

LAPPEENRANTA UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF INFORMATION TECHNOLOGY
LABORATORY OF INFORMATION PROCESSING
SOFTWARE ENGINEERING RESEARCH GROUP

THE IMPACT OF ARCHITECTURAL DESIGN ON
SOFTWARE DEVELOPMENT

The subject for this thesis for the degree of Master of Science in Engineering was
accepted by the Council of the Department of Information Technology on 11th
September, 2002.

Examiners: Prof. D.Sc. (Econ.) Jouni Lampinen, LUT

Lic.Sc. (Tech.) Päivi Ovaska, LUT
Supervisors: Prof. D.Sc. (Econ.) Jouni Lampinen, LUT

Lic.Sc. (Tech.) Päivi Ovaska, LUT

Alexandre Bern

Teknologiapuistonkatu 4 E 4
53850 LAPPEENRANTA
GSM: +358 50 5233869
E-Mail: bern@lut.fi

LAPPEENRANTA, November 25, 2002

mailto:bern@lut.fi

ABSTRACT

Author: Alexandre Bern
Department: Department of Information Technology
Place: Lappeenranta University of Technology
Subject: The Impact of Architectural Design on Software

Development
Master’s Thesis: 78 pages, 7 figures, 32 tables, 8 appendices
Year: 2002
Examiner: Prof. D.Sc. (Econ.) Jouni Lampinen, LUT

Lic.Sc. (Tech.) Päivi Ovaska, LUT
Supervisors: Prof. D.Sc. (Econ.) Jouni Lampinen, LUT

Lic.Sc. (Tech.) Päivi Ovaska, LUT
Keywords: architectural metric, coupling, differential evolution,

evolutionary algorithm, soft computing, software
architecture, software component

This thesis studies the impact of software architectural design properties on the
development effort of a mobile service application that has a client-server
architecture. The data applied is based on a real-life software project in which,
during the qualitative analysis, it was observed that the coupling between the
architectural components had a strong influence on the development effort. The
main objective of this research was to quantitatively investigate the correctness of
the above observation. To accomplish this task, an architectural design metrics
suite was created to describe the subsystems, a client and a server, of the system
studied, and two models that use the suite, a linear and non-linear model, were
selected to estimate the development effort (the sum of the design,
implementation and testing times of a component). Using a non-linear global
optimisation method, a differential evolution algorithm, the free parameters of the
models were defined, or optimized, using first all the architectural design
properties, also known as attributes, and then leaving them out one by one in such
a way that the models corresponded as accurately as possible with the measured
development effort. When leaving out coupling, which is defined as the number of
components to which a component being studied refers, the error between the
measured and estimated development effort increased in some cases by 367 %,
meaning that the model did not fit the data well without coupling. This was the
highest increase in the error for all the attributes excluded. Based on these results,
it was concluded that the development effort of the system under study was
clearly dependent on coupling and that coupling was probably the most important
architectural design property with respect to the development effort of the system.

TIIVISTELMÄ

Tekijä: Alexandre Bern
Osasto: Tietotekniikan osasto
Paikka: Lappeenrannan teknillinen korkeakoulu
Nimi: Arkkitehtuurisuunnittelun vaikutus ohjelmiston

toteutukseen
Diplomityö: 78 lehteä, 7 kuvaa, 32 taulukkoa, 8 liitettä
Vuosi: 2002
Tarkastaja: Prof. KTT Jouni Lampinen, LTKK

TkL Päivi Ovaska, LTKK
Ohjaajat: Prof. KTT Jouni Lampinen, LTKK

TkL Päivi Ovaska, LTKK
Hakusanat: architectural metric, coupling, differential evolution,

evolutionary algorithm, soft computing, software
architecture, software component

Tässä työssä tutkitaan ohjelmistoarkkitehtuurisuunnitteluominaisuuksien
vaikutusta erään client-server –arkkitehtuuriin perustuvan
mobiilipalvelusovelluksen suunnittelu- ja toteutusaikaan. Kyseinen tutkimus
perustuu reaalielämän projektiin, jonka kvalitatiivinen analyysi paljasti
arkkitehtuurikompponenttien välisten kytkentöjen merkittävästi vaikuttavan
projektin työmäärään. Työn päätavoite oli kvantitatiivisesti tutkia yllä mainitun
havainnon oikeellisuus. Tavoitteen saavuttamiseksi suunniteltiin
ohjelmistoarkkitehtuurisuunnittelun mittaristo kuvaamaan kyseisen järjestelmän
alijärjestelmien arkkitehtuuria ja luotiin kaksi suunniteltua mittaristoa käyttävää,
työmäärää (komponentin suunnittelu-, toteutus- ja testausaikojen summa)
arvioivaa mallia, joista toinen on lineaarinen ja toinen epälineaarinen. Näiden
mallien kertoimet sovitettiin optimoimalla niiden arvot epälineaarista
gloobaalioptimointimenetelmää, differentiaalievoluutioalgoritmia, käyttäen, niin
että mallien antamat arvot vastasivat parhaiten mitattua työmäärää sekä kaikilla
ominaisuuksilla eli attribuuteilla että vain osalla niistä (yksi jätettiin vuorotellen
pois). Kun arkkitehtuurikompenttien väliset kytkennät jätettiin malleista pois,
mitattujen ja arvoitujen työmäärien välinen ero (ilmaistuna virheenä) kasvoi
eräässä tapauksessa 367 % entisestä tarkoittaen sitä, että näin muodostettu malli
vastasi toteutusaikoja huonosti annetulla ainestolla. Tämä oli suurin havaitu virhe
kaikkien poisjätettyjen ominaisuuksien kesken. Saadun tuloksen perusteella
päätettiin, että kyseisen järjestelmän toteutusajat ovat vahvasti riippuvaisia
kytkentöjen määrästä, ja näin ollen kytkentöjen määrä oli mitä todennäköisemmin
kaikista tärkein työmäärään vaikuttava tekijä tutkitun järjestelmän
arkkitehtuurisuunnittelussa.

 Acknowledgements

This Master’s thesis was one of my primary objectives and is the result of many

years of hard work. I would like to thank all the professors and lecturers who

made it possible for me to complete my studies in such a short time. I have learnt

a lot from them all. I especially wish to thank my supervisors, Prof. Jouni

Lampinen and Mrs. Päivi Ovaska for their valuable advice and cooperation in this

project. They have made a tremendous contribution to this work.

I dedicate this work to my parents, Victor and Valentina Bern, and am greatly

thankful to them for the total freedom that they gave me with respect to my

studies. For the last 15 years I have felt no pressure from them in my studies,

which made it possible for me to attain such a high degree in a relatively short

time.

Lappeenranta, November 25, 2002

Alexandre Bern

TABLE OF CONTENTS

1 INTRODUCTION ..4

2 RELATED WORK...8

3 SOFTWARE ARCHITECTURE ...10

3.1 Software Architecture in General ...10

3.2 An Example of Software Architecture ...11

3.3 Architectural Styles ..13

3.4 Software Metrics...14

3.4.1 Software Metrics in General...14

3.4.1 High-Level Design Metrics ..15

3.4.2 Low-Level Design Metrics ...16

4 ARCHITECTURAL DESIGN METRICS SUITE...17

4.1 Architecture of the System ...17

4.2 The Metrics Suite..19

4.2.1 Size ...21

4.2.2 Coupling ...21

4.2.3 Cohesion ...23

4.2.4 Complexity ...24

4.2.5 Comments on a and a ..24 2 5

5 DATA AND METHODS ...25

5.1 Data Acquisition ...25

5.2 Models for Estimating the Development Effort28

5.2.1 From Models to Objective Functions ...28

5.2.2 Interpreting the Models ..31

5.3 The Method...32

5.3.1 Possibilities of Evolutionary Algorithms ...33

 1

5.3.2 Evolutionary Algorithms Application Domains...............................35

5.3.3 Differential Evolution Algorithm ...36

5.3.4 Differential Evolution Schemes..44

6 RESULTS...45

6.1 The Server...45

6.1.1 The Linear Model ...45

6.1.2 The Non-Linear Model ...50

6.2 The Client ...55

6.2.1 The Linear Model ...55

6.2.2 The Non-Linear Model ...59

7 SUMMARY AND DISCUSSION ...63

7.1 Summarizing and Discussing Results...63

7.2 Performance of the Selected Approach ..71

7.3 Suggestions for the Future Work..71

REFERENCES ...72

APPENDICIES

Appendix 1. Server application, Linear Model, Effort Corrected

Appendix 2. Server application, Linear Model, Effort Not Corrected

Appendix 3. Server application, Non-Linear Model, Effort Corrected

Appendix 4. Server application, Non-Linear Model, Effort Not Corrected

Appendix 5. Client application, Linear Model, Effort Corrected

Appendix 6. Client application, Linear Model, Effort Not Corrected

Appendix 7. Client application, Non-Linear Model, Effort Corrected

Appendix 8. Client application, Non-Linear Model, Effort Not Corrected

 2

SYMBOLS AND ABBREVIATIONS

AI Artificial Intelligence

ANN Artificial Neural Network

ANOVA ANalysis Of VAriance

COCOMO COnstructive COst MOdel

CORBA Common Object Request Broker Architecture

DE Differential Evolution

EA Evolutionary Algorithm

HHM Hidden Markov Models

GA Genetic Algorithm

KLOC Kilo Lines Of Code

LUT Lappeenranta University of Technology

MLP Multi-Layer Perceptron

N/A Not Available

OLS Ordinary Least Squares

PCAP Programmer CAPability

TSP Traveling Salesman Problem

UML Unified Modelling Language

 3

1 INTRODUCTION

It is common sense that building a house without an architectural design is

impossible. Before laying the foundation of the house, or sometimes even

reserving a site for it, it is very important to design the house and elaborate an

architectural design that satisfies the customer’s needs (requirements). A properly

and carefully designed architectural design will enable a sufficiently accurate time

schedule to be prepared for the house and can ensure the house’s stability and

comfort. A poor architectural design, for its part, can dramatically influence the

progress of the construction of the house; the time schedule may suffer, the final

result could be terrible, and other unwanted consequences may arise. Once an

architectural design has been prepared, it has to be followed and referred to

throughout the whole construction period. This means that the architectural design

plays the most essential role during the whole construction process, and its role is

indisputable.

Even thought software engineering is a relatively young field when compared

with construction, it still has a lot of similarities with the latter. Before creating a

solid or less solid software system, the architecture must first be created by

software architects and validated by the customer. Once the architecture has been

carefully design and no mistakes have been found, the software engineers and

developers are ready to start building the system. As in the first case, the role of a

software architect is one of great importance during the whole software

construction (development) process. It is the architect’s further responsibility to

ensure that the software engineers understand the whole architecture and follow it.

The architecture must be sufficiently detailed in order for the developers to

understand their own duties and fluently interact with each other when putting the

architectural components together.

A poorly designed architecture will leave very bad prints on the software and can

easily destroy the whole business process of a company as well as the company’s

reputation. The general principle is that the later a mistake (e.g. a software bug) is

 4

found, the more expensive its removal becomes. Again, if the architecture has

been designed properly and carefully, with the customer’s satisfaction (having

thus a low fault risk), it is very likely that the software will be released on time,

which will be mutually satisfactory.

Just like projects in other fields, every software project (like projects of other

branches) requires timetables for its implementation. There are deadlines for the

releases and nobody (neither managers nor engineers) likes deadlines to get

closer. This is the reason why it would be very nice and essential to be able to

define to a sufficient degree of accuracy the development effort (or, simply, the

effort) based on the software architecture or even before the architecture is

designed. Here, the development effort is defined as being the sum of the design,

implementation and testing times of a component.

It would be of great value to extract the architectural design properties (also the

architectural attributes from this perspective) that have the most crucial impact on

the development effort. Once these attributes are known, it is easy to manipulate

the effort right from the beginning by completely or partially avoiding them.

This research focuses on a mobile service application that has a client-server

architecture. The research was performed to support a doctoral thesis that partially

focused on the same results from the qualitative point of view. Qualitative

analysis was used to study human behaviour in application development and

indicated that coupling between architectural components had a critical influence

on the development effort of the system. More information on qualitative analysis

(in general) may be found in [38].

The emphasis of this work was on obtaining and analysing the quantitative results

that describe in numbers the structure of the software architecture, and to compare

these results with qualitative ones. The main objective was to study the

correctness of the following hypothesis:

 5

Coupling between the architectural components of the system plays an

important role in the development effort of the system.

Based on the architecture of the system, which is composed of two separate

subsystems, a server and client, the most effective attributes have been defined,

and it was noticed that according to the importance rule (see chapter 5.2.2),

coupling, which is defined as the number of components to which the component

under study refers, did indeed play an important role in the development effort of

the system. This conclusion was reached by defining an architectural design

metrics suite, which describes the architectures of the subsystems, and by creating

two development effort estimating models, a linear and a non-linear model that

both use this suite. The free parameters (or simply the parameters) of the models

were defined by applying a non-linear global optimisation approach and, in

particular, by minimising the objective functions that involve the models and the

measured development effort using a novel soft computing method, that is, an

evolutionary optimisation algorithm called a differential evolution (DE)

algorithm. The above-mentioned algorithm employed two different strategies:

DE/rand/1 and DE/best/1 (see chapter 5.3.4). The importance of a parameter was

defined by leaving out the corresponding attribute from the model and by

investigating the increase in the error between the measured and estimated effort.

No generalisations have been made on the basis of the results. It is very probable

that the results apply to the system studied here only; however, the approach used

for obtaining the results is generalisable with a high level of probability. All the

decisions made apply to this project and the system studied. The suggested

metrics suite is also assumed to be satisfactory only for the system studied here.

In the next session, related work is discussed. Chapter 3 discusses the theory of

software architecture in general, giving a concrete example of software

architecture and presenting architectural styles, and contains an overview of

software metrics. Chapter 4 discusses the architecture of the mobile service

 6

application as well as the architectural design metrics suite used in this project.

Section 5 presents the data applied and method used as well as the selected

models. The results are presented in chapter 6 and discussed in chapter 7. The last

section (Chapter 7) also discusses the performance of the selected approach for

achieving the results and offers some suggestions for further research.

 7

2 RELATED WORK

With the proper metrics suite (see chapter 3.4), software development can be

evaluated for its cost, quality, fault tolerance and maintenance. A lot of research

has been carried out in this field. Probably one of the most famous papers in this

field is [5], in which L. C. Briand and J. Wüst present the results of their studies

on the impact of coupling, cohesion and complexity on the development cost of

object-oriented systems. L. C. Briand and J. Wüst obtained acceptable results

using traditional statistical methods such as Poisson regression and regression

trees.

In addition to the work done by Briand and Wüst, a lot of related work has been

done. In [6], L. C. Briand, K. El Emam and F. Bomarius present a hybrid method

for estimating software cost, benchmarking and for assessing risk. Their method is

based on a productivity estimation model consisting of two components: the cost

overhead and a productivity model. R. Jeffery, M. Ruhe and I. Wieczorek estimate

the software development effort using public domain metrics [7]. In their work,

they use Ordinary Least Squares regression (OLS regression), stepwise Analysis

of Variance (stepwise ANOVA), regression trees (CART) and analogy. In [8], K.

Pillai and V.S. Sukumaran Nair describe Putnam’s SLIM model that offers a

method for estimating the cost and effort of software development. In [9], S. H.

Zweben, S. H. Edwards, B. W. Weide and J. E. Hollingsworth study how layering

and encapsulating impacts on the cost and quality of software development. They

start by assuming that the layering approach should result in reduced development

costs and the increased quality of the new components through the increased reuse

of existing ones.

In addition to object-oriented systems, function-based systems have been studied.

In [9], J. E. Matson, B. E. Barrett and J. M. Mellichamp estimate the cost of

software development by using function point analysis, a method for quantifying

the size and complexity of a software system. In [10], Y. Yokoyama and M.

 8

Kodaira use the multiple regression analysis method to evaluate the cost and

quality of software.

Studies have also been carried out on the quality of software only. In [11], J.

Bansiya and C. G. Davis present a hierarchical model for assessing the quality of

object-oriented design. They use a suite of object-oriented design metrics and the

model relates design properties such as encapsulation, modularity, coupling and

cohesion to high-level quality attributes, which are reusability, flexibility and

complexity.

 9

3 SOFTWARE ARCHITECTURE

As has already been mentioned, software architecture plays an extremely

important role in software production. But unlike architecture in traditional fields

(real estate and machine construction), software architectures did not appear as a

well-defined area in software engineering. Rather, they have passed through a

series of evolutionary cycles, which is the result of the desire of software

engineers to improve the process of building ever more complex and demanding

software systems ([16], pp.1). As a result, many different architectural styles and

paradigms have been created.

Section 3.1 discusses software architectures in general; section 3.2 gives an

illustrative example of software architecture; sections 3.3 presents the main

architectural styles; section 3.4 of this chapter discusses software metrics, dividing

them into high- and low-level software metrics and providing an overview of both

of types of software metrics.

3.1 Software Architecture in General

The architecture of software can be compared with that of a building, which

describes the main components of the building. These components can be the

building blocks, floors, rooms, doors and windows (to communicate with the

external world), the pipes that connect the building blocks etc. M. Shaw and D.

Garlan give the following definition for software architecture in [16], pp. 1:

“Abstractly, software architecture involves the description of elements from which

systems are built, interaction among those elements, patterns that guide their

composition, and constraints on these patterns. In general, a particular system is

defined in terms of a collection of components and interactions among those

components. Such a system may in turn be used as a (composite) element in a

larger system design.” From the arguments presented above, many similarities

can easily be found between the architecture of a building and that of software. In

 10

any case, the definition given by Shaw and Garlan is not the only one. For

example, the following definition for architecture can be found in [17], pp. 27:

“Architecture is the structure of the components of a program or system, their

interrelationships, and principles and guidelines governing their design and

evolution over time.” Using slightly different words, Bass, Clements and Kazman

present the same concept as Shaw and Garlan. Generally, no common definition

exists for software architecture.

To better understand the meaning of a software component, [39] gives the

following definition: “A software component is a unit of composition with

contractually specified interfaces and explicit context dependencies only. A

software component can be deployed independently and is subject to composition

by third parties.” The definition given here is one of the many ways of describing

a software component.

3.2 An Example of Software Architecture

Let us study the architecture of a hypothetical system presented in Figure 1. The

system consists of three subsystems: A, B and C (e.g. a server and two clients).

The high-level architecture of each subsystem, as well as the architecture of the

whole system, is presented.

 11

Figure 1: One way of illustrating the

architecture of a system composed of three

subsystems.

Subsystem A consists of five components (or architectural elements) shown in the

form of cubes, ,…, ; 7 internal links, 4 of which are unidirectional and 3 bi-

directional; subsystem A furthermore consists of two external links that connect it

to the two other subsystems. Subsystem B has only three components, , and

, and two internal links that interconnect components and and connect

component to component . Additionally, this subsystem is interconnected

with the two other subsystems. The last subsystem, C, consists of four

components, ,…, , that have two unidirectional and one bi-directional

internal links. The system is also interconnected with the two other subsystems.

Obviously, from the architectural point of view, the most difficult subsystem to

implement would be subsystem A due to the fact that it has the most complex

structure; subsystem B would be the easiest subsystem to implement.

1A

1C

5A

4C

1B 2B

3B 1B 3B

3B 2B

Let us go bit further, according to the definition given by Shaw and Garlan, and

study an architectural element i.e. a component. One way to illustrate a

component is given in Figure 2.

 12

Figure 2: An architectural element i.e.

component.

Thereby, a component, also known as a module, can be a composition of

subcomponents interconnected by one- or bi-directional connectors (links). Each

subcomponent can be independent or can depend on some other subcomponent.

Having many interconnections between subcomponents makes it difficult to

implement and maintain a component.

In general, a software system should be designed in such a way that its

components are as independent of each other as possible and that their

interconnections (interfaces) are easy to maintain.

3.3 Architectural Styles

When discussing architectural design, it makes sense to also touch on architectural

styles. An architectural style refers to a pattern that is followed in architectural

design. [17], pp. 25 gives the following definition for architectural style: “An

architectural style is a description of component types and a pattern of their

runtime control and/or data manipulation.”

So far, many architectural styles have been created for different needs. [16], pp.

20, presents a list of common architectural styles. The main style groups are (1)

 13

Dataflow systems, (2) Call-and-return systems, (3) Independent components, (4)

Virtual machines, and (5) Data-centred systems (also called repositories).

Each of the architectural styles presented above has its own advantages and

disadvantages, and all the styles differ from each other; no general architectural

style exists for all software. The current trend of software houses is to create their

own architectural styles or even a common architecture, although it should be

remembered that the development units of these companies are restricted to some

specific region.

3.4 Software Metrics

3.4.1 Software Metrics in General

Metrics are crucial in the evaluation of software; without a proper metrics suite, it

is not possible to evaluate software to an acceptable degree of accuracy. This is

why it is especially important to choose metrics that describe the system to be

evaluated in the best possible manner.

Many books have been published and a lot of research carried out on software

metrics. N. E. Fenton and S. L. Pfleeger have published a comprehensive book on

the literature on software metrics [18].

Software metrics are closely related to the software measurement needed to

evaluate the status of projects, products and resources ([18], pp. 11). They help in

controlling the drift of a project and can indicate what is going wrong and when.

Software metrics may involve different attributes such as usability, integrity,

efficiency, testability, reusability, portability and interoperability (external

attributes) as well as size, effort and cost (internal attributes) ([18], pp. 78).

 14

Software design metrics can be divided into two main groups: high-level and low-

level design metrics. High-level design metrics comprise the architectural design

metrics described in chapter 3.4.1. Low-level design metrics are, for example,

object-oriented metrics and function-based metrics.

3.4.1 High-Level Design Metrics

Architectural design metrics are the software metrics used to evaluate software as

early as possible, which is during the architectural design phase. Architectural

design metrics are high-level software metrics. Architectural design metrics may

be used, for instance, for estimating the cost (development effort), maintainability,

fault tolerance or risk prediction of software. They are applied when the

architecture of the software is being created, i.e. before coding has begun.

In [3], A. Avritzer and E. J. Weyuker present a risk prediction metric, a metric for

architectural assessment, and give detailed information on its use. [4] presents the

construction of information coupling and cohesion metrics at a sufficiently high

level of abstraction. In [19], F. Xia discusses module coupling and suggests a

complicated formula for computing the coupling complexity of modules.

When creating architectural design metrics, different aspects should be taken into

account. First at all, there must be knowledge of what is to be measured. For

example, a cost estimating metrics suite may be of no use in evaluating software

for its maintainability. Another important factor is the adequacy of a metric. For

instance, in what way could a defined size be taken as an architectural design

metric? It is probably not possible to tell the size of a component by the number of

classes (for the object-oriented paradigm) in its high-level design stage. This

information is given, because the creation of an architectural design metrics suite

was part of this research.

 15

3.4.2 Low-Level Design Metrics

Object-oriented metrics and function-based metrics belong to the group of low-

level design metrics. Unlike high-level design metrics, low-level design metrics

are applied once the code has been created.

Object-oriented metrics are suitable for studying the interactions between and

within classes. Based on the information extracted from the code of the system

under study, they can tell in numbers, the strength of the coupling that exists

between the classes or the tightness (reflecting good cohesion) of the classes, but

have no direct use in the case of entire architectural entities (i.e. components).

Examples of object-oriented metrics are Chidamber and Kemerer metrics, Lorenz

and Kidd metrics and Abreu metrics [1, 2].

Function-based metrics are used for studying the interactions between methods

and their internal behaviours. For example, in [9], J. E. Matson, B. E. Barrett and

J. M. Mellichamp use a function-based metrics suite for software development

cost estimation.

 16

4 ARCHITECTURAL DESIGN METRICS SUITE

4.1 Architecture of the System

The system being studied here was implemented by a Finnish telecommunications

company and consists of two subsystems, a CORBA–based (Common Object

Request Broker Architecture), highly distributed server (let us call it subsystem A)

and a centralised client (let us call it subsystem B). That is, the system has a

client-server architecture. The server is responsible for mining data and

transmitting it world-wide. The client is responsible for offering user interfaces

and establishing Internet connections. Both subsystems consist of six components

that are responsible for different tasks. The architecture of the system is shown in

Figure 3.

Figure 3: The architecture of the system being studied.

As was mentioned, the server is based on CORBA; however, the links between

the components of the server are only those that are of the physical significance.

That is, the logical interconnections provided by CORBA are not taken into

 17

account. Only the component references explicitly implemented in the code are

regarded. The same holds for the components; only implemented components are

regarded. The components provided by CORBA are not taken into account in the

architecture of the server. The interconnections are summarised in Table 1.

Table 1: A summary of the interconnections between the modules (components)

of the subsystems.

Subsystem A Subsystem B

Module Refers to Referred
by Module Refers to Referred

by

1A 2A

4A
, ,
,

3A

6A
2

4A
A 3A

6A 6B
, ,
, 1B 5B , 2B , 5B

 , ,
, ,
, ,

-

, ,
,

 ,

, ,

, ,

 -
, ,

 ,
, ,
, ,

, ,

, ,
,

2A 1A 4A 1A 3A 2B
1B 3B

4B 5B

6B

3A 1A 2A

4A 5A 1A 3B 5B 6B 2B

4A 1A 1A 2A

6A 4B 5B 6B

5A 2B

5A 3A 6A

4B 5B 1B 6B
1B 2B

3B 4B

6B

6A 1A 4A

5A 1A 6B 5B 1B 2B

4B 5B

The components of both subsystems are coupled to each other relatively tightly,

which probably made their development difficult. Once again, when a component

is coupled with many other components, even a little change made to it may have

a dramatic influence on the functionality of the other components involved. This

is especially dangerous when the rate of messaging between interconnected

components is high. In a properly design software system, the rate of messaging

 18

between different components should be kept as low as possible. In this way, the

components can be thought of being independent of each other. [41]

The subsystems are physically connected to each other only through one

unidirectional link from component to component , which means that the

coupling between the subsystems is low. This makes the server almost

independent of the client.

4B 5A

The system was implemented in a purely object-oriented way. Each component

consists of a set of classes implemented in Java. That is, object-orientation is one

of the system’s properties. Java, which has ready packages of different

communication protocols, is of enormous value when programming client-server

applications.

The main difference between the server and the client is the high distribution of

the former provided by CORBA. For example, CORBA makes it possible for

intelligent components to discover each other and interoperate on an object bus.

CORBA has many other properties that are highly valuable in server-client

applications (for more information, please refer to [40]). These facts give reason

to assume that the subsystems may probably have different architectural

properties. Since CORBA puts immense pressure on distributiveness and

interoperability, it may be assumed that coupling is extremely important in the

architecture of the server.

4.2 The Metrics Suite

After careful discussion, the members of the software research group (Mrs. Päivi

Ovaska, Mr. Kari Smolander and Mr. Alexandre Bern) agreed upon an

architectural design metrics suite that includes size, coupling, cohesion and

complexity. The main emphasis in developing the metrics suite was on the

creation of a set of metrics that satisfy the needs of the project (in which the main

 19

objective was to study the influence of coupling). The other goal of the

development of the metrics suite was to extract the architectural attributes that

would possibly be independent of each other.

Since many other properties have an impact on the architectural design, other

attributes, which are summarised in Table 2 and described later on, have been

suggested and accepted.

Table 2: A summary of the metrics suite.

Attribute
(architectural

property)

Metric
name Description

 Size Size of a component in KLOC
(Kilo Lines Of Code)

 Size Size of a component in
number of classes

 Coupling Number of components
referring to this component

 Coupling Number of components this
component refers to

 Cohesion

Number of aggregations,
compositions and relations
among the classes of a
component

 Complexity Number of use cases of a
component

 Complexity Number of subcomponents
that form a component

 Complexity Number of databases
connected to a component

1a

2a

3a

4a

5a

6a

7a

8a

All these attributes are directed to single components and not to entire

subsystems. The subsystems are evaluated based on the values of the attributes

and the corresponding free parameters.

 20

4.2.1 Size

It is reasonable to assume that the size of a system influences its development

effort. The larger a system is, the more effort is required to implement it. In this

work, two different size attributes are used: a referring to the component size in

KLOC and referring to the number of classes composing the component.

1

2a

4.2.2 Coupling

According to [12], pp. 375, coupling can be defined as follows: “Coupling is a

measure of interconnection among modules in a program structure… Coupling

depends on the interface complexity between modules, the point at which entry or

reference is made to a module, and what data pass across the interface.” In this

work, coupling simply measures the amount of interconnections (references)

between components.

Here, two different attributes are used for coupling. Attribute refers to the

number of components to which the component being studied refers, whereas

attribute defines the number of components that refer to the component being

studied. An example is shown in Figure 4. Table 3 shows the values of the

corresponding attributes.

3a

4a

 21

Figure 4: An example of coupling between four

components.

Two different definitions of coupling have been used for the reason that the

interconnections between modules can be both unidirectional and bi-directional as

shown in the above diagram. Some information might be lost if coupling were to

be defined as simply the number of relations between the component being

studied and the other components.

Table 3: The values of the corresponding

attributes according to Figure 4.

Component Value of 3a 4aValue of

3 (refers to ,

 and)
2 (referred by

 and)

 1 (refers only
to)

2 (referred by
 and)

2 (refers to
and)

1 (referred
only by)

 1 (refers only
to)

1 (referred
only by)

1A 2A

3A 4A 2A 3A

2A
1A 1A 4A

3A 1A

2A 1A

4A
2A 1A

 22

4.2.3 Cohesion

According to [12], pp. 374, cohesion is “a measure of the relative functional

strength of a module.” Within the limits of this project, cohesion (attribute) is

defined as a number of aggregations, compositions and relations in the class

diagram of a component. The higher the number is, the more difficult it is to

implement the component since the number of connections between classes

increases. On the other hand, stronger cohesion should be achieved in order to

implement an internally strong module.

5a

Let us consider Figure 5 as an example of cohesion. Class C is composed of three

other classes, D, E and F. Class C also has a unidirectional association to class H

and a bi-directional association to class G. That is, the value of attribute is 5

(inheritance is not considered).

5a

AB

D E F

H C G

Figure 5: An example of cohesion.

 23

4.2.4 Complexity

In this project, three attributes are related to complexity. The first complexity

attribute, , refers to the number of use-cases of a component being studied. The

second attribute, , tells the amount of subcomponents that make up the actual

component. The last one, , refers to the number of databases related to the

component.

6a

7a

8a

4.2.5 Comments on a and a 2 5

It is reasonable to assume that neither the size of a system expressed as a number

of classes nor its cohesion expressed in the form of classes belong directly to

architectural design metrics, which is true. These attributes have been adopted for

the purpose of studying their precise influence on the development effort. In other

situations, they would be unnecessary.

 24

5 DATA AND METHODS

The first section of this chapter discusses the data used in this project to estimate

the development effort. As well as presenting the data itself, the fist section

describes how it was obtained and edited. The second section presents the selected

models and the objective functions that were created. The final part of this chapter

(section 5.3) describes the method (DE algorithm) used in this project to define

the parameters of the models by minimising the objective function given by

equations and . It also discusses other potentially competitive methods that

were under consideration but not adopted; the reasons for this decision will also

be explained in this chapter.

()3 ()4

5.1 Data Acquisition

The specification documents of the components and their implementation code

were used as the raw data. The specification documents were reviewed and all the

useful information was extracted. Based on these documents, complexity numbers

(the numbers of subcomponents and data bases), as well as the coupling and

cohesion information for some of the components of both subsystems, were

successfully extracted. The rest of the information was extracted from the

implementation code.

As usual, some problems were encountered during data acquisition. Some of the

specification documents were not up-to-date, which made it necessary to study the

implementation code more carefully. For example, the information on the

subsystem architecture (by this information, we refer to the diagrams) varied

according to the specification documents, which thus rendered it unreliable. As a

result, the architectures of the subsystems (shown in Figure 3, chapter 4.1) were

reconstructed using the implementation code.

 25

Since the UML (Unified Modelling Language) diagrams also turned out to be

unreliable for some components, they were reconstructed (through re-engineering)

using the Together 5.5 development tool for application modelling and round-trip

engineering for Java and C++ [20].

The numbers of lines of code were obtained using an application for counting

lines of code which had been downloaded from the Web [21]. When counting the

numbers of lines, comments were left out.

The extracted values of the attributes are shown in Table 4 for the server and in

Table 5 for the client, respectively. The values that describe the development

effort were taken from the project management software (Niku Workpage).

Table 4: The values of the attributes of the server.

Attribute 1A 2A 3A 4A 5A 6A
 1 7 3 4 1 1
 9 53 43 47 23 10
 4 2 1 4 3 1
 4 2 4 1 0 3
 5 65 30 21 9 10
 10 7 12 3 13 7
 1 2 1 1 1 2
 0 4 1 1 0 0

Uncorrected
development
effort (h)

540.5 634.5 889.5 712 417 579

Correction
coefficient 1.0 0.76 1.0 1.0 1.0 1.0

Corrected
development
effort (h)

540.5 835 889.5 712 417 579

1a

2a

3a

4a

5a

6a

7a

8a

 26

Table 5: The values of the attributes of the client.

Attribute 1B 2B 3B 4B 5B 6B

1a 1 6 1 2 10 3

2a 20 13 3 8 118 14

3a 2 0 1 1 5 5
a 2 5 2 3 2 1

 6 9 0 0 10 9
 19 6 8 7 17 3
 1 3 1 1 4 1
 0 0 0 0 1 1

Uncorrected
development
effort (h)

1220.5 1488 934 950 966 1141.5

Correction
coefficient 1.15 1.15 1.15 1.15 0.76 1.15

Corrected
development
effort (h)

1061 1294 812 826 1271 993

4

5a

6a

7a

8a

The above tables contain rows with the correction coefficients and the

corresponding development efforts. In the case of the server (Table 4), only the

development effort for module is corrected (by dividing the effort by 0.76),

whereas for the client (Table 5), the development efforts are corrected for all six

components. The corrections (that reflect the programmer’s capability) were made

based on the experience of component developers. Coefficients below 1.0 and

above 1.0 reflect above-ordinary and below-ordinary capability, respectively. The

coefficients were obtained from the PCAP Cost Driver table (PCAP, Programmer

Capability) in [37], pp.48.

2A

The idea to make these corrections was proposed by the departmental manager of

the company that had implemented the system. Since the manager knew the

developers of the system well and was capable of evaluating their professional

skills, she estimated the proper correction coefficients. The idea came up for the

 27

reason that the results (see chapter 6) obtained using the initial (uncorrected)

development effort were poor and the professional skills of the developers non-

homogenous.

The values presented in Table 4 and Table 5 represent the only information used

in the models presented below.

5.2 Models for Estimating the Development Effort

The models presented here were used to evaluate the development effort of the

subsystems through the mapping of the models onto the objective functions and

the minimisation of these functions using the method presented in section 5.3. The

mapping procedure is described in section 5.2.1, while section 5.2.2 offers hints as

to how to interpret the obtained models.

5.2.1 From Models to Objective Functions

In order to model the development effort using architectural properties, two

different functions have been tried: ()1 a linear function, and (a non-linear

function.

)2

() 882211821 ...,...,, xbxbxbxxxF +++= ()1

The linear function was selected because it is one of the simplest functions yet

that is able to easily demonstrate the significance of its variables (through the

values of their parameters b): the higher the value of a parameter (or

coefficient), the greater the influence of the corresponding variable on the result

nb,...,1

 28

will be when it is increased. That is, having obtained the coefficients of a linear

model, it is trivial to extract the most significant variables.

The non-linear function given in equation ()2 was selected to compare the results

(significance and importance of attributes, see chapter 5.2.2) with those produced

by the linear function given by equation ()1 . Since it has the same basic properties

(the higher a power coefficient is, the greater its influence on the result will be), it

is also easily interpretable. Another reason for the selection of this function to be

one of the models was its suitability for the construction of the estimating function

for the development effort when combined with the linear function, which thus

produced a function that was better able to fit different data. The function is given

by equation (.)3

() 821
821821 ...,...,, bbb xxxxxxG +++= ()2

In both functions (and ()1 ()2), refers to the value of attribute and b is a

(linear or power) coefficient or parameter (n = 1…8). Since there are, at most,

eight attributes that describe a component, the equations have the same number of

variables. With respect to these functions, the following assumption is made: there

are no mutual dependencies between the attributes.

nx na n

() nb
nn

bb
n xaxaxaxxxH +++= ...,...,, 21

221121 ()3

Thus, equations (and)1 ()2 are used to estimate development effort of the mobile

service application. In order to define b , the following functions are minimised: n

 29

() ∑∑
==

−
=

 −
=

6

1

26

1
211

101001,...,,
m m

mm

m m

mm
n h

hH
mh

hH
m

bbbW ()4

() ∑∑
==

 −
=

 −
=

6

1

246

1

2

212
101001,...,,

m m

mm

m m

mm
n h

hH
mh

hH
m

bbbW ()5

In the above equations, number 100 is taken to indicate the percentile error and

 (m = 1…6) the measured development effort value of component m. is

defined as follows:

mh mH

() ()
()

+++=
+++=

==
nb

n
bb

nm

nnnm
nmm xxxxxxG

xbxbxbbbbF
bbbHH

...,...,,

...,...,,
,...,,

21
2121

221121
21 ()6

This means that when defining the coefficients, the values of
→

X (x)

remain fixed throughout the whole optimisation process. The optimisation process

is subject to the following constrains: when minimising W (k), which

is formed by , is forced to take only non-negative real values; and when

minimising Wk, which is formed by G , is forced to belong to the interval

821 ,...,, xx

{ }2k ,1=

mF nb

m nb

[[∞− ,1 , allowing an attribute to be made insignificant by negative values.

Equation represents the mean error of all the six components. Equation ()4 ()5 ,

for its part, represents the mean quadratic error, thus, equalising the mean errors

of the development efforts of the components. These functions are called

objective functions or functions to be minimised.

 30

Two different models (()1 and ()2) and two different objective functions (()4 and

) were taken into use in order to compare the results and examine the possible

differences between them.

()5

5.2.2 Interpreting the Models

The main goal of this project was not to create an exact model that depicts the

development effort based on architectural attributes but rather to extract the

attributes that have the greatest and most significant influence on the development

effort. In the following two sections, rules of significance and importance are

introduced to study the attributes.

Rule of Significance

Firstly, all the coefficients (8...1, =nnb) of the models are defined. In the case

of the linear model, an attribute is significant only if the value of the

corresponding coefficient (or parameter) is non-negative. Otherwise, the attribute

would then have a negative influence (or no influence whatsoever) on the

development effort.

In the case of the non-linear model, an attribute is significant only if the value of

the corresponding parameter is at least one. This restriction is applied for the

reason that when a number is raised to a power of less than one, its value

decreases; thus, this kind of an attribute would have no increasing influence on the

development effort.

 31

Rule of Importance

When all the coefficients (8...1, =nnb) are defined for both models, the

development efforts are once again estimated by leaving a significant attribute out

of the model, thus causing an increase in the error (meaning the value of the

objective function). The greater the error is, the greater the influence of the

attribute excluded is on the development effort and, thus, the more important the

attribute in question is. This conclusion is drawn on the basis of the fact that

without the excluded attribute, the error in the model increases, which means that

the model does not fit the data well.

5.3 The Method

Traditional optimisation methods, such as linear and quadratic optimisation, non-

linear and discrete optimisation, which still a few years ago held a strong position

in optimisation, are slowly loosing ground to soft computing methods. Instead of

traditional optimisation methods, new methods such as evolutionary algorithms

(non-linear global optimisation methods) and simulated annealing (SA) are

strongly taking their place in optimisation problems. More information on

evolutionary algorithms (e.g. their application domain) is presented in chapters

5.3.1 – 5.3.3.

In addition to the methods described above, artificial neural networks (ANN) and

fuzzy logic (FL) have been tried for the creation of development effort and cost

estimation models. In [22], A. Adri, T. M. Khoshgoftaar and A. Abran study how

easily artificial neural networks can be interpreted in software cost estimation by

mapping the neural network to a system based on a fuzzy rule. A few years

earlier, in 1996, G. R. Finnie and G. E. Wittig proposed AI (Artificial

Intelligence) tools for software development effort estimation [23]. In their work,

they examined the potential of two intelligence approaches: ANNs, and case-

based reasoning for creating development effort estimation models. Even earlier,

 32

in 1993, A.R. Venkatachalam used an ANN to model software cost estimation

expertise [24]. Another interesting study was performed in 1999 by W. Pedrycz,

J.F. Peters and S. Ramanna [25] who used a fuzzy set approach to estimate the

cost of software projects.

For this project, two potential methods were considered: a non-linear global

optimisation method i.e. a differential evolution algorithm, and a modelling

method based on ANN. Due to the insufficient amount of data (only six modules

per subsystem), the latter proposal was left out.

Traditional optimisation methods were not considered because of the trickiness of

the objective functions, which is based on their difficult structure caused by the

combination of several equations (each module has its own equation depicting the

model as presented in equation ()6) to form the objective functions, as given in

equations and . Another reason for not considering traditional optimisation

methods is that the optimisation involved restrictions (in intervals). Instead, it was

assumed that DE would perform well in this case, because of the possibilities it

offers and the experience from its use so far (the arguments are presented in

chapters 5.3.1 and 5.3.2).

()4 ()5

5.3.1 Possibilities of Evolutionary Algorithms

Being non-linear global optimisation methods, evolutionary algorithms (such as

genetic algorithms (GAs) and differential evolution algorithms) can be used to

optimise functions of different types (e.g. linear, non-linear, discrete and integer-

value functions). In any case, these algorithms are especially valuable in problems

described by non-continuous functions that have difficult reliefs (noise, flatness,

multiple local minimums and maximums), a high level of dimensionality and that

allow for parameter interaction, non-differentiability and possibly multiple, non-

trivial and non-linear constrains limiting the feasible solutions to a small subset of

 33

the whole search space, as well as for penalty functions. As a result, EAs produce

a satisfactorily precise result that may or may not be the global optimum. [26, 27]

In engineering, many tasks fall into the category of mixed integer-discrete-

continuous problems. For example, the size of some details (nails, screws, etc.) is

defined according to some commercially available standard and is, thus, a discrete

value. The number of teeth on a gear may be given only as an integer value and

the amount of raw material (for example, in kilograms) needed to produce these

details as a continuous value. It is obvious that traditional optimisation methods

are not capable of solving this kind of a problem. [27]

When discussing traditional approaches we refer to methods, such as exhaustive

search, analytical optimisation, the Simplex method (and variations of it) and

optimisation based on line minimisation. Instead, evolutionary algorithms, as well

as simulated annealing, belong to a group of optimisation methods inspired by

natural approaches that imitate real-life processes.

The drawback of the exhaustive search is its slowness, because it attempts all the

possible solutions. In any case, this method returns, as its result, the optimal

solution. This method is also known as the brute-force approach. The principle of

the work of analytical optimisation lies in finding the extreme value of a function

(of two or more parameters) by taking the gradient of the function and setting it at

equal to zero. The next step is to solve the obtained equations and obtain a family

of lines, the intersection of which is the extreme value. The drawback of this

method is that it does not provide any information as to the optimality of the

solution. In optimisation based on the Simplex method, the most elementary

geometric figure, which has n + 1 sides in an n–dimensional space, is used to

reach the minimum by generating a new vertex for the simplex at each iteration

step. The disadvantage of this method lies in its slowness and need for the

function to be assumed to be continuous. If the assumption does not hold, the

method becomes ineffective. It may also stick to a local minimum. Methods based

on line minimisation choose a direction in which to move after selecting a random

 34

point and move in that direction until the function being processed begins to

increase. These methods are also known for their slowness and can stick to a local

minimum. [28]

By modelling a biological process to optimise highly complex cost functions, EAs

are able to overcome problems that are fatal for traditional methods as well as to

outperform traditional methods in speed and robustness. That is, evolutionary

algorithms should be attempted whenever a problem is known to be difficult to

solve (for instance, slow) using a traditional method.

5.3.2 Evolutionary Algorithms Application Domains

So far, evolutionary algorithms have been tried in many different areas that vary

from scientifically intriguing problems such as the travelling salesman (TSP) and

knapsack problem (both are combinatorial tasks) to tasks in the field of

mechanical engineering.

On the basis of current trends, it seems that EAs are being used to an ever

increasing extent for different optimisation tasks. If still a few years ago,

evolutionary algorithms were used to solve such scientifically interesting

problems as the zero/one multiple knapsack problem [29], they are now used to

optimise the weights of neurons of ANNs [30], and to solve industrial and

biological problems. In [31], Fayech, Hammadi, Maouche and Borne propose

methods for regulating urban bus traffic using evolutionary algorithms. In [32],

Seong-Joo Han and Se-Young Oh combine an evolutionary algorithm with an

ANN to optimise autonomous mobile robot navigation using ultrasonic sensors. In

[33], Watts, Major and Tate describe how they optimised an MLP neural network

using an evolutionary algorithm to experimentally model a determined protein

synthesis termination signal strength. D. H. Milone, J. J. Merelo and H. L. Rufiner

propose, in [34], a new technique based on an evolutionary algorithm. Using this

method, they permit the segmentation of speech without the need for a previous

 35

training process by classical methods. In [27], J. Lampinen and I. Zelinka present

numerical examples of the use of differential evolution algorithms in the design of

a gear train, a pressure vessel and a coil spring, which are examples of

optimisation in mechanical engineering.

5.3.3 Differential Evolution Algorithm

A differential evolution algorithm is a very simple but nevertheless powerful

stochastic function minimiser based on the generation of a new population from

an existing one. It was created as a result of Ken Price’s attempts to solve the

Chebychev polynomial fitting problem proposed to him by Rainer Storn. Mr.

Price solved the problem by coming up with the idea of using vector differences

to perturb a vector population, which happened in 1994. Since those days, many

substantial improvements have been made to the algorithm, enhancing its

robustness and performance. [35]

DEA in a Nutshell

Basically, a differential evolution algorithm generates a trial vector (a vector to be

compared with the target vector) by adding the weighted difference between two

vectors from the current population to a third vector. If the trial vector has a lower

cost that the target vector, the newly generated vector replaces it. [15]

Usually, the objective function (the function to be optimised) can be given as

follows:

RRXf D →

 →

: ()7

 36

In the above equation, a mapping from a D-dimensional space of real values (DR)

is made onto a 1-dimensional space of real values (R).
→

X is a vector consisting of

D elements and is defined as follows:

D

D

RX

x

x
x

X ∈

=
→→

,
...

2

1

 ()8

The objective of optimisation is to minimise by applying an optimisation

method to vector

 →

Xf

→

X .

Very often, the parameters of the object function may be forced to belong to a

specific interval, having thus upper and lower boundary constrains
()L

X
→

 and
()U

X
→

, as given in the equation below:

() () Djxxx U

jj
L

j ,...,1, =≤≤ ()9

As in the case of all other evolutionary algorithms, DEA operates on a population,

, of candidate solutions also known as the individuals of the population. DEA

maintains a population of a constant size, consisting of NP real-valued vectors,

, where i refers to the population member and G to the generation to which

the population belongs. Thus, the population can be given as follows:

GP

iX ,

→

G

 37

max,,2,1 ,...,0,,...,, GGXXXP GNPGGG =

=

→→→

 ()10

GP can be thought of as being a matrix consisting of a set of vectors or

individuals. Thereby, the individuals belonging to the population of generation G

can be given in the following form:

max

,,

,,2

,,1

, ,...,0,,...,1,
...

GGNPi

x

x
x

X

GiD

Gi

Gi

Gi ==

=
→

 ()11

That is, index i indicates ith individual in the population of generation G.

The first step of the algorithm is to randomly create the initial population. Taking

the boundary constrains into account, the individuals are created according to the

scheme shown below:

[] () ()() () DjNPixxxrandx L
j

L
j

U
jjij ,...,1,,...,1,1,00,, ==+−⋅= ()12

In the equation, []1,0jrand denotes a uniformly distributed random value from the

interval [0, 1] (scheme DE/rand/1/bin, see chapter 5.3.4). A new value is

generated for each individual.

Starting from the first generation, vectors in the current population () are

randomly selected and combined to create candidate vectors for the next

GP

 38

generation (). The population of the candidate vectors, also known as trial

vectors and denoted by U (i = 1,…,NP and j = 1,…, D), is created

according to the following scheme:

1+GP

1,,1, ++

→

= GijGi u

+

,

,

,,

1,,

Gij

Gij

x

v

,,iju

(GrjG xF ,1,,Gijv 1,, −⋅++

ki ∈

rr ,, 21

}

{ }NP,..., rr ≠≠ 21

(]+∈∈CR 1,0F

if [) kjCRrand j =∨≤1,0

=+1G

otherwise
()13

In the equation,

)Grjrj xx ,2,3,= forms a noisy or mutated vector

i = 1,…,NP, j = 1,…,D

{ D,...,1 is a random parameter index chosen once for each i

r 13 ∈ , ir ≠3 are randomly selected indexes

[];1,0

As is shown above, the trial vector is created from three different individuals of

the current population (with requirement r irr ≠≠≠ 321). Index k refers to a

randomly selected chromosome used to ensure that each trial vector differs from

its counterpart in the previous generation and is updated for each value of index i.

Parameters F and CR (including NP and G) are the control parameters of DE.

Both F and CR remain unchanged during the whole optimisation process. F, also

known as the mutation constant, is a real-valued factor from the interval (]+1,0 .

CR is called the crossover factor and belongs to the interval [that defines the

probability with which a trial vector’s chromosome will be selected from the

]1,0

 39

mutated vector (formed by v) instead of from the target vector (formed by

). Both F and CR influence the robustness and convergence velocity of the

optimisation process. Their optimal values depend on the characteristics of the

object function and the population size.

1,, +Gij

Gijx ,,

())+

,

L
jx

+,, Giju

+

,

,1

G

If there are boundary constrains, it is important that the values of the newly

created genes (vector parameters) lie inside them. One simple way to ensure this

is to substitute any gene that violates the boundary constrain rule with a randomly

generated value from the feasible interval as follows:

if () (U
jGij

L
jGij xuxu >∨< ++ 1,,1,,

) [] ()(()

 −⋅
=

+

,1,0

1,,

1

Gij

L
j

U
jj

u

xxrand

otherwise
()13

Finally, the population of the next generation, , is selected from the current

population, , and the child population according to the following scheme:

1+GP

GP

if

≤

 →

+

→

GiGi XfUf ,1,

=
→

→

+

→

,

,

1,

i

Gi

Gi

X

U
X

otherwise

()14

Figure 6 graphically illustrates differential evolution and shows how a noisy

vector is created. Generating the individual in the manner presented refers to the

DE/rand/1/bin scheme. More differential evolution schemes are discussed in

chapter 5.3.4. [26]

 40

Figure 6: An example of a two-dimensional

objective function with its contour lines an the

process of generating a noisy vector v.

An Example of an Iteration of DEA

Let us consider applying DE to the minimisation of a simple objective function

given by equation . A DE iteration is shown in Figure 7. The explanations are

presented immediately after the figure.

(15)

() 521521 ...,...,, xxxxxxf +++= ()15

First, a target vector is chosen. Then two randomly selected different vectors

(other than the target vector) are used to form a difference vector that is later

multiplied by the mutation constant F. The result is then added to the a third

randomly selected vector, forming thus a noisy vector. After applying the

 41

crossover operation to the noisy and target vectors, the trial vector is created. If

the cost of the trial vector is lower than one that of the target vector, the latter

vector is substituted by the former one. In the case presented illustrated in Figure

7, the target vector has a lower cost, which means that it remains in the new

population.

 42

Figure 7: One step of a differential evolution. The diagram is shown here

with the permission of Prof. Jouni Lampinen, and the original image can be

found in [36].

 43

5.3.4 Differential Evolution Schemes

In differential evolution, there are many different schemes for generating noisy (or

mutated) vectors. This chapter discusses four widely used schemes that are

summarised according to [15] in Table 6.

Table 6: Four different differential evolution perturbation schemes.

Scheme Rule

1 DE/rand/1

2 DE/best/1

3 DE/best/2

4 DE/rand-to-best/1

()GrGrGrGi xxFxv ,3,2,11, −⋅+=+

()GrGrGbestGi xxFxv ,2,1,1, −⋅+=+

()GrGrGrGrGbestGi xxxxFxv ,4,3,2,1,1, −−+⋅+=+

() ()GrGrGrGbestGrGi xxFxxxv ,3,2,1,,11, −⋅+−⋅+=+ λ

The randomly chosen indices in scheme DE/rand/1 (r) are mutually

different in addition to being different from the running index i. In the second

scheme (DE/best/1), the vector to be perturbed is the best performing vector of the

current generation. The same constrains also hold in this scheme. The third

scheme uses two difference vectors as the perturbation. Here, all the randomly

selected vectors are mutually different and also differ from the best vector. In the

last scheme, the perturbation is placed in a location between a randomly selected

population member and the best population member. In the scheme,

321 ,, rr

λ controls

the greediness of the evolution. Here, again, all the vectors are different.

 44

6 RESULTS

The client and server were evaluated using both (linear and the non-linear)

models. The models were created for both corrected and uncorrected development

efforts. The essential results are presented in the following chapters, whereas all

the other results can be found in the appendices. The results of essential

importance are presented in bold type.

6.1 The Server

6.1.1 The Linear Model

Table 7 shows the values of the parameters (coefficients) of the linear model that

estimates the development effort for the server. The first four rows of the table

(from “F” to “G”) refer to the control parameters of the differential evolution

algorithm: F is the mutation factor, CR the crossover factor, NP for the size of the

population, and G the maximum number of generations to be created. The values

of F, CR and NP were selected in order to yield the best result after different

combinations were tried.

Row five of the table shows the strategy (the DE scheme, see chapter 5.3.4)

followed. Two strategies were tried here (in order to ensure the correctness of the

results): 6 refers to DE/best/1/bin and 7 to DE/rand/1/bin. The next rows ()

represent the parameters (coefficients) of the model in such a way that, for

instance, parameter is a coefficient of attribute . The table is filled with the

values of the coefficients and the results of the objective functions, W (runs I and

II) and W (runs III and IV), given by equations

81...bb

1b 1a

1

2 ()4 and ()5 .

 45

Table 7: The values of the coefficients of the linear model that

estimates the development effort for the server (the measured

effort has been corrected).

Parameters Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

1b 0.0 0.0 0.0 0.0

2b 10.5 10.5 9.5 9.5

3b 4.8 4.8 9.8 9.8
b 68.8 68.8 69.9 69.9

 0.0 0.0 0.0 0.0
 3.1 3.1 4.9 4.9
 120.6 120.6 103.2 103.2
 0.0 0.0 0.0 0.0

1W 2W
Value 2.6 2.6

22.3 22.3

4

5b

6b

7b

8b

Table 8 shows the percentile error distribution between the measured and the

estimated development effort among the components of the server that correspond

to the above table.

 46

Table 8: The percentile error distribution of the estimated development

effort for the server (the linear model, the measured effort has been

corrected).

F 1A 2A 3A 4A 5A 6A Mean
error

 0 15.8144 0 0 0 0 2.6
 3.0083 8.4470 3.1713 5.1501 0.4165 4.0532 4.0

1W

2W

Using the information given in Table 7, the following functions for the estimation

of the development effort can be defined for the server:

() 764328211 6.1201.38.688.45.10,...,, xxxxxxxxF ++++= ()16

() 764328212 2.1039.40.708.95.9,...,, xxxxxxxxF ++++= ()17

The coefficient values of equation ()16 are obtained by minimising W and the

coefficient values of equation

1

()

1A

17

...

 by minimising W . In these equations,

variables refer to the values of attributes , as presented in

Table 4 and Table 5. For example, if we now want to define the estimated

development effort for component (belonging to the server), we simply

substitute the corresponding values from Table 4 into equation (as follows:

(1, 9, …, 0) = 10.5

2

21,a821 ,...,, xxx 8,...,aa

)16

1F 1120.644.89 ⋅++⋅+⋅ = 540.5 (the same as the measured

value). The estimation can be performed in the same way using equation ()17 .

Using the same idea, Table 9 presents the coefficients of the linear model for

estimating the development effort for the server defined by the uncorrected

measured effort, and Table 10 contains the distribution of the corresponding errors

 47

between the measured and the predicted development effort for the server’s

components.

Table 9: The values of the coefficients of the linear model that

estimates the development effort for the server (the measured

effort has not been corrected).

Parameters Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0
 10.5 10.5 7.3 7.3
 4.8 4.8 21.0 21.0
 68.8 68.8 72.6 72.6
 0.0 0.0 0.0 0.0
 3.1 3.1 8.9 8.9
 120.6 120.6 64.2 64.2
 0.0 0.0 0.0 0.0

1W 2W
Value 8.7 8.7

182.4 182.4

1b

2b

3b

4b

5b

6b

7b

8b

 48

Table 10: The percentile error distribution of the server’s estimated

development effort (the linear model, the measured effort has not been

corrected).

F 1A 2A 3A 4A 5A 6A Mean
error

 0 52.4114 0 0 0 0 8.7
 9.7845 20.8768 10.3147 16.7507 1.3548 13.1830 12.0

1W

2W

Based on the information presented in Table 9, the following linear models for

estimating the development effort for the server can be conducted:

() 764328211 6.1201.38.688.45.10,...,, xxxxxxxxF ++++= ()18

() 764328212 2.649.86.720.213.7,...,, xxxxxxxxF ++++= ()19

Table 11 presents the summary of the errors for the linear model when significant

attributes (see “Rule of Significance” in chapter 5.2.2) are excluded one by one.

The values of the most critical attributes are highlighted. The number given in

percent illustrates the increase in the error (from the original error).

 49

Table 11: A summary of the errors for the linear model with the

percentile increase in parentheses for the server.

 The measured effort
corrected

The measured effort
not corrected

Leaving
out 1W 2W 1W 2W

None 2.6 4.0 8.7 12.0

2a 10.5
(299 %)

11.9
(195 %)

14.4
(65 %)

17.5
(45 %)

3a 3.0
(15 %)

3.7
(-)

8.9
(2 %)

11.2
(-)

 12.3
(367 %)

15.5
(283 %)

17.1
(96 %)

21.0
(74 %)

 3.8
(45 %)

4.8
(19 %)

9.7
(11 %)

13.8
(14 %)

 5.3
(101 %)

8.2
(102 %)

10.6
(22 %)

12.3
(2 %)

4a

6a

7a

6.1.2 The Non-Linear Model

The parameters (power coefficients) of the non-linear model were defined using

the same principle as for the linear model. Their values were obtained by

minimising the objective functions that contain the corrected measured

development efforts are presented in Table 12, and Table 13 shows the

corresponding error distribution. The strategies used to minimise W produced

slightly different results (not noticeable in Table 12). For this reason, the

corresponding percentile error distribution differs insignificantly between the two

strategies (case); for this reason the results for both strategies can be observed.

1

2A

 50

Table 12: The values of the coefficients of the non-linear

model that estimates the development effort for the server (the

measured effort has been corrected).

Parameters Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

1b -0.2 -0.2 -0.2 -0.2

2b 1.6 1.6 1.6 1.6

3b 3.6 3.6 3.7 3.7
b 4.0 4.0 4.0 4.0

 0.2 0.2 0.2 0.2
 2.0 2.0 2.1 2.1
 8.6 8.6 8.4 8.4
 0.0 0.0 0.0 0.0

1W 2W
Value 6.4 6.4

99.9 99.9

4

5b

6b

7b

8b

Table 13: The percentile error distribution of the estimated development effort

for the server (the non-linear model, the measured effort has been corrected).

F 1A 2A 3A 4A 5A 6A Mean
error

 (strat. 6) 0 38.6850 0 0 0 0 6.4
 (strat. 7) 0 38.6849 0 0 0 0 6.4

 7.4823 15.5239 8.6540 10.5597 0.4529 10.7645 8.9

1W

1W

2W

 51

Using the information shown in Table 12, the following non-linear models for

estimating the development effort for the server can be derived:

() 6.8
7

0.2
6

0.4
4

6.3
3

6.1
28211 ,...,, xxxxxxxxG ++++= ()20

() 4.8
7

0.2
6

0.4
4

6.3
3

6.1
28212 ,...,, xxxxxxxxG ++++= ()21

From the above equations, it should be noticed that the variables, which are

increased to a power of less than one, are not taken, since they do not have an

increasing influence on the (estimated) development effort (see “Rule of

Significance”, chapter 5.2.2).

The same operations are performed to obtain the values of the parameters of the

non-linear model based on the uncorrected measured development effort. The

values are shown in Table 14, whereas Table 15 gives an overview of the

corresponding error distribution.

 52

Table 14: The values of the coefficients of the non-linear

model estimating the server’s development effort (the measured

effort has not been corrected).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 8000 8000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

1b -0.2 -0.2 -0.2 -0.2

2b 1.6 1.6 1.5 1.5

3b 3.6 3.6 3.9 3.9
b 4.0 4.0 4.0 4.0

 0.2 0.2 0.2 0.2
 2.0 2.0 2.1 2.1
 8.6 8.6 8.1 8.1
 0.0 0.0 0.0 0.0

1W 2W
Value 13.8 13.8

317.4 317.4

4

5b

6b

7b

8b

Table 15: The percentile error distribution of the server’s estimated

development effort (the non-linear model, the measured effort has not

been corrected).

F 1A 2A 3A 4A 5A 6A Mean
error

0 82.5090 0 0 0 0 13.8
14.5977 23.2006 16.8209 20.5159 0.8832 21.1712 16.2

1W

2W

 53

According to values shown in Table 14, the non-linear model that estimates the

development effort for the server can be conducted as follows:

() 6.8
7

0.2
6

0.4
4

6.3
3

6.1
28211 ,...,, xxxxxxxxG ++++= ()22

() 1.8
7

1.2
6

0.4
4

9.3
3

5.1
28212 ,...,, xxxxxxxxG ++++= ()23

The table below (Table 16) summarises the errors that occurred when a significant

attribute was excluded from the model. The values of the attributes that have a

crucial influence on the development effort are highlighted.

Table 16: A summary of the errors for the non-linear model

with the percentile increase in the error in parentheses for the

server.

 The measured effort
corrected

The measured effort
not corrected

Leaving
out 1W 2W 1W 2W

None 6.4 8.9 13.8 16.2

 16.6
(157 %)

21.2
(138 %)

18.7
(36 %)

23.8
(46 %)

 9.0
(40 %)

12.8
(44 %)

14.5
(5 %)

17.0
(5 %)

 10.4
(61 %)

14.9
(67 %)

16.2
(18 %)

19.2
(19 %)

 14.2
(120 %)

17.6
(97 %)

21.6
(57 %)

24.3
(50 %)

 11.3
(75 %)

16.0
(79 %)

14.8
(7 %)

17.9
(11 %)

2a

3a

4a

6a

7a

 54

6.2 The Client

6.2.1 The Linear Model

The same procedure was carried out with the client evaluation. Using the same

idea, Table 17 presents the coefficients of the linear model for estimating the

client’s development effort defined using the corrected measured effort, and Table

18 illustrates the distribution of the corresponding errors between the measured

and predicted development effort for the client’s components.

Table 17: The values of the linear model’s coefficients that

linear model estimate the development effort for the client (the

measured effort has been corrected).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0
 110.0 110.0 122.5 122.5
 200.5 200.5 225.0 225.0
 21.5 21.5 6.1 6.1
 16.4 16.4 15.8 15.8
 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0

1W 2W
Value 5.8 5.8

70.3 70.3

1b

2b

3b

4b

5b

6b

7b

8b

 55

Table 18: The percentile error distribution of the estimated development

effort for the server (the linear model, the measured effort has been

corrected).

F 1B 2B 3B 4B 5B 6B Mean
error

 0 0 20.9464 0 13.6276 0 5.8
 2.8062 1.5121 13.9678 9.9005 9.5027 5.3378 7.2

1W

2W

Using the information shown in Table 17, the following functions for estimating

the linear development effort can be derived for the client (based on the corrected

measured efforts):

() 65438211 4.165.215.2000.110,...,, xxxxxxxF +++= ()24

() 65438211 8.151.60.2250.122,...,, xxxxxxxF +++= ()25

The same operations were performed to obtain the values of the parameters of the

linear model for the client on the basis of the uncorrected measured development

effort. The values are given in Table 19, whereas Table 20 shows the overview of

the corresponding error distribution.

 56

Table 19: The values of the linear model’s coefficients that

linear model estimate the development effort for the client (the

measured effort has not been corrected).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

1b 0.0 0.0 0.0 0.0

2b 0.0 0.0 0.0 0.0

3b 126.4 126.4 111.7 111.7
b 230.5 230.5 298.5 298.5

 24.7 24.7 0.0 0.0
 18.9 18.9 5.6 5.6
 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0

1W 2W
Value 15.5 15.5

70.3 70.3

4

5b

6b

7b

8b

Table 20: The percentile error distribution of the estimated development

effort for the server (the linear model, the measured effort has not been

corrected).

F 1B 2B 3B 4B 5B 6B Mean
error

0 0 20.9463 0 71.9285 0 15.5
24.1125 2.5543 19.3490 10.1305 29.4226 23.4523 18.2

1W

2W

 57

The values of the coefficients presented in Table 19 suggest the following linear

models (defined by using the uncorrected measured efforts) for estimating the

development effort for the client:

() 65438211 9.187.245.2304.126,...,, xxxxxxxF +++= ()26

() 6438211 6.55.2987.111,...,, xxxxxxF ++= ()27

The table below summarises the errors between the measured and estimated

development efforts when a significant attribute is excluded from the model. N/A

(Not Available) means that the corresponding attribute had no significance in the

case in question, for which reason it was not taken into consideration.

Table 21: A summary of the errors for the linear model with

the percentile increase for the client in parentheses.

 The measured effort
corrected

The measured effort
not corrected

Leaving
out 1W 2W 1W 2W

None 5.8 7.2 15.5 18.2

 8.1
(41 %)

10.3
(42 %)

17.3
(12 %)

21.2
(16 %)

 21.8
(279 %)

28.5
(297 %)

38.5
(149 %)

43.7
(141 %)

 6.7
(15 %)

7.9
(10 %)

16.4
(6 %) N/A

 8.5
(47 %)

10.7
(49 %)

16.5
(6 %)

18.7
(3 %)

3a

4a

5a

6a

 58

6.2.2 The Non-Linear Model

The parameters (power coefficients) of the non-linear model for the client were

defined using the same principle as they were for the server. The difference

between the linear and non-linear model is that attribute a is not taken into

account here, since it is only assigned the values zero and one (see Table 5) and

thus has little influence on the development effort. The parameters of the model

obtained on the basis of the corrected efforts are shown in Table 22, and Table 23

illustrates the corresponding error distribution.

Table 22: The values of the coefficients of the non-linear

model that estimates the development effort for the client (the

measured effort has been corrected).

Parameter Run I Run II Run III Run IV

8

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 -0.1 -0.1 0.3 0.3
 0.2 0.4 0.4
 4.3 4.3 4.1 4.1
 4.4 4.4 4.5 4.5
 0.9 0.9 0.0 0.0
 2.4 2.4 2.4 2.4
 -1.0 -1.0 -1.0 -1.0
 N/A N/A N/A N/A

1W 2W
Value 32.1 32.1

2102.0 2102.0

1b

2b 0.2

3b

4b

5b

6b

7b

8b

 59

Table 23: The percentile error distribution of the estimated development

effort for the client (the non-linear model, the measured effort has been

corrected).

F 1B 2B 3B 4B 5B 6B Mean
error

 0 0 80.5349 72.2838 40.0317 0 32.1
 0.2136 8.4967 19.6113 71.1636 25.1042 19.6113 34.2

1W

2W

Based on the information presented in Table 22, the following non-linear models

for estimating the development effort for the client can be conducted (when

defining the model’s parameters, the corrected measured development effort was

used):

() 4.2
6

4.4
4

3.4
38211 ,...,, xxxxxxG ++= ()28

() 4.2
6

5.4
4

2.4
38212 ,...,, xxxxxxG ++= ()29

As was done on the basis of the corrected development effort, the power

coefficients of the non-linear model were obtained on the basis of the uncorrected

development effort, and their values are shown in Table 24. The corresponding

error distributions can be found in Table 25, respectively.

 60

Table 24: The values of the coefficients of the non-linear

model that estimates the development effort for the client (the

measured effort has not been corrected).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000

5000 5000
Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

1b -0.2 -0.2 -0.0 -0.0

2b 0.2 0.2 0.3 0.3

3b 1.9 1.9 4.0 4.0
b 4.5 4.5 4.6 4.6

 1.1 1.1 0.6 0.6
 2.4 2.4 2.3 2.3
 -1.0 -1.0 -1.0 -1.0
 N/A N/A N/A N/A

1W 2W
Value 41.7 41.7

2768.7 2768.7

4

5b

6b

7b

8b

Table 25: The percentile error distribution of the client’s estimated

development effort (the non-linear model, the measured effort has not

been corrected).

F 1B 2B 3B 4B 5B 6B Mean
error

 0 0 81.2721 73.4436 0 95.5076 41.7
 8.3527 8.353 83.6637 74.0859 39.1138 46.0057 45.2

1W

2W

 61

Using the information illustrated in Table 24, the non-linear models for the

estimation of the client’s development effort can be derived as:

() 4.2
6

1.1
5

5.4
4

9.1
38211 ,...,, xxxxxxxG +++= ()30

() 3.2
6

6.4
4

0.4
38212 ,...,, xxxxxxG ++= ()31

The last table (Table 26) of this chapter presents a summary of the errors for the

non-linear model for the client.

Table 26: A summary of the errors for the non-linear

model with the percentile increase for the client in

parentheses.

 The measured
effort corrected

The measured effort
not corrected

Leaving
out 1W 2W 1W 2W

None 32.1 34.2 41.7 45.2

 36.0
(12 %)

38.7
(13 %)

41.8
(0 %)

46.7
(3 %)

 41.7
(30 %)

44.0
(29 %)

55.4
(33 %)

58.2
(29 %)

 N/A N/A 41.7
(0 %) N/A

 44.0
(37 %)

48.5
(42 %)

49.0
(16 %)

52.9
(17 %)

3a

4a

5a

6a

 62

7 SUMMARY AND DISCUSSION

7.1 Summarizing and Discussing Results

The first thing we noticed when we obtained the results was that they showed that

the architectural properties of the subsystems differ slightly from each other.

Tables 27 and 29 through 31 summarise the values of the coefficients

(parameters) of the attributes (the reader is requested to refer to Table 28 to recall

the attributes and the corresponding coefficients). For both subsystems, these

values differ significantly from each other. Some architectural properties that

influence the development effort for the server have no influence on the

development effort for the client (these attributes are the size of the subsystem

expressed in the number of classes, , and the number of subcomponents,)

and vice versa; the module strength (complexity, , that specifies the number of

use cases of a component) has no influence on the development effort for the

client, while it does have influence in the case of the server (Table 27 and parts of

Table 29 and Table 30). Once again, attributes, such as and , have no

influence whatsoever on the development effort for both subsystems.

2a 7a

6a

1a 8a

Table 27: The values of the coefficients (parameters) of the linear model

 (equation () defined by minimising W (equation). F)1 1 ()3

 Server Client

Coef. Value (Effort
corrected)

Value (Effort
not corrected)

Value (Effort
corrected)

Value (Effort
not corrected)

 10.5 10.5 - -
 4.8 4.8 110.0 126.4
 68.8 68.8 200.5 230.5
 - - 21.5 24.7
 3.1 3.1 16.4 18.9
 120.6 120.6 - -

2b

3b

4b

5b

6b

7b

 63

Table 28: A summary of the metrics suite and related to it parameters.

Attribute
(architectural

property)

Related
coef.

(param.)

Metric
name Description

1a 1b Size Size of a component in KLOC
(Kilo Lines Of Code)

2a b 2 Size Size of a component in
number of classes

 Coupling Number of components
referring to this component

4a 4b Coupling Number of components this
component refers to

5a b 5 Cohesion

Number of aggregations,
compositions and relations
among the classes of a
component

 Complexity Number of use cases of a
component

 Complexity Number of subcomponents
that form a component

 Complexity Number of databases
connected to a component

3a 3b

6a 6b

7a 7b

8a 8b

As shown in Appendix 1 (the section “ excluded”), when excluding attribute

, the coefficient of attribute a takes on a significant value in both the linear

and non-linear models for the server, while still having no influence on the client.

On the basis of this fact, the following decision could possibly be made: the

number of classes hides information on the size (in KLOC) of a component

(considering the client only).

2a

2a 1

 64

Table 29: The values of the coefficients (parameters) of the linear model

(equation) defined by minimising W (equation

F

()1 2 ()4).

 Server Client

Coef. Value (Effort
corrected)

Value (Effort
not corrected)

Value (Effort
corrected)

Value (Effort
not corrected)

2b 9.5 7.3 - -
b 9.8 21.0 122.0 111.7

 70.0 72.6 225.0 298.5
 - - 6.1 -
 4.9 8.9 15.8 5.6
 103.2 64.2 - -

3

4b

5b

6b

7b

According to the results, the size of a component expressed in the number of

classes (attribute) is significant and important for the architecture of the server

but not for that of the client. When considering the server, the coefficient of that

attribute has a value much lower than, for instance, the coefficient of a , but it

should be remembered that the average value of is much higher (up to fifteen

times) than that of (Table 32). In the architecture of the client, a plays an

important role: when it was removed from the models, the error increased to 299

% in the case of the linear model (corrected efforts, W ; see Table 11), and by up

to 157 % in the case of the non-linear model (corrected efforts, W ; see Table 16).

2a

4

2a

4a 2

1

1

For the server, the coefficient of attribute a gets relatively insignificant values

(Table 27 and Table 29), when taking into account that the attribute has a low

average value (Table 32). Once again, for the client in most cases, the

corresponding value is high for both models (Table 30 and Table 31).). In any

case, leaving out this attribute increases the error insignificantly: at most by only

44 % in the case of the server and 41 % in the case of the client (Table 16 and

Table 21). Based on these numbers, it may be decided that attribute is not too

important in the architectural design of both subsystems. The explanation for this

3

3a

 65

might be that attribute probably hides some information about a : when is

excluded, the value of the parameter of increases significantly (Appendix 1,

section “ excluded”).

4a

6a

3

4

5a

4a

3a

4a

4a

When excluded from both models in both subsystems, attribute a causes an

increase in the error to 367 % in the linear model for the server (Table 11) and to

297 % in the linear model for the client (Table 21). The coefficient, as well as the

exponent, of the variable that corresponds to attribute gets significant values in

both models in both subsystems (Table 27 to Table 31). Due to the above-

mentioned behaviour, this attribute probably becomes the most important

architectural property (according to the importance rule presented in chapter

5.2.2) for the development effort of both subsystems if their architectures are

evaluated by the linear model (the non-linear model gives lower errors: Table 16

and Table 26). On the basis of these observations, the hypothesis presented in the

introductory part to this thesis can be assumed proven.

4a

In software engineering, it is well known that cohesion (attribute) should be

high in the modules of a correctly implemented software system. According to the

results (coefficient b), the parameters (linear and power coefficients) of both

models are insignificant for the server and have some significance for the client.

One reason for this could be the improper selection of the definition of cohesion.

Even though cohesion is present in some models for the client, the value of its

coefficient (or exponent) is relatively low compared with those of coupling

(attribute). When leaving cohesion out from the models, the increase in the

error is quite insignificant; at most 15 % (Table 21 and Table 26), which means

that this architectural attribute is not too important in the architecture of the client.

And again, in the case of the server, cohesion has no influence on its architecture.

5

Architectural property (complexity), which denotes the number of use-cases of

a model, is present in both models of both subsystems. Furthermore, the

behaviour of the value of its coefficient (or exponent) is more or less stable even

 66

though the values of the attribute are not too reliable. This is because the values of

the use-cases were defined based on the technical specifications and each

developer had his/her own view on what the use-cases are. In some cases, the

number of use-cases of a component is important in the architecture of the

subsystems. For example, excluding from the non-linear model optimised by

 with the corrected development efforts for the server increases the error by

120 % (Table 16). In the case of the client, the increases are not that significant

(the biggest is 49 % for the linear model optimised by W with corrected

development efforts, see Table 21).

6a

1W

2

Table 30: The values of the power coefficients (parameters) of the non-

linear model G (equation ()2) defined by minimising W (equation). 1 ()3

 Server Client

Coef. Value (Effort
corrected)

Value (Effort
not corrected)

Value (Effort
corrected)

Value (Effort
not corrected)

 1.6 1.6 - -
 3.6 3.6 4.3 1.9
 4.0 4.0 4.4 4.5
 - - - 1.1
 2.0 2.0 2.4 2.4
 8.6 8.6 - -

2b

3b

4b

5b

6b

7b

According to the results, (which refers to the number of subcomponents

forming a component) is the most significant attribute in the server’s architecture

described by both models. Coefficients with such high values could be explained

by the relatively low values of the attribute: for the server, the average value is 1

and for the client 2, whereas, for instance, the average value of attribute

(coupling) for the server is 2 and for the client 3, respectively (Table 32). In any

case, high significance did not make the most important attribute. For

example, in the case of the linear model optimised by W with the corrected

7a

4a

7a

1

 67

development effort, leaving out increases the error by only 101 %, whereas the

corresponding increase in the case of attribute is 367 % (Table 11). Again, in

the case of the client’s architecture, a has no influence at all.

7a

4a

7

(2

As was later noticed, the databases of the components were implemented as Java

classes. This offers a reasonable explanation for the insignificance of attribute :

the information on the databases of a component is probably contained within the

number of classes corresponding to attribute .

8a

2a

Table 31: The values of the power coefficients (parameters) of the non-

linear model G (equation)) defined by minimising W (equation). 2 ()4

 Server Client

Coef. Value (Effort
corrected)

Value (Effort
not corrected)

Value (Effort
corrected)

Value (Effort
not corrected)

 1.6 1.5 - -
 3.6 3.9 4.2 4.0
 4.0 4.0 4.5 4.6
 - - - -
 2.0 2.1 2.4 2.3
 8.4 8.1 - -

2b

3b

4b

5b

6b

7b

There may be two possible explanations for the differences in the architectural

properties of the subsystems. The fact is that the server was implemented within

the same site by experienced developers and there was a prototype that described

the interfaces between the components. The client was developed in different sites

by less experienced software engineers (which was the reason why the

equalisation of the development effort presented in chapter 5.1 was performed).

The client had to be developed before the server but was delayed. No prototype

was created, and the developers confronted sizeable problems when integrating

the components, because the interfaces between them had not been properly

 68

designed. This can be seen in the significance of attributes a and a which have

very high values, and b , (according to the above tables), and from their

importance (especially): when excluding attribute a from the linear model,

the error produced by W increased from 5.8 % to 21.8 %, which is a change of

approximately four-fold (Table 21). The values of for the server are

significantly lower than the corresponding values for the client, especially in the

case of the linear model (tables above), but the exclusion of b causes an increase

in the error from 2.6 % to 12.3 % (about five-fold, see Table 11). These numbers

depict the high importance of coupling.

3

4

4

4

3b 4

4a

1

4

b

The other fact is that the server was implemented using CORBA, which might

influence the difference between the architectural properties of the server and the

client. The purpose of this work is not to discuss CORBA in depth, and therefore,

readers who wish to know more about CORBA are requested to refer to [40].

 69

Table 32: The average values of the attributes

of both subsystems. The values were defined

based on the information presented in Table 4

and Table 5.

Attribute Average value
(the server)

Average value
(the client)

1a 3 (
6

2)5 4 (
6
53)

2a 31 (
6
530) 29 (

3
129)

3a 3 (
2
12) 2 (2)

4a 2 (
3
12) 3 (

2
12)

5a 23 () 6 (
3
25)

 9 (8) 10

 1 (1) 2 (1)

 1 0 ()

3
1

3
123

6a
3
2

7a
3
1

6
5

8a
3
1

A difference can be noticed in the results of the models. In all the cases, the linear

model fitted the data better than the non-linear model. The explanation for this

could be the very high sensitivity of the non-linear function because it consists of

variables raised to powers. It is well known that even a small increase in an

exponent may produce very large changes in the result, whereas increases in the

variables (or coefficients) of a linear model are not that dramatic. The final

conclusions in the scope of this project are that (1) the number of components, to

which the component being studied refers, is very probably the most important

architectural property of the architectures of both subsystems, and (2) a linear

model is more suitable for estimating the development effort than a non-linear

model.

 70

7.2 Performance of the Selected Approach

From the theoretical point of view, it is possible to utilise soft computing methods

in software engineering when modelling software processes. As this work shows,

a differential evolution algorithm, which is a soft computing approach, is suitable

for defining the parameters (the values of the coefficients and exponents) of a

model for estimating the software development effort on the basis of architectural

design properties. The quantitative results support the observation made during

the qualitative analysis. This means the method used (DE) also works from the

practical perspective, which encourages the use of DE in other suitable software

engineering tasks.

7.3 Suggestions for the Future Work

In the scope of this research, it seems that the attributes of the architectural design

metrics employed are not completely independent. Future research could focus on

studying the interdependencies between architectural attributes. From the results

presented in the appendices, it can be seen that excluding specific attributes

influenced the values of the coefficients and exponents of other attributes as well

as the result. These phenomena are to be interpreted. A local sensitivity analysis

on the attributes could also be performed by increasing the value of a specific

attribute by, for instance, one percent and studying how this change affects other

significant attributes. Finally, the exact models for estimating the development

effort on the basis of architectural properties could be created by, for example,

combining both linear and non-linear models. Another topic of interest would be

investigating whether estimation models should include the (non-linear)

interdependencies between the studied attributes.

DE is a unique optimisation approach and performed well within the scope of this

project, which makes it reasonable to continue with its usage in future work as

well.

 71

REFERENCES

1. R. Harrison, S. Counsell, R. Nithi, 1997: An Overview of Object-Oriented

Design Metrics (Editors: Budgen, D., Hoffnagle, G., Trienekens, J. Dept.

of Electron. & Comput. Sci., Southampton Univ., UK). Proceedings of

Software Technology and Engineering Practice. 8th IEEE International

Workshop on Incorporating Computer Aided Software Engineering.

London, UK. 14-18 July 1997. Pages: 230 – 235. ISBN: 0-8186-7840-2.

2. Shyam R. Chidamber and Chris F. Kemerer, 1994: A Metrics Suite for

Object Oriented Design. IEEE Transactions on Software Engineering.

June 1994. Volume: 20, Issue: 6, Pages: 476 –493. ISSN: 0098-5589.

3. Alberto Avritzer, Elaine J. Weyuker, 1998: Investigating Metrics for

Architectural Assessment. Software Metrics Symposium, 1998, 5th

International Proceedings on Software Metrics. Bethesda, MD, USA. 20-

21 Nov. 1998. Pages 4-10. ISBN: 0-8186-9201-4.

4. M. Shereshevsky, H. Ammari, N. Gradetsky, A. Mili, H. H. Ammar, 2001:

Information Theoretic Metrics for Software Architectures. 25th Annual

International Conference on Computer Software and Applications, 2001,

COMPSAC 2001. Chicago, IL, USA. 8-12 Oct. 2001. Pages: 151 – 157.

ISBN: 0-7695-1372-7.

5. Lionel C. Briand, Jürgen Wüst, 2001: The Impact of Design Properties on

Development Cost in Object-Oriented Systems. Software Metrics

Symposium, 2001. METRICS 2001. 7th International Proceedings on

Software Metrics. London, UK. 4-6 April 2001. Pages: 260 – 271. ISBN:

0-7695-1043-4.

6. Lionel C. Briand, Khaled El Emam, Frank Bomarius, 1998: CORBA: A

Hybrid Method for Software Cost Estimation, Benchmarking, and Risk

 72

Assessment. Proceedings of the 1998 International Conference on

Software Engineering. Kyoto, Japan. 19-25 April 1998. Pages: 390 – 399.

ISBN: 0-8186-8368-6.

7. Ross Jeffery, Melanie Ruhe, Isabella Wieczorek, 2000: Using Public

Domain Metrics to Estimate Software Development Effort. Software

Metrics Symposium, 2001. METRICS 2001. 7th International Proceedings.

London, UK. 4-6 April 2001. Pages: 16 – 27. ISBN: 0-7695-1043-4.

8. Krishnakumar Pillai, V.S. Sukumaran Nair, 1997: A Model for Software

Development Effort and Cost Estimation. IEEE Transactions on Software

Engineering. Aug. 1997. Volume: 23, Issue: 8; Pages: 485 – 497. ISSN:

0098-5589.

9. Jack E. Matson, Bruce E. Barrett, and Joseph M. Mellichamp, 1997:

Software Development Cost Estimation Using Function Points. IEEE

Transactions on Software Engineering. April 1994. Volume: 20, Issue: 4;

Pages: 275 – 287. ISSN: 0098-5589.

10. Yooichi Yokoyama and Mitsuhiko Kodaira, 1998: Software Cost and

Quality Analysis by Statistical Approaches. Proceedings of the 1998

International Conference on Software Engineering. Kyoto, Japan. 19-25

April 1998. Pages: 465 – 467. ISBN: 0-8186-8368-6.

11. Jagdish Bansiya, Carl G. Davis, 2002: A Hierarchical Model for Object-

Oriented Design Quality Assessment. IEEE Transactions on Software

Engineering. Jan. 2002. Volume: 28, Issue: 1, Pages: 4 – 17. ISSN: 0098-

5589.

12. Roger S. Pressman: Software Engineering, A Practitioner’s Approach. 4th

edition. The McGraw-Hill Companies, Inc.. ISBN: 0077094115. p. 129.

 73

13. Orsolya Dobán, András Pataricza, 2001: Cost Estimation Driven Software

Development Process. 27th Proceedings of Euromicro Conference, 2001.

Warsaw, Poland. 4-6 Sept. 2001. Pages: 208 – 213. ISBN: 0-7695-1236-4.

14. Sunita Devnani-Chulani, Bradford Clark, Barry Boehm, 1998: Calibrating

the COCOMO II Post-Architectural Model. Proceedings of the 1998

International Conference on Software Engineering. Kyoto, Japan. 19-25

April 1998. Pages: 477 – 480. ISBN: 0-8186-8368-6.

15. Rainer Storn, 1996: On the Usage of Differential Evolution for Function

Optimization (Editors: Smith, M.H., Lee, M.A., Keller, J., Yen). 1996

Biennial Conference of the North American. Fuzzy Information

Processing Society, 1996. NAFIPS. Berkeley, CA, USA. 19-22 June 1996.

Pages: 519 – 523. ISBN: 0-7803-3225-3.

16. Mary Shaw, David Garlan: Software Architecture: Perspectives on an

Emerging Discipline. Prentice-Hall, Inc., 1996. ISBN: 0-13-182957-2.

17. Len Bass, Paul Clements, Rick Kazman, 1998: Software Architecture in

Practice. Addison Wesley Longman, Inc., 1998. ISBN: 0-201-19930-0.

18. Norman E. Fenton, Shari Lawrence Pfleeger, 1997: Software Metrics: A

Rigorous & Practical Approach. 2nd edition. PWS Publishing Company,

1997. ISBN: 0-534-95425-1.

19. Franck Xia, 1996: Module Coupling: A Design Metric. Proceedings of the

1996 Asia-Pacific Conference on Software Engineering. Seoul, South

Korea. 4-7 Dec. 1996. Pages: 44 – 54. ISBN: 0-8186-7638-8.

20. The official Web-site of the TogetherSoftTM Corporation: TogetherSoft, a

Development Tool for an Application Modeling and Round Trip

 74

Engineering for Java and C++. Web-document, URL:

http://www.togethersoft.com/. [Referred 22.09.2002].

21. Lines of Code Counter, Dr. John Dalbey’s Web-page on Web-server of

Dep. of Comp. Sc., California Polytechnic State University. Web-

document, URL:

http://www.csc.calpoly.edu/~jdalbey/SWE/PSP/LOChelp.html; [Referred

22.09.2002].

22. Ali Idri, Taghi M. Khoshgoftaar, Alain Abran, 2002: Can neural Networks

be easily Interpreted in Software Cost Estimation? Proceedings of the

2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02.

Honolulu, HI, USA. 12-17 May 2002. Volume: 2, Pages: 1162 – 1167.

ISBN: 0-7803-7280-8.

23. Gavin R. Finnie and Gerhard E. Wittig, 1996: AI Tools for Software

Development Effort Estimation (Editors: Purvis, M. Bond Univ., Gold

Coast, Qld., Australia). Proceedings of the 1996 International Conference

on Software Engineering: Education and Practice. Dunedin, New Zealand.

24-27 Jan. 1996. Pages: 346 – 353; ISBN: 0-8186-7379-6.

24. A.R. Venkatachalam, 1993: Software Cost Estimation Using Artificial

Neural Networks. Proceedings of the 1993 International Joint Conference

on Neural Networks. IJCNN '93-Nagoya. October 25-29, 1993. Volume 1,

Pages: 987 – 990. ISBN: 0-7803-1421-2.

25. W. Pedrycz, J.F. Peters, S. Ramanna, 1999: A Fuzzy Set Approach to Cost

Estimation of Software Project (Editor: Meng, M.). IEEE Canadian

Conference on Electrical and Computer Engineering, 1999. Edmonton,

Alta, Canada. 9-12 May 1999. Volume: 2, Pages: 1068 – 1073. ISBN: 0-

7803-5579-2.

 75

http://www.togethersoft.com/
http://www.csc.calpoly.edu/~jdalbey/SWE/PSP/LOChelp.html

26. Jouni Lampinen: Multi-Constrained Nonlinear Optimization by the

Differential Evolution Algorithm. A Document Proposing an Extension

for the Differential Evolution Algorithm (DEA) for Handling Non-linear

Constraint Functions. Web-document, URL:

http://www.it.lut.fi/opetus/01-02/010778000/DECONSTR.PDF. [Referred

29.09.2002].

27. Jouni Lampinen and Ivan Zelinka, 1999: Mechanical Engineering Design

Optimization by Differential Evolution. In: David Corne, Marco Dorigo

and Fred Glover: New Ideas in Optimization; McGraw-Hill, London

(UK), ISBN: 007-709506-5. Pages: 127-146.

28. Randy L. Haupt, Sue Ellen Haupt, 1998: Practical Genetic Algorithms,

John Wiley & Sons, Inc., 1998, ISBN: 0-471-18873-5.

29. Sami Khuri, Thomas Black and Jörg Heitkötter, 1993: The Zero/One

Multiple Knapsack Problem and Genetic Algorithms. The ACM

Symposium of Applied Computation (SAC’94) proceedings. 1993 ACM

Press.

30. Velazco, M.I. and Lyra, C., 2002: Optimization with Neural Networks

Trained by Evolutionary Algorithms. Proceedings of the 2002

International Joint Conference on Neural Networks. IJCNN'02. Honolulu,

HI, USA. 12-17 May 2002. Volume: 2, Pages: 1516 – 1521. ISBN: 0-

7803-7278-6.

31. B. Fayech, S. Hammadi, S. Maouche and P. Borne, 2001: Urban Bus

Traffic Regulation by Evolutionary Algorithms. 2001 IEEE International

Conference on Systems, Man, and Cybernetics. Tucson, AZ, USA. 7-10

Oct. 2001. Volume: 2, Page: 1316 – 1322. ISBN: 0-7803-7087-2.

 76

http://www.it.lut.fi/opetus/01-02/010778000/DECONSTR.PDF

32. Seong-Joo Han and Se-Young Oh, 2001: Evolutionary Algorithm Based

Neural Network Controller Optimization for Autonomous Mobile Robot

Navigation. Proceedings of the 2001 International Joint Conference on

Neural Networks. IJCNN'01. Washington, DC, USA. 15-19 July 2001.

Volume: 3, Pages: 2194 – 2199. ISBN: 0-7803-7044-9.

33. Michael Watts, Louise Major and Warren Tate, 2002: Evolutionary

Optimisation of MLP for Modelling Protein Synthesis Termination Signal

Efficiency. Proceedings of the 2002 Congress on Evolutionary

Computation, CEC '02. Honolulu, HI, USA. 12-17 May 2002. Volume: 1,

Pages: 193 – 198. ISBN: 0-7803-7282-4.

34. D. H. Milone, J. J. Merelo and H. L. Rufiner, 2002: Evolutionary

Algorithm for Speech Segmentation. Proceedings of the 2002 Congress on

Evolutionary Computation, CEC '02. Honolulu, HI, USA. 12-17 May

2002. Volume: 2, Pages: 1115 – 1120. ISBN: 0-7803-7282-4.

35. A Web-server of the International Computer Science Institute ICSI,

Berkley, a Home Page of Rainer Storn, Reference to Differential

Evolution (DE). Web-document, URL:

http://www.icsi.berkeley.edu/~storn/code.html. [Referred 27.09.2002].

36. Jouni Lampinen: Global Optimization by Differential Evolution; An

Introduction to the Differential Evolution Algorithm (DEA) for Global

Optimization Over Continuous Spaces. Web-document, URL:

http://www.it.lut.fi/opetus/01-02/010778000/DE.pdf. [Referred

28.09.2002].

37. Barry W. Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford

K. Clark, Ellis Horowitz, Ray Madachy, Donald Reifer and Bert Steece:

Software Cost Estimation with COCOMO II, Prentice-Hall, Inc., 2000,

ISBN: 0-13-02-6692-2.

 77

http://www.icsi.berkeley.edu/~storn/code.html
http://www.it.lut.fi/opetus/01-02/010778000/DE.pdf

38. Päivi Ovaska, 2002: Designing a Qualitative Study for Analyzing

Relationships between Software Architecture and Software Project

Outcome. Information Systems Research in Scandinavia, a Workshop in

Denmark. August 10-13, 2002.

39. EE290A: Advanced Topics in CAD. Component-Based Design of

Electronic Systems. A Course Given in the University of California,

Berkley by Mr. Kurtz Keutzer and Mr. Richard Newton. The Lecture

Notes. Lectures on Spring Semester 1999. Web-document, URL:

http://www-

cad.eecs.berkeley.edu/~newton/Classes/EE290sp99/lectures/ee290aSp994

_1/tsld009.htm. [Referred 6.11.2002].

40. Robert Orfali and Dan Harkey: Client/Server Programming with Java and

CORBA, 2nd Edition. John Wiley & Sons, Inc., 1998. ISBN: 0-471-24578-

X.

41. B. Bruegge & A. H. Dutoit: Object-Oriented Software Engineering:

Conquering Complex and Changing Systems. Prentice Hall, 2000. ISBN:

0-13-489725, pp. 174-178.

 78

http://www-cad.eecs.berkeley.edu/~newton/Classes/EE290sp99/lectures/ee290aSp994_1/tsld009.htm
http://www-cad.eecs.berkeley.edu/~newton/Classes/EE290sp99/lectures/ee290aSp994_1/tsld009.htm
http://www-cad.eecs.berkeley.edu/~newton/Classes/EE290sp99/lectures/ee290aSp994_1/tsld009.htm

Appendix 1. Server Application, Linear Model, Effort Corrected

2a excluded

Table 33: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 50.0 50.0 80.0 80.0
 - - - -
 0.0 0.0 18.5 18.5
 44.2 44.2 53.6 53.6
 0.0 0.0 0.0 0.0
 17.8 17.8 14.7 14.7
 136.0 136.0 91.9 91.9
 0.0 0.0 0.0 0.0

1W 2W
Value 10.5 10.5

189.3 189.3

1b

2b

3b

4b

5b

6b

7b

8b

Table 34: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

 0 0 23.9910 39.0964 0 0 10.5
 12.2078 17.7958 17.0091 18.6141 0.1166 5.8551 11.9

1W

2W

(continues on next page)

(continuation of Appendix 1)

3a excluded

Table 35: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0
 9.9 9.9 9.9 9.9
 - - - -
 69.9 69.9 71.8 71.8
 0.0 0.0 0.0 0.0
 5.6 5.6 6.8 6.8
 115.3 115.3 99.6 99.6
 0.0 0.0 0.0 0.0

1W 2W
Value 3.0 3.0

26.9 26.9

1b

2b

3b

4b

5b

6b

7b

8b

Table 36: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

 0 12.1285 0 6.0454 0 0 3.0
 0.5212 9.3372 0.3028 7.9622 0.6475 3.1653 3.7

1W

2W

(continues on next page)

(continuation of Appendix 1)

4a excluded

Table 37: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 13.7 13.7
 4.5 4.5 6.4 6.4
 66.6 66.6 28.0 28.0
 - - - -
 0.0 0.0 0.0 0.0
 0.0 0.0 4.5 4.5
 233.7 233.7 211.2 211.2
 0.0 0.0 0.0 0.0

1W 2W
Value 12.3 12.3

346.7 346.7

1b

2b

3b

4b

5b

6b

7b

8b

Table 38: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

 0 0.5536 44.4319 0 28.8076 0 12.3
 18.8191 12.9658 31.6612 2.9495 23.1237 3.4605 15.5

1W

2W

(continues on next page)

(continuation of Appendix 1)

6a excluded

Table 39: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0
 9.1 9.1 9.4 9.4
 20.3 20.3 19.4 19.4
 57.5 57.5 68.8 68.8
 0.0 0.0 0.0 0.0
 - - - -
 147.9 147.9 121.1 121.1
 0.0 0.0 0.0 0.0

1W 2W
Value 3.8 3.8

33.9 33.9

1b

2b

3b

4b

5b

6b

7b

8b

Table 40: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

 0 11.4987 11.4950 0 0 0 3.8
 3.4130 10.0567 7.6322 0.0908 4.9052 2.8751 4.8

1W

2W

(continues on next page)

(continuation of Appendix 1)

7a excluded

Table 41: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0
 11.5 11.5 11.3 11.3
 19.1 19.1 3.7 3.7
 71.9 71.9 90.0 90.0
 0.0 0.0 0.0 0.0
 7.3 7.3 10.8 10.8
 - - - -
 0.0 0.0 0.0 0.0

1W 2W
Value 5.3 5.3

104.0 104.0

1b

2b

3b

4b

5b

6b

7b

8b

Table 42: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

 0 1.0558 0 0 0 30.7574 5.3
 8.1137 3.2407 10.0736 6.0931 1.3972 20.1782 8.1

1W

2W

Appendix 2. Server Application, Linear Model, Effort Not Corrected

2a excluded

Table 43: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 16.9 16.9 44.1 44.1
 - - - -
 0.0 0.0 35.3 35.3
 45.7 45.7 58.0 58.0
 0.0 0.0 0.0 0.0
 19.7 19.7 13.8 13.8
 143.4 143.4 88.0 88.0
 0.0 0.0 0.0 0.0

1W 2W
Value 14.4 14.4

406.4 406.4

1b

2b

3b

4b

5b

6b

7b

8b

Table 44: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

0 0 31.0037 55.6449 0 0 14.4
19.0445 21.0958 26.5347 29.0385 0.1819 9.1342 17.5

1W

2W

(continues on next page)

(continuation of Appendix 2)

3a excluded

Table 45: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0
 9.9 9.9 8.0 8.0
 - - - -
 69.7 69.7 76.8 76.8
 0.0 0.0 0.0 0.0
 5.6 5.6 13.1 13.1
 115.3 115.3 55.1 55.1
 0.0 0.0 0.0 0.0

1W 2W
Value 8.9 8.9

203.9 203.9

1b

2b

3b

4b

5b

6b

7b

8b

Table 46: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

 0 47.5608 0 6.0454 0 0 8.9
 4.5768 22.7767 2.9716 23.2101 1.8850 11.5228 11.2

1W

2W

(continues on next page)

(continuation of Appendix 2)

4a excluded

Table 47: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0
 0.0 0.0 5.3 5.3
 71.7 71.7 40.9 40.9
 - - - -
 0.0 0.0 0.0 0.0
 0.0 0.0 6.6 6.6
 253.6 253.6 185.8 185.8
 0.0 0.0 0.0 0.0

1W 2W
Value 17.1 17.1

534.6 534.6

1b

2b

3b

4b

5b

6b

7b

8b

Table 48: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

0 2.5554 63.4225 24.0871 12.4186 0 17.1
14.2411 23.0068 39.9748 13.1684 23.8792 11.5800 21.0

1W

2W

(continues on next page)

(continuation of Appendix 2)

6a excluded

Table 49: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0
 9.1 9.1 7.1 7.1
 20.3 20.3 39.4 39.4
 57.5 57.5 70.6 70.6
 0.0 0.0 0.0 0.0
 - - - -
 147.9 147.9 95.6 95.6
 0.0 0.0 0.0 0.0

1W 2W
Value 9.7 9.7

221.8 221.8

1b

2b

3b

4b

5b

6b

7b

8b

Table 50: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

 0 46.7320 11.4950 0 0 0 9.7
 10.8476 23.8141 18.9364 7.8758 9.7437 11.4112 13.8

1W

2W

(continues on next page)

(continuation of Appendix 2)

7a excluded

Table 51: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0
 11.5 11.5 8.6 8.6
 19.1 19.1 16.6 16.6
 71.9 71.9 85.3 85.3
 0.0 0.0 0.0 0.0
 7.3 7.3 12.4 12.4
 - - - -
 0.0 0.0 0.0 0.0

1W 2W
Value 10.6 10.6

1b

2b

3b

4b

5b

6b

7b

8b

215.0 215.0

Table 52: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

 0 32.9891 0 0 0 30.7574 10.6
 12.7115 17.6006 1.4565 16.7620 1.9356 23.0556 12.3

1W

2W

Appendix 3. Server Application, Non-Linear Model, Effort Corrected

2a excluded

Table 53: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 8000 5000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 1.6 1.6 1.8 1.8
 - - - -
 4.3 4.3 4.2 4.2
 0.8 0.8 3.6 3.6
 1.3 1.3 1.5 1.5
 2.2 2.2 2.2 2.2
 8.9 8.9 8.5 8.5
 0.0 0.0 0.0 0.0

1W 2W
Value 16.6 16.6

559.4 559.4

1b

2b

3b

4b

5b

6b

7b

8b

Table 54: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

 (strat. 6) 0 0 61.7215 37.8596 0 0 16.6
 24.9536 14.8073 37.2677 35.1665 4.8693 10.2676 21.2

1W

2W

(continues on next page)

(continuation of Appendix 3)

3a excluded

Table 55: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 10000 5000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 -0.3 -0.3 -0.4 -0.4
 1.5 1.5 1.6 1.6
 - - - -
 4.2 4.2 4.2 4.2
 0.2 0.2 0.2 0.2
 2.2 2.2 2.1 2.1
 8.5 8.5 8.2 8.2
 0.0 0.0 0.0 0.0

1W 2W
Value 9.0 9.0

232.7 232.7

1b

2b

3b

4b

5b

6b

7b

8b

Table 56: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

 0 3.5008 0 50.7840 0 0 9.0
 4.2877 19.3218 11.3640 26.2681 2.3702 13.3980 12.8

1W

2W

(continues on next page)

(continuation of Appendix 3)

4a excluded

Table 57: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 10000 5000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 -0.1 -0.1 0.2 0.2
 1.5 1.5 1.5 1.5
 4.3 4.3 4.2 4.2
 - - - -
 0.3 0.3 0.5 0.5
 2.1 2.1 2.2 2.2
 8.9 8.9 8.7 8.7
 0.0 0.0 0.0 0.0

1W 2W
Value 10.4 10.4

344.3 344.3

1b

2b

3b

4b

5b

6b

7b

8b

Table 58: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

 0 11.1007 51.2142 0 0 0 10.4
 6.9205 15.7558 36.9341 1.8874 16.8036 10.9253 14.9

1W

2W

(continues on next page)

(continuation of Appendix 3)

6a excluded

Table 59: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 8000 5000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 -0.9 -0.9 -1.0 -1.0
 1.7 1.7 1.6 1.6
 3.5 3.5 3.9 3.9
 4.3 4.3 4.2 4.2
 0.5 0.5 0.6 0.6
 - - - -
 8.7 8.7 8.4 8.4
 0.0 0.0 0.0 0.0

1W 2W
Value 14.2 14.2

459.3 459.3

1b

2b

3b

4b

5b

6b

7b

8b

Table 60: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

0 40.0327 0 0 45.2216 0 14.2
10.2616 21.1635 12.1453 4.6118 42.6441 14.6751 17.6

1W

2W

(continues on next page)

(continuation of Appendix 3)

7a excluded

Table 61: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 10000 5000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 -1.0 -1.0 -1.0 -1.0
 1.6 1.6 1.6 1.6
 3.6 3.6 3.2 3.2
 3.9 3.9 4.2 4.2
 1.2 1.2 1.2 1.2
 2.0 2.0 2.1 2.1
 - - - -
 0.0 0.0 0.0 0.0

1W 2W
11.3 11.3

708.6 708.6

1b

2b

3b

4b

5b

6b

7b

8b

Value

Table 62: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

 0 0 0 0 67.7632 11.3
 6.1765 2.9878 12.8720 9.2243 1.7786 62.8525 16.0

1W 0

2W

Appendix 4. Server Application, Non-Linear Model, Effort Not Corrected

2a excluded

Table 63: The values of the parameters (coefficients).

Parameter Run I Run IV Run II Run III

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 8000 8000 5000 5000

Strategy 6 7 6
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 1.6
 -
 4.0 4.0 4.2 4.2
 3.4 3.4 3.7

1.0 1.3 1.3
 2.3 2.3 2.2 2.2
 8.8 8.8 8.4 8.4

0.0 0.0 0.0 0.0

1W 2W

18.7 753.0 753.0

7

1b 1.2 1.2 1.6

2b - - -

3b

4b 3.7

5b 1.0

6b

7b

8b

Value 18.7

1A 2A 3A 4A 5A 6A

Table 64: The percentile error distribution among the components.

F Mean
error

0 0 53.1194 59.3000 0 0 18.7
 14.4666 41.6121 39.7302 13.2012 23.8

1W (strat. 6)

2W 28.2105 5.3180

(continues on next page)

(continuation of Appendix 4)

3a excluded

Run I Run III

Table 65: The values of the parameters (coefficients).

Parameter Run II Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 10000 10000 5000 5000

Strategy 6 7 6
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 -0.4 -0.4
 1.5 1.5

- - - -
 4.2 4.2 4.2 4.2
 0.2 0.2
 2.2 2.2 2.2 2.2
 8.5 8.5 7.8 7.8

0.0 0.0 0.0 0.0

1W 2W

Value 14.5 14.5

502.9 502.9

7

1b -0.3 -0.3

2b 1.6 1.6

3b

4b

5b 0.2 0.2

6b

7b

8b

1A 2A 3A 4A 5A 6A

Table 66: The percentile error distribution among the components.

F Mean
error

 0 0 50.7872 0 0 14.5
0.8828 27.3659 6.5020 39.9497 2.4157 24.9722

1W 36.2030

2W 17.0

(continues on next page)

(continuation of Appendix 4)

Run I Run IV

4a excluded

Table 67: The values of the parameters (coefficients).

Parameter Run II Run III

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 10000 10000 5000 5000

Strategy 6 7 6
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 0.0
 1.5

4.3 4.3 4.2
 -

0.2 0.2 2.2 2.2
 2.1 2.1 0.3 0.3
 8.9 8.9 8.5 8.5
 0.0 0.0 0.0 0.0

1W 2W
Value 16.2 16.2

563.9 563.9

7

1b -0.2 -0.2 0.0

2b 1.5 1.5 1.5

3b 4.2

4b - - -

5b

6b

7b

8b

1A 2A 3A 4A 5A 6A

Table 68: The percentile error distribution among the components.

F Mean
error

 0 51.2230 0 0 0 16.2
0.3963 23.3466 45.0318 8.0426 17.0805 21.3045

1W 46.1980

2W 19.2

(continues on next page)

(continuation of Appendix 4)

Run I Run III

6a excluded

Table 69: The values of the parameters (coefficients).

Parameter Run II Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 8000 8000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 -1.0 -1.0
 1.6
 3.5 3.5 4.0
 4.2

0.4 0.4 0.5 0.5
 - - -
 8.7 8.7 8.1 8.1
 0.0 0.0 0.0 0.0

1W 2W
Value 21.6 21.6

754.4 754.4

1b -0.7 -0.7

2b 1.7 1.7 1.6

3b 4.0

4b 4.3 4.3 4.2

5b

6b -

7b

8b

Table 70: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

0 0 0 45.2537 0 21.6
17.8304 29.1796 20.7801 4.5366 46.8596 26.6272 24.3

1W 84.2455

2W

(continues on next page)

(continuation of Appendix 4)

7a excluded

Table 71: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 8000 8000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 -0.2 -0.2 -0.7 -0.7
 1.6 1.6 1.6 1.6

1b

2b

3b 3.6 3.6 3.4 3.4
 4.0 4.0 4.2 4.2

4b

5b 0.2 0.2 0.8 0.8
 2.0 2.0 2.1 2.1
 - - - -

0.0 0.0 0.0 0.0

6b

7b

8b

1W 2W
Value 14.8 14.8 766.7 766.7

Table 72: The percentile error distribution among the components.

F 1A 2A 3A 4A 5A 6A Mean
error

0 19.6070 0 0 0 69.0231
 10.3555 9.6516 6.1698 15.1335 64.2596 17.9

1W 14.8

2W 1.8709

Appendix 5. Client Application, Linear Model, Effort Corrected

Run III

 excluded

Table 73: The values of the parameters (coefficients).

Parameter Run I Run II Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0
 0.0

- -
 202.5 202.5 229.7

3a

7

1b 0.0 0.0

2b 0.0 0.0 0.0

3b - -

4b 229.7

5b 10.5 10.5 1.5 1.5
 31.2 31.2 28.0
 0.0 0.0 0.0 0.0
 602.6 602.6 535.2 535.2

6b 28.0

7b

8b

1W 2W
Value 8.1 8.1 133.4 133.4

Table 74: The percentile error distribution among the components.

F 1B 2B 3B 4B 5B 6B Mean
error

 0 0 19.3675 0 29.2722 0 8.1
 5.7415 2.7614 15.8516 7.1404 16.8566 13.1696 10.3

(continues on next page)

1W

2W

(continuation of Appendix 5)

 excluded

Table 75: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0
 0.0
 65.9
 - - -

4a

1b

2b 0.0 0.0 0.0

3b 107.5 107.5 65.9

4b -

5b 0.0 0.0 37.8 7.8
 24.4 24.4 7.8 37.8
 382.5 382.5 216.5 216.5
 0.0 0.0 0.0 0.0

6b

7b

8b

1W 2W
Value 21.8 21.8 991.5 991.5

Table 76: The percentile error distribution among the components.

F 1B 2B 3B 4B 5B 6B Mean
error

0 0 15.6191 20.0030 95.2935 0 21.8
26.8500 27.9962 33.7914 50.7461 26.5154 28.5

(continues on next page)

1W

2W 4.9170

(continuation of Appendix 5)

 excluded

Table 77: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0
 0.0 0.0
 132.3 132.3
 239.9 239.9 228.9 228.9

5a

1b

2b 0.0 0.0

3b 141.2 141.2

4b

5b - - - -
 15.7 15.7 15.6 15.6
 0.0 0.0 0.0 0.0
 0.0 0.0

6b

7b

8b 0.0 0.0

1W 2W
Value 6.7 6.7 73.6 73.6

Table 78: The percentile error distribution among the components.

F 1B 2B 3B 4B 5B 6B Mean
error

 0 0 8.0245 17.5600 14.3262 0
 4.3136 11.9359 12.3916 8.9702 5.5946 7.9

(continues on next page)

1W 6.7

2W 3.9365

(continuation of Appendix 5)

 excluded

Table 79: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0
 0.0 0.0
 148.6 148.6
 228.7 228.7 263.0 263.0

6a

1b

2b 0.0 0.0

3b 127.7 127.7

4b

5b 12.6 12.6 4.7 4.7
 - - - -
 12.2 12.2 0.0 0.0
 0.0 0.0

6b

7b

8b 0.0 0.0

1W 2W
Value 8.5 8.5 154.4 154.4

Table 80: The percentile error distribution among the components.

F 1B 2B 3B 4B 5B 6B Mean
error

 24.5228 0 26.4422 0 0 0 8.5
 19.7720 4.8671 16.9280 13.5010 3.5193 5.5466 10.7

1W

2W

Appendix 6. Client Application, Linear Model, Effort Not Corrected

3a excluded

Table 81: The values of the parameters (coefficients).

Run II Run III Parameter Run I Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0
 0.0 0.0

-
 232.8 232.8 291.3 291.3

12.0 12.0 11.6 11.6
 35.9 35.9 16.6 16.6
 0.0 0.0 0.0 0.0
 0.0 0.0 281.9 281.9

1W 2W
Value 17.3 17.3

564.8 564.8

1b

2b 0.0 0.0

3b - - -

4b

5b

6b

7b

8b

Table 82: The percentile error distribution among the components.

F 1B 2B 3B 4B 5B 6B Mean
error

0 0 19.3685 0 23.8882 60.6757 17.3
20.7163 11.5816 23.3983 4.2251 30.7105 36.2899 21.2

1W

2W

(continues on next page)

(continuation of Appendix 6)

4a excluded

Table 83: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0

 123.5 123.5 9.6 9.6
 - - -
 28.1 28.1 42.4 42.4
 439.8 439.8 53.5 53.5
 0.0 0.0 34.3 34.3
 0.0 0.0 0.0 0.0

Value 38.5 38.5

2180.2 2180.2

1b

2b 0.0 0.0 0.0 0.0

3b

4b -

5b

6b

7b

8b

1W 2W

Table 84: The percentile error distribution among the components.

F 1B 2B 3B 4B 5B 6B Mean
error

0 0 15.6291 20.0070 195.4682 0 21.8
8.5213 45.8583 49.4714 55.9541 57.2388 45.2866 28.5

1W

2W

(continues on next page)

(continuation of Appendix 6)

5a excluded

Table 85: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 N/A N/A
 0.0 0.0 N/A N/A
 162.3 162.3 N/A N/A

275.9 275.9 N/A N/A
- - N/A N/A

 18.1 18.1 N/A N/A
 0.0 0.0 N/A N/A
 0.0 0.0 N/A N/A

1W 2W
Value 16.4 16.4

N/A N/A

1b

2b

3b

4b

5b

6b

7b

8b

1B 2B 3B 4B 5B 6B

Table 86: The percentile error distribution among the components.

F Mean
error

 0 0 8.0378 17.5436 0 16.4
 N/A N/A N/A N/A N/A N/A N/A

1W 72.9846

2W

(continues on next page)

(continuation of Appendix 6)

6a excluded

Table 87: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [0, Inf] [0, Inf] [0, Inf] [0, Inf]

 0.0 0.0 0.0 0.0
 0.0 0.0
 145.3 145.3 121.8 121.8
 268.2 268.2 311.5 311.5

0.0 0.0
 - - - -
 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0

1W 2W
Value 16.5 16.5

421.9 421.9

1b

2b 0.0 0.0

3b

4b

5b 16.3 16.3

6b

7b

8b

Table 88: The percentile error distribution among the components.

F 1B 2B 3B 4B 5B 6B Mean
error

24.2171 0 27.0061 0 47.6242 0 16.5
29.0080 4.6630 20.2671 11.1771 27.5064 19.3837 18.7

1W

2W

Appendix 7. Client Application, Non-Linear Model, Effort Corrected

3a excluded

Table 89: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 8000 5000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 0.1 0.1 0.5 0.5
 0.3 0.3 0.5 0.5
 - - - -
 4.2 4.2 4.1 4.1
 2.7 2.7 2.9 2.9
 2.3 2.3 2.3 2.3
 -1.0 -1.0 -1.0 -1.0
 N/A N/A N/A N/A

1W 2W
Value 36.0 36.0

2457.3 2457.3

1b

2b

3b

4b

5b

6b

7b

8b

Table 90: The percentile error distribution among the components.

F 1B 2B 3B 4B 5B 6B Mean
error

0 0 82.3097 76.8826 0 56.7661 36.0
2.5970 11.2352 82.7005 77.6684 22.9517 34.8172 39.0

1W

2W

(continues on next page)

(continuation of Appendix 7)

4a excluded

Table 91: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 8000 5000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 0.5 0.5 0.8 0.8
 0.3 0.3 0.4 0.4
 0.0 0.0 0.0
 - - -
 3.1 3.1 3.0 3.0
 2.3 2.3 2.3 2.3
 -1.0 -1.0
 - - N/A N/A

1W 2W

Value 41.7 41.7 3007.0

3007.0

1b

2b

3b 0.0

4b -

5b

6b

7b -0.9 -0.9

8b

1B 2B 3B 4B 5B 6B

Table 92: The percentile error distribution among the components.

F Mean
error

0 19.8120 85.8592 55.1893 0 41.7
2.8857 32.3825 85.7485 89.3131 37.1924 16.4916 44.0

1W 89.4836

2W

(continues on next page)

(continuation of Appendix 7)

 excluded 6a

Table 93: The values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 8000 5000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 0.3 0.3 0.6 0.6
 1.1
 3.1 3.1
 4.0 4.0 4.1
 2.9 3.0
 - - -
 -1.0 -1.0 -1.0
 N/A N/A N/A

1W 2W
Value 44.0 44.0

3824.5 3824.5

1b

2b 0.8 0.8 1.1

3b 3.7 3.7

4b 4.1

5b 2.9 3.0

6b -

7b -1.0

8b N/A

Table 94: The percentile error distribution among the components.

F 1B 2B 3B 4B 5B 6B Mean
error

78.2018 97.3049 88.7116 0 0 44.0
73.6407 14.2102 87.8355 11.0418 6.8284 48.5

1W 0

2W 97.1531

Appendix 8. Client Application, Non-Linear Model, Effort Not Corrected

Run IV

3a excluded

Table 95: The values of the parameters (coefficients).

Parameter Run I Run II Run III

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

-0.1 -0.1 0.2 0.2

 0.2 0.4
 - - - -
 4.5 4.5 4.4 4.4
 1.6 1.6 2.8 2.8
 2.4 2.4 2.3 2.3
 -1.0 -1.0 -1.0 -1.0
 N/A N/A N/A N/A

1W 2W
41.8 41.8

3035.9 3035.9

1b

2b 0.2 0.4

3b

4b

5b

6b

7b

8b

Value

1B 2B 3B 4B 5B 6B

Table 96: The percentile error distribution among the components.

F Mean
error

0 0 81.4518 73.7291 0 41.8
14.5527 9.7016 84.6191 33.8364 59.9281 46.7

1W 95.5169

2W 77.5425

(continues on next page)

(continuation of Appendix 8)

4a excluded

Run IV

Table 97: The values of the parameters (coefficients).

Parameter Run I Run II Run III

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 0.2 0.2 0.4 0.4
 0.2 0.3
 0.0 0.0
 - - - -
 3.2 3.2 3.0 3.0
 2.3 2.3 2.2 2.2
 -1.0 -1.0 -1.0 -1.0
 N/A N/A N/A N/A

1W 2W
Value 55.4 55.4

3963.3 3963.3

1b

2b 0.2 0.3

3b 0.0 0.0

4b

5b

6b

7b

8b

Table 98: The percentile error distribution among the components.

F 1B 2B 3B 4B 5B 6B Mean
error

0 19.9997 86.3950 90.0067 136.2008 55.4
25.7546 51.6427 88.5774 50.9314 40.5686 58.2

1W 0

2W 91.4532

(continues on next page)

(continuation of Appendix 8)

5a excluded

Run IV

Table 99: The values of the parameters (coefficients).

Parameter Run I Run II Run III

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

 -0.2 -0.2 N/A N/A
 0.2 0.2 N/A N/A
 2.1 2.1 N/A
 4.5 4.5 N/A N/A
 - - N/A N/A
 2.4 2.4 N/A N/A
 -1.0 -1.0 N/A N/A
 N/A N/A N/A N/A

1W 2W
41.7 41.7

N/A N/A

1b

2b

3b N/A

4b

5b

6b

7b

8b

Value

Table 100: The percentile error distribution among the components.

F 1B 2B 3B 4B 5B 6B Mean
error

 0 0 81.2056 73.3304 0 95.8046 41.7
 N/A N/A N/A N/A N/A N/A N/A

1W

2W

(continues on next page)

(continuation of Appendix 8)

6a excluded

Table 101: Values of the parameters (coefficients).

Parameter Run I Run II Run III Run IV

F 0.8 0.8 0.8 0.8
CR 0.8 0.8 0.8 0.8
NP 30 30 30 30
G 5000 5000 5000 5000

Strategy 6 7 6 7
Range [-1, Inf] [-1, Inf] [-1, Inf] [-1, Inf]

-0.2 -0.2 0.3 0.3

 0.3 0.3 0.7
1b

2b 0.7

3b 4.2 4.2 3.6 3.6
 4.5 4.5

4b 4.4 4.4

5b 2.9 1.8 1.8 2.9
 - - -
 -1.0 -1.0 -1.0
 N/A N/A N/A

6b -

7b -1.0

8b N/A

1W 2W
Value 49.0 49.0

Table 102: The percentile error distribution among the components.

1B 2B 3B 4B 5B 6B

F Mean
error

94.1965 0 97.0863 84.4919 0 18.3093 49.0
82.2240 11.8383 97.2500 86.6185 18.6994 20.8926 52.9

4107.9 4107.9

1W

2W

	THE IMPACT OF ARCHITECTURAL DESIGN ON SOFTWARE DEVELOPMENT
	INTRODUCTION
	RELATED WORK
	SOFTWARE ARCHITECTURE
	Software Architecture in General
	An Example of Software Architecture
	Architectural Styles
	Software Metrics
	Software Metrics in General
	High-Level Design Metrics
	Low-Level Design Metrics

	ARCHITECTURAL DESIGN METRICS SUITE
	Architecture of the System
	The Metrics Suite
	Size
	Coupling
	Cohesion
	Complexity
	Comments on � and

	DATA AND METHODS
	Data Acquisition
	Models for Estimating the Development Effort
	From Models to Objective Functions
	Interpreting the Models

	The Method
	Possibilities of Evolutionary Algorithms
	Evolutionary Algorithms Application Domains
	Differential Evolution Algorithm
	Differential Evolution Schemes

	RESULTS
	The Server
	The Linear Model
	The Non-Linear Model

	The Client
	The Linear Model
	The Non-Linear Model

	SUMMARY AND DISCUSSION
	Summarizing and Discussing Results
	Performance of the Selected Approach
	Suggestions for the Future Work

	REFERENCES

