
Lappeenranta University of Technology

Department of Information Technology

Master’s Thesis:

Matrix Analytic Analysis of Delays in Communication

Systems.

The topic of the Thesis has been confirmed
by the Departmental Council of the
Department of Information Technology
on 15 October 2003.

 Supervisor: Valery Naumov, Professor
 naoumov@lut.fi

 Examiner: Oleg Chistokhvalov
 chistokh@lut.fi

 Author: Sergey Boldyrev

 Address: Ruskonlahdenkatu 13-15 C2,
 Lappeenranta, Finland, 53850.
 Phone number: +358 50 545-34-08
 +7 911 242-08-33
 E-Mail: boldyrev@lut.fi

Lappeenranta
2003

Page 2 of 71

TIIVISTELMÄ

Lappeenrannan Teknillinen Yliopisto

Tietotekniikan Osasto

Sergey Boldyrev

Matrix Analytic Analysis of Delays in Communication Systems.

Diplomityö

2003

71 sivua, 32 kuvaa

Ohjaaja ja 1 tarkastaja: Professori Valery Naumov

2 tarkastaja: Oleg Chistokhvalov

Avainsanat: Quasi Birth Death prosessi solver, matriisi-geometrinen analyysi, Markov

prosessi, QBD prosessi.

Tässä päättötyössä annetaan kuvaus kehitelystä sovelluksesta Quasi Birth Death processien

ratkaisuun. Tämä ohjelma on tähän mennessä ainutlaatuinen ja sen avulla voi

ratkaistasarjan tehtäviä jaita tervitaan kommunikaatio systeemien analyysiin. Maunittuun

sovellukseen on annettu kuvaus ja määritelmä. Lyhyt kuvaus teisesta sovelluksesta Quasi

Birth Death prosessien tehtävien ratkaisuun on myös annettu.

Page 3 of 71

ABSTRACT

Lappeenranta University of Technology

Department of Information Technology

Sergey Boldyrev

Matrix Analytic Analysis of Delays in Communication Systems.

Thesis for the Degree of Master of Science in Technology

2003

71 pages, 32 figures, 1 table and 3 appendices.

Supervisor: Professor Valery Naumov

Examiner: Oleg Chistokhvalov

Keywords: Quasi Birth Death prosesses solver, matrix-geometric analysis, Markov

process, QBD process.

In this paper a description of developed application for solving a Quasi Birth Death

processes system was given. This program is unique so far and allows to solve a set of

tasks needed for communication systems analysis. The description and specification of

mentioned application is given. A brief description of another applications for Quasi Birth

Death processes tasks solution is provided in this paper also. Some notes about

implemented algorithms improvement ways are discussed.

Page 4 of 71

TABLE OF CONTENTS

TIIVISTELMÄ...2

ABSTRACT ...3

TABLE OF CONTENTS...4

ACKNOWLEDGEMENTS..6

1. INTRODUCTION...7

2. PROJECT DEFINITION AND MATHEMATICAL BACKGROUND.8
2.1 Project definition and goals ...8
2.2 Used algorithms ...9

3. EXISTING TOOLS OVERVIEW ..14
3.1 MAMSolver tool..14
3.2 Telpack (XTelpack) tool ..16
3.3 BoDyTool application..19

4. PROGRAM OVERVIEW AND USER INTERFACE DESCRIPTION..............20
4.1 Main menu bar and main toolbar...21

4.1.1 File menu item ..22
4.1.2 Settings menu item..25
4.1.3 Calculations menu item...26
4.1.4 View menu item ..29
4.1.5 Help menu item...30

4.2 Main work area ..30
4.2.1 Drawing a new QBD process..30
4.2.2 QBD process representation and it’s operations30
4.2.3 Inner state matrixes addition to the QBD process...............................30
4.2.4 Boundary condition matrixes addition to the QBD process................30
4.2.5 Connection description..30
4.2.6 QBD correctness checking procedure...30

4.3 Information window ..30

5. PROGRAM SPECIFICATION, FUNCTIONALITY AND IMPLEMENTED
ALGORITHMS. ...30

5.1 Program architecture..30
5.2 BoDyTool.exe module file description..30
5.3 MatrixDLL.dll module file description ..30
5.4 QuadEqSolver.dll module file description..30
5.5 QBDSolver.dll module file description ..30
5.6 Dynamic Link Libraries description ..30

Page 5 of 71

6. PRACTICAL ASSIGMENT. ...30

7. CONCLUSIONS ..30

8. FUTURE WORK..30

REFERENCES ..30

APPENDIX 1. An example of input file with data for one QBD process.................30

APPENDIX 2. An example of input file with boundary data for one QBD process. 30

APPENDIX 3. An example of output file with solution result..................................30

Page 6 of 71

ACKNOWLEDGEMENTS

 I would like to acknowledge my supervisor Valery Naumov for providing an

interesting topic for me and for his supervising during application development and writing

Master Thesis process. Special thanks to Denis Dyakov for his great ideas about method

implementation, for most part of algorithms descriptions and for very useful comments

concerning the application interface. Also I would like to acknowledge the whole

Laboratory of Telecommunications staff for very interesting time, spent here. Finally big

gratitude to all of my friends those were worried about me and provided me with moral

support after sleep-less nights.

Page 7 of 71

1. INTRODUCTION

As different types of communication systems, like Internet, different types of cell

phone’s networks and more grows up rapidly one of the most important problem rising up

is how to manage all of this systems in order to give the ability for each user to use them

independently from the number of other users. The only way for future network

improvement is to create some mathematical methods, which will allow to measure the

performance of the given system in order to control it by using measurements results. But

due of big physical size of mentioned networks sometimes it is very hard to obtain a

correct result in a suitable time, even by using the modern computers. Therefore some new

analytic techniques should be developed and implemented into real working applications

for measurement tasks solution.

Some of the mentioned above mathematical methods already exists for different

types of so-called queuing systems, but the most popular system for analysis is Quasi Birth

Death process. This technique covers a huge domain of the existing tasks, have a lot of

already implemented tasks solution algorithms and steel holds the scientists attention to

itself.

Unfortunately all of these algorithms allow to solve a task for systems which can be

represented as a single Quasi Birth Death process or as a set of QBD processes with some

applied restrictions. This paper describes new technique which allows to avoid most of

such restrictions as well as an implementation of this technique into application for solving

an existing real-life tasks.

Page 8 of 71

2. PROJECT DEFINITION AND MATHEMATICAL
BACKGROUND.

In this section the project definition will be given. Note, that this chapter is based

mostly on the materials, given in [1], therefore only a brief description of mathematical

background will be given. Also the author assumes that the reader is already familiar with

QBD processes [2] and some of the existing so far techniques, like as cyclic reduction

algorithm for QBD problems [3] or Efficient Technique for the Analysis of QBD processes

by Aggregation (ETAQA) [4].

The developed tool is based on the modified matrix geometric solution for finite

QBD processes method, because of it has one of the lowest time complexity values with a

very good precision. The given method was proposed by Valery Naumov in [5], therefore

it is highly recommended to be familiar with his work too.

2.1 Project definition and goals

In this section materials and designations from [1] were used.

As it was mentioned above some of the queuing systems can not be described as a

single QBD process, but they can be represented in a form of a set with different processes

in it, where each process has a QBD structure. Therefore it is possible to obtain a solution

(steady state probability vector) for the whole system by applying the Naumov’s algorithm

[5] to each QBD process in the described set.

Let’s assume, that each of the QBD processes has level-independent structure, all of

them have different number of levels, different matrixes A, B and C, different internal

dimension (the dimension of matrix B) and the transitions can be only between boundary

states of different processes as well as inside of each process.

The simplest system of such type which contains only two QBD processes is

represented on the following figure (here the common square represents the transition

between two QBD’s):

Figure 1. An example of queuing system with two QBD processes.

1 2

Page 9 of 71

As it was shown in [1] the modified matrix geometric solution for finite QBD

processes method can be extended to such type of tasks too and the goal of this project was

to develop an application which will be able to solve a tasks for such queuing system by

using this improvement.

2.2 Used algorithms

In this section materials and designations from [1] were used.

As in was shown in [1] each QBD process in the described queuing system can be

defined by its length)(im , the number of phases)(in , the inner transition rate matrixes

)()()(,, iii CBA and the boundary matrixes CBACBA
i

m

i

m

i

m

iii
iii

)()()(

1

)(

0

)(

0

)(

0)()()(,,,,, − with two

vectors bb
ii)(

2

)(

1
, and one scalar b

i)(

0
 added, which specify the additional arriving process.

The i parameter describes the number of QBD process to which those parameters belongs.

In addition it is necessary to specify four transition rate matrixes as it was done in [1]:

ijM - from state (0,k) of the i-th process to the state (0,h) of the j-th,

 where jimjinhnk ji ≠=== ,,...1,,,...,0,,...,0)()(

ijL - from state (0,k) of the i-th process to the state ()(jm ,h) of the j-th,

 where jimjinhnk ji ≠=== ,,...1,,,...,0,,...,0)()(

ijN - from state ()(im ,k) of the i-th process to the state (0,h) of the j-th,

 where jimjinhnk ji ≠=== ,,...1,,,...,0,,...,0)()(

ijK - from state ()(im ,k) of the i-th process to the state ()(jm ,h) of the j-th,

 where jimjinhnk ji ≠=== ,,...1,,,...,0,,...,0)()(

The parameter)(in represents the dimension of square matrix)(iB and parameter m

describes the total number of QBD processes in the given system.

Note, that here the designations from [1] were used, i.e.

�
�

�

�

�
�

�

�
=

Bb
bb

B ii

ii

i
)(

0

)(

2

)(

1

)(

0)(

0
, ��

�

�
��
�

�
=)(

)(

0

0
i

i

AA , �
�
�

�
�
�
�

�
=

0

)(
)(

0

i
i C

C (2.1)

and after that the B
i)(

0
 was denoted as B

i)(

0
.

Page 10 of 71

According to [1] it is possible to receive a square generator matrix Q for the whole queuing

system by collecting the appropriate properties (matrixes in other words) of each QBD

process, therefore this task can be solved directly by using such transition matrix Q with

normalizing condition:

�
�
	

=
=

.1

,0

ep

Qp
 (2.2)

where e is a column vector of all ones, 0 is a vector of zeros and unknown vector p

which describes the required steady states distribution for the whole system. Such solution

method was also implemented in the given application and calls as “Normal calculation”

in the program, but such type of calculations does not allow to perform fast calculation

process and was developed only as addition to the improved calculations method.

Let’s return to the main goal of this section – to the description of the modified matrix

geometric solution for finite QBD processes method extended to our task. As it was

described in [1] the required solution can be represented as:

 (2.3)

where

 (2.4)

 (2.5)

The)()(, ii GF matrixes are the minimal nonnegative solutions of matrix quadratic

equations:

 (2.6)

and)(iΦ for each of QBD processes defined as

 (2.7)

also let’s introduce a general group inverse matrix #Φ , those elements ija# can be obtained

by following algorithm (source matrix Φ denoted as A matrix here), according to [6]:

Page 11 of 71

 (2.8)

where

The last one undefined yet vector is)(iπ� which describes the stationary probability of

)()()(iii CBA ++

Summing up (2.3) – (2.8) to obtain steady states probabilities vectors for each of Quasi

Birth Death processes it is necessary to find two vectors)()(, ii gf and one scalar)(
0
ih for

each of the QBD’s.

According to [1] the following normalizing equation should be used:

 (2.9)

with the following set of boundary equations

 (2.10)

Page 12 of 71

 (2.11)

 (2.12)

where

Now it is possible to write an implemented in application “Improved calculations”

algorithm step-by-step:

1. Perform any needed precalculations like calculate)()(, ii GF matrixes and some

more needed in future parameters by using formulas (2.4), (2.6), (2.7) and (2.8).

2. Form system of linear equations by using the (2.10), (2.11) and (2.12)

Page 13 of 71

3. If some of the QBD processes have singular matrix Φ , for each of such QBD’s the

following equation should be added into obtained at second step system:

 0)()()()(=+ iiii egef . (2.13)

4. Add a normalizing condition (2.9) to the described system of linear equations.

5. Totally there will be 1+1+

=

+
m

i

inq
1

)(2 equalities in the given system of linear

equations, where q describes the total number of QBD processes which have

0)det(=Φ or the number of equations (2.13) added to the system. Let’s denote the

matrix of coefficients for our system as Q’. Note that the rank of this matrix will be

1+

=

+
m

i

inq
1

)(2 which equals to number of unknown variables (for those QBD

processes which have nonsingular matrixes Φ we can set the values of)(
0
ih to zero,

because the solution procedure for such QBD’s does not require them)

6. After solving a system of linear equations the following unknown vectors and

scalars will be obtained:)()(
000 ,, ii fhp and)(ig where i describes the number of

appropriate QBD process.

7. By using (2.3) and (2.5) it is possible to obtain the required steady states

probabilities vectors for each of Quasi Birth Death processes.

8. Solution is done!

Note that this algorithm was adapted for using in computer based calculations, therefore it

does not require any symbolical solution procedures and can be implemented without any

troubles.

Page 14 of 71

3. EXISTING TOOLS OVERVIEW

In this section the description of some of most well-known applications will be given

as well as the comparison of them with BoDyTool program.

3.1 MAMSolver tool

In this section the materials from [7] were used.

MAMSOLVER is a software tool that provides efficient implementations of the state-of-the-

art algorithms of the matrix-analytic methodology including the matrix-analytic and

matrix-geometric solution techniques for M/G/1-type and GI/M/1-type processes,

respectively. MAMSOLVER also provides an implementation of the ETAQA methodology.

Although, this exposition of matrix-analytic methods and ETAQA considers only CTMCs,

MAMSOLVER provides solutions for both DTMCs and CTMCs.

The matrix-analytic algorithms that were taken into consideration are defined in terms of

matrices, making matrix manipulations and operations the basic elements of the tool. The

input to MAMSolver, in the form of a structured text file, is the finite set of matrices that

accurately describe the process to be solved. Since there are different algorithms that

provide solution for the same process, the user specifies the method to be used. However,

several tests are performed within the tool to insure that special cases are treated separately

and therefore more efficiently. MAMSOLVER is implemented in C++, and classes define

the basic components of the type of processes under consideration.

Matrix is the module that implements all the basic matrix operations such as matrix

assignments, additions, subtractions, multiplications, and inversions. For computational

efficiency, the developers used well known and heavily tested routines provided by the

Lapack and BLAS packages. Since solving a finite system of linear equations is a core

function in matrix-analytic algorithms, MAMSolver provides several numerical methods

depending on the size of the problem, i.e., the size of the coefficient matrices. For small-

size problems exact methods such as LU-decomposition are used, otherwise the Lapack

implementation of iterative methods such as GMRES and BiCGSTAB, are chosen.

Page 15 of 71

Matrix-analytic modules handle both Continuous Time Markov Chain and Discrete Time

Markov Chain processes. First these modules provide storage for the input matrices. In

addition, these modules provide all the routines necessary for the implementation of the

algorithms needed for solution of mentioned types of tasks. Both the data structures and

routines of the matrix-analytic modules are based on the data-structures and routines

provided by the matrix module. The high-level structure of MAMSOLVER is illustrated in

following figure.

Figure 2: MAMSolver structure.

The solution of QBD processes, requires computation of the (and sometimes of

depending on the solution algorithm). First the matrix is computed using the logarithmic

reduction algorithm. For completeness, the developers provide also the classic numerical

algorithm. The available solution methods for QBD processes are matrix-geometric and

ETAQA-QBD.

GI/M/1 processes require the computation of the matrix . The classic matrix geometric

solution is implemented to solve this type of processes. First the algorithm goes through a

classic iterative algorithm to compute. Then, the tool computes the boundary part of the

stationary probability vector. Since a geometric relation exist between vectors for 1≥i ,

there is no need to compute the whole stationary probability vector.

M/G/1 processes require the computation of the matrix which is calculated using the

classic iterative algorithm or the cyclic-reduction algorithm or the explicit one (if applied).

The stationary probability vector is computed recursively using either the recursive

Page 16 of 71

Ramaswami formula or its fast FFT version. ETAQA-M/G/1 is also implemented as an

alternative for the solution of M/G/1 processes. A brief summary of the most important

matrix-analytic algorithms implemented in MAMSOLVER is depicted at the following

figure.

Figure 3: MAMSolver algorithms.

More information about this tool with detailed mathematical background, algorithms

and methods description can be obtained at the official application homepage [8].

3.2 Telpack (XTelpack) tool

In this section the materials from [9] were used.

Telpack solves a rich set of stochastic models and queueing problems frequently

encountered in teletraffic analysis. These fall into two categories as discrete- and

continuous-state problems, and are listed below.

Page 17 of 71

 Discrete-state problems Continuous-state problems

1. G/M/1-type structured Markov

chains

2. M/G/1-type structured Markov

chains

3. QBD processes

4. Combined G/M/1-M/G/1

structure

5. Discrete G/G/1 queue

1. MAP/G/1 queue

2. PH/PH/1 queue

3. MMPP/G/1 queue

4. GI/G/1 queue

5. Fluid flow and Brownian motion

models

Table 1: Telpack task types.

Telpack employs state-of-the-art solution methodologies and numerical techniques to solve

the problems listed above and specific forms of some of them. E.g., finite-level M/G/1 and

QBD chains, level-dependent QBD chains, M/G/1 chains with multiple boundaries, and

G/M/1, M/G/1 and QBD chains with non-canonical boundaries. Depending on the problem

dimension, these solutions may indeed become computationally very demanding to obtain.

Algorithmic aspects of the solution methods, matrix-algebraic operations, certain matrix

factorizations, and invariant and deflating subspace computations constitute the crux of the

overall numerical task for any given problem. Telpack makes exclusive use of the

LAPACK/BLAS library routines to carry out these tasks.

Generally speaking, Telpack obtains stationary queue-length distributions for discrete-state

problems, and stationary waiting time (or unfinished work) distributions for continuous-

state problems. These solutions take matrix-geometric and matrix-exponential forms,

respectively, for the two problem categories. In addition to the elements of such solutions,

Telpack computes and outputs the moments of these distributions, as well as their tail

behavior characterizations. In the case of discrete-state problems, it also computes and

outputs detailed queue-length probability vectors, and aggregate and overflow probabilities

as desired.

Page 18 of 71

Telpack interacts with the user through ASCII text files. That is, it writes all and any

output it computes to text files with distinctive extensions that identify the particular output

type (for example, .opr for overflow probabilities), and it reads the problem description

and data from an input file. The various outputs can optionally be directed to an m-file for

use in further computations under Matlab if desired. Input files are necessarily formatted,

and a simple, line-oriented command language is used to describe a particular problem and

to enter associated numerical data. This command language offers various constructs for

efficient entry of special matrices such as constant, diagonal, sparse, etc.

The Telpack application is installed on a 16-processor Sun Enterprise® 6500 server (400

Mhz UltraSPARC®, 16 GB memory, Solaris® 8) maintained at the School of

Interdisciplinary Computing and Engineering, University of Missouri - Kansas City. It is

accessible to anyone on a best-effort, non-guaranteed 24/7 basis through XTelpack, the

client program for Windows and Linux that you can download and use free of charge.

XTelpack is for the most part a graphical user interface to Telpack, written in Tcl/Tk. In

addition to performing the client-side tasks of submitting a problem and retrieving the

results, it does offer expert assistance in various forms to the user. Chief among these are

the expert dialogs for preparing input files correctly. A Telpack input file (its format and

what data it should contain) depends on the particular problem type at hand, and this may

constitute difficulty for the user, probably the very first hurdle for the beginner. These

expert dialogs walk the user through the necessary steps according to the given problem

type. They are, however, practically useful only for limited problem dimensions since they

expect the user to type numerical data. For large-scale problems, or for a prospective

frequent user, it is possible to have the input files prepared in other ways, say, by a

program.

Telpack is configurable by the user to take different run-time actions/decisions. There is,

for example, a multitude of possible solution methods for most problem types. There are

many option switches and configuration parameters; some of these are general, and some

apply to a given problem type. XTelpack again walks the user through the necessary steps

of filling in all this data as it relates to the particular problem at hand, and provides defaults

or suggestions on the way.

XTelpack also offers a built-in graphing utility for plotting results comparatively. These

plots can be exported as encapsulated postscript files.

Page 19 of 71

More information about this tool with detailed users guide description can be obtained

at the official application homepage [9], but, unfortunately, this website does not provide a

detailed information about implemented algorithms and program architecture, therefore

there is no any possibility to describe this program in all details.

3.3 BoDyTool application

Though the existing applications are able to solve a wide range of tasks, all of them (or

at least those applications which are available for public use) are unable to find an answer

in the described above set of tasks (i.e. tasks for QBD processes chain). Therefore it was

decided to develop own application which does not have any analogue in the world so far

for performing such calculations. The following constrains for future application were set:

• An application should be a stand alone program, i.e. it should not require any

remote server for task calculations, like in case of XTelpack application.

• An application should have the components based architecture for future

algorithms improvements without rebuilding the whole program.

• An application should work on any computer with Windows operation system

installed on it.

• The default implemented algorithm for calculations should be Valery

Naumov’s “Modified Matrix Geometric Algorithm” [5].

• The application should have user interface with clear task representation.

The following hardware requires for running an application.

• Any Intel Architecture based CPU (the recommended CPU frequency is 1 Giga

Hertz or higher)

• At least 128 MB of RAM.

• Any Windows family operating system.

Note, that the given application is able to solve only described type of tasks, therefore it

will not be able to obtain an answer for GI/G/1 queue, for example. Therefore you should

use any of the described above applications for solving such type of tasks.

Page 20 of 71

4. PROGRAM OVERVIEW AND USER INTERFACE

DESCRIPTION

In this section the description in details of application will be given as well as some

features and useful tricks.

The first thing you should do for using the application is to start the program. To

perform this operation the user has to select the folder where the copy of program was

allocated and run the application by clicking on the file with “BoDyTool.exe” name. If it

was the first program launching time you’ll see the following message:

Figure 4: “Default setting will be used” notification message.

This message is default message during first startup and it means that the program was

unable to load the setting from the registry, therefore the default setting will be used. In

most cases you’ll not see this notification box more, but if not, you should ask the

administrator of the computer to check your security rights to read and write to the

Windows registry.

 After a successful start of the program you’ll see the following picture on your desktop

screen:

Page 21 of 71

Figure 5: The main program screen.

This User Interface screen can be divided into three following part:

1. Main menu bar and main toolbar

2. Main work area

3. Information window

In this section we will describe all these interface parts in more details.

4.1 Main menu bar and main toolbar

The main menu bar let the user to perform all operations, which are available in the

application. For better usability of the program some of these functions were implemented

at the toolbar as well. Such implementation gives the ability not to select the needed option

from the main menu, but select it directly from the toolbar. Also some hotkeys were

implemented, which allows user to perform the commonly used operations by pressing the

key combinations. You can see the implemented main menu bar and main toolbar of the

following two pictures:

Page 22 of 71

Figure 6: Main menu bar.

Figure 7: Main toolbar.

All of menu items will be described in the following sections.

4.1.1 File menu item

The first item of the menu bar is “File” section.

Figure 8: File menu section.

This section of menu allows user to create new task, load an existing task, save modified

task to the disk or print it by printer. There are the following items in this menu:

• “New” – This menu function allows user to create a new document. If any task

already exists in the main work area the confirmation box will be shown and new

task will be created only after user confirmation. You can also perform this

procedure by pressing the “New” button on the toolbar. The hotkey for this

menu item is “Ctrl + N” keys combination.

• “Open…” – This main menu item allows user to open an existing task. After

pressing the “Open…” button you’ll see the standard built-in Windows “Open file”

dialog from which you should select the appropriate file with “.bdp” extension

which contains previously saved task. After needed file was selected press the

“Open” button in the file dialog to open it and you’ll see your task graph at the

main work area, if file contains the correct task data, or you’ll get the error box

with error explanation, if not. You can also perform this procedure by pressing the

Page 23 of 71

“Open” button on the toolbar. The hotkey for this menu item is “Ctrl + O” keys

combination.

Figure 9: The open task dialog.

• “Save” – This main menu function allows user to save a modified existing task. In

case the name of the file was not specified yet (for example if task was not saved

yet) the function “Save as…” will be performed instead of function “Save”,

otherwise the program simply stores the task changes to the specified before

location. You can also perform this procedure by pressing the “Save” button on

the toolbar. The hotkey for this menu item is “Ctrl + S” keys combination.

• “Save as…” – This menu item allows user to save to the disk the existing task with

another name. After pressing the “Save” button you’ll see the standard built-in

Windows “Save file as…” dialog where you should enter new name for your file to

the “File name” field, select proper extension for new file from the “Files of type”

listbox and press the “Save” button. Note, that the default extension for the files,

which contain stored tasks is “.bdp”. If this operation was performed successfully

new file will be created at the specified location, otherwise you’ll see the error

message window with error explanation.

Page 24 of 71

Figure 10: The “Save as…” task dialog.

• The “Print…” menu item allows user to print the current task on printer. After

pressing this button user will see the standard built-in Windows “Print…” dialog,

where you should specify the needed options and press “OK” button. If all printing

operations were performed successfully the selected printer will begin to print,

otherwise you’ll see the error window with error description. You can also perform

this procedure by pressing the “Print” button on the toolbar. The hotkey for

this menu item is “Ctrl + P” keys combination.

• “Print preview” – This main menu option is for preliminary output for a printing

result, i.e. after selection this item the user will see his task displayed as it would

appear when printed. When you choose this command, the main window will be

replaced with a print preview window in which one or two pages will be displayed

in their printed format. If preview result will satisfy you, you can initiate the

printing procedure by selecting the “Print…” item.

• After choosing the “Print setup…” command user will see the dialog, where it is

possible to specify some printing parameters, like as paper size, paper orientation,

needed printer and some more printer setting which depends of the printer type. All

this setting will be permanent for all of next printing, unlike the settings in the

“Print…” dialog which are valid only for current printing procedure.

• The last one item in the File menu section is “Exit” command, which closes the

application. In case you’ve not saved your task yet you’ll see the information

Page 25 of 71

message window, which allow you to save or not to save the changes to the file in

order to prevent the lost of data. After that the application will be closed.

 Figure 11: The message window before application closing.

4.1.2 Settings menu item

The next one item of the menu bar is “Settings” section, which contains only one

command

Figure 12: Settings menu section.

This menu section allows user to change global program parameters. The current version

of the program has only one function in this section:

• “Set Background” menu item allows user to change the background color of the main

work area. After activating this command the user will see the standard built-in

Windows “Color…” dialog where it is possible to select the appropriate color for

program. After pressing the “OK” button all the elements in main work area will be

redrawn with new color. Note, that all elements in the work area, for example, different

QBDs, have their own colors which calculates to be in contrast with background color

automatically, therefore you’ll be able to see your graph in work area whichever

background flooding paint was not selected. You can also perform the color changing

procedure by pressing the “Set new background color” button on the toolbar.

Page 26 of 71

Figure 13: Default colour choosing dialog.

4.1.3 Calculations menu item

The third and the most important item in the menu bar is “Calculations” section.

Figure 14: Calculation menu section.

This menu section allows user to set a calculation parameters, choose a type of

calculations, obtain a solution for current task and save result to a file. There are the

following items in this dropdown menu:

• ”Start calculations” command allows user to obtain an answer of the task. After all the

parameters of current job were entered, the user can initiate the calculation process by

choosing this menu item. If needed task was created correctly the application will begin

to solve it by using selected before calculation method (see “Calculation method”

dropdown menu description) otherwise you’ll see the error window with detailed error

description in it (note, that the calculation will not be started until all errors will not be

fixed). The calculation progress shows in the special progress bar situated at the center

of main work area. After the progress bar value reach 100% your solution will be

obtained and user can observe it at the special information window (see Information

Page 27 of 71

window description for more details). Sometimes it’s possible that some windows with

messages of notifications will popup during calculation process. It’s a normal situation

which means that application needs the user response to one or another question. You

can also start the calculation procedure by pressing the “Startup the calculations”

button on the toolbar or by pressing the hotkey combination “Ctrl + C”.

Figure 15: A typical error message window after pressing the ”Start calculations” button.

• After task result was obtained the user can store it to the file by choosing ”Save

result…” menu item. This command opens the standard built-in Windows “Save

file as…” dialog where you can change or leave generated by program name for

your new file at the “File name” field, also you can select appropriate extension for

your result file from the “Files of type” list box and press the “Save” button.. If this

operation was not performed successfully you’ll see the error message window

with error explanation, otherwise new file will be created at the specified location.

The result file always has the following structure (see an example of such file in the

appendixes section):

- ” The probability, that system is in idle condition:” - This string and value

below it describes the probability that whole system is in idle condition.

- ” --------->>>>------------------------<<<<<--------------” – This is a separator

string, which separates the result section for current QBD process from result

sections of other QBD’s. From this separator string the obtained answer

segment starts.

- ”The following results is for QBD # 1:” – This string describes the number of

QBD to which result following below belongs, the QBD process number 1 in

our case.

Page 28 of 71

- ”The mean length of queue:” – This string and number following below this

string describes the mean length of queue in the given QBD process. This value

calculates as

()

=

+⋅⋅=
m

i
i ieXl

0

1 (4.1)

where e is a column vector of all ones, m is a QBD length parameter for given

Quasi Birth Death process and iX are the steady state probabilities vectors of it

(note, that kX
�

equals to)(i
kp
�

 from section 2 of this paper).

- ”X0 :” – This string and a column of values follows by this string describes the

result vector 0X in our case, or the steady state probability vector)(
0
ip

�
. The

dimension of this vector equals to the dimension of B matrix of current QBD

process. The last one vector in the current QBD result section will be mX

where m is a QBD length parameter for given QBD process. After that the

result section which belongs to the current QBD process will be finished.

If there exists more than one QBD process in the current task the next one string

will be separator string described above and another QBD process result section

will begin until all of the QBD processes results will not be stored.

This function can be start by pressing the ”Save result” button on the taskbar

or by pressing the hotkey combination ”Ctrl + R” also.

• The ”Calculation method” item contains dropdown sub-menu with two options in

it: ”Normal calculations” and ”Improved calculations”. These two items describes

two implemented calculations methods – normal method which simply solves the

task 0=xQ by using the Gauss linear system solution algorithm and improved

method which solves the task by using the Naumov’s theory (note, that the

implementation of the ”Improved calculations” menu item depends of developers.

By default the application contains a described in section 2 method in it, but third-

side developers can easily rewrite it to another one algorithm by rewriting the

appropriate Dynamic Loading Library). Due of memory requirements needed for

processing a ”Normal calculations” procedure it is not recommended to apply it to

the tasks which contains QBD processes with QBD length parameter more than

Page 29 of 71

300, because it will take very long time to calculate such task by using the Gauss

method and will require a big amount of free memory. It’s better to use the

” Improved calculations” procedure for such big tasks, however for small tasks will

small matrixes dimensions and small QBD length parameters ”Normal

calculations” method works perfectly. See section 2 of this paper for more details

about methods.

• The last one item in this menu section is ”Settings…” command. After activating

this command the ”Settings” dialog box will appears where the user can set

necessary accuracy of calculations. This accuracy will affect on all types of

calculations, i.e. some iterative methods, number truncation during calculations and

result values truncation. The accuracy text field supports two types of input values:

normal input by typing decimal number with decimal point separation between

whole and fractional parts, for example number ”0.0001”, and so-called scientific

form where decimal number presented as some number multiplicated by ten in

some power, for example ”1e-6”. After inputting the appropriate precision of

calculation the user should press ”OK” button to save changes or press the

”Cancel” button for leaving previous value unchanged.

Figure 16: Settings dialog window.

4.1.4 View menu item

The next one item of the menu bar is “View” section, which contains the following

submenu elements:

Figure 17: View menu section.

This menu section allows user to show or hide some elements of user interface and there

are the following commands to perform such operations:

Page 30 of 71

• By pressing the ”Toolbar” menu item user can display or hide main toolbar. A check

mark appears next to the menu item when the toolbar is displayed.

• Use the ”Status Bar” command to display and hide the status bar, which describes the

action to be executed by the selected menu item or depressed toolbar button. A check

mark appears next to the menu item when the status bar is displayed.

• By selecting the ”Toggle info” command the user can display or hide the Information

window which contains the information about selected object in the main work area. A

check mark appears next to the menu item when the Information window is displayed.

You can also toggle the described window by pressing the “Toggle info window”

button on the toolbar. Note, that information window can be viewable only if there

at least one element (QBD process actually) exists in the work area.

4.1.5 Help menu item

The last one item of the menu bar is “Help” section, which contains the following submenu

elements:

Figure 18: Help menu section.

This menu section provides user with help topics about user interface, program functions

and context sensitive help and there are the following commands to perform the given

operations:

• The ”Help Topics” menu command shows the index of all topics which are exists in the

help system. After typing the necessary word in the search text field and pressing the

”Show” button user will get an information about typed term, it’s description and some

more useful information.

• The ”Help Index” command consist of two parts. After selecting this menu item from

main menu or pressing the ”Help Index” button on the toolbar the user will see a

list of help topics grouped by subject. There are user interface description topics,

program function description topics, calculation methods overview topics and so on.

The second part of this command is so-called context-sensitive help which allows to

Page 31 of 71

obtain a description of any element of user interface. To perform this operation press

the ”Help” button on the toolbar – there the question sign should appear near your

mouse pointer – and select any of the user interface element for which you want to get

a help topic.

• ”About BoDyTool…” menu item provides user with information about program,

version and copyrights.

Figure 19: About BoDyTool dialog window.

4.2 Main work area

Main work area is the most important user interface area where all of application

operations with current task produce. The viewable part of work area starts directly below

toolbar and ends at the beginning of the status bar. There are two scrollbars implemented in

this area, therefore the physical dimensions of main working area can reach the resolution

up to 65535x65535 pixels totally which will be enough for all type of tasks. The

functionality of main work area will be described in the following sections.

4.2.1 Drawing a new QBD process

The main work area of application contains a context-sensitive set of context menus

and all of the operations are performing by using them. One of such operations is addition

of new QBD process to the system. To perform it the user should click right-button of

mouse once on any unused place of the work area. The following popup context menu will

appear.

Page 32 of 71

Figure 20: Add new QBD context menu.

Select this menu item to add new QBD process to the system and you’ll see new

element of task shown at the following figure:

Figure 21: Adding new QBD process.

The start element with “QBD level 0” description has fixed location, but end element with

“QBD level ??? ” has not and can be moved with mouse movement. After setting mouse

pointer with QBD process end point clinging to it to the proper position press left mouse

button again. If operation of addition was not performed successfully the user will see an

error window message with error description, otherwise the standard built-in Windows

“Open file…” dialog will appear where you should select the file, containing Quasi Birth

Death process information, i.e. matrixes A, B, C and QBD process length information (file

format description goes below) and press the “Open” button. If you don’t want to add this

information on current step it will be possible to add it later. Finally the user will see the

following new QBD process with new number at the bottom (QBD process number 1 in

our case):

Figure 22: New QBD process after successful addition.

4.2.2 QBD process representation and it’s operation s

As it was mentioned above, the typical QBD process implemented in this

application should contain the following parameters: it’s lengthm , the inner transition

matrixes CBA ,, and the boundary matrixes mmm CBACBA ,,,,, 1000 − with a set of transition

rate matrixes, therefore the generator matrix Q for one single QBD will be as follows:

Page 33 of 71

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

=

−

mm

m

BC

ABC

ABC

ABC

ABC

AB

Q

00000

0000

0000

00

00

000

1

0

00

�������

��

��

��

. All of these parameters (except matrix Q) have

their representation in the program. This section of the paper will provide the information

about all such representations and available functions for work with them.

 The QBD process representation in the application can be divided into three parts,

they are:

• Zero-level boundary conditions which are represented by icon. The “QBD

level 0” label means that in this part of Quasi Birth Death process representation the

matrixes 000 ,, CBA and all of the outer transitions (ijM and ijL matrixes namely) to

another QBD processes are stored. Let call such QBD representation element as

“Start node of QBD process” or simply “start node”. All of the functions which are

available for zero-level boundary conditions are accessible by clicking right mouse

button on the start node – the context menu will appear. If the user is not

satisfactory with current icon placement he can press the left button on such

interface element and, holding the left mouse button pressed, move it to the new

position. After the appropriate position was reached, pressed button should be

released. There is information about start node available also. It can be displayed

by pressing the left button on it – start node of QBD process will become selected

and there short info will appear at the information window (see Information

window description for more details).

• m-level boundary conditions which are represented by icon. The “QBD level

m” (30 in our case) label means that in this part of Quasi Birth Death process

representation the matrixes mmm CBA ,,1− and all of the outer transitions (ijN and ijK

matrixes namely) to another QBD processes are stored. Parameter m describes a

QBD length parameter. Let call such QBD representation element as “End node of

QBD process” or simply “end node”. All of the operations which are available for

Page 34 of 71

start node are available for end node too and the ways how to perform them are the

same as well, it means that, for example, to display the information about m-level

boundary conditions node the user should press the left button on end node of QBD

process.

• Inner states which are represented by a straight line, connecting the start node with

end node of the given QBD process. In this user interface element the matrixes

CBA ,, and QBD length parameter are stored. As in previous cases the context

menu and information about whole QBD process are available by clicking right or

left mouse buttons on this straight line correspondingly. If user needs to change the

coordinates of the whole QBD process, i.e. change the position of start and end

nodes on the screen simultaneously, he should press the left button on this user

interface element and, holding the left mouse button pressed, move it to the new

position. After the appropriate position was reached, previously pressed button

should be released.

4.2.3 Inner state matrixes addition to the QBD proc ess

There are two ways to add the matrixes CBA ,, and QBD length parameter to the

given QBD process: during Quasi Birth Death process creation and in any time after given

QBD process was successfully added to the task. These two methods are almost the same,

except one thing – if user wants to add the information during creation process he does not

need to call the special “Open file…” dialog – it will appear automatically, if user wants to

add such information later, he needs to call for QBD context menu. Let’s discuss in details

the second case.

To add information about inner states to the Quasi Birth Death process the user

should call for QBD context menu, as it was mentioned above (the description how to do it

is in the previous section).

Figure 23: QBD process context menu.

After that “Add A, B, C matrixes for QBD” should be selected to open standard built-in

Windows “Open file…” dialog. In this dialog the user should select an appropriate file with

required data in it and press the open button. Note, that the default file extension for such

Page 35 of 71

type of files is “.mqf”, but it is possible to change this extension to another one. If

operation was not performed successfully the user will see an error window, otherwise the

information about given QBD process in the Information window will change. There is no

any way to delete once entered data for QBD process, the user can only reload it by

choosing the “Add A, B, C matrixes for QBD” menu item and processing already

described steps again or delete the whole Quasi Birth Death process at all by choosing the

“Delete the QBD” option from the same menu.

 The file which contains the information about current QBD process inner states is a

plain text file and should have the following structure (see an example of such file in the

appendixes section):

• “QBD PROCESS LENGTH = 30” string which describes the QBD length

parameter ()(im from section 2), which equals to 30 in our case. Note, that the

minimal QBD length parameter equals to 3.

• “START MATRIX: A ” string which says to program that there data for matrix A

goes below this string.

• “1.1, 2” string which contains the first row for matrix A. Every element in matrix A

row data string should be separated by commas from another elements, integer and

decimal parts of number should be separated by decimal point. Every row should

be finished by linefeed symbol. All elements in matrix A should be nonnegative.

• “END MATRIX ” prefix means that the data description for current matrix was

finished

• “START MATRIX: B ” prefix which starts the data array for matrix B

• “ -2.1, 0” – first row with data for matrix B. The rules of matrix description are the

same as in description of matrix A except one thing: the diagonal elements in

matrix B should be non-positive and each sum by row in expression ABC ++

should be equal to zero.

• “END MATRIX ” prefix means that the data description for current matrix (matrix

B in our case) was finished

• “START MATRIX: C ” as in the previous case it’s a prefix which starts the data

array for matrix C

• “0, 0” – first row with data for matrix C. The rules of matrix description are the

same as for matrix A description.

Page 36 of 71

• “END MATRIX ” prefix means that the data description for last one matrix C was

finished.

The dimensions of all these three matrixes should be the same both by columns and

rows and each matrix should be square in order to set the conditions of the task correctly.

The maximal dimensions of each matrix and number of signs after decimal point are

depends of implementation of MatrixDLL.dll Dynamic Link Library, by default they are

32767x32767 elements and 16 signs after decimal point accuracy correspondingly.

4.2.4 Boundary condition matrixes addition to the Q BD process

Due of similarity of adding zero-level boundary conditions matrixes and m-level

boundary conditions matrixes there is no need to separate this two processes description

into two section. In this section the zero-level boundary conditions matrixes addition

procedure will be described and all insignias for m-level boundary matrixes addition

method will be noted in the square brackets.

Unlike in the inner state matrixes addition procedure there is only one way to add

boundary conditions for start [end] node – by selecting the “Add Boundary matrixes (A0,

B0, C0, …) for QBD” [“Add Boundary matrixes (AM, BM, CM, …) for QBD”] context

menu item.

Figure 24: QBD start node context menu.

After that the standard built-in Windows “Open file…” dialog will be opened. In this

dialog the user should select an appropriate file with required boundary data in it and

default file extension “.mcf” (this file extension can be easily changed to another one,

however), and press the open button. As in previous section if operation was not performed

successfully the user will see an error window with error description, otherwise the

information about given QBD process boundary matrixes (000 ,, CBA [mmm CBA ,,1−] with

transition rate matrixes in our case) in the Information window will change as well as new

connections will be drawn. Also there is no any way to delete once entered data for QBD

process boundary, the user can only reload it by choosing the described above menu item

Page 37 of 71

and processing already described steps again or delete the whole QBD process at all by

choosing the “Delete the QBD” option from the same menu.

Important note: do not add any of the boundary condition matrixes until all of the

QBD process will not be created; otherwise you can loose some connection matrixes for

not yet existing QBD processes.

Important note 2: unlike in section 2 here matrixes 0B , 0A and 0C are the same

matrixes as in (2.1), i.e. matrix 0A should have a top row of zeros. The same for 0B - if

it’s components bb
ii)(

2

)(

1
, have only zero values they should be entered to the task as zero

row and columns correspondingly.

The file which contains the information about current QBD process boundary

condition matrixes is a plain text file as well and should have the following structure (see

an example of such file in the appendixes section):

• “START MATRIX: A0 ” [“ START MATRIX: AM ”] string which says to

program that there data for matrix 0A [1−mA (note, that instead of AM-1 header

there is AM matrix header)] goes below this string.

• “0, 0, 0” string which contains the first row for matrix 0A [1−mA]. Every element in

matrix 0A [1−mA] row data string should be separated by commas from another

elements, integer and decimal parts of number should be separated by decimal

point. Every row should be finished by linefeed symbol. All elements in matrix

0A [1−mA] should be nonnegative. The number of rows in matrix 0A [1−mA] should

be equal to the number of rows in matrix 0B [B] and the number of columns in

matrix 0A [1−mA] should be equal to the number of columns in B [mB].

• “END MATRIX ” prefix means that the data description for current matrix was

finished.

• “START MATRIX: B0 ” [“ START MATRIX: BM ”] prefix which starts the data

array for matrix 0B [mB]

“ -1, 1, 0, 0” – first row with data for matrix 0B [mB]. The rules of matrix description as

usual are the same as in description of matrix 0A [1−mA] except one thing: the diagonal

elements in matrix 0B [mB] should be non-positive.

Page 38 of 71

The size of matrix 0B [mB] should be)1()1(+×+ nn [nn×] if matrix B has

nn× dimensions.

• “END MATRIX ” prefix means that the data description for current matrix (matrix

0B [mB] in our case) was finished

• “START MATRIX: C0 ” [“ START MATRIX: CM ”] this prefix starts an array of

data for matrix 0C [mC] as in previous cases

• “0, 1, 3, 1” first row with data for matrix 0C [mC]. The rules of matrix description

are totally the same as in description of matrix 0A [1−mA]. The number of rows in

matrix 0C [mC] should be equal to the number of rows in matrix B [mB] and the

number of columns in matrix 0C [mC] should be equal to the number of columns

in matrix 0B [B].

• “END MATRIX ” prefix means that the data description for current matrix was

finished.

• “START CONNECTION ” – this prefix means that the following information

describes the connection between current and some other QBD process (additional

transition rate matrixes in other words).

• “ IS CONNECTION ENDS AT START = 0” this string describes the connection

destination node: 1 means that connection ends at the start node, 0 means that

connection ends at the end node of another QBD process (ijM [ijN] or ijL [ijK]

matrixes description correspondingly in terms of section 2). Note that the type of

node in the current Quasi Birth Death process from which connection outgoes

describes by the type of file, i.e. the current file is for start node or for end node,

therefore it is possibly to define clearly the proper pair of matrixes - ijM and ijL or

ijN and ijK .

• “CONNECTED TO QBD NUMBER = 2” - string which describes the destination

QBD process number, 2 in our case. As it was mentioned above the QBD process

number shows at the bottom side of each of nodes in every QBD, for example start

node for process number 1 will be shown as .

Page 39 of 71

• “START MATRIX: OUTGOING ” – this prefix starts a data array for current

transitional rate matrix.

• “1, 1, 0, 0” - first row with data for connection matrix. The rules of matrix

description are the same as in previous cases, i.e. every element in matrix row data

string should be separated by commas from another elements, integer and decimal

parts of number should be separated by decimal point. Every row should be

finished by linefeed symbol. All elements in the given matrix should be

nonnegative. The number of rows in connection matrix should be equal to the

number of rows in matrix B of current QBD process and the number of columns in

the given connection matrix should be equal to the number of columns in

matrixB of destination QBD process (QBD process number 2 in our case).

• “END MATRIX ” - as usually this prefix finishes the data description array for

current matrix.

• “END CONNECTION ” – this prefix closes the connection description.

• More connection description sections, if needed.

The information about number accuracy and maximum matrix dimensions provided in

section 4.2.3 stays valid for this section too, i.e. the maximal dimensions of each matrix

and number of signs after decimal point are depends of implementation of MatrixDLL.dll

Dynamic Link Library, by default they are 32767x32767 elements and 16 signs after

decimal point accuracy correspondingly.

More detailed connection description will be provided in the next section of this paper.

4.2.5 Connection description

In this section the connection description in details will provided.

As it was mentioned in this paper earlier the connection is only a virtual term for

indication a non-zero transition rate matrix between two QBD processes like as ijM , ijN ,

ijL or ijK . The aim of creating such term is only in simplification of representation. All

another ways of representation does not allow to create a clearly understandable tasks with

simple representation, especially in case of tasks with cycles, for example task with two

QBD processes where start node of QBD process 1 connected with end node of QBD

process number 2 and end node of QBD process number 1 connected with start node of

QBD process number 2 (here the word “connected” means that, for example, at least one

Page 40 of 71

transition rate matrix from the start node of QBD process 1 to end node of QBD process

number 2 or from end node of QBD process number 2 to start node of QBD process 1 is

non-zero, in other case we consider that there is no connection, because both transition rate

matrixes are equal to zero). An implemented representation of the connection is a straight

line with white dots as it shown at figure 21.

Figure 25: A typical task with 4 QBD processes and connections between them.

On figure 21 there are 7 connections which mean that at least seven transition rate

matrixes in this task are non-zero. There is no need to specify the full set of connections for

one QBD process to another QBD processes during addition of boundary conditions, it’s

possibly to specify only nonzero transition matrixes, all other connection matrixes will be

set to zero matrixes with proper dimensions automatically, like in case of pseudo-

connection between start node of QBD 1 and start node of QBD process 3.

As any of elements in work area each connection has own context menu with one

operation in it. To perform this operation the user should click right-button of mouse once

on any unused place of the work area. The following popup context menu will appear.

Figure 26: A connection context menu.

By selecting this menu item the user can zero two connection matrixes, for example if start

node of QBD process number one connected to start node of QBD process number 2 there

exist two transition matrixes 12M and 21M . As it was mentioned above one of them is non-

zero and another one is zero or non-zero too. By choosing the “Delete the Connection

Matrixes” menu item the user will zero both matrixes, therefore this pseudo-connection

with zero transition rate matrixes will not be represented at work area more. Also there is

Page 41 of 71

short information about given connection available. It can be displayed by pressing the left

button on it – the appropriate connection will become selected and there short info will

appear at the information window (see Information window description for more details).

4.2.6 QBD correctness checking procedure.

After all of the parameters for given QBD process were entered, i.e. inner state

matrixes and boundary conditions the application tries to verify them for correctness by

checking the dimensions of all matrixes, checking the values in whose matrixes and some

more. If any errors will be found the user will see an error window with error description

otherwise the start and end nodes icons for given QBD process will change their color to

blue (or red if current QBD process is selected).

Figure 27: A representation of correctly entered data for QBD process.

Note, that the following warning window can appear as a result of verifying data

process:

Figure 28: QBD process warning message after verifying.

This message means, that some sum by row in matrix G in one or more rows are not equal

0, where

ABCG ++= (1.2)

The application fixed this incorrect row by increasing or decreasing the appropriate

diagonal element of matrix B . This message in not an error message, but it is

recommended to check again the matrixes BA, and C . The same situation can be for

boundary conditions matrixes 0B and mB - there will be almost the same window with

proper specification of type of corrected matrix. The recommendation in this case is the

same as in previous case for matrix B – to check all of boundary matrixes.

Page 42 of 71

Note that at the start of calculation stage and even during calculations there will be

some more verifying procedures, like as checking for graph connectivity and so on.

Therefore in case you have the properly entered correct data for each QBD process

(meaning that every Quasi Birth Death Process is correct) it does not mean that all of the

task conditions are correct and in some cases user should fix some more mistakes. Only

after fixing all of existing mistakes the calculation process will start.

4.3 Information window

The information window is a window there short information about any element in

work area will be represented. This interface element contains two parts – “Object

selected” field where the type and some information about the object will be represented

and “Object info” scrollable area where the properties of the given item will be displayed.

Figure 29: An information window with QBD process information in it.

The information window either can be empty or hold information about three types of

main work area elements which could be selected, namely QBD process, QBD start or end

node and connection between QBDs. In this section we will describe all this three types of

information:

• In case of some node of QBD process selection there will be the following description

of this selected item in information window:

Page 43 of 71

o At the “Object selected” field will be the following string: “Current selection is

node number m”, where m is a number of selected node. Note that all nodes in the

program have end to end numbering.

o At the “Object info” will be the following properties displayed:

� The type of node, i.e. start or end and the number of QBD process to which

the selected node belongs, for example “This is a Start node of QBD

process # 4.”

� Selected node X coordinate at the work area, for example “Coordinate X of

node is: 613”

� Selected node Y coordinate at the work area, for example “Coordinate Y of

node is: 232”

� The string with node selection status, for example “This node is selected.”

• When one of the existing connections will be selected the information window

provides the following information.

o At the “Object selected” field will be the following string: “Current selection is

QBD Connection #: m”, where m is a number of selected connection. Note that all

connections which start from one QBD process numerate from 1, therefore in two

different QBD processes can exists two different connections with the same

number, for example 1.

o At the “Object info” will be the following selected connection properties displayed:

� The string which represents the result of connection data checking procedure,

for example “The data for this connection is correct.”

� The following strings which describes two QBD processes numbers between

which connection was established. The first string of mentioned set will be as

follows “This QBD Connection connects two following QBDs:”

� “The Start node of the QBD #: 4” – this string means that selected

connection starts at the start node of QBD process number four.

� “with end node of the QBD #: 3” – this string means that selected

connection destination is at the end node of QBD process number three.

� “The Outgoing matrix goes from Start node of QBD #: 4” – this is the last

string of described above set of string which describes the start and end points

of selected connection and it means that so-called “outgoing matrix” (43L in

terms of section 2) was described at the boundary conditions file for start

Page 44 of 71

node of QBD process number four, therefore so-called “incoming matrix”

was described as “outgoing matrix” (34N) in boundary conditions file for end

node of QBD process number three. The terms “outgoing” and “incoming”

matrixes were created for more clearly representation of them, because if

boundary conditions file of one QBD process contains some transition rate

matrix - this matrix will be outgoing transition matrix for given QBD process

but at the same time it will be incoming transition rate matrix for destination

QBD process to which the given QBD connects. Therefore in case of two

connected Quasi Birth Death processes there will be two transition matrixes

and each of them can be “incoming” or “outgoing” matrix at the same time.

To prevent such situation and to define clearly the type of each of transition

matrixes the terms “incoming” and “outgoing” were presented.

� The string which describes the dimensions of “outgoing” matrix (transition

matrix, described in the boundary conditions file for start node of QBD

process number four in this example), for example “The Outgoing matrix

size is mxn”, where m is number of rows and n is number of columns of such

matrix.

� In case the “outgoing” matrix has only zero elements the following string will

be displayed “The Outgoing matrix has only ZERO elements”.

� The string which describes the dimensions of “incoming” matrix for QBD

process number four (this transition matrix was described in the boundary

conditions file for end node of QBD process number three in this example),

for example “The Incoming matrix size is mxn”, where m is number of rows

and n is number of columns of such matrix.

� In case the “incoming” matrix has only zero elements the following string

will be displayed “The Incoming matrix has only ZERO elements”.

� The last one string keeps information about selection status of connection, for

example “This connection is selected”.

• The last one type of information, provided by information window is the description of

currently selected QBD process:

o At the “Object selected” field will be the following string: “Current selection is

QBD #: m”, where m is a number of selected QBD process. Note that all QBD

processes in the task have non-intersecting numeration.

Page 45 of 71

o At the “Object info” will be the following information:

� The string which represents the result of QBD process data checking

procedure, for example “The data for this QBD is NOT correct or full.”

� The string which shows the QBD length parameter of selected QBD process,

for example “QBD Length parameter is equal to m”, where m number

represents the described value.

� The following nine string describes the dimensions of inner transition

matrixes CBA ,, and the boundary matrixes mmm CBACBA ,,,,, 1000 − , for

example “The matrix A0 size is mxn”, where m is number of rows and n is

number of columns of matrix 0A if it was already entered or “The matrix A0

is not specified yet” otherwise.

� The next string holds information about selection status of QBD process, for

example “This QBD Process is selected”.

� The last one set of strings contains the information about obtained or not yet

obtained calculation result for given QBD process. This set starts from the

separator string, looking like this: “--------->>>>------------------------<<<<<---

-----------”

� In case the calculations was not performed yet the string below separator will

be as follows: “There is no any answer obtained so far”, otherwise starting

from this string the set of strings will be containing the result information for

given QBD process in exactly the same format as result file has during the

description of answer for one QBD, i.e. starting from “X0 :” prefix and

finishing by “Xm :” prefix, where m parameters equals to QBD length value

(see Calculations menu item description for more details).

5. PROGRAM SPECIFICATION, FUNCTIONALITY AND
IMPLEMENTED ALGORITHMS.

Due of impossibility to attach the source code to this paper (the source code is simply

very large – it contains more that 500 kilobytes of plain text or more than 250 A4 paper

sheets) it was decided to describe the implemented calculation support classes as briefly as

it possibly, because without this information it will be impossible to improve any of the

Page 46 of 71

calculation methods in future. However the source code of application is still available in

electronic version.

In this chapter the description of program architecture, functions and implemented

calculations algorithms will be given in details. The application was developed by using

the Microsoft Visual C++ 6.0 Service Pack 5 development environment with using the

Microsoft Foundation Classes (MFC), therefore the author assumes, that the reader is

familiar with Visual C++ language and MFC classes. Most of the components of the

program are implemented in DLL’s, consequently the basic knowledge about Dynamic

Link Libraries structure are also required.

5.1 Program architecture

Let’s start from the application architecture description: there are four physical parts in

the given program, three of them are contains in the Dynamic Link Library and

implements the calculation algorithms, the fourth one is executable file which implements

user interface and some internal functions. Such structure allows changing any needed

algorithm without rewriting the whole program - it is necessary to rewrite the proper DLL

function or functions only. Even the whole calculation method (for example, Naumov’s

method) can be changed to another one. The following figure describes the dependencies

between implemented modules.

Page 47 of 71

Figure 30: BoDyTool application architecture.

All of the implemented modules of application will be described in details in the

following sections.

5.2 BoDyTool.exe module file description

This part of application is a user interface mostly, it provides the user with all of the

objects, which can be viewed, for example any sorts of error windows, dialog boxes and so

on. Also it holds all of the entered data about task and transfers it to the calculation

modules if needed. No any calculations, except data checking procedures, perform inside

this component! Therefore there is no any necessity to describe the functions and classes

containing in this module in details, because this unit only calls the appropriate methods

from other modules (DLL’s in this case), but does not allow to call any of methods

implemented in its own classes from outside. In other words this part of program depends

from the functions implemented in other parts of application, but any of other parts is not

depends from BoDyTool.exe component. One can easily develop his own interface with

observance of calculation procedures restrictions, of course. There is a short list of

implemented operations given below:

BoDyTool.exe module file
Implements user interface functions, graph memory management

functions and calculation process management procedures.

QuadEqSolver.dll module file
Implement solution algorithms for matrix

quadratic equations.

QBDSolver.dll module file
Implement solution algorithms for normal and

improved calculation methods.

MatrixDLL.dll module file
Implements CMatrix class and its methods for creating a matrix object

Page 48 of 71

� User Interface functions (like as main menu support or work area data output

support)

� Data storage and memory management functions (for example the functions for

correct work area elements placement into the memory and others)

� Input/output to disk support (like as data saving to or data loading from file

procedures)

� Calculation process management functions (for example multi-threaded calculation

management procedures)

� Data checking procedures (for example functions for checking the QBD process for

correctness)

� Some more internal functions.

5.3 MatrixDLL.dll module file description

MatrixDLL Dynamic Link Library is a primary component of application. Every other

components use the implementation of CMatrix object class. This C++ class describes the

standard mathematical matrix object and its available methods as addition of two matrixes

and so on (the implementation of this class based on R. Allen code [13], but the most part

of this code was rewritten). In this section of paper this program component will be

described in all details.

Let start from definition of this class – it should be exactly like this:

class AFX_EXT_CLASS CMatrix : public CObject

Pay attention to prefix “AFX_EXT_CLASS” which means that this class can be exported

from this DLL by other program components.

The implementation of matrix object, like as memory management, the number of signs in

matrix element (accuracy), the maximum dimension of one matrix and so on can be easily

redone by any third-part developer, but this class should support the following methods:

� CMatrix(); - a default constructor for matrix object, which creates an empty

matrix.

� CMatrix(const CMatrix &other); - so-called copy constructor, which creates a

matrix and copies the information from CMatrix &other matrix object to newly

created matrix.

Page 49 of 71

� CMatrix(int nCols, int nRows) ; - this constructor should create a zero-filled

matrix with nCols number of columns and nRows number of rows in it.

� CMatrix(int n, bool set_diagonal = true); - this constructor creates a square

matrix with nxn size filled with zeros, if parameter set_diagonal will be equal to 1

the diagonal elements of such matrix should be equal to 1, therefore the identity

matrix will be obtained.

� virtual ~CMatrix(); - a destructor for CMatrix object which destroys earlier

created matrix.

� CMatrix& operator=(const CMatrix &other) ; - this function should perform an

BA = operation, where A and B are matrixes

� CMatrix operator+(const CMatrix &other) const ; - this is an implementation of

matrix addition operation, i.e. BAC +=

� CMatrix operator-(const CMatrix &other) const ; - - this is an implementation

of matrix subtraction operation, i.e. BAC −=

� CMatrix operator*(const CMatrix &other) const ; - this function should

implement a matrix by matrix multiplication operation, i.e. BAC ⋅=

� void operator+=(const CMatrix &other) const ; - this function should implement

a special C++ operation += which means that ACC +=

� void operator-=(const CMatrix &other) const ; - this function should implement

a special C++ operation -= which means that ACC −=

� void operator*=(const CMatrix &other) const ; - this is an implementation of

special C++ operation *= which multiplies matrix by matrix, i.e. ACC ⋅=

� void operator*=(double a) ; - this is an implementation of special C++ operation

*= which multiplies matrix by constant, i.e. aCC ⋅= where a is a constant

� bool operator==(const CMatrix &other) const ; - it is an equality verifying

operator which checks if BA = or not. In first case this operator returns 1, in

second – value 0.

� void Serialize(CArchive& archive) ; - this input/output function should store to

disk or load from disk the matrix object by using the MFC object archive.

� bool SetElement(int nCol, int nRow, double v) ; - this function should set new

value v for matrix element which locates at nCol position by columns and nRow

position by rows.

Page 50 of 71

� double GetElement(int nCol, int nRow) ; - this function should return a value of

matrix element which locates at nCol position by columns and nRow position by

rows.

� inline int GetNumColumns() const; - this procedure returns number of columns

in the given matrix.

� inline int GetNumRows() const; - this procedure returns number of rows in the

given matrix.

� double SumColumn(int col) const ; - this function should return a sum of

elements in column number col of given matrix

� double SumRow(int row) const ; - this function should return a sum of elements

in row number row of given matrix

� double GetDeterminant(void); - the result of proceeding this function will be a

determinant value of the given matrix. The standard recursive algorithm was

implemented in this procedure.

� CMatrix GetTransposed() const ; function and void Transpose() ; simply

transposes the given matrix.

� CMatrix GetInverted() const ; and void Invert() ; functions looks for inverted

matrix for current matrix and contains two part – the procedure which calculates a

normal inverted matrix and a procedure which calculates a general inverse group in

case of determinant of source matrix equals to zero (a singular case). The first type

of algorithm is well known and there is no need to discuss it in this paper, the

second one is not so commonly used. To implement the general inverse group

calculation function the article [6] was used where the method for obtaining #Φ

was given.

� CMatrix GetConcatinatedColumns(const CMatrix& other) const; and void

ConcatinateColumns(const CMatrix &other) ; procedures concatenate two

matrixes into one by column splicing, i.e. in case we have two matrixes A and B

with dimensions mxl and mxn the result matrix C dimensions will be mx(l+n). It

can be drawn schematically as follows BAC ∴= where operation ∴ means

columns concatenation.

� CMatrix GetConcatinatedRows(const CMatrix& other) const ; and void

ConcatinateRows(const CMatrix &other) ; functions makes the same operations

as functions described above but for matrix rows.

Page 51 of 71

� CMatrix SolveLinearSystem(const CMatrix &b); the most important function in

this class which solves the system of linear equations by Gauss method. This

method is quite slow, but it is suitable for solving the described QBD system tasks

due of the small amount of equations, however any other method, like LU, can be

implemented in this function.

� CMatrix ExtractSubMatrix(int cs, int rs, int csize, int rsize) const ; it is a

mostly used function in the program, it extract a submatrix from the given matrix.

The newly extracted submatrix will be as follows:

�
�
�

�

�

�
�
�

�

�

=

+++

+

csizecsrsizerscsrsizers

csizecsrscsrs

aa

aa

A

,,

,,

�

���

�

 where cs, rs, csize, rsize are the incoming

function parameters, which describes the start element position and number of rows

and columns to extract from the source matrix.

� double GetInfNorm(void); this function returns the calculated infinity norm of the

given matrix. The formula for calculating such norm is as follows:

=

=
n

i
ij

j
al

1

max (5.1)

� CMatrix GetInPow(int MatrixPow); and void InPow(int MatrixPow); functions

calculate the power of the current matrix, where MatrixPow parameter is needed

value of power. Due of much number of calls for this procedures, the improved

algorithm of power calculations, offered by Valery Naumov [10] was used:

Page 52 of 71

Figure 31: Improved algorithm of power calculations representation.

Page 53 of 71

Here k parameter (in our case it is equal to MatrixPow value) describes the value

of needed power, R matrix is a source matrix and X matrix is a result matrix, i.e.

kRX = .The described algorithm allows to decrease the time of power calculations

significantly, therefore the time, required for task solution decrease significantly

too.

• int GetLastMatrixErrorCode(void); this function returns the last error code of

mistake, occurred during performed operation, see list of all error codes below.

• bool IsEmpty(void); the last one function in this class returns 1 in case the given

matrix is empty (there was no any kind of operations with this matrix yet),

otherwise this function returns 0.

There are some error codes implemented in this DLL, they are:

• OPERATION_OK – operation was performed successfully, no errors were

found.

• WRONG_MATRIX_FILE_FORMAT – this error shows, that during

loading process the serialization function found that input file has wrong

format, therefore there is no any possibility to continue matrix loading

procedure.

• MATRIX_IS_NOT_SQUARE error code appears during attempting to

apply some functions to non-square matrix, for example during determinant

calculation procedure.

The interface module can use this error codes to inform user about error occurred.

As it was mentioned above all of other application components uses this class,

therefore any changes which will be done in this Dynamic Link Library will directly

affect on another parts of program. Due of this fact the developer, who modifies this

part of application, should be very careful.

5.4 QuadEqSolver.dll module file description

QuadEqSolver application part is a special library, which solves different types of

matrix quadratic equations by using iteration methods. This Dynamic Link Library uses the

CMatrix object implemented in MatrixDLL.dll component and used by QBDSolver.dll

Page 54 of 71

module. This DLL is also so-called extensional DLL and implements a class which

performs the described functions. This class can be exported by any external program

components.

As in the previous section, let start from definition of the class implemented in this

library– it should be exactly like this:

class AFX_EXT_CLASS CQuadraticEquationSolver

Pay attention to prefix “AFX_EXT_CLASS” which means that the class

CQuadraticEquationSolver can be exported from this DLL by other program

components.

The destinations of this class are to manage memory for input parameters and obtained

results and for supporting quadratic equation solution procedures. One can redone any of

implemented algorithms, but this class should support the following C++ methods:

• CQuadraticEquationSolver(); - a default constructor which constructs the

implemented into library class and initializes all variables to proper default values.

• virtual ~CQuadraticEquationSolver(); - a default destructor, which destroys an

existing object and releases memory.

• void SetMatrixA(CMatrix NewMatrixA); - this implemented method sets the

elements in matrix A to be equal to input parameter matrix NewMatrixA for a

further task solution.

• void SetMatrixB(CMatrix NewMatrixB); - the same as in the previous case, but

for matrix B

• void SetMatrixC(CMatrix NewMatrixC); - the same as in the previous case, but

for matrix C

• void SetTaskType(int NewTaskType); - this function sets the type of the task to

be solved. The description of available task types goes below.

• CMatrix SolveTask(void); - the most important function in this class. This

procedure solves a task, with type and input parameters specified earlier.

Here the description of all task types and implemented algorithms will be given:

There are three types of tasks supported by given Dynamic Link Library, they are:

Page 55 of 71

02 =⋅+⋅+ CRBRA (5.2)

This is a standard matrix quadratic equation, where unknown matrix is R, lets

define this task as “Left type task”.

02 =⋅+⋅+ RCRBA (5.3)

This equation is close to (5.2) the difference is only in location of unknown matrix

R .Lets define this task as “Right type task”.

1)(−+−= AVCBV (5.4)

1)(−+−= CWABW (5.5)

This is a special type of tasks, needed for improved calculations method

implementation (Naumov’s algorithm for single QBD process in this case [5]). The

equations (5.4) and (5.5) solves simultaneously in one iteration algorithm, because

there is no need to separate these two quadratic equations into two independent

tasks.

 It is easy to see that the left type and right type tasks can be solved by using

the same method, because (5.2) task can be obtained from (5.3) task by transposing

all of summands.

 The algorithm for solving (5.2) is a Logarithmic Reduction algorithm [11]

which can be represented as follows:

Page 56 of 71

where matrixes A,B,C is an input parameters for the described above task and

matrix R is a result matrix.

For solving a 1)(−+−= AVCBV and 1)(−+−= CWABW tasks a little bit modified

method was used, however it is very similar to the previous one.

BN =

AL =

CM =

do

 LNX ⋅−= −1

 MNY ⋅= −1

 YLZ ⋅=

 XMT ⋅=

 FINISHTandZif)()(εε ≤≤
∞∞

 ZVV +=

 TWW +=

 TZNN ++=

 XZL ⋅=

 YMZ ⋅=

 ZM =

while not FINISH

BVV +=

BWW +=

1−−= VV

1−−= WW

where matrixes A,B,C is an input parameters and matrix V and W are result

matrixes. As it was mentioned above the result of the solution equations (5.4) and

(5.5) can be obtained in one iteration method simultaneously.

 Also in each method the maximum iteration constant was implemented. This

constant allows to avoid cases, when a too high accuracy value was set and

programs tries to reach this high accuracy solution by increasing the used cycles

number, therefore answer obtaining procedure takes a lot of time. By default this

Page 57 of 71

maximum iteration count constant equals to 1000 – it is far enough for solving the

most part of tasks.

 After the solution was obtained it will be returned by given function in case

of right or left type tasks; however obtained V and W values should be returned by

calling the GetResultVW function.

• void GetResultVW(CMatrix &MatrixV,CMatrix &MatrixW) ; - this function

returns the answers of (5.4) and (5.5) tasks after they were obtained.

• int GetLastError(void); - this method returns the code of last error occurred

during solving a task. See a list of available error codes below.

• void SetAccuracyConstant(double NewAccuracyConst); - this procedure sets a

new accuracy constant for all calculations methods (see ε value in SolveTask

function).

There are a list of available error codes were implemented in this library, they are:

• OPERATION_OK – operation was performed successfully, no errors were

found.

• MATRIX_B_HAS_DET_0– this error can appear during calculation

process in case if on some step the determinant of matrixes S or N

correspondingly to two described algorithms will be equal to zero, therefore

it is impossible to calculate the inverted matrix S or N.

• MAX_ITERATION_NUMBER_REACHED error code appears in case

of reaching the maximum number of iterations in described algorithms

without obtaining any solution.

Though these errors theoretically can appear there was no any case of such kind of

errors in practice during development process, however it is better to call the

GetLastError function after calculations were finished and check the error code

always.

5.5 QBDSolver.dll module file description

The last one application component which should be described is QBDSolver.dll file.

This file is also a special library which performs the task solution process by using the

input data and returns an obtained result. This Dynamic Link Library uses the CMatrix

Page 58 of 71

object implemented in MatrixDLL.dll component and CQuadraticEquationSolver

component for solution some matrix quadratic equations which allocated in

QuadEqSolver.dll module. This DLL is also so-called extensional DLL and implements a

class which performs the described functions, therefore this class can be exported by

program interface.

As always, let start from definition of the class implemented in this library– it should

be exactly like this:

class AFX_EXT_CLASS CQBDTaskSolver – this means that the class

CQBDTaskSolver can be exported by external objects (BoDyTool.exe application in our

case). There are no any classes for external usage in this library, but there exist two special

structures for transferring the data about each QBD process and each QBD connection,

which are also should be accessed outside.

The destinations of this class are to manage memory for inputted from user interface

module data, to control the process of task solution and to return a result after all

calculations were finished. As in previous cases one can redone any of implemented

algorithms and functions, but this class should support the following C++ methods:

• void SetMatrixQForNormalMethod(CMatrix NewMatrixQ); - this function sets

the matrix Q for solving a task by using a normal method. Note, that matrix Q

generates by user interface, because this operation does not require any calculations

and there is no any improvements there.

• void SolveTaskWithNormalMethod(void); - this procedure solves a task with

using normal method (Gauss method for solving a system of linear equations) for

transferred earlier matrix Q. The equation, which will be solved by this method is

as follows:

0=pQ (5.6)

where matrix Q is a generator matrix for the whole system and p is unknown vector

which should satisfy to the normalizing condition

1=pe (5.7)

After obtaining a solution it can be transferred back by using GetResult method in

case of error absence. Note, that this method of solution is not optimized and takes

a long time to receive any result, so it is not recommended to use it for solving big

Page 59 of 71

tasks with high QBD length parameter – for such type of tasks it is better to use an

improved solution method.

• void SetQBDChainLength(unsigned int NewQBDChainLength); - this function

starts a new calculation process and should release all memory, used for previous

solution, as well, as to allocate a memory for new QBD processes data. The number

of such QBD processes transfers in NewQBDChainLength parameter.

• void SetNewQBDParameters(CQBDDataTransferStruct NewQBDData); - this

functions transfers the data for some QBD process by using special

CQBDDataTransferStruct structure to the calculation component from user

interface. The transferred data should be stored into memory by proper procedures

in this method. Also it is possible to perform some precalculations in this function,

for example, the default version of this procedure performs step 1 of algorithm,

described in section 2, by using the CQuadraticEquationSolver class stored in

QuadEqSolver.dll

• void SetConnectionChainLength(unsigned int NewConnectionChainLength); -

this function is similar to SetQBDChainLength method, i.e. it also should free any

previously used memory for QBD connections data and should allocate a new

portion of memory for storing the properties of QBD connections which will be

transferred later. The number of such QBD connections is in input

NewConnectionChainLength parameter.

• void SetNewConnectionParameters(CConnectionDataTransferStruct

NewConnectionData); - this function, as in case of SetNewQBDParameters

function stores a transferred from user interface QBD connection data by using a

special CConnectionDataTransferStruct structure, which fills by external

application component, into memory. Also it is possible to perform some

precalculations in this method, if needed.

• void SolveTaskWithImprovedMethod(void); This is a heart of described

component, i.e. this function solves the given task with previously set parameters

by using the improved method. The procedures, which performs here are steps 2) –

8) of the algorithm, described in section 2.

• int GetLastError(void); - this function returns an error code of last error occurred

during solution process or during memory allocation procedures. See a list of

available error codes below.

Page 60 of 71

• CMatrix GetResult(void); function returns a result of calculations (steady state

probability vector) in form of vector. The result vectors for both implemented

methods of solution, i.e. normal and improved methods, should be the same.

• void SetAccuracyConst(double NewAccuracyConst); method sets new accuracy

constant for solution process. This constant will be used by all stages of

calculations, therefore this value should be transferred to another computation

modules by calling the appropriate functions.

There are a list of available error codes were implemented in this library, they are:

• OPERATION_OK – operation was performed successfully, no errors were

found.

• NO_MORE_MEMORY– this error appears in case of application was

unable to receive a required amount of memory. The calculations should be

stopped after this error.

• WRONG_TASKMATRIX_DIM – this is an error code for debugging

purposes mostly, it shows that during solution process some matrix had

wrong dimensions; therefore the solution can’t be obtained.

• ABORTED_BY_USER – in some stages of calculations the user activity

can be required (for example a notification about wrong QBD process data

and so on), this error code is a notification to main user interface that user

aborted calculations.

Note, that it is necessary to call the GetLastError function after each operation

performed, because of memory allocation procedures existence.

As it can be easily seen this module manages and performs whole solution

procedures or calls for them another components, therefore during a new method

development process it is possible to create some addition libraries with some

required functions implemented in them. For example the QuadEqSolver.dll

module can be easily separated to two independent components with special

equation type solution procedure in each.

Page 61 of 71

5.6 Dynamic Link Libraries description

Only main things about DLLs will be presented here. This section does not give an

answer to the question like “how to create a DLL?”, for more information consult the

documentation of the language that you are using and MSDN website [12].

An MFC extension DLL is a DLL that typically implements reusable classes

derived from existing Microsoft Foundation Class Library classes. Extension DLLs are

built using the dynamic-link library version of MFC (also known as the shared version

of MFC). Only MFC executables (either applications or regular DLLs) that are built

with the shared version of MFC can use an extension DLL. With an extension DLL,

you can derive new custom classes from MFC and then offer this “extended” version of

MFC to applications that call your DLL.

Extension DLLs can also be used for passing MFC-derived objects between the

application and the DLL. The member functions associated with the passed object exist

in the module where the object was created. Since these functions are properly

exported when using the shared DLL version of MFC, you can freely pass MFC or

MFC-derived object pointers between an application and the extension DLLs it loads.

The main reason to use the extension DLLs in the BoDyTool was to implement a

reusable class, which describes matrices and matrix operations. The definition of the

CMatrix class looks as class AFX_EXT_CLASS CMatrix : public CObject

Therefore to create a new class for description of matrices you should add the

AFX_EXT_CLASS prefix to the class definition.

Note that you should not change the functions names, the functions arguments, the

functions return values and the class members types and names, because these

statements are used throughout the program, and any changes can lead to undesirable

consequences.

6. PRACTICAL ASSIGMENT.

In this section we will describe the results obtained during testing procedures and compare

the accuracy and calculation speed with XTelpack tool and two implemented methods

between each other.

Page 62 of 71

As it was mentioned above no one of the existing applications can perform full set of the

available task type’s solutions, but anyway all of such applications are able to solve any

task for single QBD process. Although such tasks do not allow to demonstrate a developed

application availabilities in full details, they allow to compare the accuracy and solution

time for the same job, at least.

Due of XTelpack is an application which works on a very powerful server the time, needed

for performing calculations is very low and approximately equals to zero independently

from task, on the other hand the BoDyTool application is a stand-alone program which

works on a single user computer, therefore it was decided to compare the time required for

solution obtaining for two implemented algorithms, i.e. normal solution method and

improved solution method (Valery Naumov’s “Modified Matrix Geometric Algorithm” [5]

in this case).

 All of the tests were performed on a typical Intel Pentium III 450 MHz computer with 256

MB of Random Access Memory and Windows XP SP1 operation system installed.

A single QBD process with variable QBD length parameter and 2x2 internal dimension

(the dimension of matrix B is 2x2) was taken as a test task for measuring accuracy and

speed of calculations.

The time, needed for solution obtaining is represented on the next figure:

Solution Time

0

10

20

30

40

50

60

70

80

90

50 100 150 200 250
QBD length parameter

S
ec

on
ds

Improved Solution Time

Normal Solution Time

Figure 32: Time, required for solution obtaining in case of single QBD process task.

Page 63 of 71

Such results are very predictable, because normal solution algorithm requires the matrix Q

for the whole system generation (and in case of QBD length parameter equal to 250 the

dimensions of such matrix will be 502x502 elements), as well as solution of system of

linear equations where the amount of equations is equal to matrix Q dimensions (i.e. 502 in

our case). Therefore such method is suitable only for tasks with small QBD length

parameter; otherwise the solution process will require a huge amount of memory and a lot

of CPU cycles. The improved method does not require matrix Q for solution, therefore the

amount of required memory is low, but number of equations (and a solution time,

therefore) depends greatly from internal dimension parameter and number of QBD

processes in the task. Anyway improved algorithm presented an excellent result by

calculation speed – in case of QBD length parameter equals to 250 Naumov’s method

obtained a solution in 16 times faster than normal algorithm.

During the accuracy of solution tests the default accuracy parameter from the XTelpack

tool was used as a required precision value for both implemented methods and was equal

to 1e-8. Due of QBD length parameter affects greatly on solution process and, therefore

allows to check the result precision dependency from the number of performed cycles, it

was decided to perform the same set of tests, i.e. the QBD length parameter was varied

from 50 to 250 for single QBD task. The results were as follows: the difference between

answers in normal method, improved method and solution, obtained by XTelpack tool

(Logarithmic Reduction method was used in this test) was not greater than 1e-7. Such

results allow to say that the accuracy of considered methods is almost the same, therefore

two implemented algorithms are suitable for real tasks solution.

Page 64 of 71

7. CONCLUSIONS

In this paper a description of developed application for solving a Quasi Birth Death

processes system was given. This program does not have any known and available for

public use analogues in the world, therefore it is possible so say that this application is

unique. How it was mentioned above this application allows to solve a special set of tasks

needed for communications system analysis, for example for analyzing a packet delays

across GPRS/GSM networks. Due of the implemented Valery Naumov’s “Modified Matrix

Geometric Algorithm”, the calculation speed was totally increased against a normal

calculation method. The accuracy of the described improved method was nearly the same

as in normal calculation process.

A fully tested application which performs all of the described operations was developed by

using Visual C++ 6.0 language and this program demonstrated very good results

comparing to another applications, which allows to solve some of the cognate tasks.

The fully detailed description of the program and some of input and output data files

examples was provided.

The application architecture description in details with each component specification was

given. All of the implemented algorithms with some notes about their modifications or

improvements were described also. Due of this one can change any part of calculation

process in order to increase speed or accuracy of computations or even to implement his

own calculation method.

Due of application unique it can be applied in different domains of communication system

tasks and due of component-based architecture mentioned domain of tasks for the given

program can be easily expanded by implementation of new algorithms.

Page 65 of 71

8. FUTURE WORK

The further work is to use this application during computations of a set of special

communication systems tasks at the Laboratory of Telecommunications. Also it is planning

to extend some previously implemented algorithms and methods of solution in order to get

a really multifunctional tool which will be able to solve a wide range of tasks. One more

thing which might be needed in future is a some time critical source code implementation

by using another more fast code execution language, for example Microsoft Assembler.

The next possible step of application improvement is to port the program to another

platform, like as Unix/Linux systems.

Page 66 of 71

REFERENCES

[1] D. Dyakov. Spectral Analysis of Buffers in Communication Systems. Master Thesis,

Lapeenranta University of Technology, 2003.

[2] V.L. Wallace. The Solution of Quasi Birth Death and Death Processes Arising from

Multiple Access Computer Systems. PhD thesis, University of Michigan, 1969.

[3] D. Bini, B.Meini. Improved Cyclic Reduction for Solving Queuing Problems.

Numerical Algorithms, Vol. 15, 57-74, 1997.

[4] G. Clardo, E. Smirni. ETAQA: an Efficient Technique for the Analysis of QBD

Processes by Aggregation. Performance Evaluation, Vol.36, 71-93, 1999.

[5] V. Naumov. Modified Matrix-Geometric Solution for Finite QBD Processes, in

Advances in Algorithmic Methods for Stochastic Models. Notable Publications Inc., 2000.

[6] K. Manjunatha Prasad, R.B. Barat. General Inverses Over Integral Domains II. Group

Inverses and Drazin Inverses, Linear Algebra Appl., Vol. 146, 31-47.

[7] A. Riska. Aggregate Matrix-analytic Techniques and their Applications. PhD Theses,

College of William and Mary, Williamsburg, VA, 2003.

[8] MAMSolver application official website, http://www.cs.wm.edu/MAMSolver/

[9] Telpack Version 2 application official website, http://www.sice.umkc.edu/telpack/

[10] V. Naumov. Numerical Methods for Markovian Systems Analysis, The UDN Press,

Moscow, 1985 (in Russian).

[11] U.R. Krieger, V. Naumov. Analysis of a Versatile Queuing Model with State-

Dependent Service Times, in Measurement, Modeling and Evaluation of Computer and

Communication Systems. VDE – Verlag Berlin, 1999.

Page 67 of 71

[12] Microsoft Developer Network official website, http://www.msdn.microsoft.com/

[13] R.Allen Visual C++ CMatrix class implementation,

http://www.codeproject.com/cpp/matrixclass.asp?target=CMatrix

Page 68 of 71

APPENDIX 1. An example of input file with data for one
QBD process.

%This is an example of QBD matrixes input file
QBD PROCESS LENGTH = 50 %This parameter describes the QBD queue length

START MATRIX: A0 %A0 matrix header
0, 0
1, 1
2, 1
END MATRIX %End of matrix A0

START MATRIX: B0 %B0 matrix header
-3, 1, 2
2, -4, 1
1, 4, -8
END MATRIX %End of matrix B0

START MATRIX: C0 %C0 matrix header
0, 2, 0
0, 1, 3
END MATRIX %End of matrix C0

START MATRIX: A %A matrix header
0, 1
2, 1
END MATRIX %End of matrix A

START MATRIX: B %B matrix header
-2, 3
4, -1
END MATRIX %End of matrix B

START MATRIX: C %C matrix header
2, 0
1, 3
END MATRIX %End of matrix C

START MATRIX: AM %AM matrix header
0, 1
2, 1
END MATRIX %End of matrix AM

START MATRIX: BM %BM matrix header
-4, 2
4, -8
END MATRIX %End of matrix BM

START MATRIX: CM %CM matrix header
2, 0
2, 3
END MATRIX %End of matrix CM

Page 69 of 71

APPENDIX 2. An example of input file with boundary data
for one QBD process.

%This is an example file, which contains the example how to create a boundary conditions matrix
file
%This file is for AM BM CM Boundary conditions

START MATRIX: AM %AM matrix header
1, 1, 1, 1
1, 1, 1, 1
1, 1, 1, 1
1, 1, 1, 1
END MATRIX %End of matrix AM

START MATRIX: BM %BM matrix header
-20, 1, 1, 1
1, -20, 1, 1
1, 1, -20, 1
1, 1, 1, -20
END MATRIX %End of matrix BM

START MATRIX: CM %CM matrix header
1, 1, 1, 1
1, 1, 1, 1
1, 1, 1, 1
1, 1, 1, 1
END MATRIX %End of matrix CM

START CONNECTION %Starting to describe the outgoing transaction matrixes
IS CONNECTION ENDS AT START = 1 %This transaction ends at B0 of another QBD Process
CONNECTED TO QBD NUMBER = 2 %This transaction ends at QBD #2
START MATRIX: OUTGOING %Transaction Matrix starts here
1, 1, 1
1, 1, 1
1, 1, 1
1, 1, 1
END MATRIX %Transaction Matrix ends here
END CONNECTION %Transaction (Connection) description ends here

START CONNECTION %Starting to describe the outgoing transaction matrixes
IS CONNECTION ENDS AT START = 0 %This transaction ends at BM of another QBD Process
CONNECTED TO QBD NUMBER = 4 %This transaction ends at QBD #4
START MATRIX: OUTGOING %Transaction Matrix starts here
1
1
1
1
END MATRIX %Transaction Matrix ends here
END CONNECTION %Transaction (Connection) description ends here
%End of all file

Page 70 of 71

APPENDIX 3. An example of output file with solution
result.

%This is a file, which contains the results of task calculations.
%The QBD number described the QBD the answer belongs to
%The Xi describes the probabilities to be in the given condition.

The probability, that system is in idle condition:
0.01082

--------->>>>------------------------<<<<<--------------
The following results is for QBD # 1:
The mean length of queue:
0.260205
X0 :
0.006392999999999999
0.009675999999999999
X1 :
0.008033
0.009160999999999999
X2 :
0.009556
0.011764
X3 :
0.016424
0.020023

--------->>>>------------------------<<<<<--------------
The following results is for QBD # 2:
The mean length of queue:
1.41047
X0 :
0.031641
0.023795
0.024315
X1 :
0.021575
0.035023
0.028508
X2 :
0.022935
0.037289
0.030237
X3 :
0.024556
0.039963
0.031297
X4 :
0.029564
0.037339
0.034269

Page 71 of 71

--------->>>>------------------------<<<<<--------------
The following results is for QBD # 3:
The mean length of queue:
1.08032
X0 :
0.009058
0.007623
0.006544
0.005905
X1 :
0.008956
0.008956
0.008956
0.008956
X2 :
0.01063
0.01063
0.01063
0.01063
X3 :
0.012303
0.012303
0.012303
0.012303
X4 :
0.013977
0.013977
0.013977
0.013977
X5 :
0.023059
0.01979
0.009875
0.009875

--------->>>>------------------------<<<<<--------------
The following results is for QBD # 4:
The mean length of queue:
0.513022
X0 :
0.046637
X1 :
0.036062
X2 :
0.027837
X3 :
0.02144
X4 :
0.016465
X5 :
0.012595
X6 :
0.009585

