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In this study we used market settlement prices of European call options on 

stock index futures to extract implied probability distribution function (PDF). 

The method used produces a PDF of returns of an underlying asset at 

expiration date from implied volatility smile. With this method, the assumption 

of lognormal distribution (Black-Scholes model) is tested. The market view of 

the asset price dynamics can then be used for various purposes (hedging, 

speculation). 

 

We used the so called smoothing approach for implied PDF extraction 

presented by Shimko (1993). In our analysis we obtained implied volatility 

smiles from index futures markets (S&P 500 and DAX indices) and 

standardized them. The method introduced by Breeden and Litzenberger 

(1978) was then used on PDF extraction. The results show significant 

deviations from the assumption of lognormal returns for S&P500 options 

while DAX options mostly fit the lognormal distribution. A deviant subjective 

view of PDF can be used to form a strategy as discussed in the last section. 

 

Key words: Derivatives, option, implied volatility smile, implied probability 

distribution function. 
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Tässä työssä käytettiin markkinapohjaisia Eurooppalaisten indeksifutuuri 

osto-optioiden hintoja implisiittisten todennäköisyyysjakaumien johtamiseen. 

Käyetty metodi johtaa TN-jakauman kohde-etuuden tuotoille 

erääntymispäivänä implisiittisestä volatiliteettihymystä. Tällä metodilla 

testataan Black-Scholes mallin olettamaa lognormaalista tuottojakaumaa. 

Markkinanäkemystä kohde-etuuden hinnan muodostuksesta voidaan moniin 

eri tarkoituksiin (Suojaus, spekulaatio jne). 

 

Implisiittinen TN-jakauma johdettiin Shimkon (1993) esittelemällä ns. 

“smoothing” -metodilla. Analyysissä implisiittiset volatiliteettihymyt saatiin 

indeksifutuurimarkkinoilta (S&P 500 ja DAX indeksit) jotka standardoitiin. TN-

jakaumat laskettiin volatiliteettihymyistä Breedenin ja Litzenbergerin (1978) 

esittelemällä metodilla. Tuloksien mukaan S&P 500 optioista saadut jakaumat 

poikkeavat selvästi lognormaalista oletuksesta kun taas DAX optioista 

johdetut tuottojakaumat olivat yhteneväisemmät. Viimeisessä kappaleessa 

Implisiittisestä TN-jakaumasta poikkeavaa subjektiivista jakaumaa käytetään 

eri strategioiden pohjana. 

 

Avainsanat: Johdannaiset, optio, implisiittinen volatiliteettihymy, implisiittinen 

todennäköisyysjakauma.
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1. Introduction 

 

An option contract is a financial derivative which price is, as the name implies, 

derived from the value of another asset or instrument. Therefore an option 

contract does not have a price of its own as it solely depends on the price of 

the underlying asset. The contract specifies the maturity (time to expiration) of 

an arrangement as also the strike price (exercise price at the maturity). The 

profit for an option depends on the price of an underlying asset at the 

expiration date and has no value if the exercise price is higher than the 

underlying price (call option, an option to buy) or when the strike price is 

lower than the underlying price (put option, an option to sell). The option price 

depends also on the volatility of an underlying asset and on the maturity. The 

more volatile the underlying price and longer the maturity until expiration, the 

more probability there is for a specified option contract to expire in-the-money 

(ITM).   

 

The term volatility smile refers to a shape of a curve of implied volatilities 

presented as function of varying strike prices. While the Black-Scholes option 

pricing model assumes the volatility to be constant at all strike prices, a 

differing pattern has been observed from the markets. Notable is that smile 

patterns tend to vary over time. The smile pattern was not clearly the default 

volatility curve prior to 1987 market crash, but afterwards literally all markets 

all around the world started showing smile, skew or smirk patterns (Weinberg 

2001). The curves prior to 1987 were usually closer to a constant level as the 

BS model expects. Many researches have introduced their ideas for this 

phenomenon and the main argument is that the market quotations of options 

include some “knowledge” or information content of the future volatility of an 

underlying asset what Black-Scholes model does not take in to account due 

to its simplifications. In other words, the evolutionary process of volatility is 

much more complex to model than the simplification assumes. It is a fact that 
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volatility of an asset does vary over time dynamically and the difficult part is to 

trying to define volatility accurately with mathematical models. Therefore 

many researchers have turned into studying market implied volatilities and 

surfaces in order to obtain more accurate means of predicting future asset 

price changes (Taylor 2005). Smoothed smiles and surfaces are nowadays 

used as pricing tools for other illiquid option series with the same underlying 

asset and maturity than the observed ones. This approach can be thought as 

an inverse method when compared to traditional time series based models as 

ARCH and its variations which use historical price data on predicting future 

returns and volatility. 

 

Lately, in last 15 years, there has been a wide range of interest in researching 

probability density functions (PDF) extracted from the market premiums. 

Often the analysis consists of building of a market implied volatility smile and 

then using it to derive a customized PDF which can be used on pricing option 

contracts more accurately since the market estimation of volatility during the 

maturity is the “correct” basis for a pricing model. Implied PDF’s tend to have 

fatter tails on extreme values of strikes and this naturally affects on hedging 

decisions and speculative strategies. The assumption of lognormal 

distribution obviously does not take this phenomenon into consideration and 

therefore the implied distribution function is often seen as a meaningful tool 

for estimating future returns on an underlying asset (Jackwerth & Rubinstein 

1996). Probability distribution functions are discussed more in Section 2. 

  

1.1. History of Derivatives 

 

Although the pricing models for options are relatively new discoveries in the 

financial world, the idea of being able to do some transaction in future, is very 

old. The first practical example of an “option contract” is mentioned in the 

Holy Bible (Genesis 29). In the story Jacob agrees to work for 7 years for an 

“option” to marry Laban’s youngest daughter Rachel. After finishing his 
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obligation, he had to marry Leah instead; the oldest daughter of Laban but 

Jacob was very fond of Rachel so he agreed on another option of 7 years of 

maturity for the younger daughter Rachel. So, Jacob did not only introduce 

the very first option contract but did it actually twice.   

 

A modern example of derivatives usage is often referred as hedging from 

fluctuations of market prices of commodities in the 1800’s. A farmer would 

buy a forward contract which obligated him to sell his crops at the time of the 

harvest with a certain predefined price. This enabled him to know for certain 

how much income he would obtain in time of the harvest. The main fact that 

differ forward contracts (and futures contracts) from option contracts is the 

obligation to honor the agreement. The first modern derivatives exchange 

was formed in Chicago as early as 1848 when the Chicago Board of Trade 

(CBOT) started trading with forward contracts. Later, in the year 1865, CBOT 

introduced standardized forward contracts known as futures. The need for 

such instruments was high since the area of Great lakes was an important 

market place for farming goods. Nowadays CBOT is the largest derivatives 

exchange in the world. 

 

During the 1970’s, mostly due to the introduction of efficient pricing models, 

the financial derivatives started to gain popularity among traders, speculators 

and hedgers. In the last 20 years more complex derivatives instruments have 

been introduced to meet the demand for customized hedging tools for various 

risks. These instruments include options on futures, Asian options, barrier 

options, binary or digital options, lookback options and rainbow options, to 

name a few. One common tendency that all exotic options share is the fact 

that they are more complex to price than a plain vanilla equity option and no 

closed-form solution for pricing usually exists. Therefore numerical tree 

models are used or the price is derived from vanilla options. There are literally 

dozens of types of options traded in the exchanges and sold on the OTC 

(over-the-counter) markets today. In this study, these options will not be 
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discussed any further though. They are merely mentioned to give a good idea 

of the complexity of modern options markets nowadays.  

 

1.2. Purpose of the Study 

 

The purpose of this study is to examine the information content in the market 

premiums of options on index futures and to determine if the assumptions 

made by the Black-Scholes option pricing model (BS model) hold for chosen 

index futures markets. Especially our aim is to define an implied PDF and to 

determine how the returns are distributed and if the market view has any 

deviations from the normal distribution. The analysis is divided into two 

sections. In the first part, an implied volatility smile is built to determine if the 

assumption of constant volatilities over maturity holds. The second part 

consists of building an implied PDF based on the smoothed volatility smile. If 

the assumptions do not hold and therefore implied volatility smiles exist (e.g. 

the implied volatility is not constant with all strike prices) we should agree that 

more advanced measures for volatility estimation is required. And in this case 

the PDF’s come in handy. 

  

1.3. Structure 

 

This study is divided in to four main sections. Section 2 discusses the theory 

of option pricing, examines two different approaches on option pricing issues 

and discusses relevant research findings conducted on the area of option 

pricing theory. Different approaches and aspects for pricing issues are 

discussed along with the distributions of asset returns and the volatility 

estimation problem. Also the concepts of risk-neutral pricing and the 

connection between put and call option prices (put-call parity) is presented in 

the Subsections along with the theoretical frame behind the implied 

probability distributions. Section 3 presents the data used in this study and 

discusses about the methodologies used in the analysis. Section 4 presents 
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the results for our analysis and interprets the observations with illustrative 

examples of probability trading. The results are also compared to similar 

researches and differences are discussed and interpreted. Section 5 draws a 

conclusion of this study and presents the possible subjects of further research 

not covered in this paper.      
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2. Option Pricing Theory 

 

The pricing models for option contracts have been available for relatively 

short amount of time although financial option contracts have been used 

actively for at least decades earlier. Mainly, two different approaches for 

pricing options exist; the analytical method of Black-Scholes (1973) and the 

numerical binomial tree model of Cox, Ross and Rubinstein (1979). Both 

methods use an assumption of a riskless portfolio of (one long position on an 

underlying asset and one short option position for the same asset) on 

determining the value of an option contract (Hull 2003). When we build a 

riskless portfolio, we can use the risk-free rate of return (e.g. the United 

States Treasury Bill rates or Euribor rates offered by the European Central 

Bank) to discount the future value of an option contract to a present. 

Basically, the logic behind pricing models does not differ from the valuation of 

any other financial asset.  

 

While Black-Scholes model calculates the closed-form solution for option 

price of and European call option as a function of strike and share prices, 

interest rate, volatility and maturity, the binomial tree model uses a numerical 

approach to approximate the option prices with certain probabilities of future 

outcomes (thus the so called implied binomial tree model). Note that the 

Black-Scholes model can only price a European-style option contract; the 

binomial model turns out to be quite useful on pricing American-style options 

with a possibility of an early exercise at any moment during its maturity. Also, 

the binomial approach is quite popular and useful among the problems 

considering a real option valuation (e.g. investment decisions during 

multiperiod time frames) (Copeland et al. 2005). One should note that these 

two pricing methods do not exclude each other out but are used side by side 

depending on the characteristics of an option contract. 
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2.1. Binomial Pricing Model 

 

Cox, Ross and Rubinstein introduced their idea of an option pricing model in 

1979 in their paper “Option Pricing: a Simplified Approach”. Their approach 

for pricing option contracts differ a lot from the closed-form model of Fischer 

Black and Myron Scholes (1973) which uses stochastic differential equations 

on pricing options and some might argue that it is mathematically demanding 

to derive. Therefore, in some situations, the binomial tree approach is 

preferred. 

 

The simplest example of a binomial tree is the one-step model which has only 

two future outcomes but naturally the amount of steps can be unlimited. 

Figure 2.1 illustrates such a case with an underlying asset of a common 

stock. 

 

 
Figure 2.1. One-Step Binomial Tree 

 

In figure 2.1, 0S  is the price of a stock at time 0, f  is the price of a call option 

at time = 0, u  and d  are the proportional increase and decrease in price. The 

terms uf  and df  are payoffs of a call option contract at time = 1. The price of 

an option contract is calculated by assuming a riskless portfolio; we will short 

one option and hold a long position of ∆  shares (Hull 2003, Copeland et al. 
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2005). Therefore ufuS −∆0 defines the value of our portfolio after an 

upward movement and dfdS −∆0 in the case of a downward movement. 

The two values must be equal stating that 

 

du fdSfuS −∆=−∆ 00  

 

And when we solve the equation according to ∆ , we get 

 

( )duS

ff du

−

−
=∆

0
  (1) 

 

Where, 

 

∆ = hedge ratio (multiplier of how many shares should we own [a long 

position] for one shorted option contract to create a riskless portfolio) 

 

As portfolio is considered riskless, it must obviously yield the risk-free rate. 

Then the cost of a portfolio at present time must equal the value of a portfolio 

at time 1 discounted to present time with the risk-free rate.  

 

( ) rT

u efuSfS
−−∆=−∆ 00   (2) 

 

When ∆  is known (equation 1) and fit into equation 2 we can simplify the 

equation and get the value of an option contract f  at present time. 

  

( )[ ]du

rT
fppfef −+= − 1   (3) 
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Where, 

 

du

de
p

rT

−

−
= = the probability of an upward movement 

 

Rubinstein (1994) later used this binomial tree pricing model on determining 

an implied PDF from the call prices which is discussed more in Section 2.2.7. 

As is the case with option pricing, the PDF can be extracted in many ways. 

The numerical method is more suitable if one wishes to extract the PDF from 

an American or exotic derivative 

 

2.2. Black-Scholes Pricing Model 

 

The original Black-Scholes option pricing model (sometimes referred as a 

Black-Scholes-Merton model due to the significant contribution of Robert C. 

Merton) was introduced by Fischer Black and Myron Scholes in their article 

“The Pricing of Options and Corporate Liabilities” in 1973. The model soon 

became a standard in option pricing although it has some limitations due to 

the assumptions it makes. The following Section is mainly based in “Options, 

Futures and Other Derivatives” by John C. Hull (2003).   

 

The assumptions of the BS-model include,  

 

a) The volatility of an underlying asset is constant during the maturity of 

an option 

b) The risk-free rate is constant 

c) The price of an underlying asset follows a stochastic Geometric 

Brownian Motion (GBM) with a constant volatility and drift 

d) The underlying asset is divisible, e.g. it is possible to buy a fraction of a 

share  
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e) Short-selling is allowed 

f) Arbitrage opportunities do not exist, e.g. the markets are assumed to 

be perfect and  frictionless and the new information is available to 

everyone at the same time  

g) There are no transaction costs or taxes 

h) The underlying stock does not pay any dividends 

 

The equation defines the option call price as a function of the strike price, the 

share price, volatility, maturity and the risk-free rate of return. The general 

mathematical form of the equation is presented as (Copeland et al. 2005), 

 

( )rtTXSfC ,,,, −= σ   (4) 

 

When the partial derivatives of the option call price are, 

 

0>
∂

∂

S

C
,   0>

∂

∂

X

C
,   0>

∂

∂

σ

C
,   ( )

0>
−∂

∂

tT

C
,   0>

∂

∂

r

C
 

 

The closed-form solution for the differential equation being,  

 

( ) ( ) ( )21 dNXedSNC tTr −−−=   (5) 

 

Where, 

 

( )

tT

tTr
X

S

d
−

−







++









=
σ

σ 2

1

2

1
ln
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( )
tTd

tT

tTr
X

S

d −−=
−

−







−+









= σ
σ

σ

1

2

2

2

1
ln

 

  

C = Call option price 

S = Share price (price of an underlying asset) 

X = Strike price (exercise price) 

r = Continuously compounded risk-free rate of return 

σ = Volatility of an underlying asset 

tT − = The time until expiration (in years) 

)(xN = Standard normal cumulative distribution function of x  

 

Basically, what Black-Scholes model does, is that it weighs the components 

S  and X  by probabilities ( )1dN  and ( )2dN . ( )1dN  is the inverse hedge ratio 

(risk-free portfolio can be constructed with 1 long position of a stock and by 

shorting 
( )1

1

dN
 option contracts to the same stock) and ( )2dN  denotes the 

probability of an option contract to be in-the-money at expiration date. 

Therefore the model calculates the call option price by multiplying the current 

price of an underlying asset by inverse hedge ratio and by subtracting the 

discounted strike price multiplied by the probability of being in-the-money at 

expiration from it. Note that the Black-Scholes model does not need expected 

return or custom rate of return to discount the future value to present time. 

Instead, a risk neutral world is assumed and therefore a risk-free rate of 

return is used. The concept of risk neutral world is discussed in Section 2.2.2. 

 

2.2.1. Put-Call Parity 

 

Put-call parity defines the relation between the prices of a call option and put 

option (Stoll 1969). Therefore the pricing model for a European put option can 
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be derived from the closed-form solution of the BS differential equation for a 

European call option. Furthermore, the solution for the differential equation of 

a put option is not necessary to be derive from the basics when defining the 

prices for a full option chain with call and put option prices over varying strike 

prices.    

 

)( tTrXeSCP −+−=   (6) 

 

When equation 6 is fit into an equation 5, we get the Black-Scholes pricing 

model for a European put option, 

 

( ) ( ) ( )21 dNXedSNP tTr −+−−= −−
  (7) 

 

According to equation 6, the price of a put option is a function of the call price, 

the price of an underlying asset and the discounted strike price (by the risk-

free rate). For the relation to hold, the put option of the same strike and 

maturity needs to have an identical volatility as the call option. This is very 

important if one is constructing an option chain for both, the call prices and 

the put prices.  If pricing differences (arbitrage opportunities) would exist, they 

would be exploited in the efficient markets until they would vanish. Ahoniemi 

(2007) studied Nikkei 225 index implied volatilities for both call and put 

options and came to a conclusion that the put-call parity does not hold 

necessarily and differences do exist. Her paper consists of time-series 

analysis (back-ward looking method) with prediction performance estimation 

with illustrative examples for options trading.  

 

The put-call parity is an important tool when pricing illiquid options since a 

liquid call options price can be used to determine the implied volatility not only 

for the call option but also for a put option of same maturity and strike price. 
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Often quotations near the one to be calculated are used on determining the 

“fair price”. Obviously, we should not price many option series based on a few 

trading events since the accuracy of the volatility curve (and the probability 

distribution function) is affected and the strategies based on inaccurate 

estimations do not fundamentally differ from guessing. 

 

2.2.2. Risk Neutral Valuation 

 

The risk neutral valuation is a fundamental concept in derivatives and bonds 

pricing. In a risk neutral world investors are neutral and indifferent to risks 

between various investments. In other words, the investors need no 

compensation for the risk taken and therefore risk-free rate can be used on 

discounting the future values of derivatives (Hull 2003). This argument is 

based on the work of Cox and Ross (1976). They compared the two 

approaches in option pricing, the method presented by Samuelson (1965) 

and the one by Black and Scholes (1973). Samuelson derived the option 

price with an expected rate of return and used a custom rate on discounting. 

Black and Scholes did not make such assumptions and thus their model did 

not require known expected rate of return for an underlying asset nor did it 

require a custom rate for discounting1. Cox and Ross noted that the two 

methods provided the same price for an option contract and argued that the 

investors do not require any extra compensation for the added risk (the 

expected rate of return and the discount rate then cancel each other out). 

 

As we know, the present value of any financial asset is equal to future 

earnings and the future value (the payoff) discounted to a present time. If the 

option pricing model assumed investors not to be risk neutral in their 

behavior, it would complicate the pricing process significantly since a model 

which takes into account all investor’s risk preferences would be extremely 

                                                 
1
 See chapters 2.2.3 and 2.2.4 for more thorough explanation.  
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complicated, if not impossible to form. Therefore it is justified to assume the 

discount rate to be a risk-free rate.   

 

Although clearly a simplification, an assumption of a risk neutral valuation 

enables us to price options without knowing all risk preferences that the 

market participants possess. As we know, the economical theories are not 

based in 100 percent observable phenomenon as is the case in classical 

physics and thus models that will explain utterly and completely the behavior 

in the financial markets are not possible to form. We can not therefore model 

the market activity by predicting the actions of individuals, and we even 

should not but we can make fairly good estimations on the market average 

behavior based on the actions of many. 

 

2.2.3. Geometric Brownian Motion 

 

The basics for the Geometric Brownian Motion are in physics. It was first 

observed by a botanist Robert Brown in 1827. He studied minute particles in 

fluids and their continuous random movements and collisions to each other. 

He noted that the movement, although seemed random, had some pattern in 

it. Much later, in 1905 (the paper was published again in English in 1956) the 

phenomenon was studied again by Albert Einstein, who managed to form an 

equation for the Brownian motion by studying heated molecules. Around the 

same time, a French mathematician Louis Bachelier (1900) presented an 

idea that the prices on stock markets could follow a Brownian motion.  In his 

PhD thesis, he derived the Wiener process and managed to price an option 

contract based on an assumption that the price process of an underlying 

asset is stochastic (Forfar 2002). 

 

There are many types of models on predicting the future development of 

asset prices. These models (or processes) often assume the evolution of the 

stock price to follow a stochastic tendency, making the changes in prices 
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random events. Therefore, the future prices is assumed to follow a random 

walk hypothesis which states that the price of the stock yesterday can not be 

used to predict the price tomorrow. This simplest model of a stochastic 

process is called the Markov process which states that only the price today 

matters when we try to predict the price of tomorrow. The Markov model is 

widely accepted as it is consistent with the random walk and weak form 

efficient market hypotheses (EMH, first presented by Bachelier [1900] and 

later by Fama [1965]). Other types of stochastic processes also exist (mean 

reversion with or without jumps for example). Additionally, stochastic 

processes can be continuous or discrete, but due to the infinite maturity of 

stocks, the price evolution process should be considered to be a continuous 

model. These models will not be discussed further in this paper. 

  

As noted above, it is fair to assume that the future stock prices are uncertain 

and although predicting future is impossible, we can find patterns which will 

correlate with real life observations reasonably well. To be able to price option 

contracts with the BS model, some type of assumption on the underlying 

asset prices evolution has to be made. BS model states that the price of an 

underlying instrument follows a continuous stochastic model, geometric 

Brownian motion (sometimes referred as generalized Wiener process which 

is the mathematical form of GBM). GBM adds a new variable of volatility in to 

the Markov process. Remember how the Markov process assumes the price 

evolution process to depend only on the price of the stock at present time 

( tS ). To be more precise, the continuous stochastic variable will be able to 

get any random value without limits according to a change in time. Thus, with 

Geometric Brownian Motion, jump diffusions in the process are possible. 

These jumps are often observed when new, surprising information arrives to 

market. The Geometric Brownian Motion process of tS  can be presented 

mathematically as (Al-Harthy 2007), 
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dzSdtSdS ttt σµ +=   (8) 

 

Where,  

 

µ = constant drift (expected rate of return) 

σ = constant volatility (standard deviation) of St  

dz = εε ,dt = Wiener process 

dt = change of time 

tdS = change in price of a stock 

 

The first term ( dtStµ ) defines the expectation term and the second term 

( dzStσ ) the variation term. The first term therefore presents the expected 

drift rate of µ  for tS  while second term adds noise and uncertainty to the 

stock price evolution process. And when we note that the basic Wiener 

process follows a Markov process with a constant, predefined drift of 0 and a 

volatility of 1.0 (the process follows a normal distribution, )1,0(φ ), we can 

define the dz . Thus, when the drift of the price evolution process equals to 

zero, the expected value of St in the future will also be zero. Also, if the basic 

Wiener process (ε ) has a volatility of 1.0, then the continuous stochastic 

model will have a volatility of σ . Basically, the Geometric Brownian Motion 

process adds more volatility to the model when the time horizon increases 

due to the fact that the probability of value changes will also increase. 

 

2.2.4. Itô’s lemma 
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Itô’s lemma can be used to derive the actual Black-Scholes model from the 

Wiener process2. The general form is presented mathematically as (Taylor 

2005),  

 

dztxbdttxadx ),(),( +=    (9) 

 

Where a  and b  are the functions of x  and t  ; dz  denotes the Wiener 

process discussed earlier. Therefore the drift of the process is a  and the 

volatility b  (and therefore the variance is 
2

b ). Itô’s lemma describes G  as 

the function of x  and t , therefore,  
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Where,  

 

dG = Change of a function G  
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When Itô’s lemma is fit into an equation 8 we get, 

 

                                                 
2
 The following derivation should not be seen as a detailed description of mathematics behind the BS 

model. If interested in the complete solution please see, Black and Scholes (1973) and Itô (1951). 
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Note that when the function SG ln= (logarithmic or continuously 

compounded change in stock price) then, 
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Then the equation 11 simplifies into, 
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Then the constant drift is T







−

2

2σ
µ and the constant volatility is 

Tσ ( T
2σ = variance) where T is the moment of time in the future. In 

other words, the function SG ln=  is normally distributed with the mean 

T







−

2

2σ
µ and volatility (standard deviation) of Tσ during the period of 

TT −0 , therefore, 
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Equation 13 presents mathematically the lognormal distribution of the 

changes in a price of a stock. The equation enables us to calculate the 

lognormal probability distribution for the price change of a stock if expected 

return, volatility, the time period and the current price of a stock is known. 

Since returns are normally distributed, we know at the 95% confidence level 

that the returns will be within 1.96 standard deviations from the mean. 

 

The Itô’s lemma can be used to derive the actual Black-Scholes differential 

equation by assuming the price of a call option to be a function of the 

underlying stock price and time, ( )tSdf ,= . Then by fitting the variables 

into the equation 11 we get, 
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Black and Scholes formed a closed-form solution for their differential equation 

(an actual usable analytic formula) by proving that a riskless portfolio is 

possible in the perfect markets by selling short one derivative and buying long 

one share of a stock. The assumption of a riskless portfolio was proved by 

the fact that the Wiener processes of a long share and a short derivative 

eliminate each other out (as does expected rate of return, µ ). Thus, it was 

argued by Black and Scholes that the rate of return is a nonstochastic 

variable (Copeland et al. 2005). When equations 14 and 8 (the price evolution 
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process of a derivative and a stock, respectively) are combined we get the 

Black-Scholes differential equation. 
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Where, f , is the price of a European call option, r is the risk-free rate, S is 

the price of an underlying stock, σ is volatility and t is maturity. When a 

maximization problem ( ) 0,0 ≥−= XSMAXf  is solved we get the equation 5 

which is the solution for the Black-Scholes differential equation. Note that the 

equation 15 does not include any variables which depend on investor’s 

personal preferences of risk; therefore the differential equation and its 

solution solely rely on an assumption of a risk neutral world discussed earlier. 

 

2.2.5. Volatility 

 

The term volatility in Black-Scholes model refers to a standard deviation from 

the mean returns of an underlying asset or in more general terms, price 

variability over some period of time (Taylor 2005). Therefore it describes how 

fluctuating the returns of an underlying asset are and moreover, can be used 

to measure the risk involved in investing on such an asset. The fact that 

nowadays practitioners (traders) use volatility to compare the option prices 

instead of using their quoted dollar amounted market prices, tells how 

important variable volatility is.  

 

All variables in the Black-Scholes model are observable (strike and current 

prices, risk-free rate of return, maturity) except the volatility. As noted earlier, 

the original Black-Scholes model made an assumption, what is today thought 

as being an oversimplification, that the volatility was constant during the time 
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of maturity. Many researchers have tested this hypothesis (as we will do the 

same) and have noted a shape of a smile right after the 1987 market crash 

(Egelkraut et al. 2007, Pirkner et al. 1999). Thus, the name volatility smile 

which refers to a graphical presentation of implied volatilities as a function of 

option strike prices (that is, )(Xσ ). Since then researches have argued that 

the shape of this curve has changed to a skew or even to a smirk in some 

cases (Taylor 2005).  

 

The volatility is the trickiest variable to estimate and greatly impacts in the 

price of an option calculated by the BS pricing model since when the volatility 

increases, the probability of an option contract to be ITM at expiration also 

increases. An extensive amount of work has been done in this area of 

research, especially on developing models on estimating stochastic volatility 

process from historical data (ARCH model and its multiple variations, 

stochastic volatility model by Heston etc.). Basically, two different approaches 

for volatility estimation exist, backward-looking and forward-looking methods. 

Backward-looking method refers to techniques which use historical volatility 

data on estimating future evolution process of standard deviation of an 

underlying asset. These methods include the basic historical volatility 

estimation (or realized volatility) which uses logarithmic changes (returns) in 

stock prices on estimating the volatility for a chosen period of time in past. 

ARCH (Autoregressive Conditional Heteroscedasticity) model uses a more 

advanced technique since it assumes the volatility process to be time-varying 

and conditional on historical observations. Realized volatility is used to 

benchmark the models against it. 

 

The forward-looking method uses an inverse approach on estimating the 

volatility during the maturity of an option. Implied volatility extracted from the 

observed market premiums of an option contract can be then seen as the 

market expectation of the average volatility during the maturity. The BS model 
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assumes a constant volatility during the maturity and the market-observed 

option premiums tend to differ slightly from the premiums calculated by the 

Black-Scholes model. This indicates that the market premiums have some 

information content in addition to a BS premium (Weinberg 2001, Vähämaa 

2004). Basically, no closed-form solution for volatility extraction from 

observed option premium exists and iteration is needed on calculation of 

volatilities imposed by the BS model. The forward-looking method is 

discussed more in Section 3. Many researchers suggest that the ARCH 

models give a fair estimate only on short-time volatility while implied 

volatilities from observed option premiums give a better estimation and more 

long-term predictability (Chang and Tabak 2002, Vähämaa 2004). Chang and 

Tabak argue that this is due to the fact that the market implicit variables 

adjust more rapidly to new information or situations unlike the historical 

models which have a lag in their estimations since they need to have 

historical data for their forecasts. Taylor (2005) also agrees that the implied 

volatility is by far more superior method than the historical ones. Others might 

criticize that the estimations extracted from the market premiums are only 

views of the future volatility at certain moment of time and can not be used on 

estimating the time-varying process of volatility which ARCH-models try to 

achieve.    

 

The future volatility process is an important concept to internalize for 

practitioners since it affects directly the hedge ratios of a portfolio (delta 

hedging). As Egelkraut et al. puts it, 

 

“Understanding (of) future volatility patterns is important to market 

participants for a variety of reasons including the need to determine 

effective hedge ratios, and for assessing the relative costs and risks of 

hedging in different periods. Increased volatility can lead to more 

frequent margin calls, putting a greater portion of wealth at risk by 

shortening the time that investors have to respond with new funds. 



 28 

Information about future volatility also provides insight into whether 

holding a position or portfolio is consistent with risk preferences. 

Moreover, understanding longer-term behavior of volatility and the 

predictability of its magnitude and change are critical for effective 

commodity marketing and derivative pricing”. 

 

With delta-hedging it is essential to keep the ratio of underlying asset and the 

derivatives possessed optimal and to be able to read the changes in implied 

volatilities from the market gives an advantage over maintaining the correct 

amount of risk preferred by the hedger. 

  

For market participants, it is important to know how the volatility changes over 

time. The term structure of volatility defines the volatilities over traded 

maturities. Technically, the term structure of an option series does not differ 

much from the term structure of interest rates. Since the volatility smile 

presents the implied volatilities for traded strike prices at a certain moment of 

time; by combining the option term structure and volatility smiles, we can 

graph the volatility change over multiple maturities and strike prices. This 3D-

plot is referred as a volatility surface and is used by practitioners on 

illustrating how the volatility changes over time. Implied volatility surfaces 

derived from plain European vanilla options are also used on pricing more 

exotic option contracts on the same underlying asset. In this study, a volatility 

surfaces are constructed in order to interpret the changes in volatility and to 

study if it differs from the theoretical value. 

 

2.2.5.1. Historical estimation 

 

Mathematically historical standard deviation of an underlying asset can be 

calculated with logarithmic changes in historical (realized) prices. Logarithmic 

change in prices can be defined as (Taylor 2005), 
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Where, 

 

nt ,...,3,2,1=  observations 

tr = Continuously compounded rate of return (logarithmic change in stock 

price) 

tP = Price of a stock at time t  

1−tP = Price of a stock at time 1−t  

 

After calculating the logarithmic returns, the standard deviation is defined as, 
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Where, 

 

σ = Standard deviation 

r = Mean of tr  

 

As noted earlier, usually in statistical analysis, the realized volatility is the 

benchmark against the prediction model. 

 

2.2.5.2. Advanced Historical Volatility Models 

 

In addition to basic historical volatility estimation model, more advanced 

methods of historical estimation also exist. The ARCH (Autoregressive 
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Conditional Heteroscedasticity) model is based on an assumption that the 

evolution process of variance is not constant but time-varying. The future 

variance is assumed to be partly conditional (or autoregressive) on observed 

historical data (Engle 1982, Paronen 2003, Taylor 2005). The key notation in 

ARCH model is that the evolution process of variance is assumed to have 

continuous peaks and drops and that these tendencies can be estimated for 

future purposes. 

 

Another advanced stochastic volatility model was introduced at 1993 by 

Heston. Unlike the ARCH model which assumes the variance to vary over 

variance, the Heston’s stochastic model assumes the variance to vary over 

the square root of variance. The closed-form solution can be derived in the 

similar way than the original BS model with the exception that the Heston 

model assumes a different drift for the geometric Brownian motion (equation 

8). In Heston model, the volatility variable σ  is replaced by the square root of 

variance ( tv=2σ ) (Taylor 2005). These models can be also adjusted to 

take large jumps in price changes into consideration (Poisson jumps). Further 

analysis of these models will go beyond the boundaries of this paper. It is 

justified to present these in this context since the implied distributions are 

often benchmarked against the continuous stochastic volatility models and/or 

realized volatility. 

 

2.2.6. Option Greeks 

 

The Greeks are used on determining the risk exposure by indicating the 

change in option price when a certain variable in the function changes 

(MacDonald 2006). There is a ceteris paribus assumption behind every 

Greek. That is, when a key variable changes, the option price changes the 

defined amount all other variables staying constant. The connection between 

the Option Greeks and the BS model can be defined easily mathematically; 
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the Greeks are derivatives of Black-Scholes model with respect to an 

individual input (the partial derivatives discussed earlier in Section 2.2). There 

are total of five different Greeks; Delta, Gamma, Vega, Theta and Rho3.  

 

Delta ( ∆ ) is the easiest one to internalize as it is already been discussed in 

the Section 2.2.  Delta is often described as the hedge ratio (note that the 

( )1dN  in BS model is the inverse hedge ratio) as it defines the number of 

shares long against one short option contract (riskless portfolio). 0>
∂

∂

S

C
 

describes the mathematical relation to call option price. Delta must be 

positive for a call option; if the stock price increases, the option price must 

also increase since the possibility to buy at a certain price becomes more 

valuable for the purchaser. Naturally, there is an inverse relation for a put 

option; Delta has to be negative for put options since if the stock price 

decreases, the price of a put option has to decrease also.  Delta can be then 

defined also as a sensitivity of a change in option price when the underlying 

price changes. 

 

Gamma (Γ ) is the mathematical derivative of Delta or the second derivative 

of call price with respect to a stock price (the change of Delta when the stock 

price changes, 
2

2

S

C

∂

∂
).  Gamma is always positive, since when the stock price 

increases, the price of a option rises. Deep in-the-money options will be most 

likely exercised, therefore Delta is close to 1. I.e. the assumed riskless 

portfolio consists of almost an equal amount of shares long and options short. 

As Gamma denotes the change in Delta when the stock price change, 

Gamma in this case is very close to zero (Delta can not change very rapidly 

since it is close to 1 already). If an option contract is deep out-of-the-money, 

Delta is close to zero and the assumed portfolio does not have many shares 

                                                 
3
 The complete mathematical definitions of the Greeks can be found from the appendix A. 
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in it. For the same reason, Gamma is also zero. Note that Delta also changes 

according to the maturity of an option since the option with a longer maturity 

has a greater probability to end up being in-the-money at expiration date. 

Gamma is very useful on determining how often a Delta neutral portfolio 

should be adjusted. Therefore Gamma of zero is preferred over it being close 

to one. If Gamma is close to one, it means that the Delta neutral portfolio has 

to be adjusted frequently and with high number of individual assets which will 

increase the costs of hedging.  

 

Vega measures the sensitivity of a call price to volatility; the increase in 

volatility of an underlying stock will increase the price of an option (
σ∂

∂C
). This 

happens since the greater volatility increases the probability of an option 

contract to be in-the-money at expiration date. Volatility is therefore assumed 

to be time-varying, not constant as the Black-Scholes model assumes. Vega 

measures the sensitivity and it should be observed carefully.  

 

Theta (Θ ) is the sensitivity of a call price to the maturity (or the change of 

time, ( )tT

C

−∂

∂
). Theta is quoted in days, usually per one day, so it can be 

interpreted as a price change of a call option in one day. Rho (Ρ ) is the partial 

derivate with respect to a risk-free rate. That is, it measures the sensitivity of 

a call price to a change in risk-free rate (
fr

C

∂

∂
). Although a practitioner of a 

successful derivative portfolio should be familiar with all the Greeks, Delta, 

Gamma and Vega can be considered the most important partial derivatives to 

know and internalize.  

 

2.2.7. Implied Probability Distribution Function 
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Implied probability distribution functions are used in order to better 

understand the nature of asset price dynamics. Since the market consists of 

numerous different traders, the price process of an underlying is difficult to 

model mathematically. Implied PDF can be used to see the current, although 

rapidly changing, market view of the risk and probability involved. This view is 

argued to be superior since it includes all the risks that investors include in 

the prices in the markets. Shimko (1993) developed a practical method for 

extracting the implied PDF from the observed option premiums from the work 

of Breeden and Litzenberger (1978). They argued that the risk-neutral PDF of 

an underlying asset TS , ( )Xg , can be calculated from the second derivative 

of the call option price with respect to strike price if the price has a continuous 

probability distribution. We come to this solution by forming butterfly spread 

option portfolios of two sold call options with the exercise price tSX =  and 

two bought call options, one with an exercise price of δ−X  and one with 

δ+X . When quoted for all strike prices in the option chain (with a very small 

change between the two observations) we obtain the risk-neutral distribution 

function4 for the returns of an underlying asset at expiration date. The 

derivation of the equation is presented mathematically as (Hull 2003), 

 

( ) ( ) T
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TT

rT
dSSgXSeC

T
∫

∞

=

− −=
  (18) 

 

Where, C  is the call price, TS  is the price of and underlying asset at time T , 

X  is the strike price, r  is the constant risk-free rate of return and ( )Xg  is the 

risk-neutral distribution function of TS . Differentiating once with respect to X , 

 

                                                 
4
 In addition to the original article by Breeden and Litzenberger, see Pirkner et al. (1999) for an 

illustrative example of a butterfly spread. 
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Differentiating again with respect to X  we get, 
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When solved for ( )Xg , we get the probability density function used in our 

analysis.  
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Where, 1C , 2C  and 3C  are call price with the same maturity, T , and strike 

prices δ−X , X  and δ+X , respectively. Note that delta (δ , the constant 

change in strike price) is assumed to be very small and it can affect the 

accuracy of the distribution negatively if the absolute change in strike price is 

too high. In other words, the closer the observations (or interpolated prices) 

are to each other, the better estimation for probability distribution can be 

obtained. Also, the Breeden-Litzenberger relaxes the assumptions of the 

evolutionary process of an underlying price by only assuming perfect markets 

(short sales allowed, no transaction costs, no taxes and infinite borrowing at 

risk-free rate of return) (Miranda & Burgess 1998, Bahra 1997). 

 

2.2.8. Black-76 model 
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Fischer Black introduced his model of pricing options on futures (the so called 

Black-76 model) in 1976. The model is a variation of the original Black-

Scholes model. Since the data used in this study consists of option premium 

observations for index futures, the following Black-76 model will be used for 

the iteration of volatilities from observed option premiums. The model is 

presented mathematically as, 
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C = Call price 

F = Futures price 

X = Strike price 

σ  = Volatility of an underlying futures price 

 

If familiar with the Black-Scholes model, the Black-76 is very straightforward 

to internalize and to use, although, a few characteristics of the model should 

be kept in mind. Firstly, the underlying asset is futures contract issued on 

some other asset, therefore making futures option a so-called “derivative on 
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derivative” contract. Also, the evolution process of the futures price is 

assumed to follow the same lognormal property than the stock prices in the 

original Black-Scholes model. Secondly, a futures contract as an underlying 

asset differs from the stock due to its finite nature. The option on futures 

contract requires a futures contract with a longer maturity than the maturity of 

the option. Obviously, since it is difficult to price an option contract which 

does not have an underlying asset to derive the price from. With a stock, this 

is not taken into an account since the corporation (and the publicly-traded 

stock) is assumed to have an infinite lifetime. A stock then is defined to be a 

perpetual financial instrument. With these few alterations, the Black-76 model 

does not differ much from the original BS model and therefore we will keep on 

referring to the original model instead of the Black-76.  
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3. Data and Methodology 

 

The next section discusses the data gathering and filtering process and 

introduces the methods for smoothing the rough volatility smile from observed 

option prices. Later on, the smoothed smile is used for PDF estimation. 

 

3.1. Data 

 

The data used consists of two different European call option chains with daily 

settlement prices (various strike prices for each maturity). Both series are 

index options on futures contracts. This type of “derivative on derivative” 

contract was chosen due to the liquidity of the markets since high liquidity 

ensures a better estimation for volatility smile and surface. Due to the liquidity 

issues, options are not usually issued straightly for a stock index (as S&P 

500, FTSE 100, Nikkei 225 or DAX) but on the futures contracts instead. 

Futures markets are highly liquid and therefore they give a good basis for 

option contracts to be priced correctly and fairly. The underlying assets of 

selected option series are, 

 

1. One S&P 500 stock index futures contract (CME S&P 500 options) 

2. One DAX stock index futures contract (EUREX DAX options) 

 

Standard & Poor 500 stock index consists of 500 large capital companies 

mainly from the United States and is gathered from the two largest stock 

exchanges in the United States, the New York Stock Exchange (NYSE) and 

NASDAQ. Many mutual funds are benchmarked against the S&P 500 index 

return which is often seen as the main indicator of the economy in the USA as 

a whole. DAX (Deutscher Aktien Index) consists of 30 major blue chip 

companies traded in the Frankfurt Stock Exchange.  S&P 500 index option 
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settlement prices were provided by Chicago Mercantile Exchange (CME), a 

major financial derivatives exchange based in Chicago and DAX index option 

settlement prices by EUREX5, the European derivatives exchange based in 

Zurich, Switzerland. The both data sets were obtained on 22nd of February 

2008. Maturities of options range from 1 month to 11 months (From March 

2008 to December 2008, 7 series for S&P 500 options and 6 series for DAX 

options). The CME S&P 500 series is floor-traded (pit-traded) while the 

EUREX DAX series is electronically traded which gives slightly thinner trading 

for CME options. 

 

The option series traded in EUREX have 30 to 70 actively traded strike prices 

for a given maturity while the CME pit-traded options have amount of 

observations as low as 10 to 20. Although, the observation sets might seem 

limited, similar research has been conducted with data sets of only 3 

observed strike prices on same maturity (Chang and Tabak, 2002). 

Therefore, the CME option series are more influenced on interpolation 

methods as the rough smile is smoothed. Although both data sets were 

consistent after filtering process, some extreme values can be noticed from 

both series. Usually this happens when there is a lot of speculation on 

extreme strike prices with a long maturity series. These problems with outlier 

observations and corresponding extrapolation overshoots can be seen from 

the volatility surface with the most extreme strike-to-index ratios. Also, 

observations with longer maturity (December 2008 option series with 301 

days until expiration) tend to suffer from thin-trading more than options with 

shorter maturity. Naturally, the shortest maturity is the most actively traded in 

both exchanges. Although these extreme values for implied volatility were 

clearly outlier observations, they were included in the analysis due to the 

active trading on them.  

                                                 
5
 For more information on contract specifications, see www.cme.com and www.eurexchange.com. For 

information about S&P 500 stock index and DAX stock index, see www.standardandpoors.com and 

www.deutsche-boerse.com, respectively. 
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The CME option contracts are also traded in GLOBEX platform which is an 

electronic system like EUREX. In this paper, we try to observe if there are any 

notable differences in prices (i.e. information content) between pit-trading and 

electronic trading so theoretically less liquid CME options were chosen as 

basis for comparison. 

 

3.2. Methodology 

 

Firstly, the observation sets were screened for illiquidity. That is, the 

observations that had an option volume and open interest6 of zero were 

immediately removed. If the daily volume is zero and/or there is no open 

interest then the price obtained is old or estimated in some other ways and 

does not give a good estimate for volatility. If there is no trading or even open 

interest on a specified strike, there can not either be any “information content” 

over the Black-Scholes price in the premium. At this phase, the obtained call 

option prices could also be used to determine the corresponding put prices 

and volatilities with the put-call parity. In this study, this is not the case and 

we will only consider call prices.  

 

Secondly, a smoothing of the volatility curve via interpolation/extrapolation is 

needed for filling the gaps between the observations. As volatility surfaces 

are used on determining the expensiveness of an exchange-traded and 

quoted option contracts, it is essential that the market data is adjusted 

according to the best estimation of volatility between the observed points. The 

relative strike-to-index ratio is more informative and comparable for us in the 

same way than the implied volatility is a better measure for comparing option 

contract expensiveness rather than absolute quoted prices from the market. 

                                                 
6
 By definition, option volume is the total amount of contracts traded during the day and open interest 

is the total amount of contracts issued (and held by the market participants) on the specified strike and 

maturity at the end of trading day. 
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Sometimes the implied volatility is built with respect to hedge ratio (Delta) 

which is merely the same thing than the X/S ratio. 

 

This smoothing method is consistent with the one introduced by Shimko 

(1993). He used the same type of estimation for the volatility smile. He later 

on used this estimated smile curve to recover a risk neutral PDF for a given 

moment in time. In other words, he assumed that the option premiums 

observed from the market would have some type of information content not 

included in the theoretical premiums suggested by the Black-Scholes model. 

His analysis was divided into four parts (Shimko 1993, Chang and Tabak 

2002, Buttimer 2008), 

 

1. Implicit volatilities are iterated from observed market premiums with 

the Black-76 model7 

2. Rough volatility smiles are smoothed with a quadratic least squares 

method (extrapolation if required) 

3. The prices of the options are calculated for standardized points in the 

curve with the Black-76 model 

4. With the Breeden-Litzenberger (1978) method (equation 19), the risk 

neutral density function is formed 

  

The approach to standardize the strikes to a ratio has its advantages and 

disadvantages. While volatility can be computed for all strike prices from the 

smoothed curve, the method does not take into a consideration the time 

difference of option series with exact strike prices in the market during the 

maturity (Tompkins 2001). It should be noted that this approach does not 

define its inferior nature compared to time dependent models, but the 

complexity of the concept, implied volatility, and its time-varying nature. 

Naturally, if it was possible to observe constant and standardized strike prices 

                                                 
7
 Chang and Tabak used Garman-Kohlhagen model since they analyzed currency options but in this 

study, Black-76 model is used for options on index futures.   
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for several periods during a consistent time period, there would not be any 

problems for estimating the needed values. Our approach differs from the one 

presented by Shimko as we did not assume the volatility to be constant 

outside the observed range. This is done due to a practicality since our data 

is probably not as comprehensive as the one used by Shimko. In practice, 

these continuous and standardized quotations hardly ever exist in any market 

since the price of an underlying asset fluctuates and option contracts with 

new strike are issued to meet the demand of hedgers, speculators and other 

market participants (Jackwerth & Rubinstein 1996). 

 

3.2.1.  Estimation of Volatility 

 

As there is no reverse, closed-form solution for solving volatility from the 

Black-76 model (nor for the BS-model), an iteration of volatility sets from 

prices is required. Basically, it is required to insert a wide range of volatilities 

to narrow down the prices so it will match with the observed one. This can be 

extremely time-consuming for high-frequency data so, for practical reasons, 

with data sets of high number of observations an option pricing program of 

choice is essential for computation of the volatility smile.  

 

Graph 3.1 presents the “rough” smile based purely on market quotations for 

S&P 500 index option series expiring at March 2008 (maturity of 28 days) on 

22nd of February 2008. X/S refers to a ratio between the prices of a strike and 

an underlying asset (in this case futures price for the stock index). 
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S&P 500 Index Option Non-Smoothed Smile
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Graph 3.1. S&P 500 Index Option Volatility smile before smoothing. March 2008 option 

with 28 days of maturity. 

 

Note the limited amount of strikes available for this series, X/S being between 

0.92 and 1.07 only. Also, the in-the-money (ITM) call options (X/S ratio < 1.0) 

tend to have more volatility than the out-of-the-money (OTM) call options (X/S 

ratio > 1.0)8. This can be explained by the market estimations of the future 

trend for the underlying asset (e.g. the practitioners tend to trade heavily on 

ITM options and hedgers might expect or at least fear the index to fall in near 

future). The shape of the index option series is actually a skew, rather than a 

smile. This observation has been noted from many index options and options 

on index futures after the stock market crash in 1987 (Jackwerth & Rubinstein 

1996, Weinberg 2001). Such extreme events as the 1987 crash suggest that 

the pricing models have understated the importance of huge drops in the 

markets. Statistically speaking, the probability of a crash is nearly impossible 

but they still have to be considered, as they will happen in real life, and this is 

why we can observe a skew pattern in implied volatility smiles. 

 

 

                                                 
8
 Note that this is vice versa for a put option. When X/S ratio is below one the put option is OTM (a 

right to sell cheaper than the market price) and when the ratio above one, the put option is ITM (a right 

to sell with a price higher than the market price). 
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3.2.2.  Smoothing Process and Extraction of PDF’s 

 

When the volatility matrix data is built from observed prices, we need to 

smooth the curve which goes through the observed points and find the 

volatilities according to the standardized strike prices and which will be on the 

smoothed curve. Linear interpolation is too simple method for this purpose 

and it is often assumed that the volatility smile curves follow some function 

with a polynomial order of two or higher. In literature, two separate 

approaches for smoothing have gained popularity; the smile method (Shimko 

1993, Chang & Tabak 2002) and the two mixed lognormals method (Miranda 

& Burgess 1998)9. The two lognormals mixture method basically assumes, as 

the name implies, that the fat-tailed and peaked implied probability 

distribution is a mixture of weighted averages of two independent Gaussian 

lognormal distributions. The assumption is that the price evolution process 

can be estimated significantly more precisely this way. This method will not 

be discussed thoroughly in this paper10. As mentioned earlier, our analysis 

will follow the smoothing method of Shimko.     

 

Graph 3.2 shows the basic concept of a polynomial interpolation (quadratic).  

The line with dots presents for example the volatilities with given strike prices. 

The dashed line describes the smoothed polynomial trend line based on the 

observations.     

 

                                                 
9
 The risk-neutral PDF can also be obtained directly as described by Rubinstein 1994, Jackwerth & 

Rubinstein 1996 and Pirkner et al. 1999. This approach is referred as a mixture binomial trees method 

and it is a numerical approach for PDF estimation. 
10

 For more information on the two mixed lognormals method, see Ritchey 1990 or Pirkner et al. 1999.  
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Observed

Polynomial Interpolation

 
Graph 3.2. The Concept of Basic Polynomial Interpolation 

 

Two different interpolation methods come into consideration for the 

smoothing process, 

 

1. Quadratic polynomial 

2. Cubic spline 

 

Quadratic (power of two) interpolation assumes the first derivatives to be 

continuous and uses linear interpolation for extrapolation (estimation of 

values outside the observed data range) while cubic (power of three) spline 

method uses the first and second derivatives and should create a smoother 

curve. Mathematically, the quadratic interpolation process assumes the first 

derivatives (the slopes) of the function to be the same in the meeting knots 

(the observed points of X’s and corresponding Y’s) of the functions. Cubic 

interpolation assumes also the second derivatives (the acceleration) to be 

continuous in the meeting knots of the functions. Least squares fit method is 
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a quadratic interpolation method which minimizes the sums of squares of the 

residuals of observed points in the curve (Kelly 1967)11.  

 

In our case, our data sets need an assumption of a nonlinear curve and thus, 

a method of nonlinear quadratic least squares fitting is used. The cubic 

extrapolation method tends to overestimate the curve significantly, when the 

estimated extrapolated values do not lie close to the observed ones. More 

specifically, the curve from the data set seems to be sensitive to higher order 

interpolation. Thus, cubic spline method is in this case useless as it creates 

outlier values to our volatility surface (especially with the S&P 500 index 

option data which has limited observations). This phenomenon is not so 

important with the DAX index option series since they have significantly more 

observations with wider strike-to-index ratios, and often the observed ranger 

is wider than the one needed for standardization. Therefore extrapolation is 

not always needed. Due to the reason of fair comparison between the two 

surfaces, we will use the same nonlinear least squares method for both data 

series.  

 

Note that even though interpolation methods discussed might seem too much 

of a simplification considering the complex nature of a volatility surface, many 

researches have came into a conclusion that a quadratic interpolation (and 

nonlinear least squares method) gives a fairly good estimation for the curve 

(Chang and Tabak, 2002) although Weinberg (2001) could not determine 

clearly which method was more superior to another. Bahra (1997) came to 

same conclusion; differences between smoothing methods are small. 

Smoothed volatility smile ensures that the call price function ( )Xc  derived 

from it is monotonic, continuous and can be differentiated twice, therefore 

meeting the prerequisites of the Breeden-Litzenberger PDF extraction 

method (Bahra 1997). 

                                                 
11

 See Bliss and Panigirtzoglou (2000) for more information about the cubic spline method. 
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The observed volatilities are not synchronized with the strike prices of series 

with different maturities, which can lead to a very disordered and moreover, 

useless, volatility surface. That is, instead of using exact strike prices, we 

interpolate volatilities for new strike prices based on percentage ratio of 

strike-to-index. In other words, we standardize the strike prices and calculate 

the new values with a percentage of an observed price of an underlying 

asset. In our study, the moneyness change is one percentage point denoting 

that 40 % ITM and OTM strike spread and 80 standardized observations. The 

observed ratios for S&P 500 index options and to-be-standardized ratios are 

presented in the table 3.1 along with the amount of observations,  

 

Table 3.1. Observed Strike-to-Index Ratios for All Series, S&P 500 Index 

  MAR APR MAY JUN JUL SEP DEC Standardized 

Low 0.92 0.89 0.98 0.85 1.00 0.81 0.85 0.60 

High 1.07 1.19 1.17 1.26 1.13 1.41 1.46 1.40 

Observations 21 34 10 22 11 16 16 80 

 

Table 3.1 shows that the observed strike prices differ quite a lot during the 

maturities.  The series with least maturity until expiration tends to have more 

observations and the series with longer maturities have less (naturally since 

trading is more active close to the exercise date and there is more demand 

for options on varying strike prices). The moneyness of option series is also 

wider with the longer maturity options. Table 3.2 presents the same data for 

DAX index option series,      

 

Table 3.2. Observed Strike-to-Index Ratios for All Series, DAX Index 

  MAR APR MAY JUN SEP DEC Standardized 

Low 0.66 0.91 0.93 0.90 0.92 0.23 0.60 

High 1.62 1.18 1.19 1.60 1.44 1.73 1.40 

Observations 71 36 20 61 52 63 80 
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The DAX index option series have significantly more price observations as is 

the case with the wideness of strike price moneyness. Therefore there is no 

need for large scale extrapolation, unlike with the S&P 500 observations.    

 

Mathematically, series of X’s and Y’s (the observed values of strike prices 

and volatilities, respectively) are used on determining the new value of Y 

(volatility) which matches the new given value of X (the percentage strike-to-

index ratio price). The new value of Y is interpolated to lay on the polynomial 

curve fit by the least squares method (minimizing the sum of squares of 

deviation from the mean). 

 

The smoothed smiles were used for calculating the PDF’s with an equation 

19. Note that since three call price observations are needed for calculation, 

the probabilities for the most extreme values were not possible to be derived. 

According to the equation, we will form a butterfly spread of two bought call 

options (with strike prices of δ−X  and δ+X ) and two sold call options with 

strike price of X . In this case the spread is small, one percent in ratio of X/S, 

which is in index points around 13 and 69 for S&P 500 and DAX, respectively.  

After we process the equation for all strike prices we obtain the PDF ( )Xg . 

The results for analysis are discussed in the next section. 
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4. Results 

 

The results for analysis are discussed in this section. The main hypothesis 

was to determine if BS model does a fair estimate in pricing the options on 

index futures markets in the United States and in Europe. The indices chosen 

present two different types of markets, a pit-traded and an electronic market, 

and the objective was to compare the pricing tendencies on different trading 

platforms. In other words, to determine if one’s implied volatilities differs more 

from the premiums suggested by the Black-Scholes model and if it correlates 

with the liquidity of the market. Implied volatility smiles are used to determine 

implied probability distribution functions which are interpreted and based for 

trading strategies in the last part of this section. 

 

4.1. Volatility Smiles and Surfaces 

 

The graph 4.1 presents the smoothed volatility smile for March 2008 S&P 500 

index option (expiration in 28 days). 
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Graph 4.1. S&P 500 smoothed volatility smile, March 2008   
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X-axis denotes the strike-to-index ratio and Y-axis the implied volatility. The 

implied volatility smile curve follows a quadratic order and is estimated with a 

least squared method described earlier. When compared to original, “rough” 

and non-standardized volatility smile, one should note the heavily 

extrapolated tails (graph 3.1). The original data set had observations ranging 

within the ratio of 0.92 to 1.07 and after the smoothing and extrapolation; the 

moneyness ranges 40 % in-the-money and out-of-the-money. Naturally, the 

reliability of estimation suffers when the curve is extrapolated for far outside 

of the range of the original data set. But in the other hand we can not either 

assume the volatility to be constant outside the observed range as Shimko 

(1993) does in his research. As we know from the original observations, the 

volatility seems to have some kind of increasing nature towards ITM. 

Therefore the assumption of constant volatility outside observed range can 

not be used. The curve has a smile shape (the function is convex) and there 

is a noticeable difference between the ITM and OTM volatilities for a given 

moneyness12. The most extreme ITM volatility is well above the 

corresponding OTM volatility (over 160 % versus 100 %)  Graph 4.2 shows 

the volatility smile for DAX index option series with the same maturity. 

 

                                                 
12

 Note that we are discussing about call options here. 
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DAX March 2008 volatility smile 
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Graph 4.2. DAX smoothed volatility smile, March 2008 

 

Due to the electronic trading (and possibly more active trading also), the 

estimated volatility for DAX index futures options is significantly lower on tails 

and higher at-the-money (ATM) than is the case with the S&P 500 smile. 

There is a significant ATM volatility difference between the two series, S&P 

500 ATM volatility being less than 11 % while DAX series have ATM volatility 

of over 26%. This indicates clearly in this point that the DAX data has a lower 

kurtosis than the S&P 500 series and it might follow the standard normal 

distribution better than the S&P 500 data. That is, the S&P 500 data then 

seems to be leptokurtic (high kurtosis denoting a higher peak and fatter tails 

than the normal distribution).  
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S&P 500 April 2008 volatility smile
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Graph 4.3. S&P 500 smoothed volatility smile, April 2008 

 

The volatility curves for S&P 500 option series with longer maturities differ 

from the March 2008 clear smile-shaped curve (graphs 4.3 to 4.8). The shape 

of the curve is more like a skew than a smile. This behavior of options on 

index futures is also noted by Vähämaa (2004). The volatility is high on deep 

ITM strike prices and the trend is declining when the strike increases. April 

2008 volatility smile forms a slight curve shape on extreme OTM strikes but 

this can not be observed from option chains with longer maturities which have 

clearly skewed shapes and steadily decreasing volatilities over increasing 

strike. 
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S&P 500 May 2008 volatility smile
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Graph 4.4. S&P 500 smoothed volatility smile, May 2008 

 

S&P 500 June 2008 volatility smile
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Graph 4.5. S&P 500 smoothed volatility smile, June 2008 
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S&P 500 July 2008 volatility smile
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Graph 4.6. S&P 500 smoothed volatility smile, July 2008 

 

S&P 500 September 2008 volatility smile
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Graph 4.7. S&P 500 smoothed volatility smile, September 2008 
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S&P 500 December 2008 volatility smile
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Graph 4.8. S&P 500 smoothed volatility smile, December 2008 

 

We can determine from smoothed volatility smiles that the volatility level 

seems to be an increasing function of time (graphs 4.4 to 4.8). When the time 

passes (the maturity shortens) the volatility level increases steadily. Volatility 

change is higher on deep ITM strike prices than with the deep OTM strikes 

which are quite conservative during most of the lifespan of an option. Some 

decreasing tendency can also be noticed from OTM volatilities during the 

maturity but in general, they are within the range of 10 to 15 %. This study 

concentrates on different option chains in a discrete moment of time so this 

notation should be confirmed with a time series of observed quotations, 

preferably with a research consisting of daily observations from the whole 

lifespan of the option chain. That is, to be able to transfer the observed 

pattern into a successful trading or hedging strategy. Graphs 4.9 to 4.13 

present the implied volatilities for DAX option chains from April to December. 
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DAX April 2008 volatility smile
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Graph 4.9. DAX smoothed volatility smile, April 2008 

 

DAX May 2008 volatility smile
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Graph 4.10. DAX smoothed volatility smile, May 2008 
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DAX June 2008 volatility smile
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Graph 4.11. DAX smoothed volatility smile, June 2008 

 

DAX September 2008 volatility smile
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Graph 4.12. DAX smoothed volatility smile, September 2008 
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DAX December 2008 volatility smile

0

10

20

30

40

50

60

0
.6

0

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0

0
.8

4

0
.8

8

0
.9

2

0
.9

6

1
.0

0

1
.0

4

1
.0

8

1
.1

2

1
.1

6

1
.2

1
.2

4

1
.2

8

1
.3

2

1
.3

6

1
.4

 
Graph 4.13. DAX smoothed volatility smile, December 2008 

 

The pattern is similar to S&P 500 option series; the option chain with the 

shortest maturity shows a convex volatility curve while the longer maturities 

form a skew. The increment in the volatility level over time could not be 

observed so clearly in DAX series thus indicating more harmonious volatility 

change between option series than with the S&P 500 series. As noted above, 

the DAX option series tend to be less leptokurtic and therefore they should fit 

the normal distribution better than the S&P 500 data. The market-implied 

volatility surfaces are plotted in graphs 4.13 and 4.14. 

 



 58 

0.60

0.72

0.84

0.96

1.08

1.2

1.32

2
8

1
1

9

3
0

1
0

50

100

150

200

S&P 500 Option Volatility Surface

 
Graph 4.13. S&P 500 option volatility surface on 22

nd
 of February 2008. 

 

In graph 4.13, X-axis denotes the strike-to-index ratio, Y-axis the maturity 

(from March to December, 28 days to 301 days) and Z-axis the implied 

volatility. The volatility surface presents the market estimation of the implied 

volatility for traded maturities at one discrete moment in time and does not 

describe the future evolution process of volatility. For such analysis, a 

historical daily data set for a long period of time would be required, preferably 

observations from the whole period of maturity. Also, the predictive power of 

an outcome of such research should be significantly higher. This type of 

analysis can be both time and resource-consuming since daily volatility 

smiles are needed for one series. 

 

It can be easily seen from the graph how the option series with shortest 

maturity tends to be the most heavily traded one. The volatility tends to vary 

more over strikes with the option series expiring in 28 days than with the 

options with longer maturities. This happens due to the extrapolation problem 
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described earlier. There are significant variations in implied volatilities. This is 

understandable when we take into consideration two facts that will explain the 

differences in volatility; the uncertainty of an underlying price and the process 

of stochastic volatility over time. That is, the probability for an option contract 

to be in-the-money at the expiration date is greater for options with a longer 

maturity than with the ones with a shorter maturity. Similar changes in 

volatility between the maturities can be detected also for the DAX option 

chains (graph 4.14), 
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Graph 4.14. DAX option volatility surface on 22

nd
 of February 2008. 

 

The volatility variation tends to be more conservative with options of longer 

maturities, but shows significant increase when approximating the expiration 

date. Thus, our surfaces indicate two facts that a practitioner should keep in 

mind. Firstly, Vega, the sensitivity of a call price to an increase in implied 

volatility, is more important variable if one’s portfolio consists of options with 
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shorter maturities. Furthermore, Vega should be carefully monitored since the 

price changes rapidly when Vega changes (Shimko 1993). 

 

Secondly, S&P 500 options have a higher Vega than DAX options since the 

surface seems to possess a lot of variation in volatility. This is indicating that 

one should carefully examine the market (the index) since different underlying 

assets have individual volatility surfaces which in addition, are always in a 

continuous and dynamic transformation (stochastic volatility). Traders could 

then make bets against the market and try to profit from the changes in 

implied volatility level.  

 

Generally, these volatility trading strategies are based on the shape of the 

current implied volatility curve or surface and the trader’s estimation of the 

future outcome. The trader takes a position that generates profit if his 

perception of the future change in volatility curve is correct. For a Delta 

hedger, it is important to understand the relation of implied volatility and Delta 

and not to forget Gamma which measures the change in price when Delta 

changes. Delta defines the sensitivity of change in the value of an option 

when the underlying price changes, for example $1. If implied volatility 

increases, the delta will approximate to 0.5 (for call option, -0.5 for put 

option). This means that the ITM option has more probability to be OTM at 

expiration and vice versa. A portfolio consisting of one short option contract 

and 0.5 long underlying assets will be then neutral to a price change of an 

underlying. Similarly, when implied volatility decreases the ITM option Delta 

will approximate to 1.0 and OTM option to zero (-1.0 and zero for a put 

option). The probability of an option to stay ITM or OTM at expiration 

increases. When the volatility changes, hedger will adjust his position 

accordingly and the aim should be to have the correct hedge ratio estimated 

for the portfolio and a Gamma of zero. In this case the portfolio is truly neutral 

and the Delta is not going to change rapidly which decreases the need to 

constant adjustment to a portfolio. Implied volatility smiles and surfaces come 
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handy in estimating the current volatility level and what the volatility level 

might be in future. In practice, if the portfolio is formed with short ITM call 

options and long underlying assets and the current implied volatility surface is 

similar to ours in graph 4.13, we could assume that the implied volatility level 

has an inverse relation to maturity. The term structure of volatility would be 

then skewed towards the longer maturities. The increment in implied volatility 

means that the Delta of our option contract will decrease. Therefore we need 

less long positions in an underlying asset for one short option contract in 

order to have a portfolio Delta close to a zero and indifferent to a price 

change of an underlying. Incorrect volatility estimation would lead to an 

incorrect Delta ratio and to a non-optimal portfolio. Therefore it is crucial for a 

hedger to know the implied volatility and its relation to a hedge ratio. 

Vähämaa (2004) studied the inverse relation between the stock price and 

volatility and the effect of it to hedge ratios. He came to a conclusion that 

since the volatility is not constant as assumed by BS model the hedge ratios 

used will be exaggerated. The trading strategies based on implied variables 

are discussed more thoroughly in the next Section.  

 

For illustrative purposes, the graph 4.15 presents the S&P 500 volatility 

surface with a strike-to-index ratio closer to ATM (20% ITM and OTM) and 

which will describe more clearly the difference between options with different 

volatilities and maturities and without the extreme values obtained by 

extrapolation. 
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Graph 4.15. S&P 500 option volatility surface with limited strike prices. 

 

We can see from the graph the same things that were noted earlier. The 

series with shortest maturity has a clear smile pattern while the series with 

longest maturities form a skew pattern with an increasing volatility towards 

the expiration date. In both cases (graphs 4.15 and 4.16), the implied volatility 

is higher for ITM options. When examined closer to ATM, the S&P 500 

surface has a lower volatility than the longer maturities. The DAX surface 

differs in this matter, the ATM volatility is slightly higher for March than for 

April option chain. Also, the DAX March curve shows only a slight smile 

shape and the overall surface tends to be significantly more harmonious than 

the surface for S&P 500 index futures. One explanation for this could be the 

trading system used and the settlement pricing process of option series as 

discussed earlier. Pit-traded options could be priced more individually, based 

on the supply and demand, unlike in electronic trading places like EUREX 

where most of the option price quotations could be calculated from the nearby 
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strikes and not entirely individually by the supply and demand in the market 

place. The fact that observed DAX strike quotations are extremely 

standardized when compared to S&P 500 quotations is strongly supporting 

this perception. Moreover, this could lead to a reduced possibility of option-

implied information in the traded quotations as the importance of “market 

knowledge” is reduced via automated trading. 
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Graph 4.16. DAX option volatility surface with limited strike prices. 

 

Moreover, the existence of non-flat volatility surfaces for both option series 

clearly demonstrates that the assumption of the BS model does not hold and 

needs to be relaxed. These findings are consistent with the findings of other 

researches and the literature of inaccurate pricing by BS model is extensive. 

Vähämaa (2004) argues that these inconsistencies are caused by market 

imperfections such as bid-ask spreads, illiquidity and non-continuous trading. 

These reasons could affect our smiles too, especially the illiquidity and non-
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continuous trading. In next section we define the implied probability 

distribution functions based on the implied volatility smiles presented in this 

section. 

 

4.2. Risk-Neutral Probability Distributions 

 

The risk-neutral probability density functions were constructed with the 

Breeden-Litzenberger method described earlier in Section 2.2.7. The 

following graphs compare the obtained distributions to a standard Gaussian 

normal distribution. The main interest is to determine if there is any difference 

from a normal distribution in the distributions based in market quotations. 

Graph 4.17 describes the obtained results for S&P 500 March 2008 option 

chain. 

 

 
Graph 4.17. S&P 500 Probability Distribution Function, March 2008 

 

The histogram shows the probabilities of different strike prices based on the 

data and compares it to the standard normal distribution which is denoted by 
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the curve. The histogram is highly leptokurtic (extremely high peak and fatter 

tails than the normal distribution). It is significantly more probable to have 

situations in which the strike-to-index ratio is more than 1.30 while the 

difference in deep ITM moneyness is not as significant. Also, the high peak 

also suggests that the normal distribution highly underestimates the 

probabilities very close to ATM moneyness while overestimating the 

probabilities of X/S ratio being in the ranges of 0.75 to 0.95 and 1.05 to 1.25 

at the expiration. 

 

Chang and Tabak (2002) have noticed a deviant pattern from the normal 

distribution in currency options markets but their proprietary distribution 

shows a clear pattern of bimodality. Ritchey (1986) has also observed similar 

tendencies. In our study the pattern is not as obvious as is the case with the 

results of Chang and Tabak as we have not been able to identify the bimodal 

behavior so clearly. Also their constructed distribution has a second peak 

close to the ATM moneyness (X/S close to 1.20) while our S&P 500 data 

shows higher probabilities for extreme deep OTM moneyness only (X/S over 

1.30). These bimodal distributions exist when there are two clearly separate 

and individual possible future outcomes for an underlying price. A good real 

life example could be a presidential election where only 2 candidates exist. 

Although bimodal distributions also have been recorded from the financial 

markets, they tend to be rare cases. Not many markets can be expected to 

have two clearly separate outcomes. Naturally, one has to keep on mind our 

extrapolation method and its limitations while interpreting our results.  

 

The PDF for DAX March 2008 option series shows a different pattern (graph 

4.18). The implied distribution follows the normal distribution extremely well. 

There can not be observed any type of high peaks nor fatter tails.      
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Graph 4.18. DAX Probability Distribution Function, March 2008 

 

The original data set is therefore highly correlated with the normal distribution. 

And when taken into consideration the fact that the original observations for 

DAX March 2008 options range from 4,500 index points to 11,000 (or strike-

to-index ratio of 0.66 to 1.61) we still could not find any pattern which would 

differ from the graph 4.18. The probabilities beyond 1.40 ratios tend to be 

extremely low, as the normal distribution suggests. The extrapolation factor 

does not concern the DAX option series then. Table 4.1 defines skewness 

and kurtosis by numbers for all option chains, 
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Table 4.1. PDF Descriptive Statistics  

S&P 500 March April May June July September December 

Observations 79 79 79 79 79 79 79 

Skewness 3.103 1.230 0.989 0.711 0.605 0.378 0.158 

Std. error of skewness 0.271 0.271 0.271 0.271 0.271 0.271 0.271 

Kurtosis 9.187 0.072 -0.049 -0.098 -1.112 -1.341 -1.453 

Std. error of Kurtosis 0.535 0.535 0.535 0.535 0.535 0.535 0.535 

DAX March April May June September December  

Observations 79 79 79 79 79 79   

Skewness 1.385 0.991 0.816 0.631 0.344 0.268   

Std. error of skewness 0.271 0.271 0.271 0.271 0.271 0.271   

Kurtosis 0.474 -0.538 -0.837 -1.103 -1.377 -1.393   

Std. error of Kurtosis 0.535 0.535 0.535 0.535 0.535 0.535   

 

Since the normal distribution is symmetric in shape, it has a skewness and 

kurtosis of zero. All distributions are skewed to the right since they have a 

positive skewness furthermore, suggesting that the OTM moneyness 

probabilities are higher than ITM probabilities. In other words, there is more 

probability mass on the right side of the mean of the distribution. Kurtosis is 

extremely high on S&P 500 March distribution but decreases steadily over 

maturity. The high kurtosis can be also noted from the histogram in graph 

4.17. The kurtosis is significantly lower for DAX distributions and the 

decreasing tendency is similar to S&P 500 series. This indicates that the S&P 

500 March option chain does have a high peak while the DAX chain is only 

statistically speaking slightly peaked. 
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Graph 4.19. S&P 500 Cumulative Distribution Function, March 2008 

 

Graph 4.19 shows the cumulative distribution function for the S&P 500 March 

series. It shows the exact same information than the probability distribution 

function but describes how the probabilities should accumulate when 

summed together if the distribution is symmetric in shape. As we are talking 

about probabilities, the sum of cumulative probability is exactly 1.0. The 

deviation from the normal distribution is more easily observed from CDF 

graphs. E.g. note the overestimation of the normal distribution between the 

ranges 0.75 to 0.95 and 1.05 to 1.25 discussed earlier (the ranges differ 

some due to the accumulation). Graph 4.20 confirms the earlier notation of 

tight positive correlation between the DAX distribution and the normal 

distribution. Only slight deviation can be observed. 
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Graph 4.20. DAX Cumulative Distribution Function, March 2008 

 

In addition to PDF and CDF graphs, also P-P (Probability-Probability) plots 

are presented to further explain the degree of fit between the option-implied 

distributions and the normal distribution. P-P plot differs from CDF graph in 

the way that it plots the distributions’ cumulative proportions. 
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Graph 4.21. S&P 500 P-P Plot, March 2008 

  

Our customized distribution of S&P 500 shows significant deviation from the 

normal distribution also in P-P plot (graph 4.21) and DAX distribution fits the 

normal distribution quite nicely (graph 4.22). 
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Graph 4.22. S&P 500 P-P Plot, March 2008 

 

The graphs for rest of the maturities can be found from the appendix D (PDF, 

CDF and P-P plots). The results on rest of the DAX distributions were highly 

similar to one discussed in this section and no significant differences from the 

normal distribution could be detected. The same pattern of decreasing 

deviation from the normal distribution could also be observed from S&P 500 

distributions. Graphs 4.23 and 4.24 present the distributions for all maturities 

in the S&P 500 and DAX series. The graphs clearly illustrate what is the time-

varying nature of implied probability distribution functions and how heavier 

trading affects the probabilities.  
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Graph 4.23. S&P 500 Implied Probability Distributions 
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Graph 4.24. DAX Implied Probability Distributions 

 

Since one might wonder why market implied probability distributions are 

important for practitioners, the next section will explain the strategies based 

on implied distributions further. It was discussed earlier how forward-looking 

methods are considered superior predictors for future changes in the 

underlying asset price when compared to historical models. Implied volatility 

can be used as an indicator of current market trends, e.g. the cheapness or 

expensiveness of an option contract can not be observed from the underlying 

price only but from volatility instead. Also, the price of an option contract 

today is useless when compared to the price in past because the time factor 

is a very important variable which has to be taken into a consideration. The 

riskiness of a given option is then used as a standardized pricing tool for 

similar option contracts. 

 

4.3. Probability Trading Strategies 

 

Traders can use smiles, surfaces and implied distributions for quickly 

estimation if their option contract is expensive or not and to adjust their taken 
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positions accordingly. The concepts of implied volatility smile and probability 

distribution are closely tied together. The strong convex smile function 

indicates that the PDF will have fat tails and higher peak.  If practitioner’s 

view of the future probability of prices and volatility does not follow the market 

view, he can design a strategy to bet against it. Of course, this requires that 

the implied volatility surface (and smile) is based on a sufficient amount of 

observations (no illiquid option series) so a good estimation for the “correct 

market probability distribution” can be described. In practice, this becomes 

very difficult since even the most liquid option markets are not quite liquid 

enough. It would be more than absurd to make bets against the market if the 

strategy is not based on a precise smile or distribution. Basically it would not 

differ from tossing a coin when making investment decisions. In other words, 

the importance of precise distribution estimation is crucial when practitioner 

“buys undervalued and sells overvalued probability” (Shimko 1994). 

 

The optimal trading strategy can be calculated from the difference between 

the proprietary and market probability distributions (equation 21) (Shimko 

1994). The risk aversion term in the equation is used on reducing the position 

taken for more risk-averse practitioners. 

 

AversionRiskyprobabilitMarket

yprobabilitMarketyprobabilitoprietary
Payoff

1
*

Pr −
=  (21) 

 

The difference can be fitted in the same graph with the both views, and then 

an optimal strategy is easier to define with the equation 21 and to present 

graphically (graph 4.25). 
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Graph 4.25. Optimal strategy based on a proprietary view  

 

In graph 4.25, X-axis denotes the underlying price and Y-axis the probability. 

P curve is the proprietary view of the distribution. The trader assumes that the 

market implied distribution (M, the market view) is heavily underestimating the 

probability of an underlying asset to be significantly higher at expiration date. 

The thin dashed line (D) denotes the difference between the views and the 

bolded dashed line (S) the optimal strategy. The following graph describes 

the same situation with a simple long call option strategy (graph 4.26). 
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Graph 4.26. Simple long call option strategy with a solid proprietary view 

 

The upper graph shows how the trader believes strongly in a rise in the price 

of an underlying but also in some rise of volatility; the proprietary view has 

significantly more probability mass on X/S ratio over 1.0. If volatility was 

considered to rise significantly and there were no means of determining in 

which way the price changes, the proprietary distribution would show heavy 

tails and the strategy should be adjusted to match this. Trader enters into a 

long call option position with a strike price adjusted to his needs. Note that the 

optimal strategy here consists of a simple long call position for illustrative 

purposes; a long forward position could be also considered. The lower graph 

shows the payoff graph for long call. In reality, to be able to match the 

calculated optimal strategy the best, a combination of instruments is required.  

 

Another example of the usage of implied distributions and volatility smiles for 

practitioners is the straddle strategy. A long straddle is built from an equal 
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amount of bought call and put options with the same strike and maturity and 

short straddle by selling an equal amount of same call and put options 

(MacDonald 2006, Ahoniemi 2007). With a long straddle strategy, the 

practitioner makes profit with both, the upward and downward movements in 

price and he expects the volatility to increase. The call option generates profit 

when the underlying price increases and in the same manner the put option 

will profit if the underlying price decreases. Or in other words, the strategy will 

generate profit when the volatility level increases.  

 

The payout graph is the opposite for the short straddle strategy and the profit 

consists of received premiums from the shorted contracts. Therefore the short 

straddle is used when the practitioner estimates the future volatility to be less 

than the market expectations. The payout graph for the long straddle strategy 

is a V-shaped curve where the loss consists of paid premiums if the 

underlying price does not differ greatly from the current level at expiration 

date and the contracts are not exercised. The long straddle example is 

presented in graph 4.27.  
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Graph 4.27. Long straddle strategy with a specified proprietary view 

 

The strategy is based on a practitioner’s view of the distribution of the 

underlying asset price at the expiration date which has a leptokurtic shape 

(fatter tails in both sides of the distribution and a high peak). The market view 

underestimates the probability of extreme movements in an underlying price 

but also the prices being within a close range to ATM at expiration date. 

 

The lower graph describes the payout for a long straddle strategy (the dashed 

line) and shows the profit when payout graphs for call (the bolded line) and 

put (the thin line) options with the same strike and maturity are combined. He 

would then bet against the market view that the volatility is going to be higher 

in future (and therefore the price should deviate significantly from the current 

level) although he does not know if the price will rise or fall significantly. In 

other words, the long straddle strategy assumes the probabilities of extreme 

movements of an underlying asset price to be significantly higher and to profit 



 78 

from this. An example of such a situation could be an extreme uncertainty of 

the policies of an upcoming government in an unstable political atmosphere. 

A strangle strategy (a straddle with differing strike prices) should also be 

considered for proprietary distributions with heavy tails (graph 4.28).  

 

 
Graph 4.28. Long strangle strategy with a specified proprietary view 

 

In both examples, the trader here is buying an undervalued probability in the 

tails of the distribution. In this case the trader also assumes the probability of 

possible lower volatility also to differ from the market view so he is taking a 

risk of an underlying price to be in within a narrow range around the current 

price at expiration date. In addition, it has to be noted that trader’s proprietary 

view could also be more aggressive towards extreme movements and less 

aggressive to situations with a moderate or low deviation from the current 

underlying price thus either minimizing or eliminating this dilemma. The 

proprietary distribution curve would flat out but maintain the fat tails. Either 
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way, the example discussed can be seen as a good presentation of a real life 

trading situation based on implied probability distributions since no proprietary 

view will be as simple as the graph 4.26 suggests.  

 

Shimko (1994) defines more advanced strategies depending on the view of 

the future probability distribution. He argues that to be able to build an optimal 

strategy, one has to use combined derivatives strategies. The next example 

presents a case of bimodal distribution and an optimal strategy by usage of 

binary options13.   

 

 
Graph 4.29. Long binary strangle strategy with a bimodal proprietary view 

 

                                                 
13

 A binary option (sometimes referred to a digital option) pays a predefined fixed amount when the 

underlying price rises or falls in to a certain range. The cash-or-nothing option pays a specified amount 

of cash if the option is in-the-money at the expiration date. The asset-or-nothing option pays the value 

of an underlying asset (Hull 2003, Wilmott et al. 1995). 
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The upper graph shows the bimodal proprietary distribution with an optimal 

strategy curve. Lower graph present the profit for long strangle strategy (the 

dashed line) with cash-or-nothing binary options.  The strategy consists of 

equal amounts of binary call and put options on the same underlying but on 

different strike prices. Trader’s view is suggesting high volatility and extreme 

movements in price and the strategy will generate a predefined amount of 

profit in such a situation. The option contracts could also be shorted and the 

profit would consist of gained premiums (graph 4.29). 

 

 
Graph 4.30. Short binary strangle strategy with a bimodal proprietary view 

 

The presented strategies demonstrate how useful probability distributions can 

be for a professional trader with a thorough knowledge of the market trends. If 

we had a clear view of probability based on earlier experience or fundamental 

analysis, we could base our strategy on the estimated probability distribution 

functions for S&P 500 and DAX indices (graphs 4.23 and 4.24). For example 
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the S&P 500 March 2008 option chain has a very distinctive leptokurtic 

probability distribution function (graph 4.17). Let’s assume that we know for 

some reason (based on a fundamental analysis for example) that the 

probability of a high peak is heavily overestimated and the implied probability 

distribution should be flatter. The market participants expect the future price 

to be very close to the current price or to deviate significantly in 28 days. Our 

subjective view is that the recent uncertainty in the US market indicates that 

the volatility during the month will be higher than expected thus enabling 

deviation from the current price to be more probable. Our proprietary and 

market-implied views would look like the graph 4.31.   

 

 
Graph 4.31. S&P 500 long strangle strategy 

 

Since we have a specific subjective view of the future outcome, we make a 

bet against the market for example, with a long strangle strategy. The optimal 

strategy would follow more or less the bolded and dashed curve in the upper 
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graph (denoted by the S). The strategy would generate profit when there is 

deviation from the current underlying price at expiration. At the same time, the 

loss is limited to paid premiums of the two contracts. Also, it would be 

possible to build a straddle or either one with binary options instead of normal 

European option contracts. If the proprietary view defined specifically the 

direction of a price change, also forward and single option strategies would 

be useful. The next section draws a conclusion for this research. 
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5. Conclusions 

 

The most of the research in the area of option pricing and volatility estimation 

has concentrated on development of advanced models for modeling the 

evolutionary process of future volatility of returns of an underlying asset. The 

research interest aroused from the study of Engle (1982) in which he 

introduced his ARCH (Autoregressive Conditional Heteroscedasticity) model. 

Later on, at 1993, Heston introduced his Stochastic Volatility model. Both 

models study the historical time series and assume the volatility to follow 

stochastic process in future. The probability distributions based on these 

should give a fair estimation for prediction purposes. In this paper we took an 

inverse approach to this dilemma and studied the so-called forward-looking 

method of volatility estimation. In our analysis we used market premiums for 

obtaining a probability distribution function specified from the given data set at 

the given moment in time. Our goal was to determine if the market prediction 

of the process of an underlying price change has deviations from the 

simplified assumption of normality in distribution.  

 

Two data sets used in analysis consisted of option prices for S&P 500 and 

DAX stock index futures. The observations for option premiums were 

obtained on 22nd of February 2008 and the data sets consist of option series 

with several maturities for both cases. The data sets were chosen to 

represent two different trading systems from two different market areas, pit-

traded exchange in the USA and electronically traded exchange in Europe. 

 

Our research consisted of four different parts. First, the data was screened for 

illiquid observations and afterwards the volatilities were iterated from liquid 

observed option premiums. Secondly, the strike prices were standardized and 

the volatilities with respect to new strike prices were interpolated with an 
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assumption that the volatility curve follows a polynomial order of 2. The 

interpolation method used was quadratic least squares. Finally, the risk-

neutral probability distributions for the observed moment were calculated via 

the second derivatives of call option prices with the Breeden-Litzenberger 

method (1978). 

 

We found out in our research that the implied volatility differs from the 

assumptions made by the BS model between the two markets. The same 

type of observation has been noted in numerous studies and practically in all 

markets worldwide from as early as mid-1970’s. The smoothed volatility 

curves showed significant deviations from the constant level and the smile 

and skew patterns could be detected. This notation is consistent with the 

earlier research conducted in this area (Weinberg 2001). Moreover, there 

seems to be clearer smile pattern in the curve when liquidity increases while 

volatility decreases on extreme strike prices. Therefore we can safely 

conclude that market-implied option premiums contain some information over 

the BS model, especially with the shortest maturities when trading is at the 

most active. Shimko (1993) argues that hedgers will benefit from the 

information that observed premiums contain. The hedgers would consistently 

be using overestimated deltas for adjusting their portfolios if deltas suggested 

by BS model were used. Vähämaa (2004) comes to the same conclusion; the 

BS deltas are too high in comparison to ones derived from option prices. 

 

And in addition it has to be remembered that the BS model does not calculate 

the “correct price” for an option contract, the market and its numerous 

participants do. In other words, the participants in the market (i.e. the supply 

and demand) will determine the fair price and BS model is used on estimating 

this price. The BS model should not be seen then as a complete answer to 

option pricing issues but a tool that gives remarkably good estimations for the 

option market premiums. The aim is to try to understand and model the 

market behavior as perfectly as possible and in this process; the implied 
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distributions come handy since they give the market view at a discrete 

moment of time. One could argue that because of this, the market-implied 

methods will always be superior to historical models, no matter how 

advanced they get. As always in the economical theory, exact measurable 

results are not possible to obtain, only educated guesses that will explain the 

phenomenon statistically speaking well enough. This kept in mind, the implied 

PDF approach can be seen as a good alternative. 

 

Our risk-neutral probability distributions showed a noticeable difference 

between the two option chains. While the S&P 500 data differed greatly from 

the assumption of normality in the distribution, the DAX data followed it 

precisely, especially with the longer maturities. The S&P 500 options had a 

tendency of being skewed to the right for all maturities. In the case of DAX 

options, the results were not so self-explanatory although some skewness 

could be detected. As the risk neutral PDF describes the market estimated 

probability of an underlying price change for the given maturity, we can 

clearly see that with the S&P 500 March call option has more probability 

mass on the deep OTM strikes. This notation is convergent with findings of 

Miranda & Burgess (1998). This kind of pattern could indicate that arbitrage 

possibilities exist. That is, if the time-varying change in volatilities was taken 

into consideration and the results still showed a deviation from the normal 

distribution. The idea behind this is that the used pricing models would 

constantly underestimate the probabilities of events very close to the mean 

but also the extreme events occurring during the maturity and overestimate 

the probability of observations between these two probability zones. 

Weinberg (2001) suggests that this is due to the fact that the market 

participants are willing to pay more to hedge from the high fluctuations in the 

prices. Also, what was not clearly determined is the importance of trading 

costs to observed distributions (Jackwerth & Rubinstein 1996). 
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Further research on this matter could try to obtain a daily data for liquid option 

chain and to build daily distributions and therefore to determine patterns in 

the time-varying data. This could be done for a longer period of time 

depending on the historical quotations available. Other type of research 

interest would be a construction of a risk neutral time-varying distribution for 

one option series only during its maturity, from the moment of issuance to 

expiration. Different markets (exchange rates, interest rates etc.) could be 

also tested in the same manner that has been already done for the volatility 

curves. The characteristics of the market could be interpreted and one might 

base trading to these findings. It is important to mention here that the 

reliability or “predictive power” based on option premiums of index futures 

contracts might not fully represent the future dynamics of index returns. It has 

to be kept in mind that the implied volatility calculated from option premiums 

presents the price dynamics of futures contracts on the index, instead of the 

index itself. It is difficult to determine how well the futures contracts price 

process differs from the one of the index, if any. 

 

What comes to the volatility curve estimation, a study for different smoothing 

methods and their impact on distributions could be an interesting point of 

view. Especially, if the method of two mixed lognormals was compared to 

methods of quadratic least squares and cubic spline. These varying types of 

distributions could be then compared against other methods of the price 

process estimation (e.g. ARCH and stochastic volatility models) and to try to 

determine which method produces the most precise predictions in a short-

term and long-term basis when compared against the realized volatility14. 

  

                                                 
14

 For more information about prediction efficiency, see Weinberg, 2001. 
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Appendices 

 

Appendix A 

 

• Quadratic interpolation example 

 

1. Given the ( )00 , yx , ( )11 , yx , … , ( )nn yx , , solve the required value of y if x is 

given. The polynomial equations between the observed dots are, 

 

( ) 11

2

1 cxbxaxf ++= ,  10 xxx ≤≤  

( ) 22

2

2 cxbxaxf ++= ,  21 xxx ≤≤  

  . 
  . 
  . 

( ) nnn cxbxaxf ++= 2 ,  nn xxx ≤≤−1 ,  

 
if the curve is continuous. In this case only three points are observed, ( )00 , yx , 

( )11 , yx , ( )22 , yx . Graphical presentation being as follows, 
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Find iii cba ,, . 

 
2. Since the polynomial equation goes through the points observed, 
  

( ) 0101

2

010 ycxbxaxf =++=  

( ) 1111

2

111 ycxbxaxf =++=  
 

( ) 2212

2

122 ycxbxaxf =++=  

( ) 3222

2

223 ycxbxaxf =++=  

 
The first derivatives of the splines are, 
 

( ) 112' bxaxf +=  

( ) 222' bxaxf +=  
 
 
At point 1xx =  the rates of change in the ( )ixf  (the first derivatives) are equal 

in the same point. That is, 
  

212111 22 bxabxa +=+  which simplifies to, 
 

022 212111 =−−+ bxabxa  
 
Polynomial equations ( ) iiiii cxbxaxf ++= 2  go trough points (0, 0), (5, 5) and 

(8, 8) so we can set up the equations and form the matrix solution, 
 

( ) ( ) 000 11

2

1 =++ cba    (1) 

( ) ( ) 555 11

2

1 =++ cba    (2) 
 

( ) ( ) 555 22

2

2 =++ cba   (3) 

( ) ( ) 888 22

2

2 =++ cba   (4) 
 
Continuous derivatives at point (5, 5) for both spline equations, 
 

( ) ( ) 05252 2211 =−−+ baba   (5) 
 
The first spline is assumed to be linear, 
 

01 =a      (6) 
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With above 6 equations we can form the matrix solution which can be solved 
with an adequate mathematical program, 
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Appendix B 
 

• The Least Squares Method (Quadratic Interpolation) 
 
The data set is given by ( )00 , yx , ( )11 , yx , …, ( )nn yx ,  with the restriction of 

3≥n . It is assumed that the curve follows a polynomial order of two, i.e. 
 

( )xfcxbxay =++= 2
 

  
Mathematically the best fitting curve ( )xf  has the least square error by, 
 

( )[ ] ( )[ ]∑ ∑
= =

=++−=−=∏
n

i

n

i

iiiii Mincxbxayxfy
1 1

222

 

 

ix ’s are known while a, b and c are unknown. To define the least square 

error a, b and c, the first derivatives according to a, b and c must equal to 
zero, 
 

( )[ ]

( )[ ]

( )[ ]













=++−=
∂
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∂

∏∂

=++−=
∂
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∑

∑

∑

=

=

=

n

i

iiii

n

i

iiii

n

i

iii

cxbxayx
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cxbxayx
b
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1

22

1

2

1

2

02

02

02

 

 
Which can be expanded to, 
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By solving the above equations we can obtain a, b and c.  
 
Appendix C 
 

• S&P 500 index option volatility smile, March 2008. Original non-
extrapolated smile with observations. Underlying price is 1347 index 
points. 

 

 
 

• DAX index option volatility smile, March 2008. Original non-
extrapolated smile with observations. Underlying price is 6809 index 
points. 
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Appendix D 
 

• S&P 500 Implied Probability Density Functions 
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• DAX Implied Probability Density Functions 
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