
Lappeenranta University of Technology

Department of Information Technology

Master’s Thesis

Reusable Bluetooth Networking Component for Symbian Operating System

The subject has been approved by the council of the Department of Information

Technology on April 10, 2002

Supervisor: Professor Jari Porras

Instructor: M.Sc. Kimmo Hoikka

Lappeenranta, September 1, 2002

Samuli Forsman

Kaivosuonkatu 6 A 1

FIN - 53850 Lappeenranta

Finland

+358 40 709 2521

samuli.forsman@iki.fi

 ii

ABSTRACT
Lappeenranta University of Technology

Department of Information Technology

Samuli Forsman

Reusable Bluetooth Networking Component for Symbian Operating System

Master’s Thesis

2002

84 pages, 31 figures, 8 tables and 3 appendices

Supervisor: Professor Jari Porras

Keywords: software reuse, software components, software design, Bluetooth,

Symbian

This thesis presents different aspects of software reuse, introduces Symbian OS, which is

an operating system for wireless information devices, and presents the essentials of

wireless Bluetooth technology. The practical part of work was to design and implement a

Symbian OS based reusable software component for Bluetooth networking.

The benefits of software reuse are very substantial. Reusable software components

improve the quality and performance of software. Development-cycle of software products

can be shortened significantly and the overall costs of development can be lowered when a

reuse program has been efficiently adapted to software development. Nevertheless, several

obstacles complicate successful software reuse. Lack of resources, training and attitudes

are just mentioned as few examples.

Bluetooth technology is currently maturing; more Bluetooth enabled devices have entered

the market during last two years and the need for BT applications is clearly increasing.

Therefore, developing reusable Bluetooth component for Symbian OS makes sense.

Component contains the basic functionality needed for BT communications between two

devices.

 iii

TIIVISTELMÄ
Lappeenrannan teknillinen korkeakoulu

Tietotekniikan osasto

Samuli Forsman

Uudelleenkäytettävä Bluetooth-ohjelmistokomponentti Symbian-käyttöjärjestelmälle

Diplomityö

2002

84 sivua, 31 kuvaa, 8 taulukkoa ja 3 liitettä

Tarkastaja: Professori Jari Porras

Hakusanat: ohjelmistojen uudelleenkäyttö, ohjelmistokomponentit,

ohjelmistosuunnittelu, Bluetooth, Symbian

Tässä diplomityössä käsitellään eri näkökulmia ohjelmistojen uudelleenkäyttöön sekä

esitellään perustiedot langattomiin laitteisiin käytettävästä Symbian-käyttöjärjestelmästä ja

langattomasta Bluetooth-teknologiasta. Työn käytännön osuudessa suunniteltiin ja

toteutettiin uudelleenkäytettävä Bluetooth-ohjelmistokomponentti Symbian-

käyttöjärjestelmälle.

Ohjelmistojen uudelleenkäytön edut ovat erittäin selkeitä. Uudelleenkäytettävät

ohjelmistokomponentit parantavat ohjelmiston laatua ja suorituskykyä.

Ohjelmistotuotteiden tuotekehityssykliä voidaan lyhentää merkittävästi ja kehitystyön

kokonaiskustannuksia voidaan alentaa tehokkaalla uudelleenkäyttöohjelmalla. Kuitenkin

uudelleenkäytöllä on myös esteitä, esimerkkeinä näistä ovat mm. resurssien puute,

koulutus sekä uudelleenkäytön vastaiset asenteet.

Bluetooth-teknologia on kypsynyt viimeisen kahden vuoden aikana, kun markkinoille on

tullut yhä enemmän Bluetooth-laitteita ja niitä käyttäviä sovelluksia. Kehitetty

komponentti tarjoaa perustoiminnallisuudet Bluetooth-yhteyksien muodostamiselle ja

datan siirtämiselle laitteiden välillä.

 iv

PREFACE

My “career” with computers started on Christmas 1988 when my parents bought me

Commodore 64, a sensational and advanced home computer of that time. At first, it was

just for playing games but later on, also programming started to interested me. In the

beginning of 1990’s I bought my own PC and during high school I started to think that

maybe I could do my daily work with computers on some day... In 1995, on the last year of

high school, I decided to study Information technology in the Lappeenranta University of

Technology. Last five years have really been the best years of my life so far, but now it is

(finally) time to graduate ☺

I would like to warmly thank Kimmo Hoikka for instructing this thesis. He gave me

several good ideas and improvement proposals during the whole thesis process. Kimmo is

also a tremendous expert on software engineering and his instructions have helped many

employees of Digia several times. I thank also Jari Hakulinen for his comments to this

thesis.

Jari Porras, the supervisor of this thesis, is definitely worth of mentioning. Jari gave me

good guidance for making thesis. He has also the ability to teach students, which is a very

fine characteristic for a professor of university.

Finally, the biggest thanks go to my parents; they have always encouraged and supported

me to study.

“If you are indecisive, you’ll get nothing done.”

- Chinese proverb

 v

TABLE OF CONTENTS

1. INTRODUCTION ...1
1.1. Background information... 1
1.2. Goals of the thesis .. 1
1.3. Structure of the thesis ... 2

2. SYMBIAN OPERATING SYSTEM..3
2.1. Introduction .. 3
2.2. Symbian OS Generic Technology.. 5
2.3. Symbian OS user interfaces ... 7

2.3.1. Mobile phones with a numeric keypad - Series 60 Platform................................... 8
2.3.2. Mobile phones with touch screens – UIQ ... 9
2.3.3. Mobile phones with full keyboard and large screen - Crystal reference design 10

2.4. Communications subsystem... 11
2.4.1. Overview... 11
2.4.2. Client-server framework.. 12
2.4.3. Communications components ... 13
2.4.4. Serial communications server ... 14
2.4.5. Communications database... 15
2.4.6. Socket server ... 15
2.4.7. Telephony server ... 16
2.4.8. Messaging ... 17

3. SOFTWARE REUSE ..18
3.1. Introduction .. 18
3.2. Scope of reuse .. 18
3.3. Benefits of reuse... 19
3.4. Layered architecture ... 20
3.5. Software components ... 22

3.5.1. Definition .. 22
3.5.2. Component models.. 23
3.5.3. Symbian ECOM architecture .. 23

3.6. Commonality and variability analysis .. 24

 vi

3.7. Design principles.. 26
3.8. Design patterns... 28
3.9. Component production... 29

4. REUSE BUSINESS..31
4.1. Introduction .. 31
4.2. Obstacles of reuse... 31
4.3. Economics of reuse .. 34
4.4. Software reuse processes.. 35

4.4.1. AFE, CSE, ASE processes .. 35
4.4.2. Reuse organization .. 37
4.4.3. Adaptation of reuse program... 38
4.4.4. Digia Software Process and reuse ... 38

5. BLUETOOTH TECHNOLOGY..40
5.1. Introduction .. 40

5.1.1. Bluetooth - Peer-to-Peer communications technology .. 40
5.1.2. Service discovery .. 42
5.1.3. Connection establishment.. 42

5.2. Bluetooth protocol stack... 43
5.2.1. Radio, Baseband and Link Control Layer ... 44
5.2.2. Link Manager Protocol.. 44
5.2.3. Host Controller Interface... 44
5.2.4. Logical Link Control and Adaptation Protocol ... 45
5.2.5. RFCOMM ... 45
5.2.6. Service Discovery Protocol ... 45

5.3. Bluetooth profiles... 46
5.4. Bluetooth in Symbian OS... 47

6. SOFTWARE COMPONENT FOR BLUETOOTH NETWORKING49
6.1. Introduction to problem domain... 49
6.2. Component requirements ... 49
6.3. Architecture of component... 51
6.4. Design of component.. 52

6.4.1. Class hierarchy .. 52
6.4.2. Commonality and variability analysis ... 54
6.4.3. Design patterns.. 54

 vii

6.5. Component implementation ... 56
6.5.1. Development environment .. 56
6.5.2. Connection establishment procedure... 56
6.5.3. Datamanager ... 57
6.5.4. Metrics of the component.. 57

6.6. Component integration... 59
6.6.1. Reusing component ... 59
6.6.2. Testing application .. 60

6.7. Future development.. 61

7. CONCLUSIONS ..62

8. REFERENCES...64

Appendix 1: UML notation

Appendix 2: Public API of BT component

Appendix 3: Instantiation of component

 viii

LIST OF FIGURES

Figure 1: Owners of Symbian..3

Figure 2: Symbian OS GT and User Interface...5

Figure 3: Symbian OS architecture..5

Figure 4: Series 60 Platform, user interface and application platform for smartphones9

Figure 5: UIQ user interface for devices with touch screen ..10

Figure 6: Crystal reference design for devices with full keyboard and large screen...........11

Figure 7: Symbian OS Communications subsystem..14

Figure 8: Layered architecture and an example of dependencies between layers21

Figure 9: Symbian ECOM architecture ...23

Figure 10: Common and variable features of three applications in same application family

...25

Figure 11: Commonality and variability analysis..26

Figure 12: Example of cyclic dependency...27

Figure 13: Obstacles to the exploitation of software components.......................................33

Figure 14: Organization for reuse business ...37

Figure 15: Incremental adaptation of reuse ...38

Figure 16: Digia Software Process ..39

Figure 17: Bluetooth piconet ...41

Figure 18: Models for Bluetooth stack implementation ..43

Figure 19: Example of service record in service database...46

Figure 20: Bluetooth in Symbian OS...48

Figure 21: Architecture of Bluetooth component ..51

Figure 22: Class hierarchy for Networking API and Bluetooth implementation52

Figure 23: Examples of Bluetooth component’s design patterns ..55

Figure 24: Connection establishment procedure ...56

Figure 25: Example of data packet ..57

Figure 26: Screen captures of testing application..60

Figure 27: UML packages ...67

 ix

Figure 28: Class hierarchies in UML notation...67

Figure 29: Symbian OS C-class and its attributes and operations68

Figure 30: Sequence diagram ..69

Figure 31: Instantiation of Bluetooth component ..71

 x

LIST OF TABLES

Table 1: Building blocks of Symbian OS GT..7

Table 2: Aspects of software reuse ..19

Table 3: Example of design pattern: Adapter ..29

Table 4: Process model for software reuse ..36

Table 5: Main requirements for Bluetooth component..51

Table 6: Descriptions for classes of Bluetooth component ...54

Table 7: SCV analysis for Bluetooth component ..54

Table 8: Some technical metrics of Bluetooth component ..59

 xi

ABBREVIATIONS

Abbreviation Description

AFE Application Family Engineering

API Application Programming Interface

ASE Application System Engineering

BT Bluetooth

C32 Symbian OS Comms server

CDMA Code Division Multiple Access

CPU Central Processing Unit

CSE Component System Engineering

CSY Communications server module

DBMS Database Management System

DFRD Design Family Reference Design

DLL Dynamic Link Library

DSP Digia Software Process

EDGE Enhanced Data rates for GSM Environment

ESOCK Symbian OS Socket server

ETEL Symbian OS Telephony server

FHSS Frequency Hopping Spread Spectrum

GFSK Gaussian Frequency Shift Keying

GHz Giga Hertz

GPRS General Packet Radio Service

GSM Global System for Mobile communications

GT Symbian OS Generic Technology

GUI Graphical User Interface

HCI Host Controller Interface

HTTP Hypertext Transfer Protocol

HW Hardware

 xii

IMAP Internet Mail Access Protocol

IPC Inter-Process Communication

IPv4 / IPv6 Internet Protocol version 4 / 6

IrDA Infrared Data Association

ITC Inter-Thread Communication

J2ME Java version 2 Micro Edition

L2CAP Bluetooth's Logical Link Control and Adaptation Protocol

LAF Look-And-Feel

LDD Logical Device Driver

LMP Bluetooth's Link Manager Protocol

LOC Lines of Code

MAGIC Modular Architecture for Generic Interface Components

MIDP Java Mobile Information Device Profile

MMS Multimedia Message Service

MTM Message Type Module

OMA Open Mobile Alliance

OOM Out-of-memory

OS Operating System

P2P Peer-To-Peer

PDA Personal Digital Assistant

PDD Physical Device Driver

PIM Personal Information Management

POP3 Post Office Protocol version 3

PRT Symbian OS protocol module

RFCOMM Bluetooth's Serial line emulation protocol

RS232 Standard for serial communications

SCV Scope, commonality and variability analysis

SDK Software Development Kit

SDP Bluetooth's Service Discovery Protocol

 xiii

SIM Subscriber Identification Module

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SOS Symbian Operating System

SW Software

SyncML Technology for synchronizing the user data of wireless information device

TCP/IP Transmission Control Protocol / Internet Protocol

TSY Symbian OS Telephony server module

UI User Interface

UIQ User interface for Symbian OS version 7.0.

UML Unified Modelling Language

USB Universal Serial Bus

WAP Wireless Application Protocol

 1

1. Introduction

1.1. Background information

Software systems have grown enormously during last decades and they have spread all

over the modern world to our daily lives. Business and market drivers set demands for

software projects and fulfilling them require considerable development efforts. Therefore,

the significance of reuse has grown remarkably in software industry. Software reuse has

been efficiently enabled by design principles, patterns and component based systems. They

have also had a great influence on specifying, designing, implementing and testing modern

object-oriented software systems.

1.2. Goals of the thesis

This thesis work was done for Digia Inc. during spring and summer 2002. Digia is a

Finnish mobile software company established on 1997 and today Digia produces

technologies and software products for Symbian OS mobile phones. Currently Digia is

moving it’s own product development more towards component based software

development and this is one reason for the topic of this thesis. Therefore, the theoretical

part of the thesis handles software reuse related issues.

The other main topic of thesis is Bluetooth technology. The practical part of work was to

design and implement a reusable software component for Bluetooth networking in

Symbian OS environment. Symbian OS provides a socket based interface for all supported

communications bearers but there is also a clear need for an easier programming interface.

Usage of Bluetooth protocol implementation isn’t always so straightforward, by providing

the application developer an easier Bluetooth component, we can fasten the development

and make it significantly easier to enable Bluetooth and networking in applications.

 2

1.3. Structure of the thesis

The structure of this thesis is following: chapter 2 gives a brief introduction to Symbian

Operating System and also more detailed look for communication subsystem is presented.

Chapters 3 and 4 handle issues related to software reuse, its technical and nontechnical

aspects, component based software engineering and processes.

Chapter 5 includes basic information about wireless Bluetooth technology. Features of

Bluetooth protocol stack, BT profiles and Symbian OS Bluetooth interfaces are presented

in that chapter. Chapter 6 concentrates on the practical part of thesis; architecture, design

and implementation issues of reusable Bluetooth software component are handled there.

Chapter 7 is the last chapter of this thesis and it concludes the lessons learnt during thesis.

Unified Modelling Language (UML) is used as a notation language of component

architecture, class diagrams etc. in this thesis. UML notation as used in Digia’s software

projects and defined in Digia Software Process / 1 / is presented in appendix 1.

 3

2. Symbian Operating System

2.1. Introduction

Symbian is a British software company that develops Symbian Operating System

(formerly known as EPOC) for Wireless Information Devices, such as smartphones,

communicators and PDA’s. Symbian was established in 1998 and its main owners are

Ericsson, Nokia, Sony-Ericsson, Motorola, Psion, Siemens and Matsushita (Figure 1, / 24 /

). Company has offices in UK, Japan, Sweden and USA.

Figure 1: Owners of Symbian

Symbian OS is an advanced 32-bit operating system designed specially for demanding

requirements of smartphones and other wireless information devices. Currently available

Symbian OS mobile phones (Nokia 9210 communicator and Nokia 7650 smartphone) are

based on version 6.X of Symbian OS. Sony-Ericsson will participate also to Symbian OS

smartphone markets with its P800 smartphone during autumn 2002. P800 is based on the

newest version of operating system, Symbian OS version 7.0.

 4

The main characteristics that differenties Symbian OS from other major competitors

(Microsoft’s Windows CE and PalmOS) are open application environment, open standards

and interoperability, multitasking, flexible user interfaces and robustness / 2 / .

Open standards and environments are significant changes in commercial mobile phone

industry. For instance, Nokia started Open Mobile Alliance (OMA) in the end of year 2001

to form an open, interoperable environment for mobile devices, software and services in

the future / 3 / . Several players in mobile market have participated in OMA and Symbian

OS has a significant role in it as the main software platform for forthcoming mobile

services and applications.

From technical point of view, robustness, real multitasking and flexible user interfaces are

important characteristics of Symbian Operating System. These features are essential in

developing software for demanding environments such as mobile phones and other

wireless devices truly are. Applications in these devices may be up-and-running for several

weeks (even months) and during this time they must always be in stable state and the user-

data must not lost in any circumstance.

Flexible user interfaces are a major asset in Symbian OS. Symbian OS can be divided to

two main parts (Figure 2); Generic Technology (GT) and User interface (UI). Generic

technology forms the base for operating system features and User interface is just the

surface for applications. User interface contains the look-and-feel (=how application data is

shown to user and how application and its data are used) for applications and methods for

inputting user data. Each device manufacturer implements its own drivers for their

proprietary hardware.

 5

Figure 2: Symbian OS GT and User Interface

2.2. Symbian OS Generic Technology

Symbian OS Generic Technology offers the basic features and services for whole operating

system. In Figure 3 is presented the main building blocks of GT in Symbian OS version

7.0, a brief introduction to each one is in following table / 2 / .

Figure 3: Symbian OS architecture

 6

GT feature: Description:

Application Engines Several application engines for common Personal Information

Management (PIM) applications. Symbian OS version 7.0 contains

engines i.e. for agenda, contacts and office applications. Mobile phone

manufacturers or individual software developers can utilize these

engines in their PIM applications with their own individual user

interfaces.

SyncML engine can be used for synchronizing user data and Web

engine contains basic features for developing web browsers.

Messaging Symbian OS Messaging framework is used for messaging features

needed in modern smartphones. Multimedia Messages (MMS) and short

messages (SMS) are examples of framework services. Each messaging

feature is implemented as Message Type Module, which is further

presented on chapter 2.4.8.

Java Symbian OS supports two different versions of J2ME Java: Personal

Java and J2ME MIDP. The first one is intended for Communicator-type

devices (e.g. Nokia 9210) with bigger resources (screen, CPU, memory)

than ordinary smartphones.

J2ME MIDP is the choice for smartphones or other very memory-

constrained devices and it offers execution environment for midlets,

which are Java applications for J2ME MIDP enabled devices.

Application Framework The main subcomponents of Symbian OS Application Framework are:

• Application execution in separate processes

• Graphical User Interface framework for application UI

implementations, GUI framework also makes porting

application from one Symbian OS User Interface environment

to another easier

• Support for internationalisation of applications etc.

Personal Area Networking Symbian OS features for local networking. Technologies for these

purposes are Bluetooth, infrared and version 7.0 of operating system

offers also support for USB link cables.

 7

Multimedia Subsystem for multimedia features. Media server provides services for

audio and graphics related functionality.

Communications infrastructure Subsystem for all data communications related features. The main

components are:

• Communications database for system-wide information storage

• Servers for socket and serial communications

• IP networking support (IPv4 and IPv6)

• HTTP and WAP stacks

Security Symbian OS security framework includes cryptographic, certificate

management and secure software installation modules.

Telephony The subsystem for features needed in mobile phones. Symbian OS v7.0

supports i.e. GSM, GPRS, EDGE and CDMA technologies.

Base Subsystem that provides programming framework for all other

components of operating system. Kernel and User libraries, device

drivers and file server are the main building blocks of the base of

Symbian OS.

Table 1: Building blocks of Symbian OS GT

2.3. Symbian OS user interfaces

Symbian Operating System’s application framework has been designed so that only minor

changes should be needed when the user interface of application or even device itself

changes. The major application logic and several UI components are the same in different

versions; only the upper-most layer of user interface is replaced with UI component library

of particular reference design.

Until version 5 of Symbian’s operating system (EPOC Release 5, ER5), the only user

interface was called EIKON GUI, which was optimised for Psion’s PDA devices (large

screen and full keyboard). Symbian released new design family reference designs (DFRD)

 8

in version 6.0. These reference designs were Quartz for wireless information devices with

touch screen (palmtop devices) and Crystal for devices with large screen and full keyboard.

Currently there are no Quartz based devices in consumer markets. Nokia Communicator

9200 series utilizes Crystal reference design on its user interfaces; chapter 2.3.3 gives more

information about this.

Symbian released new user interface in OS v7.0, called UIQ. During year 2001 Symbian

itself concentrated more on GT features so the UIQ user interface has been developed in

co-operation of Symbian and Sony-Ericsson. Another current user interface framework is

Nokia’s Series 60 Platform. Both of these are presented briefly in next chapters.

2.3.1. Mobile phones with a numeric keypad - Series 60 Platform

Nokia announced in autumn 2001 that it is going to licence smartphone platform, called

Series 60 Platform, also for other mobile phone manufacturers. Series 60 is based on

Symbian OS v6.1 Generic Technology and the user interface called AVKON, and it is

specially intended for smartphones (small devices with only numeric keypad, see Figure

4). Series 60 Platform contains also some basic applications (e.g. Personal Information

Management, Synchronization, GSM telephony applications, etc.) needed in all mobile

phones. / 4 / / 31 /

The main reason for Nokia to licence the Series 60 Platform for its competitors is to ensure

that “the new brave mobile world” will be developed using common and open standards

and to ensure the interoperability between different devices and services. In addition, a fear

of Microsoft becoming too dominant player in mobile market has been obvious in Series

60 related business activities. Currently, many major mobile phone manufacturers have

showed their interest to licence Series 60 and to make smartphone products based on it (at

the moment i.e. Siemens and Matsushita (=Panasonic) have already licensed the platform).

Nokia’s first Series 60 based mobile phone is Nokia 7650 camera phone, which entered the

market on summer 2002.

 9

Figure 4: Series 60 Platform, user interface and application platform for smartphones

2.3.2. Mobile phones with touch screens – UIQ

Symbian and Sony-Ericsson in co-operation developed the user interface for the newest

version of operating system. It is called UIQ, and as the Series 60, it provides some basic

personal information management and messaging applications / 5 / . Touch screens are

often easier and faster to use, but on the other hand, they are more expensive to

manufacture than ordinary screens. Sony-Ericsson’s first UIQ product, Sony-Ericsson

P800 (Figure 5), will be launched to customer markets during autumn 2002.

 10

Figure 5: UIQ user interface for devices with touch screen

2.3.3. Mobile phones with full keyboard and large screen - Crystal

reference design

Nokia’s Communicator device family is currently the only device that utilizes Crystal

reference design (also known as Nokia Series 80 Platform) for Symbian OS user interface.

The reason for this is that devices with large screens and full keyboard are very expensive

to manufacture, this is also a natural reason for quite high prices in consumer markets.

However, large screen offers possibilities to develop applications that would be completely

unusable with smaller devices (e.g. web browsers).

 11

Figure 6: Crystal reference design for devices with full keyboard and large screen

2.4. Communications subsystem

2.4.1. Overview

Communications technologies can be divided into two main parts: transport technologies

and content technologies / 8 / . Transport technologies are used for transferring data

between communication peers. They involve communication media (physical component

that is used to transfer data signals, for example, a Bluetooth chip, an infrared transmitter

or a radio frequency module build on mobile phone) and communication protocols (rules

for communications between devices). Content technologies are more clearly visible for

 12

the end-user; these are e.g. messaging (email, SMS, MMS, etc) and WWW/WAP

technologies.

One of the main characteristics of communication is that it works asynchronically. There is

no guarantee how long it will take to transmit the data over the data link because

environment and other aspects have effect on performance of used communication link. On

this chapter, the main building blocks of Symbian OS communications subsystem are

presented. Client-server architecture is handled first, because it will have a significant role

in following communication systems.

2.4.2. Client-server framework

Client-server framework of Symbian OS is used for providing services for multiple

applications that operates on different processes. Server offers services and handles

resources that other applications use through client API. Many Symbian OS systems use

client-server framework, for instance, Window Server, File Server and communications

subsystem.

Process is the unit of memory protection and thread is the unit of execution. Each process

contains one or several threads. Clients and servers exist in separate processes; the

communication between clients and server is achieved by message passing or usage of

inter-thread communication (ITC). Kernel server is used to route these messages correctly.

The channel of communication between a client and a server is called as a session. One

client can have multiple sessions open simultaneously with any servers. However, for

efficiency reasons, often a client has only one session with a server, additional subsessions

are then used for several communication channels. / 7 /

All services offered by a certain server are defined as an API that is presented as header

(.H files) and library files (.LIB files) supplied by the vendor of the server. Client-server

framework is safe to use because errors in clients don’t harm the functionality of servers.

Accessing operating system's facilities using servers, instead of direct use of hardware

 13

specific or deep-level services, is safe and convenient also from the application

development point of view. For instance, clients don't need to know the exact hardware

device or software protocols that are used to provide the required service.

2.4.3. Communications components

One of the key characteristics of Symbian OS communication components is the high level

of dynamic extensibility. It means that a new hardware or new protocols can be added to

operating system without restarting the device. This is provided by run-time loading of

requested plug-in modules; these modules can be logical and physical device drivers

(LDD, PDD), communication controls (CSY’s), telephony modules (TSY’s), protocols

(PRT’s) or message type modules (MTM’s). / 8 / / 9 /

The major Symbian OS communications components and their main relationships are

presented in Figure 7 / 6 / . The main servers: Serial comms server, Socket server,

Telephony server and Messaging server are declared more accurately in following

chapters. Figure shows also clearly the layers of Symbian OS communications subsystem,

from applications to physical layer.

 14

Figure 7: Symbian OS Communications subsystem

2.4.4. Serial communications server

Serial communications server (C32) offers a serial port API to its clients. This application

programming interface provides services for any serial-like communication protocol to

appear as a serial port in Symbian OS. Serial communications server is used to access the

real serial communication over RS232 line and it provides so-called virtual interface, e.g.

for infrared (IrDA) and Bluetooth communications. This “virtual interface” means an

abstraction of a serial device that can be layered over any type of hardware.

To be able to use a serial port, the kernel has to be told to load a physical device driver

(PDD), which talks to a specific hardware port, and a logical device driver (LDD) that

 15

implements low-level port policy. These policies are, for example, flow control, buffer

management and interrupt service routines (ISR) / 8 / / 9 / .

The serial service provider API consists of two abstract classes: CSerial (a serial service)

and CPort, which presents an open and potentially shareable serial port / 9 / . Real serial

services consist of dynamically loaded Communication server modules (CSY files).

Normally, clients of Serial communications server (C32) don’t need any information of

individual communication server modules because it is asked to load active modules from

Communications database of operating system.

2.4.5. Communications database

Symbian OS Communications database is implemented using DBMS (Database

Management System) server and it is a central database for all communication related

information. This database makes possible to implement device independent and easy-to-

use communications components.

For example, an application that needs access to a serial service can consult the Comms

database to find out the default serial communication module to load. This module can be,

for instance, a standard RS232 serial line or a serial communication implementation of

infrared protocol. The key advantage of this communication architecture is that there is no

need for changing the original source code but all needed information can be loaded from

Comms database.

2.4.6. Socket server

Symbian OS Socket server (ESOCK) provides a BSD-like (Berkeley Software

Distribution) socket API to its clients. Protocol families are provided in specific protocol

modules (PRT files), currently e.g. TCP/IP, WAP, SMS, infrared and Bluetooth protocol

families are supported. / 8 / / 9 /

 16

For instance, in Symbian OS, TCP/IP protocol family implements following protocols:

• Transmission Control Protocol (TCP)

• User Datagram Protocol (UDP)

• Internet Protocol (IP)

• Internet Control Message Protocol (ICMP)

• Domain Name System (DNS)

All of these are defined in specific tcpip.prt file that can be loaded dynamically to be

used as a part of Symbian OS application.

The main classes of Socket server are RSocketServ, which is a session to the server and

RSocket that is the communication socket itself. RHostResolver is an interface for

making host name resolution queries (e.g. inquiring Bluetooth device addresses) and

RNetDatabase is an interface for network database access. / 10 /

2.4.7. Telephony server

ETEL is the Symbian OS Telephony server and it abstracts different kind of

telecommunication devices into a common application programming interface (API) that is

used by dynamically loaded telephony modules (TSY files). These devices could be, for

instance, modems, phones or various mobile phones. Features of each of these devices are

described in their own TSY files. / 8 / / 9 /

When Telephony server has loaded all available TSY's, a single client doesn't need any

information about individual telephony modules. When a client application needs some

telephony device, it requests the ETEL server to load the default TSY, which is specified

in Comms database. ETEL is just responsible for telephony management, the clients

control the actual transfer of information, and ETEL doesn’t participate in the data

transferring through the connection it has established.

 17

2.4.8. Messaging

The Messaging architecture provides a framework for creating advanced message client

applications with plug-ins that support variety of messaging protocols. These modules are

called Message Type Modules (MTM) and they wrap all needed functionality of lower

level communication protocols, such as TCP/IP.

Dynamic extensibility of the Messaging architecture is provided by the run-time loading of

Message Type Modules. As an example, a completely new mail protocol could be added to

an existing Email application, e.g. IMAP4 mail protocol functionality could be added for

using with earlier SMTP and POP3 features of the same application. / 8 / / 9 /

Message Type Modules aren't system wide components, so the information about them

isn't stored in the Comms database. The Messaging system maintains four registers, which

include lists of available MTM's and functions for loading and unloading the actual

dynamic link libraries (DLL) that include the wanted Message Type Modules.

Symbian OS application framework and subsystems of operating system offer patterns that

enable easier reuse. For example, as the socket interface is similar to different

communication medias (TCP/IP, infrared etc) the reusability aspects can be considered

during design and development of communication application. Next two chapters

introduce software reusability, its technical and nontechnical aspects.

 18

3. Software reuse

3.1. Introduction

Term reuse is defined in English dictionary in the following way: “To use again, especially

after reclaiming and reprocessing”. Reuse in software development is also as vast area as

described in earlier definition, although often it has been thought only reusing of old

source code in new software projects. For example, Ivar Jacobson’s definition for software

reuse is: Software artefacts are designed for use outside of their original context to create

new systems / 11 / .

Therefore, software reuse effects on every part of software process and even whole

software development organization as will be presented in following chapters. The

overview for the main issues of software reuse is given in this and next chapter. In chapter

three, the technical aspects of reuse are considered, from definition and architecture of

reuse to production of reusable software artefacts. Next chapter handles business and

process issues of reuse.

3.2. Scope of reuse

Reuse is often thought as reusing of the source code from previous projects using so-called

copy-paste coding, i.e. code skeleton from older project is copied and modified for the use

in new project. This method is also known as ad-hoc reuse. Software reuse is although

much larger concept. In following table there are different point-of-views to reuse / 12 / :

Aspect of reuse Definition Example

Substance

What can be reused?

Ideas, concepts, artefacts, components, procedures,

skills

Scope The form and scope of reuse. Vertical, domain-specific, horizontal, general-

purpose, internal, external, small-scale, large-scale

Mode Defines how reuse is executed Planned, systematic, institutionalised, ad-hoc,

 19

opportunistic, individual

Technique The approach that is used to

implement reuse.

Compositional, generative

Intention Defines how reusable elements

will be used.

Black-box, white-box, glass-box, as-is, by

adaptation, modified

Product Defines what is reused. Specification, architecture, design, source code,

documentation

Table 2: Aspects of software reuse

3.3. Benefits of reuse

Today more and more demands are set to software development. New software products

and upgraded versions of older ones should be on market more rapidly as ever before.

Great expectations have been placed to software reuse for helping on these demanding

tasks. Here are some of the apparent benefits of reuse in software development:

Quality

Reusable software components improve the overall quality of the software product.

Developed components are tested and integrated to new applications several times and

much more errors will be fixed comparing if the component would have been used just

once. The reliability and performance of several times reused component is likely to get

better. However, improved quality is achieved really only with reusable binary

components. Copy-paste reusing can often have a certain effect that also bugs are copied to

several software modules but the knowledge about their existence isn’t spread to other

developers. In this situation, the real quality improvement is often questionable.

Effort reduction

Software reuse reduces in most cases the specification, development and testing times of

the software project. When using reusable components, there is no need to allocate

resources to develop same functionality from scratch again and again. Same developer

resources can be then allocated for other tasks that would need more developing efforts.

 20

Reuse also reduces risks and costs of software maintenance and training. When several

applications or components (=clients) use particular component, the risks and often also

the costs of development of that component can be shared with all clients.

Several organizations in software industry have achieved significant gains in their reuse

programs and long-term software projects. For instance, some organizations have gained

big reduction in following metrics: time-to-market (reduction 2-5 times), defect density

(reduction 5-10 times), cost of maintenance (reduction 5-10 times) and overall cost of

software development (about 15 % but in some cases almost 75 % in long-term projects) /

11 / .

However, despite of these benefits several obstacles have prevented reuse to be as popular

asset in software industry as it could be. Most of these obstacles are nontechnical and they

are presented in more detail in chapter 4.

3.4. Layered architecture

Software architecture defines system structure, interfaces and interaction patterns of

software under development / 11 / . Choosing the right architecture is often the most

important decision in software development. It will have a significant role during whole

software development cycle, from technical specification to development and even

maintenance of software product.

The role of good architecture emphasizes when software should be designed for reused

several times. Layered architecture (Figure 8) is a software architecture that organizes

software in layers, where each layer is built on the top of another more general layer. Layer

is defined as a set of subsystems with the same degree of generality. / 11 /

 21

Figure 8: Layered architecture and an example of dependencies between layers

The upper layer, “Applications Systems”, contains application systems for particular end-

user area. This end-user area could be, for example, office applications for personal

computers or applications that operate with SIM card on mobile phone. For each of these

end-user areas have been defined a set of use-cases that define common requirements to

applications in particular application system (Application Family Engineering, AFE). For

instance, a use case for office applications could be “User sends a document using e-mail”,

this feature would then be implemented to several office applications (e.g. word processor,

spreadsheet and presentation applications) using component systems from lower layers of

architecture. Similar use case example for SIM applications system could be: “Read phone

number from SIM card”.

Lower levels of architecture define component systems (Component System Engineering,

CSE). Component system contains well-packaged set of components. Reuse engineers

have developed them to be reused by application engineers or other reuse engineers / 11 / .

Business-specific layer contains component systems that are specific to some business

area. Application engineers use these components in their applications (Application

System Engineering, ASE) and in optimal situation; component systems will enable rapid

 22

end-user application development to particular application family. For example, the

application framework of Symbian OS is a business-specific component system.

Middleware layer offers component systems that provide platform-independent services

and utilies, e.g. interfaces to database management systems or object request brokers (e.g.

CORBA) etc. The lowest layer, System software layer, contains component systems for

networking, interfaces to special hardware, operating systems etc.

3.5. Software components

3.5.1. Definition

Reusable software components are self-contained, clearly identifiable artefacts that

describe and/or perform specific functions and have clear interfaces, appropriate

documentation and a defined reuse status / 12 / . Self-containedness and identifiability in

previous definition mean that reusable component must be a clear and easily accessible

entity that doesn’t need great efforts to be reused. Reuse status means that component is

maintained continuously; the re-user of the component knows who owns it and who will

correct possible defects etc. This is very important, especially in large software

organizations, where efficient communications between different departments of

organization may be quite difficult.

Developing reusable components can be divided to two main parts: developing with reuse

and developing for reuse / 12 / . Developing with reuse means that existing components are

adapted and integrated to new context. Several integration cycles for these components are

likely to make them more reliable and efficient. Developing for reuse means that

components are designed for reusing in other context than they were initially developed /

12 / . Design for reuse is a very demanding task that needs software specialists that have

adequate experience of software development. Otherwise, the scope of the developed

reusable component may be too narrow and it can be utilized only once; then the real

benefits of reuse aren’t achieved at all.

 23

3.5.2. Component models

Reusable components form the basis for the development of application systems. Several

component libraries have been built to fasten software development in some particular

domain. Sun’s Enterprise JavaBeans (EJB) is a Java-based server-side component library

that can be used for developing large distributed applications / 15 / .

Microsoft’s Component Object Model (COM) is a component software architecture that

allows systems to be built from components supplied by different software vendors. / 16 /

Object Management Group’s (OMG) open Common Object Request Broker Architecture

(CORBA) is a vendor-independent architecture and infrastructure that computer

applications can use to work together over different networks. A CORBA-based program

from any vendor, on almost any computer, operating system, programming language and

network can interoperate with a CORBA-based program from the same or another vendor.

/ 17 /

3.5.3. Symbian ECOM architecture

Symbian published a new architecture model for generic interfaces (Modular Architecture

for Generic Interface Components, MAGIC) in the newest version of operating system.

This model is called ECOM and it provides a generic framework for registering and

discovering appropriate interface implementations at run-time. / 18 /

ECOM

InterfaceDefini tion
NewL()
~InterfaceDefini tion()

Imple men tat io n A

<<instantiates>>

Cl ient <<request instance>>

<<im plements>>

<<request instance>>

Figure 9: Symbian ECOM architecture

 24

Figure 9 is an example of ECOM architecture. A client wants to use some implementation

of particular interface. Design principles (introduced in chapter 3.7) state that software

module should be depended only on abstractions (=interface), not concrete

implementations. Traditionally, in order to avoid client’s dependency on the actual

interface implementation, some design pattern (e.g. Factory pattern, example on chapter

6.4.3) is needed for instantiating the concrete implementation for the client. Implementing

this principle correctly and avoiding unnecessary dependencies may be difficult even for

the experienced developer.

ECOM architecture simplifies previous procedure significantly. A client uses concrete

implementation through abstract interface, but ECOM architecture is responsible for

instantiating appropriate implementation. Client only specifies the wanted implementation

with NewL method of interface.

3.6. Commonality and variability analysis

Efficient design of component systems needs analysing of commonality and variability

inside particular system. Commonality and variability mean features that are common and

variable between different components. This is illustrated in Figure 10, there are three

different applications (or components) and colours are used to define common features.

Darker grey means that these features are common for all three applications; lighter grey

means that two but not three applications have this common feature. White area describes

variable features that are individual for each application in the application family.

 25

Figure 10: Common and variable features of three applications in same application family

James Coplien has researched scope, commonality and variability (SCV) analysis. The

mains steps of analysis are / 19 / :

1. Define domain and scope for the component.

2. Identify commonalities and variabilities of it.

3. Set appropriate limits for variabilities. This is necessary because without limits the

component would be too difficult or even impossible to design and implement. In

addition, the performance of component “that-will-do-everything” might not be

very good.

4. Exploit commonalities and adapt variable functionality.

Step 4 in SCV analysis is the starting point for designing the actual software component.

Design principles and patterns are briefly introduced in following chapters. However, the

big picture can be seen in Figure 11 / 14 / . Common and variable features affect on

perspective of software development process: architecture, design and implementation.

 26

Figure 11: Commonality and variability analysis

3.7. Design principles

Software must be designed to be reusable. Object-oriented technology itself doesn’t add

value for developing reusable software. Design principles and patterns based on SCV

analysis are the main driver for developing software that is later possible to reuse in other

application systems.

Design principles describe fundamental principles of object-oriented design. Several

principles have been introduced in literature, but here is a brief introduction to most

important ones:

1. Open-Closed Principle (OCP): A module should be open for extension but closed

for modification

2. Dependency Inversion Principle (DIP): Depend upon Abstractions. Do not depend

upon concretions / 26 /

These two principles are different views to same issue. At first, Open-Closed principle may

sound conflicting, but it means that when some module is closed for modification there is

no need for testing already tested features again. Open for extension means that new

features can be added to module without interfering the old implementation. How is this

 27

possible? The second principle is the key for this; a Dependency Inversion Principle states

that interface classes should be used as much as possible. In other words, use abstractions,

not concrete instances of classes. Inheritance in object-orient programming is a concrete

way to implement these principles. Abstract base classes define the interface that

dependent classes use and inherited concrete classes implement it. DIP is also known as

“design to interfaces” principle.

3. The Acyclic Dependencies Principle (ADP): The dependencies between packages

must not form cycles / 26 /

Figure 12 shows the real meaning of Acyclic Dependencies Principle. Component System

IV makes a cyclic dependency with Component System I. This kind of dependencies

should be always avoided, because the maintenance and the further-development of the

system become very difficult. Without cyclic dependency the Component System II could

be developed and tested independently but with current dependencies every system is

dependent on each other.

Component
System I

Component
System II

Component
System III

Component
System IV

Figure 12: Example of cyclic dependency

4. Favour composition over inheritance / Avoid strong dependencies / 25 /

Composition means that objects are composed and the relationships between them are done

dynamically at run-time as inheritance relationship is defined already when the code is

 28

compiled. In practise, composition is implemented following way: class A contains pointer

to interface class MB, when class A is instantiated it gets pointer to class CB as a

parameter. Class CB is a concrete implementation of interface defined with class MB.

Implementing class relationships with inheritance causes sometimes too heavy class

hierarchies and maintaining them may be difficult. Favouring object composition over

class inheritance keeps each class encapsulated and focused on one task. Classes and class

hierarchies will remain small and more maintainable. / 25 /

This principle could be stated also as “favour low coupling and high cohesion”. Coupling

is a measure of interconnections among software modules and cohesion is a measure of the

relative functional strength of module / 29 / . Low coupling means that there should be

dependencies between modules as few as possible and high cohesion means that one

module should have functionality as few as possible. However, design of software system

needs always trade-offs, so the system that is “low coupled and high cohesive” is very

difficult or sometimes even impossible to design.

3.8. Design patterns

Design principles are quite simple rules, but in practice, it needs quite significant design

efforts to implement these rules correctly. Design patterns are customized to solve a

general design problem in a particular context / 25 / . They give a time-tested higher-level

perspective to problem domain, provide reusable models for designing object-oriented

systems and establish a common terminology for the development team.

Design patterns are often divided to three groups: creational, structural and behavioural

patterns / 25 / . Creational patterns are used for designing the creating of objects in a

system. Structural patterns give methods for dealing with relationships of objects and

behavioural patterns provide patterns for interactions and responsibilities of objects.

 29

Several design patterns are presented, for example, in “Design Patterns: Elements of

Reusable Object-Oriented Software” book / 25 / but here is one example of structural

patterns (Adapter pattern in Table 3). Couple of more design patterns are described in

chapter 6.4.3, where the design patterns of developed Bluetooth component are presented.

Pattern Description

Adapter Convert the interface of a class into another interface that clients expect. Adapter

lets classes to work together that couldn’t otherwise because of incompatible

interfaces.

Adaptee

SpecificRequest()

Adapter
adaptee

<<virtual>> Request()

adaptee->SpecificRequest();Cl ient
Target

<<abstra ct>> Request()

/ 25 /

Table 3: Example of design pattern: Adapter

3.9. Component production

Idea for software component rises often on software project where some module has been

developed and there is obvious need for the same functionality in future projects. In order

to transform developed module into a reusable component, it needs generalization based on

SCV analysis (see chapter 3.6).

Components change significantly the software development paradigm, the code isn’t

developed from scratch but more and more of software implementation is integration of

reusable components. Operating system, 3rd party and customer-specific components are

integrated to software product. Benefits of component integration are evident; development

cycles shorten, defect rates are likely to decrease and development resources can be

allocated to other demanding tasks. However, using components have also some

 30

disadvantages, for instance, project management becomes more difficult, especially when

components from third party developers are used. Human factors may effect on

development with components that are initially developed somewhere else (so called “not

invented here” syndrome). There is more information available about these obstacles on

chapter 4.2.

 31

4. Reuse business

4.1. Introduction

Software reuse as an idea sounds excellent and one might wonder why it hasn’t spread all

over the software development. The reason for this is sometimes technical; software

domain and very long-term projects may have a certain effect that the software

development organization doesn’t see the evident benefits of reuse. Especially if software

project continues for several years and the next project that organization starts is distinctly

different, the common functionality that could be potentially reused may be hard to find.

However, when software reuse hasn’t been taken as a part of daily work of development

organization the reason is often nontechnical.

4.2. Obstacles of reuse

Software reuse in several software development organizations has been ad-hoc reusing,

which is often the earliest step of reuse. Some source code is reused with copy-paste

method and some designs may be also utilized again but no systematic approach is used.

Often in this kind of situation, possible resistance for reuse occurs in every party of

software development projects.

Software developers may suffer from “not-developed-here” syndrome / 12 / , which means

that they don’t completely trust software components that have been developed somewhere

else. Developers think that usage of component from some other developer limits their

creativity and they think that they could be able to develop “much better component faster”

than the other developers could.

Software project managers are often in difficult situation, they are responsible of projects

to customers, upper management of the company and members of project team. Their

projects should be ready on agreed schedule, budget and resources. Developing reusable

components in this kind of situation is often less important and only components that fit

 32

only that particular project are developed. This behaviour could be called as “not-in-my-

project” syndrome / 12 / . Customer isn’t likely to support developing of reusable

components in its project, especially if the need for same kind of functionality isn’t

apparent in the near-future projects of the same customer. Therefore, developing this kind

of components further to reusable ones needs new development projects. This needs

support from upper management and sadly often further-development projects may be

impossible due to lack of appropriate resources and budget.

Upper management of software company should be always concerned about the long-term

success of the company and its customers, partners and employees. However, especially

young software organisations often have problems starting efficient software development

business. Starting systematic software reuse program at this point is often unrealistic

because the biggest concern is to get couple of projects to start and long-term view for

software reuse isn’t the biggest problem during daily work.

Lack of upper management support may be a problem also later when software

development organization has developed processes for daily work and they have a solid

project track for continuous working. At this point, the lack of upper management support

may appear e.g. in inefficient budgeting or resource allocation for software development /

12 / . The importance of decent software development practices is concerned but the reality

may although be different.

 33

No obstacles
12 %

Attitudes
15 %

Lack of
competence

12 %

Insufficient
information

9 %

Uncertainty
about benefits

6 %
Limited

availability
9 %

Incompatible
components

9 %

Other reasons
28 %

Figure 13: Obstacles to the exploitation of software components

Figure 13 shows other obstacles that prevent the usage of reusable components / 13 / .

Lack of competence, insufficient information and uncertainty about benefits are all reasons

that can be avoided quite easily. Training and workshops about reusability and components

for whole organization will have significant positive effects on starting component based

software development program. Limited availability and incompatible components are

problems that can be solved later as reusable software artefacts and reuse processes mature

in organization.

All previously mentioned problems need to be solved for that reuse program could work

efficiently in software organization. Some motivation for establishing reuse program is

presented in following chapter, which handles the economics and processes of software

reuse.

 34

4.3. Economics of reuse

Despite of obvious technical and project management benefits of starting reuse program in

the organization, the only thing that matters in the long-term success of the company is

money. Being part of reuse the business means that reusable software artefacts are used to

shorten developing cycles and time-to-market of software products and this way to save

the money of the company. As all product development activities, also software reuse

program is an investment for the future. Investments bind money for some period of time

and only in successful case that particular investment will start to profit and earn interest

for invested money.

Efficient management of organizations and business needs some concrete input, measures,

that could be used as part of justified decision-making. Several technical metrics for

reusable components can be defined, couple of examples can be found on chapter 6.5.4.

Economical model for reuse can be arranged to three phases / 11 / :

1. Measurement

Measures are based on previous software projects; what kind of reuse level has been

achieved before, resources and costs of previous projects.

2. Cost / Benefit estimation

Measures are related with each other and with the basic resources of all software

projects: effort, cost and time.

3. Reuse investment analysis

Measures and estimates are analysed for determining how the reuse business of

software organization is really doing and what corrections should be done.

Developing reusable software needs much more effort than ordinary “let’s code this

module just for this application” method. The extra costs needed for this must be paid

somehow, the basic methods are:

 35

a) Decreasing costs of future projects by the usage of reusable components. It is

affordable to use reusable component so always developing a new one in future

projects isn’t an option.

b) Shortening significantly time-to-market of software product and possible profit

from sales would pay back the investments.

c) Reusable components can be sold to other software development companies.

Successful investments for software reuse programs have been noticed to be very domain,

business goal and long-term customer relationship specific. As a rule of thumb, in order to

get developing of reusable component to be profitable, at least three integration rounds or

application engineering cycles must be done before payback of investment could start

/ 11 / .

4.4. Software reuse processes

4.4.1. AFE, CSE, ASE processes

Ivar Jacobson defines software reuse processes based on the layered architecture defined in

chapter 3.4. Designing software for reuse needs clear processes and responsibilities to

work efficiently. Essential steps for Application Family Engineering, Component System

Engineering and Application System Engineering are same, only the focus is slightly

different on each area. The processes presented here are quite heavy because they are

intended for developing several applications and component systems within large

application families. However, processes are adaptable also for lighter software

development. The main process steps are presented here:
Requirements

AFE Application Family Engineering develops and maintains the overall layered system

architecture / 11 / . The first step is to select the scope for the application family

according to markets, customer and end-user demands and business goals of the

company.

Requirements from previous parties are gathered and iterated and the most

important ones are described as use cases for the application family. The main

 36

issue is to find features that are common for all members of application family.

CSE Component System Engineering focuses on building and packaging robust and

extensible components / 11 / . Requirements for component system are collected

with focus on variability. This is far more difficult than in AFE process. Features

of components should be used in several applications and they may be used for

several years. The main issue is to understand the variability of components and

what kind of trade-offs must be done for enabling it.

ASE Application System Engineering is so-called ordinary software development, so

gathering requirements is often the first part of software project. Important part is

to try to map application requirements for component use-cases and to find out

what kind of components may be needed more and how current ones should be

adapted.

Robustness analysis

AFE, CSE, ASE Use cases produced from requirements gathering are used for making high-level

analysis model. Analysis model consists of analysis objects, subsystems and their

relationships and they define the architecture of the system / 11 / .

Design

AFE Analysis model is used for designing prototype for the layered model that would

include possible applications and component systems. Subsystems should be quite

small because it allows easier changes and makes layered system more

manageable.

CSE, ASE Requirements and analysis model / architecture are the basis for the design of

components and applications.

Implementation

AFE Implementation of application families must be done systematically. Architecture

of each subsystem must be iterated according to commonalities and variabilities of

the application family.

CSE, ASE Component systems and applications are implemented.

Testing

AFE, CSE, ASE Component and application systems are tested and the overall performance and

architecture scalability are considered from the application family point of view.

Packaging

CSE, ASE Components are documented and packaged for as easy as possible reusing.

Application system is packaged and documented for use by the manufacturers and

end-users.

Table 4: Process model for software reuse

 37

4.4.2. Reuse organization

Establishing reuse program means also setting appropriate reuse organization. Figure 14 /

11 / shows some roles in reuse organization. Customers and end-users set the initial

requirements for software products. Division has been done for Application System

Engineering and Component System Engineering and there are several different roles for

both of them. Often same person may have several roles, but in large software

development organization, each role has its own responsible person.

Use case engineers develop use case models based on input from end-users, customers and

reusers. Application and component engineers design and develop applications and

components and testers test them. The role of architect is essential in software reuse

organization. Architects are responsible for high-level architecture of application families,

single applications or component systems.

Cus tomer

End User

Application Use-case
en ginee r

Applicatio n Archite ct

Com ponent Use-case
en ginee r

Application Engineer Application Tester

Co mpo nent Engin eer

Com ponent
Functionality

Com ponent Des ign Com ponent
Implem entation

Application Functionality Ap plication Des ign Implem entation

Application
System
Engineering

Com ponent
Sys tem
Engineering

Figure 14: Organization for reuse business

 38

4.4.3. Adaptation of reuse program

Starting reuse program in software organization isn’t an easy task and nothing happens in

one night. Reuse processes must be adapted into daily work with little steps. Big and

significant changes in one step are likely to cause problems. For instance, daily software

development may interfere too much and resistance may appear among developers.

Figure 15 presents one example about incremental steps of starting reuse program. At first,

reuse is just informal code reuse, but as processes mature development transfers to black-

box reuse and finally to domain-specific reuse-driven software development. However, the

time scale depends heavily on the software domain, maturity of processes and conforming

to them. In addition, the experience of workers has a significant effect to the length of time

scale.

Figure 15: Incremental adaptation of reuse

4.4.4. Digia Software Process and reuse

Digia Software Process (DSP) is an incremental and iterative software development

process / 1 / . It is used as a guideline for daily work in Digia’s customer and own product

development projects. The main building blocks of DSP are presented in Figure 16.

 39

Figure 16: Digia Software Process

During the first half of year 2002, Digia started to build up its own reuse program for

software development. The main steps of Digia’s reuse processes are:

1. In the beginning of software project, needed components are identified.

Some of these components have already been made and must be adapted to

use in particular project. Some components are done from scratch during the

project. Individual developers are also encouraged to component ideation.

2. Component Management Board (CMB) analyses, processes and prioritises

component ideas. It maintains also long-term roadmap for the component

development.

3. As CMB approves the development of some component, it is developed in

product development project or as an individual component project.

4. When component is ready, it is reviewed, approved and stored into

component library to wait for reuse.

This and previous chapter contained the overview of software reuse and software

components. Practical work of this thesis was to design and implement a Symbian OS

based reusable software component for Bluetooth networking. This issue is handled on

chapter 6, but before that, the next chapter gives an overview to Bluetooth technology.

 40

5. Bluetooth technology

5.1. Introduction

Bluetooth is a short-range radio link between different kinds of communication devices,

such as mobile phones, computers, PDAs etc. Wireless Bluetooth technology has been

developed by Bluetooth Special Interest Group (SIG) that has several thousands member

companies (Ericsson, Nokia, 3Com, IBM, Intel, Microsoft etc).

The main idea of Bluetooth technology is to allow communication between devices to be

as simple and cheap as possible. Especially the cheapness of Bluetooth chip will be the

main driver to extend this radio technology everywhere.

5.1.1. Bluetooth - Peer-to-Peer communications technology

Bluetooth is a promising technology for local peer-to-peer communications. The nature of

peer-to-peer defines that each party has an equal role in network, so the traditional slave-

master / client-server division isn’t so important. However, these names are used for

clarifying device roles, for example, in connection establishment and managing timing and

frequency hopping of devices. In addition, Bluetooth application developer may find it

easier to manage the Bluetooth network when one device is defined as a master device of

the logical network. Bluetooth specification defines that the master is the device that starts

connection establishment / 23 / .

Local Bluetooth network is called as a piconet. A piconet contains always one master

device and 1-7 slave devices. A single Bluetooth device can act in both roles, as a master

or a slave, and this way construct several piconets, called scatternets. Scatternet topology is

especially used if there is need for Bluetooth network with more than 8 (1+7) devices.

 41

Figure 17: Bluetooth piconet

Bluetooth connections must be made always with known devices. Before connection can

be established, a device must inquire other local devices to get their device addresses. User

can define a Bluetooth Device name (e.g. “Jack’s BT Phone”) for his device, which is

often more informative for end-users than just device address (long hexadecimal address

e.g. 0x00e00379b874).

 42

5.1.2. Service discovery

After successful device inquiry, a service discovery must be made with selected devices.

Service discovery is essential because end-user cannot conclude anything from BT device

address or even device name, the inquired device could be a mobile phone, a laptop

computer or even a Bluetooth-enabled car tire / 30 / .

Each Bluetooth device has a service database, which includes all Bluetooth services that

are available in that particular device. Service database may contain 0-N service records.

Each record has a well-known ID number that is used for detecting appropriate service

record in the remote device, these ID numbers are defined in BT specification / 23 / . One

service record contains 1-N service specific attributes.

Service (e.g. a file transfer, mobile game, etc.) registration is needed with ‘listening-side’

devices before connection establishing. The connection-initiating device will discover

these service records and tries to find appropriate service record using service ID. After

that, it resolves needed attributes (e.g. communications channel, service version etc.) for

successful connection establishment.

5.1.3. Connection establishment

The fastest and most logical way to establish a Bluetooth network with unknown devices is

that one of the users selects his device to be a connection-initiator (master in BT network)

and all other devices are listener-devices (clients). A connection-initiator will inquire all

devices and discover service for user-selected ones. After successful service discovery,

data connection to selected devices can be established and data can be sent and received.

If Bluetooth device address is already known (e.g. BT address of friend’s smartphone is

stored in your own device after previous session) the connection establishment procedure

is clearly faster because the service discovery can be started immediately.

 43

5.2. Bluetooth protocol stack

The Bluetooth protocol stack is presented in Figure 18. During the specification phase of

new Bluetooth enabled device, several decisions must be made according to the

requirements (cost, time-to-market, features, etc.) of new product. For instance, what kind

of Bluetooth chip and stack will be used in product and how will be the stack software

stored between BT chip and host device.

There are three basic models for implementing stack: hosted, embedded and fully

embedded / 21 / . Symbian OS and e.g. Nokia 7650 smartphone uses hosted Bluetooth

stack implementation. This means that the lower part of the stack is on Bluetooth chip set

of the device, the upper part and all BT applications are on the host device.

Communication between host and chipset are done using Host Controller Interface (HCI).

This implementation model enables changing BT hardware without interfering upper

layers of protocol stack or applications of the host device.

Figure 18: Models for Bluetooth stack implementation

 44

5.2.1. Radio, Baseband and Link Control Layer

Bluetooth technology uses 2,4 GHz ISM band for its radio link. It utilizes fast frequency

hopping scheme with error protection and correction for avoiding interference of other

systems operating on same ISM frequency band. In Frequency-Hopping-Spread-Spectrum

(FHSS) system, packets are transmitted in defined time slots on defined frequencies.

Bluetooth uses Gaussian Frequency Shift Keying (GFSK) method for modulation of radio

signal./ 20 /

Baseband layer uses inquiry and paging procedures to synchronize the transmission

hopping frequency and clock of different Bluetooth devices / 20 / . Baseband layer

provides two kinds of physical links, Synchronous Connection-Oriented (SCO) and

Asynchronous Connectionless (ACL). ACL packets are used for data only, SCO packets

may contain also audio or combination of both of them.

5.2.2. Link Manager Protocol

The Link Manager Protocol (LMP) is responsible for link set-up between Bluetooth

devices. Layer includes security aspects like authentication and encryption by generating,

exchanging and checking link and encryption keys. LMP layer controls also the power

modes of the BT radio device and connection states of a BT unit in a piconet.

5.2.3. Host Controller Interface

Host Controller Interface (HCI) is used in hosted implementation model of protocol stack

(lower layers in Bluetooth module and upper layers in host device). It provides

standardised interface between host and BT module, and this enables interoperability of

different hosts and Bluetooth modules of different manufacturers.

 45

5.2.4. Logical Link Control and Adaptation Protocol

The Bluetooth Logical Link Control and Adaptation Protocol (L2CAP) adapts the upper

layer protocols over the baseband. It provides connection-oriented and connectionless data

services to the upper layer protocols with protocol multiplexing capability, segmentation,

and reassembly operation. / 20 /

5.2.5. RFCOMM

RFCOMM is a serial line emulation protocol, which emulates RS-232 control and data

signals over Bluetooth baseband. RFCOMM provides transport capabilities for upper level

services (e.g. Object Exchange protocol, OBEX) that use serial line as a transport

mechanism.

5.2.6. Service Discovery Protocol

Bluetooth is very service-centric technology as mentioned on chapter 5.1.2, not device-

centric as personal computers in traditional local area networks. Service Discovery

Protocol (SDP) is very important part of the Bluetooth framework. Bluetooth device has

SDP database where information about all services is stored. When Service Discovery

Protocol is used, device information, services and the characteristics of the services can be

queried from service database and a connection between two or more BT devices can be

established.

Figure 19 / 23 / shows service record for file transfer profile. The four main attributes (red

rectangle around them) must be registered to local Bluetooth service database that

application, which supports BT file transfer profile would work correctly. Each attribute

can have several different value types (several kinds of signed and unsigned integers,

Boolean values, strings etc) or it can be a list, which is recursively built from other

attributes or lists.

 46

Figure 19: Example of service record in service database

5.3. Bluetooth profiles

Bluetooth profiles provide a clear description of how a full specification of a standard

system should be used to implement a given end-user function / 20 / . In practice, this

means that profiles define common interface for all Bluetooth devices that want to conform

to the particular profile. Bluetooth SIG has published profiles specification / 23 / in their

website (http://www.bluetooth.com/). It describes several profiles and their interfaces (e.g.

Headset, FAX, LAN access point, File transfer profiles etc).

 47

When a common interface is defined, Bluetooth devices from different manufacturers can

interoperate with each other. For example, a user wants to read his emails with his laptop

when he is waiting in railway station. A laptop from manufacturer A needs to work with a

mobile phone from manufacturer B. Both devices implement a Dial-up networking profile

/ 23 / that is used for establishing dial-up connections to remote computers. Laptop uses

Dial-up information of the mobile phone and establishes Bluetooth connection to it.

Mobile phone knows what to do when a BT Dial-up connection is established, in this case,

it makes a GPRS connection to the email server of the service provider and fetches all new

emails.

In practice, the attributes that are defined for a profile are stored to the service database of

Bluetooth device. When other BT device is discovering services that would fulfil the needs

of this profile, it knows what attributes should be found and knows how to use them.

5.4. Bluetooth in Symbian OS

Symbian OS has supported Bluetooth technology since the version 6.0 of operating system.

In the Symbian OS Bluetooth Architecture, the core stack functionality is implemented by

two components (Figure 20, / 6 /), Host Controller Interface (HCI.DLL) and the Bluetooth

Protocol module (BT.PRT). The Host Controller Interface module encapsulates the set of

BT HCI commands and events. Bluetooth Protocol Module (BT.PRT) encapsulates

L2CAP and RFCOMM layers. As a Symbian OS protocol module, it provides a Socket

API to these protocols. / 8 / / 22 /

 48

Figure 20: Bluetooth in Symbian OS

BT.PRT module contains also Bluetooth Manager and Service Discovery Protocol servers

(Figure 20). The Bluetooth Manager abstracts e.g. all User Interface (UI) interactions

according to BT. Bluetooth Security Manager enables Bluetooth services to set appropriate

security requirements for incoming connections. Service Discovery Protocol server handles

SDP queries and appropriate responses.

Symbian OS supports also Serial port emulation (Bluetooth Comms server module

BTCOMM.CSY), which provides number of virtual serial ports for different services

running over RFCOMM socket functionality. / 22 /

Next chapter concentrates on the practical part of the thesis. Requirements, design

objectives and integration of Bluetooth component are presented there.

 49

6. Software component for Bluetooth networking

6.1. Introduction to problem domain

The practical part of the thesis was to design and implement a reusable software

component for Bluetooth networking. Data communications related issues have always

been difficult to design and implement. Especially for typical software engineers

implementing network features for their applications have always taken a lot of time and

developing and testing efforts. Often these solutions are very problem domain specific and

reusing them as such is quite difficult.

The software component that is developed offers a general API for networking and

Bluetooth implementation to it. Later also Symbian OS socket based infrared

implementation will be integrated to component. Integrating new bearers to the component

makes finding common and variable features between different implementations far easier.

This way it is possible to increase quality, performance and reusability of the component.

6.2. Component requirements

Bluetooth component was developed as an independent component project but a certain

Digia’s product development project acted as a client for this project. It set following

requirements for the component:

Requirement # 1

Type Functional

Name General API for bearer independent connectivity

Description Reusable general API for bearer independent connectivity. Through same

generic interface the usage of different communications bearers (BT, IrDA

etc) would be easier for application developer. Upper layer (easier to use

interface) for Symbian OS socket facilities.

 50

Rationale An ordinary application developer isn’t always specialist in developing

communications software. Component and API enable faster and easier

application development and the developer can concentrate more on

developing the application logic.

Requirement # 2

Type Functional

Name Network construction

Description Component handles all basic procedures needed for establishing a Bluetooth

network connection (e.g. service registration, device inquiry, service

discovery, connection establishment)

Rationale Before data can be sent over BT, a connection must be established and it isn't

always so easy procedure especially for inexperienced application developers.

Requirement # 3

Type Functional

Name Multicasting support

Description Current BT Socket API of Symbian OS doesn't support multicasting (sending

data to several other BT devices simultaneously), this feature will be

implemented as simulated multicast, if the performance of current hardware

is capable for it.

Rationale For some applications only point-to-point Bluetooth connection would be a

clear limitation for the functionality of application.

Requirement # 4

Type Functional

Name Reading data, closing connections etc.

Description Readind data, closing connections, releasing reserved resources etc.

Rationale Obvious features for component.

Requirement # 5

Type Functional

Name Device Information Storage

Description Storage for saving information of devices in established Bluetooh piconet.

Rationale Storage is needed for internal functionality of component and it may also

offer some services for the user interface of application.

Requirement # 6

Type Functional

Name Adding new members to BT network

Description Possibility to add new members to already established BT network.

 51

Rationale Desirable feature for the component because otherwise the whole piconet

should be built again if the new Bluetooth device would want to join it.

Table 5: Main requirements for Bluetooth component

6.3. Architecture of component

Bluetooth component is so-called middleware component, this means that it uses operating

system facilities and component is used by business-specific applications. Basically the

component isn’t visible directly to end-user. Only some operating system supported user

interface notes (Bluetooth UI, e.g. Bluetooth device inquiry dialog) are shown to user

because they are essential part of the functionality of the component. They provide also the

correct look-and-feel that is needed in all application based on Series 60 Platform.

A high-level architecture of the component is shown in following UML diagram.

Symbian OS Communications
Subsystem

<<DLL>>

Networking Application X
<<APP>>

Digia Networking Components
<<DLL>>

Bluetooth
Bearer

Po ss ib ly o the r
bea rers ...

Infrared
Bearer

Application
Layer

Middleware
layer

Sys tem
layer

Figure 21: Architecture of Bluetooth component

 52

6.4. Design of component

6.4.1. Class hierarchy

Following UML diagram shows the internal class hierarchy of the component. Only

classes and their relationships are presented, methods and attributes would possibly make

the diagram too unclear. All classes of BT component (not grey coloured system classes)

and their functionality are described in Table 6.

CAct ive
(from E32)

MdBearerFactory

TdBtFactory

CdGAPService

CdDataManager

CdBearerComponent MdBearerM anager

Application X

TdIrdaFa
ctory

COwnBtS
ervice

CdIrdaMa
nager

CdTimeout
Manager

CdBtServiceManager
MdOwnServic
eInformation

MdConnectio
nObserver

COwnOb
server

MSdpAgen
tNotifier MSdpAttributeValueVisitor

<<instantiates>>

<<instantiates>>

<<instantiates>> CdBTSocket
Connection

CdIrdaSocket
Connect ion

MdDataManager

CdBtManager

CdBaseSock etConnection

Figure 22: Class hierarchy for Networking API and Bluetooth implementation

Class Description

CdBearerComponent The main class of the component defines the interface for it (public

header of API on appendix 2) and acts as a facade for internal

functionality.

Contains methods for finding Bluetooth services, establishing

connections, sending and reading data etc.

MdBearerFactory Interface for bearer factories. CdBearerComponent is instantiated

with implementation of this class, but as CdBearerComponent

 53

knows only this interface, it doesn’t need any changes as bearer is

chosen at run-time on applications that use component.

TdBtFactory Implements MdBearerFactory interface for Bluetooth bearer.

TdIrdaFactory Implements MdBearerFactory interface for infrared bearer

(integrated later).

MdConnectionObserver Observer interface that is used for notifying the client application

about occurred asynchronic events in component. The client of

component implements this interface with its own client-specific class

(=COwnObserver).

MdBearerManager Interface for managing the basic functionality of different bearers (BT

or infrared). CdBearerComponent uses concrete managers through

this interface.

CdBtManager Implementation for Bluetooth manager. This class is used for

managing all basic BT functionality.

CdIrdaManager Implementation for infrared manager (integrated later).

MdDataManager Interface for data manager.

CdDataManager Implementation for data manager, see chapter 6.5.3.

CdBaseSocketConnection Class for encapsulating Symbian OS socket functionality. This class

contains concrete sockets that are used for communications between

devices. Base class for BT and IrDa socket classes, includes common

functionality of both bearers.

CdBTSocketConnection CdBaseSocketConnection derived class that implements

Bluetooth specific connection establishment with Symbian OS

sockets.

CdIrdaSocketConnection CdBaseSocketConnection derived class that implements

infrared specific connection establishment with Symbian OS sockets

(integrated later).

CdTimeoutManager Handles timeouts that may occur in connection establishment and

sending / receiving data.

CdBtServiceManager This class is storage for all Bluetooth service information. It is used

for inquiring devices and it registers services and parses attributes of

remote services. Concrete service definitions and attribute parsing are

used through MdOwnBtService interface.

MdOwnBtService Interface for own service definitions and attribute parsers.

CdGAPService Internal implementation for service record. This is a minimal service

record implementation and it fulfils the need of Bluetooth General

 54

Access Profile / 23 /

In most cases, this implementation is adequate if there is no need to

implement a profile application (e.g. file transfer, dial-up connection

applications etc.) For example, a Bluetooth enabled game could use

this implementation directly and the developer doesn’t need to think

Bluetooth service issues etc at all.

CdOwnService If application needs to implement some BT profile or there is other

need to add more service information to the service record, then the

developer must implement his own service class. MdOwnBtService

provides interface for it.

Table 6: Descriptions for classes of Bluetooth component

6.4.2. Commonality and variability analysis

SCV analysis (chapter 3.6) was quite easy to do for component. Initial requirements stated

that component should offer generic API for different bearers. The client project had need

for easy-to-use component for Bluetooth and infrared communication between two mobile

devices. High-level SCV analysis is presented in following table:

Part of analysis Analysis

Scope Generic API and implementation for Bluetooth, later also infrared integration to API.

Commonality Common features that are basis for generic API: establish connection, read data, send

data, release resources etc.

Variability Service handling is an essential part of Bluetooth but infrared doesn’t need that kind of

functionality at all.

Table 7: SCV analysis for Bluetooth component

6.4.3. Design patterns

Based on previous SCV analysis, component should offer a single class as an interface to

component’s features. This class contains common features that both bearer

implementations need. Service handling was variable feature that is needed only with

Bluetooth so there should be a way to attach it to the component without making use of

infrared too complicated.

 55

Following design patterns are utilized in the design of Bluetooth component: Facade,

Factory and Adapter / 25 / . Classes that implement these patterns can be found from

partial class hierarchies (Figure 23). Component becomes a black box, when a facade

pattern is used. There is only a single entry point (class CdBearerComponent) to the

component.

Factory pattern enables implementation of bearer independent interface for component.

Adapter (described in chapter 3.8) is used for adapting Bluetooth service handling and

possible own service implementations to CdBtManager class inside the component.

Figure 23: Examples of Bluetooth component’s design patterns

 56

6.5. Component implementation

6.5.1. Development environment

Bluetooth component was developed with C++ programming language for Symbian OS

and especially Series 60 Platform (chapter 2.3.1) but there are no limitations to port

component to other reference designs. Symbian OS Bluetooth architecture provides

Bluetooth UI, which is used for inquiring devices and setting some security settings. This

UI is available on all reference designs that are based on Symbian OS GT v6.1 or newer

(Series 60 or UIQ).

6.5.2. Connection establishment procedure

Instantiation process of component is described in appendix 3. Figure 24 shows how point-

to-point Bluetooth connection is established between two BT devices.

Bluetooth Device
1[Connection Initiator]

Service database of
device 2

Bluetooth Device 2
[Listening device]

Register service rec ord

Parse service
att ributes of

selected device

Establish connection

Ini tial ize
device 1

Inquire local BT devices

Initialize
device 2

Data can be
sent / received

Data can be
sent / received

Figure 24: Connection establishment procedure

 57

6.5.3. Datamanager

Datamanager is used for handling data packets (Figure 25) that are transmitted over

communication link. Datamanager adds control information to data before it is sent. This

information may contain control code (e.g. for detecting different kind of packets) and

information about the actual length of data, because otherwise the remote device doesn’t

know how much data there will be coming over data link. When a communication socket

on the remote device has read the data, datamanager will examine the header part of it.

Length information can be used for allocating correct amount of memory for incoming

data buffer.

Figure 25: Example of data packet

6.5.4. Metrics of the component

The main objectives for software metrics are:

• To better understand the quality of the software product

• To assess the effectiveness of the process

• To improve the quality of work performed at a project level / 29 /

Only few metrics of software are absolute. Absolute metrics (e.g. lines of source code, size

of binary file, etc) have certain clear values, an ordinary software developer can conclude

easily from them which value is better than the other. For example, a binary size of

application A is 54 kB and size of application B is 76 kB, it is quite obvious which is better

value in metrics sense.

 58

Most of the software metrics are derived (=value of the metrics must be calculated, it isn’t

visible directly from software) and the values are relative. Comparing relative values is

much more difficult that comparing absolute ones. Often the result of comparison isn’t so

clear as with absolute metrics. If a relative value of some metric is “5” for some

application and “6” for some other, it is quite hard to conclude which value is better.

Realistic conclusions can be done only when the differences of values are significant, for

instance the other value is “3” and the other one is “174”.

Following table contains the main technical metrics of the component:

 Metrics: Value: Description:

Lines of source code

(LOC)

≈ 2000

[Absolute metric]

Often the most familiar measure for code. Actually not

very good measure for object-oriented technology, but

gives information about the magnitude of developed

software module.

Binary size

11 kB

[Absolute metric]

On disk footprint.

Size of release version of component DLL build for

THUMB processor environment / 28 /

[BT component: Nokia 7650 smartphone]

Memory allocation

< 8 kB

[Absolute metric]

Run-time footprint.

Memory consumption when component is used in real

device environment.

Resource usage strategy

Linear-

deterministic

[Absolute metric]

How resources (memory, files etc.) are used, when they

are allocated, released etc.

Static = Resources are allocated in the beginning of

component execution and there are no dynamic

reservation later on

Linear-deterministic = Most of the resources are allocated

in the beginning, least important resources can be

allocated dynamically later

 59

Random = Resources are allocated whenever they are

needed

Granularity

7 / 9

= 0,8

[Relative metric]

Functionalities / classes (/LOC) (=cohesion).

[BT component: service methods in public API / concrete

classes]

Abstractness

5 / 9

= 0,6

[Relative metric]

Interfaces / concrete classes.

Table 8: Some technical metrics of Bluetooth component

6.6. Component integration

6.6.1. Reusing component

Reusing component in other application is quite straightforward. Here is a short procedure

how to use it:

1. Developer uses directly Bluetooth component’s dynamic link library file (DLL) in

his own application. Only header files of exported classes are needed for compiling

and LIB file is used for linking modules of application.

2. In source code level: CdBearerComponent object is created with correct bearer

factory object (=TdBtFactory) and observer object (=COwnObserver):

// How to use Bluetooth component
// © Digia 2002

// We use BT factory class to instantiate Bluetooth component

TdBtFactory btFactory;

// Own observer class that implements MdConnectionObserver interface
// This is used for notifying client application about asynchronic
// events that have occurred in component

iObserver = COwnObserver::NewL();

// Component is instantiated with concerete factory and observer
// objects, also timeouts for connection establishment and sending/receiving
// data are initialised (values are microseconds)

iBearerComponent = CdBearerComponent::NewL(btFactory, iObserver, 30000000, 5000000
);

 60

// Bearer component is initialised with service that
// is identified with ID: KServiceId

iBearerComponent->InitL(KServiceUid);

// Component is now ready for using in application
// Æ device inquiry, service discovery,
// connection establishment, sending data, etc.

6.6.2. Testing application

Testing application of the component is just a simple user interface that is used for

connecting to other device and sending data to it. Couple of screen captures are presented

in Figure 26.

Figure 26: Screen captures of testing application

 61

6.7. Future development

The current version of component is just the first delivery of it. Component provides

networking API and point-to-point Bluetooth implementation. Establishing BT

connections and reading or sending data is quite straightforward with it.

However, the development of component is not finished yet. In near future infrared

implementation is integrated to it and some new features may be implemented. Component

needs systematic functional testing and design and code inspections. In addition, detailed

documentation hasn’t been written yet.

Integration to other application, which is the most important part, hasn’t been done yet.

The developer of component may think that some features are obvious and the component

is “easy-to-use”. Other developers that aren’t familiar with domain (=Bluetooth in this

case) may find component difficult or illogical to use. Therefore, feedback from different

developers and several integration rounds are needed that component could become mature

enough. Without proper feedback, the component may fit just for one purpose and the real

reusability remains as a daydream.

Component will be integrated at least twice in exercise projects before it is used in Digia’s

product development project, which has acted as a client for the component. As defined in

Digia’s reuse process (chapter 4.4.4), the component will be stored to component library.

Component library contains always the newest version of particular component and all

material related to it (source code, documentation, possibly binary files etc).

 62

7. Conclusions

The purpose of this thesis was to present different aspects of software reuse. What does it

really mean and benefits and obstacles of reuse from technical and nontechnical point of

views. Symbian Operating System and wireless Bluetooth radio technology was also

briefly introduced. The practical part of thesis concentrated on developing reusable

Bluetooth component for Symbian OS.

Dictionary definition for reuse is quite evident: “To use again, especially after reclaiming

and reprocessing”. Reuse in software engineering is an area that has been researched a lot

during last few decades. Nevertheless, many software development organizations have

faced problems when they have tried to establish reuse processes for their software

development.

The benefits of reuse are apparent and significant. The quality and performance of software

improves, resources can be allocated more efficiently in projects and the development-

cycle of software products can be significantly shortened. Software reuse has a positive

effect for all fundamentals of software projects: efforts, costs and time.

The biggest obstacles of software reuse are demanding and urgent projects, attitudes,

insufficient support from upper management of software organization and a lack of

training of developers and managers. That is, the reason for inefficient or nonexistent reuse

in development organization is often nontechnical. For correcting previous issues, the

reusability must become an essential part of daily work. Reuse program, processes and

adequate organization are needed and sufficient resources must be available for them.

Appropriate training and support from management are essentials for successful reuse

program.

Software components are important part of software reuse. Importance of adequate

knowledge of development domain and object-oriented design principles and patterns must

 63

be considered during component development. Without these fundamentals, the

developing of reusable component could turn to development of component that fits only

for one purpose.

 64

8. References

All product images (Symbian, Nokia, Sony-Ericsson) presented in this thesis are free for

non-commercial use. Images are available on following web site:

http://www.symbian.com/press-office/picture-library.html [referenced 13.8.2002]

/ 1 / Digia: Digia Software Process, Digia 2001, [Confidential] available: Digia Intranet

/ 2 / Symbian: Symbian OS v7.0 [Internet], available:

http://www.symbian.com/technology/symbos-v7x-det.html [referenced 13.8.2002]

/ 3 / Open Mobile Alliance [Internet], available:

http://www.openmobilealliance.org/ [referenced 13.8.2002]

/ 4 / Nokia: Forum Nokia [Internet], available (registration is needed):

http://forum.nokia.com/ [referenced 13.8.2002]

/ 5 / UIQ user interface for Symbian OS v.7.0 [Internet], available:

http://www.symbian.com/technology/UI/uiq.html [referenced 13.8.2002]

/ 6 / Digia: Programming for the Series 60 Platform and Symbian OS, John Wiley and

Sons Ltd, 2002

/ 7 / Martin Tasker et al: Professional Symbian Programming, Wrox Press Ltd, 2000

/ 8 / J. Jipping: Symbian OS Communications Programming, John Wiley and Sons Ltd,

2002

/ 9 / Symbian OS Communications - Design [Internet], available:

http://www.symbian.com/developer/techlib/papers/comms-des/comms-des.htm [referenced

13.8.2002]

/ 10 / Symbian OS Communications – Implementation [Internet], available:

http://www.symbian.com/developer/techlib/papers/comms-imp/comms-imp.htm

[referenced 13.8.2002]

/ 11 / Ivar Jacobson, Martin Griss and Patrik Jonsson: Software Reuse: Architecture

Process and Organization for Business Success, Addison-Wesley Co, 1997

 65

/ 12 / Johannes Sametinger: Software Engineering with Reusable Components, Springer,

1997

/ 13 / Eila Niemelä, Seppo Kuikka et al.: Teolliset komponenttiohjelmistot, TEKES

Teknologiakatsaus 89/2000

/ 14 / Alan Shalloway and James R. Trott: Design Patterns Explained: A New Perspective

on Object-Oriented Design, Addison-Wesley Co, 2001

/ 15 / Sun: Enterprise JavaBeans - EJB, [Internet], available:

http://java.sun.com/products/ejb/ [referenced 13.8.2002]

/ 16 / Microsoft: Component Object Model – COM, [Internet], available:

http://www.microsoft.com/com/ [referenced 13.8.2002]

/ 17 / Object Management Group: Common Object Request Broker Architecture -

CORBA, [Internet], available:

http://www.omg.org/gettingstarted/corbafaq.htm [referenced 13.8.2002]

/ 18 / Symbian: Symbian OS Developer Library: Symbian OS v7.0: ECOM, [Internet],

available:

http://www.symbian.com/developer/techlib/sdl.html [referenced 13.8.2002]

/ 19 / James Coplien, Daniel Hoffman and David Weiss: Commonality and Variability in

Software Engineering, IEEE Software 15(6), November, 1998, [Internet], available:

http://www1.bell-labs.com/user/cope/Mpd/IeeeNov1998/ [referenced 13.8.2002]

/ 20 / Jennifer Bray and Charles F. Sturman: Bluetooth – Connect Without Cables,

Prentice-Hall Inc, 2001

/ 21 / David Kammer, Gordon McNutt, Brian Senese and Jennifer Bray: Bluetooth –

Application Developer’s Guide, Syngress Publishing Inc, 2002

/ 22 / Bluetooth and Symbian OS [Internet], available:

http://www.symbian.com/technology/standard-blue.html [referenced 13.8.2002]

/ 23 / Bluetooth Specifications [Internet], available:

http://www.bluetooth.com/dev/specifications.asp [referenced 13.8.2002]

/ 24 / Symbian: Symbian ownership, [Internet], available:

http://www.symbian.com/about/ownership.html [referenced 13.8.2002]

/ 25 / Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides: Design Patterns –

Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995

 66

/ 26 / Robert C. Martin: Design Principles and Design Patterns, [Internet], available:

http://www.objectmentor.com/resources/articles/Principles_and_Patterns.PDF [referenced

13.8.2002]

/ 27 / Hans-Erik Eriksson and Magnus Penker: UML, IT-Press, 2000

/ 28 / ARM Ltd, Thumb – an extension to 32-bit ARM architecture, [Internet], available:

http://www.arm.com/armtech/Thumb?OpenDocument [referenced 13.8.2002]

/ 29 / Roger S. Pressman: Software Engineering – A Practitioner’s Approach, The

McGraw-Hill Companies Inc, 1997

/ 30 / Prosessori-Uutiset, ”Älyrenkaaseen 433 MHz piirit”, 19.10.2001, [Internet],

available: http://www.prosessori.fi/uutiset/uutinen.asp?id=41405 [referenced 13.8.2002]

/ 31 / Nokia: Series 60 Platform 1.0 – Product Overview, [Internet], available:

http://www.nokia.com/networks/systems_and_solutions/files/content/mim_series_60_versi

on10_po.pdf [referenced 13.8.2002]

 67

Appendix 1: UML notation

Figure 27 shows notation for UML packages and components. Packages are used for

organizing semantically similar elements to groups / 27 /

Package A
<<APP>>

Package B
<<DLL>>

Component
1

Component
2

Symbian OS
Subsystem

<<DLL>>

Figure 27: UML packages

Six classes and their relationships are presented in Figure 28. Roles of relationships are

shown as stereotypes, e.g. “inherits” or “delegates”. Normal classes are coloured with

yellow, abstract interface classes (so called M-classes in Symbian OS) are green and

system classes are grey. External packages or classes are coloured with orange colour.

CBas eClass

CInterfaceImplementor TOtherClass

CDelegateClassMInterfac
eClass CDerivedClass

<<inherits>>
<<delegates>><<owns>>

<<instant iates>>

Figure 28: Class hierarchies in UML notation

 68

A single class and its attributes and operations are shown in Figure 29; also a class

declaration in C++ programming language is presented after it.

CClass
iValue : T Int
iPointerToOtherClass : MInterfaceClass

<<static>> NewL()
ConstructL()
Class()
~Class()
Value()
SetValue()
DoSomethingL()
DoSomethingElse()

Figure 29: Symbian OS C-class and its attributes and operations

// ==
// Example of C++ class and its attributes and operations
// ==

class CClass : public CBase
 {

 public: // Constructors

static CClass* NewL(MInterfaceClass* aPointer);
~CClass();

private: // Constructors

void ConstructL(MInterfaceClass* aPointer);
CClass();

public: // New methods

TInt Value();
void SetValue(Tint aValue);

void DoSomethingL();
void DoSomethingElse();

private: // Data

TInt iValue;
MInterfaceClass* iPointerToOtherClass;

};

// ==

Sequence diagrams (Figure 30) are used for modelling the dynamic behaviour of the

system. Sequence diagram shows clearly interaction and messages between different

objects in same order as they will occur in real system.

 69

 : TOtherClass : CInterfaceImplementor : CDerivedClass : CDelegateClass

CreateImplementor()

DoSomething()

DelegateSomethingL()

Figure 30: Sequence diagram

 70

Appendix 2: Public API of BT component

Here is the public API of Bluetooth component:
// ==
// CdBearerComponent, public API for Digia Bluetooth Component
// © Digia 2002 [version 0.09, 28.8.2002]
// ==
class CdBearerComponent : public CBase
 {
 public:
 // Static constructor
 IMPORT_C static CdBearerComponent* NewL(MdBearerFactory& aFactory,
MdConnectionObserver* aObserver, TTimeIntervalMicroSeconds32 aConnectionTimeout,
TTimeIntervalMicroSeconds32 aDataTimeout);

 // Destructor
 IMPORT_C virtual ~CdBearerComponent();

 // Initialize BT component with GAP service or own BT service implementation
 IMPORT_C void InitL(const TInt aServiceUuid);
 IMPORT_C void InitL(MdOwnServiceInformation* aServiceInformation, const
TInt aServiceUuid);

 // Connect, synchronous and asynchronous versions
 IMPORT_C TInt ConnectL(TBool aMaster, TBool aThisIsSynchronous = EFalse);

 // Close connection
 IMPORT_C void Close();

 // Inquires other BT devices and discovers service that
 // is defined with aServiceUuid parameter
 IMPORT_C TInt FindServiceL(const TInt aServiceUuid);

 // Read data to descriptor, synchronous/asynchronous and 8/16 bit versions
 IMPORT_C TInt ReadL(TDes8& aData, TBool aThisIsSynchronous = EFalse);
 IMPORT_C TInt ReadL(TDes16& aData, TBool aThisIsSynchronous = EFalse);

 // Read data, synchronous/asynchronous and 8/16 bit versions
 IMPORT_C TInt SendToL(const TDesC8& aData, TBool aThisIsSynchronous =
EFalse);
 IMPORT_C TInt SendToL(const TDesC16& aData, TBool aThisIsSynchronous =
EFalse);

 // Returns the lentgh of received data
 IMPORT_C void LengthOfDataL(TInt& aLength);

 private:

 // C++ constructor
 CdBearerComponent();

 // Second phase constructor
 void ConstructL(MdBearerFactory& aFactory, MdConnectionObserver* aObserver,
TTimeIntervalMicroSeconds32 aConnectionTimeout, TTimeIntervalMicroSeconds32
aDataTimeout);

 private: // data

 MdBearerManager* iBearerManager;
 MdOwnServiceInformation* iServiceInformation;
 TBool iGapService;
 TPtr8 iDataPtr;
 };

 71

Appendix 3: Instantiation of component

Figure 31: Instantiation of Bluetooth component

