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The objective of this thesis is to study wavelets and their role in turbulence 
applications. Under scrutiny in the thesis is the intermittency in turbulence models. 
Wavelets are used as a mathematical tool to study the intermittent activities that 
turbulence models produce. 
 
The first section generally introduces wavelets and wavelet transforms as a 
mathematical tool. Moreover, the basic properties of turbulence are discussed and 
classical methods for modeling turbulent flows are explained. Wavelets are 
implemented to model the turbulence as well as to analyze turbulent signals.  
 
The model studied here is the GOY (Gledzer 1973, Ohkitani & Yamada 1989) shell 
model of turbulence, which is a popular model for explaining intermittency based on 
the cascade of kinetic energy. The goal is to introduce better quantification method 
for intermittency obtained in a shell model. Wavelets are localized in both space 
(time) and scale, therefore, they are suitable candidates for the study of  singular 
bursts, that interrupt the calm periods of an energy flow through various scales. The 
study concerns two questions, namely the frequency of the occurrence as well as  the 
intensity of the singular bursts at various Reynolds numbers.  
 
The results gave an insight that singularities become more local as Reynolds number 
increases. The singularities become more local also when the shell number is 
increased at certain Reynolds number. The study revealed that the singular bursts are 
more frequent at Re ~ 107 than other cases with lower Re. The intermittency of 
bursts for the cases with Re ~ 106 and Re ~ 105 was similar, but for the case with Re 
~ 104 bursts occured after long waiting time in a different fashion so that it could not 
be scaled with higher Re. 
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Tämän työn tavoitteena on tutustua väreisiin ja niiden käyttöön turbulenttisen 
virtauksen sovelluksissa. Tutkimuksen kohteena tässä työssä on ajoittaisuus 
turbulenssimallin tuottamassa signaalissa. Turbulenttisessa virtauksessa ajoittaisuus 
aiheutuu yksittäisistä turbulenttisista purkauksista hiljaisten jaksojen välillä.  
Matemaattisena menetelmänä signaalissa esiintyvien dissipaatiopiikkien  
tutkimisessa käytetään väreanalyysiä.  
 
Teoriaosassa käsitellään väreitä ja väreanalyysiä sekä perehdytään turbulenssin 
perusominaisuuksiin. Tarkoituksena on myös esitellä ja vertailla erilaisia tapoja 
mallintaa turbulenssia. Teoriaosuudessa tutustutaan väreiden käyttöön turbulenssin 
mallinnuksessa ja analysoinnissa.  
 
Työssä tutkittu turbulenssisovellus on GOY (Gledzer 1973, Ohkitani & Yamada 
1989) shell-malli, jota käytetään yleisesti selittämään turbulenssin ajoittaisuutta.  
Tutkimuksen kohteena on shell-mallin tuottaman dissipaatiosignaalin ajoittaisuus. 
Väreet sopivat tähän tutkimukseen hyvin niiden aika- ja skaala-lokalisaation 
johdosta. Tutkimuksessa keskityttiin erityisesti kahteen kysymykseen: 
dissipaatiopurkausten singulaarisuuteen sekä niiden esiintymistiheyteen. 
 
Tutkimus osoitti, että dissipaatiopurkaukset muuttuvat paikallisemmiksi, kun 
Reynoldsin lukua kasvatetaan. Samoin tapahtuu, jos shell-lukua kasvatetaan tietyllä 
Reynoldsin luvulla. Dissipaatiopurkausten esiintymistiheys on suurin, kun 
Reynoldsin luku on Re ~ 107. Reynoldsin luvuilla Re ~ 106 ja Re ~ 105 purkausten 
esiintymistiheys on samaa luokkaa. Reynoldsin luvulla Re ~ 104 purkausten väli 
kasvaa niin suureksi, että skaalaus korkeampien Reynoldsin luvun tapausten kanssa 
on vaikeaa. 
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NOMENCLATURE 

 

Latin letters 

 

a scale parameter [-] 

a* normalized scale [-] 

A coefficient [-] 

b translation parameter [-] 

f force [N] 

f * normalized frequency [-] 

F force [N] 

g window function [-] 

k wave number [-] 

K reproducing kernel [-] 

l length [m] 

L scale [-] 

m integer part of dilation [-] 

n integer part of transition [-] 

N number of shells [-] 

Nd number of data points in signal [-] 

q scaling factor [-] 

Re Reynolds number [-]  

t time [s] 

T  energy exchange rate [m2/s3]  

s  strain-rate tensor [-]  

u velocity [m/s] 

V  velocity [m/s] 

x x-coordinate [m] 

y y-coordinate [m] 

z z-coordinate [m] 

Z partition function [-] 
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Greek letters 

 

α local scaling exponent [-] 

β integer exponent [-] 

ε  dissipation rate [-] 

η porosity [-] 

ν  dimensionless kinematic viscosity [-]  

τ incoherent stress [-] 

τq partition function scaling exponent [-]  

φ  scaling function [-] 

χ masc function [-]  

ψ  wavelet function [-] 

ω frequency [1/s] 

ω vorticity [-] 

 

Subscripts 

 

a active 

C coherent 

I incoherent 

J index 

l developed stage 

m mean 

n index 

s prestage 

 

Superscripts 

 

^ transform  

¯ mean 

* complex conjugate 

µ index 
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’  nearest neighbor 

”  next nearest neighbor 
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Abbreviations 

 

2-D two dimensional 

3-D three dimensional 

CVS coherent vortex simulation 

CWT continuous wavelet transform 

DNS direct numerical simulation 

DWT discrete wavelet transform 

GOY Gledzer - Ohkitani - Yamada  

LES Large-Eddy Simulations 

MRA multiresolution analysis 

PDF  probability distribution function 

RANS Reynolds Averaged Navier-Stokes  

URANS Unsteady Reynolds Averaged Navier-Stokes 

WT Wavelet transform 
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1 INTRODUCTION 

One of the most interesting problems in fluid engineering is the study of turbulent 

flows. The analysis of turbulent flow field is much more complicated than that of 

laminar flows. All classical spectral methods to handle turbulence rely on the Fourier 

representation. The ordinary Fourier transform maps the function from time space to 

frequency space but the time-localization information of the signal is lost. Turbulent 

flows consist of two parts, coherent structures and incoherent background flow. The 

size and spatial distribution of coherent structures are in key position in 

understanding turbulence but space-scale analysis is not possible with Fourier 

transformation. A more appropriate tool is needed. 

 

Wavelets are the basis functions which are localized in both space and scale and they 

can express the frequency category of a signal at a given time or position. Wavelet 

transform is performed locally on the signal and the formations and collapses of 

special structures in a signal can be identified. The time-frequency localization 

characteristic of wavelet transform enables the detection of the locations of 

singularities and discontinuities in a signal, which is impossible with  ordinary 

Fourier analysis. 

 

The objective of this thesis is to introduce wavelets and wavelet transforms as a 

mathematical tool especially in applications for turbulence. The properties of 

turbulence and turbulence modeling are discussed generally and wavelets are 

proposed to model and analyze turbulence. The application under study in the thesis 

is the intermittency in a turbulence model. Wavelets are used to investigate the 

intermittent activities that the model produces. 

 

The turbulence model studied here is the GOY (Gledzer 1973, Ohkitani & Yamada 

1989) shell model. It is generally used for explaining turbulent intermittency. The 

goal of this work is to quantify the intermittency that the model produces more 

precisely. Simulations are performed with varying Reynolds number, shell number 

and external forcing. Then the properties of singular bursts appeared in energy 
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dissipation signal are studied through different cases using continuous wavelet 

transform. 
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2 WAVELETS AS A MATHEMATICAL TOOL 

2.1 General 

Wavelets and wavelet transforms are relatively recent developments in applied 

mathematics. They are based on group theory and square integrable representations 

and they provide a tool for many engineering fields starting from signal processing, 

image coding and numerical analysis. The advantage of this method compared to 

other existing methods is the possibility to expand a signal, or a field, into both 

space and scale, and perhaps directions. 

 

In many applications there is a signal and one is interested in its frequency content in 

time. With Fourier transform it is possible to get a representation of the frequency 

content of the signal but the time-localization of frequency cannot be read from it. 

Wavelets are localized in space and frequency, therefore wavelet transform analyzes 

a signal locally in space and frequency domains. 

 

The time-frequency localization characteristic of wavelet transform gives a great 

possibility to detect the locations of singularities and discontinuities in a signal, 

which is impossible to achieve in  ordinary Fourier analysis. Wavelets are also better 

suited for de-noising and compressing purposes than other methods. Additional 

interesting applications of wavelets can be found in function approximation, neutral 

network systems, solving partial differential equations and analysis of turbulence in 

fluid mechanics. 

 

2.2 History of wavelets  

From historical point of view, wavelet theory is a new and rapidly evolving 

technique. Its mathematical groundwork was done in the nineteenth century, when 

Joseph Fourier worked out  his theories of frequency analysis. Wavelets were 

developed from that base to provide a tool for time-frequency localization. 
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The first known wavelet is Haar, with a basis laid in 1909 by Alfred Haar. Though 

the wavelet transform itself was first proposed not until in 1980 by Jean Morlet, a 

scientist working on seismic data analysis, and the team of Alex Grossmanns at the 

Marseille Theoretical Physics Center in France. Morlet and Grossmann developed 

the geometrical formalism of the continuous wavelet transform and in 1985 it was 

extended to n dimensions by Y. Meyer, who mainly developed the methods of 

wavelet analysis with his colleagues. 

 

The continuous wavelet transform is a good tool for analyzing the local 

differentiability of a function and for detecting and characterizing its singularities. 

The work on this subject was set in motion by Holschneider, Jaffard, Arnéodo, 

Tchamitchian, Mallat and Hwang in 1988 – 1991. The continuous wavelet transform 

was also found to be useful tool for signal processing, especially with the skeleton 

technique. The study of this area was started by Escudié, Torresani, Tchamitchian 

and Delprat in 1989 – 1991.  

 

The discrete wavelet transform was created by Meyer, Grossmann and Daubechies 

in 1986. They selected a discrete subset, “a wavelet frame”, of the continuous 

wavelet space so that it constitutes a quasi-orthogonal complete set. In addition to 

this Grossmann and Morlet had earlier discovered that it is possible to recompute the 

whole set of the continuous wavelet coefficients from a discrete subset of the 

wavelet coefficients. It can be done using an interpolation formula that is based on 

the reproducing kernel property of the continuous wavelet transform.   

 

In 1986 Meyer was trying to prove that there could not be a true orthogonal basis 

constructed with regular wavelets and therefore he was supprised to find such an 

orthogonal basis built from a regular wavelet. In collaboration with  his student 

Lemarié he then extended it to the n-dimensional case. In 1987 Meyer and Mallat 

proposed the concept of multiresolution analysis which gives a general method for 

building orthogonal wavelet bases and leads to the implementation of fast wavelet 

algorithms. 
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Since nineties the wavelet domain has been growing rapidly, because of the great 

variety of possible applications. Already wavelets have been succesfully used for 

example  in signal processing, image coding and numerical analysis and further 

development is being done all the time. The majour work with wavelets on a field of 

turbulence has been done in recent years by Marie Farge. [1, 2] 

 

2.3 Wavelet transform compared with Fourier Transform 

2.3.1 The standard Fourier Transform 

The standard Fourier transform is defined using the continuous integration of the 

product of a function f(t) by the trigonometric functions and it can be written as 

 

 ∫
+∞

∞−

−= dtetff tiω

π
ω )(

2
1)(ˆ ,  (1) 

 

where ω is frequency and t is time. 

 

Fourier transform maps a function from time domain to frequency domain. Any 

function can be decomposed into a linear combination of Fourier vectors defined by 

their Fourier coefficients )(ˆ ωf . However for trigonometric functions it is 

characteristic to oscillate forever, so the information of f(t) is completely delocalized 

among the spectral coefficients )(ˆ ωf . Standard Fourier transform does not therefore 

provide any information of time-localization but it is an appropriate tool for 

frequency analysis and when studying harmonic or stationary signals or when there 

is no need for local information. [1, 2, 3] 

 

2.3.2 Windowed Fourier transform 

Often there is non-stationary or transitory characteristics, such as abrupt changes or 

beginnings and endings of events, in the signal. With the ordinary Fourier transform 

it is not possible to analyze when the singular event occurred. Using windowed 
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Fourier transform some degree of time-localization can be achieved. The windowed 

Fourier transform is defined by 

 

 ∫
+∞

∞−

−−= dtettgtftf tiωω )()(),(ˆ
0w ,  (2) 

 

where g(t-t0) represents window function. 

 

The function f(t) is multiplied by the window function g(t-t0) to cut off a well-

localized slice of f, like shown in figure 1.  

                                   

                

                            

                          

               
              

                

Figure 1. The windowed Fourier transform. [1] 

 

The window function is then shifted along the time axis (by changing t0) and the 

Fourier transform is performed to get a description of  f in the time-frequency plane. 

 

Though this method is a standard technique, it has its disadvantages. Namely the 

size of the time window, once chosen, can not be changed during the analysis. This 

means that the window is same for all frequencies. If the window could be varied 

during the process, it would give a more flexible approach. For this need are the 

wavelets good answer. [1, 2, 3] 

 

2.3.3 Wavelet transform 

Wavelet transform can be continuous or discrete. Continuous wavelet transform 

(CWT) of a function  f is defined as 

1
 f(t)g(t-t0) 

t

g(t-t0) 

 f(t)

t0 
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 ∫
+∞

∞−

−
= )()(1),(ˆ

a
bttf

a
baT ψ dt,  (3) 

 

where a is scale parameter, b is translation parameter and ψ is wavelet function. 

 

In continuous wavelet transform the dilation and translation parameters a and b vary 

continuously. Restricting a and b to only discrete values of 

 

 maa 0=      (4) 

 manbb 00= ,   (5) 

 

where m, n Ζ∈  and a0 > 1 and b0 > 0 are fixed,  we get the discrete wavelet 

transform (DWT), which can be written as 

 

 ∫−= )()(ˆ 2/
0, tfafT m

nm )( 00 nbta m −−ψ dt.  (6) 

 

A family of wavelets is defined as 

 

 )(1)(,

a
bt

a
tba −
= ψψ .  (7) 

 

The function ψ  is sometimes called “mother wavelet”, which is dilated or 

contracted by a and translated by b to generate a family of wavelets, ba,ψ . Large 

values of the scaling parameter a mean large scale and they correspond to small 

frequency ranges, while small values of parameter a correspond to high frequencies 

and very fine scales. By changing parameter b wavelet function can be  translated 

along the time axis: Each )(, tbaψ is localized around t = b. An example of dilating 

and translating of Meyer wavelet is shown in figure 2. 
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Figure 2. (a) Translation of Meyer wavelet with b = 0 (dash line) and b = 4 (solid line). (b) Dilation 

of Meyer function with a = 1 (solid line) and a = 4 (dash line).  

 

Wavelet transform provides a time-frequency description of function f as did the 

windowed Fourier transform. A difference is in the shapes of the analyzing functions 

g and  ψ . They are both shifted along the time axis but all the functions g have the 

same time-width while functions ψ  have widths adapted to their frequency. At high 

frequencies ba,ψ are very narrow and at low frequencies they are much broader. This 

is why the wavelet transform gives a more flexible approach than windowed Fourier 

transform. With wavelet transform we can better zoom in on very short-lived high-

frequency phenomena, like transients in signals or singularities in functions. 

Wavelets are mathematical microscopes that are able to magnify a given part of a 

function with a certain factor represented by a value of scale parameter. This 

magnification is associated with the extraction of the information at a certain scale 

hidden in a local area of the analyzed function. 

 

In multiresolution analysis we need another function in addition to the analyzing 

wavelet,  which is so called scaling function φ . A shifted and dilated (contracted) 

scale function is obtained as 

 

 φ a,b )(1)(
a

bx
a

x −
= φ .  (8) 
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Similar to wavelets, the scale parameter a and the translation parameter b can be 

expressed as maa 0=  and manbb 00=  in the discrete scale function analysis. Usually 

the values a0 = 2 and b0 = 1 are used. The difference between wavelet and scaling 

function is that while wavelet function has zero mean 

 

 ∫
+∞

∞−

= 0)( dxxψ ,  (9) 

 

the integral of scale function over the entire domain of x is unity 

 

 ∫
+∞

∞−

= 1)( dxxφ .  (10) 

 

Equation (10) stands for scale functions at a = 1, which are in most of analysis used. 

Equation (9) is valid for all scales and wavelets are usually used in higher 

resolutions.   

 

An example of a wavelet with a scaling function is Meyer wavelet. The wavelet and 

the scaling function are represented in figure 3.  

 

 

Figure 3. (a) Meyer wavelet  and  (b) Meyer scaling function. 

 

It should be mentioned here that every wavelet does not have a scaling function. One 

such wavelet is the Mexican hat wavelet 
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 224
1 2

)1(
3

2)(
x

exx
−−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= πψ . (11) 

 

Wavelets with scaling functions are used in the analysis of functions with non-zero 

mean values. [1, 2, 3] 

 

2.4 Features of wavelets 

2.4.1 Admissibility and similarity 

First demand for a function to be called a wavelet is admissibility. It means that the 

average of a wavelet, the analyzing function, should be zero (equation 9). Also all 

the functions of the wavelet family, obtained by translation and dilation of the 

“mother function”, should be mutually similar. That means they have to be scale 

covariant with one another and should have a constant number of oscillations.  

 

2.4.2 Regularity and invertibility 

Wavelets should be sufficiently regular and they should be concentrated on some 

finite spatial domain. So they should be well localized on both sides of the Fourier 

transform. Another demand for wavelets is invertibility. It means that it should be 

possible to recover the original signal from its wavelet coefficients by a 

reconstruction formula. 

 

2.4.3 Cancellations 

Cancellations mean some vanishing high-order moments. This requirement is useful 

in some applications like turbulent signal analysis. It eliminates the most regular part 

of the signal and facilitates the study of high-order fluctuations and singularities in 

some high-order derivatives. [2, 3] 
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2.5 Choice of the wavelet and wavelet transform 

Wavelets can be either real- or complex-valued functions. Most wavelets, for 

example Haar, Daubechies, Biorthogonal, Meyer, Gaussian, Marr (Mexican hat) and 

real Morlet wavelet are real-valued wavelets. However complex-valued wavelets 

have some advantages that real-valued wavelets do not have. Their phase shift 

between real and imaginary parts can prevent fake oscillations in wavelet transform 

coefficients and therefore they are preferred for transformation purposes.  

 

In fluid mechanics and turbulence applications mostly used wavelet is the Complex 

Morlet wavelet 

 

 a
bti

a
bt

ee
a

bt )(5
2

)(

4/1
2

2

1)(
−⋅−−

=
−

π
ψ . (12) 

 

Figure 4 shows the real and imaginary parts of the Morlet wavelet. 

 

 

Figure 4. Morlet wavelet, solid line for real and dash line for imaginary part. 

 

Other complex valued wavelets are complex-Gaussian, Shannon and mostly in 

quantum mechanics used Paul wavelet. 

 

The qualities of wavelets vary according to several other criteria, such as symmetry, 

the number of vanishing moments, the regularity and the existence of scaling 

function. The symmetry of the wavelet is useful characteristic in avoiding dephasing 
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in image processing. The number of vanishing moments for wavelet or for scaling 

function is significant in compression purposes. The regularity of the wavelet has an 

effect on the smoothness of the reconstructed signal or image. For multiresolution 

analysis the best choice is a wavelet, which is associated with a scaling function, 

because the scaling function can see mean values, while the wavelets only see the 

fluctuations. 

 

Wavelets and scaling functions are originally one-dimensional. For higher-

dimensional problems we have to build a wavelet family using tensor products of 

wavelets and scaling functions. For instance two-dimensional scaling function and 

its associated wavelets can be defined as 

 

 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⋅=
⋅=
⋅=
⋅=

)()(),(
)()(),(
)()(),(

)()(),(

3

2

1

yxyx
xyyx
yxyx

yxyx

ψψψ
ψφψ
ψφψ
φφφ

 (13) 

 

and in three dimensional case  

 

 

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

⋅⋅=
⋅⋅=
⋅⋅=
⋅⋅=
⋅⋅=
⋅⋅=
⋅⋅=
⋅⋅=

)()()(),,(
)()()(),,(
)()()(),,(
)()()(),,(
)()()(),,(
)()()(),,(
)()()(),,(

)()()(),,(

7

6

5

4

3

2

1

zyxzyx
zyxzyx
zyxzyx
zyxzyx
zyxzyx
zyxzyx
zyxzyx

zyxzyx

ψψψψ
φψψψ
ψφψψ
ψψφψ
φφψψ
φψφψ
ψφφψ
φφφφ

 (14) 

 

The choice of the transform depends on what kind of information we want to extract 

from the signal. The continuous wavelet transform is better suited for analysis of 

signals or fields, because due to its redundancy it shows the information content of 

the signal better than discrete wavelet transform. The discrete wavelet transform  is a 

good tool for signal processing (denoising and compression) and for modeling 
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purposes, because of the orthogonality property and because it decomposes the 

signal into a minimal number of coefficients. [3] 
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3 TURBULENCE 

3.1 General 

Turbulence is fluctuating and disorderly motion. It consists of random pressure and 

velocity fluctuations and its nature is very complex. Most flows in nature and 

engineering applications are turbulent. Thus it is of interest in many fields of 

research: in dealing with atmospheric jet streams, in studying the photospheres of the 

sun, in calculating pipe flow, just to mention some.  

 

Turbulent flows have been studied for more than a century and a lot is already 

known about turbulence and its structure, both physically and mathematically. 

However unpredictability and randomness of turbulence has made it difficult to fully 

understand, even with such powerful tools such as statistical mechanics. And the fact 

is that no completely formal theory of turbulence exists. This means that because of 

"non-deterministic" fluctuations in flow properties one cannot precisely predict the 

value of a flow property at a future instant by any known means, since the precise 

relationship is not known.  

 

It has been observed that turbulent flows contain visible patterns, called coherent 

vortices,  and a random part, the incoherent background flow. In standard analysis of 

turbulence it is common to divide the flow into two parts: time-averaged part and the 

fluctuation part.  

 

There are two ways to handle turbulent flows: Statistical study of the properties of 

the fluctuations and semi-empirical  modeling of turbulent mean quantities. The 

equations of motion have been analyzed in great detail, but statistical studies of the 

equations lead to a situation with more unknowns than equations. To reduce the 

number of degrees of freedom of the system of equations we can use a turbulence 

model in which the effects of the discarded modes on the retained modes are 

modeled. [2, 4, 5, 6, 7]  
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3.2 Properties of turbulence 

When Reynolds number (Re) increases, laminar flow becomes unstable and 

turbulence occurs. The instabilities are related to the interaction of viscous terms and 

nonlinear inertia terms of the equations of motion. [5, 7] 

 

Although turbulence is said to be irregular and disorderly motion, it has a spatial 

structure and the disorder is not only white noise. The organized structure can be 

characterized as eddies or fluid packets of many size. It is obvious that turbulent 

flows contain both an organized part, coherent vortices, and a random part, the 

incoherent background flow. These incoherent structures are associated with the 

Gaussian part of the flow, while organized patterns are responsible for the non-

Gaussianity of the flow.  

 

Coherent structures in turbulent flow contain most of the energy of the flow. 

Therefore the physics of  turbulence can be related to the interactions between eddies 

of different sizes through a wide range of length scales from micrometer to meter. 

The role of large eddies is to transfer the kinetic energy to the smaller eddies while 

the smallest eddies  dissipate the energy. [3, 4, 6]  

 

Intermittency, which means  the percentage of time the flow is turbulent, is an 

important property of turbulence. In an intermittent flow field rather calm periods 

are interrupted irregularly by strong turbulent bursts either in space or in time. 

Energy intermittency in turbulent flows is caused by the regeneration cycle of  

eddies. This self-sustaining characteristic is also a property of turbulent flow. It 

means that turbulence can maintain itself by producing new eddies to replace those 

lost by viscous dissipation. [6, 8, 9] 

 

3.3 Modeling of turbulence 

Computing turbulent flow is a challenge for scientific computing. Most of the 

turbulent flow theory is based on Navier-Stokes equations, which are derived from 
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the momentum equations. Navier-Stokes equations can be written in velocity 

vorticity formulation as 

 

 νωω −⋅∇+∂ )( Vt F×∇=∇ ω2 , (15) 

 

where V is velocity field, ω is vorticity (ω = V×∇ ), ν  is kinematic viscosity and F 

is external force. The difficulty in solving the Navier-Stokes equations is in the non-

linear convection term )( V⋅∇ ω .  [4, 10] 

 

3.3.1 Fully deterministic method 

Fully deterministic simulations resolve all scales of motion and compute them 

deterministically. This is performed in direct numerical simulation (DNS). In DNS 

the number of degrees of freedom to be computed is highly dependent of the 

Reynolds number of the flow. The computation is limited to low Reynolds numbers 

and simple flow geometries because of the excessive amount of computing memory 

required. [4, 10] 

 

3.3.2 Fully statistical models 

It is possible to handle higher Reynolds number flows if we use a model to reduce 

the number of degrees of freedom to be computed. Only the steady mean flow is 

computed and the effect of the fluctuations on the mean is statistically modeled with 

a model based on measurements. The most popular method for computing turbulent 

flows is Reynolds Averaged Navier-Stokes (RANS) equations  in which the flow 

field (e.g, velocity V) is split into mean V and fluctuations 'V , i.e. 'VVV += . The 

mean value of the velocity can be computed as an ensemble average, time average or 

space average. 

 

The averaging technique has a major role in modeling turbulence. If fluctuations 

whose effect is modeled have a Gaussian distribution, we can handle the non-

linearity of the Navier-Stokes equations. However the classical averaging 
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techniques, which are used in RANS do not guarantee that the fluctuation part is 

really Gaussian. While computing the mean flow, RANS does not consider the 

spatial distribution of coherent vortices.  

 

The standard k-ε model and Reynolds stress model are examples of RANS. Each of 

these models is related to a certain flow configuration and fitted parameters from 

laboratory measurements and they lack universality. 

 

3.3.3 Semi-Deterministic methods 

When some degrees of freedom are deterministically computed and the influence of 

the others is modeled, the method is said to be semi-deterministic. Large-Eddy 

Simulations (LES) and Unsteady Reynolds Averaged Navier-Stokes (URANS) 

equations belong to this category. 

 

In URANS model the time evolution of the mean is computed, while in RANS 

model only a steady mean solution is computed. In LES the separation into 

computed modes and modeled modes is done by means of linear filtering between 

large scale and small scale modes. The small scales are assumed to be less important 

than the large scales. However it has been shown, that coherent vortices are 

multiscale. Thus LES using the Fourier low pass filter to eliminate the small scales, 

eliminates the small scales of the coherent vortices as well. So LES (and URANS) 

models can compute only a smoothed spatial distribution of coherent vortices. 

 

Semi-deterministic methods are a good compromise of two aforementioned 

methods: they provide more physical insight than RANS and more realistic 

Reynolds numbers and more reasonable computational cost than DNS. However 

semi-deterministic methods can be improved by better characterizing the coherent 

structures, which are deterministically computed, and by controlling the Gaussianity 

of the discarded modes, whose effect on the retained modes is modeled. 
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One of these improved semi-deterministic methods is Coherent Vortex Simulation 

(CVS). It uses nonlinear wavelet filtering of the Navier-Stokes equations and is able 

to extract coherent vortices, without any smoothing. Background flow is then left 

free of organized structures and therefore their effect is easier to model. [4] 
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4 TURBULENCE AND WAVELETS 

All classical methods to handle turbulence rely on the Fourier representation, and the 

dissipation term (ν ω2∇ ) of Navier-Stokes equation is optimally represented in 

Fourier space. However the non-linear convection term )( V⋅∇ ω  is very 

complicated in Fourier space. When increasing the Reynolds number of the flow, 

non-linear term comes dominant and the Fourier representation is not any more 

adequate. To solve the non-linear convection term we need a more appropriate tool. 

[2, 11] 

 

Tennekes and Lumley proposed, that turbulent flows could be thought as a 

superposition of Gaussian-shaped wave packets, eddies. Their description of an eddy 

(figure 5(a)) resembles greatly wavelets (figure 5(b)). Marie Farge was inspired by 

Tennekes and Lumley to introduce wavelet transform techiques to analyze, model 

and compute turbulent flows. [7, 11] 

 

            (a)                                                             (b) 

                                                                                              

 

 

 

 

 

 

Figure 5. (a) An eddy, (b) real-valued Morlet wavelet. 

 

4.1 Coherent vortex simulation 

Coherent vortex simulation is a method, that uses wavelet decomposition to compute 

and model turbulent flows. Turbulent flow is separated into coherent and incoherent 

parts using the wavelet coefficients of the vorticity field. The evolution of the 

coherent vortices, which are localized consentrations of vorticity, is computed in a 
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wavelet basis. The incoherent components, which correspond to a homogenous 

random backround flow, are discarded while computing the flow evolution. The 

effect of the incoherent components on the coherent vortices is then modeled 

statistically.  

 

4.1.1 Coherent vortex extraction 

Extraction of coherent vortices in two-dimensional tubulent flow is done by 

developing the vorticity field ω(x,y) = V×∇  into an orthogonal wavelet series from 

the largest scale to the smallest scale. This is done using a two-dimensional 

multiresolution analysis (MRA). Vorticity field becomes 
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where φ  and ψ  are two-dimensional scaling functions and the corresponding 

wavelets respectively. The scaling coefficients, 0,0,00,0,0 ,φωω = , correspond to an 

approximation of ω(x,y) at the largest scale j = 0. The wavelet coefficients 
µµ ψωω

yxx i,ij,i,ij, ,~ =
y

 correspond to the details, that have to be added to approximate 

ω(x,y) from scale j to smaller scale j + 1. ⋅⋅,  denotes here an inner product.  

 

The vorticity field ω is split into two components, coherent vorticity ωC and 

incoherent vorticity ωI, by applying a nonlinear thresholding to the wavelet 

coefficients. The threshold depends on the total enstrophy and the number of degrees 

of freedom. Coherent vorticity ωC is then reconstructed from the wavelet coefficients 

whose modulus is larger than ε by inverse wavelet transform. The remaining weak 

wavelet coefficients are used to reconstruct the coherent vorticity ωI.  

 

The advantage of this method is that coherent vortices, that are extracted by 

retaining only 2% of the N wavelet modes, contain 99,01% of the total enstrophy, 

while the incoherent vorticity corresponds to 98% N modes and contains less than 
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1% of enstrophy. With CVS method it is then possible to reduce drastically the 

number of computed modes and to ensure the Gaussianity of the incoherent modes, 

whose effect is modeled. [4, 12] 

 

4.1.2 Modeling the effect of the incoherent components 

There are two ways to model the incoherent stress τ, which describes the effect of 

the discarded incoherent components on the retained coherent components. It can be 

treated as a weak forcing term, which reinjects a small percentage of the incoherent 

enstrophy lost by the CVS filtering. Other way to model the incoherent stress is to 

solve an linear advection-diffusion equation for the incoherent vorticity ωI. [4]   

 

4.1.3 Wavelet forcing 

Wavelet forcing is a new way of forcing turbulent flows in numerical simulations. 

The role of forcing is to balance dissipation and obtain a statistically stationary state. 

Forcing is currently done in Fourier space, which means that the energy (in 3-D) and 

enstrophy (in 2-D) injected are not localized in physical space. When the forcing is 

performed in wavelet space, it is local in both space and scale. [4, 11] 

 

4.1.4 Complex geometries 

Complex geometries, such as walls, obstacles or containers of different shapes, in 

turbulent flows can be handled by adding penalization method to the CVS method.  

Solid walls or obstacles are modeled as a porous medium, which porosity η is 

tending to zero. The complex geometry is described by a masc function χ, which 

gets a value of 1 inside the solid region and 0 elsewhere. Navier-Stokes equations 

are then solved with an additional penalization term. [4] 

 

4.2 Wavelets as a new diagnosis tool for signals 

Continuous wavelet transform is a sophisticated tool for analyzing signals. It is like a 

mathematical microscope that enables the study of energy density distribution in 
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space-scale plane. One-dimensional signal is visualized in two dimensions, thus it 

makes possible to view the important features at various scales. Different patterns in 

continuous wavelet transform of a signal can be interpreted as the characters of the 

signal. 

  

Figure 6 shows a signal, (a) that is a superposition of waves and (b) the energy 

density distribution of the signal (the modulus of the wavelet coefficients). The scale 

a is arbitrary in figures 6 and 7. Conelike pattern in the middle of the figure 6 (b) is 

caused by a sudden change in the signal. Conelike pattern can be seen in the wavelet 

transform when signal contains a local singularity (figure 6(c) and (d)). Conelike 

structure is pointing towards the point at the border of the half plane where the 

singularity is located. High regularity of the signal is reflected in the wavelet 

transform by a rapid decay of the coefficients. 

 

     (a)                                                           (c) 
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Figure 6. (a) Signal constructed of single frequencies, (b) wavelet transform of the signal (a), 

complex Morlet wavelet, (c) signal that is a set of localized structures, (d) wavelet transform of the 

signal (c), complex Morlet wavelet. Black and white colors represent minimum and maximum 

coefficients and other colors are interpolated. 

a a 
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 Randomly distributed energy density like in figure 7 (a, b) describes Gaussian 

noise. In the figure 7 (c, d) we can see a repeating pattern that looks rougly the same 

on any scale. In that case the signal is called a self-similar signal. 
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Figure 7.  (a) Signal that is mainly noise, (b) wavelet transform of the signal (a), complex Morlet 

wavelet, (c) a self-similar signal (symmetric Cantor curve), (d) wavelet transform of the signal (c), 

complex Gaussian wavelet. Black and white colors represent minimum and maximum coefficients 

and other colors are interpolated. 

 

When analyzing a signal or a field with wavelets, it is important to be aware of the 

fact that the continuous wavelet transform of a random signal can show correlation 

that is in the wavelet transform, but not in the signal itself. This can be checked with 

reproducing kernel, which is defined as 

 

 ∫
+∞

∞−

−= dxCxxllK xlxl 2211

*1
2121 ),,,( ψψψψ . (17) 

a a 
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Reproducing kernel can also be helpful in choosing the appropriate wavelet for a 

given problem.  

 

Another danger in interpreting wavelet coefficients is to connect their strength with 

the strength of the signal while they really correspond to variations in the signal at a 

given scale and position. If there is no oscillation in the signal at a certain scale and 

position, the correspondig coefficients are zero.  [2, 3]  
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5 WAVELET ANALYSIS FOR THE INTERMITTENCY IN 

TURBULENCE MODEL 

Intermittency is an important characteristic of turbulence. The main goal of this 

work is to study the intermittency that a shell model of turbulence produces. The 

model studied here is the GOY shell model (Gledzer 1973, Ohkitani & Yamada 

1989), which is a popular model for explaining turbulent intermittency. This 

intermittency is featured in the signal of energy dissipation rate through all related 

scales (wave numbers). The study will address two questions,  the intensity of 

singular bursts, that interrupt the calm periods in an energy dissipation signal of the 

GOY shell model, and the frequency of occurrence for these singularities under 

certain conditions. Traditional Fourier transform analysis is unable to study each 

individual burst. The current analysis focuses on wavelets which are suitable for 

studying localized phenomena both in physical and scale (frequency) domains.   

 

5.1 Shell model 

5.1.1 Physical aspects 

In turbulent flows, kinetic energy flows from large eddies to small eddies in a 

statistical sense. Eddies are characterized by a velocity scale u and a length scale l. 

The energy cascade is driven by vortex stretching and leads to viscous dissipation 

near the Kolmogorov’s microscale. When a large eddy is in a strain-rate field, it 

undergoes stretching. The same happens with the smaller eddies that the large eddy 

contains. The plane strain field stretches the vortices as sketched in figure 8. 

 

The equations for vorticity are 

 

 ste01 ωω =   )( 01 ωω >  (18) 

 ste−= 02 ωω  )( 01 ωω >  (19) 

 st2cosh2 2
0

2
2

2
1 ωωω =+ , (20) 
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where s is the strain-rate tensor, which is assumed to be constant for all t > 0, and ω1 

= ω2 = ω0 at t = 0. Equation (20) shows that as t increases the amoumt of total 

enstrophy (ω1
2 + ω2

2) increases. Also, one can see that the energy exchange rate T = 

s(u2
2 – u1

2) is positive during stretching. Therefore, the strain-field in a larger scale 

transfers kinetic energy to smaller scales. 

 

                (a) 

 

 

 

 

 

 

 

                (b) 

 

 

 

 

 

 
Figure 8. The vortex-stretching mechanism (a) before stretching, (b) after stretching. [7] 

 

In Fourier space length l is represented by wave number k. If Navier Stokes 

equations are transferred to Fourier space, this wave number will replace the 

position. Wave number is a continuous variable and it is convenient to define some 

‘shells’ that contain a spectrum of wave numbers. Navier Stokes equations are then 

expressed for each shell (in Fourier space) and the model is called a ‘shell model’. 

[7]  

 

+s 

-s

-s 

+s ω1

 larger eddy 
l 

smaller 
eddies 

ω2

ω2

ω1 



33 

 

5.1.2 Description of the model   

Shell model is a class of cascade models, in which the energy transfer is assumed to 

be local in scale. From a statistical point of view, energy is injected at large scales 

and transferred from large scales to small scales and then dissipated into heat. In an 

instantaneous view of turbulence, a temporary energy flux can also be observed from 

smaller to larger scales, so-called backscattering, but the mean transfer is downscale. 

In cascade models turbulent field is characterized as a superposition of waves and 

the energy density is assumed to be distributed in phase space among horizontal 

bands, which correspond to excited wavenumbers. [9] 

 

In shell models the governing equations (typically Navier-Stokes equations) are 

represented on a discrete set of wavenumbers in Fourier space. All Fourier modes 

with wave vectors 1
00 22 +<< nn kkk , are cast into a collective shell variable. Each 

shell is specified by a single wave number kn
nk 20= ,  where n = 1,2,…,N. k0 is a 

constant that represents the smallest wavenumber in the model and N is the total 

number of shells. The wave number k0 is associated with the scale L0 = k0
-1 larger 

than which fluctuations do not exist. The velocity difference over a wavelength kn
-1 

is described by the complex variable un. Alternatively, un can be thought as the 

velocity scale corresponding to the mean energy of the n-th wavenumber kn.  

 

The evolution equations in the GOY shell model are obtained according to four 

criteria: 1) The linear dissipation term is written as ν− kn
2un. 2) The non-linear terms 

for un are given as quadratic combinations of the form knun’un”, n’ and n” 

representing the nearest and next nearest neighbors of the n-th shell. 3) The 

interactions among shells are local in k-space and only the interactions between first 

and second-neighboring shells are considered. 4) The last criteria is the conservation 

of volume in phase space and the conservation of the total energy ∑
n

2
n2

1 u , in 

absence of forcing and damping. With these criteria the evolution equations for the 

GOY model are as follows, 
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where f represents an external forcing term, active only in a few first shells, and 

superscript * means the complex conjugate.  [8, 14, 15, 16] 

 

An important advantage of using shell model is the possibility to reach large 

Reynolds numbers and reproduce the nonlinear dynamics of turbulence at a limited 

computational cost. In direct numerical simulations for three-dimensional turbulence 

the number of degrees of freedom is proportional to Re9/4, whereas for shell models 

it only grows logarithmically in Reynolds. The weakness of the shell model is in 

loosing the information on geometry. The vectorial structure of the Navier-Stokes 

equations is lost and the details of the spatial structure of the flow are ignored. Shell 

models produce only temporal fluctuations in the cascade and ignore spatial 

intermittency, which is a character of real turbulence. In order to study both spatial 

and temporal fluctuations one would need to transform a chain model to a tree 

model. The spatial geometry can be achieved by multiplying the velocity field by a 

wavelet. The model describes the evolution of the wavelet coefficients of a one-

dimensional projection of the velocity field. This tree model is not studied here. [16, 

17] 

 

Despite the lack of geometrical effects, the GOY model is rich in temporal and 

multiscale statistics that possesses many outstanding similarities with real 

turbulence. Better understanding of the intermittency of the GOY model can lead to 

an improved image of the intermittency in real turbulence. [2, 8, 11, 15, 18, 19, 20] 

 

5.2 Results of the GOY model  

The major parameters for the study of the GOY shell model have been chosen as 

follows. For the dimensionless kinematic viscosity, cases with ν  = 10-4, ν  = 10-5, ν  

= 10-6 and ν  = 10-7 have been considered. The resulting Reynolds number is in the 

order of Re ~ ν  –1.  Parameters f0 and k0 have been set to 1 for all the main cases. 
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Information for simulated cases is given in table 1. Hereafter, we make the following 

convention to name different  simulated cases. The name starts with “R” followed by 

the case category given in table 1. The second part of the name starts with “N” 

followed by the number of shells. For example, R1N12 represents the case with Re ~ 

104 using 12 shells.  In addition a few cases have been run using different values of 

f0 to investigate the effects of external forcing. Results are presented for variation of 

nu , dissipation of each shell and the overall dissipation.  

 

Table 1. Basic parameters for studied cases. 

 

 

Note that all variables and parameters are dimensionless in this model. 

 

5.2.1 Variation of characteristic velocities of shells (un ) 

To view the general behavior of the model, variation of |un| versus time is shown in 

Fig. 9 for different values of Re as well as the time evolution of the total energy 

dissipation. In order to reduce overlapping, un time series have been shifted down by 

the value of n/4. The figures show that the fastest variations in un happen in higher 

wave numbers (small-scale shells) whereas very slow variations of un occur within 

lower wave numbers (large-scale shells). Also the absolute values of un are smaller 

in higher wave numbers. Other feature that stands out from the figures is how the 

disturbance in un time series moves among the shells starting from the lower wave 

numbers spreading into the higher ones via a chain reaction. [20]  

 

Case 

category 

 

Reynolds 

number  

(Re) 

Shell 

numbers  

(N) 

1 ~ 104 10, 11, .. , 15 

2 ~ 105 10, 11, .. , 16 

3 ~ 106 10, 11, .. , 18 

4 ~ 107 10, 11, .. , 21 
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Figure 9. Time evolution of energy dissipation rate for cases (a) R1N12, (b) R2N15, (e) R3N18, (f) 

R4N21 and absolute values of un for the corresponding cases (c) R1N12, (d) R2N15, (g) R3N18, (h) 

R4N21. The un-time series (n = 1, 2,.., N) have been shifted down by the value n/4. The shell number 

n grows downwards. 
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5.2.2 Energy dissipation rate 

The energy dissipation is an important quantity demonstrating intermittency in time 

and space. In the GOY shell model we only have time intermittency as spatial 

information are absent. The overall dissipation rate is defined as a summation of 

dissipation rates at different shells as follows:   

 

 ∑
=

=
N

1n

2
n

2
n )()( tukt νε . (22) 

 

The time evolution of energy dissipation for different Re can be observed through 

figures 10(a)-(d). The insets of the figures show the propability density function 

(PDF) of each case. The slope of the PDF characterizes the intermittency of the 

signal. Sharper slope refers to a lower propability of finding large fluctuations in the 

dissipation signal. The values of the slopes in figure 10 are presented in table 2. One 

can see that the propability of finding large fluctuations in the signal is higher for 

larger values of Reynolds numbers, i.e. the larger the Reynolds number the larger the 

degree of intermittency. [2, 8] 

 

Table 2. The values of slopes in insets of figure 10. 

Case Slope 

R1N12 -3.2 

R2N15 -3.1 

R3N17 -2.7 

R4N19 -2.2 
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Figure 10. Time evolution of energy dissipation rate for cases (a) R1N12, (b) R2N15, (c) R3N17, (d) 

R4N19. The values of dissipation are normalized by their mean values. Insets: Probability distribution 

functions (PDF) of the corresponding cases. 

 

Figures 11(a)-(h) represent the energy dissipation at different shells for a variety of 

Reynolds numbers at a certain forcing (f0 = 1). It can be seen that the first shells 

(larger scales) do not dissipate the energy at all. It can also be observed that in a 

certain Re the number of active shells Na remains constant. Further increase in shell 

numbers will not affect the results including total dissipation. This means that for the 

shells n > Na, corresponding dissipation nε  of the shell will remain zero.  

 

In the next section the energy dissipation bursts produced by the GOY shell model 

will be studied. Wavelets, which can be seen as a mathematical microscope, suit 

well for the analysis of singularities because of their localized properties in both 

space (time) and scale. 
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Figure 11. Time evolution of energy dissipation of each shell number n (solid line) and the total 
energy dissipation (dotted line) for cases: (a) R1N11, (b) R1N12, (c) R2N14, (d) R2N15, (e) R3N17, 
(f) R3N18, (g) R4N20, (h) R4N21. 
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5.2.3 Effect of external forcing 

Figure 12 shows the variation in the amplitude of mean energy dissipation when the 

external forcing term f0 is increased from one to ten.  

 

Figure 12. The change in the mean energy dissipation when external force is 1, 2.5, 5 and 10 for 

cases (a) R2N15, (b) R3N18, (c) R4N21. The values of dissipation are normalized by the value of 

mean dissipation at  f0 = 1.  

 

In this figure polynomials represent variation of normalized dissipation rate versus 

f0. As forcing term increases dissipation rate increases sharper for lower Reynolds 

numbers. For instance, when f0 is increased from 1 to 10 the dissipation rate is 

amplified by a factor of 500 for Re ~ 104, 100 for Re ~ 105, 50 for Re ~ 106 and  30 

for Re ~ 107. 

 

5.3 Wavelet analysis of the intermittency in the GOY model 

In the previous section it was shown that the dissipation signal of the shell model is 

intermittent and that the intermittency varies with Reynolds number. Intermittency 

means localized bursts of high frequency activities, therefore, it is a phenomenon 

that is local in both physical and spectral space. An interesting question is whether 

the quality of the singular bursts is different for different cases that were introduced 
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in the previous section. Also the frequency of occurrence for the dissipation peaks in 

the signal will be studied. 

 

First the power spectral density of dissipation signals will be shown, which 

demonstrate the energy spectra of the signals. The Fourier basis is well localized in 

spectral space but totally delocalized in physical space and can not therefore give 

any information of individual singularities. Another tool is needed in order to study 

the character of the singular bursts in the signal. That tool is continuous wavelet 

transform. 

 

To measure the intermittency of the dissipation signal the space-scale information 

contained in the wavelet coefficients of the continuous wavelet transform is utilized. 

The localization property of wavelets in the domain of scale is the answer to the 

question of intensity of the singular bursts and the localization property in time 

(space) can represent the frequency of occurrence for the bursts in the signal. Two 

measures, the local scaling exponent α and  the partition function Z, will be 

introduced in the following subsections for that purpose. The cases that will be 

studied here for intermittency have been chosen consistent to the previous section. 

Reynolds numbers for the cases are Re ~ 104, 105, 106, 107. Shell numbers for each 

Reynolds number have been chosen as described in section 5.2.2 (figure 11). 

 

5.3.1 Fourier transform 

The frequency content of a signal can be analyzed with power spectral density 

(PSD). It describes the distribution (over frequency) of the power contained in a 

signal and it is mathematically related to the correlation sequence by the discrete-

time Fourier transform. PSD is given as power per unit of frequency.  

 

Figure 13 shows the power spectral density of dissipation rate signals of studied 

cases. From the figure it can be seen that the power per unit of frequency increases 

when Reynolds number and shell number are increased. However, PSD fails to 

reveal the information of individual bursts occurring in the original signal. This 
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leads us to implement continuous wavelet transform to study any single burst 

existing in a signal. 

 

 

Figure 13. Power spectral density (PSD) of the dissipation rate for cases  R1N12 (blue), R2N15 

(green),  R3N18 (black) and R4N21 (red).  

 

5.3.2 Continuous wavelet transform 

Wavelet toolbox of MATLAB is used to perform the continuous wavelet transform 

on dissipation signals of different cases. The wavelet used here is complex Morlet 

wavelet. First of all the dynamics of the dissipation signal is studied to realize how it 

is affected by the number of shells N. The plots of the modulus of the wavelet 

coefficients in time-scale plane (figures 14(a)-(d)) show how the behaviour of the 

signal changes, when the number of shells is increased. If the number of shells is too 

low, the behaviour of the dissipation signal is periodic and not intermittent. If the 

number of shells is increased the behaviour will gain randomness and finally 

intermittent. When N is increased even more, the periodic behaviour will vanish and  
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Figure 14. Dissipation rate and its wavelet transform of cases (a) R4N11 (periodic behaviour) (b) 

R4N12 (periodic and random), (c) R4N17 (intermittent and random), (d) R4N20 (intermittent and 

random). Complex Morlet wavelet. Black and white colors represent minimum and maximum 

coefficients and other colors are interpolated. 

a a 

a a 



44 

 

signal will be only random and intermittent, which is characteristic of real 

turbulence. 

 
 

5.3.3 Strength of the singularities 

A very useful property of the wavelet transform is its ability to measure the strength 

of individual singularities in a given signal. A local singularity in a signal produces a 

conelike structure in the wavelet transform pointing towards the point x0, where this 

singularity is  located. The position x0 of a singularity can be found by following the 

position of a wavelet modulus maximum of the wavelet transform | ),(ˆ axT | as the 

scale a → 0+. The wavelet transform modulus for the singularity satisfies 

 

 )(
0

0),(ˆ xAaaxT α≤ , (23) 

 

in the limit a → 0+. α(x0) is the local scaling exponent that describes the strength of 

the singularity located at x0. The exponent α is determined by the slope of 

ln| ),(ˆ
0 axT |  plotted versus lna. [11, 12, 13, 21, 22, 23] 

 

Figure 15(a) shows one dissipation peak in a dissipation signal, (b) its wavelet 

transform and inset the curve of WT modulus maxima. The modulus maxima shows 

the beginning of the singularity in the small scales and the center of the dissipation 

peak at larger scales. Therefore, two different scaling exponents will be considered 

for each singularity, namely the small-scale exponent αs for lower range of scales, 

and the large-scale exponent αl for higher range of scales.  
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Figure 15. (a) One dissipation peak in a dissipation signal of case R2N15, (b) its wavelet transform. 

Complex Morlet wavelet. Inset: The curve of WT modulus maxima.  

 

The cases for study have been chosen according to the criteria presented in section 

5.2.2 (figure 11). The critical number of shells for each Reynolds number is shown 

in figure 16(a). The cases to be studied are thus R1N12, R2N15, R3N18, R4N21. In 

each case several dissipation peaks are studied using wavelet transform.  

 

t 

t 

t a* 
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As described earlier, ln| ),(ˆ
0 axT | is plotted versus lna and the slopes αs and αl are 

determined. Figure 17 shows an example of determining the slopes. The scale 

parameter (given by MATLAB’s wavelet toolbox) has been normalized using a 

reference value introduced below. Different signals have different sampling times ∆t 

and therefore different number of data points in the unit of time. In order to compare 

different signals with various sampling rates a global scale is needed, which is 

independent of the sampling rate..  

 

The scales are determined in MATLAB according to the number of data points Nd as 

 

 β2
2

d ≥
N

,   (24) 

 

where 2β is maximum scale amax and β is an integer number. The number of data 

points in signal in the unit of time is Nd,0 = 1/∆t and the corresponding scale is a0 = 
02β . β0 is derived from equation (24) as being an integer number 

 

 =0β [ 2log Nd,0 - 1]. (25) 

 

Here, the brackets [.] results the integer part of its argument. Global scale a* can 

then be calculated by dividing the scale a (given by MATLAB) by the scale a0.  

 

The mean values of the slopes for each studied case have been calculated from 

several dissipation peaks. The mean values of the slopes are presented in table 3, and 

figure 16(b) shows the slopes with deviation for different cases. 
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Figure 16. (a) The critical number of shells for different Reynolds numbers, (b) the mean values of 

the small-scale exponents αs (circles) and the large-scale exponents αl (squares) for different Reynolds 

numbers with critical number of  shells. Deviation is shown for each case. 

 

 

Figure 17. ln-ln plot of the WT amplitude versus the normalized scale a* of one dissipation peak of 

case R2N15: (a) The prestage slope αs, (b) the developed stage slope αl. 

 

Table 3. The mean values of the slopes of dissipation peaks. 

Case Small-scale 

exponent 

(αs) 

Large-scale 

exponent 

(αs) 

R1N12 1.88 2.93 

R2N15 1.57 3.18 

R3N18 1.77 3.58 

R4N21 1.65 3.63 
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As the Reynolds number increases, the large-scale exponent slightly increases while 

the small-scale exponent remains quite the same. Larger values of α mean more local 

singularities. Also one can see from figures 18(a)-(d) that as the Reynolds number 

increases the range of corresponding global scales shifts to smaller scales. It means 

that at high Reynolds numbers (~107) singular bursts are measured by scales several 

orders of magnitude smaller than low Reynolds number (~104).  

 

 

Figure 18. log-log plot of the WT modulus at the center of the dissipation peak versus scale a for 

cases (a) R1N12, (b) R2N15, (c) R3N18 and (d) R4N21. 

 

The character of the singularities also changes if the shell number N is too low or too 

high. Figure 19 shows how the slope αl moves from larger scales to smaller scales as 

the shell number is increased and thus the singularities gain small scale behaviour. 

Also the value of the exponent increases when increasing the shell number and 

singularities become more local.  
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Figure 19. log-log plot of the WT amplitude of the central of the dissipation peak versus the scale a 

for cases (a) R2N13, (b) R2N14, (c) R2N15 and (d) R2N16.  

 

5.3.4 Partition function 

 A method for computing the singularity spectrum of a signal is to define a partition 

function Z taking advantage of the space-scale partitioning given by the maxima 

representation of the wavelet coefficients. Partition function is defined as 

 

 
{ }
∑=

ii

q

)(
i ~))(,(ˆ),(

ax

q
aaxaTqaZ τ . (26) 

 

The wavelet coefficients are not summed over the whole set of wavelet coefficients 

but only over the WT modulus maxima { }ii )(ax  at a given scale a. The partition 

function scaling exponent τq represents the singularity spectrum of the signal. [11, 

23, 24] 
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Figure 20 shows the partition function of different cases with different values of q.  

 

 
Figure 20. log2(Z(a,q))/(q-1) vs log2(a*) for cases (a) R1N12, (b) R2N15, (c) R3N18 and (d) R4N21. 
Values of q from up to down in each figure: 5, 10, 15, 20, -5, -10, -15, -20.  
 

To compare the intermittency of studied cases the values of q were determined, by 

which the intermittency of each case should be scaled to mach the intermittency of 

the others. Figures 21 and 22 show an example of scaling of cases R2N15, R3N18, 

R4N21 and R1N12. The case R1N12 have a different behavior than others so that its 

corresponding partition functions could be scaled with other cases either within 

small scales or within large scales. Therefore different scaling factors q will be 

presented in lower and higher scales for the case R1N12. 
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Figure 21. The scaling of cases R2N15 (green), R3N18 (black) and R4N21 (red). Values of q in 

figures: (a) R2N15: q = -10, R3N18: q = -15, R4N21: q = -15 (b)  R2N15: q = 5, R3N18: q = 5, 

R4N21: q = 12.  

 
 

Figure 22. The scaling of case R2N12 (blue) with case R2N15 (green). 

 

The values of scaling factor q are presented in table 4. The values of q for cases 

R2N15, R3N18 and R4N21 are also presented in figure 23 showing the scaling of 
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different cases. The figure reveals that the intermittency of cases R2N15 and R3N18 

is approximately at the same level and the intermittency of case R4N21 is higher.  

 

Table 4. The values of q to scale the intermittency. 

  
Case    q    

R1N12 
small scales 

 
- 0.7 

 
- 0.5 

 
- 0.2 

 
- 0.1 

 
1.18 

 
1.20 

 
1.22 

R1N12 
large scales 

 
- 20 

 
-7 

 
-4 

 
-1 

 
3 

 
5 

 
6 

R2N15 -10 -7 -4 -1 3 5 6 

R3N18 -15 -9 -5 -2 3 5 7 

R4N21 -15 -10 -5 -2 4 12 24 

 

 

Figure 23. The scaling of cases R2N15, R3N18 and R4N21with scaling factor q. 

 



53 

 

Figure 24 presents the partition function scaling exponents τq, which are obtained 

from figure 20. In figure 25 they are all plotted in one figure and it can also be seen 

here, that the case R1N12 differes from the others. 

 

 

Figure 24. τq vs q of cases (a) R1N12, (b) R2N15, (c) R3N18 and (d) R4N21. 

 

 

Figure 25. τq vs q of cases R1N12 (blue triagle), R2N15 (green asterisk), R3N18 (black asterisk) and  

R4N21 (red square).  
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6 CONCLUSIONS 

The objective of this thesis was to study the use of wavelets in turbulence 

applications. Wavelets and their role in modeling and analysis of turbulence were 

discussed generally. Waveles were used to analyze the intermittency in a turbulence 

model. The model under study was the GOY (Gledzer 1973, Ohkitani & Yamada 

1989) shell model.  

 

The results of this thesis give important information of the nature of the intermittent 

activities that a turbulence shell model produces. Simulations were performed with 

varying Reynolds number, shell number and external forcing. Intermittency appears 

in the model as singular bursts in energy dissipation signal and those bursts were 

studied for different cases using continuous wavelet transform.  

 

The local scaling exponent α of the wavelet transform describes the character of a 

singularity. Larger values of α mean more local singularities. The results gave an 

insight that as Reynolds number increases, the singularities become more local. 

Varying the shell number at certain Reynolds number affects also the nature of 

singularities. As the shell number is increased the scaling exponent α gets larger 

values and the singularities become more local. 

 

Partition function Z gives a measure for intermittency, that is, how frequent the 

energy dissipation bursts occur. Wavelet coefficients powered with a scaling factor 

q, are summed over modulus maxima points at each scale. The power q scales the 

intermittency and makes it possible to compare different cases. The study revealed 

that at Re ~ 107 bursts are more frequent than other cases with lower Re. The 

intermittency of bursts for the cases with Re ~ 106 and Re ~ 105 is similar. For the 

case R1N12 bursts occur after long waiting time in a different fashion so that it 

cannot be scaled with higher Re. The scaling factors for the cases are provided in 

chapter 5.3.4. For the case R1N12 different scaling factors presented for lower and 

higher scales.  

 

 



55 

 

7 FUTURE WORK 

Shell models produce only temporal fluctuations and ignore spatial intermittency, 

which is a character of real turbulence. The objective of future work is to transform 

the chain model to a tree model in the presence of numerous boundary points in 

order to study both spatial and temporal intermittency in multiphase flows. Wavelets 

will be used to gain the spatial geometry in shell models. 
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