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Despite the high automation level in turning industry, a few key issues prevent complete
automation of the entire turning process. One of these issues is tool wear. The work pre-
sented in the thesis focuses on implementing an automatic system to measure tool wear,
especially flank wear, using machine vision. The tool wear measurement system removes
the need for manual inspection and minimizes the time used on wear measurement. In
addition to measurement, tool wear modelling and prediction is also studied.
The automatic measurement system was placed inside a turning center and the system
was successfully integrated with external systems. Conducted experiments showed that
the measurement system is able to measure the tool wear successfully in the system’s
intended environment. The measurement system can also tolerate some common distur-
bances affecting machine vision systems.
Multiple methods that can model the tool wear were studied, including neural networks
and support vector regression. Experiments showed that the models were able to predict
the wear based on the time the tool has been in use. Best results were obtained by neural
networks with Bayesian regularization.
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Huolimatta korkeasta automaatioasteesta sorvausteollisuudessa, muutama keskeinen on-
gelma estää sorvauksen täydellisen automatisoinnin. Yksi näistä ongelmista on työkalun
kuluminen. Tämä työ keskittyy toteuttamaan automaattisen järjestelmän kulumisen, er-
ityisesti viistekulumisen, mittaukseen konenäön avulla. Kulumisen mittausjärjestelmä
poistaa manuaalisen mittauksen tarpeen ja minimoi ajan, joka käytetään työkalun ku-
lumisen mittaukseen. Mittauksen lisäksi tutkitaan kulumisen mallinnusta sekä ennus-
tamista.
Automaattinen mittausjärjestelmä sijoitettiin sorvin sisälle ja järjestelmä integroitiin on-
nistuneesti ulkopuolisten järjestelmien kanssa. Tehdyt kokeet osoittivat, että mittausjär-
jestelmä kykenee mittaamaan työkalun kulumisen järjestelmän oikeassa ympäristössä.
Mittausjärjestelmä pystyy myös kestämään häiriöitä, jotka ovat konenäköjärjestelmille
yleisiä.
Työkalun kulumista mallinnusta tutkittiin useilla eri menetelmillä. Näihin kuuluivat muiden
muassa neuroverkot ja tukivektoriregressio. Kokeet osoittivat, että tutkitut mallit pystyivät
ennustamaan työkalun kulumisasteen käytetyn ajan perusteella. Parhaan tuloksen antoivat
neuroverkot Bayesiläisellä regularisoinnilla.
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1 INTRODUCTION
The goal of this section is to provide a background and motivation for this thesis. The
structure of the thesis is also given.
1.1 Background
Modern turning in industrial setting is done by CNC (Computer Numerical Control)
lathes. These CNC lathes allow programmability and high automation regarding the turn-
ing process. There is, however, one critical component, which is still done by hand:
measuring the wear of the cutting tool used in turning. There is no any industry wide
adoption for automating the process of measuring the wear. Instead wear measurement
requires stopping the automated turning, removing the tool, measuring the tool and putting
the tool back into it’s holder. The time lost for measurement that the tool will only last
minutes in normal turning.
This thesis is linked to the Feedchip-project (2006-2008), which tries to maximize the
production rate in turning. As a part of the Feedchip-project, the work done for this thesis
tries to minimize the time spent on measuring the wear on the cutting tool by applying
machine vision and prediction of the tool wear to the problem.
1.2 Objectives and Restrictions
This thesis has two objectives. The first is to show that it is possible to use machine vision
to automate measuring of flank wear. Flank wear was chosen as the measured variable
as it was identified as the most important wear type in the Feedchip-project. No other
form of wear is measured. Only a single camera is used to capture images of the tool.
Automated measuring system is integrated to an external control system.
The second objective is to develop a method for predicting the cutting tool life based on
the cutting conditions and additional sensor information collected during turning. This
can be used in optimizing the cutting tool changes which leads to maximized production.
Developing a prediction method, which can work under changing cutting conditions dur-
ing turning, was identified as especially important. In this thesis only one combination of
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cutting tool and work material is considered for modelling. Contrary to measuring, the
modelling will be examined on a more theoretical level, with no actual implementation or
integration to the turning process.
1.3 Structure of the Thesis
The rest of this thesis is divided into seven sections. Section 2 includes a literature review
on the topic of tool condition monitoring and on the prediction and estimation of tool
wear. The Section also includes an introduction to the cutting tools used in turning and
their monitoring.
Section 3 gives the design point of view to the system. The section describes how the
system should work and what it must do.
Sections 4 and 5 contain the theory of the methods used in the practical part of the thesis.
Section 4 focuses on the tool wear measurement and machine vision while Section 5
describes the theory behind the prediction and estimation of tool wear. Section 4 also
describes general machine vision systems in the context of this thesis.
Section 6 is a description of the implementation of the machine vision system. It includes
both the software and hardware used in the system.
Section 7 describes the conducted experiments and discusses their results. Finally, con-
clusions in Section 8 mark the ending of the thesis.
2
2 TOOLWEARMEASUREMENTANDPREDICTION
Several different methods have been developed to monitor the condition of tools in turn-
ing. This thesis focuses specifically on cutting tools, also known as inserts, used in turn-
ing. All tool wear monitoring methods related to the thesis’ subject are briefly discussed
here, while existing machine vision methods are explained in detail in Section 2.2. Also
a brief introduction to measuring and classifying the condition of a cutting tool is given
in Section 2.1.
The prediction of tool wear has also had interest in the last few years. The prediction
of the tool wear allows optimizing the tool changes as the tool life is known before the
tool is actually rejected. There are multiple ways to predict the tool life and these will be
discussed in Section 2.3.
2.1 Cutting Tool Wear and Measurement of Tool Wear
ISO standard 3685:1993 [1] is the standard for measuring the wear for wear experiments
when using a single-point turning tool. The word "single-point" refers to the fact that the
tool cuts the material with a single point. Figure 1 depicts a cutting tool.
Figure 1: Image of a cutting tool
From the Figure 1, it can be seen that the tool consists of three important sides: the
major flank, the minor flank and the face at the top. However, the ordering of the sides
is dependent on the application. Major flank is the cutting edge, while minor flank faces
the newly cut surface and the face receives the material being cut and forms chips. The
type of cutting tool presented in Figure 1 has four usable cutting edges, one on each side
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of the tool. Of these, the most useable for measuring are the major flank and the face as
the standard [1] gives threshold values for wear experiments on the wear types occurring
on the two sides.
The standard [1] also defines four definitions which will be used in this thesis as they are
defined in the standard:
Tool wear: The change of shape of the tool from its original shape, during cutting, result-
ing from the gradual loss of tool material or deformation.
Tool wear measure: A dimension to be measured to indicate the amount of tool wear.
Tool-life criterion: A predetermined threshold value of a tool wear measure or the occur-
rence of a phenomenon.
Tool life: The cutting time required to reach a tool-life criterion.
According to the ISO standard 3685:1993, there are multiple types of wear and phenom-
ena, which can cause tool-life criterion to be fulfilled. Most important of the wear types
are flank wear and crater wear. Flank wear is present in all situations and it is the best
known type of wear. It can be found on the major flank of the tool. Crater wear appears
on the face of the tool as a crater. Crater wear is the most commonly found wear on the
face of the tool.
The wear process itself changes under the influence of different conditions. However,
three main factors contributing to the wear are known: adhesion, abrasion and diffusion.
Adhesion occurs when the work material, that the tool is cutting, welds onto the tool. This
happens because of the friction between the tool and work material, which generates heat.
When these welds are broken, small pieces of the tool are lost. Abrasion is mechanical
wear resulting from the cutting action, where the tool grinds itself on to the work material.
Diffusion wear occurs on a narrow reaction zone between the tool and work material. In
diffusion wear the atoms from the tool move to the work material. This usually accelerates
the other two wear processes as the tool material is weakened. [2, pp. 141-142]
Figure 2 shows the general curves of flank wear. The wear is typically characterized by
rapid initial wear, a linear increase of the wear in the middle of the tool life and finally a
rapid increase of the wear rate before the tool breaks completely. [2, p. 143]
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Figure 2: Flank wear progress as a function of time [1]
While the general shape of the curve stays the same, cutting conditions or cutting param-
eters affect the tool life, i.e. the gradient of the curve, especially the linear section. Most
important cutting parameters in relation to tool wear are cutting speed, denoted by V , and
cutting feed, denoted by f . Of these speed is considered to have the most effect on the
tool life. However, Astakhov [3] argues that there are conflicting results and that feed has
significant effect under optimal cutting temperature. The importance of cutting speed can
also be seen from the Taylor’s equation as the formula relies only on the cutting speed to
estimate tool life. Taylor’s equation is described in Section 2.3. [4, pp. 60-62]
The effects of cutting speed can be seen from Figure 2. The Cutting speed is usually
expressed in meters per minute and can range up to 500 m/min [4]. The standard [1]
gives a limit to the cutting speeds by limiting the minimum tool life to 5 minutes or to
2 minutes when using a ceramic tool. The cutting feed is expressed as millimeters per
revolution, ranging from 0.1 to 0.9 mm/rev [4, p. 61]. Standard [1] has defined the
maximum feed to 0.8 times the corner radius of the tool. The corner radius can be seen in
Figure 3.
To be able to measure the wear, especially flank wear, a few variables must be known.
Most important variables are r�, corner radius, and b, depth of cut. These are represented
in Figure 3. This figure is depicting the tip or nose of the tool viewing it from the top.
The arrow in the figure represents the cutting direction.
The variable r� tells the corner radius, i.e. how round the tip of the tool is. b on the other
5
Figure 3: Nose of the tool
hand tells the depth of the cut used to cut the work-piece. These are used in measuring
the flank wear. The measurements defined for flank wear in the standard [1] are shown in
Figure 4. The figure depicts the major flank of the tool from the side and the tip of the
tool lies at the top.
Figure 4: Measurement of flank wear [1]
In Figure 4, two measures are the most important, as they are designated in the standard
[1] to be tool-life criterions. These measures are VBB and VBB max. Besides these most
important measures, also VBC is measured, which is considered to be the maximum wear
width in zone C. VBB and VBB max. govern the tool-life by following criteria:
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a) the maximum width of the flank wear land VBB max. = 0.6 mm if the flank wear land
is not regularly worn in zone B.
b) the average width of the flank wear land VBB = 0.3 mm if the flank wear land is
considered regularly worn in zone B.
Commonly the measurements have been done by hand using a microscope. In the standard
[1] manual measurement is defined as the way to measure the wear. So to follow the
standard, measurements done with an automatic system need to be close to the manual
measurements.
Kurada et al. [5] divide the available methods for tool condition monitoring into two
parts: direct and indirect sensors. Direct sensors are sensors which measure the tool
wear directly. These sensors include vision, proximity and radioactive sensors. Proximity
sensors estimate the wear by measuring the distance between the workpiece and tool edge.
Radioactive sensors measure the amount of radioactive material transferred from the tool,
which has been infused with radioactive material, to the chips of the work-piece. Vision
sensors will be dealt separately in Section 2.2 as they are in the scope of this thesis. Direct
measurements can usually be taken only between the machining runs, because the major
flank of the tool is not visible during actual machining. [5]
Indirect sensors can only estimate the wear as they have no direct way to measure the
actual wear, but instead they rely on secondary effects of the wear, such as increase in
cutting forces. To indirectly measure the wear, measurements of cutting force, vibration
and acoustic emission during the machining have been proposed. Also surface texture
of the work-piece has been used to estimate the wear of the tool. These methods will
also be explained in Section 2.2 as the texture can be captured using machine vision.
Indirect measurements have the advantage of being on-line measurements, i.e. they can
be measured during machining. [5]
2.2 Machine Vision in Tool Wear Measurement
Machine vision systems have been developed to measure the wear of the tool both di-
rectly and indirectly. Direct measurement systems have been shown to be successful in
determining the wear, flank or otherwise, from images taken from the tool [6], [7], [8].
However, most of the systems do not operate inside the CNC lathe or during the ma-
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chining process, or in-cycle [6], [7], which diminishes their usefulness in real industrial
applications. Machine vision systems utilizing indirect measurements have been focusing
on the texture of the machined work-piece surface [9], [10]. The roughness of the surface
can be used as a quality measure.
As this field of applied machine vision is quite specific, only a few comprehensive reviews
of methods have been made. Kurada et al. [5] gives a round-up of contemporary meth-
ods. While Rehorn et al. [11] give a broad view of tool condition monitoring methods,
including other indirect measuring methods, some machine vision methods are reviewed
as well. Methods represented in sections 2.2.1 and 2.2.2 have been studied with the use
of turning unless otherwise noted.
2.2.1 Measuring tool wear directly
Kurada et al. [7] designed a machine vision system that can measure flank wear. Main
components of the system were a CCD camera with a zoom lens and two fiber optic
illuminators. The resolution in the captured image was approximately 3µm per pixel.
Images are captured orthogonally to the flank face. Actual wear region identification and
measurement relies on the specular reflection of the wear area from the fiber optic lights.
Image segmentation is based on texture. Variance operator is used to convert areas of
similar texture to similar intensity values. After this, the image is thresholded to bring
out the wear area. To accommodate noise in the image, connected areas are extracted.
Largest of these areas is determined to be the wear region. Measurements are calculated
from this area.
Kurada et al. [7] tried also other methods to extract the wear region, such as edge de-
tectors and other texture operations, but came to a conclusion that variance operator was
best suited for detecting the wear. Results were promising as the wear measurements
were repeatable and comparable to manual measurements, but the system itself was not
integrated to a turning machine.
Lanzetta [8] has a different approach to the problem. Using two cameras, a grey-scale
image is taken from the nose of the tool and image of the tool silhouette is taken from
the top of the tool. Silhouette is taken with a back light and the tool nose is directly
illuminated. Images are also taken with directional light from the top of the tool to detect
crater wear. Flank wear is measured from the silhouette image. The silhouette of the worn
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tool is compared to the silhouette of the unused tool, which gives an estimate of the tool
flank wear. Measurement error is reported to be less than 5%.
Prasad et al. [12] measure the crater wear using stereo-vision. Stereo-vision is not
achieved by using two cameras but with the tool moving between two images taken with
the same grey-scale camera. Resolution is 12 µm×10 µm per pixel. The depth and width
of the crater wear is measured and the measurements can be made accurately. However
the images of the tool are taken outside the turning machine and no method for automati-
cally measuring the flank wear is presented.
Jurkovic et al. [13] used structured light from a laser diode to capture elevation infor-
mation from the tool surface. A monochrome CCD camera is used to capture the images
with a halogen light. The resolution of the image was approximately 3µm per pixel. Flank
wear can be measured as well as crater wear using the elevation information. The system
was combined with a CNC lathe.
Kerr et al. [14] used a monochrome CCD camera to capture images from the tool nose.
Variety of methods were tested to compare their results in extracting the wear information
from the tool. Methods included edge operators, texture information, histogram analysis,
Fourier transform and fractal properties of the image. Texture information was found to
be the most useful and accurate in measuring the extent of the wear. This is the same
conclusion as in [7]. However, the system was not implemented to be used in-cycle, the
tool had to be removed from the tool holder.
Park et al. [6] measure flank wear of tools using charge injection device (CID) camera
with 36 µm × 46 µm resolution. The measurement is based on specular light reflecting
from the worn area. Based on this reflection the image is segmented to worn and unworn
areas. Accurate measurement results are reported.
A few common features can be seen from these studies. One is the reliance on the specular
reflection of the wear area as reported on three studies. The worn area is usually polished
from the grinding effect of turning and it has a different angle than the rest of the major
flank. This allows the specular reflection to occur only at the worn area. Second feature is
the use of texture operators which helps to segment the image in worn and unworn areas.
Most of the studies presented here, which measure flank wear, only measure one of the
VBB, VBB max. or VBC measures.
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2.2.2 Tool wear estimation indirectly
Kassim et al. [9] study the surface of the work-piece to determine the wear of the tool.
Two methods are explored, column-projection and Hough transform. Column-projection
is found suitable for detecting wear levels of the tool in turning. However, only rough
estimates can be made of the tool wear and as the result, estimates are categorized into
three categories: sharp, semi-dull and dull.
Bradley et al. [10] study the use of the image histogram, frequency transforms and
texture-based segmentation to estimate the wear on the tool using the surface texture of
the work-piece. This study was conducted with the use of face milling instead of turn-
ing. Bradley et al. come to the conclusion that using frequency domain analysis and
texture-based analysis, the tool wear can be estimated.
Using vision to estimate tool wear indirectly is concentrated on studying the surface qual-
ity of the work-piece. There are no other sources for imaging that can be used to estimate
tool wear, which is why the surface quality is used. It is also possible to evaluate the
actual surface quality in addition to the tool wear.
2.3 Tool Wear Prediction and Modeling
ISO standard 3685:1993 [1] defines a way, Taylor’s basic equation, to calculate tool life
from experimental data. Experimental data is gathered by measuring the time until the
tool-life criterion is fulfilled using several different cutting speeds. From several of these
experiments a curve representing the tool life can be constructed. An example of a tool
life curve is shown in Figure 5 with two criterions used for
The standard [1] allows the curve to be fitted to the data by eye or by statistical regression
according to equation
10
Figure 5: Tool-life curve fitting on logarithmic scale [1]
vc · T 1/kc = C, (1)
vc cutting speed,
1/k Taylor’s exponent,
Tc tool lifetime,
C constant.
Equation (1) is also called Taylor tool-life equation [1] or Taylor’s basic equation [2, pp.
146-147]. It describes the linear section of the tool-life curve. However, Taylor’s basic
equation does not include the effect of cutting feed and is limited to certain range of
speeds. Also it is not possible to know the wear of the tool at any time t during turning.
Taylor’s extended equation [2, p. 147],
11
t =
C
v1/nf 1/n1a
1/n2
e
, (2)
fc cutting feed,
ae depth of cut,
n1, n2 parameters.
include both feed and depth of cut, but it can only tell the tool life, not the wear. Also the
parameters of the equation have to be estimated using data from experiments. Some of
these drawbacks have been addressed in more advanced methods which will be discussed
next.
Two different approaches are common in prediction of the tool wear. They are either
based on a physical model [15] or the model is constructed from experimental data using,
for example, neural networks [12]. Either way, some experiments have to be done in both
approaches as physical models require experiments to determine parameters that affect
the model. This is result the of being able to change the materials, e.g. the tool and work-
piece, which have an effect in the model. Also, most physical models used in practice are
linear, which means that they cannot properly model the whole tool life [15], [16].
Prasad et al. [12] use n artificial neural network (ANN) to predict both flank and crater
wear. Cutting conditions as well as cutting time were given as inputs to the ANN. The
outputs were flank and crater wear. Using 14 training patterns, the ANN was successfully
trained and Prasad et al. come to conclusion that ANN is successful in predicting the
wear. Error is less than 5 %.
Özel et al. [17] compare regressive modelling, i.e. curve fitting to data, and artificial
neural networks in predicting surface roughness of the work-piece and flank wear of the
tool. For the ANN, inputs were work-piece hardness, cutting speed and feed, length of
the cut and cutting forces. Outputs were flank wear and surface roughness. Linear and
exponential regression models were used while the ANN uses backpropagation to teach
the neural network. Özel et al. note that ANN is better in predicting the surface roughness
and wear than regression models and that the ANN is able to accurately predict the tool
wear, with less than 5 % error.
Choudhury et al. [18] explore not only the prediction of surface roughness and flank wear
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but also the temperature of cutting zone. Methods that were used were design of experi-
ments (DOE) and artificial neural networks. DOE includes regression modeling. Cutting
conditions were used as the inputs to the ANN, but time was not included. Choudhury et
al. conclude that ANN is better in predicting or estimating the three output values than
regression modeling with 5.66 % average error.
Danai et al. [19] developed a non-linear physical model that can represent the commonly
known shape of the wear curve (shown in Figure 2). The model represents the wear as
a function of cutting conditions and previous wear and it is differential model, that is,
it models the speed of the wear. Total wear is calculated from the sum of abrasive and
diffusive wear. Part of the model, the diffusive wear, is verified in [6] and [6] by Park et
al., with good results, the error is kept under 16% of the measured wear. However, model
was first linearized. The model can also accommodate changing cutting conditions during
the machining.
Oraby et al. [20] study a mathematical model based tool life modeling compared to the
extended Taylor’s equation.. Especially the use of ratios between the cutting forces are
explored with the use of the model. The model for wear incorporates cutting conditions
and time as well as the cutting forces, in the form of their ratios. Also the tool life is
modelled with same input variables. Average error in modeling is 12 % when tool life is
over 13 minutes.
Choudhury et al. [15] developed a mathematical model (regression model) to predict the
flank wear on a cutting tool. The wear is predicted from the cutting conditions. Parameters
for the model were estimated from experimental data. Choudhury et al. conclude that the
predicted results correlate well with measured values of flank wear.
Bhattacharyya et al. [21] use support vector regression to model tool wear in face milling.
Bhattacharyya et al. use cutting force signals to predict the tool wear. The signals were
collected during milling with corresponding wear measures. Support vector regression is
successful in modelling the tool wear progression. Average error between predicted and
measured values is lower than 5 %.
Shi et al. [22] model the flank wear on broaching tools using a support vector machine
(SVM). Principal component analysis is used to determine which signal is suited best for
predicting flank wear. The chosen signal was the cutting force. Using force, Shi et al.
were able to predict the flank wear using SVM. Error in prediction was less than 0.01
mm in all test cases.
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As can be seen from the review of existing methods for predicting the wear and tool life,
many methods are based on either ANNs, regression analysis or support vector machines.
Only few physical models, such as in [19], has been used to predict the wear. To be able
to predict with an experimental data based method, a wide variety of experiments must
be conducted for each tool - work-piece combination with different cutting condition
combinations and still, the methods can only predict the tool life or wear only when the
used cutting condition lie somewhere between the cutting condition combinations that
were used to gather data for the method. This occurs as the methods can not extrapolate
outside their data. In this sense physical models are better as they model the physical
wear phenomena, and while they also require some experimental data to solve the model
parameters, they can extrapolate better.
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3 REQUIREMENTSOFTHEVISUALMEASUREMENT
SYSTEM
This section describes the system design and argues for the choices made for the design.
The topic of this thesis requires both hardware and software components, so the design
section contains both aspects.
Initial requirements for the system were:
1. Measure the wear of the tool presented to the system.
2. Send the results forward to a system that uses the information at a higher level.
These are the two basic requirements that controlled the development of the system. One
of the key issues is also that the system needs to operate during the turning process. This
requires that the final system is robust enough to withstand the events that can occur
during the process.
The original specification for both hardware and software can be found in Appendix 1.
This specification was constructed from the initial requirements. Especially the turning
center sets constraints for the whole system, as it was the system’s working environment
and the system had to accommodate it. Some changes had to be made, especially to the
hardware specification and the changes to the original specification will be described in
the implementation Section 6.
3.1 Hardware
Hardware design called for four distinct components: A camera, a lens for the camera,
lighting and a computer, where the images are processed. These are also the basic com-
ponents of a machine vision system. The components are shown here for clarity from the
original specification in Figure 6.
Figure 6 presents 4 components and 3 communication channels between them. The cam-
era component consists of camera, lens and lighting, these components handle the imag-
ing. The vision computer processes the image data and measures the flank wear. The
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Figure 6: Hardware components
measurement and control computer is an external system that controls the visual mea-
surement process and handles information about the turning process. The turning center
executes the turning. Signal route 1 relays information from the turning center to the
measurement and control computer about the position of the tool when it is in place for
imaging. Signal route 2 relays the imaging command to vision computer. Route 2 also
relays the measurement results from vision computer. Signal route 3 relays imaging com-
mands to the camera and the camera relays image data to vision computer.
As seen in Section 2.2.1, specular reflection from the worn area was used in several cases
to separate the unworn area from the worn area. This approach was selected also here. The
validity of this method of lighting was first tested in preliminary experiments. Experiment
was conducted with static lighting and static placement of the tool. Also the camera
position was static over all images. Sample images from the experiment are shown in
Figure 7.
(a) (b) (c)
Figure 7: Tool wear at different stages, illuminated by a spotlight
Images in Figure 7 show that there is some specular reflection from the worn area at
different levels of wear, these are visible as bright spots on the images. This meant that
the approach of using reflected light as a method of detecting the worn area was viable
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and, thus, was included in the specification found in Appendix 1.
Camera specifications were based on the analysis of the previous applications, which are
described in 2.2.1. In previous applications the range of resolutions, with CCD sensor
cameras, were between 3 µm and 12 µm per pixel. This is the physical resolution, i.e, the
resolution at which the camera sees the target object. Considering the specified imaging
area (10 × 7 mm), the physical resolution was set to at most to 10 µm × 10 µm per
pixel. Requirements dictated that lens must have a working distance of 20 cm to 30 cm,
i.e. focusing range. This was measured during initial checks of the turning center [23]
and it was a safety requirement so that the flying chips and continuous chips from the
work-piece would come into contact with the camera and lens as little as possible.
Connections from the vision computer to remote components such as the camera, were
chosen in part of convenience and ease of use. This is especially true with the selec-
tion of TCP/IP and Ethernet protocols which implement the communication with remote
computers. More on TCP/IP and Ethernet in Section 6.
Firewire bus was chosen for the camera connection, because it bypasses the need for tradi-
tional camera grabber as the image data is sent digitally and available Firewire interfaces
could be used in the software of the system. Firewire bus also carries power. So choosing
Firewire, the number of additional components could be minimized to essentials, elimi-
nating the need for additional hardware in addition to the computer and camera. Firewire
bus also allows changing of the camera settings, such as shutter time, directly from soft-
ware.
Specifications for the vision computer itself were chosen so that the computer would
be faster in processing the images than the development computer. This ensures that
when the development computer processes the image faster than required, also the vision
computer will do so.
3.2 Software
The system relies heavily on software. The software will be located in the vision com-
puter. The requirements described before, require that the software must be able to mea-
sure the wear from the images captured by external cameras. Also the software needs
to send the results of the measurement to remote location. There are two main areas
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which the software had to implement: image processing and communication with remote
computers and users.
Image processing handles the measurement of the tool. The measurement was focused
on the measurement of the flank wear. Crater wear was specified secondary. Flank and
crater wear measurements were specified to conform with standard [1]. The measure-
ments could then be compared to manual wear measurements.
Also time constraints were placed on the software processing of the image. These con-
straints were derived from the cutting intervals of the turning center. These constraints
were placed to allow stopping of the turning center before a new cut from the work-piece
was started.
Communication was required to be bi-directional between the vision computer and mea-
surement and control computer. This allows the measurement to be controlled, i.e. trig-
gered, when the tool is moved to be imaged and the results of the measurement could
be sent to the remote computer for the higher level controller. It was required that com-
munication with the user of the software may only occur during the initialization of the
software to allow maximum automation. User communication is necessary to relay pa-
rameters for tool measurement.
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4 MEASURING TOOL WEAR WITH MACHINE VI-
SION
In this section the approach which was developed to measure flank wear is described.
Implementation details are discussed in Section 6. The theory behind the methods used in
the algorithm is explained to clarify the actual algorithm. A brief introduction to machine
vision in general is also given.
4.1 Machine Vision
Machine vision is used to "Recover useful information about a scene from its two-dimens-
ional projections", as quoted from [24, p. 1]. This quote embodies the goal of any ma-
chine vision system. The quote also sets some constraints on the machine vision system.
To get useful information, it must first be decided what is useful information and to get the
information at all, vision must be used so that the information is available to be recovered
from the projection, i.e. the image. In machine vision, information recovery is usually left
to a dedicated processor or a computer, but the processor can be thought of as a human
doing the same processing, e.g. measuring wear from the tool, like in the context of this
thesis. Compared to a human, machine based vision processing has many benefits, like
repeatability, which has led to many applications used in industry and military.
The components of a basic machine vision system can be seen in Figure 8. The Basic
components of any machine vision system are: Camera, frame grabber, lighting, object
and processor. These basic components allow the system to image the object, i.e. capture
2D representation of the object, and extract the useful information from the image.
The camera is combined with a lens. Using a lens, the camera can be focused to different
distances. Each lens has a specific focal length or a range of focal lengths, if the lens is
a zoom lens. Focal length determines object’s size in the 2D projection. The camera and
lens are usually modelled with a perspective projection [25, p. 4], which will be used in
this thesis as well to model the camera and lens.
The Perspective projection is a model that applies when a pinhole camera is used. The
pinhole is presumed to be so small that only one light ray for each point in the scene is
able to pass the pinhole. This is not true in the real world, but perspective projection is a
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Figure 8: General machine vision system
convenient model for both real pinhole cameras and cameras with lenses. [25, p. 4]
A frame grabber is used with a camera to convert an analog signal from the camera to dig-
ital images. This process involves analog-to-digital converters which quantize the analog
signal received from the camera. In modern cameras, the process is usually integrated to
the camera, which can output the digital image through a digital bus.
The lighting set-up depends entirely on application. There are multitude of different light
sources. Two often used light sources are point light sources and uniform light sources.
Point light sources can be used to create specular reflections, as in many of the measure-
ment applications discussed in Section 2.2. Uniform light sources create uniform lighting,
removing any specular reflections, which can be useful in many applications, e.g. detect-
ing texture of a surface.
The object represents the observed object. Other components of the system, lighting and
camera, have to be chosen such that the information can be recovered. For example, if
the object is large, a wide-angle lens and powerful lighting might be needed to image the
whole object with sufficient lighting.
Finally, the processor takes the image and performs image processing to recover the re-
quired information from the image. The processor is usually a computer attached to the
camera, but the image processing can be done in the camera as well.
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4.2 Algorithm for Measuring Flank Wear
As said in Section 3, one of the most important requirements for the system was to mea-
sure the flank wear. This section describes the algorithm used to detect and measure the
flank wear from tool images in detail. Focus is on the theoretical aspect of the algorithm
and implementation details are covered in Section 6. Methods used in the algorithm itself
are also described in the subsections for clarity.
4.2.1 Algorithm
The algorithm presented here requires certain conditions to be met. The most important of
these is the presence of a specular reflection from the worn area of the tool, as discussed in
Section 3. Second one is that the whole major flank of the tool is visible in the image. The
flank image is required for calibration purposes. An example of an acceptable tool image
is shown in Figure 9. The edges are referred to horizontal edges and vertical edges in the
algorithms that follow. In practice it is possible to tune the algorithm so that edges in any
angle can be considered to be horizontal or vertical, but for the purpose of demonstration,
the example image is the base assumption.
Figure 9: An example tool image
The high level algorithm for measuring the wear can be seen in Figure 10. It describes the
high level functions of the algorithm which includes both calibration and measurement.
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1: Algorithm measure_tool():
2: firstimage = TRUE
3: for each command to image do
4: img = new tool image
5: if firstimage = TRUE then
6: noseregion, pxmm, pymm = calibrate(img)
7: firstimage = FALSE
8: end if
9: VBC ,VBB,VBBmax =measure_wear(img, noseregion, pxmm, pymm)
10: return VBC ,VBB,VBBmax
11: end for
Figure 10: High level algorithm for measuring wear
The algorithm in Figure 10 has two main parts, a calibration function and a wear measure-
ment function. The calibration is run only at the start, this determined with the variable
firstimage at line 5. If the image is the first one that was imaged then calibrate() func-
tion is run. New image that was taken at line 4, is passed as an argument for the calibration
function. Calibration returns the result of calibration, in this case how many millimeters
is one pixel in the image, in both x- and y-axis. The calibration also returns the region
coordinates, noseregion, that indicate where the actual wear is for further processing
and measurement. This step reduces the needed computation considerably, as only the
interesting part of the tool has to be processed. The algorithm for calibration follows in
Figure 11.
The goal of the algorithm in Figure 11 is to determine the calibration of the system and
support the measurement of the flank wear by also determining the area around the flank
wear. The algorithm begins by applying basic image processing operations in lines 2-5.
Image is converted to grayscale to ease further processing. After conversion, a series
of sharpening and smoothening operations is done. This guarantees that the actual tool
edges have a high image gradient. The smoothing operation smooths rough edges that
may have formed during the brightness and contrast adjusting. Sharpening ensures good
results from the edge detector, which is used in line 6.
Goal of the next section in the algorithm is to find the tool edges. Using the edge pixels
from Canny edge detector, the pixels are transformed in to Hough transform space using
the Hough transformation in line 7. After this, a selection of the most strongest lines in the
Hough space are chosen. Selection of the lines is made so that lines are chosen from both
vertical and horizontal angles, as the tool is rectangular in the image and the tool edges
should be quite near to either horizontal or vertical angle. Using The Hough transform,
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1: Algorithm calibrate(img):
2: Convert img to grayscale image gimg
3: Adjust gimg brightness and contrast to sharpen the edges of the tool
4: Apply Gaussian filter to gimg to smooth sharp edges
5: Adjust gimg brightness and contrast to sharpen edges
6: Convert gimg to edge image eimg by using Canny edge detector
7: Convert eimg to Hough transform space image himg using Hough transform
8: Find most prominent lines from himg, from both near horizontal and near vertical
angles
9: Find 4 lines from himg, by selecting 2 furthest lines from each other from the hori-
zontal and vertical angles
10: Using the 4 lines, calculate their intersections, representing tool shape
11: Using the intersections and known tool dimensions, calculate mm per pixel ratios,
pxmm and pymm
12: Using the intersections, determine the intersection representing the intersection of
major and minor flank at the top of the tool
13: Calculate region noseregion around the intersection for measuring the flank wear,
determined in line 11, using known cutting parameters
14: return noseregion, pxmm, pymm
Figure 11: High level algorithm for calibration
the angle of the tool can change and the edges of the tool can still be found. More on the
Hough transform properties will be said in Section 4.2.4.
After the edges of the tool have been found, intersections of these lines are calculated.
Figure 12 shows the intersections determined from the tool edge lines. Determining the
intersections is a simple operation, the intersections can be easily solved, once the lines
are in slope-intercept form,
y = ax+ b, (3)
however the line parameters in Hough space differ somewhat from the analytical form
parameters a and b. In this case Hough transform tells the distance of the line from the
image center, ρ, and the angle of the line θ. In this particular case, the θ is perpendicular
to the actual line, the parameters a and b are solved in essence as follows,
a = tan(θ − pi
2
), (4)
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Figure 12: Tool edges intersecting in edge image of the tool
a can be easily solved as it determines the steepness of the line slope, i.e. the angle.
This can be solved using the tangent function tan on the angle of the line. Parameter b
describes the intersection with the y-axis when x = 0,
b = Mx · tan(pi − 2 · θ
2
), (5)
where,
Mx = Cx + ρ · cos(θ),
My = Cy + ρ · sin(θ),
here Cx and Cy denote the image center coordinate. Calculation of b is based on right
triangles which can be seen in Figure 13. By knowing angle θ, the angle α can be solved.
Also the point (Mx,My) is known.
After the parameters of all lines have been solved, solving the intersections between the
lines is trivial,
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Figure 13: Calculation of b
a1x+ b1 = a2x+ b2,
x =
b2 − b1
a1 − a2 . (6)
Using equation (6), the x-coordinate of the intersection can be solved and then the y-
coordinate can be solved using equation 3. After all the intersections have been solved,
the four points represent the shape of the tool, which should be rectangular. After the
calculation of the sides of the rectangular shape, representing the length and width of
the tool, the calibration of the camera can be determined. In the algorithm in Figure 11,
this is done in line 11. Calibration can be done by finding the ratio between the image
distance, i.e. image pixels, and the actual metric measures of the tool. Result of this is a
ratio between millimeters and image pixels, px
mm
. These are saved as pxmm and pymm
to account for non-square pixels in the camera.
After the calibration is determined, the calibration algorithm finds the intersection rep-
resenting the intersection of the major and minor flank where the actual wear begins to
form. This is entirely a practical issue, depending on the implementation of the algo-
rithm in Figure 11, and as such, it is discussed in Section 6. After the intersection has
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been determined, the algorithm determines the tool nose region, noseregion. This image
region can be determined with the help of known parameters, especially cutting depth b
and cutting edge angle, Kr. As the calibration is known the cutting depth can be directly
calculated as pixels in the image. Using these known parameters ensures that the wear
is visible inside the image region. There are a number of considerations regarding the
projection of 3D space to 2D image plane. Some of these are discussed in Section 4.2.5.
After noseregion, pxmm and pymm have been calculated, they are returned and cali-
bration is complete. As the algorithm for whole measurement process in Figure 10 states,
the calibration is run only once. After calibration, only the main measurement algorithm
is run, as shown in the algorithm in Figure 10. This can be done under the assumption
that the tool remains at a static pose between the images, so that calibration results apply
in each image. The algorithm for measuring the wear is found in Appendix 3. Image
processing is done in similar manner to the calibration, but goal in the measurement algo-
rithm is to find the tool edge above the flank wear, after which the wear can be measured
with the calibration data provided by the calibration algorithm.
Measurement algorithm, in Appendix 3, begins with exactly same operations as the cali-
bration algorithm. The image, img, brightness and contrast must be adjusted so that the
edges can be detected, although this step can be passed if edges are clear in the original
image. However, the edges are shorter in the img, as the algorithm only handles the im-
age region, received from the calibration, there is no need for filtering the image with a
smoothing filter, because the tool edges do not have to stand out from noise as they are
the only strong edges in the image region.
After the eimg has been formed using the Canny edge detector, it is transformed to a
Hough transform space. This is the same procedure as in the calibration algorithm. Dif-
ference is that only two lines are searched for in the Hough space, as only one horizontal
edge and one vertical edge of the tool are needed to determine the tool location in the im-
age region. Again, the process of determining the intersection of the two lines is exactly
the same as in the calibration algorithm. These steps, lines 2-8, represent the geometric
operations used to find the location of the tool in the image.
After the actual location of the tool in the image has been found out, the problem changes
to determining the worn area from the tool image. This is achieved by first extracting
the blue channel from the RGB image. Blue channel was chosen as the light used in the
system has a blue tint. Of course it possible to use a channel of choice or a gray-scale
image of the tool for the same purpose. After the individual channel is extracted, Gaussian
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smoothing is applied to smooth the illuminated worn area, so that there is less possibility
to detect false edges in the worn area.
After smoothing the image, the width of the cut is calculated directly as pixels in the
image along the horizontal edge. Using the tip of the tool, given by the intersection of the
two edges of the tool, and the point at the distance of the known cutting depth from the
tip, the pixels between them in a straight line can be solved. Common algorithm for this is
the Bresenham’s line algorithm, this is described in detail in Section 4.2.2. Bresenham’s
line algorithm is applied line 12 of the wear measurement algorithm. The obtained line
is used as a base for determining the worn area as it defines the upper boundary for the
wear. A small change for the Bresenham’s line algorithm was required so that the order
of the pixels on the horizontal edge remains the same, even if the angle changes. The
modification was needed as the Bresenham’s line algorithm relies on symmetricity and
mirroring, which can flip the direction of the pixels.
From this upper boundary, a series of lines in the same angle as the vertical tool edge are
cast to a defined lower boundary. The lines are cast from each pixel of the upper boundary.
All these lines are inspected for the worn area edge. This inspection is done by selecting
an array of values from the single line from the image bimg according to the median mask
size and a median value is calculated for each pixel in the line. The edge of the worn area
along this single line is detected by comparing the median values from the previous pixel
to current. If this median value changes more than a predefined threshold, the edge of the
worn area is marked. After all lines from the upper boundary have been inspected, the
whole worn area edge to the depth of cut is available for further computation.
Using the worn area edge, the values VBC , VBB and VBB max. can be solved. This
process corresponds directly with the measurements in the ISO standard [1]. VBC is the
largest value, i.e. the largest wear value in the region C. VBB is the average value of the
wear in region B and VBB max. is the largest value in region B. Using the conversion
constants received from the calibration algorithm, the values of each of the measures can
be directly changed to the metric system, i.e. to millimeters. After the measures have
been returned, the algorithm is finished.
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4.2.2 Bresenham’s line algorithm
Bresenham presented a complete line algorithm in [26]. Bresenham’s algorithm is an effi-
cient algorithm to draw lines as the algorithm operates without multiplication or division.
The algorithm is also well known as it was first published in 1965. [26]
The algorithm, which is used in the measurement algorithm, is a version of the Bresen-
ham’s line algorithm, which uses only integers to calculate the locations of the pixels in
the line. The algorithm is presented in Appendix 3.
The actual algorithm is quite simple. Main body of the algorithm is found on lines 20-
31. The algorithm is based on the error generated by quantizing the line into pixels.
When this error grows enough to zero or above in the algorithm, a step is taken in y-
direction, meaning that the pixels are one step above or below the last plotted pixel. This,
in essence, is the algorithm which determines the y-coordinate corresponding to a certain
x-coordinate in a discrete grid as the x-coordinate can be found simply by incrementing
it after each plotted pixel. Example of the algorithm is found in Figure 14. Gray squares
depict the plotted pixels in the grid along the true line.
Figure 14: Example of Bresenham’s line algorithm
The first part of the Bresenham’s line algorithm, lines 2-19, is mainly initializations to
force the line drawing problem to the first octant of the x-y-coordinate system, i.e. the
slope of the line is between 1 and 0. The line is forced to the first octant by swapping
the given coordinates, if the line slope is steep or the first x-coordinate is larger than the
second. Also, ystep is properly chosen, so that lines with negative slope can be drawn.
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4.2.3 Canny edge detector
Canny edge detector was first published in 1986 by Canny [27]. The Canny edge detec-
tor gives near optimal results on edge detection. The algorithm for Canny edge detector
involves multiple steps to ensure a good localization of the edges. The algorithm is pre-
sented in Figure 15. [24, pp. 169-172]
1. Smooth the image with a Gaussian filter
2. Compute the gradient magnitude and orientation using finite-difference approxima-
tions for the partial derivatives
3. Apply nonmaxima suppression to the gradient magnitude
4. Use the double thresholding algorithm to detect and link edges
Figure 15: Canny edge detection [24, p. 172]
Canny edge detection algorithm is divided into 4 clearly separated operations. Gaussian
filtering is performed by convolving the filter over the image,
S[i, j] = G[i, j;σ] ∗ I[i, j], (7)
where G is the Gaussian mask and I is the original image. Gaussian mask can be 1 or 2
dimensional, with 1-dimensional array, the Gaussian mask can be convolved horizontally
and vertically over a image as the convolution is separable [24, pp. 129-130].
Values for the 2D Gaussian mask G can be calculated directly from the Gaussian distri-
bution,
G[i, j] = ce−
(i2+j2)
2σ2 , (8)
where c is a normalizing constant. Using equation (8), values can be calculated directly
for each array cell. The array can then be used in the convolution. [24, p. 132]
The second step of calculating image gradient magnitudes and orientations, is used for de-
termining the direction and strengths of the edges in the original image I . The magnitude
and orientations are calculated with the help of partial derivatives, which are obtained by
a finite-difference approximation from S,
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P [i, j] ≈ (S[i, j + 1]− S[i, j] + S[i+ 1, j + 1]− S[i+ 1, j])/2 (9)
Q[i, j] ≈ (S[i, j]− S[i+ 1, j] + S[i, j + 1]− S[i+ 1, j + 1])/2 (10)
where P and Q are approximations of the partial derivatives. Using P and Q, the magni-
tudeM and orientation θ for each pixel is calculated,
M [i, j] =
√
P [i, j]2 +Q[i, j]2 (11)
θ[i, j] = arctan(Q[i, j], P [i, j]), (12)
after the magnitude and orientation have been calculated, nonmaxima suppression is per-
formed. [24, pp. 168-170]
Goal of nonmaxima suppression is to find the edges from the magnitude array by sup-
pressing all other than the local maxima in the array, i.e. zeroing all other values in the
array. End result of nonmaxima suppression is the actual edge information, arrayN . This
is achieved by first quantizing the orientation to four sectors. After quantization, each
magnitude is compared with its neighbours along the sector. If the magnitude is the local
maximum, it is retained, otherwise it is removed. [24, pp. 170-171]
Thresholding is performed on the arrayN . Canny edge detector uses double thresholding
to find true edges. This produces two images, T1 and T2. T2 can contain gaps in the
true edges, while T1 might have noise, i.e. false edges. Idea behind double thresholding
in Canny edge detector is to combine T1 and T2, so that gaps in T2 are filled from T1,
by checking the 8-neighbourhood of edge in T2 from T1 and filling the gap until it is
completely filled. [24, p. 172]
4.2.4 Hough transform
Hough transform is a global image processing method, i.e. Hough transform acts on
the whole image at the same time. Methods like Canny edge detector are local image
processing methods acting only on small image patches. Main use for Hough transform
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is to detect lines from images, although it can be generalized to any shape, like circles or
ellipses. Hough transform was published in 1962 by Hough. Hough transform is used in
the algorithm described in 4.2 as it can detect global lines, e.g. tool boundaries, from the
image, even when there is a large amount of noise in the image. [28, p. 587] [29, p. 362]
1. Quantize the parameter space appropriately.
2. Assume that each cell in the parameter space is an accumulator. Initialize all cells
to zero.
3. For each point (x, y) in the image space, increment by 1 each of the accumulators
that satisfy the equation.
4. Maxima in the accumulator array corresponds to the parameters of model instances
Figure 16: The Hough transform algorithm[24, p. 220]
As can be seen from the Hough transform algorithm in Figure 16, the concept behind
Hough transform is to change the problem of detecting lines in the image to detecting
maxima in parameter space. In practice, a model has to be known, in this case a model
for line. Parameters of this model form the parameter space. In the original publication,
model for the line was the traditional slope-intercept form, shown in equation 3. The
parameter space in this case is (a, b) instead of the image space of (x, y). However, the
slope-intercept form has problems when lines have near vertical angles. This results in
near-infinite a. [28, pp. 587-588]
The problem can be bypassed by using a different model for the line. A suitable model is
the polar representation of the line,
ρ = x cos θ + y sin θ. (13)
This model can represent all lines, but in polar coordinates. The parameter space is (ρ, θ).
[28, p. 588]
Hough transform requires that the parameter space is discretized. This reduces computa-
tion as only finite amount of parameter combinations are possible. Each discrete position
in the parameter space is an accumulator. Because of this structure, Hough transform is
also called a voting method, which reflects the inner working of the Hough transform.
Each pixel votes for each individual cell in the parameter space which satisfies the equa-
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tion 13, with known (x, y). Example images can be seen in Figure 17.
(a) (b)
Figure 17: (a) Image with only one active pixel; (b) Image with multiple lines.
Images in Figure 17 are shown in the parameter space (ρ, θ) in Figure 18. The figure
shows the accumulation of multiple pixels as bright spots i.e. maxima. These bright spots
indicate a line in the image original image with parameters (ρ, θ) of the spots.
(a) (b)
Figure 18: (a) Fig. 17a) after Hough transform; (b) Fig. 17b) after Hough transform.
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4.2.5 Considerations
A few considerations must be acknowledged when working with a visual measurement
system. When the considerations are known, the system can operate more reliably and
accurately directly affecting the measurements.
One consideration that clearly affects the measuring relates to the object. If the object to
be imaged is not parallel to the imaging plane, the projection does not correspond fully to
the actual measures of the object. The problem is visualized in Figure 19.
Figure 19: Image plane and object.
However if the angle, α between the object and parallel plane is known, the difference d
between the perceived object length and actual object length in projected image can be
calculated. The calculation can be done if the object dimensions are also known. One
way of determining d,
d = l2 − l2 sin(α− pi
2
), (14)
l2 Length of the tool
gives the difference of metric length from the perspective of the imaging plane between
fully parallel and skewed objects. With this information it possible to calculate the pixel-
per-mm ratio using the object’s actual length in the image instead of the known measure
of the object’s length.
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5 MODEL BASED PREDICTION OF TOOLWEAR
This section describes the background for the modeling of tool flank wear and goals for
its prediction. Three methods are introduced, which can model the flank wear progres-
sion. The methods are linear regression, artificial neural networks and support vector
regression. These methods are also tested in Section 7.2.
5.1 Modeling Flank Wear
There are multiple ways to close-in on the problem of modeling the tool wear. Previously
explored methods are discussed in Section 2.3. The most commonly used approach, e.g.
[15], [12], is to model the wear in relation to cutting time or cutting length, cutting con-
ditions (V , f , b) and possibly other measurements, such as cutting force. This results in
a model that can predict the wear at given cutting time t or cutting length d. With these
models, it is not possible to model the wear under changing cutting conditions.
The only way to solve the problem of changing cutting conditions is to use a differential
approach to model the tool wear progression. With a differential model, the tool wear is
not modelled as such, but in its speed. To calculate the speed, the critical information is
the current tool wear in addition to the cutting conditions and other possible sensory data.
Reason for this can be seen in Figure 2. The speed of the wear, i.e. the wear differential,
is dependent on the amount of wear. So, to be able to model the wear differential, current
tool wear information is needed.
Only a few models using the differential approach have been developed [16], [19] com-
pared to the models which do not use differential modeling. In [6], Park et al. verify that
the differential model they use is able to handle changing cutting conditions, in this case
cutting feed. In this light, using a differential model in prediction of the flank wear is
at least one of the methods that can handle cutting condition changes. Even though the
model in [6] is a physical model, the idea of using a differential model can be applied
to methods represented in sections 5.3-5.5, which are based solely on the data about the
turning process and wear.
The problem that arises from using, for instance, ANNs, is that no data can be collected
of the wear differential, i.e. wear speed. However, wear differential can be estimated
from known data, cutting time and flank wear level at those cutting times. The most
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simple method is to fit a line to the time-wear coordinates for each data point. This can
be achieved, for example, with linear regression. An example of a wear curve and its
corresponding wear speed, is shown in Figure 20.
(a) (b)
Figure 20: (a) Wear curve; (b) Wear speed.
Instead of using the wear width data directly as a variable, wear speed is used in the
model. This accomplishes the goal of modeling the wear differential asmm/s.
5.2 Flank Wear Prediction With A Differential Model
With the selection of the differential model, a few complications rise. Selecting to model
the wear speed instead of the wear, flank wear cannot be directly determined from the
model anymore. To predict the flank wear at certain cutting time t requires an iterative
approach to be used in conjunction with the wear model. An algorithm to calculate the
wear at given time t, is given in Figure 21. The algorithm is simplified in this case, as no
information of cutting conditions is needed.
1: Algorithm predict_wear(t, off set):
2: total_wear = 0 + off set
3: for i = 1 to t do
4: diff_wear = wear_model(total_wear)
5: total_wear = total_wear + diff_wear
6: end for
Figure 21: Algorithm to determine wear at time t
The algorithm presented in Figure 21, calculates the total wear width, total_wear, by us-
ing wear_model-algorithm in line 4, to determine the wear differential diff_wear from
the current wear width. The wear_model-algorithm can be any algorithm that can re-
turn the wear speed from the current wear width or other information, such as cutting
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conditions or other data. This includes physical models or models which are based, for
instance, on ANNs. The time t, given in the first line of the algorithm as an argument, is
presumed to be integer seconds.
With the algorithm in Figure 21, it is now possible to transfer the information about the
wear speed to concrete wear width information at any time t. Next, a few methods that
can form the core of the predict_wear, i.e. the wear model, are presented. Experiments
and results obtained from the experiments using the presented methods are discussed in
Section 7.2.
5.3 Linear Regression
Regression is a statistical method for analyzing data. The data consists of dependent and
independent variables. The dependent variable depends on the independent variables.
For example, in the context of this thesis, the independent variable is the wear width
and the dependent variable is wear speed. Linear regression takes the data and models the
relationship of the variables with a linear equation. With the knowledge of the parameters,
it is possible to predict the dependent variable using previously unknown independent
variable values. [30, pp. 211-212]
Simple linear regression, linear regression with only one independent and dependent vari-
able, is described by
Yi = β0 + β1xi + �i, (15)
Yi, dependent variable,
xi, independent variable.
β0 and β1 are unknown constants that have to be estimated using available data. �i are
random variables, which describe error in data as N(0, σ). Generalized linear regression
with any number of independent variables, can be achieved by adding a constant term for
each variable into the equation. [30, pp. 211-213]
The method used commonly to estimate the constants β0 and β1 is called least squares
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estimates. This methods works by minimizing the residuals, ei, which are estimates of
the errors, �i. Substituting β0, β1 and Yi with b0, b1 and yi, residuals can be solved and
minimized,
ei = yi − (b0 + b1xi), (16)
min
n∑
i=1
e2i . (17)
From equation 17 it is possible to solve the parameters b0 and b1 which minimize ei, i.e.
provide the best possible fit to the data,
b0 = y¯ − b1x¯, (18)
b1 =
∑
(xi − x¯)(yi − y¯∑
(xi − x¯)2 . (19)
After the parameters b0 and b1 are solved, it is possible to solve estimation of yi, yˆi. [30,
p. 215]
5.4 Artificial Neural Networks
Artificial neural networks are loosely based on the idea of human brain. The network
consist of units, neurons or perceptrons, that are connected to each other with weighted
inputs and outputs. An example of a multilayer neural network is shown in Figure 22.
The number of hidden layers and neurons in the hidden layers can be decided freely,
however, the numbers of input and output layer neurons are tied to the number inputs and
outputs required from the network. Other types of neural networks exist, but this section
concentrates on multilayer perceptrons. [31, pp. 284-285]
Each input neuron is connected to the input data. Each input neuron then feeds the inputs
to the hidden layer. Hidden layer neurons then feed other hidden layers or outputs. This
operation is called feedforward operation. Each hidden and output layer neuron weights
its own inputs and sums the inputs. This forms a net activation value. This net activation
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Figure 22: Example of multilayer networks.
value is then fed through a non-linear function, which forms the final output of the neuron.
[31, p. 285]
From the previous description of the neural networks operation, it can be seen that the
whole network is based on the individual weights of the neurons. These weights are
learned through supervised learning. Supervised learning requires that corresponding
outputs are known for each input which is given to the network. The weights are then
tuned iteratively so that the error between known output and network output decreases.
These iterations are called epochs. The training method is known as backpropagation.
Gradient descent is the basic method used to decrease the error through backpropagation
learning, which adjust the weights of the perceptrons from the output layer back to the
input layer. [31, pp. 288-290]
Neural networks have many uses, although modeling and classification are the main ones.
Neural networks can be adapted to large number of problems, but ANNs require training
data. Negative aspects of neural networks are their inability to extrapolate, i.e. they cannot
predict phenomena that are outside of their training data. Also there is no clear method
of choosing the parameters of the network, e.g. number of layers or neurons. Neural
networks are considered to be black boxes, i.e. the relation between input and output
cannot be easily analyzed.
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5.5 Support Vector Regression
Support vector regression is based on the support vector machines (SVM). The support
vector machine was introduced by Cortes and Vapnik [32] in 1995. SVM is a maximum
margin classifier, i.e. SVM finds the hyperplane that has maximum margin to different
classes. To find the hyperplane, SVM uses a kernel that transforms the problem of clas-
sifying to a higher dimension. The kernel on SVMs can be changed, which gives the
possibility of building a nonlinear classifier. The name "support vector machine" comes
from the use of vectors, i.e. data points, that describe the maximum margin. [32]
Support vector regression (SVR) takes the ideas behind SVM, but implements them on
a regression framework. SVR is an extension to the SVM. So instead of finding the
hyperplane that divides the data into discrete classes, the SVR uses regression to find the
best fit of independent variables to dependent variables, much like in linear regression.
The support vectors now describe the margin as well but from a regression viewpoint.
The margin is also called the �-tube. [33]
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6 VISUALMEASUREMENT SYSTEM IMPLEMENTA-
TION
This section describes the implementation of the machine vision measurement system
as well as the implementation of the tool wear modelling. As the measurement system
requires both hardware and software components, both aspects are explored here.
6.1 Hardware components
Hardware components are the key factor in the implementation of the measurement sys-
tem. This section discusses the implementation of the hardware design issues presented
in Section 3. Overview of the whole system is given in Figure 23 with communication
channels between individual elements in the measurement system.
Figure 23: Communication between hardware components.
Components that are connected to the visual measurement system are described in this
section. Also the communication details on a hardware level are given.
6.1.1 Turning center
The turning center that the measuring systemwas built around was Daewoo Puma 2500Y [23].
Main elements that concerned the imaging system were the work-space, i.e. where the
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work-piece is turned and the inputs and outputs that the turning center could provide to
automate the imaging process. The work-space places constraints on the physical location
of the camera and lens system. Inputs and outputs of the turning center determined if the
imaging system could be automated in a fashion that allowed the system to operate only
when the tool is moved to a location where it can be imaged.
During the development of the imaging system, the work-space of the turning center
proved to be problematic. The work-space of the Puma 2500Y can be seen in Figure 24.
Main components of the work-space are the spindle, which turns the work-piece and the
carousel which has twelve tools. The carousel can translate inside the work-space, up to
the spindle, and it can also rotate to change the current tool used on the work piece.
Figure 24: Puma 2500Y work-space
As the carousel can move and rotate, it places constraints on the location of the camera. In
this case it was mandatory to place the camera behind the spindle so that the camera could
not come in contact with the carousel or its tools at any point. Initially the camera was
placed closer to the spindle, so that the taken images contained both the face and major
flank of the tool. Image of the tool from this camera position is visible in Figure 25a.
However, after the final system components were fitted inside the turning center, it was
decided that the camera is too close to the actual cutting process and the camera could be
entangled in the continuous metal chips that are generated. The requirement to measure
the crater wear was dropped at this point.
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The new position was selected so that the major flank would be visible in the camera and
the camera would be as far away from the cutting process as possible. Figure 25b show
the image captured from final position of the camera. In essence the tool is rotated to the
top position of the carousel so that it is in 90 degree angle and the flank face of the tool is
parallel to the imaging plane.
(a) (b)
Figure 25: (a) Image from initial position of the camera; (b) Image from the final position
of the camera.
Communication with the turning center with the available digital inputs and outputs proved
to be difficult. It is possible to read a signal from the outputs when the tool is in the right
position for imaging. This is achieved by placing a special code in to the program which
controls the turning center. However, it is not possible to signal back through the inputs
when the imaging is complete. Instead, a timer based mechanism is available, so that
the tool remains in place for a predetermined amount of time. However, timer does not
guarantee that the imaging is successful in the alloted time.
6.1.2 Imaging System
The imaging system comprises of following hardware components: a camera, a lens,
lighting and a computer for image processing. Specifications for camera, lens and lighting
can be found in Appendix 2. The computer is equipped with 2.2 GHz Intel Core 2 Duo
processor and 1 GB of RAM (Random Access Memory) with a Linux operating system.
The system specification affected the choosing of the components. Important criteria for
selecting the camera was the use of Firewire bus, to minimize wires in the work-space,
and that the physical size of the camera should be small. Most important criterion for
the camera was the size of pixel array, so that it would fulfill the specified image size
and resolution when used with the lens. For the lens, important criteria were working
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distance, i.e. the distance where the lens is in focus, and the zoom factor of the lens, so
that the magnification would be in accordance with the specification.
Specification was not as strict on the lighting. Most important element of lighting was
the light which would create the specular reflection, i.e. spotlight. For this application, a
LED (Light Emitting Diode) was most suitable for its small size and power consumption.
Because they do not draw much power, it was also easy to design a controller to drive
the LEDs. However, a normal LED would not provide enough illumination at required
distance from the tool. This was tested on worn tools before the components were chosen.
High-current LEDs (> 350 mA) were chosen instead for the task. The lighting setup is
shown in Figure 26.
Figure 26: Lighting in place
As explained in Section 6.1.1, the initial position of the camera and the final position of
the camera are different. In the initially tested position, the halogen light of the turning
center provided enough illumination for the whole tool, except the specular reflection, so
that the tool would be easily detected from the image. However, the final position required
additional light. It was decided to add three high-current LEDs to illuminate the tool.
The whole imaging system can be seen in Figure 27 inside the turning center. The camera
and lens with the lighting were placed on a 3-joint arm, so that the camera could be easily
removed from the work-space when needed, for example, when fluids are used during
turning. The arm also provided flexibility in moving the camera to an ideal position for
imaging the tool. However, the arm is only an intermediate solution in place of a fixed
solution. Issues relating to the imaging of the tool will be discussed in Section 6.1.4.
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Figure 27: Imaging system in place.
The camera system is protected with a plastic tube. The end of the tube is closed with
plexiglass, so that images can be taken, but nothing can enter the tube. This has proved to
be an effective solution against the metal chips that are launched from the cutting process
to the work-space of the turning center. As the imaging system is placed behind the
spindle, possible continuous chips formed during cutting do not affect the camera.
6.1.3 Communication
Specification (Appendix 1) required communication with a remote computer, specifically
the measurement and control computer, which handles the cutting process on a higher
level than the tool wear measurement system. For this task Ethernet [34] was chosen. It is
the most used technique in local area networks as the physical interface between network
hosts. It is also possible to form point-to-point connections with Ethernet. This reduces
need of hardware as there is no need for additional layers such as routers or switches inside
the network between the vision computer and the measurement and control computer. It
was also chosen, because most commonly used protocol, with the Ethernet as the physical
interface, is TCP/IP (Transmission Control Protocol over Internet Protocol), which was
chosen in the specification as the software communication protocol.
Another issue of communication is the switching of the lights on and off during the imag-
ing. As described in Section 6.1.1 the turning center dictates the time when the tool is in
proper location for the imaging by signalling. The same signal is used to enable the lights
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for the duration of the signal. This means that the lights are turned on only when needed,
which will prolong the lifetime of the lights and the lights will not distract the operator of
the turning center during the actual turning.
6.1.4 Considerations
A number of issues are related to the hardware and physical systems that have to be noted.
These affect the hardware functionality as well as the software components.
The first, and the most troublesome, issue is the electrical connection between the imaging
system and the turning center. This issue can be fixed quite easily, but the connection
between the vision computer and the turning center caused three complete camera failures
before the electrical connection was removed by isolating the imaging system from the
turning center. The failures occurred, because the Firewire bus of the camera connected
the vision computer and the turning center. This formed a large electrical loop that could
and did induce current and short-circuited the camera electronics.
Second issue, which is independent of the measurement system, is the formation of metal
chips on the tool during turning, which in turn affects the wear measurements. However,
this is a random occurrence and affects roughly half of the images taken with the system.
This effect can be seen in Figure 28. To minimize the effect on the turning process, an
automated system to remove the chip from the tool before imaging is required.
(a) (b)
Figure 28: (a) Clear tool wear zone; (b) Tool wear zone affected by chip formation.
Issues that are related to the system are described next. As the current system is only
a prototype, by acknowledging the issues, the system can be improved to give better
measurement results.
The current system exhibits a few difficulties when setting the system up for imaging.
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Firstly, the arm of the camera has to be maneuvered to a correct place for experiments
as no fixed solution was implemented for this prototype. Secondly, the camera is quite
sensitive to vibration due to the arm. This means that the camera must stabilize for a
few seconds after the turning center has stopped cutting. Otherwise the image is blurred,
which affect the measurements. However, this vibration does not affect the position of the
camera, which is illustrated in in Figure 29. The figure shows that the tool has stayed in
the image through 118 cuts and multiple hours of operation.
(a) (b)
Figure 29: (a) Image after first cut; (b) Image after 118th cut.
A few issues are also related to the lighting, especially to the spotlight. One problem of
the lighting system of the prototype is the need to adjust the spotlight to correct angle in
relation of the tool each time experiments are conducted, so that the wear zone would pro-
duce specular highlights. This is a key issue, because the software relies on the highlight
to measure the wear. However, this is mainly software issue and how the system copes
with the variation of the highlight is discussed in Section 6.2 as well as in the Section 4.2
describing the algorithm. Also, as the spotlight is moved between experiments, the quality
of the specular highlight changes as well. This is shown in Figure 30. It is recommended
that the specular reflection should look like in Figure 30a to get as good results as pos-
sible. Again, this issue is related to the measurement algorithm and is discussed in the
Section describing the algorithm.
(a)
(b)
Figure 30: (a) Good quality specular reflection; (b) Spotty reflection.
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6.2 Software components
This section contains detailed descriptions of the software structure and functionality as
well as instructions on operating the software. Communication, which is one of the main
requirement of the system, is also given a thorough examination. The background for
developing the final system through prototyping is given as well.
6.2.1 Software prototype and libraries
To examine the feasibility of the algorithm described in 4.2, a prototype was constructed
with Matlab-software, which is a piece of software designed for scientific computing.
The prototype was also used as a platform for developing the algorithm. For this purpose,
Matlab offers an extensive scripting language with many image processing operations
already built in. This sped up the development of the algorithm considerably.
The prototype was developed around the initial test image, shown in Figure 25a. After it
was clear that the prototype could detect the wear area in the image as described in the
algorithm in Section 4.2, the actual implementation of the final software was started. No
other system components, other than the measurement algorithm, were developed in the
prototype.
To focus on the problem, i.e. the measurement algorithm, a number of software libraries
were used during the development of the final software system. The libraries provided es-
sential image manipulation algorithms and image capture from camera, allowing progress
to be made on the measuring algorithm.
The most important software library was OpenCV [35], which provided ready-made im-
age manipulation algorithms and its own internal format for images. Image filtering and
edge detection are examples of functions that were used from the OpenCV library. A sec-
ond library, which provided access to Firewire cameras, was internal library developed
in the Information Processing laboratory called "itlabcpp". The library provided also an
internal image format, which was also used. Common for both of these libraries is that
they support C++-language directly (C++ was the chosen implementation language) and
they provided functions that would have otherwise taken too much time to implement. So
the use of software libraries was well justified.
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6.2.2 Overview of the software system
The hardware system was designed after the requirements given in Section 3. The same
applies to the software system, as the software is the actual implementation of the re-
quirements, while hardware components act as enablers. The specifications, in Appendix
1, also define some of the requirements for the software design in addition to the hardware
requirements.
One of the most important choices in the specification, was the selection of the target
operating system. The choice for the implemented system was the Linux operating system
with Debian 4.0r1 distribution. With Linux, a number of software libraries were available
that would speed up the development.
Another important choice, not defined in the specification, was the programming lan-
guage. C++-language was chosen for this task, because of its familiarity and the possi-
bility to use C-language software libraries as well as C++-libraries. This is an advantage,
especially with Linux, as Linux is heavily based on C-language and the libraries have usu-
ally an interface to C-language. C++-language is also an object-oriented language with
all the benefits of object-oriented programming.
From the software point of view, problems to be solved were imaging, i.e. how to get the
image from the camera to software and how to measure the image, and communication
with remote computers, so that the imaging can be triggered and measurement results can
be sent back to the remote computer. These issues are explored in depth in sections 6.2.3
and 6.2.4.
6.2.3 Software structure
Design of the software system was naturally motivated by the requirements and specifica-
tion of the whole system. Design was also motivated by the fact that the finished system
is still a prototype and as such, should be easily modified to account for changes in re-
quirements during the development. As C++-language was used, the design of the system
is also object-oriented.
The high-level design of the system can be seen in Figure 31. This design separates the
classes that implement certain functions, such as capturing images or measuring the tool
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wear, from each other. This done with the mediator class, Hub, which relays messages
between the classes. With the use of interfaces for the functional classes, it is possible to
change the classes connecting to the Hub-class without interfering with the whole func-
tionality of the software. This property is used, for example, in testing, where the camera
image is taken from a file instead of a real camera.
Figure 31: Selected software design.
Another possible design would have been a serial design, shown in Figure 32. In this
design, the messages would run from class to class, starting from the trigger coming from
the "TCP/IP Server"-class and ending with the transmitted measures through the same
class. Compared to the selected design, less classes are needed. However, the problem
without the "Hub"-class, is that all the classes need to know the functionality of other
classes and the design is more rigid compared to the selected design. Especially problem-
atic would have been the user interface, which would have required interfaces to multiple
classes. These issues prevented the selection of the alternative design as modularity was
one of the key issues in development.
Complete, but simplified, UML (Unified Modeling Language) class diagram of the soft-
ware design is found in Appendix 4. The interface classes have the most important meth-
ods visible in the diagram. These are the methods that need to be implemented in the
implementations of the interfaces.
Most important class in the design is the Hub class. All internal communication between
the classes is routed through Hub class. These communication paths are defined in the
various interface classes. Hub class also acts as a controller, which controls the measuring
process.
CameraInterface class defines the methods for image capturing and settings adjustment.
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Figure 32: Alternative software design.
Two classes were implemented from the CameraInterface: ImageLoader and FWCam-
eraInterface. ImageLoader class is for testing purposes, it loads an image from the hard
drive instead of external source. FWCameraInterface class is used to capture an image
from a Firewire camera. By implementing CameraInterface class, it possible to capture
image from any source.
MeasurementInterface class has only one implementation, MeasureImage2D. Through
the methods in MeasureInterface, it is possible to change the parameters of the measuring
process and relay the image to be measured to the class that implements the Measure-
mentInterface. MeasureImage class implements the algorithm from Section 4.2.
UserInterface-class has methods that allow the software to communicate to the user that is
operating the system. It is possible to query the user with a question or a set of questions.
UserInterface also allows the user to point things from an image. It is also possible to
only show an image to the user. CLIInterface class, which implements these methods, is
a command-line user interface with the possibility of showing images.
TCPIPServer class directly implements a TCP/IP-server. It is used for communicating
with remote hosts, which allows the measuring process to be triggered. More on commu-
nication in Section 6.2.5. NetMsg-class is used as a container for messages communicated
between The TCPIPServer and Hub classes.
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6.2.4 Software functionality
This section describes the functionality of the software, i.e. how the software operates and
communicates internally. A flow-chart representing the normal operation is presented in
Figure 33. First, the software initializes itself. After initialization, camera alignment is
started, if it is required. Camera alignment shows images real-time from the camera as
long as user will not give any input. After camera alignment, as well as after intialization,
if no alignment was needed, the main process loop starts. The loop waits for commands
from the TCP/IP communication channel. If a command is received, the command is first
checked that it is a command to initiate measuring. If the command is accepted, an image
is taken and measured. The result is then sent back to the remote host using TCP/IP.
Figure 33: Flow chart of the software operation.
Camera alignment is a functional add-on to the original design. It was not included in
the software design until it was noticed that in addition to the measurement, a method
for aligning the camera was needed to position the camera to a proper location for the
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imaging.
Commands can also be given from the user interface. In this case the user interface
replaces the TCP/IP as a communication channel to the imaging and measuring system.
6.2.5 Communication
There are two major communication channels inside the system: Firewire and TCP/IP.
Firewire handles the communication from and to the camera which captures the images of
tools and TCP/IP is used to communicate with remote hosts, that can request measurement
at any time. Of these, Firewire is handled through a specialized software library and
TCP/IP communication is handled through normal system libraries.
Whilst communication with cameras (especially industrial cameras) that support Firewire
is standardized in IIDC standard [36], communication between software components with
TCP/IP can be designed freely. So, a protocol that can both transmit commands to the
vision computer and transmit the measurement results back to the remote host had to
be designed. The actual implementation of the TCP/IP communication only allows one
connection at a time.
The communication protocol is shown in Figure 8 as MSC (Message Sequence Chart).
The protocol is based on one command or query that can return multiple answers and the
protocol is also transaction based, i.e. the connection is closed after each "query-answer"
pair. By allowing multiple answers, it is possible to send the measurement results in one
message and by ending the results with "END"-message, it is also possible to send less or
more data with the knowledge that "END"-message ends the transaction. Each message
carries the message name, for instance, "IMAGE", and a parameter value, which allows
transfer of new parameter values.
Figure 8 shows two communicating entities, Server and Client. In the software system,
Server is the measurement end and Client is the entity which triggers the measurement.
All messages between Server and Client consists of one byte characters only. Use of
characters ensures that messages are received correctly. Server-Client architecture imple-
ments the system specification, as it is possible to trigger the measurement at any time,
while the Server is on.
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Figure 34: Communication protocol.
6.2.6 Documentation
Documentation of the system, in addition to this thesis, was primarily created with Doxy-
gen [37], which is a source code documentation tool. Doxygen allows the documentation
to be embedded directly into the source code. Embedding the documentation eases de-
velopment and minimizes the time used for documentation. For C++ (implementation
language) Doxygen can create automatically a class diagram representing the class struc-
ture which visualizes the class design with all available information about the classes and
their member variables and methods.
Doxygen requires no other input than the source documentation to create the documenta-
tion as Doxygen can parse the language. After this it can create an extensive documen-
tation about the structure of the source code. Doxygen can output the documentation to
several different formats, such as HTML.
6.2.7 Parameter settings
The measurement system has a number of parameters for both the measurement algorithm
and camera settings. Complete list of the parameters is included in Appendix 5, with
53
default values and value ranges. In this section the most important parameters that affect
the measurement process are examined more closely. Parameter names are typed with
fixed-width font.
Camera parameters affect the camera settings. This is possible via the Firewire bus.
Camera_Gain controls the gain of the camera. Gain increases the image brightness
but also the noise level, so it is best to keep the gain at low levels but so that measure-
ments can be done. Camera_Shutter controls the electronical shutter of the camera.
Lower values mean less time is used for each image, which means less light. For this
reason, the shutter should be at reasonably high levels, but vibrations disturb the image
easier.
Five important parameters are integral to the success of measurement: Tool_Width,
Tool_Length, Tool_Radius, Tool_Depth and Tool_Angle. Tool_Width
and Tool_Length give the vertical and horizontal edge lengths respectively in millime-
ters. Tool_Width and Tool_Length affect the calibration and, thus, are critical for
successful measurement results. Tool_Radius and Tool_Depth do not affect cali-
bration, but they determine the wear zones (C, B). Tool_Radius informs measuring al-
gorithm of the tool nose radius and Tool_Depth the used cutting depth. Tool_Angle
describes the angle in degrees between the imaging plane and tool. The angle, α, is seen
in Figure 19. This angle has an effect on the wear zone placement in the image.
A number of parameters control the preprocessing of the image. Pre_Bright controls
the brightness adjustment and Pre_Contrast adjusts the contrast. If lighting condi-
tions are changed compared to the experimental setup, these parameters might need a
change. Canny_Low and Canny_High set the low and high thresholds for the Canny
edge detector described in Section 4.2.3. Changing these might also be necessary if light-
ing conditions are changed.
Detecting the lines is done through the Hough transform. The only relevant param-
eters are Hough_Vert, Hough_Horiz and Hough_Search. Hough_Vert and
Hough_H-oriz give the angle (in degrees) of the vertical and horizontal edge of the
tool, as described in this thesis earlier. Angles do not have to be horizontal or vertical.
Hough_Sea-rch describes the search space (in degrees) for the edges in Hough space.
The given number is the total search area, i.e. Hough_Search value is divided into
searching lower and higher than given angles. If the tool is kept at approximately same
angle as in the example images, there is no need for change.
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Actual measurement is based on a number of parameters. Max_Wear·0.95 determines
the maximum measured wear in millimeters. The last 5 % is used for detecting out-
liers, i.e. samples that are measured wrong. As the wear measurement is based on
median differences, two important parameters are Median_Size and Median_Diff.
Median_Size determines the size of the vector of pixels that is used to calculate me-
dian for each pixel and Median_Diff is used as a threshold between the median values
to decide whether the pixel is at wear edge. Filter_Size determines the size of the
Gaussian filter used before measuring. This parameter is quite important when the specu-
lar reflection from the tool wear is poor. However increasing the filter size may cause mea-
surement failure, as the wear edge is not as sharp as without filtering. Start_Offset
determines the actual starting point from the tool edge in pixels. This parameter can be
used to disregard the non-reflecting part of the tool wear at the tool nose.
Automatic calibration can be overridden with Calibration_Override. If calibra-
tion is overridden four values must be known, Calibration_Width, Calibration
_Length, Calibration_ToolX and Calibration_ToolY. Calibration_Wi
dth and Calibration_Length correspond to the tool width and length but in pixels
instead of millimeters. Calibration_ToolX and Calibration_ToolY give the
tool nose position as pixels in the image.
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7 EXPERIMENTS AND DISCUSSION
This section describes the experimental setup and the results of the experiments made with
both the visual measurement system as well as the wear modelling, i.e. the prediction of
the wear. The setup for all experiments, including the visual measurement system and
prediction experiments, is shown in table 1.
Table 1: Setup for experiments.
Tool SNMM 120412-PR
Type GC 4015 (ISO P15)
Manufacturer Sandvik Coromant
Kr 75◦
�r (nose radius) 90◦
λs (inclination) −6◦
γ (chipping angle) −6◦
Work-piece 34CrNiMo6
Diameter 140mm
Length 381mm
7.1 Visual measurement system
The developed measurement system and its performance was tested with both synthetic
tests and application tests. Data for synthetic tests was generated with computer and may
not reflect the real results that the algorithm may generate. However, synthetic tests are
a useful measure of specific phenomena that may appear in real images. By generating
the data by computer, the changes in images can be controlled precisely, which is hard
to achieve with data captured from the real environment. On the other hand, data for ap-
plication tests was captured during turning process and as such represent the final system
environment and its phenomena in full.
7.1.1 Synthetic tests
Total of five synthetic tests were developed to measure the effectiveness and performance
of the measuring algorithm. The single image used in every synthetic test is shown in
Figure 35a. The calibration was made by hand for the synthetic tests, so the image in
Figure 35b was used in majority of tests as only the measurement performance was tested,
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not the calibration performance. Each image was normalized, so that each channel of the
RGB image had values in the interval [0, 1]. Measurement results for the unaltered test
image were
V BB = 0.22mm,
V BBmax = 0.36mm,
V BC = 0.40mm.
(a)
(b)
Figure 35: (a) Complete tool image; (b) Wear area of the tool.
Two tests evaluate the algorithms ability to handle common problems caused by camera
and lens, which are camera noise and that the lens of the camera is set slightly out of focus.
Camera noise is present almost always and is dependent on the lighting and the gain of
digital cameras. If the camera lens is out of focus, the lens can be adjusted manually, but
especially in the application of this thesis, the depth of field can be only few millimeters,
which results in inevitable blurring of the tool image at some points. Base image for the
tests is visible in Figure 35b.
Three tests were devised to test how the environment effects the measurement algorithm.
These tests measure effect of global lighting changes, effect of position the tool and effect
of orientation of the tool. Image in in Figure 35b was used in the global lighting test,
while image in Figure 35a was used in tool position and orientation tests to generate more
images of the wear area.
Camera noise was simulated by introducing additive noise in to the test image. The noise
is Gaussian noise with zero mean and variable variance. Noise was added to each of the
three channels of the RGB image. As an example, Figure 36 shows the test image with
three different levels of Gaussian noise. In total 14 levels of noise were used, in interval
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[10−6, 0.001] with one order of magnitude increments and then in interval [0.01, 0.1] with
0.01 increments. 20 test images were generated for each noise level, in total 280 sample
images, with 80 samples in first interval and 200 samples on the second interval.
(a) (b) (c)
Figure 36: Images with added Gaussian noise: (a) Noise variance 10−6; (b) Noise variance
0.01; (c) Noise variance 0.09.
Figure 37 presents the measurements for each test image. Measurements for VBB, VBB
max. and VBC are in separate subfigures. Error bar plot in Figure 38 shows the bias of the
measurements by plotting the average over the 20 test samples in each noise level. Error
bars plot variance over the 20 test samples. Figure 39 plots MSE (Mean Squared Error)
of each measurement over each noise level.
(a) (b)
(c)
Figure 37: Measurements under noise: (a) VBB; (b) VBB max; (c) VBC .
From the measurement results seen in figures 37, 38 and 39, it is clear that the mea-
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(a) (b)
(c)
Figure 38: Noise inflicted bias and variance: (a) VBB; (b) VBB max; (c) VBC .
surement algorithm can handle some noise. The variance of the results starts to grow
considerably when the Gaussian noise variance grows beyond 0.01, seen in Figure 36b.
This means that the reliability of the measurements is poor after this threshold. The noise
at this level starts to affect the tool edges in the image, which results in poor detection of
the tool tip and can lead to arbitrary measurements.
The out of focus effect was simulated by a Gaussian filter with 5 × 5 mask. Example
images are shown in Figure 40. Deviation of the Gaussian filter was in interval [0.01, 1]
with 0.01 increments and in interval [1, 9.9] with 0.1 increments. This resulted in 189 test
images, with 99 test images in the first interval and 90 on the second interval.
Measurement results for the test images filtered with Gaussian filter are shown in Fig-
ure 41. Figure 42 has the bias and variance of the measurements. Bias and the variance
is calculated over sets of 10 samples. This also applies to calculation of MSE, shown in
Figure 43.
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(a) (b)
(c)
Figure 39: Measurement MSE under noise: (a) VBB; (b) VBB max; (c) VBC .
From the measurement results in figures 41, 42 and 43, blurring of the image does not
affect the results nearly as much as the additive noise. This is expected, as the algorithm
itself relies on Gaussian filter to smooth the image so that the wear area is more uniform.
Also the algorithm uses contrast and brightness adjustment to extract hard edges from the
image, so the effect of the Gaussian filter is somewhat cancelled at that point.
Changing global lighting conditions was tested by changing the overall brightness of the
test image in interval [0.5, 1.5] in 0.01 increments, total of 101 test images. All values
were clamped to interval [0, 1]. Example images can be seen in Figure 44.
(a) (b) (c)
Figure 40: Images filtered with Gaussian filter: (a) Deviation 0.01; (b) Deviation 1.0; (c)
Deviation 9.9.
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(a) (b)
(c)
Figure 41: Measurement under blur: (a) VBB; (b) VBB max; (c) VBC .
Measurement error for the test images with image brightness variation is shown in Fig-
ure 45. Figure 46 has the bias and variance of the measurement error. The bias and the
variance are calculated over sets of 10 samples as with the Gaussian filter test. The MSE
is also determined over 10 samples, the result is shown in Figure 46. The large increase
of error in the last samples is naturally caused by the image brightness increasing to a
limit where the algorithm cannot determine the boundary of the wear due to the global
brightness, which is near the brightness of the specular reflection.
Effects of position of the tool on measurements was tested by generating a set of 20
images of the tool nose from the image shown in Figure 35a. Tool position in the test
images was randomized. Error in measurements can be seen in Figure 48. Effect of tool
rotation on the measurements were tested by rotating the image in Figure 35a in interval
[−25, 25] in 5 degree increments. The images were then cropped manually to include only
the tool nose. Figure 48 represents the error in measurements.
Tables 2- 4 present error measures for VBB, VBB max. and VBC . Large maximum
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(a) (b)
(c)
Figure 42: Blur inflicted bias and variance: (a) VBB; (b) VBB max; (c) VBC .
error in rotation can be attributed in part to the fact that rotating the image changes pixel
neighbourhoods slightly, which in turn, causes the algorithm to detect the vertical edge
fo the tool at wrong position. Otherwise, the average error and error variance are small
compared to the real measurement. Position error is small in every category, which can
be seen from the Figure 48. Overall, the error in both position and rotation is caused by
small errors in detecting the position and rotation of the tool as the Hough accumulator
can only represent a discrete number of position and angles of the lines.
Table 2: Error in VBB
Position Rotation
max. abs. error 0.02128 0.0707
mean error 0.0100 −0.0161
error var. 0.1287 · 10−3 0.5050 · 10−3
MSE 0.1223 · 10−3 0.0007
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(a) (b)
(c)
Figure 43: Measurement MSE under blur (a) VBB; (b) VBB max; (c) VBC .
(a) (b) (c)
Figure 44: (a) Brightness 50%; (b) Brightness 100%; (c) Brightness 150%.
7.1.2 Application tests
Application tests measure the performance of the flank measuring algorithm in the actual
working environment. The tests also measure the algorithm against human measurements.
Image data was collected by the measurement system during turning. 32 images were
captured that represent the entire tool life from a new tool to completely worn out tool.
Simultaneously, flank wear was measured manually by two experienced measurers. Mea-
surements were kept separated, so that the measurers would not have effect on each others
results. 24 results were collected out of the 32 captured images.
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(a) (b)
(c)
Figure 45: Measurement error under brightness variation (a) VBB; (b) VBB max; (c)
VBC .
Some images had to be removed from the captured test set because of the chip formation
explained in Section 6.1.4. Also three images had to be removed from the start of the
test set as they did not exhibit enough wear for the system to work reliably. A total of 14
images were left after with measurement results from the manual measurements. All the
results are based on this set 14 images.
Comparison of the measurement system to the manual measurements is shown in Fig-
ure 50. Figure represents the average manual measurements and the measurements of the
Table 3: Error in VBB max
Position Rotation
max. abs. error 0.0375 0.0875
mean error 0.0002 −0.0182
error var. 0.2401 · 10−3 0.8864 · 10−3
MSE 0.3281 · 10−3 0.0011
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(a) (b)
(c)
Figure 46: Measurement error bias and variance under brightness variation: (a) VBB; (b)
VBB max; (c) VBC .
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(a) (b)
(c)
Figure 47: MSE under brightness variation: (a) VBB; (b) VBB max; (c) VBC .
measurement system. Error bars indicate one standard deviation of the manual measure-
ments.
As Figure 50 shows, the measurement algorithm has some difficulties at the start and at
the end of tool life. Peaks formed at the start are a result of measurement failure. Main
reason for these failures is that the flank wear is not yet large enough to strongly reflect
the spotlight. At the end of the tool life the error also grows, but the deviation of the
manual measurements also grows, which means that the measurement results fall within
acceptable range.
Table 4: Error in VBC
Position Rotation
max. abs. error 0.025 0.05
mean error 0.0037 −0.0205
error var. 0.2484 · 10−3 0.3210 · 10−3
MSE 0.2500 · 10−3 0.0007
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(a) (b)
(c)
Figure 48: Measurement error with random tool position: (a) VBB; (b) VBB max; (c)
VBC .
Figure 51 shows the error as histograms, which are divided into 7 bins. The error peaks
visible in Figure 50 can be seen in the histograms as single large errors. Main conclusion
from the histograms is that the error is quite small (< 0.05mm) in most cases.
Figure 52 shows the error of the measurements compared to the average manual mea-
surements. The figure also shows the percentage of the error compared to the manual
measurement. The error peaks are visible, just as in Figure 50. Error measures for the
measurement system are presented in tables 5-7. Error measures have been calculated
with failed measurements as well as without the failures to indicate how well the system
performs without failures. Removing the failures leaves 12 samples to the test set.
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(a) (b)
(c)
Figure 49: Measurement error with rotated tool image: (a) VBB; (b) VBB max; (c) VBC .
7.2 Modelling experiments
The aim for the modeling and prediction experiments was to find out the best method
and best data that could model and predict the wear behaviour. Experiments rely on the
methods described in Section 5. VBB is the only wear measurement used in modeling.
This can be justified by the experiments in Section 7.1, which show that the measurements
for VBB, VBB max. and VBC behave similarly. Another feature used throughout the
modeling is that the modelled variable is the flank wear speed, not the flank wear directly,
which was also discussed in Section 5.
Table 5: Measurement error in VBB
With failed measurements Without failed measurements
max. abs. error 0.1888 0.1888
max. per. error 75.5556% 59.9365%
mean error 0.0177 0.0152
MSE 0.0044 0.0047
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(a) (b)
(c)
Figure 50: Measurement comparison: (a) VBB; (b) VBB max; (c) VBC .
7.2.1 Wear experiments
To be able to use the modeling methods, data had to be collected of the flank wear be-
haviour. A series of 12 wear experiments were conducted. The setup for the experi-
ments is shown in Table 8. However for the purpose of testing the methods introduced
in Section 5, only the first of the wear experiments in Table 8 will be used in modelling
experiments.
The data gathered from the first five experiments is shown in table 9. Time and wear
Table 6: Measurement error in VBB max
With failed measurements Without failed measurements
max. abs. error 0.4610 0.1438
max. per. error 400.8696% 32.3146%
mean error 0.0461 0.0174
MSE 0.0174 0.0025
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(a) (b)
(c)
Figure 51: Measurement error histograms: (a) VBB; (b) VBB max; (c) VBC .
measurements indicate the final machined time and the final wear. After each cut, image
was captured of the tool flank wear. During each cut, data was collected, including accel-
eration and forces affecting the tool and the temperature of the tool holder. Features that
were used in the modeling were the means of each individual data type. So, for each cut,
only one feature vector was extracted.
Of the five tests in table 9, tests 2-5 will be used as training sets and test 1 as a test set.
The first wear experiment was conducted so that the manual measurements of the flank
wear were taken after each cut. This led to a much longer lifetime of the tool. Tests 2-5
Table 7: Measurement error in VBC
With failed measurements Without failed measurements
max. abs. error 0.1772 0.0608
max. per. error 136.3077% 22.4348%
mean error 0.0044 −0.0085
MSE 0.0034 0.0013
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(a) (b)
Figure 52: Measurement error: (a) Measurement error; (b) Measurement error in percent-
age.
Table 8: Wear experiments
V (m/min) f (mm/rev) b (mm) # of experiments
145 0.4 3 5
175 0.7 3 5
175 0.4 3 1
145 0.7 3 1
were however performed similar to each other.
For all the tests, flank wear speed was calculated for each sample over a 5 sample neigh-
bourhood using weighted least squares line fit in wear-time-coordinates. Because the
flank wear was measured partly by the vision system and partly by hand, there were some
noise in the wear measurements, which caused negative flank wear speeds. These samples
were removed from the sets.
From the data gathered during turning, only one type of data were found to correlate
strongly with the wear, which was feed force. This feed force was used as extra measure-
ment in addition to the flank wear in modeling. Feed force is indicated in the modeling as
Table 9: Collected data
# of exp. # of cuts time VBB VBB max VBC
1 32 1731.8 1.01 1.35 1.38
2 24 1282.3 0.34 0.56 0.56
3 27 1430.9 0.41 0.62 0.63
4 24 1268.1 0.41 0.59 0.62
5 23 1220.5 0.62 0.84 0.87
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force only.
7.2.2 Linear regression
Linear regression was tested with three different regressor combinations: only wear, wear
with force and only force. The observation was flank wear speed in the regression. The
results as MSE are shown in table 10. All data was scaled to [0, 1] andMSEwas calculated
on this scale as well.
Table 10: Linear regression MSE
Test set Training set
Wear 0.0048 0.0020
Wear+Force 0.0048 0.0019
Force 0.0556 0.0045
As can be seen in table 10, using wear or wear and force is better than just using force as
a regressor. However, there is not a large difference in using only wear rather than wear
and force with linear regression.
7.2.3 Artificial neural networks
Artificial neural networks were tested the same way as the linear regression with all three
combinations and all data was scaled to [0, 1]. The used artificial neural network, feedfor-
ward neural network, was created and trained in Matlab’s neural network toolbox. ANN
was trained with backpropagation using Levenberg-Marquardt algorithm. Early stopping
was used, so that the ANN would not lose generalization ability. The validation set, used
for early stopping, was set 2 from table 9. Another training technique is Bayesian reg-
ularization which is used to find optimal number of network parameters that are used to
model the relationship between independent and dependent variables.
As the number of neurons in the hidden layers of the network has to be decided, ANN
was tested with combinations of 1 or 2 hidden layers so that the total product of neurons
in the layers would remain between fifth and tenth of the data points used in training. This
ensures that the ANN is not overgeneralizing too much as only limited amount of neurons
are available. All tests were repeated 5 times with different initial network weights.
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Table 11 and 12 presents the results for neural networks. Table shows minimum MSE for
each type of data combination and for training and test sets. The number of neurons for
the two hidden layers to achieve minimum error are shown in parenthesis.
Table 11: Neural network MSE.
Test set Training set
Wear 0.0040 (0,15) 4.5870 ·10−4 (0,19)
Wear+Force 0.0029 (1,11) 2.2373 ·10−4 (1, 20)
Force 0.0517 (0,10) 0.0027 (0,12)
Tables 11 and 12 show that inclusion of force definitely improves modeling results. With
only force measurements, the results are quite poor in comparison to other combinations
of data with only early stopping used. However with Bayesian regularization results are
almost as good as with other combinations. Bayesian regularization also decreases the
error compared to only early stopping.
7.2.4 Support vector regression
Support vector regression was tested similarily to other methods, three combinations of
independent variables and the data was scaled to [0, 1]. Only Gaussian radial basis func-
tion (RBF) as the kernel function was used to test the SVR. Parameters that control the
SVR were σ for the Gaussian RBF, � controlling the size of the �-tube and constant C
which determines the cost of leaving samples outside of the �-tube. Table 13 shows the
best results. The parameters for the results are in parenthesis in order σ, C and �.
The results for SVR in table 13 shows different results than the other two methods. In-
clusion of force does not improve the test set results but using force only, the training set
error is comparable to other combinations of independent variables.
Table 12: Neural network with Bayesian regularization MSE.
Test set Training set
Wear 0.0029 (2,5) 5.721 ·10−4 (0,19)
Wear+Force 0.0011 (19,1) 3.995 ·10−4 (18,0)
Force 0.0030 (11,1) 4.799 ·10−4 (20,1)
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Table 13: Support vector regression MSE
Test set Training set
Wear 0.0038 (0.9, 15, 0.1) 0.0008 (0.1, 0.5, 0.1)
Wear+Force 0.0038 (0.9, 15, 0.1) 5.6032·10−4 (0.15, 0.3, 0.1)
Force 0.0133 (0.15, 9.9, 0.1) 7.6786 ·10−4 (0.05, 0.3, 0.1)
7.2.5 Comparison of modeling methods as predictors of wear
Sections 7.2.2-7.2.4 present results of the modeling capabilities of three methods. From
the MSE tables, it is clear that ANN and SVR are better at modeling the wear speed
than linear regression. However, ANN, especially with Bayesian regularization, seems
to model the wear speed better than SVR. Figure 53 shows the fit between wear and
wear speed created by ANN with Bayesian regularization and SVR with Gaussian RBF.
Parameters for both have been selected based on the test set MSE.
(a) (b)
Figure 53: Model fit: (a) ANN/Bayesian regularization; (b) SVR/Gaussian RBF.
As can be seen from Figure 53, the SVR fit is almost linear, while ANN is more closely
following some of the data points. Result of this is that ANN is better at predicting the
wear.
The prediction results from both SVR and ANN are quite promising. They are able to
model the wear-time-curve quite well as can be seen in Figure 54. Only wear width was
used as an independent variable, so force was excluded. However, to get the results shown
in Figure 54, starting wear width had to be adjusted. For SVR, the wear width was set
to 0.045 mm and for ANN, the wear width was set to 0.041. These values were found
manually.
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(a) (b)
Figure 54: Prediction by wear models: (a) SVR/Gaussian RBF ; (b) ANN/Bayesian reg-
ularization.
Figure 54 shows that the SVR and ANN models of wear speed can translate to a good
approximation of the wear-time-curve. Both models exhibit a slight underestimation at
the beginning. However, the results are promising for further study with multiple cutting
conditions.
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8 CONCLUSIONS
The first objective, implementing a system to measure flank wear, was completed suc-
cessfully. Software that implements the measuring system is easy to extend, or if needed,
system components can be replaced. Parameters can be used to adjust the system to dif-
ferent environments. A number of issues, that arose from the hardware components were
solved or acknowledged, which will enable further development.
The measurement results that the whole measuring system achieves are satisfactory. Mea-
surements are close to manual measurements which are done with a microscope. How-
ever, the measurement system has problems when the flank wear on the tool has not yet
formed properly. At current state, the measurement system, depending on cutting condi-
tions, may require a few cuts, before the system can give reliable results. Compared to
other similar systems implemented previously, the current system can measure all three,
VBB, VBB max and VBC , measurements simultaneously, whereas previous systems only
measure one of the measurements.
Although the measurement system was tested only with one type of tool, the system
should accommodate any tool that can present a rectangular major flank to the system’s
camera. With the use of specular reflection, the system should also be able to measure
wear on differently colored tools. The measurement system is also capable to withstand
the environment of the turning center’s work-space, in comparison to the previous sys-
tems, which require removing the tool from the turning center for the duration of the
measurement.
Modelling experiments showed that ANN and SVR are both viable methods when a differ-
ential model is used. Prediction with a differential model proved to be successful as well,
with ANN having better performance than SVR. Differential model is different from the
majority of previous work on wear modeling, especially work which has been presented
in the last few years.
Further study is needed to verify that the prediction is able to predict with several different
cutting conditions. After such verification, it is possible to concentrate on the prediction
when cutting conditions during turning are changed dynamically, which can be accom-
modated with the developed differential models.
Another interesting research topic is combining the developed automatic flank wear mea-
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surement system with wear prediction and modeling. First of all, the automatic measure-
ment could provide an automatic wear prediction based on the measurement. Secondly,
the automatic measurement system can improve the results of prediction. Improving pre-
diction by means of the measurement system can be incorporated with probabilistic meth-
ods. These methods can track the uncertainty of the prediction and inform when a new
measurement is needed, so that the prediction stays reliable enough.
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Specification – Measuring flank wear of a tool inside a turning center
Figure 1 shows the intended system configuration. Specifications will be built on this 
configuration.
Signal specifications:
Route 1:
This is not in the scope of this project
Route 2:
Measuring&Control computer -> Vision computer:
Sends message to vision computer that the tool is in the correct 
position for imaging 
Vision computer -> Measuring&Control computer:
Acknowledgement when image has been taken.
Sends wear measurements to measuring&control computer.
Route 3:
Camera -> Vision computer:
Sends image data
Vision computer -> Camera:
Sends settings data
Figure 1: System configuration
APPENDIX 1. System specification
Specifications for individual components:
Vision computer:
FireWire(at least IEEE 1394a) and Ethernet(>=100Mb/s) connectivity
Serial port(RS232)
Linux OS
Processor 2.0 GHz and upwards 
Memory 512MB and upwards
Camera and lens:
Firewire connectivity
Color camera
Imaging area: 10mmx7mm
At least 10 um/pixel resolution
Minimum array size(with 10 um pixels, 1.0x): 1000x700 pixels
WD range(from lens): 10-30cm
Fixture to position the camera to correct location and angle relative to the tool
-The camera and lens should remain within 25 cm of the turning center's back 
 wall, to protect the camera
Lighting:
Sufficient lighting to light the tool, boundaries should be clear
Specular reflection from worn area is needed
-At least 2 lights required, 1 for rake and 1 for flank face
Functional specification:
Image processing:
Must discern the flank wear zones and measure the extent of wear on each 
zone(Figure 2)
-Must recognize zones B and C from the image, according to ISO 3685
-Must measure VBC, VBB , VBB max from the image, according to ISO 3685 
Should measure the crater wear(distance from crater edge to tool edge)(Figure 3)
-Should measure KF, according to ISO 3685 
Figure 2: Flank wear measurements
Figure 3: Crater wear measurement on rake 
face
Communication:
Use TCP/IP between computers to transfer messages to standardize 
communication.
Must be able to receive messages to initiate imaging of the tool.
Must be able to send messages containing the measurements of the tool and 
acknowledgment that image has been taken.
Non-functional specification:
Time constraints:
On-line, during production turning:
Image should be processed between the time the tool moves to start a  new chip 
from the time image has been taken. Time estimate 5 seconds.
Off-line, during wear testing:
Image processing should be done before tool is imaged again. Time estimate is 
upwards from 40 seconds.
User interaction:
System should require user interaction only at the initialization of the software.
APPENDIX 2. Specifications for camera, lens and lighting
Specifications for Moritex ML-Z0108 macro zoom objective
Manufacturer Moritex
Model ML-Z0108
Type 0.1 × - 0.8 × zoom lens
Working distance 213 mm
WD adjustment ± 20 mm
Effective F number 8.2 - 9.3
Depth of field 32.8 - 0.6 mm
Resolution 55 - 8 µm
TV distortion -0.02 ± 0.17% (or less)
Largest sensor 1/2"
Mount C-Mount
Specifications for Allied Vision Technologies GUPPY F-146C Camera
Manufacturer Allied Vision Technologies
Model GUPPY F-146C
Type Industrial camera
Sensor size 1/2"
Resolution up to 1392× 1040
Pixel size 4.65 µm× 4.65 µm
Sensor type CCD
Colour RAW
Shutter speed 20 µ s,..., 67 s
Resolution depth 8 bit
Connector Firewire
Lens mount C, CS
Dimensions 48.2mm ×30mm ×30mm
Specifications for Philips Lumileds Luxeon Star LED
Manufacturer Philips Lumileds
Model Luxeon I Star
Type Lambertian
Typical luminous flux 45 lm
Max. DC forward current 350 mA
Operating temperature −40◦ to 105◦
APPENDIX 3. Algorithms
Wear Measurement Algorithm
1: Algorithm measure_wear(img, noseregion, pxmm, pymm):
2: Apply noseregion to img
3: Convert img to grayscale image gimg
4: Adjust gimg brightness and contrast to sharpen edges of the tool
5: Convert gimg to edge image eimg by using Canny edge detector
6: Convert eimg to Hough space image himg using Hough transform
7: Find 2 most prominent lines from himg, from both near horizontal and near vertical
angles
8: Using the 2 lines, calculate their intersection, representing the intersection of major
and minor flank above the worn area
9: Extract color channel or convert from img to grayscale image bimg
10: Apply Gaussian smoothing to bimg, smoothing out local changes in illumination
11: Calculate distance representing the known cutting depth a along the tool edge hori-
zontally from the intersection
12: Solve pixels along the edge,xi, using Bresenham’s line algorithm
13: for each xi do
14: Calculate line from xi to certain distance d using the angle obtained from the ver-
tical line of the tool, resulting in point x′i
15: Solve pixels between xi and x′i, lj , using Bresenham’s line algorithm
16: for each pixel l1 to ln do
17: Calculate median from the pixel values (from bimg) li −ms/2 to li +ms/2,ms
median mask size
18: if median value changes negatively more than predetermined threshold from the
previous round then
19: End loop, set edge pixel ei to li
20: end if
21: end for
22: if edge pixel ei has not been set then
23: set edge pixel ei to ln
24: end if
25: end for
26: Calculate distances from all xi to their corresponding ei
27: Divide the distance along the horizontal edge to regions C and B according to the
standard ISO 3685:1993
28: Use the region and edge distance data to calculate V BC , V BB and V BBmax accord-
ing to the standard ISO 3685:1993
29: return V BC , V BB, V BBmax
Bresenham’s Line Algorithm
1: Algorithm line_(x1, y1, x2, y2):
2: steep := abs(y2-y1) > abs(x2-x1)
3: if steep then
4: swap(x1,y1)
5: swap(x2,y2)
6: end if
7: if x1 > x2 then
8: swap(x1,x2)
9: swap(y1,y2)
10: end if
11: deltax := x2 - x1
12: deltay := abs(y2 - y1)
13: error := -deltax / 2
14: y := y1
15: if y1 < y2 then
16: ystep := 1
17: else
18: ystep := -1
19: end if
20: for x := x1 to x2 do
21: if steep then
22: plot(y,x)
23: else
24: plot(x,y)
25: end if
26: error := error + deltay
27: if error ≥ 0 then
28: y := y + ystep
29: error := error - deltax
30: end if
31: end for
APPENDIX 4. Software class diagram
APPENDIX 5. Parameter list
Parameter list with default values
Value Name
300 Camera_Gain
750 Camera_WB1
600 Camera_WB2
3000 Camera_Shutter
4.8 Tool_Width
12.68 Tool_Length
3 Tool_Depth
15 Tool_Angle
1.2 Tool_Radius
96 Pre_Bright
127 Pre_Contrast
300 Canny_Low
300 Canny_High
1 Hough_Vert
89 Hough_Horiz
50 Hough_Search
1 Max_Wear
5 Median_Size
7 Median_Diff
7 Filter_Size
15 Start_Offset
0 Measurement_Show
Parameter list with default values, continues
Value Name
0 Calibration_Override
300 Calibration_Width
900 Calibration_Length
500 Calibration_ToolX
400 Calibration_ToolY
90 Calibration_Pre_Bright
127 Calibration_Pre_Contrast
300 Calibration_Canny_Low
400 Calibration_Canny_High
11 Calibration_Filter_Size
0 ROI_X
0 ROI_Y
0 Calibration_Show
Parameter descriptions and value ranges
Name Description Value range
Camera_Gain Adjusts camera gain 0-680
Camera_WB1 Adjusts camera white balance 0-1022
Camera_WB2 Adjusts camera white balance 0-1022
Camera_Shutter Adjusts camera shutter time 1-3000
Tool_Width Thickness of the tool in mm -
Tool_Length Length fo the tool in mm -
Tool_Depth Used cutting depth in mm -
Tool_Angle Cutting edge angle, Kr, relative to 90◦ -
Tool_Radius Tool nose radius in mm -
Pre_Bright Brightness value used in image sharpening 1-127
Pre_Contrast Contrast value used in image sharpening 1-127
Canny_Low Low threshold for Canny filter 1-
Canny_High High threshold for Canny filter
Hough_Vert Vertical angle of the tool 0-179
Hough_Horiz Horizontal angle of the tool 0-179
Hough_Search Search space for searching tool angles 6 - 60
Max_Wear Maximum measured wear in mm 0.01 - 2
Median_Size Size of the 1D median mask 3-15
Median_Diff Threshold for detecting wear edge 1-30
Filter_Size 2D Gaussian filter size 3-15
Start_Offset Used for ignoring the unlit wear, in pixels 1-50
Measurement_Show Shows measurement results in window 0,1
Calibration_Override Overrides automatic calibration
Calibration_Width Thickness of the tool in pixels -
Calibration_Length Length of the tool in pixels -
Calibration_ToolX Tool nose X position in pixels -
Calibration_ToolY Tool nose Y position in pixels -
Calibration_Pre_Bright Same as above, but for calibration -
Calibration_Pre_Contrast Same as above, but for calibration -
Calibration_Canny_Low Same as above, but for calibration -
Calibration_Canny_High Same as above, but for calibration -
Calibration_Filter_Size Same as above, but for calibration -
ROI_X Increases size of the nose region in pixels 1-
ROI_Y Increases size of the nose region in pixels 1-
Calibration_Show Shows the calibration result in a window 0,1

