LAPPEENRANTA UNIVERSITY OF TECHNOLOGY

Department of Information Technology

Evolutionary computing in search-based software

engineering

The topic of master’s thesis has been confirmed in the Departmental Council of

Department of Information Technology on 3rd December 2003.

Supervisors: D.Sc. (Econ.), Professor Jouni Lampinen and D.Sc. (Econ.), Lecturer

Timo Mantere.

Lappeenranta 23rd March 2004

Leo Rela

Korpraalinkuja 3 As. 1
53800 LAPPEENRANTA
Finland

Tel. +358 40 51 31 297
leo.rela@iki.fi

Abstract

Lappeenranta University of Technology
Department of Information Technology
Leo Rela

Evolutionary computing in search-based software engineering

Master’s thesis
2004

125 pages, 30 figures and 2 tables.
Supervisors: Professor D.Sc. (Econ.) Jouni Lampinen and Lecturer, D.Sc. (Econ.)
Timo Mantere.

Keywords: Evolutionary algorithms, genetic algorithm, search-based software-
engineering, software production.

This master’s thesis aims to study and represent from literature how evolutionary
algorithms are used to solve different search and optimisation problems in the area of
software engineering. Evolutionary algorithms are methods, which imitate the natural
evolution process. An artificial evolution process evaluates fitness of each individual,
which are solution candidates. The next population of candidate solutions 1s formed
by using the good properties of the current population by applying different mutation
and crossover operations.

Different kinds of evolutionary algorithm applications related to software engineering
were searched in the literature. Applications were classified and represented. Also the
necessary basics about evolutionary algorithms were presented.

It was concluded, that majority of evolutionary algorithm applications related to
software engineering were about software design or testing. For example, there were
applications about classifying software production data, project scheduling, static task
scheduling related to parallel computing, allocating modules to subsystems, N-version
programming, test data generation and generating an integration test order. Many
applications were experimental testing rather than ready for real production use. There
were also some Computer Aided Software Engineering tools based on evolutionary
algorithms.

Tiivistelma

Lappeenrannan teknillinen yliopisto
Tietotekniikan osasto
Leo Rela

Evoluutiolaskennan sovellutukset ohjelmistotekniikassa

Diplomity6
2004

125 sivua, 30 kuvaa ja 2 taulukkoa.
Tarkastajat: Professori, KTT Jouni Lampinen ja Lehtori, KTT Timo Mantere

Hakusanat: Evoluutioalgoritmit, geneettinen algoritmi, ohjelmistotekniikka, ohjelmis-
totuotanto

Tamin diplomitydn tavoitteena on kartoittaa ja esitelld kirjallisuudessa raportoituja
evoluutioalgoritmien sovellutuksia ohjelmistotekniikan alueelle liittyvien haku- ja op-
timointiongelmien ratkaisuun. Evoluutioalgoritmit ovat erilaisia luonnon evoluu-
tioprosessia jdljittelevid menetelmid, joissa keinotekoinen evoluutioprosessi arvioi
ratkaisun hyvyyttd mittaamalla tavoitefunktiolla populaation yksilot eli ratkaistavan
ongelman eri ratkaisuehdokkaat. Seuraavan sukupolven populaatio yriteratkaisuja
muodostetaan yleenséd kiyttden nykyisen sukupolven hyvien yksiléiden ominaisuuk-
sia soveltaen erilaisia mutaatio- ja risteytysoperaatioita.

TyOssd etsittiin, luokiteltiin ja esiteltiin erilaisia kirjallisuudessa julkaistuja evoluu-
tioalgoritmien ohjelmistotekniikkaan liittyvid kéyttStapoja ja sovellutuksia sekd
kiytiin 1dpi tarpeellisin osin itse evoluutioalgoritmien teoriaa kisitteineen.

Ty6ssd havaittiin, ettd suurin osa evoluutioalgoritmien sovellutuksista ohjelmisto-
tekniikassa liittyy ohjelmistojen suunnittelu- ja testausvaiheisiin. Sovellutuksia oli
mm. ohjelmistotuotantoon liittyvian datan luokittelu, projektin aikataulutus, rin-
nakkaislaskentaan liittyvd staattinen tehtivien jako, moduulien jako alijirjestelmiin,
N-versio ohjelmointi, testitapauksien generointi ja integrointitestausjirjestyksen lu-
onti. Suurin osa sovellutuksista oli luonteeltaan enemminkin kokeellisia kuin soveltu-
via suoraan todelliseen kiyttoon. Toisaalta valmiita evoluutioalgoritmeihin perustuvia
tietokoneavusteisen ohjelmistosuunnittelun vilineitid on olemassa.

11

Contents

1 Introduction 5
1.1 Researchobjectives 5
1.2 Structure of thisdocument 6
1.3 Software engineering 6
1.4 Computational intelligence in software engineering 7
1.5 Search-based software engineering 8
2 Overview on evolutionary algorithms 10
2.1 Evolutionary algorithms 10
2.2 Geneticalgorithm L L Lo o 11
2.3 Geneticprogramming e e e e e e e e 13
24 BEvolutionstrategy Lo 15
2.5 Evolutionary programming 15
3 C(lassification of EA applications for solving software engineering prob-
lems 16
3.1 Analysis e e e e e 17
32 Design.o 18
3.3 Implementation 18
34 Testing. oo e e 19
4 Analysis 20
4.1 Prediction of software failures 20
4.2 Exploring difficulty of the problem 25
4.3 Software project effort prediction 27
44 Projectmanagement.o 30
S5 Design 35

5.1
5.2
53
54
5.5

Multiprocessor scheduling 0oL,
Task and resource allocation in distributed systems
Hardware/software co-design in embedded systems
Protocol construction L. Lo

Architecturedesign

6 Implementation

6.1 Automatic programming e e e e
6.2 N-version programming v« v v e b e e e e e e
6.3 Search for compiler optimisations
6.4 Re-engineering it
7 Testing
7.1 Functional (black box) testing
7.2 Structural (white box) testing
7.3 Integrationtestdesign.
7.4 Testing based on mutation analysis
7.5 Searching for response time extremes
7.6 Miscellaneous Lo

8 Summary

8.1
8.2
8.3
8.4
8.5

9 Conclusions

References

53
53
55
57
58

60
60
66
72
76
77
81

83
85
86
88
89
92

96

103

Symbols and Abbreviations

ANN Artificial Neural Network

BAN Burrows, Abadi and Needham logic (BAN, A logic of authentication)
CASE Computer Aided Software Engineering

C# Csharp, an object-oriented language

CDG Control-Dependence Graph

CDC Condition-Decision Coverage

CFG Control-Flow Graph

CG Conjugate Gradient method

CI Computational Intelligence

COCOMO Constructive Cost Model

CPU Central Processing Unit

DAG Directed Acyclic Graph

DCS Distributed Computing System

DSH Duplication Scheduling Heuristic

EA Evolutionary Algorithm

EP Evolutionary Programming

EMG Extended Module Graph

ES Evolution Strategy

FpP Function Point

GA Genetic Algorithm

GGGP Grammar Guided Genetic Programming
GP Genetic Programming

LOC Lines of Code

MDG Module Dependency Graph

ML Machine Learning

MMRE Mean Magnitude Relative Error (mean of absolute percentage errors)

MQ
MSE
NP
NVP
OGA
00
PARAdeg
PGA
PN
RAD
STGP
TPG
UML

Modularization Quality function

Mean Square Error

Non-deterministic polynomial

N-Variant Programming, N-Version Programming
Ordered-Deme Genetic Algorithm
Object-Oriented

The Parallel Degree

Parallel Genetic Algorithm, Partitioned Genetic Algorithm
Program Net

Rapid Application Development

Stongly Typed GP

Task Precedence Graph, Test Precedence Graph
Unified Modeling Language

1 Introduction

This Chapter represents briefly the overall structure of this document, research
objectives, and the background concepts related to this research: software engineering,

computational intellicenge and search-based software engineering.

1.1 Research objectives

The objective in this master’s thesis is to study and represent wide selection of
applications from literature, where evolutionary computing methods (evolutionary
algorithms, EA) are used to solve different search and optimisation problems in the
area of software engineering. This thesis will concentrate only on the applications
related to software production rather than cases, where evolutionary algorithms are
used only in the software. It was to be expected beforehand that the majority
of evolutionary algorithm applications related to software engineering were about

software testing.

Publications reporting the use of EA methods to solve software engineering problems
are classified depending on their position in software development process and their
application area. The objective is to find promising application areas for EA, to find
areas where EA will be probably used in the practical softare engineering and to discuss

the possibilities of more research.

1.2 Structure of this document

The Chapter 1 is an introduction and describes the background concepts and research
objectives for this master’s thesis. The Chapter 2 provides the basic information and
theory about evolutionary algorithms, which are needed to understand the contents of

this thesis.

This thesis is reporting, how evolutionary algorithms are used for solving software
engineering problems. In Chapter 3, is it described how those applications found in
the literature are being represented and classified to classes corresponding four major
phases of the software development process. The applications itself are described in

Chapters 4, 5, 6, and 7.

The Chapter 8 is the summary and describes the number and type of publications
publications related to the subject of this thesis. In addition, the overall findings are

also described here. In Chapter 9 there are the final conclusions of this research.

1.3 Software engineering

LEEE standard 610.12-1990 defines the term "Software engineering" as:

"The application of a systematic, disciplined, quantifiable approach to the develop-

ment, operation, and maintenance of software.” [IEE90Q]

In this thesis that term means work or single process that results in a complete, tested
software product that behaves much as possible like the original model that was
presented in requirements analysis. Therefore focus is in software development or

software production.

The history of software engineering is relatively short when compared to other
engineering sciences. The software technology has developed rapidly and the size
of a usual software product can be doubled in a few years. Thus, there exists a
rapidly growing demand for new software having increased complexity, but still the
productivity of the software development work grows slow, as it is said to be only

about four percents per year. [HM98, PP9§]

Software engineering methods are usually products of interaction between science and
engineering. New problems are usually solved with ad hoc solutions, which will
continue their life as a folklore. Folklore gets a systematic form and soon we will
have models and theories, which can be applied commonly to real world problems

[Sha90]. After that, we have also new problems.

1.4 Computational intelligence in software engineering

In the past, the research of intelligent and adaptive systems has organized to the
research area that is called computational intelligence and soft computing. The idea
is to replace the lack of explicit models and human knowledge with numerical models
that are computed to fit the solution of the problem. [Ala98] Most famous techniques

on the area are neural networks, fuzzy logic, and evolutionary algorithms.

Search methods based on techniques such as evolutionary algorithms, simulated
annealing, and tabu search are also referred as metaheuristic search and optimisation
methods. According Portland Pattern Repository [PPR0O2], heuristic approach to
problem is empirical method that often solves problem but cannot proof that given
solution is the best possible. Metaheuristic methods are used to find good heuristics

for different problems.

Portland Pattern Repository [PPRO2] gives following example about the metaheuristic

approach to the problem:

"What parameter do I use to get good results when applying heuristic method X to
problem Y?"
"How do I adjust the parameters of heuristic X so I get better results on problem Y?"

"Which is better, heuristic X or heuristic Y?"

Different computational intelligence methods separately and in various combinations

have been used to solve software engineering problems. [PP98]

1.5 Search-based software engineering

Harman and Jones [HJO1b] say that:

"Search-based software engineering is a reformulation of software engineering as a
search problem, in which the solution to a problem is found by sampling a large search

space of possible solutions."

According to Harman and Jones [HJO1la, HJO1b], metaheuristic search techniques,
such as evolutionary algorithms, are applicable to many software engineering related
optimisation and search problems because there are usually need to balance competing
constraints and cope with inconsistency without any precise rules to compute the best
solution. There are usually too many solutions without a perfect one, but still good

solutions can be recognised from the bad ones.

Search methods with metaheuristic nature such an evolutionary algorithms, tabu

search, and simulated annealing are used as sampling techniques. The most used

search techniques in search-based software engineering are evolutionary algorithms
including techniques such a genetic algorihms (GA) [Gol89], genetic programming
(GP) [Koz92], evolution strategy (ES) [Rec73, Sch81], and evolution programming
(EP) [FOWG66]. Overview on various evolutionary algorithms techniques 1is

represented in Chapter 2.

One challenge of search-based software engineering is to reformulate software
engineering problems as search problems. Different methods based on evolutionary
algorithms have been successfully applied to software engineering problems. For
example, GP to automatic programming, GA to project scheduling, and test data

generation.

There exists a research network called Software Engineering using Metaheuristic
Innovative Algorithms (SEMINAL) [SEMO02]. SEMINAL have the objective to
demonstrate applicability of miscellaneous metaheuristic techniques to software
engineering problems. This thesis will concentrate only to the use of evolutionary

algorithms in software engineering.

2 Overview on evolutionary algorithms

This Chapter provides basic information and theory about evolutionary algorithms
needed to understand the contents of this work. Three most widely used techniques
- Genetic Algorithm (GA), Genetic Programming (GP), Evolution Strategy (ES), and

Evolutionary Programming (EP) - are described briefly.

2.1 Evolutionary algorithms

Evolutionary algorithms are soft computing techniques inspired by Charles Darwins’
“survival of the fittest” theory. The general idea is to have a population of solution
candidates (individuals) for the problem. A problem specified evaluation function is
used to measure the fitness of each individual. The first population can be initialized
with random parameters, but usually all other populations after that contain individuals
that derive “good” parameter values from their parent populations. Different kinds
of crossover, mutation and stochastic operations are performed when creating new

populations.

Evolutionary algorithms can be effective for finding global optimum of complex and
non-continuous problems that are too difficult to solve using derivative-based methods.
When using large and n-dimensional search space, evolutionary algorithm cannot
always find the best possible solution in reasonable amount of time. However, solutions
can still be “good enough” when compared to use of the brute force approach, which
means the evaluation of all possible solutions. When the search space is large, brute
force cannot be used because of so called combinatorical explosion that means too

large a number of solution candidates to evaluate.

10

Evolutionary algorithms have been applied to many practical problems successfully.
For example, mechanical shape optimisation [AL97], communications network design
[KC93, KC97], finding potential customers from marketing database [Sun92], and

optimisation related on electrical power systems [Yin93].

Next Sections (2.2, 2.4, 2.3, 2.5) present the most commonly applied techniques based
on evolutionary algoritms. However, for each technique, there is a large number of

different approaches and modifications and only the basics are described here.

2.2 Genetic algorithm

Genetic algorithms (GA), originally developed by John Holland [Hol75] are search
algorithms based on the natural selection and natural genetics. The original goal for
the research was to explain the adaptation of natural systems and to design artificial

system that retains mechanism of natural systems. [Gol89]

The simulated evolution process in the genetic algorithm is done with a population of
individuals represented by chromosomes. In practice, chromosomes are individual’s

parameters encoded to the string, bit or byte presentation.

Because often the first population does not have the final or “good enough” solution,
there is need for keeping an artificial diversity in the population. Diversity can be
maintained by using the crossover and mutation operations. The mutation is performed
by applying a random change to the individual’s chromosomes. A mutation can be
complete or affect only few genes. In Figure 1 there is an example, where the
mutation was performed for one gene. When using binary encoding, one practical way
to perform mutation is to flip one bit in a chromosome. For example, a chromosome

1011 after the mutation can be 1001.

11

Before

After

Area chosen
for mutation

Figure 1: Mutation in Genetic Algorithm [Rya00]

The crossover in the natural evolutionary process means that child will inherit its
properties (genes) from its parents. In genetic algorithms, the crossover operation is
needed to mix and inherit good gene combinations from the current population to the
new population. In Figure 3 there is an example of a crossover, where childs inherit

their genes from the both parents.

Implementation of the genetic algorithm usually does following cycle [HBO1]:

1. Evaluate the fitness value for all the individuals in current population.
2. Create new population by using crossover, mutation and reproduction
operations.

3. Discard the old population and continue iteration.

12

- W
Parent 2

\ Crossover point

I F\VAVAY

Figure 2: Example of crossover in the Genetic Algorithm [Rya00]

2.3 Genetic programming

Genetic programming (GP), introduced by John Koza [Koz92], has the objective to
let a computer solve problems without being explicitly programmed to do so. Genetic
programming can be seen as an extension of the conventional genetic algorithm. While
the GA will generate a string that represents the solution, the GP generates a computer

program as the solution. [Neg02]

High-level programming language called LISP was chosen as the main programming
language for GP. Individuals in the population are variable length strings and each

string will encode a candidate solution. Each solution is a parse tree that represents

13

a computer program. Like GA, GP uses a fitness function to evaluate solutions.

[HBO1, Neg02]

= Subtrees selected
for crossover

Figure 3: Crossover for two parent parse trees [Rya00]

GP uses the crossover operation, which will select two programs and produces two
offspring programs. Offspring programs are recombinations of their parents with
randomly chosen parts swapped between them. An example of crossover operation
in GP is shown in Figure 3: there are two parse trees representing parent functions
2+ 3 x4 and 7 — 6. The crossover produces two new parse trees with functions 2 + 6

and 7 — 3 x 4. [Neg02, HBO1]

14

GP programs are usually composed of elements like fuctions and terminals. Mutation
in GP can randomly change a terminal symbol to different terminal symbol or a

function to another function. [Neg02]

2.4 Evolution strategy

Evolution strategy (ES) was developed to solve technical and mechanical optimisation
problems and was previously only known in the civil engineering area. Evolution
strategy can be used when no suitable objective (fitness) function exists or it is too

difficult to use and no other suitable optimisation method exists. [HBO1]

In the original ES, an individual (parent) in population generates one new individual
(offspring) per generation. The process causes small mutations to occur more likely
than larger mutations, until the offspring performs better than its parent. For example,
the mutation operation can be based on normal probability distribution. Later on, ES
was generalized to the form, which imitates the natural evolution process by using

recombination, mutation, and selection. [Gol89, HBO1]

2.5 Evolutionary programming

Evolutionary Programming (EP), introduced by Fogel et al. [FOW66] allows the use of
different length individuals in the population. There is no crossover in EP, but instead
the individuals selected as parents are subjected to the mutation to produce children. It
has been said, that any structure, which can be mutated, can be evolved by using EP.

[Rya00]

15

3 Classification of EA applications for solving software

engineering problems

The software development process is usually divided into four major phases which are
derived from the linear sequential model (Figure 4), also known as the waterfall model.
[Pre01] The phases in chronological order are analysis, design, implementation, and
testing. In this thesis, those four phases are used as rough classes, into which different
EA based applications for solving software engineering problems are classified. Each
EA based approach that is used to solve a particular software engineering problem is
called as an EA application or a case. Classes will contain subclasses, which are also
called application areas. For example, the testing phase contains separated subclasses

for the structural testing and the functional testing.

System/information
engineering

Analysis > Design '] Code [* Test

Figure 4: Linear sequential model, also known as waterfall model [Pre0O1]

The first half of the classes, the analysis and the design, represent the area of
system/information engineering [Pre0O1], where the software under development does

not exists and all software development tasks are pre-implementation tasks. The

16

rest of the classes, the implementation and the testing are more concentrated on the
software under development. The following four Sections (3.1, 3.2, 3.3, 3.4) will

briefly describe each class.

3.1 Analysis

In a software development project, the analysis phase contains the feasibility study and
the requirements analysis phases. In the feasibility study phase, highly generalised
system level requirements are defined. Those requirements are only customer
requirements and usually have no technical details about the system. Customer
requirements are analysed and software requirements, needed in the requirements
analysis phase, are derived from them. The requirements analysis is a gathering
process that 1s intensified and focused specifically on the software itself. To understand
the software being implemented later, the information about the required functionality,

behaviour, performance, interfaces, and the application domain must be understood.

[HMO9S, Pre0O1]

In this thesis, the analysis phase corresponds to the first class and is meant to contain
the applications related to early software project tasks. Those tasks could be about the
project management and design, project effort, and software quality prediction. The
analysis class is about software project design rather than the software design, with

which the next class is concerned.

17

3.2 Design

The second class is called design and concentrates on the software design, which
is used to translate software requirements to a representation of the software. The
software design process focuses on four attributes of a program: the data structure, the

architecture, interface presentations, and algorithmic details. [Pre01]

This class will contain the applications, which are used to search for the software
structure or the internal functionality. Also applications about the searching of
optimal runtime organisation of the software are concerned, e.g. the resource and task

allocation in the distributed system.

3.3 Implementation

Third class is called implementation and refers to implementation or code generation
phase in the linear sequential model. In this phase, the previously produced software
design is translated in to machine readable form - e.g. the computer program. EA
applications which can be used to produce computer programs or support work of the

human programmers, are classified in to this class.

Because genetic programming (GP) technique is meant only to generate programs,
almost every use of the GP goes into this class. However, it is not appropriate, within
the scope of this work, to report every use of the GP in the literature as an EA based
application in the implementation phase of the waterfall model. That is why this class
contains only cases which are closely related to the well known software engineering

problems.

18

3.4 Testing

The testing phase refers to testing process that focuses on logical internals of
implemented software. The objective is to uncover errors and to ensure that the
program behaviour is as expected. Test results must coincide with the requirements.

[PreO1]

All applications related to software testing are classified in to this class. Applications
can be about test case generation or searching for program inputs which will cause

failures or too long response times.

19

4 Analysis

This Chapter represents applications related to the analysis phase of the waterfall
model. The related application areas are: prediction of software failures, exploring

difficulty of the problem, software project effort prediction, and project management.

4.1 Prediction of software failures

Software failures usually occur after some implementation tasks have already been
completed. If failures are found in testing phase, there will be need for extra
implementation tasks, which will try to eliminate those failures. The extra work will
usually cause development costs to increase. If failures are found after software is in
use, the costs could go up even more. Because of this, it is important to find software

failures in early phases of development.

Using special reliability techniques in the software development will require more
resources, time and money. Because of this, it is important not to use them in every
part of the system development. Quality prediction methods could be used to determine

parts of the system to, which realibility techniques should be applied [EKCA9S].

Evett er al. have described in the paper GP-based software quality prediction
[EKCA98] the model based on GP, which can be used to find modules with high
propability of failure and should be implemented with using reliability improvement
techniques. The GP system will predict a number of faults the module is likely to
produce. Number of faults will be used to rank the modules. Thus, final evaluation of

quality will be based on ordinal criteria rather than number of failures.

20

There exists a software quality data from software development projects. Data
set has attributes for unique and total number of operators and operands, lines of
source code, lines of executable code, and two values for cyclomatic complexity
(McCabe’s cyclomatic complexity and extended cyclomatic complexity, number of
linearly-independent paths throught a program [MB94]). Modules are classified as
Sfault-prone and not fault-prone. [EKCA98]

The data was splitted to training and validation data sets. The GP system was trained
by using training data. For every run, the best program was returned as the result.
The ability of the trained program to generalise the data was measured by using the
result program to predict faults also for validation set. After that, best-of-run programs
were ordered accordingly. The usefulness of the model is evaluated by its ability to
approximately order modules from the most fault-prone to the least fault-prone. The
order was compared to random order of modules. In this case, random order results

were really different than GP results. [EKCA98]

Even best GP result programs are not expected to predict failure module perfectly.
According to Pareto’s Law, 20% modules have 80% of total number of failures (in this
case, over 70% of modules has near zero failures) and developers should be interested

in those top 20% of modules in order. [EKCA9S]

In the paper Automated Knowledge Acquisition and Application for Software
Development Projects Baisch et al. [BLIS8] represented how to express tailored fuzzy
expert system capable of classifying software modules by their propability of having
errors. Quality evaluation was interpreted as the transformation of different software
metrics to a quality factor, which means correctness or maintainability of the software.
Because rules consist of a complex combination of different metrics, Baisch et al.

propose to use GA to assist human experts to define rule-base for classification.

21

Every individual in to population represents one fuzzy expert system encoded as a
binary string. Fitness function was based on the contingency-table like weighting
according to false and correct classification data. Modules were classified to two
different classes: Modules with fault amount of O to 5 and more than 20 faults. Data
was splitted in training and test sets. Extracted expert system was able to classify
correctly 87.8% of training data (409 modules) and 82.4% of test data (301 modules).
System was also tested with real-world application. When applied to top 10% modules
with high amount of faults, the prediction of failures reduced total number of late faults

in top-10 down with 14%. [BL9S]

Liu et al. in the paper Genetic programming model for software quality classification
[LKO1] have used GP to classify software modules. Liu et al. have used real world
datasets from large software written in C++. The used dataset was about 807 software
modules classified as fault-prone or not fault-prone. Dataset has attributes for a number
of times the source code was inspected, number of LOC for different production phases
and final number of commented code. System was made to run faster than interpreted

LISP by having pointers to C functions in nodes of parse trees.

Data was splitted into two sets (training and validation). At first, GP model tries to
predict number of faults for each module. Then it classifies modules. Fitness was
calculated from number of hits and raw fitness, which comes from pre-defined cost of
misclassification values. Built GP model has misclassification rate of about 20% and it
was compared against regression model, which has a rate of over 30%. In conclusions

of the paper, the GP was said to be more accurate in this case. [LKO1]

Bouktif er al. discuss in the paper Combining Software Quality Predictive Models:
An Evolutionary Approach [BKS02] the problem caused by different software quality
prediction models and that there are not many companies that systematically collect

and publish related data. Usually data is confidential and only summaries are

22

published. For a solution to this problem, Bouktif et al. propose the use of existing

models as independent experts. [BKS02]

In an approach to this problem, it was tried to combine decision trees into one
final classifier system with GA. When the input vector was given to the system,
decision making starts from the root of the tree and corresponding edges are followed.

Questions in nodes can be something like Is x < « 7. [BKS02]

<=16 >16

stable

unstable stable

Figure 5: Example of a decision tree for the software stability prediction [BKS02]

Chromosome representation of trees was made with set of boxes with sides parallel to
the axes. In Figure 5 there is a simple decision tree for software stability prediction
with OO related variables LCOM (lack of cohesion methods) and NPPM (Number of
Public and Protected Methods in a class). Same tree in a box representation is in Figure

6. [BKS02]

23

LCOM

stable
16

unstable

10 NPPM

Figure 6: Example of output regions for decision tree for software stability prediction
[BKS02]

1 k T
RS "

Fitness was calculated by using Youden’s J-index, which calculates the average
correctness per attribute. Function is represented in Equation 1 where n,; 1s the number

of training vectors with real attribute c; classified as ¢;. [BKS02]

According to Bouktif ef al. [BKS02] The system was tested by predicting the stability
of classes written in Java. 22 structural software metrics about coupling, cohesion,
inheritance, and complexity were selected for attributes. Data was randomly split into
10 datasets with equal size and then the classifier is trained with 9 sets. The last one
dataset was used as test data. This was repeated with all 10 possible combinations.
After test experiments, it was concluded, that resulting meta-expert model can perform

significantly better than individual models.

24

GA is used to train ANN to predict software quality in the papers Using the
genetic algorithm to build optimal neural networks for fault-prone module detection
[HKAH96] and Evolutionary neural networks: a robust approach to software
reliability problems [HKAH97].

Other related papers are Software quality knowledge discovery: a rough set approach
[RPAO2] and Using genetic programming to determine software quality [EKA99].

4.2 Exploring difficulty of the problem

During early phases of a software development project, developers usually do not have
an exact awareness about the problem, which should be solved using the software.
Developers increased uncertainty about the real nature of the problem could increase
cost and duration of the project. It is commonly said, that bad decisions occuring in
early phases of project will lead to problems, which will be expensive to eliminate later.
One way to avoid increased development cost is to collect more knowledge about the

problem to be solved with the software.

Feldt in the paper Genetic Programming as an Explorative Tool in Early Software
Development Phases [Fel99] (available also in Biomimetic Software Engineering
Techniques for Dependability [Fel02]) has presented the idea about using genetic
programming to explore the difficulty from input data. The term software problem

exploration using genetic programming (SPE-GP) is proposed to mean this approach.

The target system is software, which controls arresting of landing aircraft on a runway.
This is commonly used in military aircraft carriers, where the length of the runway is
limited. There is a cable on the runway, which will catch the incoming aircraft. The

controlling system has to apply suitable pressure to drums of tape attached to cable for

25

smooth stop. The system has to stop the aircraft close as possible to target distance
without exceeding physical limits (e.g. length of the cable or tape and maximum

retarding force applied to the pilot and the aircraft) [Fel99, Fel02]

Test case difficulty

-—- Increasing velocity -->

--- Increasing mass —->

Figure 7: Difficulty of test cases as function of mass and velocity [Fel99]

Values from the simulation are used to assign penalty values on the four fitness criteria.
All penalty values are summed to the total fitness of the test case, therefore this is a
minimisation problem and zero fitness is the global optimum. Used GP system was

built on top of GPSys genetic programming system. After each run, the best program

26

tree was evaluated with 10000 test cases with different aircraft mass and velocity

values. If any physical limit was exceeded, failure was recorded. [Fel99, Fel02]

Difficulty of the test case is a proportion of programs with failures. Test case difficulty
with different masses and velocities is shown in Figure 7 where dark area means higher
difficulty. In original requirements, there was defined maximum hook force for certain
points with specified mass and velocity. Because of this, there is separated areas with
higher difficulty in the middle of the Figure 7. In addition, there was discussion on
the paper, which critised the usage of the low-dimensional input space and lack of
research about effect of altered requirements to difficulty. Feldt says also, that SPE-
GP technique includes the risk, that result data will be GP-specific rather than human-
specific. [Fel99, Fel02]

4.3 Software project effort prediction

In the early days of computing, the cost of the software itself was only a small part
of the total cost of an information system. Nowadays software is usually the most
complex part of the system and developing it may be expensive when compared to

other costs related. [PreO1]

Cost and effort estimation for a software development is not very exact science. Larger
number of variables affects the total cost of software [Pre01]. Because of this, many

computational intelligence methods have been applied to estimate cost.

In the paper On the problem on the software cost function [Dol01] Dolado has tried
to use classical regression and GP for publicly available data sets to find software cost
functions. Both methods were used because classical regression makes assumptions

about the distribution of data and GP can explore data without assumptions. There

27

were 12 different sets with software product size (e.g., LOC or FP values) as
independent variable. As result, significant good predictions attained solely by the
product size was not found. Dolado has also compared GP, ANN and regression
methods for software cost estimation in the paper Limits to the Methods in Software

Cost Estimation [Dol99].

Burgess et al. in the paper Can genetic programming improve software effort
estimation? A comparative evaluation [BLO1] have trained GP system to predict
effort of software projects and compared results to usage of other methods. Used data
was taken from 81 projects from a Canadian software house and had attributes about
developers/managers experience, development environment, year of completion, and
5 other attributes about software size and complexity. The dependent attribute was
effort (person-hours). The data was splitted into training and guery (test) sets with

ratio 63/18.

Different methods were used to predict efforts: random, linear LSR, 2/5 nearest
neighbours, ANN and GP. Errors were measured with different functions. ANN has
superior performance and GP seems to be able to provide accurate estimates. Authors
believe, that after their results, further investigation is needed. In conclusions it was
said, that ANNs and GPs give good accuracy but they will need more effort to setup
(training). [BLO1]

28

Shan et al. have used almost same approach in the paper Software Project Effort
Estimation Using Genetic Programming [SMLE02]. The Grammar Guided GP
(GGGP) was used to fit a model. In GGGP, the objective is to find good production

rules of grammar, which are used to produce the actual program.

effort = size * (if application in{dss,missing} then 5.34 else 1.68)
+ 18.5 * team size * log(size) + 92.7 * log(size)

Figure 8: The example of GP program [SMLEO2]

According to Shan er al. [SMLEOQ2], Data set of 423 software projects was splitted to
training and test sets (211/212). For each project, there was high number of different
attributes: 32. There were numerical and non-numerical attributes, e.g. team size, size
(in function points), business area type, usage of object-oriented techniques and usage
of different project management methods. In the Figure 8 there is an example of GP

program.

As a result, it was observed that in best programs there were no used non-numerical
attributes in best-run programs, only numerical. Shan Y. ef al. suggests, that non-
numerical attributes are too complex to be discovered by the GP or not closely related

to the project effort. [SMLEO2]

Neural networks trained with GA 1is also used to estimate efforts in the papers Neuro-

genetic prediction of software development efforts [Shu00].

29

Other related papers are An evolutionary approach to estimating software development
projects [ARRRTO1] and A validation of the Component-Based Method for Software
Size Estimation [Dol00].

4.4 Project management

Project manager has time, resources, and a goal for the project. The goal is reached
when all the project tasks are completed. Each task needs resources (like employees)
and time to be completed. There is a limited number of resources for use and project

must be completed before the pre-defined date.

Usually resource usage and task completion order can be planned by using timeline
chart. In Figure 9 there is an example of timeline chart (also known as Gantt chart)
for the project of six tasks and three employees. Horisontal bars are tasks and lines

between them are dependencies: e.g., tasks 2 and 3 cannot be started before task 1 is

completed.
Task 15 Dec "03
1 [] emp2
2 emp3; empl
3 emp2
4 empl
5 emp3; empl
6 T emp2

Figure 9: Gantt chart for the project with three employees and six tasks.

30

Chang et al. [CCNC98] have developed a formal model called Software Project
Management Net (SPMNet) to model software development projects. Model has an
automatic resource allocating and a scheduling based on GA. Projects and tasks needed
to complete are representated by using Task Precedence Graph (TPG). In Figure 10
there is an example of TPG with ten tasks. Each task has values for man month (MM)

and skill required (SR).

MM:4 MM:7 MM:11

MM:3
SR:1,2,3

MM:6 MM:7 MM:6 @

SR:1,6,7 SR:4.5 SR:1,2,4

Figure 10: Example of Task Precedence Graph. (MM: man month, SR: skill required)
[CCNC98]

The GA system takes TPG and employee/skill database as an input and outputs a near-
optimal schedule. The project schedule itself is used as a chromosome and it is a string,
which tells the order how employeers will participate to tasks. GA-based scheduling
was compared against exhaustive search (which generates a set of all possible solutions
and returns the best one) and GA was able to find optimal solution in reasonably shorter

time. [CCNCI8]

Later in the paper Genetic Algorithms for Project Management [CCZ01] Chang et al.
have represented improved GA-based project scheduling method. New method uses
2D array, which allows many to many and one to many relations between tasks and
employees. A C++ library of GA components called GAlib was used. The approach
have similarities to previous research [CCNC98], where GA takes TPG and employee
database (skills and salary) as a input. Individuals are 2D arrays with employeers
enumerated along the rows and tasks along the collumns. The population diversity is
increased by using several operations, like flip, destruction, and swap in mutation. In
Figure 11 there is an example of used 2D array crossover. Also the support for multiple
projects and partial commitment (e.g., employees A and B can take part to the task with

ratios 0.3 and 0.7) is added. [CCZ01]

Figure 11: Example of the crossover of two 2D arrays [CCNC98]

32

The objective function is composition of four objectives:

- Validity of job assignments (Validity). If all skill requirements for the tasks are
satisfied then Validity = 1, otherwise 0.

- Minimum level of overtime (Overload). Amount of over time for all employees.

- Minimum cost (CostMoney). Labor costs of the project. Calculated by using labor
rates of each resource and the hours used for the tasks.

- Minimum of time span (CostTime). Maximum time span, in which the project

must be completed.

The used composite objective function needed to maximise is:

fitness = Validity * (Wy/OverLoad + Wy /Cost Money + W3 /CostTime) (2)

The objective function (2) allows usage of weigts w, for component objectives. In
this case, the Validity component with value 0 will cause large penalty for the whole
function. GA system was tested with test problems and was superior when compared
to exhaustive search. Also the ability to set weights for the components of the objective

function was said to be very usefull. [CCZO01]

Chang et al. are going to continue research on this area. They will suggests integration
of some cost model (like COCOMO) with the constrains for better relationship with

time to complete the task and number of people involved in it.

33

In the paper Projecting Risks in a Software Project through Kepner-Tregoe Program
and Schedule Re-Planning for Avoiding the Risks. Komiya et al. [KHOO] have
proposed the method for avoiding risks in software projects through Kepner-Tregoe
program. Kepner-Tregoe is logical method for problem solving and decision making.

The used method itself was project task scheduling with the GA.

34

S Design

This Chapter represents applications related to the design phase of the waterfall
model. The related application areas are: multiprocessor scheduling, task and resource
allocation in distributed systems, hardware/software co-design in embedded systems,

protocol construction, and architecture design.

5.1 Multiprocessor scheduling

A multiprocessor system is a set of two or more processors, which communicate
with each other. A parallel program is set of tasks to be executed under a number
of constrains. In static multiprocessor scheduling, tasks can are scheduled to the
processors before the execution or during runtime. If tasks, which had been scheduled
for different processors, communicate during their execution, it will cause message
passing and waiting, which will slow down the execution. Usually the goal in
static multiprocessor scheduling is to minimise the total expected runtime of tasks.

[CFR99, JPPOO]

A dynamic multiprocessor scheduling will occur on runtime and is widely used in
modern operating systems. All scheduling, dynamic or static, is also referred as load

balancing.

A directed acyclic graph (DAG) can be used to represent computer program. Nodes are
tasks and arcs between them are data dependencies. Weights in arcs means cost caused

by message passing and weights in nodes representing computational cost. [DAA9S]

35

Dhodhi er al. say that efficient assignment and scheduling of parallel program tasks
are important in the effective utilisation of multiprocessor system [DAA9S5]. In the
paper A Multiprocessor Scheduling Scheme Using Problem-Space Genetic Algorithms
[DAA9S5] they represent a GA based technique, which can be used to increase resource

utilisation and therefore to reduce completion time of the parallel program.

Figure 12: Directed acyclic graph (DAG). Nodes are tasks and arcs are data
dependencies between them. [RLIO]

36

P3| 7] 4] 13 | 11 7| 4 gl

3 I N S S —— L

Pl|1] o6] 5] 12 e {16 Jrre

Figure 13: Task allocation for three processors (Pn) [DAA9S]

According to Dhodhi ez al. [DAA95], GA was used to search good assignment of tasks
of the program to different processors. DAG (Figure 12) is used to represent a program.
The task execution can start after all the data it needs have been received from previous
tasks for, which task has dependency. In this case, the communication cost is always
zero between tasks assigned to the same processor. If tasks are in different processors,
the weight of the arc between their nodes means communication cost. In good task
assignment, every processor has a task to execute and total execution time of program

18 minimal.

Individual (Figure 14) is a list, which index corresponds with DAG node numbers. The
list itself contains task priority values. The tasks without previous dependencies are
placed to the new task list. Then a task with highest priority is allocated to the available
processor on, which the start time of the task with dependencies is the earliest. This
is repeated until there are no tasks to allocate or no idle processor. A task cannot be
allocated to processor until tasks it depends are completed and communication from
them has occured. Figure 13 shows complete task allocation for three processors (Pn).

[DAA9S]

37

Priority

20/19(19/19(19(19|19|19|19|16|16|16({16| 6 | 6| 6| 6| 1

1 2 3 4 5 6 7 8 9 1011 12 13 1415 16 17
Node

Figure 14: GA individual, with list having node (task) priorities [DAA9S5]

Fitness value to be minimised is calculated by taking MAX value from the set
of completion time of processors. The completion time includes computational,

communication and waiting times. [DAA95]

Experimental results for this technique were compared against examples from
literature and results were very promising. It was concluded, that proposed technique

was able to reduce completition time and increase processor utilisation. [DAA95]

In the paper Scheduling using Genetic Algorithms Ursula Fissgus [FisO0] has used GA
to find good execution orders for tasks. DAG was replaced by extended module graph
(EMG), which has separated structural and data dependencies between modules. In
EMG, the structural dependency between modules A and B means that module A must
be executed before B. Data dependency means, that module A will produce data to

module B as a parameter. [Fis00]

Each individual represents an execution order of tasks and also versions of tasks.
Each task has one or more versions implemented using different functions. Fitness
is measured by using total execution time of the program. In conclusions part of the

paper, it was said that simultaneous exploitation of task and data parallelism and ability

38

to choose between different implementations of tasks can lead to faster programs.

[Fis00]

Qi-Wei Ge in the paper PARAdeg-processor scheduling for acyclic SWITCH-less
program nets [Ge99a] has used GA for multiprocessor scheduling problem for
data-flow program nets (PN). Data flow program is run by the idea of data-driven
processing, which can be used to avoiding memory access bottlenecks. PN differs

from DAG, e.g. by allowing to visit in one node several times.

Tsuchiya et al. in the paper Genetics-based multiprocessor scheduling using task
duplication [TOK98] represents a GA approach to multiprocessor scheduling problem,
which uses task duplication. If tasks are executed on different processors, a message
passing between the processors will cause delay. Task duplication means scheduling
with copies of the task in different processors, which can eventually reduce delay

caused by communication.

According to Tsuchiya et al. [TOK98], the individual is set of lists. Each list represents
a processor and had tasks assigned to it. Order of tasks in list is also execution order.
An example of representation is in Figure 15. Each individual must satisfy following

three conditions [TOK98]:

1. Every task is allocated to at least one processor.
2. No task is allocated to one processor more than once.
3. For any task, none of its predecessors are executed after the task on the same

Processor.

39

HORORORO
HOROSORO

Figure 15: Tasks scheduled for two processors (F,,) with duplicated tasks ¢; and ¢3
[TOK98]

Fitness value f is defined in Equation 3 where L,,,, is the maximum length from
all schedules in population and length(S) is the length of the currently evaluated
schedule. [TOK98]

3)

_(Lyag — length(S) ?
= (P)

Method was compared against Duplication Scheduling Heuristic (DSH) and as result
it was observed that when the communication delays are small, the GA was able
to find better schedules than DSH. Otherwise, both methods had almost the same

performance. [TOK98]

Jung et al. had used ordered-deme GA (OGA) for multiprocessor scheduling in the
paper An Ordered-Deme Genetic Algorithm for Multiprocessor Scheduling [JPPOO].

In OGA, a globally sorted population is divided to the sorted array of subpopulations.

40

The average fitness of each subpopulation is maintained in a stepwise manner and
converted to one value. This method can improve search capability because search
takes place independently in each subpopulation. Scheduling with OGA was compared

to GA and was performed better in 13.4% of all the task graphs.

Yi-Hsuan et al. in the paper A Modified Genetic Algorithm for Task Scheduling
in Multiprocessor Systems [LCO3] has used partitioned genetic algorithm (PGA) for
multiprocessor scheduling. PGA integrates the idea of divide and conquer to partition
the entire problem space into subgroups, solve them individually, and merge them to

the solution of the problem.

At first, task graph is partitioned in to subgroups, which are scheduled using GA. The
schedule itself is represented as list of tasks. After subgroups are scheduled, they are
combined to the final solution. A single schedule is represented as a list with execution

order of tasks and number of processor to which task is scheduled. [LCO3]

Figure 16: A single schedule with task numbers (7},) and number of processor to,
which the task is allocated [LCO3]

According to Yi-Hsuan et al. [LLCO3], in experiments, it was noticed that PGA was

usually able to find better solutions with lesser time than the original GA.

41

In the paper Efficient Scheduling of Arbitrary Task Graphs to Multiprocessors using
A Parallel Genetic Algorithm, Yu-Kwong and Ahmad [KA97] represents a Parallel
Genetic Scheduling algorithm (PGS), which can be used for multiprocessor DAG
scheduling. The PGS itself is a parallel algorithm, which can cause scheduling to

be faster. In experimental study, PGS has found optimal solution for half of the cases.

There is more research about using the GA in (static) multiprocessor scheduling: An
implementation of the linear scheduling algorithm in multiprocessor systems using
genetic algorithms [BCO0], Genetic algorithm approach towards scheduling DAG
on multiprocessor [YQNO1] and A two-processor scheduling method for a class of
program nets with unity node firing time [Ge99b], Pareto-based soft real-time task
scheduling in multiprocessor systems [OBWKOO] Fast scheduling and partitioning
algorithm in the multiprocessor system with redudant communication resources
[LasO1], and Scheduling Multiprocessor lasks with Genetic Algorithm [CFR99]. In
addition, a cellular automata [Ser98] was also used to design multiprocessor task

schedules.

5.2 Task and resource allocation in distributed systems

In distributed systems, all the information and functionality is usually allocated to
different nodes of the system. Usually one node needs access to its own resources
but also resources in other nodes. Communication with other nodes causes delay in

execution and can decrease overall reliability of the system.

Sanjay Ahuja in A genetic algorithm perspective to distributed systems design [Ahu00]
has developed a GA based framework for allocating data files to the nodes of the
distributed computing system (DCS). DCS is represented as graph where nodes are

DCS nodes and each node can have programs and copies of data files. Arcs between

42

the nodes are connection links, which can have reliabilities and capacities. For every

program, it is known how much traffic is required to be transferred during execution.

The GA takes DCS graph, values for link reliables and capacities, program allocation
in nodes, files needed for each program, and traffic required to be transferred when
the program is executed. The goal is to maximise ADPT(Py), which means Average
Distributed Program Throughput of program Py. The function is defined in Equation 4
where « is the traffic delivered across the system and o p; is traffic requirement of the

system for program Pi. [Ahu00]

ADPT(Py) = 2

“)

ap;

The file allocation (individuals) is coded to binary numbers. In DCS with four nodes,
the single file to allocate had Ny Ny N3N, where binary number for V; tells if file F; is
present in node N;. GA run is terminated when the average and maximum ADPT (Py)
equals, number of generations reach the maximum or all individuals in the population
are same. The GA was compared to exhaustive search and it was concluded that GA

was usually able to find optimal solutions using less computational time. [Ahu0O]

Grajcar has used genetic list scheduling algorithm, based on list scheduling and GA,
to assigning tasks to processors in coupled and heterogeneous system. Research
is represented in the paper Genetic List Scheduling Algorithm for Scheduling and

Allocation on a Loosely Coupled Heterogeneous Multiprocessor System. [Gra99]

Kumar et al. in the paper Genetic algorithm based approach for file allocation on
distributed systems [KPG95] have done earlier research on GA based file allocation in

DCS where approach was very similar to [Ahu00].

43

Ahuja and Kumar have used GA to allocate programs and data into nodes of
distributed systems in A genetic algorithm approach for performance based reliability

enhancement of distributed systems [AK94].

Jaewon Oh er al. have represented a GA based model for allocation of objects
into distributed system in the paper A formal model for allocation of objects into

heterogeneous distributed environments [OCWO00].

Kim and Hong in the paper A task allocation using a genetic algorithm in
multicomputer systems [KH93] had used GA to allocate program modules for
processors in multicomputer systems. Method and results are very similar to other
research where GA is used for task scheduling in multiprocessor systems (Section 5.1

Multiprocessor scheduling).

There are also other papers about task scheduling (in multiprocessor systems), which
are related mainly to multicomputer/distributed systems: Object-oriented simulation
and GA [RamO1], Genetic algorithm based data and program partitioning [SNYFO0O0],
Genetic scheduling algorithms in distributed computing systems [WYKHO97], Efficient
allocation of program modules on multicomputers |BA94], Building a retargetable
local instruction scheduler, and Improved Static Multiprocessor Scheduling using

Cyclic Task Graphs: A Genetic Approach [SM98].

5.3 Hardware/software co-design in embedded systems

There is need for real-time embedded system, which operate reliably and predictably.
To achieve these requirements, usually hardware and software designers will co-
operate. This integrated design approach is called hardware/software co-design.

[SC94]

44

Korousic-Seljak and Cooling have proposed a GA based co-design technique in the
paper Optimization of multiprocessor real-time embedded system structures [SC94].
When a multiprocessor real-time embedded system is being designed, this technique

can be used to search optimal node structure and task allocation.

The system is a set of computing nodes. Nodes will perform tasks and are connected
to each other with I/O devices. The system kernel has scheduler, which is responsible
for allocating ready-to-run tasks to processors. The GA is used find schedule where
all tasks are allocated and completed before their deadline time is expired. If there is
no schedule where no deadlines are expired, some tasks must be rejected. In real-time

system design, decisions must be taken between the criticality and timeliness. [SC94]

51 15} L Ly
Pil o0 0 1
P, 0
P;
Pl 0 1 0

Figure 17: An encoded individual with processors F,, and tasks ¢, [SC94]

The individual (Figure 17) is encoded to an array where first dimension corrensponds
to the processor number £, and second to ready tasks ¢,. Numbers O and 1 indicates
if the task is allocated to the processor or not. In this approach, there was no

dependencies or communication between the tasks. [SC94]

45

Grajcar in the paper Conditional scheduling for embedded systems using genetic list
[GraOOb] has used GA based genetic list scheduling algorithm to search for good task
schedules for the real-time system. Task execution is assumed to be conditional, which
means that executed tasks and their start times depends on previous task executions.
The idea of using genetic list scheduling algorithm on multiprocessor task scheduling
was represented in the paper Genetic List Scheduling Algorithm for Scheduling and
Allocation on a Loosely Coupled Heterogeneous Multiprocessor System [Gra99],

which was introduced in Section 5.2.

Semeraro has used GA to find near-optimal system configurations for real-time

operating system in poster paper Evolutionary approach to real-time analysis [Sem98].

Other articles about using GA in embedded systems hardware/software co-design
are Optimization of multiprocessor real-time embedded system structures [YGO02a],
System level software/hardware partitioning by genetic algorithm [YGO2b], Heuristics
to optimize the speed-up of parallel programs [Agu96], and A hierarchical genetic

algorithm for hardware software co-synthesis with a stochastic approach [CRCO02].

5.4 Protocol construction

Generally a protocol stack has a fixed number of layers. Every layer is implementation
of some protocol functionality. Construction of static end-to-end protocol to meet
all communication requirements could be difficult and this complexity could reduce
protocol performance. Dynamically configurable protocol stacks have used to

construct protocols, which will meet its requirements with minimal overhead. [Gra0OOa]

Grace has used GP for building communication protocols in his master’s thesis

Applying Genetic Programming to Protocol Construction [Gra0Oa)]. Idea was to

46

decompose protocols to micro-protocols and then with GP to compose them to form a
complete protocol, which is light as possible, and satisfies the requirements. Used GP
system was GPsys and protocols were constructed by using JavaGroups, a Java-based

protocol framework toolkit.

Because of the used toolkit, each protocol stack was represented in string format:

<propl> (argl=vall) :<prop2> (argl=vall;arg2=val2) :<prop n>

In the string, there are numbered properties (propl, prop2...) separated with colons,
each property represents one protocol layer. Arguments can be passed to the each
layer: argl=vall means, that value (vall) is assigned as argument number 1
(argl). In Figure 18 there is protocol stack UDP : NAKACK : UNICAST : FLUSH : GMS
represented as GP program tree, where each node represents one layer and only

operator is colon (:), which separates layers. [GraOOa]

)

‘ UDP ‘ ‘NAKACK‘ ‘UNICAST‘

FLUSH GMS

Figure 18: Protocol stack UDP : NAKACK : UNICAST : FLUSH : GMS represented as GP
program tree [GraOOa]

47

Fitness for a single protocol layer was measured with three tests: testing semantic
viability, how stack meets the communication requirements and quality of service
provided by the protocol. After experiments, it was concluded, that the system was
able to generate correct protocol stacks in hours and results were highly depending on
the size of the population. Future work was proposed to improve performance of GP

system and to allow system to be tailored each particular search. [GraOOa]

In the paper Protocols are programs too: the meta-heuristic search for security
protocols [CJO1] Clark and Jacob have used GA and simulated annealing to generate

correct and efficient Burrows, Abadi and Needham (BAN) protocols.

5.5 Architecture design

Software design is usually splitted in to two parts: Architecture design and module
design. In architecture design, system is being clustered to modules and subsystems
and their interfaces are defined. In module design, each module and its internal
functionality is being designed. In architecture design, it is usually tried to develop
system’s parts as independent as possible and keep number of connections and

dependencies between subsystems small as possible. [HM98]

Doval et al. in the paper Automatic clustering of software systems using a genetic
algorithm [DMM99] represents software clustering GA, which can be used to good
partition of the module dependency graph (MDG). MDG is a directed graph which is
used to describe the modules of the system and their relationships. In Figure 19 there
are an example of simple MDG. Figure 20 shows a partitioned MDG and in Figure 21
there is MDG with best possible partitioning: there is many intra-connections inside

of the subsystems and only one inter-connection. [DMM99]

48

k
e 9

Figure 19: A simple module dependency graph [DMM99]

According Doval et al. [DMM99], individuals in the population are strings with
character index pointing to identifier of module and character itself is identifier of the
cluster to, which the current module belongs. For example, the string / / 2 means
MDG with three modules; first two modules belongs to the first cluster and third

module to the second cluster.

The modularization quality function (MQ) is used to measure the fitness of MDGs. The
module intra-connectivity means density of dependencies between the modules of the
single cluster (subsystem). Intra-connectivity A4, for cluster ¢ is defined by the Equation
5 where N; 1s number of components and p; is the number of module dependencies
inside of the cluster. Therefore N? is a maximum number of possible dependencies.

[DMM99]

49

@

Figure 20: A partitioned module dependency graph [DMM99]

MQ (Equation 6) represents a tradeoff between inter- and intra-connectivity by
subtracting average inter-connectivity from the average intra-connectivity. In MQ, & is

number of clusters and F; ; is inter-connectivity between clusters ¢ and j. [DMM99]

The method has been tested with the source code of Mini-Tunis operating system.
Mini-tunis is well-designed and documented software with 20 modules. With
population of 10 individuals and 200 generations, the best MDG was very similar to
the original partition of Mini-Tunis. Method has some problems with the library and
interface modules and also global library modules were located to the cluster where
the most of the callers of them were located. Earlier research on this was represented
in the paper Using Automatic Clustering to Produce High-Level System Organizations

of Source Code [MMR98].

4= (5)

50

(v1)
B
®

Figure 21: A best possible partition of module dependency graph [DMM99]

Sk 4 Sk Eij
zkj v z’;](kil)lj k > 1
2

MQ = (6)
Ai k =1

In the paper A New Representation and Crossover Operator for Search-Based
Optimization of Software Modularization Harman et al. [HHPO2] have developed a
new representation for a software modularisation but also introduces new GA crossover

method, which is suitable for the software modularisation problem.

An individual is represented by having components and enumerated modules in lookup
table. A module contains components and every component contains functions and
variables. A functions can have a dependency to another function or variable. The
problem is to find a graph with maximum number of dependencies inside each

subgraph and minimum number of dependencies between subgraphs. [HHP02]

51

The component number one is always in module number one and all components in the
same module as component number 7 are always in module number two. This sorting
1s continued by selecting lowest unallocated component as the defining element of the
module. This will allow to reduce size of the search space and avoiding many-to-one

mapping in individual representation. [HHPO2]

Wadekar and Gokhale in the paper Exploring Cost and Reliability Tradeoffs in
Architectural Alternatives using a Genetic Algorithm [WG99] have explored cost
and reliability tradeoffs of different software architecture alternatives with GA. This
tradeoff can be important when resources are highly limited and the minimum level of

required reliability is defined.

According to Wadekar and Gokhale [WG99], the expected reliability for software
system was calculated from reliabilities of individual modules and expected number
of times the execution visits in modules. The cost of the whole software is calculated
by multiplying the reliability and cost of the each component. Each GA individual is
a list containing elements, which corresponds to the modules of the software. Each

element has reliability and cost values. A fitness function is defined as:

—K/InR

. _
fitness Cr

(7
In function 7, -y is factor, which can be used to linearise the variation of cost, K is large
constant # 0, R is software reliability and C' is whole software cost (sum of all module
costs). Three case studies were performed and it was concluded, that the method can
be used to found satisfied software reliability with minimised cost when using in-house

developed and off the shelf components. Optimal or near-optimal solution was always

found. [WG99]

52

6 Implementation

This Chapter represents applications related to the implementation phase of the
waterfall model. The related application areas are: automatic programming, N-version

programming, search for compiler optimisations and re-engineering.

6.1 Automatic programming

Evolutionary algorithms, especially GP can be used to generate computer programs to
fulfill the given software specification. Because original GP technique is meant only to
generate programs, almost every use of GP goes to the area of automatic programming.
Because in practice it is not possible to report every automatic programming case from
the literature where GP is used, this Section will concentrate only on cases, which are

closely related to well known software engineering problems and tasks.

Bruce in the paper Automatic generation of object-oriented programs using genetic
programming [Bru96] has developed extensions for GP to allow generation of object-
oriented programs. Bruce says that main differences between procedural and OO
programming are the use of the inheritance in types (classes) and using global memory
during runtime to store states of objects beyond the execution of an individual part of

the program.

An indexed memory is used to represent the memory associated with an object.
Read/write operations are provided in order to allow construction of class methods.
Memory structure and methods can both be inherited from another object. Memory
(variables) inheritance can be implemented by using terminal symbols or functions,

which allow memory access to class to be inherited. It is possible to implement method

53

inheritance by using functions, which invoke methods from the inherited classes.

[Bru96]

Two different fitness functions are used. First compares actual and desired return
values of the methods, second compares actual and desired pre-invocation and post-
invocation object memory. The space of constructable programs is limited by allowing

only programs with required language elements to be constructed. [Bru96]

During experiments, GP programs was generated until there was a program
that perfectly matches the training data (desired program). Desired programs
were implementation of three data structures; stack, queue, and priority queue.
Methods were Init, Empty?, Full?, AddDataltem, and RemoveDataltem.
Experiments were performed with and without the strongly typed GP, using first,
second or both fitness functions and by using methods simultaneously or individually

(sequential). [Bru96]

According to Bruce [Bru96], the strongly typed GP (STGP) was developed, because
the original GP needs all variables, constants, and arguments to be of the same data
type. In STGP, data type for each value can be specified beforehand. Initialisation
process and genetic operators will generate only syntactically correct program trees
[Mon93]. The GP was able to construct correct solutions, but there was some
problems. Experiments with strongly typed GP and individually used methods

produced best solutions.

Petry and Dunay in the paper Automatic programming and program maintenance with
genetic programming [PD95] represents an GP approach to automatic programming.
According to Petry er al., Turing machines are generated with the GP to solve simple
problems. After the problem is solved, the solution is encapsulated and it becomes part

of the library. GP itself can use programs from library to solve new problems. System

54

keeps library valid and efficient. If old problem is solved more efficiently, the program

in library is updated.

6.2 N-version programming

N-version programming (NVP), introducted by Avizienis in 1977 [AC77] means the
independent generation of two or more functionally equivalent program versions from
same requirements. Multiple versions of the same program can be used to improve

fault-tolerance in case, where only some versions fail independently.

Feldt in the paper Generating Multiple Diverse Software Versions with Genetic
Programming [Fel98b] (and Generating Diverse Software Versions with Genetic
Programming: an Experimental Study [Fel98a]) introduces the approach for
generating multiple software versions from same specifications using GP. The idea was
to let some parameters passed to the GP system to be vary, because of was believed
that changing GP run parameters will cause GP to converge on different areas of search
space. Following parameters can be an examples of varying parameters: Maximum

depths for program and mutation trees and list of allowed functions and terminals.

55

According to Feldt [Fel98b], phases of the proposed method are following:

1. The design and implement fitness function by using software specification.
Decide, which GP system parameters will be varied.

Decide how parameters will vary.

Choose the parameter value combinations to use in GP runs.

Let GP system to run for each combination of parameter values.

Measure fitness for each generated GP program. Calculate the diversity.

S A A e T O

Select the program combinations with lowest failure probability to the

software fault tolerance structure.

The diversity for GP programs is calculated from the different parameter values passed
to GP system for each run. The diversity values between GP programs can be used,

when there is need, e.g., to select GP programs to the program pool of the NVP system.

[Fel98b]

To test this, an experimental environment based on aircraft arresting problem (which
is described in Subsection 4.2) was developed and pool of controller software versions
was generated. 435 versions of software was created and tested. It was found, that
the probability for coincident software failures is decreased when diversity between

software versions is increased. [Fel98b]

56

6.3 Search for compiler optimisations

A compiler is commonly used to compile high level source program, written by human
programmer, to low level machine-readable target program. A modern compiler can
perform different kinds of optimisations to the program, but it is not usually clear, what

optimisation(s) should be applied with a particular source program.

Cooper et al. in the paper Optimizing for Reduced Code Space using Genetic
Algorithms [CSS99] have used GA to minimise size of compiled computer program

using different optimisations.

Used compiler compiles C and FORTRAN source code to assembly-level intermediate
language called ILOC. There were 10 different optimisations, each are able to modify
given ILOC code in some way. The objective is to find ordered sequence of
optimisations to apply, which will transform ILOC code to the form where the final
executable is as small as possible. The optimised ILOC code is compiled to C code,

which is compiled to executable and executed. [CSS99]

Optimisation methods were mapped to letters, and the GA individual is a string with
letters. For example, ¢ means cprop method and s means coalesce. One possible

optimisation sequence, beginning with cprop could be cnottcdtvooc. [CSS99]

Experiments were performed with different C and FORTRAN programs and best
optimisation sequences for the different programs were found. The sizes of executables
were significantly reduced after best optimisation sequences were found and applied.
When looking the best individuals, it was found that there was some optimisations,
which were part of best individuals for each program. The fixed sequence based on
their observations were formed, and it was applied to programs causing 40% smaller

and 26% faster executables. [CSS99]

57

Nisbet represents the genetic algorithm parallelisation system compiler framework
in the paper GAPS: A Compiler Framework for Genetic Algorithm (GA) Optimised
Parallelisation [Nis98]

6.4 Re-engineering

It is usual, that a particular software has served the needs for years and it was several
times corrected, adapted, and enhanced. During that time, developers usually does not
apply good software engineering practices because of other matters. This will lead to
the situation, where software is unstable. It works, but almost every time a change is

attempted, unexpected effects will occur. [Pre01]

Conor Ryan in his Book Automatic re-engineering of software using genetic
programming [Rya00] has described the need for automatic software re-engineering
tools and has applied GP to different re-engineering tasks. The book will concentrate
mainly to program auto-parallelisation problem, which involves re-writing programs

to execute on a parallel system (e.g., in multiprocessor computer).

Byung Jeong Lee et al. in the paper Implementation of reusable class library based on
CORBA using genetic algorithm [LMW99] have used GA to clustering components
to the reusable library. The clustering tries to find an optimal component grouping

considering the number of clusters and different kinds of similarity values.

In the paper Genetic algorithm based restructuring of object-oriented designs using
metrics [LWO02], Byungjeong-Lee and Chisu-Wu had used GA to restructure OO

design. Fitness was measured using cohesion and coupling metrics.

58

Lutz in the paper Recovering high-level structure of software systems using description
length principle [Lut02] has used GA to find good decompositions of software systems

represented as graphs.

59

7 Testing

This Chapter represents applications related to the testing phase of the waterfall model.
The related application areas are: functional testing, structural testing, integration test
design, testing based on mutation analysis, and searching for response time extremes.

There is also Section for miscellaneous applications.

7.1 Functional (black box) testing

Black box testing is also known as functional testing. The idea is to use test cases which
are created by using software requirements without knowledge about the internal

structure of the software. [HMO98]

Schultz et al. in the paper Test and Evaluation by Genetic Algorithms [SGDJ93] have
used GA to find fault scenario combinations, which will cause failures in autonomous-

vehicle controller software. Target system is a software controlling aircraft landing.

Initial condinations Rule 1 Rule 2 Rule n

Trigger 1 Trigger 2 Trigger 3 Trigger m | Fault mode

Low value| High value Fault type | Fault level

Figure 22: Representation of the fault scenario [SGDJ93]

60

Fault scenario is a description of faults, that are possible to occur in software. Fault
scenario (Figure 22) has initial conditions and set of fault rules. Variables like wind
speed, wind direction and velocity are initialised in initial conditions part. A single
fault rule has two parts, set of triggers and fault mode. Each trigger measures some
part of the current states of vehicle and environment. Each trigger has also low and
high values, e.g. 13 <= position[y] <= 832 is trigger, which is satisfied if Y-position
matches the given value range. If all triggers in the rule are satisfied, the fault mode is
instantiated. A fault mode has two parts: fault type, which describes the part of system
where the failure has occured and the fault level, which measures the severity of the

failure. [SGDJ93]

The GA is used to search for interesting failure scenarions, which will cause failures
in vehicle simulator. The objective is to find a large number of interesting failure
scenarios rather than finding the “best” one. A single individual is a fault scenario.
Diversity of 1nitial population is increased by initialising value ranges to be wider. The
GA was stopped, when failure scenarios had reached predefined level and therefore
the final population is highly diverse set of fault scenarios. In addition, other methods

were discussed. [SGDJ93]

Current fault activity for fault scenario is calculated from activated rules using assigned
fault level (Equation 8). Total fault activity for whole mission is the sum of current
fault activity values divided by time (Equation. 9). The fitness function (eq. 11) uses
a score value, which is given for each landing based on its quality (1 means crash and
10 means perfect landing) (Equation 10). If crash occurs without failures, the fitness

function will return 1, which is maximal possible value. [SGDJ93]

current fault activity = H ((| fault level| * 9.0) + 1.0) (8)

activity level

61

D imecurrent fault activity

fault activity = -)
time
.
1 if crash landing
score = { 2 if abort (10)
3 — 10 if safe landing
\
eval = 1/(fault activity * score) 1D

After experiments, some fault scenarios generated by GA were shown to the designer
of the controller software. The designer noticed that there is some improvements
needed in some part of the software. In particular, a set of failed failure scenarios have
been seen as classes of weaknesses, which allows developers to improve reliability of

software. [SGDJ93]

In the paper Testing control software using a genetic algorithm [Hun95] Hunt has used
the GA to test a car cruise control system software. Aim of the system is to maintain
the speed of the the car by moving the throttle as necessary. The system is aware about
speed of the car and also positions of the brake and clutch switces. A driver can set
the required speed, switch whole system or only the cruise controlling on/off. The

software was developed specifically for to this research only.

62

According to Hunt [Hun95], each individual is a binary string with 14 numbers. First
seven are On/Off Switch, Activate/Deactivate Switch, Speed Not_set/Set, Brake Switch
On/Off, Traction Control Output On/Off, Clutch Switch On/Off and Throttle Position
Increment/Decrement. Last seven binary numbers represents a 7 bit value (0-127) of

current speed.

Fitness of each individual is evaluated by giving six first bits from the individual
as an attributes to the system. As an output, the system gives throttle position
(increment/decrement), which is compared to desired outputs from software
specifications. If values match, then a fitness value 2 is assigned to the individual.
Otherwise the fitness value will be a difference between desired and actual outputs.

[Hun95]

In this research the attempt is to find large number of interesting faults rather than
just one fatal. When the final generation has been produced, the GA system will
output all individuals with fitness value above 2 as an list of interesting failures. After
experiments results were compared against random search, it was concluded, that used
GA testing is effective and can aid human tester to understand about the needed set of

tests. [Hun95]

Kasik and George have used GA to generate novice user events for testing a GUI-
based application in the paper Toward automatic generation of novice user test scripts
[KG96]. The method was based on notion, that novice users often use applications in
very unpredictable way and they learn the application by performing different tasks.
By emulating behaviour of a novice user requires the method to remember previous

successes. The GA, rather than pure random search can be used to achieve this.

63

Figure 23: Different users with paths throught the application [KG96]

In Figure 23 there is three different possible paths to travel during system tests:

- An optimal path lets the user to perform task with shortest time and fewest
steps.

- The expert user knows enought about program states, and are able to work
effiently.

- The novice user wanders in a unpredictable manner. [KG96]

The widget 1s an object in X Window System, which associates window and related
functionality. The widget tree is tree structure which, corresponds to the way how
widgets in the X application are related to each other. For example, window can have

two buttons and both buttons can have labels. [KG96]

Each individual is evaluated by restarting the application and importing related widget

tree to the GA system. An active widget is searched from the tree using using random

64

search. Depending on the active widget type, the next gene from the individual is given

to the application as an input. [KG96]

The fitness calculation is based on presumption that novice user learns application
with a controlled exploration. A novice user starts with one functionality, and after
experiments with different inputs, user will move to second functionality. The fitness
is calculated by initialising all user events, except one, to have weight 0. A gene will
receive a positive score each time, when it causes input for a widget that have same
window name as the last active window name. This causes individuals in a population

to stay longer on the same window. [KG96]

According to Kasik and George [KG96], the developed method can be used to find
application failures before the beta tests or production. Method was said to work best

with a companion the automated test tools and expert test scripts.

Patton et al. in the paper A Genetic Algorithm Approach to Focused Software Usage
Testing [PWWO93] have used GA to search and identify regions, which causes failures
from software input data. The represented technique allows to isolate failure clusters,
which helps developers to focus on failures that are most severe and likely to occur for

the user.

Other related papers are Applying genetic algorithms to software testing [XEST92],
The automatic generation of test data using genetic algorithms [Wat95], Testing
software using order-based genetic algorithms [BM96], Parameter estimation of
hyper-geometric distribution software realiability growth model by genetic algorithm
[MT95], The Automatic Generation of Test Data Using Genetic Algorithms [Sth95],
Suitability of evolutionary algorithms for evolutionary testing [WBSO02], Research
on automatic testing of a kind of software by using generalized genetic algorithm

[YZC99], and Breeding Software Test Cases with Genetic Algorithms [BFIT03].

65

7.2 Structural (white box) testing

White box testing is also called as structural testing or glass box testing. Used test cases
are created by using information about structure of the implemented program. [HM98]
There is usually large number of different paths through the program, e.g. 100 lines of
the C language with two nested loops can have about 10** different program paths. It

is not usually possible to systematically test every possible program path [PreO1].

Smith and Fogarty in the paper Evolving software test data-GA’s learn self expression
[SF96] have generated software test input data using GA. The objective was to produce
data, which maximises the test coverage and minimises size of the test data. The
triangle problem was used as a test problem for the method. The test problem program
takes three integers as inputs (triangle sides a, b and c¢) and outputs either “scalene”,

A 11

“isosceles”, “equilateral” or “not a triangle”.

In the paper it was discussed, that there are two suitable metrics to measure the
coverage for test inputs. Metrics are the Statement Coverage (the percentage of
program statements to be executed during the execution of the tests) and the Branch

Coverage (percentage of possible branches through the program taken). [SF96]

USED? | SIDEA | SIDEB | SIDEC | USED?

Bool Integer Integer Integer Bool

Onc test casc

Figure 24: A single test case for the triangle problem [SF96]

66

According to Smith and Fogarty [SF96], the test case is represented as a fixed
size string containing integer values. In Figure 24 there is an example of string
representation of GA individual. In the string, each test case begins with boolean flag,
which tells, if following integers should be ignored or taken as a part of actual test data.
This allows to represent variable length string using fixed length string. The size of the
test data was tried to minimise using following function (Equation 12), where set_size

18 the size of the test data and maxzimum_set_size is maximum allowed size:

(12)

¢ s
fitness = Coverage(%) + (1.() — SeL_size)

maximum,_set_size

The method was tested with branch coverage metrics using a different GA parameters
and it was easy to achieve 100% branch coverage for test problem. Also other test

coverage metrics were used with different results. [SF96]

Pargas et al. in the paper Test-Data Generation Using Genetic Algorithms [PHP99]
have used GA to generate software test data. Control-flow Graph (CFG) 1s used to
represent how program is executed. In graph, all nodes are statements and edges
corrensponds to the flow of control between statements. For example, an edge
between two statements means, that an execution of program can flow from the
statement to another statement. Control-Dependence Graph (CDG) is used to represent

dependencies between the program statements.

In Figure 25 there is a program example (on left), CFG, and CDG for it. According
to Pargas et al. [PHP99], the numbered nodes corresponds statements on the program.
T (true) and F (false) are marked for arcs with conditional statement. For example, in
Figure 25 the statement 2 is if (1 <j) and if the statement is TRUE, the execution goes

to arc with T.

67

The CFG in Figure 25 is interpreted as follows:

- Node 6 postdominates all other nodes except exit.
- Node 2 postdominates nodes 1 and entry.

- Node 1 postdominates entry node.

- Node 4 is control dependent on 3T.

- Node 5 is control dependent on 3F.

- Nodes 1, 2 and 6 are control dependent on entry node.

Program Example
integer i, j, k
read i, j, k
if i<]))
if G <k)
i=k
else
5. k=1
endif
endif
6. print 1, j, k
end Example

b

Figure 25: An example program with control flow-graph (CFG) (left) and control-
dependence graph (CDG) (right) [PHP99]

68

A path in CDG from the root node to another node is called a control-dependence
predicate path. For example, the set of predicates entryT, 2T, and 3T forms a control-

dependence predicate path for statement 4 (Figure 25). [PHP99]

A function GenerateData was used to generate test data. GenerateData takes the
program, CDG, and test requirements as an input and with GA it begins to search
test data, which will satisfy the requirements. An individual is single test data, which

is a set of input values for the program. [PHP99]

Fitness of each individual is evaluated by executing the program with current test data
inputs and recording the predicates in the program that executes with input test data.
List of executed predicates is compared to list of predicates found on the control-
dependence predicate path for the node corresponding the target test requirements.
The fitness value for current test data comes from the number of predicates, which are
common for the control-dependence predicate path of target. The higher number of

covered predicates means higher fitness value for the test data. [PHP99]

In the Table 1 there is population of four test cases for program in Figure 25. Test
cases tl and t2 are covering all statements except statement 5, therefore they have

higher fitness than test cases t3 and t4.

Table 1: Test cases with statement traces for program in Figure 25 [PHP99]

Test case | Input data 7, j, k | Statement trace
tl 1,6,9 1,2,3,4,6
t2 0,1,4 1,2,3,4,6
t3 5,0,1 1,2,6
t4 2,2,3 1,2,6

69

When testing programs with little complexity, the used method and random search
had found full statement coverage immediately. When testing programs with some
complexity, the method outperformed the random search. The method was said to be

powerful approach in the area of automatic test-data generation. [PHP99]

Michael et al. in the paper Genetic Algorithms for Dynamic Test Data Generation
[MMSW97] have used GA in automatic test data generation. Objective was to
generate test data, which satisfieds condition-decision coverage (CDC) metrics. CDC
is satisfied, when each condition in program is at least once true and false. In
addition, each control branch from the program must be executed at least once. GA
based method was compared against the results with random test data. With some
test programs, like bubble sort and euclidean greatest common divisor, results were
identical. With rest of the test programs, GA showed better performance than random

test data.

In the paper Generating software test data by evolution [MMSO01] Michael et al.
introduces a GA based test generation system called GADGET (Genetic Algorithm
Data Generation Tool), which can be used to test large C and C++ programs. Like the
previous research [MMSWO97] GADGET also uses CDC metrics to evaluate the test

data.

In the paper Identification of Potentially Infeasible Program Paths by Monitoring the
Search for Test Data Bueno and Jino [BJOO] have proposed a GA based technique to

generate test data and to detect infeasible program paths.

Computer programs are represented as CFG and a single individual is input data for
the program. Function (Equation 13) is used to calculate the fitness F't. NC' is path
similarity metrics, which means a number of coincident nodes between the executed

path and the desired path. E'P is the predicate function value deviation (error) between

70

the executed path and desired path. M EP is the maximum predicate function value
from the set of individuals, where each individual has executed the same nodes of the

desired path. [BJOO]

The search has objective to find solution (input test data) with the maximal number of
correctly executed nodes and minimal value of the predicate function for the reached

predicates. [BJOO]

EP
Fi— NC — (W) (13)

It is possible, that program path has predicate, which cannot be reached and there is
a test data which will try to reach it. The search monitoring with two heuristics was
used to detect possible infeasible path. The best individual in population is continuosly
monitored, and if fitness does not increase enough, a counter is incremented. Tester
can use value from this counter to determine how persistent is the possible lack of
search in progress. Technique was tested with different test programs and was able to

identify all infeasible paths while generating test input data for programs. [BJOO]

Other related papers are Automatic Testing From Z specifications [Xil98], Automatic
test data generation [or program paths using genetic algorithms [BJ02], Integer-
and real-value test generation for path coverage using a genetic algorithm [MSJ00],
Genetic algorithms and its application in software test data generation [WJHZ98],
A strategy for using genetic algorithms to automate branch and fault -based
testing [JES98], The automatic generation of software test data sets using adaptive
search techniques [JSYE9S] CAST with GAs-automatic test data generation via
evolutionary computation [Rop96], Generating software test data by evolution

[MMSO1], Automatic Software Test Data Generation Using a Genetic Algorithm

71

[MGGZ94], Instrumenting Programs With Flag Variables For Test Data Search By
Genetic Algorithms [Bot02], Fitness function design to improve evolutionary structural
testing [BSS02], Genetic Algorithms and the Automatic Generation of Test Data

[RMB™95], and Breeding Software Test Cases with Genetic Algorithms [BEIT03].

7.3 Integration test design

The integration testing is used to test how components and subsystems work together
and the idea is to concentrate on interfaces between components. Usually integration
testing is performed with module testing (where each module is tested independently)
and integration testing advances by collecting more modules to the test system.
Missing modules, which are not implemented yet or cannot be used in test platform,
are replaced by using stub modules which simulates functionality of the real modules.

[HMO8]

Hanh et al. have proposed a new OO integration test process in the paper Selecting
an efficient OO integration testing strategy: an experimental comparison of actual

strategies [HATJO1].

Integration testing is used to test new components with tested components, which are
already part of the system. Integration testing in OO systems could be difficult, because
OO systems have strong connectivity between their components. For example, it is
very common to pass objects of self-defined classes as parameters rather than primitive

types from used language. [HATJO1]

72

Methods based on classical integration strategies are usually based on a graph
representation of the system. Methods will move step-by-step through the graph with
testing all the components. The paper points, that those classical integration strategies

could be useless when developing a OO system. [HATJO1]

Proposed technique can be used to the allocation of testing resources (human testers)
to integration test tasks while keeping number of stubs low. A stub for the software
component is dummy component, which simulates the behaviour of the actual software
component. If component C; uses services of component C'5, then C; depends on (),
and cannot be used without it. During integration tests, C'; can be tested without 'y by
replacing Cy with dummy stub. The method for testing resource allocation was similar

to the one in the integration strategy called Triskell ([TJJMOO]). [HATJO1]

Dependencies between OO classes (components) are represented using Test Depen-
dence Graph (TDG), where nodes are classes and directed edges between them are test
dependencies. Test dependencies are classified to three levels: Class-to-class (Can be
retrieved from the early design model), method-to-class (if method has class in its sig-
nature) and method-to-method (If method uses another method). First two levels can
be retrieved directly from unified modeling language (UML) class diagram and rest

from the source code. [HATJO1]

Building of a test integration order is done step-by-step, e.g. integration of class C'y,
which needs class (Y, is not achieved until (] is tested with real Cs. Cy dependencies
can be satisfied by implement needed stubs. After that, C'; can be integrated fully.
[HATJO1]

In this method, the GA was used only to minimise the effort to implement stubs. Each
individual is a single integration order represented as set of letters, each corresponding

one class to be integrated, e.g. {FEHDB}. Stubs are assigned to test order if needed

73

and the fitness value for the individual is number of needed stubs. Stubs are also
classified to be simple or complex, depending on the functionality of the real module.
In order to minimise the effort to implement stubs, especially the need to implement

complex stubs must be minimised. [HATJO1]

Method was compared against three integration strategies based on graph algorithms
by generating integration test orders for different OO software, like InterViews, a
graphics library and Swing, a Java2 graphical user interface library. It was discussed,
that results with GA are promising but still deterministic optimised Triskell was given

better performance in most of cases. [HATJO1]

Briand et al. in the paper Using Genetic Algorithms and Coupling Measures to Devise
Optimal Integration Test Orders [BFLO2] criticize the use of graph algorithms and
proposes a GA based method on integration test order problem. Single individual (test
order) is a string of characters, each corresponding to one class. Class dependencies

are taken from UML class diagram.

Breaking composition and inheritance relationships between classes is completely
avoided, because it could lead to very complex stubs. By using two coupling metrics,
a complexity is calculated for the remaining dependencies (simple aggregations and
usage associations). The value of A is a number of local attributes in class when
references to the class appear as method parameters in the other (caller) class or local

parameters of the method. [BFLO2]

Inherited methods and attributes are ignored in A. The value of M is a number of local
methods and constructors in class, which are used by the methods and constructors
of other class. Thus, the A measures maximum number of attributes that must be
implemented in stub and B measures number of class methods needed to implement

or simulate in stub. In the complexity matrix Cplz(i, j) lines and rows are classes and

74

¢ has dependency to 7. Both complexity values are normalised by using Equation 14

where Cpla, .. 18 MAX value from the matrix. [BFLO2]

Cpla(i, j)

Cpla(in) = ¢

(14)

According to Briand ez al. [BFLO02], the overall stub complexity SCplxz(i, j) between
classes ¢ and j is calculated with A and M by using Equation 15, where W4 and W,

are normalised weights for A and B and W4 + W, = 1.

SCpla(i, j) = (Wa x A(i, §)° + Wiy + M(i, j)*)"/* (15)

The fitness value, to be minimised, for a test order is calculated by using Equation 16

where o is test order and d is set of dependencies between the classes.

OCplz(o) =Y SCpla(k) (16)

A case study was performed to a system with 21 classes and a large number of cyclic
dependencies between them with different coupling measure weights. Results from
case study were said to be encouraging and GA was performed as well as graph

algorithms. [BFLO2]

75

7.4 Testing based on mutation analysis

One possible way to measure the quality of test cases, is based on mutation analysis
[DLS78]. The idea is based on assumption, that the quality of single test case is related

to the comparative number of detected faulty test program mutants. [BFJLT02]

In the paper Genes and bacteria for automatic test cases optimization in the .NET
environment Baudry et al. [BFILTO02] has used GA to generate test cases. The idea was
to generate test cases using GA and measure their fitness by using faulty test program
mutants generated by mutation analysis. Used platform was .NET and language was

C#.

A single individual, I = [Gy,...,G,], is set of n syntactic tree nodes (G, =
[Ny,...,N,]) for the program. The use of syntactic tree allows system to generate
syntactically correct test cases. For example, during mutation and crossover the GA is
allowed to replace the class method only with a constructor, a destructor, a field or a

property, which all are on the same level in C# syntactic tree.

The quality of single test case I tested with n» mutants is calculated by using fitness
function F' (Equation 17), where S; is set of detected mutants, nbMutants is total
number of mutants, and the cardinal of the union U} ,5; is the number of detected

mutants.

_card(UE,S;)

F(I)= 100:; 1
() nbMutants * 100; a7

A case study using the developed method to generate test cases was performed. The
encoding of the GA individual was especially designed for the target program of

this case study, a simple C# parser. The parser is implemented in C# and takes C#

76

source as an input and outputs corresponding syntactic tree. Results from GA based
technique were compared against a bacteriological, non-EA approach, which simulates
the bacteriological adaptation process. The process is based on bacteriological loop,
which had phases for mutation, reproduction, memorisation of best individuals, and
fitness evaluation. When GA was used, the quality of test cases increased very slow
and did not reach a high fitness. The bacteriological based technique had significantly

better performance.

Baudry et al. in older paper Testing-for-Trust: the Genetic Selection Model Applied
to Component Qualification [BHTOO] have developed a method, based on test
qualification and mutation analysis with GA, for helping developers to build trustable

OO components.

7.5 Searching for response time extremes

According to Haikala and Mirijiarvi [HM98], there is two main groups of real-time
systems: hard and soft systems. With soft systems, there is no strict response time
requirements and occasional delay in response does not cause severe problems. An
example of a soft system could be the automatic teller machine. A hard system could
be a controller software used in a car or nuclear power plant where too high response

times can cause severe damage.

In the paper GA in program testing Alander et al. [AMTV96] have represented the idea
to use GA to find inputs for a system, which causes maximal response times. This can

be used to measure, how the system will satisfy possible response time requirements.

In the paper Searching protection relay response time extremes using genetic algorithm

- software quality by optimization [AMMMO98, Man03] Alander et al. have used GA

77

to search response time extremes from embedded electrical network protection relay
software. A simulator was used instead of the physical embedded system and some
hardware drivers had been modified to make possible the use of simulator without a

real electrical network environment.

System takes inputs like electrical network status messages and user commands. GA
is used to search inputs, which will lead to long response times in system. A response
time is the time that system will use to process inputs and produce output message.
Each individual is set of inputs and fitness value is the same as the system response

time.

The GA based method was compared against random generator method. A statistical
significance for results were calculated, and average response time found using GA
was from about 15% to 19% longer than response times with pure random inputs. Also
the second test was performed. Objective was to determine a phase during internal

message passing (between CPU and 1/0 devices), which causes most of the delays.

Paper Automatic software testing by genetic algorithm optimization, a case study
[AM99, Man03] contains a case study related on same research and in the paper
Genetic algorithms in software testing - experiments with temporal target functions
[AMOO, Man03] Alander et al. have done experiments using temporal fitness function
and meta-GA with same embedded environment. A meta-GA means the use of GA to

search of good GA parameters for better GA performance.

Grochmann and Wegener has used GA to find shortest and longest execution
times of different software systems in Evolutionary 1esting of Temporal Correctness
[GWO98] and Testing Temporal Correctness of Real-Time Systems by Means of Genetic
Algorithms [WGJI97]

78

At first, a Control Flow Graph (CFG) for a simple computer graphics function written
in C was builded. By using systematic approach, 49 test cases was created to cover all
the branches of the program. Execution times for different executions was measured
in processor cycles and they varied from 359 to 1839 cycles. A GA and random search
tests were performed to found inputs for maximum and minimum execution times.
After 800 test runs, GA has reached maximum of 1839 cycles and also found a new
minimum of 355 cycles. A random search used 4600 runs to found same extremes as
systematic approach. More comparative tests were performed with different programs,
LOC size varying from 107 to 1511 and GA was always founding better extreme times
in lesser time than random search. [WGJ97, GWI9§]

O’Sullivan et al. in the paper Testing Temporal Correctness of Real-Time Systems - a
New Approach using Genetic Algorithms and Cluster Analysis [OVW98] introduces
the use of cluster analysis in GA based software testing. Cluster analysis for genetic
algorithm output 1s a method developed by Vossner et al. [VB96], which can be used
to get information about population and determine if GA run should be terminated.
O’Sullivan et al. summarises the algorithm using following pseudo code: given any
two individuals ¢ and j, if the distance between them d;; < dcpeck, then they will be

members of the same cluster. There are following three cases [OVW98]:

1. If they do not belong to a cluster yet, they form a new cluster.

2. If only one of the two individuals already belongs to a cluster, the other one
joins this cluster.

3. If both individuals are members of different clusters, these clusters are

combined thus forming a single cluster.

79

An early termination of the GA with cluster analysis was said to be important because
change of finding better solutions is significantly reduced because of converged
population and there is also possibility to gain information about local optimum. In
the real-time system testing, the information about local optimum would be useful to

optimise program code and detect several performance leaks with only one test run.

The experiment was performed using the system from automotive electronics with
70 input parameters and 1511 LOC. Objective was to find inputs using GA, which
cause worst-case execution times (processor cycles). Termination criteria was based

on cluster analysis.

Seven independent runs were performed and longest execution times varied from 9459
to 12178 processor cycles. The convergence of individuals was analysed by using

cluster analysis for the final population of each run.

In comparison against other popular termination criteria, cluster analysis was said to
be most promising method. Limiting GA run by using generation number or used time
1s not suitable because it is not always possible to know that the testing has converged
before limit is reached. Using execution time (fitness) as stopping criteria has also

same kind of problem.

Wegener et al. in the paper Testing the Temporal Behavior of Real-Time Tasks using
Extended Evolutionary Algorithms [WPS99] has applied extended evolution testing to
testing response times of motor control system. Results from GA based evolutionary
testing (ET) was compared to tests performed by developers (developers’ tests, DT).
Although developers are familiar with internal structure of their software, ET has found
longer executable times than DT. One explanation for this was said to be maybe the use

of system calls, compiler optimisations and dependencies to other parts of the system.

80

Other related papers are Comparison of Static Analysis and Evolutionary Testing
for the Verification of Timing Constraints [IMWO98], Evolutionary Algorithms for the
Verification of Execution Time Bounds for Real-Time Software [GIE99], Verifying
Timing Constraints of Real-Time Systems by means of Evolutionary Testing [WG98],
Testing the results of static worst-case execution time analysis [PN98], Measuring
Evolutionary Testability of Real-Time Software [Gro00], and Evolutionary Testing of
Embedded Systems [SBWOL].

7.6 Miscellaneous

There are at least two patents about using evolutionary algorithms to software
testing: Whitten with Method and Computer Program Product for Generating a
Computer Program Product Test that Includes an Optimized Set of Computer Program
Product Test Cases, and Method for Selecting Same [Whi95], and Gounares et al.
Adaptive Problem Solving Method and Apparatus Utilizing Evolutionary Computation
Techniques |GSO1].

Tracey et al. have developed an automated test-data generation framework, which
can be used to test safety-critical systems. Framework is represented in the paper A
Search Based Automated Test-Data Generation Framework for Safety-Critical Systems

[Tra00].

Pereira and Vergilio in the paper GPlesI: A Testing Tool Based on Genetic

Programming [EVO02] represent a testing tool based on GP.

Mantere and Alander has used GA to test a image processing software in the papers
Automatic Image Generation by Genetic Algorithms for lesting Halftonin Methods

[MAOO, Man03], Testing a Structural Light Vision Software by Genetic Algorithms

81

- Estimating the Worst Case Behavior of Volume Measurement [MAO1, Man03],
Developing and Testing Structural Light Vision Software by Co-Evolutionary Genetic
Algorithm [MAO2, Man03], and Testing Digital Halftoning Software by Generating
Test Images and Filters Co-Evolutionarily [MAO3, Man03]

82

8 Summary

Methods based on evolutionary algorithms could be applied to different software
engineering problems and there are many related applications which can be allocated

to different phases of the waterfall model. This Chapter summarises findings of this

work.
Table 2: The number of classified publications
Class Subclass The number
(Application area) of
publications
Analysis Prediction of software failures 8
Software project effort prediction 7
Project management 3
Exploring difficulty of the problem 1
19
Design Multiprocessor scheduling 17
Task and resource allocation in distributed systems | 9
Hardware/software co-design in embedded systems | 7
Architecture design 5
Protocol construction 2
40
Implemen- | Re-engineering 4
tation N-version programming 3
Automatic programming 2
Search for compiler optimisations 1
10
Testing Structural (white box) testing 18
Searching for response time extremes 13
Functional (black box) testing 11
Miscellaneous 8
Integration test design 2
Testing based on mutation analysis 2
54
All Total 123

83

Within this work, there were 123 publications from years 1992 to 2003 in literature
where EA was used to solve a particular software engineering problem. Table 2 and
Figure 26 illustrates how publications are distributed to different phases (classes) of

the waterfall model.

The number of publications and how they are related to
different phases of the waterfall model.

(2]
o

u1
o
I

iN
o

N
o
I

The number of publications
> 3

o

Analysis Design Implementation Testing

Figure 26: EA usage in different phases of the waterfall model

Most of the applications were related to software design, testing and implementation.
The implementation phase was found to be problematic, because genetic programming
technique itself is fundamentally targeted only to generate programs and almost every
use of it can be classified into implementation phase. Because it is not possible to report
every case from literature where GP is used, only cases which are closely related to
well known software engineering problems are discussed. After setting this outlining,

majority of the publications are related to design or testing phases. About half of the

84

cases (59) were related on pre-implementation phases (system/information engineering
area) of the waterfall model. On next four Sections, applications related on different

waterfall model phases are summarised.

8.1 Analysis

In analysis phase, majority of applications were about using GA or GP to build
predictive models from a software engineering data. Historical data about software
quality, module failures, software development project effort or software project cost
was splitted in to training and validation sets and the model was trained to predict the
outcome of the development work. In two cases, the GA was used only to train neural

network to do similar task.

The number and the classification of publications
related to the analysis phase.

9 _
c 8
xe]
™ 7
L
o 6
=
g5
o
« 4 -
S
e 3
2 2-
2
< I I
0 I
Prediction of Exploring Software Project
software difficulty of the project effort management
failures problem prediction

Figure 27: EA usage in the analysis phase

85

It looks like the practical problems with this approach have more to do with the data
itself than used computing methods. According to Bouktif et al. [BKS02], the common
problem with historical software engineering data is that companies that systematically
collect data, does not publish it or publish only summaries. Problems in this application
area could be about similar when using using non-EA techniques, like ANN to do a

similar task.

The GP was also used to collect more knowledge about the problem to be solved with
the software [Fel99] . This was done by exploring the input space of the problem and
searching for areas, where programs generated with GP will be more faulty. However,
it is still possible that results will not tell how difficult the problem is to be completely

solved by human programmers and that was also discussed in the paper.

There were three papers on resource allocation problem related to software projects.
The idea was to assign resources (employees) to project tasks and to minimise the total

completion time of the project.

8.2 Design

Most of the applications in the design phase are related to static task allocation in
multiprocessor systems in order to maximise the processor utilisation and minimise
required time to run the program. In addition, there was applications related to
task and resource allocation problem in distributed systems, where the domain is a
multicomputer system, where also resources, like databases and files are assigned to
different nodes. Applications related on hardware/software co-design in embedded
systems are also static multiprocessor scheduling problems. Basically, these all
applications are very similar to the project scheduling problem, described in the

analysis phase. EA could be used for task/resource allocation (scheduling) in

86

multiprocessor and distributed systems when a static scheduling is used. The static
scheduling means, that execution/utilisation order is known before the runtime. This

fact limits the possible usage.

The number and the classification of publications related to the
design phase.

18
w 16
C
214 -
S
= 12 4
a
210
©
g 8-
o]
E 6 e
2
o 4 — —
<
= 2 B I
0 ‘ |
Multiprocessor Task and res. hw/sw co- Protocol Architecture
scheduling alloc. in dist. design construction design
Sys.

Figure 28: EA usage in the design phase

Architecture design with EA was only a system partitioning: modules have
defined connections (dependencies) between them and they are assigned to clusters
(subsystems) which must have minimal number of dependencies between them and

also a reasonable number of dependencies between internal modules.

87

8.3 Implementation

It is not appropriate, within the scope of this work to report every use of GP from
the literature as an EA based application in the implementation phase of the waterfall
model. That is why this class contains only cases which are closely related to well
known software engineering problems. In implementation phase, no single application
area was clearly more popular than the others. There were few applications related to
automatic programming, N-version programming, re-engineering, and searching for

compiler optimisations.

The number and the classification of publications related
to the implementation phase.

The number of the publications

Automatic N-version Search for Re-
programming programming compiler engineering
optimisations

Figure 29: EA usage in the implementation phase

Most of the applications were about software re-engineering and there was no

similarities between the approaches. The GP was applied to different re-engineering

88

tasks, mainly to program auto-parallelisation, which involves re-writing programs to
execute on a multiprocessor system. In addition, the GA was used to restructure the

OO design and clusterise components to the reusable library.

8.4 Testing

Nearly half of the all reported EA applications in this thesis were about software
testing. Most of the testing publications were concentrated to the structural (white
box) testing, where objective was to find minimum length of test data with maximum
coverage for the given program. There are different paths through the program and
the coverage metric measures how compeletely given test data input will use programs
functionality. Usually this requires that there is a graph representation of the tested
program (or some technique that can explore through the source code and generate a
graph about the program which can be used with EA based test program). However,
applications on this area are more about test data generation rather than just program

testing.

There was no really large programs under structural testing, only little test programs
and EA was usually able to generate test data which covers the whole program. The
EA based test generation was usually compared against other techniques and also with

exhaustive search and it outperformed all other techniques.

89

The number and the classification of publications related to
the testing phase.

N
o

- = o .
o O N B~ OV 0
| | | |

The number of publications

2,
B N

0 T T T T T
Functional Structural Integration Testing Response Misc
testing testing testdesign based on time
mutation extremes
analysis

Figure 30: EA usage in the testing phase

In functional, black box testing, test cases are generated by using software
requirements without any knowledge about structure of the program. Usually there
was objective to find input data which causes failures, e.g. autonomous-vehicle
controller software was tested using GA generated inputs and by evaluating outputs
using software requirements. In this case, the goal is to find several inputs causing
failures rather than to find the most severe failure. Developers can use failure scenarios
(given input values and information about the failure) when fixing bugs in the program.

Failures were usually classified or clusterised when generating failure scenarios.

90

Software response times are concerned especially when a software is a real-time
system. Many embedded systems like different kinds of controllers are also real-time
systems, and they can have strict response time requirements. For example, if the
vehicle control software reacts to the particular change in the input values too late, it

can causc danger.

Testing, which has the objective to find maximum response times from the software is
very close to black box and functional testing. This is also the second most popular
application area in the testing class after the structural testing. Like in the black box
testing, also in this area, failure scenarios which can describe (and maybe generalise)

inputs with high response times can be useful to developers who are fixing the software.

The EA based search for finding response time extremes were usually compared
against other methods like random search and with test programs, it was able to find
higher execution times in reasonably shorter time. There were some cases, where
EA based method was used to test a real-world controller software. It looks like
this application area is one of the few, where EA search was used to a real software

engineering problem and had real advantages.

There were also two applications about the design of integration test orders. The
objective was to search order to add components and subsystems to the system under
integration test. Because of dependencies between the components, there might be a
reason to implement some “dummy’” stub modules, which imitates the behaviour of the
real module and satisfy a particular dependency during an integration test. In a good
integration test order, effort caused by implementation of stub modules is minimal.
When testing a large system, this method could be useful, especially if it seems that

the needed stubs could be complex to implement.

91

Some EA applications related to the testing were classified as “miscellaneous”. There
is a GP based testing tool called GPTesT, a test-data generation framework for safety-
critical systems. Also testing of the image processing software was classified in this
class and was introduced only in brief because it is not very close to the common

software engineering problems.

8.5 Summarising remarks

Methods based on evolutionary algorithms (EA) could be applied to different software
engineering problems and there are many related applications which can be allocated
to different parts of the waterfall model. Almost all applications, discussed within this
work, were tested only in an experimental environment rather than real situation where
a real software is under development. 123 publications about using EA on software
engineering problems were found from the literature and majority of them are related
to software design (40) and testing (54) phases. There were also some application

classified to the analysis phase (19) and the software implementation (limited to 10).

In general, there were some NP-complete problem (which requires time which is
exponential in the problem size [Fou04]) to solve, related to software engineering.
The problem was transferred to the fitness function and data structure, which can be
used to form a set of solution candidates. Then GP or GA based solution was compared
against results of other methods like random search or a problem specific heuristic. If
the search space for a particular problem was relatively small allowing to find the best
solution using an exhaustive search, then EA was usually able to find the same best
solution but in shorter time. Reason for this could be that EA methods are favouring
good solution candidates when creating new generation and usually good solutions

in the search space are closely-spaced. With a larger search space, EA was usually

92

compared against the random search or a problem specific heuristic and almost every
time, EA was able to find better solutions in shorter time. The reason why random
search was outperformed by EA is in the ability of EA to have memory (mutation
and crossover) between generations of solution candidates, i.e. it is not blind like
the random search. There were different kinds of problem specific heuristics, and
reason why EA methods were usually better could be in their stochastic nature, which
prevents the search to get stuck in the local optimum. However, EA methods have

higher computational requirements than those problem specific heuristics.

There were no applications using Evolution Strategy (ES) or Evolutionary Program-
ming (EP). According to Ryan in the book Automatic Re-Engineering of Software Us-

ing Genetic Programming [Rya00], a renewed interest in EP has been growing recently.

In analysis phase, most popular applications were about using GA or GP to build
models from the historic data which will predict software failures, software project

efforts or project cost. Also task scheduling for software projects has been done.

The design phase was mainly about task scheduling in multiprocessor or multicom-
puter systems with GA. Scheduling was static, which means that tasks are assigned
to processors or computers before they are executed. In distributed systems, also re-
sources were assigned by depending on their use. There were also applications related
to architecture design, where by using the GA, the set of software modules was parti-

tioned to optimal subsystem.

For implementation phase there were only few interesting cases about automatic
programming, N-version programming, compiler optimisations, and software re-
engineering. The re-engineering applications were related to using GP to program

auto-parallelisation and using GA to clusterise implemented software components.

93

In testing phase, most of the applications were about using GA in the functional
testing, the structural testing, and searching for response time extremes. The structural
testing has the objective first to generate test data (test case), which covers all possible
execution paths through the program. After that, results data can be used to test the
program. EA based method for generating test data for structural testing could be
useful, when there is really need to make automatic test case generation, because the

number of different paths through the program can be very high.

The functional testing and searching for response time extremes both mean generating
test inputs for the program and search for faulty or delayed output. Both techniques
are very useful and can be used even with real-world testing problems, especially when
testing real-time systems, where the behaviour of the system under test is difficult to
predict. Because fixing the bugs is one of the most important tasks after software
tests, there should be need for more research on the methods, how to generate minimal
number of interesting failure scenarios which will cover maximum number of failures
in the software. This can help developers to find bugs from the program code. There
was also testing related to image processing software, mutation analysis testing and
integration test orders. Also a testing tool based on GP and a complete framework for

testing safety-critical systems were mentioned.

Many cases were used only in an experimental environment rather than real situation
where a real software is under development. Usually it looks like that problems to be
solved with EA were searched rather than to search methods for the particular problem.
It could be said, that all mentioned EA based methods can be useful in different
software engineering tasks, but in practise, there is a tradeoff related to benefits and
efforts. For example, usually it is significantly easier to outline the system architecture
or the project schedule by using experience and fix it some time later than to transfer

the problem to the suitable form and use EA to search for optimal solution. There were

94

also some more or less complete frameworks and EA based computer aided software
engineering (CASE) tools, which could be more usable in software production rather

than just methods.

95

9 Conclusions

Within this work, different kinds of applications of the evolutionary algorithms (EA)
to solve software engineering problems were found in the literature. Applications from
123 publications were reported and classified into four software development phases,
which are derived from the waterfall model. The mentioned four phases are analysis,
design, implementation, and testing. Almost all the applications discussed within this
work, were using EA based methods called the genetic programming (GP) or the
genetic algorithm (GA). It 1s possible, that this work covers about half, more likely

more half than less, of all the EA applications in the area of the software engineering.

EA techniques were used to build predictive models from software engineering data.
Different kinds of historic data were splitted in to training and validation sets and
models were trained to predict software quality, module failures, project effort, and
software costs [BL98, EKCA98, EKA99, Dol00, Shu00, ARRRTO1, BLO1, Dol01,
LKO1, BKS02, RPA02, SMLEO2]. EA was also used to train neural network to
predict software failures [HKAH96, HKAH97]. EA techniques in this area seem to be
promising alternative to other approaches, e.g. statistical analysis or neural networks.
To systematically collect software engineering data 1s a long-span task and according
to Bouktif er al. [BKS02], there are very few companies that collect and publish related
data. There is a need for more research on this area, but the research should be more

general and not concentrate only on the use of EA techniques.

96

GA was used to find optimal schedules for software development projects, where
employees must be assigned to tasks, which have dependencies between each other
and different kinds of skill requirements [CCNC98, KH00, CCZ01]. This is a
promising application area for EA techniques, and can also be used with non-software
development projects. The EA project scheduling can become a commonly used

technique if implemented in to project management software tools.

The static task scheduling in multiprocessor systems was one area, to which GA
was also applied [DAA9S, KA97, TOK98, CFR99, Ge99b, Ge99a, JPPOO, Fis00,
OBWKO00, BC00, YQNOI, LasO1, LCO3]. Tasks of a particular parallel program
were assigned to multiple processors in order to minimise the execution time of the
program. With GA, tasks and resources (databases and files) were also assigned to
nodes of the distributed system [KH93, AK94, BA94, KPG95, WYKH97, SM98,
Ahu00, SNYF00, Ram01, OCWO00]. In addition, there were also applications related
to hardware/software co-design in embedded systems, which were mainly static
multiprocessor scheduling [SC94, Agu96, Sem98, Gra99, CRCO02, YG02a, YGO2b].
Both techniques can be useful if there is really use for the static scheduling, where

execution times for tasks are known before the program starts.

In the architecture design, EA techniques were used to clusterise modules to
subsystems: modules have dependencies between them and they are assigned to
subsystems which must have minimal number of dependencies between them and also
a reasonable number of dependencies between internal modules [MMR 798, DMM99,
HHPO02, MAO2]. This kind of problems are only a small part of the architecture design,
but the EA based module clusterisation could be useful if implemented to the computer

aided software engineering tool.

GP is fundamentally targeted to generate computer programs, and therefore it can have

a large number of applications in the software engineering. Because of this, only

97

applications related to well-known software engineering problems are discussed. For
example, GP was applied to N-version programming [Fel98b] and the software auto-
parallelisation [Rya00]. The automatic programming area is an experimental and there

1s very little use for it in the practical software production.

The automatic programming, mainly based on the GP, is still an interesting research
area and there should be more research on it. The applied research for GP should be
done in order to find new practical applications for it. In addition, the basic research
for developing GP variants and other approaches to automatic programming should be

done.

Most of the applications related to software testing were about the functional testing
[XES™92, SGDJ93, Hun95, MT95, Sth95, Wat95, BM96, KG96, YZC99, WBS02,
BFJT03, PWW93], the structural testing [MGGZ94, JSYE95, MT95, Rop96, SF96,
Xil98, WIHZ98, PHP99, BJ0O, MSJ00, MMSO01, BSS02, Bot02, BFJ*03], and
searching for response time extremes [VB96, WGJ97, AMMM9Y98, GW98, GJE99,
MW98, OVWIS, PN98, WG9S, AM99, WPS99, AMO00, Gro00, SBWO01, Man03]. The
EA based structural (white box) testing has the objective first to generate test inputs,
which covers all possible execution paths through the program. When testing the
program using an optimal input test data, all the failures caused by the faulty program
code should occur. This could be interesting, because according to Pressman [PreO1],
structural testing could in theory lead to 100% correct programs. This approach can be
useful in the practical software production, if applied to simple pieces of the program,
like individual functions. The problem with EA structural testing could be the fact,

that there must be a graph presentation of the internal structure of the program.

EA is used in functional (black box) testing to find test inputs, which will cause failures
in the software. The objective is to find several inputs causing failures rather than to

find the most severe one. Developers can use failure scenarios (given input values and

98

information about the occured failure) when fixing bugs in the program. Failures are
usually classified or clusterised after a set of failure scenarios has been found. Because
fixing the bugs 1s one of the most important tasks after a software failure occurs, there
should be a need for more applied research on the methods, how to generate minimal
number of interesting failure scenarios which will cover maximum number of failures
in the software. The application area of searching for response times extremes was
similar to functional testing, but aims to find test inputs which cause too long response

times in the software.

At the moment, EA applications related to the functional testing and searching for
response times extremes are both possible to use in practical software production,
especially when testing a real-time system. The reason why the black box approach
is suitable for testing real-time (embedded) systems, is in their different nature.
According to Haikala and Mirijjarvi [HM98], real-time systems usually executes
in a loop and continuously read values from the input stream(s) and adjust output
value. Inputs are rarely synchronised between or with the system itself. Because of
those circumstances, it can be difficult to predict behaviour of the real-time system.
Embedded systems are also used very widely and according Thaller [Tha97] almost
90% of all electronic components produced nowadays (1997) are used in embedded
systems. Embedded systems are also used with safety-critical systems like nuclear
power plants and severe software failures can cause danger to human lives. In addition,
there should be more EA based testing tools in order to increase usage of such testing

techniques in the real-world software production.

GA was also used to generate optimal integration test orders, where the objective
was to search the order to add components to the system [TJIMO0O, HATJO1, BFLO2].
Because of the component dependencies, there might be a reason to implement dummy

stub modules, which imitate the behaviour of the real module and satisfy a particular

99

dependency during the integration test. In a good integration test order, effort caused
by implementation of stub modules is minimal and when testing a large system, this
method could be useful, especially if it seems that the needed stubs could be complex
to implement. This technique seems to be ready to be used in practical software
production if the system under test is large. In addition, there should be software

design tools where such a method is implemented.

In general, there was some NP-complete problem related to software engineering. The
problem was transferred to the fitness function and data structure, which can be used
to form a set of solution candidates. Then the solution was compared against the
results from other (non-EA) methods. If the search space for a particular problem
was relatively small allowing to find the best solution using an exhaustive search, then
EA was usually able to find the same best solution but in shorter time. Reason for
this could be that EA methods are favouring good solution candidates when creating
new generation and usually good solutions in the search space are closely-spaced.
With a larger search space, EA was usually compared against the random search or a
problem specific heuristic and almost every time, EA was able to find better solutions
in shorter time. The reason why random search was outperformed by EA is in the
ability of EA to have memory (mutation and crossover) between generations of solution
candidates, i.e. it is not blind like the random search. There were different kinds of
problem specific heuristics, and reason why EA methods were usually better could be
in their stochastic nature, which prevents the search to be stucked in the local optimum.
However, EA methods have higher computational requirements than those problem

specific heuristics.

Almost all EA applications, discussed within this work, were tested only in an
experimental environment rather than in a real situation where a real software is under

development. The reason, why such techniques are not used widely to solve software

100

engineering problems in practise, is in the lack of EA based computer aided software
engineering (CASE) tools. Currently, EA techniques are not adopted to wide practical
use and interest in them is mostly limited to (academic) research. However, according
to Alander [Ala98], the number of research publications related to EA in general has
been rapidly increasing over the past few years. It could thus be assumed that more
practical EA applications in the area of the software engineering will be available in

next few years.

Most promising application areas for EA based techniques are the functional testing,
structural testing, integration test design, and searching for response time extremes.
The EA based task scheduling in multiprosessor and distributed systems is also
promising, if there is a need for the static scheduling. EA based project scheduling
is also useful in large projects which cannot be scheduled by using common sense. In
addition, the software quality, failure, and project effort prediction based on EA are
also useful, but in this area, EA is only an alternative for other techniques, like neural

networks or the statistical analysis.

The EA applications for project scheduling, the architecture design (clusterising
modules to optimal subsystems), and the design of integration testing are ready for use
in practical software production, if there will be CASE tools where the techniques are
implemented. The software quality and failure prediction and project effort prediction
are already used with a large number of different techniques and EA is promising and
ready-to-use alternative for them. It is possible, that the EA based functional testing
and searching for response time extremes will be used in practical software production,

especially when developing mission critical real-time systems.

The most promising research related to reported EA applications will be in the area
of software testing, especially in both black box approaches: the functional testing

and searching for response time extremes. The prediction of the software quality,

101

failures, cost and project efforts should be subject of research, but it should not to be
concentrated only on EA based techniques, because the problems in the area are more
related to the data than computing methods. In addition, more research should be done

on the Genetic Programming (GP) technique itself.

102

References

[ACTT7]

[Agu96]

[AhuOO0]

[AK94]

[AL97]

[Ala98]

[AM99]

Avizienis, A. and Chen, L., On the implementation of n-version
programming for software fault tolerance during execution. Proceedings

of IEEE COMPSAC 77, Nov 1977, pages 149-155.

Aguilar, J., Heuristics to optimize the speed-up of parallel programs.
Parallel Computation, Third International ACPC Conference with
Special Emphasis on Parallel Databases and Parallel I/O Proceedings,
Sep 1996, pages 184—183.

Ahuja, S., A genetic algorithm perspective to distributed systems design.

Proceedings IEEE SoutheastCon 2000, 2000, pages 83-90.

Ahuja, S. and Kumar, A., A genetic algorithm approach for performance
based reliability enhancement of distributed systems. Seventh Interna-

tional Conference on Parallel and Distributed Computing Systems, Oct

1994, pages 664—669.

Alander, J. T. and Lampinen, J., Cam shape optimization by genetic
algorithm. Genetic Algorithms and Evolution Strategies in Engineering
and Computer Science, Poloni, C. and Quagliarella, D., editors, Trieste,

Italy, Nov 1997, John Wiley et Sons, New York, USA, pages 153—-174.

Alander, J. T., Geneettisten algoritmien mahdollisuudet. Teknologiakat-
saus 59/98. TEKES - National Technology Agency of Finland, 1998.
ISBN 951-53-1392-9.

Alander, J. T. and Mantere, T., Automatic software testing by genetic
algorithm optimization, a case study. SCASE’99 - Soft Computing
Applied to Software Engineering, Ryan, C. and Buckley, J., editors,
Limerick, Ireland, Apr 1999, University of Limerick, pages 1-9.

103

[AMOO]

[AMMMO8]

[AMTV96]

[ARRRTO1]

[BA94]

[BCOO]

[BEJT03]

Alander, J. T. and Mantere, T., Genetic algorithms in software testing
- experiments with temporal target functions. MENDEL 2000 6th
International Conference on Soft Computing, Osmera, P., editor, Brno,
Czech Republic, Jun 2000, Brno University of Technology and PC-DIR,
pages 9—14.

Alander, J. T., Mantere, T., Moghadampour, G. and Matila, J., Searching
protection relay response time extremes using genetic algorithm -

software quality by optimization. Electric Power Systems Research,

3,46(1998), pages 229-233.

Alander, J., Mantere, T., Turunen, P. and Virolainen, J., Ga in program
testing. Proceedings of the Second Nordic Workshop on Genetic
Algorithms and Their Applications 2NWGA, Alander, J., editor, Vaasa,
Finland, Aug 1996, University of Vaasa, pages 205-209.

Aguilar-Ruiz, J., Ramos, 1., Riguilme, J. and Toro, M., An evolutionary
approach to estimating software development projects. Software

Technology, 43,14(2001), pages 875-882.

Barada, H. and Adar, N., Efficient allocation of program modules on
multicomputers. Seventh International Conference on Parallel and

Distributed Computing Systems, Oct 1994, pages 556-560.

Bae, S. H. and Choi, S. B., An implementation of the linear scheduling
algorithm in multiprocessor systems using genetic algorithms. Journal

of KISS: Computer Systems and Theory, 27,2(2000).

Berndt, D., Fisher, J., Johnson, L., Pinglikar, J. and Watkins, A.,
Breeding software test cases with genetic algorithms. 36th Annual

Hawaii International Conference on System Sciences (HICSS'03), Big

104

[BFILTO2]

[BFLO2]

[BHTOO]

[BJOO]

[BJO2]

[BKSO02]

Island, Hawaii, USA, Jan 2003, Institute of Electrical and Electronics

Engineers.

Baudry, B., Fleurey, F., Jezequel, J. and Le-Traon, Y., Genes and
bacteria for automatic test cases optimization in the .net environment.
Proceedings - 13th International Symposium on Software Reliability
Engineering, Annapolis, USA, Nov 2002, IEEE Comput. Soc, Los
Alamitos, CA, USA, pages 195-206.

Briand, L. C., Feng, J. and Labiche, Y., Using genetic algorithms and
coupling measures to devise optimal integration test orders. Proceedings
of the 14th international conference on Software engineering and

knowledge engineering, Ischia, Italy, 2002, ACM Press, pages 43—50

Baudry, B., Hanh, V. L. and Traon, Y. L., Testing-for-trust: the genetic
selection model applied to component qualification. Proceedings 33rd
International Conference on Technology of Object Oriented Languages
and Systems. TOOLS 33, Mont-Saint-Michel, France, Jun 2000, IEEE
Comput. Soc, Los Alamitos, CA, USA.

Bueno, P. and Jino, M., Identification of potentially infeasible program
paths by monitoring the search for test data. Proceedings ASE-
2000. Fifteenth IEEE International Conference on Automated Software

Engineering, Grenoble, France, Sep 2000, pages 209-218.

Bueno, P. and Jino, M., Automatic test data generation for program paths
using genetic algorithms. International Journal of Software Engineering

and Knowledge Engineering, 12,6(2002), pages 691-709.

Bouktif, S., Kegl, B. and Sahraoui, H., Combining software quality
predictive models: an evolutionary approach. International Conference

on Software Maintenance, 2002, pages 1063—6773.

105

[BL9S]

[BLO1]

[BM96]

[Bot02]

[Bru96]

[BSS02]

Baisch, E. and Liedtke, T., Automated knowledge acquisition and
application for software development projects. Automated Software
Engineering, 1998. Proceedings. 13th IEEE International Conference
on, Honolulu, USA, October 1998, pages 306-309.

Burgess, C. J. and Lefley, M., Can genetic programming improve
software effort estimation? a comparative evaluation. Information and

Software Technology, 43,14(2001), pages 863—873.

Boden, E. and Martino, G., Testing software using order-based genetic
algorithms. Proceedings GB-96 Conference, J.R. Joza, D.E. Goldberg,
D. F and Riolo, R., editors, Stanford, California, USA, Jul 1996, MIT
Press, pages 461-466.

Bottaci, L., Instrumenting programs with flag variables for test data
search by genetic algorithms. GECCO 2002: Proceedings of the Genetic
and Evolutionary Computation Conference, Langdon, W. B., Cantu-Paz,
E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar,
V., Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C.,
Miller, J. F., Burke, E. and Jonoska, N., editors, New York, USA, July
2002, Morgan Kaufmann Publishers, San Francisco, USA, pages 1337—
1342.

Bruce, W., Automatic generation of object-oriented programs using
genetic programming. Genetic Programming, Proceedings of the First

Annual Conference, Jul 1996, pages 267-272.

Baresel, A., Sthamer, H. and Schmidt, M., Fitness function design to
improve evolutionary structural testing. GECCO 2002: Proceedings of
the Genetic and Evolutionary Computation Conference, Langdon, W. B.,

Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan,

106

[CCNC98]

[CCZ01]

[CFR99]

[CJO1]

[CRCO2]

[CSS99]

[DAA9S]

K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M. A.,
Schultz, A. C., Miller, J. F., Burke, E. and Jonoska, N., editors, New
York, July 2002, Morgan Kaufmann Publishers, San Francisco, USA,
pages 1329-1336.

Chang, C., Chao, C., Nguyen, T. and Christensen, M., Software
project management net: a new methodology on software management.
Computer Software and Applications Conference, 1998. COMPSAC ’98.
Proceedings, August 1998, pages 534-539.

Chang, C. K., Christensen, M. J. and Zhang, T., Genetic algorithms for

project management. Annals of Software Engineering, 11,1(2001), pages
107-139.

Correa, R., Ferreira, A. and Rebreyend, P., Scheduling multiprocessor
tasks with genetic algorithms. [EEE Transactions on Parallel and

Distributed Systems, pages 825-837.

Clark, J. and Jacob, J. L., Protocols are programs too: the meta-heuristic
search for security protocols. Information and Software Technology,

43,14(2001), pages 891-904.

Chakraverty, S., Ravikumar, C. and Choudhuri, D., A hierarchical
genetic algorithm for hardware software co-synthesis with a stochastic

approach. IETE Journal of Research, 48,5(2002), pages 349-360.

Cooper, K., Schielke, P. and Subramanian, D., Optimizing for reduced

code space using genetic algorithms. 34,7(1999).

Dhodhi, M. K., Ahmad, 1. and Ahmad, 1., A multiprocessor scheduling
scheme using problem-space genetic algorithms. [EEE International

Conference on Evolutionary Computing, 1995, pages 214-219.

107

[DLS78]

[DMM99]

[Dol99]

[Dol00]

[DolO1]

[EKA99]

[EKCA98]

DeMillo, R., Lipton, R. and Sayward, F., hints on test data selection :

help for the practicing programmer. /EEE Computer, 11,4(1978).

Doval, D., Mancoridis, S. and Mitchell, B., Automatic clustering of
software systems using a genetic algorithm. Software Technology and

Engineering Practice, 1999. STEP '99, 1999, pages 73-81.

Dolado, J. J., Limits to the methods in software cost estimation. Pro-
ceedings of the Ist International Workshop on Soft Computing Applied
to Software Engineering, Ryan, C. and Buckley, J., editors, University
of Limerick, Ireland, 12-14 April 1999, Limerick University Press,
pages 63-68, http://www.sc.ehu.es/Jjiwdocoj/docs/
dolado-scase99.ps Cited 12.3.2004

Dolado, J., A validation of the component-based method for software

size estimation. /[EEE Trans. Softw. Eng., 26,10(2000), pages 1006—1021.

Dolado, J. J., On the problem of the software cost function. Information

and Software lechnology, 43,1(2001), pages 61-72.

Evett, P., Khoshgoftaar, T. and Allen, E., Using genetic programming
to determine software quality. Proceedings of the Twelfth International
Florida Artificial Intelligence Research Society Conference, Kumar,
A. N. and Russell, 1., editors, Orlando, USA, May 1999, AAAI Press,
pages 113-117.

Evett, M., Khoshgoftar, T., Chien, P. and Allen, E., GP-based software
quality prediction. Genetic Programming 1998: Proceedings of the Third
Annual Conference, Koza, J. R., Banzhaf, W., Chellapilla, K., Deb, K.,
Dorigo, M., Fogel, D. B., Garzon, M. H., Goldberg, D. E., Iba, H. and
Riolo, R., editors, University of Wisconsin, Madison, Wisconsin, USA,

22-25 1998, Morgan Kaufmann, pages 60-65.

108

[EV02]

[Fel98a]

[Fel98b]

[Fel99]

[Fel02]

Emer, M. C. F. P. and Vergilio, S. R., Gptest: A testing tool based on
genetic programming. GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, Langdon, W. B., Cantu-Paz, E.,
Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V.,
Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C., Miller,
J. F., Burke, E. and Jonoska, N., editors, New York, July 2002, Morgan
Kaufmann Publishers, San Francisco, USA, pages 1343—1347.

Feldt, R., Generating diverse software versions with ge-
netic programming: an experimental study. IEE Proceed-
ings - Software Engineering, 145,6(1998), pages 228-236.
http://www.iee.org.uk/publish/Jjournals/profjrnl/
cntnsen.html Cited 12.3.2004

Feldt, R., Generating multiple diverse software versions with
genetic programming. Proceedings of the 24th EUROMI-
CRO Conference, Workshop on Dependable Computing Sys-
tems, Vaesteraas, Sweden, 25-27th August 1998, pages 387—
396, http://www.amp.york.ac.uk/external/sweden/
sweden.htm Cited 12.3.2004

Feldt, R., Genetic programming as an explorative tool in early software
development phases. Proceedings of the 1st International Workshop on
Soft Computing Applied to Software Engineering, Ryan, C. and Buckley,
J., editors, University of Limerick, Ireland, 12-14 April 1999, Limerick
University Press, pages 11-20.

Feldt, R., Biomimetic Software Engineering Techniques for Dependabil-
ity. Ph.D. thesis, Chalmers University of Technology, 2002.

109

[Fis00]

[Fou04]

[FOW66]

[Ge99a]

[Ge99b]

[GIE99]

[Gol89]

[Gra99]

Fissgus, U., Scheduling using genetic algorithms. International

Conference on Distributed Computing Systems, 2000, pages 662—669.

Foundation, W., Wikipedia, the free encyclopedia, 2004.
http://en.wikipedia.org/wiki/Main_Page Cited
12.3.2004

Fogel, L., Owens, J. and Walsh, M., Artificial Intelligence throught
Simulated Evolution. Wiley and Sons, 1966.

Ge, Q. W., Paradeg-processor scheduling for acyclic switch-less program

nets. Journal of the Franklin Institute, 7,336(1999), pages 1135-1153.

Ge, Q., A two-processor scheduling method for a class of program nets
with unity node firing time. I[EICE Transactions on Fundamentals of
Electronics,-Communications and Computer Sciences, 11,E82-A(1999),

pages 2579-2583.

Grof5, H., Jones, B. and Eyres, D., Evolutionary algorithms for
the verification of execution time bounds for real-time soft-
ware. IEE Workshop on Applicable Modeling, Verification
and Analysis Techniques, London, Great Britain, Jan 1999,
http://www.systematic-testing.com/

et_tt.htm, Cited 12.3.2004

Goldberg, D. E., Genetic algorithms in search, optimisation, and
machine learning. Addison Wesley Longman, Inc., 1989. ISBN 0-201-
15767-5.

Grajcar, M., Genetic list scheduling algorithm for scheduling and

allocation on a loosely coupled heterogeneous multiprocessor system.

110

[Gra00a]

[GraOOb]

[Gro00]

[GSO1]

[GWI98]

[HATJO1]

Proceedings of the 36th Design Automation Conference (DAC), 1999,
pages 280-285.

Grace, P., Applying genetic programming to protocol construction.
Master’s thesis, Computing Department, Lancaster University UK,
Sep 2000. http://www.lancs.ac.uk/postgrad/gracep/
gp&protocols.pdf Cited 12.3.2004.

Grajcar, M., Conditional scheduling for embedded systems using genetic
list scheduling. Proceedings 13th International Symposium on System

Synthesis., Sep 2000, pages 123—128.

GroB, H., Measuring Evolutionary Testability of Real-Time Software.
Ph.D. thesis, University of Glamorgan, Pontypridd, UK, 2000.

Gounares, A. and Sikchi, P., Adaptive problem solving method and
apparatus utilizing evolutionary computation techniques, 2001. U.S.

patent 6,282,527.

Grochmann, M. and Wegener, J., Evolutionary testing of tem-
poral correctness. Proceedings of the 2nd International Soft-
ware Quality Week Europe (QWE 1998), Brussels, Belgium, Nov
1998, http://www.systematic-testing.com/et_tt.htm
Cited 12.3.2004

Hanh, V. L., Akif, K., Traon, Y. L. and Jezequel, J., Selecting an efficient
00 integration testing strategy: an experimental comparison of actual
strategies. ECOOP 2001 Object Oriented Programming. 15th European
Conference. Proceedings Lecture Notes in-Computer Science, Jun 2001,

pages 381—401. 18-22 June 2001 Budapest, Hungary.

111

[HBO1]

[HHPO2]

[HJOla]

[HJO1b]

[HKAH96]

[HKAH97]

Heitkoétter, J. and Beasley, D., The hitch-hiker’s guide to evolution-
ary computing: A list of frequently asked questions (faq), April
2001. ftp://rtfm.mit.edu/pub/usenet/news.answers/
ai-fag/genetic/ Cited 12.3.2004

Harman, M., Hierons, R. and Proctor, M., A new representation
and crossover operator for search-based optimization of software
modularization. GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, Langdon, W. B., Cantu-Paz, E.,
Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V.,
Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C., Miller,
J. E, Burke, E. and Jonoska, N., editors, New York, 9-13 July 2002,
Morgan Kaufmann Publishers, pages 1351-1358.

Harman, M. and Jones, B. F., Search-based software engineering.

Information et Software lechnology, 43,14(2001), pages 833—839.

Harman, M. and Jones, B. F., The seminal workshop: reformulating
software engineering as a metaheuristic search problem. ACM SIGSOFT

Software Engineering Notes, 26,6(2001), pages 62—66.

Hochmann, R., Khoshgoftaar, T., Allen, E. and Hudepohl, J., Using
the genetic algorithm to build optimal neural networks for fault-prone
module detection. Proceedings of the Seventh International Symposium
on Software Reliability Engineering, White Plains, USA, Nov 1996,
IEEE Computer Society Press, pages 152-162.

Hochmann, R., Khoshgoftaar, T., Allen, E. and Hudepohl, I.,
Evolutionary neural networks: a robust approach to software reliability

problems. Proceedings of the Eight International Symposium on

112

[HMOS§]

[Hol75]

[Hun95]

[IEE9OQ]

[JES98]

[JPPOO]

[JSYEOS]

[KA97]

Software Reliability Engineering, Albuquerque, New Mexico, USA,
1997, IEEE Computer Society Press, pages 13-26.

Haikala, I. and Mirijérvi, J., Ohjelmistotuotanto. Suomen Atk-kustannus

Oy, fifth edition, 1998.

Holland, J., Adaptation in natural and artificial systems, 1975. University
of Michican Press, Ann Arbor.

Hunt, J., Testing control software using a genetic algorithm. Engineering
Applications of Artificial Intelligence, 8,6(1995), pages 671-680.

Elsevier Science Ltd.

IEEE standard glossary of software engineering terminology. Technical

Report 610.12-1990, IEEE, New York USA, 1990.

Jones, B., Eyres, D. and Sthamer, H., A strategy for using genetic
algorithms to automate branch and fault -based testing. Computer

Journal, 41,2(1998), pages 98—107.

Jung, B. J., Park, K. I. and Park, K. H., An ordered-deme genetic
algorithm for multiprocessor scheduling. IEICE transaction on

information and systems, E83-D,6(2000), pages 1207-1215.

Jones, B., Sthamer, H., Yang, X. and Eyres, D., The automatic
generation of software test data sets using adaptive search techniques.
3rd International Conference on Software Quality Management, Seville,

Spain, 1995, pages 435-444.

Kwok, Y.-K. and Ahmad, 1., Efficient scheduling of arbitrary task graphs
to multiprocessors using a parallel genetic algorithm. Journal of Parallel
and Distributed Computing. Special Issue on Parallel Evolutionary

Computing.

113

[KC93]

[KC97]

[KGY6]

[KH93]

[KHOO]

[Koz92]

[KPGY5]

Karananithi, N. and Carpenter, T., A ring loading application of
genetic algorithms. Technical Report TM-ARH-023337, Bellcore, Bell

Communications Research, Morristown, USA, 1993.

Karanunithi, N. and Carpenter, T., Sonet ring sizing with genetic
algorithms. Computers et Operations Research, 24,6(1997), pages 581—
591.

Kasik, D. and George, H., Toward automatic generation of
novice user test scripts. Proceedings 1996 Conference on
Human Factors in Computing Systems CHI96, Vancouver,
Canada, Apr 1996, ACM Press, New York, pages 244-251,
http://www.acm.org/sigchi/chi9é/proceedings/
papers/Kasik/djk_txt.htmCited 12.3.2004

Kim, Y. C. and Hong, Y. S., A task allocation using a genetic algorithm
in multicomputer systems. [EEE Region 10 International Conference
on Computers, Communications and Automation, volume 1, Oct 1993,

pages 258-261.

Komiya, S. and Hazeyama, A., Projecting risks in a software project
through kepner-tregoe program and schedule re-planning for avoiding
the risks. "IEICE-Transactions-on-Information-and-Systems", 4, pages

627-639.

Koza, J., Genetic Programming: on the programming of computers by
means of natural selection. MIT Press, Cambridge, Massachussets, USA,

1992.

Kumar, A., Pathak, R. and Gupta, Y., Genetic algorithm based approach
for file allocation on distributed systems. Computers et Operations

Research, 22,1(1995).

114

[LasO1]

[LCO3]

[LKO1]

[LMW99]

[Lut02]

[LWO2]

[MAOO]

Laskowski, E., Fast scheduling and partitioning algorithm in the mul-
tiprocessor system with redundant communication resources. Proceed-
ings of 4th International Conference on Parallel Processing and Applied

Mathematics, 2001, pages 97-106.

Lee, Y H. and Chen, C., A modified genetic algo-
rithm for task scheduling in multiprocessor systems, 2003.
http://parallel.iis.sinica.edu.tw/cthpc2003/
papers/CTHPC2003-18.pdf Cited 12.3.2004.

Liu, Y. and Khoshgoftaar, T., Genetic programming model for software
quality classification. Sixth IEEE International Symposium on High

Assurance Systems Engineering, pages 127—136.

Lee, B. J., Moon, B. R. and Wu, C. S., Implementation of reusable
class library based on corba using genetic algorithm. Journal of KISSC

Computing Practices, 2,5(1999), pages 209-222.

Lutz, R., Recovering high-level structure of software systems using
description length principle. Artificial Intelligence and Cognitive
Science. 13th Irish Conference, AICS-2002. Proceedings Lecture Notes
in Artificial Intelligence, O’Neill, M., Sutcliffe, R., Ryan, C., Eaton,
M. and Griffith, N., editors, volume 2464, Limerick, Ireland, Sep 2002,
Springer-Verlag, pages 61-69.

Lee, B. and Wu, C., Genetic algorithm based restructuring of object-
oriented designs using metrics. [EICE-Transactions-on-Information-

and-Systems, 7, pages 1074—1085. Only abstract.

Mantere, T. and Alander, J. T., Automatic image generation by genetic

algorithms for testing halftonin methods. Intelligent Systems and

115

[MAO1]

[MAO2]

[MAO3]

[Man03]

[MB94]

Advanced Manufacturing: Intelligent Robots and Computer Vision XIX:
Algorithms Techniques, and Active Vision, Casasent, D., editor, Boston,

USA, Nov 2000, SPIE Optical Engineering Press, pages 297-308.

Mantere, T. and Alander, J. T., Testing a structural light vision
software by genetic algorithms - estimating the worst case behavior of
volume measurement. Intelligent Systems and Advanced Manufacturing:
Intelligent Robots and Computer Vision XX: Algorithms, Techniques, and
Active Vision, Casasent, D. and Hall, E., editors, Newton, USA, Oct
2001, SPIE Optical Engineering Press, pages 466—475.

Mantere, T. and Alander, J. T., Developing and testing structural light
vision software by co-evolutionary genetic algorithm. QSSE 2002 The
Proceedings of the Second ASERC Workshop on Quantative and Soft
Computing based Software Engineering, Banff, Alberta, Canada, Feb
2002, Alberta Software Engineering Research Consortium (ASERC) and
the Department of Electrical and Computer Engineering, University of

Alberta, pages 31-37.

Mantere, T. and Alander, J. T., Testing digital halftoning software by
generating test images and filters co-evolutionarily. Proceedings of SPIE.
Intelligent Robots and Computer Vision XXI: Algorithms, Techniques,
and Active Vision, Casasent, D., Hall, E. and Roning, J., editors, Oct
2003, pages 257-268.

Mantere, T., Automatic Software Testing by Genetic Algorithms. Ph.D.

thesis, University of Vaasa, Finland, 2003.

McCabe, T. J. and Butler, C. W., Software complexity. Crosstalk, Journal
of Defense Software Engineering, 7,12(1994), pages 5-9.

116

[MGGZ94]

[MMR 98]

[MMSO1]

[MMSW97]

[Mon93]

[MSJO0]

[MT95]

Min, P., Goodman, E., Gao, Z. and Zhong, K., Automated software test
data generation using a genetic algorithm. Technical Report 6/2/1994,

University of Aeronautics and Astronautics, Beijing, China, 1994.

Mancoridis, S., Mitchell, B., Rorres, C., Chen, Y. and Gansner, E.,
Using automatic clustering to produce high-level system organizations
of source code. Proceedings 6th International Workshop on Program

Comprehension, 1998, pages 45-52.

Michael, C., McGraw, G. and Schatz, M., Generating software test data
by evolution. [EEE Transactions on Software Engineering, 27,12(2001),
pages 1085-1110.

Michael, C. C., McGraw, G., Schatz, M. and Walton, C. C., Genetic
algorithms for dynamic test data generation. Automated Software

Engineering, Lake Tahoe, CA, Nov 1997, pages 307-308

Montana, D. J., Strongly typed genetic programming. Technical Report
#7866, 7 1993.

Mansour, N., Salame, M. and Joumaa, R., Integer- and real-value test
generation for path coverage using a genetic algorithm. Proceedings
of the IASTED International Conference. Software Engineering and
Applications, Hamza, M., editor, Las Vegas, USA, Nov 2000,
IASTED/ACTA Press, Anaheim, CA, USA, pages 49-54.

Minohara, T. and Tohma, Y., Parameter estimation of hyper-geometric
distribution software realiability growth model by genetic algorithm.
Proceedings of the Sixth International Symposium on Software Reliabil-

ity Engineering, Toulouse, France, 1995, IEEE Press, pages 324-329.

117

[MWIg]

[Neg02]

[Nis98]

[OBWKO00]

[OCWO0]

[OVWI8]

[PDO95]

[PHP99]

Mueller, F. and Wegener, J., A comparison of static analysis and
evolutionary testing for the verification of timing constraints. /EEE Real

Time Technology and Applications Symposium, 1998, pages 144—154.

Negnevitsky, M., Artificial Intelligence, A Guide to Intelligent Systems.
Pearson Education Limited, 2002. ISBN 0201-71159-1.

Nisbet, A., Gaps: A compiler framework for genetic algorithm (ga)

optimised parallelisation, 1998

Oh, J., Bahn, H., Wu, C. and Koh, K., Pareto-based soft real-time task
scheduling in multiprocessor systems. Proceedings Seventh Asia Pacific

Software Engieering Conference ASPEC 2000, 2000.

Oh, J., Choi, S. and Wu, C., A formal model for allocation of objects
into heterogeneous distributed environments. Journal of Electrical

Engineering and Information Science, 5,1(2000), pages 41-51.

O’Sullivan, M., Vissner, S. and Wegener, J., Testing temporal correct-
ness of real-time systems - a new approach using genetic algorithms and
cluster analysis. Proceedings of the 6th European Conference on Soft-
ware Testing, Analysis et Review (EuroSTAR 1998), Munich, Germany,
Dec 1998, http://www.systematic-testing.com/et_-
tt.htm Cited 12.3.2004

Petry, F. E. and Dunay, B. D., Automatic programming and program
maintenance with genetic programming. International Journal of
Software Engineering and Knowledge Engineering, 5,2(1995), pages
165-177.

Pargas, R., Harrold, M. and Peck, R., Test-data generation using genetic

algorithms. Software Testing, Verification and Reliability, 9. Wiley.

118

[PNO8]

[PPO8]

[PPRO2]

[PreO1]

[PWWO3]

[RamO1]

[Rec73]

[RL9O]

Puschner, P. and Nossal, R., Testing the results of static worst-case
execution time analysis. Proceedings of the 19th IEEE Real-Time
Systems Symposium RTSS’98, Madrid, Spain, 1998, IEEE Computer

Society Press, pages 134-143.

Pedrycz, W. and Peters, J., Computational intelligence in software
engineering. Advances in Fuzzy Systems - Applications and Theory,
Vol. 16. World Scientific Publishing Co. Pte. Ltd., 1998. ISBN 981-02-
3503-8.

Portland pattern repository, Dec 2002. http://c2.com/cgi/wiki
Cited 12.3.2004

Pressman, R. S., Software engineering: a practitioner’s approach.

McGraw-Hill, fifth edition, 2001. ISBN 0-07-365578-3.

Patton, R., Wu, A. and Walton, G., A genetic algorithm approach to

focused software usage testing. Annals of Software Engineering

Ramakrishnan, S., Object-oriented simulation and ga. Proceedings of the
ISCA 14th International Conference Parallel and Distributed Computing
Systems, Aug 2001, pages 57-61.

Rechenberg, 1., Evolutionsstrategie: Optimierung technischer Systeme
und Prinzipien der biologischen Evolution. Frommann-Holzboog,

Stuttgart, 1973.

Rewini, H. E. and Lewis, T. G., Scheduling parallel program tasks onto
arbitrary target machines. J. Parallel Distrib. Comput., 9,2(1990), pages
138-153.

119

[RMB™95]

[Rop96]

[RPAO2]

[Rya00]

[SBWO1]

[SCY4]

[Sch81]

[Sem98]

Roper, M., MacLean, 1., Brooks, A., Miller, J. and Wood, M., Genetic
algorithms and the automatic generation of test data. Technical Report

RR/95/195, University of Strathelyde, London, UK, 1995.

Roper, M., Cast with gas-automatic test data generation via. evolutionary
computation. /EE Colloquium on Computer Aided Software Testing Cast
Tools Digest, London, UK, Apr 1996.

Ramanna, S., Peters, J. and Ahn, T., Software quality knowledge
discovery: a rough set approach. Proceedings 26th Annual International
Computer Software and Applications. IEEE Comput. Soc, Los Alamitos,
CA, USA, Aug 2002, pages 1140-1145.

Ryan, C., Automatic re-engineering of software using genetic program-
ming. Genetic Programming Series. Kluwer Academic Publishers, 2000.

ISBN 0-7923-8653-1.

Sthamer, H., Baresel, A. and Wegener, J., Evolutionary testing of
embedded systems. Proceedings of 14th International Internet et

Software Quality Week 2001, San Francisco, USA, May 2001.

Seljak, B. K. and Cooling, J., Optimization of multiprocessor real-
time embedded system structures. Proceedings of MELECON 94

Mediterranean Electrotechnical Conference, Apr 1994, pages 313-316.

Schwefel, H.-P., Numerical Optimization of Computer Models. John
Wiley et Sons, Inc., New York, USA, 1981.

Semeraro, G., Evolutionary approach to real-time analysis. Genetic
Programming 1998 Proceedings of the Third Annual Conference, Jul
1998, page 592.

120

[SEMO2]

[Ser98]

[SFO6]

[SGDJ93]

[Sha90]

[Shu00]

[SM98]

Software engineering using metaheuristic innovative algorithms
(seminal), 2002,
http://www.discbrunel.org.uk/seminalproject/

Cited 12.3.2004.

Seredynski, F., Scheduling tasks of a parallel program in two-processor
systems with use of cellular automata. Parallel and Distributed
Processing, 10 IPPS/SPDP’98 Workshops Held in Conjunction with the
12th International Parallel Processing Symposium and 9th Symposium
on Parallel and Distributed Processing, volume 1388 of Lecture Notes

in Computer Science. Springer, 1998, pages 261-305.

Smith, J. and Fogarty, T., Evolving software test data-ga’s learn self
expression. Evolutionary-Computing AISB-Workshop Selected Papers,
Brighton, UK, 1996, Fac. of Comput. Studies et Math., West of England

Univ., Springer-Verlag, Berlin, Germany, pages 137-146.

Schultz, A., Grefenstette, J. and De-Jong, K., Test and evaluation by
genetic algorithms. IEEE-Expert, 8,5(1993), pages 9-14.

Shaw, M., Prospects for an engineering discipline of software. Software,

IEEFE, 7,6(1990), pages 15-24.

Shukla, K. K., Neuro-genetic prediction of software development effort.

Information and Software Technology, 42,10(2000), pages 701-713.

Sandnes, F. E. and Megson, G. M., Improved static multiprocessor
scheduling using cyclic task graphs: A genetic approach. Parallel Com-
puting: Fundamentals, Applications and New Directions, Proceedings
of the Conference ParCo’97, D’Hollander, E. H., Joubert, G. R., Peters,
F. J. and Trottenberg, U., editors, volume 12. Elsevier, North-Holland,
Sep 1998, pages 703-710

121

[SMLE(2]

[SNYF00]

[Sth95]

[Sun92]

[Tha97]

[TIIMOO]

[TOK98]

Shan, Y., McKay, R. 1., Lokan, C. J. and Essam, D. L., Software
project effort estimation using genetic programming. Proceedings of

International Conference on Communications Circuits and Systems,

2002.

Saito, T., Nakanishi, T., Y.Kunieda and Fukuda, A., Genetic algorithm
based data and program partitioning. Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and

Applications: PDPTA 2000, volume 2, Jun 2000, pages 1173—-1179.

Sthamer, H.-H., The Automatic Generation of Test Data Using Genetic
Algorithms. Ph.D. thesis, University of Glamorgan. Pontypridd, Wales,
1995.

Sundqvist, S., On finding optimal potential customers from a large
marketing database - a genetic algorithm approach. S7eP-92 Tekodilyn
uudet suunnat, Hyvonen, E., Seppinen, J. and Syrjinen, M., editors,
Espoo, Finland, Jun 1992, Finnish Artificial Intelligence Society (FAIS),

pages 35-38.

Thaller, G., Software Engineering fiir Echtzeit und Embedded Systems.
Kaarst-Biittgen, 1997. ISBN 3893605428.

Traon, Y. L., Jeron, T., Jezequel, J.-M. and Morel, P., Efficient oo
integration and regression testing. [EEE Transactions on Realiability,

49,1(2000), pages 12-25.

Tsuchiya, T., Osada, T. and Kikuno, T., Genetics-based multiprocessor
scheduling using task duplication. Microprocessors and Microsystems,

22,3-4(1998), pages 197-207.

122

[Tra00]

[VB96]

[Wat95]

[WBS02]

[WGI8]

[WG99]

[WGI97]

[Whi95]

Tracey, N. J., A Search-Based Automated Test-Data Generation
Framework for Safety-Critical Software. Ph.D. thesis, University of
York, UK, 2000.

Vossner, R. and Braunstingl, R., G.o.a.l. (genetic optimization algo-

rithm), 1996. Genetic Optimization Lab, Graz, Austria.

Watkins, A., The automatic generation of test data using genetic
algorithms. Proceedings of the 4th Software Quality Conference, et al.,
1. M., editor, Dundee, Scotland, UK, Jul 1995.

Wegener, J., Baresel, A. and Sthamer, H., Suitability of evolutionary
algorithms for evolutionary testing. Proceedings of 26th Annual
International Computer Software and Applications Conference, 2002.
COMPSAC 2002, Aug 2002, pages 287-289.

Wegener, J. and Grochtmann, M., Verifying timing constraints of real-
time systems by means of evolutionary testing. Real-Time Systems,

6,2(1998), pages 275-298

Wadekar, S. and Gokhale, S., Exploring cost and reliability tradeoffs in
architectural alternatives using a genetic algorithm. 70th International
Symposium on Software Reliability Engineering 1999, November 1999,
pages 104-113.

Wegener, J., Grochtmann, M. and Jones, B., Testing temporal correctness
of real-time systems by means of genetic algorithms. Proceedings of
the 10th International Software Quality Week (QW °97), San Francisco,
USA, May 1997.

Whitten, T., Method and computer program product for generating

a computer program product test that includes an optimized set of

123

[WIHZ98]

[WPS99]

[WYKH97]

[XEST92]

[Xil98]

[YGO2a]

computer program product test cases, and method for selecting same,

1995. U.S. patent 5,805,795.

Wei, J., Junkai, X., Hongyu, X. and Zhongyi, G., Genetic algorithms
and its application in software test data generation. Journal of Beijing

University of Aeronautics and Astronautics, 24,4(1998), pages 434-437.

Wegener, J., Pohlheim, H. and Sthamer, H., Testing the temporal
behavior of real-time tasks using extended evolutionary algorithms.
Proceedings of the 7th European Conference on Software Testing,
Analysis and Review (EuroSTAR ’1999), Barcelona, Spain, Nov 1999,
http://www.systematic-testing.com/

et_tt.htm, Cited 12.3.2004

Woo, S. H.,, Yang, S. B., Kim, S. D. and Han, T. D., Genetic
scheduling algorithms in distributed computing systems. Journal of

KISSA Computer Systems and Theory, 24,12(1997), pages 1247-1256.

Xanthakis, S., Ellis, C., Skourlas, C., Le-Gall, A., Katsikas, S.
and Karapoulios, K., Application genetic algorithms applications
to software testing. application of genetic algorithms to software
testing. Proceedings of the 5th International Conference on Software
Engineering et and Its Applications., Toulouse, France, Dec 1992, EC2,
Nanterre, France, pages 625-636.

Xile, Y., Automatic Testing From Z specifications. Ph.D. thesis,
University of Glamorgan, Pontypridd, UK, 1998.

Yun, Z. and Guoyong, H., Real-time multi-processor cosynthesis using

ga scheduling. Transactions of the Institute of Electronics, Information

and Communication Engineers, 12,J85-C(2002), pages 1216—1228.

124

[YGO2b]

[Yin93]

[YQNOI]

[YZC99]

Yun, Z. and Guoyong, H., System level software/hardware partitioning
by genetic algorithm. Journal of Computer Aided Design et Computer
Graphics, 14,8(2002), pages 731-734.

Yin, X., Application of genetic algorithms to multiple load flow solution
problem in electrical power systems. Proceedings of the 32nd IEEE
Conference on Decision and Control, San Antonio, USA, Dec 1993,

IEEE Control Systems Society, pages 3734-3738.

Yi, S., Qin, T. W. and Nian, Y. S., Genetic algorithm approach towards
scheduling dag on multiprocessor. Journal of Shanghai University,

SUP,5(2001), pages 86-91.

Yanyuan, Z., Zhining, J. and Cuilan, Z., Research on automatic testing
of a kind of software by using generalized genetic algorithm. Fifth
International Conference for Young Computer Scientists ICYCS’99.
Advances in Computer Science and Technology, Luo, J., Xu, B., Wang,
Y., Li, X. and Lu, J., editors, volume 1, Nanking, China, Aug 1999, Int.
Acad. Publishers, Beijing, China.

125

