in

these paradigms. The model represented by the spiral in Figure 12, defines four

major activities represented by the four quadrants of the figure: planning, risk

analysis, engineering, and customer evaluation (Pressman, 1992, p. 29)

37

4. REQUIREMENTS MANAGEMENT

According to Stokes, requirements are: "Collection of statements that describe

in a clear, consistent and unambiguous manner all aspects of a proposed

system". (McDermid, 1991)

4.1 Requirements Management Tools

Static requirements documents are not much help in evaluating the impact of

suggested changes, or in ensuring thorough testing and documentation.

Requirements management tools and improved practices can help. (Light,

1998)

What project management best practices will assist Applications Development

(AD) organizations in maximizing return on investment for their AD projects

while reducing the potential for cost overruns, late delivery and scope creep?

(Light, 1998)

AD organizations are increasingly finding that simply gathering static, text-

based requirements without automated support is of little use when changes are

suggested. Similarly, software requirements as output from a business process-

modeling tool are seldom static reference items. A static, nonautomated

approach to requirements fails to streamline development teams' analysis of

requirements, and unnecessarily increases the future burden of enhancing and

maintaining systems - a burden that cripples the responsiveness of many AD

groups to new development demands. (Light, 1998)

Therefore, requirements generation - whether in documents or process models -

should not be viewed as just a step in development that, once completed, feeds

the next step. Rather, it should be part of ongoing requirements management -

a process much simplified if requirements are captured in a database-based tool

38

to enable collaborative review for completeness, use-case creation, test-case

creation, traceability, and to facilitate versioning/change control. (Light, 1998)

Since the introduction of tools from Quality Systems Software (DOORS) and

TD Technologies (SLATE) in the early 1990s, the RM tool market - once

limited to Unix workstation tools used by technical engineers on highly

complex aerospace, defense or manufacturing systems – has more than doubled

to about $60 million for 1998. New tools for the Windows platform have

appeared in recent years. Approaches increasingly interfacing with modeling

tools also promise to further stimulate the market. Here, we give an overview

of the leading vendors, profile the market, and identify key criteria in selecting

an RM tool. Chapter 4.1.1 provides short profiles of the leading high-end

requirements tools used most often in building very large, complex systems.

Chapter 4.1.2 profiles other leading requirements tools used on projects of

varying complexity. (Light, 1998)

Windows-based tools feature relative ease of setup and use, and target the low

end of the market, i.e. small to midsize organizations (e.g., of fewer than 250

developers), whose project durations are typically less than 18 months. (Light,

1998)

Along with RTM and SLATE, market share leaders include DOORS and

RequisitePro. Quality Systems Software with DOORS and Integrated

Chipware with RTM together account for most of the overall market, and about

80 percent of the Unix market. They compete mainly with TD Technologies'

SLATE. However, in the growing Windows segment, the relative newcomer

Rational Software, with RequisitePro, emerged as a close second to DOORS in

1997. Another newcomer, Technology Builders, entered the market in 1998

with its Windows-based Caliber-RM tool that, like SLATE, uses the Versant

OODB. RTM's weak Windows implementation (improved in RTM Workshop)

has achieved only scant market penetration, less than 5 percent. (Light, 1998)

39

Bottom Line: How requirements are initially gathered and stored often reveals

the level of an IS organization's engineering discipline. Those that provide

teams with an automated requirements environment will better support change

control efforts, gain testing efficiencies, and potentially reduce their future

maintenance burden. (Light, 1998)

4.1.1 High-End Requirements Management Tool Profiles

RTM Workshop: Integrated Chipware's RTM (Requirements Traceability

Management) utilizes an Oracle database integrated with the tool and features

significant in structured analysis capability. Largely focused on the embedded

systems market for RM tools, Integrated Chipware has particularly targeted

Unix-based development at high-end manufacturing, aerospace and defense

firms that develop and produce such products. It mainly targets government

contracts requiring high levels of documentation and requirements traceability.

RTM Workshop requires substantial training and, often, significant ongoing

support. (Light, 1998)

SLATE: TD Technologies' System Level Automation Tool for Engineers

(SLATE) was first developed by Texas Instruments, which sold it to TD

Technologies in 1994. Mainly used on large defense projects, SLATE was

made for use by distributed, concurrent-engineering design teams for which

requirements begin mainly as system design elements, not text; the tool enables

document generation as a byproduct of the design capture process, and features

Internet access to documents published on the Web. Formerly Unix-only,

Windows NT support was added in 1997. (Light, 1998)

High-end tools are also available from Ascent Logic (RDD-100, for

Requirements Driven Development), Compliance Automation (Vital Link) and

Teledyne Brown Engineering (XTie-RT, for Requirements Tracer). (Light,

1998)

40

4.1.2 General-Purpose Requirements Management Tools

DOORS: Quality Systems Software's Dynamic Object-Oriented Requirements

System (DOORS) ships with a proprietary object-oriented database, enabling

broader support of large design drawings and nontext requirements, and

quicker requirements-oriented queries. DOORS is also easier to learn and use,

and has a strong, market-leading Windows implementation. QSS is

increasingly targeting the commercial IS market, as also indicated by its

marketing alliances with Microfocus/Intersolv and Platinum Technology, and

DOORS' recent integration with Rational Rose. (Light, 1998)

RequisitePro: Requisite, founded in 1996, was acquired by Rational Software

last year. From its inception, RequisitePro has targeted the IS/AD market more

than the product development or systems engineering arenas. RequisitePro

features interfaces with Rose and other Rational tools for software testing,

configuration management and documentation (SQA Suite, ClearCase, SoDA),

and with Microsoft's Visual SourceSafe, Word and Project 98. Thus users can

test requirements by tracing them to test procedures, thereby improving test

coverage, and trace requirements to associated software code, as well as

partially automate documentation. (Light, 1998)

Caliber RM: Technology Builders designed its new tool with a three-tier

architecture featuring both a Windows-based and a thin Web-browser client.

Distributed groups can alter or comment on individual requirements without

locking a project's entire requirements document and, by storing user

responsibility information with a requirement, the tool enables Caliber's

automatic notification of changes to affected team members. The tool features

interfaces with Mercury Interactive's Test Director and Select Software Tools'

Select Enterprise. (Light, 1998)

41

4.2 Taming Scope Scourge

AD groups often lack project plans, activities and defined deliverables that are

consistent with a project's shifting requirements. Effective requirements

management takes both traceability and fully authorized project managers.

(Light, Conway, 1997)

What strategies, processes and techniques will assist AD organizations in

reducing their exposure to project failures? (Light, Conway, 1997)

Despite widespread awareness of the dangers of scope creep in AD, inquiries

to Gartner Group show that many IS organizations still suffer from this dreaded

scourge. Unfortunately, the conviction to avoid the problem seldom yields

actual project management mechanisms, so that changes and additions often

drive projects over budget or beyond their due dates. (Light, Conway, 1997)

Most AD groups have some type of initial agreement with the application's

intended users as to specified intended functionality. However, these software

requirements typically "creep" upward by about 1 percent a month, according

to Capers Jones ("Assessment and Control of Software Risks," 2nd edition,

1996). Requirement changes are generally duly documented and allocated

among hardware, software and other system components, but their effect on

project scope is seldom well-established, so that project plans, activities and

defined deliverables stray from the initial budget and schedule. (Light,

Conway, 1997)

Requirements management extends the AD group's initial review of the

requirement allocations, to maintain the initial agreement throughout

development, along with realistic budgets and schedules. To understand the

impact of changes, planners must be able to trace the effects of those changes

on the rest of the system and the project overall. Some large Systems

Integrators' (SIs') AD methodologies closely track changes to maintain the

42

accuracy of the project estimates that are the basis of their bids. Rigorous

traceability is also practiced by U.S. Department of Defense and healthcare

industry contractors, and by makers of high-reliability systems and

manufactured goods, to ensure that user needs are fully met and that no

unintended system behavior occurs. Each documented user requirement must

be traced to a software function; and each software function must be traceable

to a user requirement, or it will yield unspecified behavior. Traceability links

requirement attributes to show that user needs are met and that the system will

not work in unexpected ways. (Light, Conway, 1997)

Examples of Requirement Attributes

- Reason for requirement

- Resource to meet requirement

- Time created or updated

- Version number, as requirement is revised

- Status (e.g., proposed, in progress or tested)

- Parent and child requirements, dependencies, including links to non-IS

projects

- Priority of requirement (in function, budget or schedule)

- Owner, person or team to work on requirement

(Light, Conway, 1997)

Specifically, we advise that the project manager - as the person responsible for

bringing the project in on time and on budget - should be fully and formally

authorized to negotiate regarding requirement changes that would affect the

project's resources, budget and schedule. Changes rejected by the project

manager should not be subject to appeal to a vice president or CIO unless

seconded by an executive-level sponsor. (Light, Conway, 1997)

43

Estimating project costs and delivery due dates depends critically on

requirements management, the key to which is traceability. IS organizations

should train project managers in scope management and empower them to

negotiate requirements changes, especially any that could lead to project

delays, cost overruns or cancellations. (Light, Conway, 1997)

5. FEEDBACK

5.1 Positive Feedback

Information System (IS) organizations often receive negative feedback and are

faulted for even minor service gaps. With simple steps, they can reverse this

tendency, creating positive feedback and gaining support for their critical role.

(Gabler, 1999)

Service-oriented IS organizations seeking to encourage positive user feedback

should:

- Set the foundation for service visibility

- Set the context by reporting the magnitude of services provided

- Be honest about services provided and not provided

- Solicit feedback from users to ensure synchronized perceptions

(Gabler, 1999)

Historically, Information Technology (IT) system implementations were the

focal point of user and IS congratulations as new capabilities went live - IS

staff were heroes. As IT matured, users and management began to realize that

IS staff also provide service and maintain unique tools that serve the business

needs. This necessary shift from one-time implementation goals to ongoing

service goals requires a mind-set change. Now, IS staff are often faulted for

"creating" problems whenever there are service gaps. Without positive

reinforcement, any task can become laborious and demotivating, and IS staff,

44

typically highly motivated, will lose interest, causing service to degenerate.

Since the reason for investing in IT is to address a business need, IS's ongoing

service role has become vital to the business team. The next chapter addresses

the first step toward attaining consistent, quality IS service - communicating

the volume and status of service requests through service activity reports.

(Gabler, 1999)

5.1.1 Service Activity vs. SLA Reports

Service activity reports align users perceptions with the IS organization's

reality, setting a common context for service volume and status (how big the

job is). Although activity reporting is not performance-level reporting, it does

expose IS to the organization. Exposure can induce improved service, but only

if IS management understands that its value can only be based on business

effectiveness. Once users and IS understand service volume and status, IS

organizations must mature to SLA reporting.

SLA reports align the IS organization's perceptions with users' reality,

comparing the level of service delivered with the level of service expected

(how well the job is done). For example, SLA reports could show, for a

specific time frame, the average duration of an open service request and the

average time from request to initial response compared with agreed-upon

thresholds. Thus, SLAs are likely to include activity volumes but probably not

the status of specific service requests.

Service activity and SLA reports are complementary. Both parties (IS

organization and users) have different perspectives and objectives. Assessing

performance levels without an appreciation for volume is impractical. Volume

and available resources are the primary factors in determining performance in a

well-run service organization. Establishing a common volume/status context is

the first step toward establishing a common performance-level context.

(Gabler, 1999)

45

Problem: "Good" service goes unnoticed because it is expected. Thus, service

gaps are highly visible, creating a "negative feedback loop." For example, the

telephone is hardly noticed until it does not work as expected, at which time it

becomes a major obstacle. Why should IS service be viewed differently? The

problem stems from perception, since we all tend to remember negative events

more readily than positive events. Solution: The IS organization must track

service issues and problems, then establish accurate perceptions of the resulting

service activities based on four principles:

Set the Foundation. Set up regular, recurring service activity reports to be

issued at least monthly. Users soon begin to expect these reports, establishing a

foundation for presenting a service message.

Set the Context. The number of service requests received and handled is often

much greater than users and their managers realize. Just publishing these

counts creates a significantly different perception of service gaps. Managers

often admit that they had no idea their staff were generating so many requests.

This often results in training or procedural changes, which decrease some

service activities. Reporting the magnitude of service activities establishes the

context.

Be Honest. Including the number of open requests underscores the IS

organization's honesty in publicizing the service load. The number of requests

opened minus the number of requests closed quantifies both work in progress

(open) and work completed (closed). Both numbers create positive perceptions

that otherwise could be negative. Honesty establishes credibility.

Solicit Feedback. Detail closed service requests and make it clear that, if the

user views a request otherwise, the IS organization wants to know. Closing a

request that a user feels has not been resolved erodes credibility. Synchronizing

perceptions establishes further credibility and a sense of teamwork and honesty

between both parties. (Gabler, 1999)

46

For example: The IS organization should track and monitor all calls to a help

desk. It should generate monthly reports by function unit, showing the total

requests open at the end of the last reporting period; total requests received for

the current time period; total requests closed in the current time period; and

total requests still open at the end of the current time period. This summary

dispels most negative perceptions and focuses user attention on the amount of

service actually delivered. A second part of the report should detail each closed

service request so the user knows the status. The report should invite the user

to notify IS of any discrepancies. Publication of this report allows both parties

to know the exact status of the service load and IT problems, diffusing

misunderstandings and providing a healthy communication vehicle. (Gabler,

1999)

The IS organization's service role is critical for users to use IT systems

smoothly, but if accurate perceptions are not created by IS, users will develop

negative perceptions based on personal experience. Through simple reports that

quantify requests and their resolution, the IS organization can begin to step into

its vital role as part of the business team. SLA reporting can then be added as

the next maturation step. (Gabler, 1999)

5.2 User Satisfaction Monitoring

Measurement of user satisfaction with IT-delivered products or services

provides an opportunity to focus on the feedback and develop action plans that

yield the greatest improvement in user satisfaction level. (Redman, 1998)

Unfortunately, many IS organizations do not really know how satisfied their

users are with the services being provided. Moreover, many IS organizations

do not have a good understanding of what their users' top IT concerns are. How

can IS organizations address such important issues and significantly improve

user satisfaction within their resource constraints? (Redman, 1998)

47

Traditionally, IS performance metrics have been based on efficiency,

technology and budgetary guidelines. Although such measurements are

important, measuring internal customer satisfaction is emerging as a significant

opportunity as well as a business requirement. The concept of user feedback

may appear trivial, but collective user perception can be so powerful that it can

make or break the credibility and future success of the IT services provider and

its management. (Redman, 1998)

5.2.1 Focused Feedback

With respect to time and money, it is generally prohibitive to embark on fixing

everything that is perceived to be "wrong" with the IS organization and the

services it delivers. However, measurement of internal customer satisfaction

with IT-delivered products or services provides an opportunity to focus on the

feedback and develop action plans that will yield the greatest improvement in

user satisfaction levels. (Redman, 1998)

The analysis, strategies for improved performance, and continued monitoring

of improvement can result in the following benefits:

- Heightened awareness of user frustrations

- Better alignment of priorities

- Sharper IT management focus

- Improved IT requirements planning

- More effective IT resource allocation

- Enhanced quality of IT services

- More competitive IT services

- Increased IT customer satisfaction

- Greater productivity and return on investment

(Redman, 1998)

48

CASE NOKIA

6. NOKIA

Nokia is a global company whose key growth areas are wireless and wireline

telecommunications. A pioneer in mobile telephony, Nokia is the world's

leading mobile phone supplier as well as a top supplier of mobile and fixed

telecom networks and services.

Nokia also creates solutions and products for fixed and wireless

datacommunications. Multimedia terminals and computer monitors round out

our expertise in communications technology. (Nokia In Brief)

6.1 Nokia IM

Nokia Information Management (IM) is a global Nokia function, which

creates, deploys and delivers information management services for all Nokia

businesses and employees. IM services include applications and services for

business communications, demand/supply chain, management and support, and

product creation. IM also offers standard infrastructure services and end-user

support for Nokia applications and users.

IM´s aim is to become a trusted strategic partner to Nokia businesses by

- Proactively creating enterprise-wide IM services that meet the business

needs

- Rapidly deploying and efficiently delivering these services

- Internally piloting and creating a showcase for Nokia's own products

49

As a global Nokia function, Nokia IM operates close to the business, in all the

same locations where Nokia has business operations. Nokia IM's geographical

areas and their central locations are:

- Americas, Dallas

- APAC (Asia Pacific), Singapore

- China, Beijing

- Continental Europe, Düsseldorf

- Finland North, Oulu

- Finland South, Espoo

- Finland West, Salo

- UK&Ireland, Camberley

In addition, Nokia IM Service/Help Desks and On-Site Support operations are

in most major countries and cities in the world. (This is Nokia IM)

6.2 Delivery Process Application Services (DPA)

Delivery Process Application Services (DPA), (formerly Demand/Supply

Chain Application Services) is one of the three application service groups in

Nokia Information Management (IM)/Application Services (APS).

Based on Nokia strategy, DPA creates and deploys end-to-end demand/supply

chain IM services to Nokia Business Groups. That means IM services for

Nokia´s product delivery process.

In the creation and deployment of IM services, DPA responds to the rapidly

changing needs of Nokia Businesses. Organizationally, DPA supports Nokia

business processes in the following application areas: Demand Creation and

Account Management, Demand/Supply Planning Applications,

Demand/Supply Chain Transaction Applications, Service Support Applications

and NET Operations Applications. Nokia-wide e-business development is also

part of DPA.

50

DPA Application Deployment is organized and carried out by Business

Groups. DPA Advanced Application Support, which is part of the Nokia IM

Global Support Concept, is responsible for Advanced Application Support and

implementation of the Global Support Concept for DPA. Infra Support for

Application Services is a part of DPA as well.

Tapio Niskanen, Director, IM Application Services - is heading the DPA

organization, which employs 360 people as of the end of March 2000. The

organization has locations in Espoo, Salo, Oulu, Haukipudas and Bochum,

Germany. (DPA Intro)

6.3 Sales Configurator

Nokia Sales Configurator (NSC) is an application developed by Nokia IM for

Nokia Networks Oy Business Units and National Organisations. With Nokia

SC, users can create product configurations based on customer requirements in

both Sales (tendering) and Delivery processes (sales order processing), see

Figure 15. SC provides users with an easy-to-use interface for accurate and up-

to-date creation of product configurations. SC will replace some of the current

configurators, and it provides interfaces to other applications such as MLS, see

Figure 14.

Nokia Sales Configurator covers the following functionalities:

- Tendering

- Product configurations

- Sales order processing

- Pricing

(SC Home)

51

Figure 14. Sales configuration

Figure 15. Sales configurator; sell & deliver phase

Sales Configuration

Customer Needs Configuration Order

Rules
Items
Prices

MLS

MetroSite

Global Model Site, Full Capacity
TailSite

 - BTS Frequency= DualBand
 900/1800
 - Power Feed= AC 230 V
 - Base Station Configuration
 = 1+1/1+1
 - Base Station Transmission
 Unit=FC RRI

CS70401.00
CS72454.01
CS72450.12
CS72452.50
CS72458.04
T55800.01
467616X
468351A
466798X
019318A.10X

 Sales Configurator - Sell & Deliver Phase

Tender
Proposal File

MLS
CONTRACT

SALES
ORDER

Sales Configurator
Account Team

Logistics

Signed
contractTender

Sales Configurator

Order to
 BMS
and/or
picking

list to WH

Installation Planner/
Logistics Co-ordinator

Site
Order
Form

MLS file

MLS file

SE
LL

D
EL

IV
E

R

52

Figure 14 illustrates the sales configuration in principal. Customer needs, i.e.

what products/product families are to be included in the desired system, are

input to SC. SC makes an item list with prices according to the rules; it can be

transferred to MLS (Modular Logistic System).

The upper part of Figure 15 describes the use of Sales Configurator in the

tender phase. The account team can make the tender using the pricing

information in the SC. In the lower part, the configurator is being used to

produce the part list to be used in the logistics.

BMS - Business Unit Logistics Management System - is an operative logistics

tool used by Nokia Networks Business Units. Currently Locos is the only BMS

system in use.

WH - Warehouse

7. PRESENT PROCESSES

In the beginning of the software development process, requirements are

handled with Word documents; these Requirements Specification documents

are static. Once the software has been released, these documents are

meaningless. After that, in practice, all the feedback to the development team

comes in the form of Change Requests (CRs) or System Investigation Requests

(SIRs). The different channels through which these requests come are

illustrated in Figure 16.

Live release means the latest published version of the software. Release X is

the next release to be published, and sometimes there are already requirements

that affect the releases after that, due to a tight schedule. A release plan is used

to decide which features will be implemented in each release.

53

Other parts of the figure are described in detail in the following chapters:

Deployment (chapter 7.10), Key User Workshop (chapter 7.9), Key User

(chapter 7.4.3), Service Desk (chapter 7.4.2), User (chapter 7.4.1), CR/SIR

processes (chapter 7.7).

SPs are Service Packs that are minor releases to fix some of the defects

between releases.

7.1 Feedback Channels

User

Key User Service
DeskDeployment Key User

Workshop

Request
Management

Tool

CR, SIR

Live Release
 SP 1

SP2
Under Development: Release X

Release X+1

Release X+2

Release Plan

Figure 16. Feedback channels

54

7.2 Service Delivery

Service delivery is made within a Global Support Concept. The concept

comprises Service Level Agreements (chapter 7.3) and a Global Support

Model (chapter 7.4).

The Service Level Agreement document presents in detail the products,

services, service levels and fees provided by Nokia IM. It explains the

responsibilities of different organisations and describes measures for service

performance. Site-specific needs are taken into consideration in a Local

Implementation Document.

The Global Support Model presents the teams and organisation that will

provide the services. It consists of three tiers:

Tier one involves Key Users and Service Desk services for the receiver

organisation or site. Tier one is the primary contact point for end users.

Tier two involves application support, operations center and on-site support

and local computing services.

Tier three involves advanced application support and infrastructure support at

a global level.

Concept owners interact with the tier three and tier two support and

configuration owners by defining business needs and priorities. (Services 2000

Catalogue)

55

7.3 Service Level Agreement

A Service Level Agreement (SLA) is an agreement between Nokia IM and

Nokia Businesses/ Global Functions. The SLA states the delivery terms and

conditions for IM Services (applications). The SLA defines the following

tasks:

- Service content

- Responsibilities of both parties, IM and Business

- Service performance

- Target levels for service performance

- Measurement

- Corrective actions

Why do we need SLAs? An SLA is a good way of harmonizing service

expectations. When the above-mentioned tasks are defined, both business and

IM know what is included and what doesn't belong in the service.

Who needs SLAs? The service level defined in an SLA affects many Nokia

employees. It is important for the users to know what kind of IM service they

can expect and where to contact in order to get problems solved.

Nokia businesses and Global Functions have the possibility to plan their own

operations and follow IM costs (since they are paying for the services IM

provides) with SLAs.

Also Nokia IM itself can concentrate on those services our customers require.

IM has better possibilities to plan its operations and resources and in the long

run achieve cost-efficiency.

56

An important and interesting part of SLAs are the metrics. The performance of

IM is measured in the following ways:

User Satisfaction Surveys (IM/Application specific surveys)

- Service quality, through

- On-time deliveries in incident resolution

- Completed service requests within SLA time targets

- Percentage of first-pass cases in incident resolution

- Availability of Service (system working)

The quality of service is monitored with periodical SLA monitoring reports.

SLAs have been signed for the following IM services:

- Messaging for Nokia (Outlook)

- SAP R/3 Logistics service for NMP

- MLS (Modular Logistics System) service for NET

- SBM Platform Support for NET Engineering Services

- BMS (Business Unit Marketing System) service for NET

- Infrastructure services for Nokia

- Planning and Reporting Application Service for Nokia

- SAP R/3 FSP (Finance Platform) for Nokia FSP to be signed by the end of

June

(Himmanen, 2000)

57

7.4 Global Support Model

Figure 17. Global support model for Nokia IM

When an end user has a problem, if it is process related he/she should contact

his/her key user; if the problem is 'common' he/she contacts the service desk. A

key user can also solve the problem himself/herself; if this is not possible,

he/she contacts the concept owner.

For application-related problems, for example how to use a certain application,

a user contacts the nearest service desk, which is able to solve trivial problems.

In the case of SC they normally just write it down and the handling

responsibility is transferred to the 2nd tier. Each geographical area has its own

Application Support, where application related problems are handled; at the

moment there are two people in Dallas, one in China, one in Sydney, and one

in Finland. Operations Centers are also area specific and they handle issues

58

concerning operations. On-Site Support means people in place who can come

to the person with the problem if they think they can solve it. Local Computing

people handle for example server-related problems. If the 2nd tier is unable to

solve the problem, it is transferred to the 3rd tier, which is global. Advanced

Application Support handles application and platform-related problems, and

Advanced Infra Support infra related. The last option in this chain is

Configuration Owners, if none of the preceding steps has solved the problem.

That is the development group of the application under consideration. In this

process, RMT is used to monitor the progress of each issue.

In product and process-related issues, there are no tools for making requests or

questions, but e-mail or telephone are used to communicate between the

different people involved in the process.

7.4.1 Service User

Service Users are Nokia employees whom Service Desks and Key Users

support in IT-related requests. A Service User may have two different kinds of

problems: process related (I don't know how this application works or could I

do this in a different way) and common (my computer/network etc. does not

work).

Service Desk is the single point of contact for Service Users in common

problems. Key Users are contacted for a requested solution to a business

process-specific application, e.g. SAP Logistics, MLS, SAP FSP. Each request

is logged into the request management tool, to follow up the solution progress

within the agreed service level.

(Nokia Intranet)

59

7.4.2 Service Desk

Service Desk is a single point of contact offering support e.g. by phone or e-

mail for IM Service Users. It is responsible for providing day-to-day care and

problem resolution.

The main tasks of Service Desk are:

- Informing end users regarding:

- service up-time and availability,

- recovery & performance,

- coaching and training

- Monitoring performance of IM

- Logging service requests into the request management tool, which provides

statistics about their service level, offering information about user

satisfaction

- Informing the service user of a service request's status

- Resolving requests if possible (e.g. over the phone)

- If immediate resolution is not possible, escalating requests to second tier

personnel

- Communicating with the users in the local language (and English) if

possible

- Proactively looking for root causes of continual requests by root cause and

trend analysis

- Tier 1 event monitoring of application software, system software, hardware

and networks

- Managing the site inventory of assets for end user terminals (e.g. hardware,

licenses)

(Nokia Intranet)

60

7.4.3 Key User

The Key User is responsible for the effective use of the following business

process-specific applications in the local business organisation:

Demand/Supply Chain Applications, Management Support Applications,

Product Creation Applications, and Business Communications Applications.

The main tasks of the Key User are:

- Answering application users' questions, assisting request management by

logging and escalating application user requests. When needed she/he also

raises application change requests, forwards them to the Concept Owner

and maintains local reporting.

- Training application users, participating in testing new application releases

and acting as local communicator of the above-mentioned applications.

(Nokia Intranet)

7.4.4 Concept Owners (Regional)

The Regional Concept Owner represents the regional business process

perspective in the global concept development, together with the concept

owner network.

The main tasks of the Regional Concept Owner are:

- Managing regional concept specification work when the regional process

owner has accepted the concept specification.

- Refining process requirements for regional systems support, and supporting

application implementation in her/his area, providing feedback to the

Global Concept Owner.

(Nokia Intranet)

61

7.4.5 Application Support

Application Support is responsible for combining local process understanding

with business-specific application expertise.

The main tasks of Application Support are:

- Monitoring and solving escalated requests, supporting Service Desks, Key

Users and Concept Owners.

- Informing Key Users of functionality changes and offering training

materials.

- Assisting in coordinating upgrade services, maintenance tasks and

delivering advanced training programs (applications, processes, tools) for

Key Users.

(Nokia Intranet)

7.4.6 Operations Center

Operations Center is responsible for providing a centralised backbone of

systems and services for the delivery of common Nokia-wide IM Services.

The main tasks of the Operations Center are:

- Solving and monitoring escalated requests

- Performance, capacity and event monitoring of systems which are OPC's

responsibility

- Computing and networking operations

- Insulation, change control and operations for defined IM applications and

infrastructure services, e.g. Exchange servers, routes

62

- Software and data distribution for Local Computing, On-Site Support and

Service Desk

- Infrastructure capacity planning and implementation support, hardware

maintenance planning

- Disaster recovery and contingency planning in the OPC area

- Username operations for main computing platforms and System

Management operations for all services

- Security

- Management of the site inventory of assets (servers, networks)

- Purchasing of hardware, networking, system software and infrastructure for

server and network platforms which are not covered by global procurement

(Nokia Intranet)

7.4.7 On-Site Support

On-Site Support is responsible for offering personal support to the Service

User at the user's workplace or at the Service Point, if the request cannot be

solved in the Service Desk by phone or email.

The main tasks of On-Site Support are:

- Providing a local Service Point where users can get immediate service, e.g.

a standby laptop or desktop, cables, cartridges and diskettes.

- Installing terminals and defined software for laptops, desktops and

communicators, as well as other Service User devices like printers,

scanners and plotters, also taking care of the change control.

- Providing IT facilities on the site, e.g. network connections at the

workplace.

(Nokia Intranet)

63

7.4.8 Local Computing

Local Computing is responsible for supporting locally operated systems,

including both local and partially global systems. It provides system support

on-site when remote management tools cannot be used.

The main tasks of Local Computing are:

- Performance, capacity and event monitoring for locally operated systems,

their hardware maintenance and fault management, as well as disaster

recovery and contingency planning.

- Purchasing of local hardware, networking, systems software and

infrastructure equipment for Service User needs (e.g. laptops, desktops)

which are not covered by global procurement.

- Managing the site inventory of computing and networking assets

(hardware, licenses).

- Installing and operating e.g. file servers, network printers, computer rooms

and taking care of their change control.

(Nokia Intranet)

7.4.9 Concept Owner (Global)

The Global Concept Owner is responsible for transforming global business

process requirements into concept specifications.

The main tasks of the Global Concept Owner are:

- Defining global process requirements for systems support when the process

owner has accepted the concept specification

- Maintaining the concept functionality map and facilitating and supporting

regional concept specification work

64

- Implementing solutions: e.g. tests pilot & local system functionalities and

training concepts

- Managing the regional concept owner network, facilitating the local key

user network, and maintaining the list of key users

(Nokia Intranet)

7.4.10 Advanced Application Support

Advanced Application Support is responsible for facilitating Nokia

organizations globally to manage their applications, acting as an interface

between application support and application creation teams.

The main tasks of Advanced Application Support are:

- Monitoring and solving escalated requests

- Creating change requests in response to raised requests

- Global coordination of application service levels, maintenance of global

support documentation

- Planning and delivering advanced training for Application Support

- Planning and coordinating application support and software upgrade

deployment

- End-to-end responsibility for service support

- Launching and attending selected development projects when appropriate

(e.g. support tool development)

(Nokia Intranet)

65

7.4.11 Advanced Infra Support

Advanced Infrastructure Support is responsible for the technical solutions of

applications.

The main tasks of Advanced Infrastructure Support are:

- Monitoring and solving escalated requests, execution of escalated requests

- Planning and delivering technical training for Operations Centers and

support persons

- Infrastructure related product software upgrade deployment support

(technical aspects)

- Global performance, capacity and event management

- Global infrastructure maintenance and contingency planning

(Nokia Intranet)

7.4.12 Configuration Owners

The Configuration Owner is responsible for the system configuration – the

creation.

The main tasks of the Configuration Owner are:

- Consolidation of business needs from concept owners and configuration

owners

- Defining required systems in business process analysis

- Application release and version management, new release training planning

- Configuration management of releases from development to production

- Development of integration interfaces and implementation of system

integration tests

- Design, programming and testing management of new system features

- Control of user acceptance tests of the systems (Nokia Intranet)

66

7.5 User Support

The service provides resolutions to issues related to the use of SC in production

and testing environments. User support also helps users with any questions

they may have concerning the use of the application.

During working hours, service provision starts when an issue has been

escalated to Nokia IM Service Desk or Application Support. The response time

is the time taken for an issue to be assigned to a specific individual in Nokia

IM and a notification message sent to the issue creator. The issue is classified

as resolved once:

- A resolution has been successfully implemented by Application Support

and communicated to the issue creator, or

- A resolution has been proposed to the issue creator/originator for them to

implement, or

- A resolution for future implementation has been proposed to the issue

creator and, where necessary, a work around has been proposed.

An issue is classified as closed once the issue originator is satisfied with

resolution. (Services 2000 Catalogue)

7.5.1 Levels of User Support and Issue Resolution Times

Table 1 shows the promised response and resolution times for different kinds

of problems.

67

Table 1. Levels of user support and issue resolution times:

Category Attributes Response Resolution

 Time Time

Critical · Complete system failure Immediate 10 hours

Level 1 · No staff can work

· Business impact at every level

High · Complete failure of a critical 2 hours 40 hours

Level 2 system / application component

 · Some staff unable to work

 · Major business impact

Medium · Complete failure of a non-critical 4 hours 100 hours

Level 3 system / application component

 · Partial failure of a system /

 application component

· Specific staff affected

· Minor business impact

Low · Advice required 8 hours Min.150

Level 4 · No noticeable business impact hrs (user

 defined)

(Services 2000 Catalogue)

7.6 Training

Application training is available according to the target service level. After the

initial training during the roll-outs, further training will be arranged in regional

learning centers. The training components are:

- SC Tool training

- Product Configurator training

- Key User training

- New Release functionalities

(Services 2000 Catalogue)

68

7.7 CR and SIR Processes

Figure 18. Change management process

Figure 18 represents the Change Request process when the CR is being

initiated by an end user. There are also other channels through which CRs and

SIRs are generated, e.g. Key User Workshops, Testing, Deployment,

Development team, and Business Units.

At the moment, feedback from the users comes mostly through a complicated

process which handles CRs (Change Requests) and SIRs (System Investigation

Requests). SIRs are used for reporting bugs and other malfunctions of the

software. CRs can be also used to make suggestions about how a certain

feature should work.

69

A change or modification to the system is often referred to as a 'CR' or 'Change

Request'. An enhancement is a change to the previously agreed functionality

and is different from an 'SIR', which requires a fix to the system in order to

meet the previously agreed functionality. A System Investigation Request is

often referred to as a 'Bug'. An SIR is a recognised problem with the system

that requires further investigation and may require a fix to the application code.

Therefore SIRs are considered more urgent and are prioritised in terms of

schedule and resources allocated.

The CR/SIR tool is being used via a Lotus Notes database, in which the

originator completes a form including all the relevant information required.

This form includes information about the originator, release, desired

functionality, priority, status etc. (see appendix 1 for more detailed

information).

7.7.1 SIR Process

SIR priority definitions:

Critical: The Error is classified as a Crash-level Error if the Software or

Maintainable Deliverables cannot run, or service is crippled as to be useless, or

a time critical user job is stopped, there are data corruption problems, or a

critical malfunction or deficiency endangers business, and there is no

workaround available.

High: The Error is classified as a High-level Error if an important operational

user job is stopped, or a time critical user job is at hazard, or an important

Software or Maintainable Deliverables component is unusable, or a system or

product malfunction due to deficiency or non-usability has frequent or major

end-user impact, or there is a frequent failure of an important service.

70

Medium: The Error is classified as a Medium-level Error if the Software or

Maintainable Deliverable is hampering progress, or a non-urgent job does not

run, or an intermittent fault is causing inconvenience, or a system or product

malfunction due to deficiency or non-usability is having infrequent or minor

user impact.

Low: The Error is classified as a Low-level Error if the Error has no current

impact on the user, or there is a locally identified cure or workaround available.

It is passed on for information purposes only to ensure registration of the

problem and clearance as appropriate.

New

Approve/
Reject

Build &
Test

Approved
into

release

SIR is
implemented

Delivery
approved

Nokia project managers
Testing teams

Release manager
(platform SIRs)
Project manager
(configurator projects)

Vendor

SIR Process for platform andSIR Process for platform and configurator configurator
projectsprojects

Enter and
Prioritize

Release manager
(platform SIRs)
Project manager
(configurator projects)

Responsibilities

Configurator
 project(s)
Vendor

Testing and
acceptance

SIR is
approved

into
release

Enter SIR
to CR DB

Steering Group

More
information

needed
Rejected Delivered

 SIR delivered
in release

Release
manager

Closed

Platform project
/SC program

Delivery
rejected

Figure 19. SIR process

The SIR process is represented in figure 19; table 2 defines the responsibilities

in SIR handling in different phases of the process.

71

SIR statuses:

New: The originator has created the SIR. The release manager (for platform

SIRs) or configurator project manager (for configurator SIRs) is working with

the SIR.

Rejected: The release manager (for platform SIRs) or configurator project

manager (for configurator SIRs) has rejected the SIR because it is not valid,

has insufficient information, or is a duplicate of another SIR already in the

database.

Approved into release: The release manager (for platform SIRs) or

configurator project manager (for configurator SIRs) has approved the SIR into

implementation. The vendor is implementing the SIR.

More information needed: The vendor has not been able to implement the

SIR because there is not enough information provided in the SIR. The release

manager (for platform SIRs) or configurator project manager (for configurator

SIRs) is working to obtain the information needed.

Delivered: The vendor has implemented the SIR and it has been delivered in

release. Testing is currently underway.

Delivery approved: The test team has approved the implementation of the

SIR. The release manager is currently validating the delivery of the SIR.

Delivery rejected: The test team has disapproved the implementation of the

SIR. The vendor is currently fixing the SIR.

Closed: The SIR has been delivered in release and the release is available from

the release manager.

72

Not Repeatable: The SIR has not happened when trying to repeat the

procedure causing the SIR.

Table 2. SIR process responsibilities:

Responsible

person:

SIR status

before

action:

Action: SIR status

after action:

View used:

1 Project key

persons, testers,

SC support

None Create the SIR in the

CR database defining

all necessary data in the

SIR

New None

2 Release manager

(platform CRs)

Configurator

project manager

(configurator

CRs)

New

More

information

needed

Verify that the SIR has

all the necessary data

and that no duplicate

SIRs exist in the CR

tool database. Either

turn the SIR into status

Approved into Release

for implementation, or

reject it by turning it

into status Rejected and

inform the creator by

mail.

Approved into

release

Rejected

Release

manager

view,

Configurator

project

manager

view

3 Vendor Approved

into release

Delivery

rejected

Implement the SIR

according to

information provided in

the SIR and turn the

SIR into status

Delivered.

If the SIR cannot be

implemented because

necessary information

is lacking, turn the SIR

into status More

information needed.

Delivered

More

information

needed

Vendor view

73

4 Testing team

(Release

manager)

(Configurator

project manager)

Delivered Test the SIR in the

release where it is

implemented. If SIR

implementation is

acceptable, turn the

SIR into status

Delivery approved. If

SIR implementation is

not acceptable, turn the

SIR into status

Delivery rejected and

give the reason for

rejection.

Delivery

approved

Delivery

rejected

Testing view

5 Release manager Delivery

approved

Based on release notes

provided by the vendor,

verify that all SIRs in

release have been

delivered and tested.

Verify that all SIRs

have the needed

information and

documentation. Turn

SIRs in release into

status Closed.

Closed Release

manager

view

7.7.2 CR Process

CR priority definitions:

Critical: Must be implemented. Even the release schedule can be changed to

get these features.

High: Must be implemented. However, there is a (cumbersome) workaround,

which could be used if the schedule is not sacrificed. If skipped, must be

implemented in the next minor release.

74

Medium: Should be implemented. However, the schedule is not sacrificed. If

skipped, must be implemented in the next major or minor release.

Low: 'Nice to have' feature. If the schedule allows, can be implemented. If

skipped, prioritization must be considered again in the next (minor or major)

release.

Approve/
Reject

Design and
estimate

Build &
Test

Agree
scope

Nokia projecr
managers

Approved
for

Design

Design
and estimate

building
effort for CR

Designed

Vendor SC Steering
group
(Release manager)

Approved
into

release

CR is
build

Vendor

Delivered Delivery
approved

Enter and
Prioritize

 CR
delivered
in release

Closed

Release
manager

CR process for platform andCR process for platform and configurator configurator projects projects

Rejected

Release manager
(platform SIRs)
Project manager
(configurator projects)

More
information

needed

Release manager
(platform SIRs)
Project manager
(configurator projects)

Responsibilities

Configurator
 project(s)

Vendor

Steering Group

Alternative route if design estimation and scope
approval is not needed

Enter CR
to CR DB

Approve CR
for design

and
estimation

Testing and
acceptance

Approve CR
into

release

Platform project
/SC program

New Delivery
rejected

Figure 20. CR process

The CR process is represented in figure 20; table 3 defines the responsibilities

in CR handling in different phases of the process.

CR statuses:

New: The originator has created the CR. The release manager (for platform

CRs) or configurator project manager (for configurator CRs) is working with

the CR.

75

Rejected: The release manager (for platform CRs) or configurator project

manager (for configurator CRs) together with the originator of the CR has

rejected the CR because it is not valid, has insufficient information, or is a

duplicate of another CR already in the database.

Approved for design: The release manager (for platform CRs) or configurator

project manager (for configurator CRs) has approved the CR into design and

estimation. The vendor is currently working with design and estimation.

More information needed: The vendor has not been able to design or

implement the CR because there is not enough information provided in the CR.

The release manager (for platform CRs) or configurator project manager (for

configurator CRs) is working to obtain the information needed.

Designed: The vendor has designed a solution and estimated implementation

effort for the CR. Release scope definition is currently underway to decide if

the CR will be implemented.

Approved into release: The SC Steering Group has approved the CR into SC

release. The vendor is currently implementing the CR.

Delivered: The vendor has implemented the CR and it has been delivered in

release. Testing is currently underway.

Delivery approved: The test team has approved the implementation of the CR.

The release manager is currently validating the delivery of the CR.

Delivery rejected: The test team has disapproved the implementation of the

CR. The vendor is currently fixing the CR.

Closed: The CR has been delivered in release and the release is available from

the release manager.

76

Table 3. CR process responsibilities:

Responsible

person:

CR status

before

action:

Action: CR status

after action:

View

used:

1 Project key persons,

testers, SC support,

BU representatives

None Create the CR into the CR

database, defining all

necessary data in the CR.

New None

2 Release manager

(platform CRs)

Configurator

project manager

(configurator CRs)

New

More

information

needed

Verify that the CR has all

the necessary data and that

no duplicate CRs exist in

the CR tool database.

Either turn the CR into

status Approved for design

to have it designed by the

vendor, or reject it by

turning it into status

Rejected and inform the

creator by mail.

Note! It is also possible to

turn the CR into status

Approved into release for

implementation if design

and scope approval is not

needed.

Approved

for design

Rejected

(Approved

into release)

Release

manager

view,

Configur

ator

project

manager

view

3 Vendor Approved

for design

Design the CR according

to information provided in

the SIR and provide an

estimate about

implementation effort.

If the CR cannot be

designed because

necessary information is

lacking, turn the CR into

status More information

needed.

Designed

More

information

needed

Vendor

view

77

4 SC Steering Group

(Release manager)

Designed Decide the scope of the

release. Turn all CRs to be

implemented into status

Approved into release and

indicate the release in

which the CRs are to be

implemented.

Approved

into release

Scope

approval

view

5 Vendor Approved

into release

Delivery

rejected

Implement the CR

according to information

provided in the CR and

turn the CR into status

Delivered.

If the CR cannot be

implemented because

necessary information is

lacking, turn the CR into

status More information

needed.

Delivered

More

information

needed

Vendor

view

6 Testing team

(Release manager)

(Configurator

project manager)

Delivered Test the CR in the release

where it is implemented. If

CR implementation is

acceptable turn the CR into

status Delivery approved.

If CR implementation is

not acceptable turn the CR

into status Delivery

rejected and give the

reason for rejection.

Delivery

approved

Delivery

rejected

Testing

view

7 Release manager Delivery

approved

Based on release notes

provided by vendor, verify

that all CRs in release have

been delivered and tested.

Verify that all CRs have

the needed information and

documentation. Turn CRs

in release into status

Closed.

Closed Release

manager

view

78

SIRs are usually implemented as soon as possible. When concerning a live

environment, if the problem is in data it can be fixed by fixing the data in the

database. If the problem is in the code of the software, it cannot be fixed before

the user reinstalls the software; the fix will be (hopefully) in the next release.

Some of the 'data' is in the code of the software, e.g. some rules concerning the

products. If it is very important to fix the problem, and the next release is not

coming out in the near future, there is one option left. To get the problem fixed

between releases it can be done by using a patch, an executable program that

fixes the problem when executed in the client machine. These patches are

called Service Packs and sometimes there may be several Service Packs out

between the complete releases.

There is a wide variety of Change Requests (CRs), some of which concern

wholly new features to the software and some are pretty meaningless like 'the

button should be green, not blue', and naturally everything between those

extremities. Even if there is categorization regarding the importance of a CR, it

may not always show the real situation, because it is decided by the originator

of the CR and may be exaggerated to ensure that the CR is recognized. Most of

the time the schedule is so tight that the CR may not be implemented, if at all,

even in the next release.

7.8 RMT

The Request Management Tool is being used to monitor problem solving

activities and people responsible within the support organisation. It monitors,

among other things, handling times between different phases of the procedure,

and the overall times. RMT is not the same as the CR tool and it is being used

by the support organisation, and some of the issues handled in RMT may later

become a SIR or a CR.

79

7.9 Key User Workshop

Key User Workshops are held after or simultaneously with the roll-out of a

new release. The main goal is to train the key users to use the latest version of

the software. Usually some feedback is gathered from these events.

7.10 Deployment

Three main events: server installation, client installation, user training.

During the deployment phase there are events regarding piloting and user

training. User training events include case training, and user problems are

documented for further analysis, compared to existing CRs/SIRs.

The SC Implementation service includes technical implementation project

management and system specialist services which carry out the implementation

project according to the SC implementation methodology. Implementation is

done usually in a rollout country by teams consisting of IM and Business Unit

people, where IM people carry out SC installation, training arrangements and

system training, and BU people carry out configurator training. The required

system consultation services are included. The SC Project includes the

following phases:

- Project preparation (planning, scope definition, informing)

- Realisation (installation, training)

- Go live & support

(Services 2000 Catalogue)

80

8. RESULTS

The present processes are concentrated on fixing the problems and

malfunctions of the software. There are no media to support the gathering of

brand new ideas for developing the software better or adding new

functionalities or features to it.

One problem is also that the creation and development people are so far away

from the actual users of the software. Virtually none of the problems they have

with the software are coming to their attention. That is because there are so

many 'filters' on the way and most of the problems are solved by the key user

or the service desk, and in such cases upper tier people are not notified of such

incidents.

Gathering all the requirements in one place, i.e. a database, and giving different

groups different kinds of access rights to the data would solve many of the

current problems concerning requirements management. Requirements

management tools provide the necessary functionalities to make it happen.

8.1 Requirements Management Tool Workshops

I participated in four different workshops organised by Osmo Vikman from

Nokia Research Center. The tool vendors were there to represent their tools. It

was not only about the tools themselves, but they also described the processes

the tools are supposed to support.

These four vendors and their tools were: Quality Systems & Software: DOORS

and DOORSnet, Rational Software: Analyst Studio & RequisitePro,

Technology Builders, Inc.: Caliber-RM, and TD Technologies/SDRC: SLATE

& TranSLATE.

81

There is a certain methodological background to almost every Requirement

Management Tool. QSS have even written several white papers and books

concerning their idea of requirements management and naturally how their tool

(DOORS) fits the overall process of requirements management.

DOORS is being used by other Nokia BUs. One of the reasons this tool was

selected to be evaluated more closely was the positive experiences of the other

BUs. The purpose of the evaluation was to assess how it would fit our own

purposes, i.e. managing the Sales Configurator's requirements.

8.2 Requirements Management Process

Figure 21 illustrates how a requirements management tool would fit into the

current processes (see Figure 16) of gathering feedback and requirements from

different stakeholders.

Using a requirements management tool would make it easier to document

Business Units’ concepts, i.e. the BUs’ processes which the SC is supposed to

support and their processes. The process roadmap refers to this development of

BUs’ processes. Technological progress also affects application development,

and these are the technology and application roadmaps in the figure. One

example of this kind of development is the transformation of SC to the web.

The advantage of a requirements management tool in this framework is the

ability to handle totally different kind of requirements in the same database,

and link these requirements to each other. It also allows the use of a hierarchy,

so there can be requirements that are on different levels.

Different kinds of access rights can be assigned to different user groups or even

individual users (more in chapter 8.3.1). Using DOORSnet, the database can be

accessed through a web browser anywhere (chapter 8.3.2).

82

Requirements Management Tool

User

Key User Service
DeskDeployment Key User

Workshop

Request
Management

Tool

Live Release
 SP 1

SP2
Under Development: Release X

Release X+1

Release X+2

Release Plan

CR, SIR

Application
Roadmap

Technology
Roadmap

Process
Roadmap

BU

Concept

Figure 21. Requirements management process

83

8.3 Requirements Management Tool Advantages

There are several advantages of using a requirements management tool

compared to handling requirements through static, e.g. Word documents. QSS

Inc.'s DOORS was evaluated in more detail so the benefits are here described

as seen in DOORS, although most of them apply to all of the requirements

management tools.

8.3.1 Access Rights

There is a wide variety of different kinds of access rights that can be assigned

to different user groups or even individual users. These include: read, write,

and change rights.

These features make it easy to assure that a user is allowed only to modify

relevant requirements, it can be restricted so that a user does not even see those

requirements that are not accessible to him/her.

8.3.2 DOORSnet

Using DOORSnet makes it possible to publish selected requirements to the

web, where they can be seen using a web browser. In DOORSnet 2 it is

possible to make change proposals against these requirements, and suggestions

concerning anything. In DOORSnet 3, there will be also full edit capabilities.

8.3.3 Change Proposal System

CR and SIR processes could be handled with DOORS very well. The DOORS

change proposal system can be accessed either through DOORSnet or DOORS.

Using DOORS, DOORSnet, and suitable access rights, for example, the user

84

could be given rights only to make suggestions through DOORSnet, the user

would not see the requirements or other suggestions (and probably doesn’t

even want to see them). The deployment team, people involved in Key User

Workshops, Key Users, and Service Desk would have DOORSnet access to

make, in addition, change proposals to existing requirements. BU people and

the development team would have all the DOORS features, and access

depending on their position in the project.

The change proposal system makes a change proposal when it is suggested,

and the requirement remains unchanged until approved by the person

responsible. It also has an option to send e-mail to the proposer when the status

of the change proposal is changed, so the proposer knows all the time what the

status is, and why it was changed.

8.3.4 Export and Import

DOORS has excellent import and export features. Word and other

requirements documents are easy to import in just minutes. The basic import

functions include importing plain text, Rich Text Format (RTF), spreadsheet,

MS Project, Framemaker, and Interleaf. Export includes, in addition, SGML

(Standard Generalized Markup Language), SQL (Structured Query Language),

MS Office products (Excel, Outlook, PowerPoint, Word), and HTML

(HyperText Markup Language).

8.3.5 History and Baselines

Every requirement is handled individually. Every single requirement or other

object has its own history and all changes can be seen; who has changed it,

when, what he/she has changed, and possibly additional comment/rationale.

This allows easy cancellation of changes, because all the history is recorded.

85

There is also a possibility to make baselines, i.e. versions of the whole

document can be frozen and given version numbers such as 0.1, 1.0, …. This

allows the user to see what the whole project was like when a baseline was

made. Baselining is a good way to take snapshots of the database, for example

when a certain milestone in the project has been reached.

8.3.6 Links to Various Other Applications

DOORS has a possibility of integration with various different kinds of

applications through their Application Programming Interface. At the moment

there are about 40 integrations. These include, e.g., analysis and design tools

(Rational’s Rose), CAD tools, test and risk management tools, and

configuration management tools (Continuus).

8.3.7 Attributes and Views

Every requirement has a set of basic attributes which are automatically

generated: Absolute Number, Created By, Created On, Created Thru, Last

Modified By, Last Modified On, Object Text, Object Heading, Object Short

Text, Object Text.

A user can add whatever attributes wanted in addition to these basic attributes.

There are several attribute types which can be used, e.g.: Boolean, Date,

Integer, Real, String, Text.

Using different views it can be selected which attributes show on the screen;

these views can be saved for later use. Requirements can also be sorted (e.g. on

the basis of creation date) and filtered (e.g. show only the requirements whose

status is critical).

86

8.3.8 Traceability and Impact Analysis

One of the most important features is impact and traceability analysis.

Requirements can be linked to other requirements, and therefore it can be

analysed what other requirements are affected if only one requirement is

changed (impact analysis), and vice versa, which of all requirements have an

effect on a certain requirement (traceability analysis). This is very important

when there are thousands of requirements and it is very difficult to clarify the

possible effects of changing something. Usually, if not properly conducted, it

leads to more problems than solutions.

8.3.9 Modifiability

70 % of the software is made using DXL. The DOORS eXtension Language

(DXL) is a scripting language for controlling and extending DOORS

functionality. It is a powerful, feature-rich language that is syntactically similar

to C or C++. DXL can be used to automate routine or complex tasks, such as

calculating attribute values, or responding to events by triggering custom

programs. Even one's own functions can be added to DOORS menus.

8.4 Possible Problems Implementing Requirements Management Tool

Although DOORS is quite a simple tool to use, it requires some training to be

used efficiently. This may not be a major obstacle, but the problem is the fear

of anything new. It is difficult to introduce a new way of doing things without

any resistance. It would also require acceptance and commitment from a

relatively large group of people. One of the problems concerns costs compared

to benefits. It may be difficult to show how much money it would save in the

long run to use such a tool.

87

9. CONCLUSION

Software development is a complex process, and has a lot to do with the

requirements for the software product. These are several different kinds of

requirements, and these are presented in various levels; from the intended

functionality of a certain part of the software to very detailed requirements (e.g.

some minor detail in the user interface).

Managing these requirements is also very complicated, although in literature it

is presented as a simple straightforward process which consists of several

distinct phases.

The emphasis of this thesis was on how to handle changes in these

requirements, other feedback after the software has been released, and how the

overall process could benefit from using a requirements management tool.

Using a requirement management tool (RMT) does not solve any problems, but

it gives the means to improve requirements management considerably. Some

advantages of using RMT are: centralised storage of the requirements, using of

different kinds of access rights for different users concerning access and

changing the data, structured handling of the change management process,

impact and traceability analysis, and access to the data using a web browser.

The evaluation of the tool was conducted in quite a simple manner, with only

one user, and a small database. A more realistic conception of the use of this

kind of a tool would require a pilot project where the tool would be used in a

more realistic environment with real requirements.

88

REFERENCES

LITERATURE

Booth, Paul, An Introduction To Human-Computer Interaction, 1989,

Lawrence Erlbaum Associates Ltd., U.K.

Duncan, William, R., A Guide To The Project Management Body Of

Knowledge, 1996, Project Management Institute, PMI Publishing Division,

USA

Encyclopædia Britannica, www.britannica.com, (27.6.2000)

Galitz, W.O., Humanizing office automation, 1984, Wellesley, MA: QED

Information Systems

Gilb, T., Principles of Software Engineering Management, 1988, Addison-

Wesley

Hartson, H.Rex, and Deborah, Hix (ed.), Advances in Human-Computer

Interaction, Volume 2, 1988, Ablex Publishing Corporation, USA

Mayhew, Deborah J., The Usability Engineering Lifecycle: A Practitioner's

Handbook For User Interface Design, 1999, Morgan Kaufmann Publishers,

Inc., USA

McDermid, John A., Software engineer's reference book, 1991, Oxford

Butterworth-Heinemann

Muench, Dean, 1994, The Sybase Development Framework, Oakland, Calif.,

Sybase Inc, USA

89

Pressman, Roger, S., Software Engineering: A Practitioner's Approach,

third edition, 1992, McGraw-Hill, Inc., Singapore

Shneiderman, Ben, Designing the User Interface, 1987, Addison-Wesley

Publishing Company, Inc., USA

ARTICLES AND PAPERS

Bevan, Nigel, Measuring usability as quality of use, 1994, National

Physical Laboratory, Teddington, UK,

ftp://ftp.npl.co.uk/pub/hci/papers/quality.rtf (27.03.2000)

Boehm, B., "A Spiral Model for Software Development and

Enchantment", Computer, vol. 21., no. 5, May 1988

Francas, M., Goodman, D., and Dickinson, J., Command-set and

presentation method in the Training of Telidon Operators, Proc. of the

Human Factors Society – 26th Annual Meeting, Human Factors Society, Santa

Monica, CA, USA, 1982

Gabler, J., IS as Service Provider: End the 'Negative Feedback Loop',

Research Note , Tactical Guidelines, 5. November 1999, GartnerGroup, Inc.,

http://gartner3.gartnerweb.com/ (23.5.2000)

Garvin, What does "product quality" really mean?, Sloane Management

Review, Fall 1984

Light, M., What We Need Is Requirements Management, Research Note,

Markets, 3. November 1998, http://gartner5.gartnerweb.com/ (27.6.2000)

90

Light, M., Conway, B., Requirements Management: Taming Scope

Scourge, Research Note, Strategic Planning Assumption, 15 April 1997,

http://gartner5.gartnerweb.com/ (27.6.2000)

Redman, B., IS Organizations Benefit Greatly From User Satisfaction

Monitoring, InSide Gartner Group, 1. July 1998, Gartner Group, Inc.,

http://gartner3.gartnerweb.com/ (24.5.2000)

van Veenendaal, E, and McMullan, J, Achieving software product quality,

1997, Tutein Nolthenius, Netherlands,

ftp://ftp.npl.co.uk/pub/hci/papers/qualusab.rtf (27.03.2000)

NOKIA INTERNAL DOCUMENTS

DPA Intro

http://connecting.nokia.com/NOKIA/im/home/dpa.nsf/document/ES22T4J4F6

N (30.5.2000)

GSC Homepage, http://domino.ntc.nokia.com/nokia/im/dca/gsc.nsf

(30.5.2000)

Himmanen Satu, Immediate DPA News, June 2000, IM Responsibilities

Materialize in SLA

SC HOME

http://connecting.nokia.com/nokia/IM/home/dpa.nsf/document/00002DFA

(30.5.2000)

SC Introduction to team

91

Nokia In Brief

http://www.nokia.com/inbrief/index.html (30.5.2000)

Nokia Sales Configurator CR Tool; Process and Instructions for Creating,

Managing and Implementing SIRs and CRs

Services 2000 Catalogue

http://domino.ntc.nokia.com/NOKIA/IM/DCA/gsc.nsf/document/00002272

(24.5.2000)

This is Nokia IM

http://connecting.nokia.com/NOKIA/IM/home/customer.nsf/document/ES22T

2156 (30.5.2000)

ISO STANDARDS

ISO, 1981, ISO 6385: Ergonomic principles in the design of work systems

ISO, 1992, Directives Part 2 - Methodology for the development of

international standards, ISO/IEC, Switzerland

ISO DIS 8402 (1994) Quality Vocabulary

ISO/IEC 9126 (1991) Software product evaluation - Quality characteristics

and guidelines for their use

ISO/IEC CD 9126-1 (1997) Software quality characteristics and metrics - Part

1: Quality characteristics and sub-characteristics

ISO DIS 9241-11 (1996) Ergonomic requirements for office work with visual

display terminals (VDT)s - Part 11: Guidance on usability

92

ISO/IEC 14598-1 (1997) Information Technology - Evaluation of Software

Products - Part 1: General guide

ISO/IEC PDTR 15504 (1997) Software process assessment

INTERVIEWS

Hippeläinen Leo, Chief SW Architect, Nokia Radio Access Systems,

Research & Development, 29.5.2000

Karjalainen Jukka, Application Specialist, Nokia Information Management,

Delivery Process Application Services, Application Deployment, 18.4.2000

Katajamäki Harri, Project Manager, Nokia Information Management,

Delivery Process Application Services, Demand/Supply Planning Applications,

7.4.2000

Kuusela Eero, Team Leader, Nokia Information Management, Delivery

Process Application Services, Advanced Application Support, 18.4.2000

Räihä Marcus, Application Specialist, Nokia Information Management,

Delivery Process Application Services, Advanced Application Support,

18.4.2000, 28.4.2000

Santakari Jouni, Project Manager, Nokia Information Management, Delivery

Process Application Services, Demand/Supply Planning Applications, 7.4.2000

Vikman Osmo, Assistant Research Manager, Nokia Research Center,

Software Technology Laboratory, 9.6.2000

93

OTHER

Systems/Requirements Engineering Tool Evaluation Workshops, Nokia

Research Center, Helsinki

Analyst Studio & RequisitePro, Rational Software, 2.5.2000

Caliber-RM, Technology Builders, Inc., 5.5.2000

DOORS & DOORSnet, QSS, Inc., 9.5.2000

SLATE & TranSLATE, TD Technologies/SDRC, 11.5.2000

Nokia Requirements Management Forum, Nokia Research Center, Helsinki,

14.6.2000

94

APPENDIX 1. CR/SIR Fields

The following are the fields in the form and their suggested usage:

Header Give a short description of the CR or SIR. This

field is visible in most of the views so it should be

clear enough to give an idea of the issue but short

enough to fit in the space available. (Required

Field)

Category Change request (CR) or support/investigate

request (SIR)

CR is a change to current functionality of the

system (i.e. the system is working as designed but

the design needs to be changed or new

functionality added)

SIR is a problem/bug in the functionality of the

system (the system does not work according to

design) (Required Field)

Originator The name of the originator. Format: Surname First

name. (Required Field)

BU The business unit of the CR/SIR originator. Select

Nokia IM if you are unsure what BU to use.

(Required Field)

Priority This is the priority from the BU point of view.

Options are Critical, High, Medium and Low. The

priority is determined by the originator. (Required

Field)

95

Product Configurator The name of the configurator the SIR or CR is

related to, for example, Metrosite. Use Platform

for SIRs/CRs related to basic SC functionality that

affects all configurators. (Required Field)

Test Type The testing situation where the CR or SIR was

found, for example UAT (User Acceptance Test).

Release The actual release where the SIR or CR was

encountered. Give as precise release information

as possible (e.g. 1.1.9 instead of 1.1). (Required

Field)

Software Module The appropriate SC module the CR/SIR is related

to.

Description As detailed description as possible of the issue. If

possible give step-by-step instructions of how to

recreate the problem and information on the

environment the SIR/need for CR was encountered

in. (Required Field)

Current Functionality Detailed description of the current functionality of

the feature or process. Please be very detailed and

include as much information as possible, for

example, screens, error messages, etc. This will

prevent unclear situations and confusion regarding

the issue.

Desired Functionality A detailed description of the desired (CR)

/expected (SIR) functionality. Please attach files

showing possible suggestions, for example, Excel

sheets.

96

Business Reasons State the business reasons for the suggested CR.

Reasons must be tangible and preferably

measurable. Without clear business reasons the CR

will not be implemented. (Required Field for CRs)

Desired Release Give the major release the CR/SIR should be

implemented (Required Field)

CR/SIR number This number will be system-generated.

Status Status of the SIR/CR defines who is handling it

and where in the process the SIR/CR currently is

(Required Field).

Currently Handling The party which is responsible for the CR's or SIR's

handling (automatically defined according to Person in

charge).

Handling Date The current handling date of the CR/SIR.

Subject Subject of the SIR/CR. This field can be used to group

multiple SIRs/CRs together. Enter the same subject for

all SIRs/CRs you want to link together and use the

Subject view to view them.

Nokia IM Comments The comments entered by the handler (release manager,

configurator project manager, tester).

Supplier Ref. Number The vendor reference number.

Person In Charge The person who is responsible for the handling of the

CRs or SIRs.

Planned Target Release The release in which this CR should be implemented.

Decided by SC Steering Group

97

Delivered in Release The release in which this CR/SIR was actually

implemented.

Work Estimate Estimate of the implementation effort from the vendor.

Planned Delivery The planned delivery date.

Delivered The actual delivery date of the SIR/CR.

Supplier Comments Comments from the vendor.

Specification The technical specification from the vendor.

Approved by Release manager's comments and approval after the

CR/SIR has been tested.

