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Coherent anti-Stokes Raman scattering is the powerful method of laser spectroscopy 

in which significant successes are achieved. However, the non-linear nature of CARS 

complicates the analysis of the received spectra.  The objective of this thesis is to 

develop a new phase retrieval algorithm for CARS. It utilizes the maximum entropy 

method and the new wavelet approach for spectroscopic background correction of a 

phase function. The method was developed to be easily automated and used on a 

large  number  of  spectra  of  different  substances..  The algorithm was successfully 

tested on experimental data.
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SYMBOLS

Roman letters

A MEM amplitude

c approximation wavelet coefficient or variable

d detail wavelet coefficient

E electric field [V/m]

f function or approximation component

G highpass wavelet filter

g detail component

H lowpass wavelet filter

K squeezing parameter

L space

l wavelet decomposition level

k wave vector [1/m]

M number of autocorrelation coefficients

N number of samples

P dipole moment [C]

t time [s]

R all real axis

S spectral line shape

W energy [joule]

Greek letters

α, β MEM coefficients

Γ line width

ε dielectric permittivity

η normal coordinate

θ final phase function [rad/s]

ν normalized frequency

φ error phase function [rad]

χ dielectric susceptibility

ψ full phase function or wavelet function [rad]

Ω, ω frequency [rad/s]
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1 INTRODUCTION

1.1 Laser spectroscopy

Last two or three decades are characterized by the great modifications in methods of 

the spectral analysis of atoms and molecules. It is connected with the application of 

lasers.  The dream of many generations of spectroscopists  has come true: in their 

hands there was a new light source of the big potency possessing monochromatic 

radiation with a small divergence. It has allowed not only to increase sensitivity and 

to simplify experimental techniques of existed methods: the new area of researches 

has  appeared,  laying  on  a  joint  of  quantum  electronics  engineering  and  optical 

spectroscopy. It was laser spectroscopy.

One of the methods of laser spectroscopy is the spectroscopy of  Raman scattering of 

light  [1].  The  first  experiments  on  observation  of  Raman  scattering  have  been 

connected  with  huge  experimental  difficulties.  It  was  owing  to  extremely  small 

intensity  of  the  useful  scattered  signal  arising  at  excitation  by  spontaneous  light 

sources.  As a  result  long lasting many hours exposures were necessary to derive 

spectra.  After  occurrence  of  lasers  there  was  a  rebirth  of  Raman  spectroscopy. 

Application of lasers has allowed to bypass many difficulties. Times of exposure 

necessary  for  filing  of  spectra  have  been  reduced  by  some  orders,  geometrical 

schemes of experiments are simplified, conditions for carrying out of temperature 

and polarizable experiments, etc. are improved.

Many types of objects such as liquids, dielectrics, semiconductors and metals became 

accessible to research.

Singularities of appearance of Raman scattering are intensively studied last years. 

Researches have approached to a series of new appearances. To them concern:

1. Resonance RS

2. Stimulated RS

3. Giant RS
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4. Hyper RS

5. Coherent anti-Stokes RS

Among the new methods of laser spectroscopy in which significant successes are 

achieved, it is necessary to name coherent anti-Stokes Raman scattering spectroscopy 

(CARS). The coherent scattering of light is a strongly non-linear optical effect which 

is a non-linear variety of Raman scattering of light.

Coherent  character  of  scattering  in  CARS  spectroscopy  causes  its  some  basic 

advantages in comparison with spontaneous Raman spectroscopy: very high powers 

of  signals,  a  small  divergence  of  the  scattered  radiation,  elimination  of  noise 

connected with a luminescence of examples.

1.2 Motivation of study

However, the nonlinear nature of CARS spectroscopy complicates the analysis of the 

received  spectra.  It  is  caused  by  the  fact  that  the  line  shape  in  CARS  spectra 

considerably differs from the form of a line shape in spontaneous Raman spectra. In 

many practical applications, for example, at the analysis of complicated substances, a 

priori knowledge of  the vibrational spectra of spontaneous Raman measurements of 

separate  components  is  necessary  for  correct  extraction  of  the  information  from 

CARS spectra.  Additional  data  is  required  because  the  intensity  of  the  scattered 

radiation in the coherent spectroscopy does not depend directly on concentration of 

separate components in a substance. Therefore transformation of CARS spectra to 

Raman scattering spectra is necessary. Difficulties arise at the analysis of samples 

with unknown content when spectra of separate components are not available.

Thus the problem in extraction of the information from coherent anti-Stokes Raman 

scattering without any prior knowledge of additional spectral data is actual. Some 

techniques are already developed. One of them will be explained in the literature 

overview. However, the existing methods require the individual analysis for spectra 

of various substances.
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1.3 The purpose of the work

The  purpose  of  this  Thesis  is  the  development  of  an  algorithm  which  extracts 

information  from  CARS  spectra,  suitable  for  maximum  wide  range  of  various 

substances. The origin of this work is to investigate a possibility of using wavelet 

decomposition in spectroscopic background removal.

In this work it is necessary to solve the following problems:

1. To receive experimental measurements of coherent anti-Stokes scattering spectra 

of various substances and some Raman scattering spectra for comparison.

2. To study and to analyze the known methods of extraction of the information from 

CARS spectra

3.  To  develop  a  phase  retrieval  algorithm,  suitable  for  automatic  computer 

processing. The algorithm will include the new method of spectroscopic background 

removal from CARS spectra.

4. To test the algorithm on spectra of different substances and to make conclusions 

about a possibility of application of the algorithm.
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2 GENERAL INFORMATION ABOUT CARS 

SPECTROMETRY

2.1 Spontaneous Raman scattering of light

Under an action of an exterior electromagnetic field the dipole moments are induced 

in a substance. These moments are connected with the distortion of an electronic 

cloud of atoms [2]. Thus, it is possible to use series expansion on strength of exterior 

electric field E:

P=10 E2 0 E23 0 E3... , (1)

where p is the induced dipole moment of an atom; ε0 is the absolute permittivity of a 

medium; χ1, χ2, χ3 are  corresponding linear and non-linear susceptibilities.

Susceptibilities  χi =  χ1,  χ2,  χ3, etc.,  in  turn,  depend  on  disposition  of  nucleuses. 

Therefore  it  is  possible  to  use  series  expansion  on  normal  coordinates  η  of 

oscillations of nucleuses:

i=i
0 di

d  
0

 d 2i

d 2  2... (2)

We shall present electric field strength in complex form:

E=E0 e−i0 t , (3)

where ω0 is  the frequency of initial  electromagnetic radiation.  The oscillations of 

nucleuses  should  happen  under  the  harmonic  law.  Accordingly,  it  is  possible  to 

suppose  that =cosi t=1 /20e
i jte i j t ,  where  Ωj are  corresponding 

frequencies of normal oscillations of molecules or crystalline lattices. Thus, we have 

the equation  for the induced dipole moment:

p=1
0 0 E0 e−i0 t

1
2  d1

d  
0

0 E00[e
−i 0− j te i0− j t]2

00 E0
2e−i20 t
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1
2  d1

d  
0 

0 E0
20[e

−i 20− j te−i 20 j t ]. (4)

Only the lowest factors of expansion on exterior field E and normal coordinate η are 

considered  in  the  ratio  (4).  According  to  the  common  theory  of  radiation,  the 

oscillating dipole moment leads to appearance of radiation which frequency is equal 

to the frequency of an oscillation of this dipole moment. The augend corresponds to 

the scattering of light without modification of frequency (Rayleigh scattering). The 

addend is caused by the Raman scattering, which happens due to modulation of an 

exterior field by optical oscillations with frequencies Ωj. The third item is caused by 

the scattering of light, accompanied doubling of frequency  (ω' = 2ω0). It is called 

Hyper-Rayleigh  scattering  of  light.  The  fourth  item  is  caused  by  scattering  on 

frequencies  ω' = 2ω0 ±Ωj.

Thus, in a spectrum of light scattered by molecules of a medium, it is discovered not 

only  a  spectral  line  of  a  light  source.  There are  also other  lines  which have  the 

frequencies displaced in comparison with the exciting mode. These lines are Raman 

scattering modes. Scattering with smaller frequency ω – Ωj refers to Stokes, and with 

greater ω + Ωj refers to anti-Stokes scattering [2].

The  basic  experimental  difficulties  arising  at  registering  of  spontaneous  Raman 

spectra are connected with very small intensity of the scattered radiation. Intensity of 

the  strongest  spontaneous  lines  makes  only  10-6—10-5 from  the  intensity  of  an 

exciting  line.  Weak  lines  can  have  intensity  on  some  orders  less.  Besides  the 

scattered light is radiated in a solid angle 4π steradian that leads to significant losses 

at its registration [3].

2.2 Coherent anti-Stokes Raman scattering of light (CARS)

Spontaneous  Raman  scattering  of  light  is  connected  with  thermal  oscillations  of 

molecules. It is a corollary of violation of a principle of superposition. Light waves 

and oscillations of a medium produce mutual influence against each other [4]. Raman 

spectroscopy studies the modulation of light by thermal (spontaneous) oscillations of 

molecules. It would be natural to expect a boomerang effect of action of light waves 

on molecular oscillations.
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The  reason  of  inverse  action  of  the  light  waves  on  molecular  oscillations  is 

dependency  i . When a molecule gains a dipole moment in a field of a light 

wave, it starts to co-operate with the wave. The energy of this interaction is

W =−PE=−i E2 . (5)

Thus the force starts to act on the molecule:

F=−dW
d i

=
d 
d i

E2 . (6)

If two light waves (E1 and E2) are spread simultaneously in a medium and they have 

frequencies  ω1 and  ω2, then the field E = E1 + E2  and  the force  F will contain, in 

particular, a component varying with frequency 1−2  . Usually waves E1 and E2 

are the waves of visible range. Nevertheless it is possible to make the difference 

1−2  very small, and in particular close to the frequency of  normal oscillation: 

1−2= j . The  resonance  swing  of  oscillations  of  atoms  in  molecules  is 

possible in that case. In these conditions regular forced oscillations are superimposed 

on random molecular movement. The phases of these forced oscillations in various 

molecules are determined by phases of forcing fields E1 and E2.  Having directed to 

such medium a probe wave with frequency  ω, it is possible to observe Stokes and 

anti-Stokes waves with frequencies

s , a=±1−2.  (7)

Effectiveness of energy exchange between interacting waves, as at any resonance, 

depends on phase relations between them. Therefore the scattered wave will have the 

greatest  intensity  in  the  certain  directions  along  which  phase  relations  between 

spread waves are kept. These directions are set by conditions of phase synchronism:

ks ,a=k∓k1−k2. (8)

 k s , a is the wave vector of Stokes and anti-Stokes waves, k1,k2 ,k3 are the wave 

vectors of the probe wave and pump waves accordingly. A corollary of this is the 

narrow directness of the scattered wave that allows to collect the scattered radiation 
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almost completely and to direct it to a photodetector [3].

The anti-Stokes scattering is considered to be the most interesting, as in anti-Stokes 

area,  for  example,  there is  no luminescence of  a  sample.  The energy diagram is 

shown in Figure 1 [5].

Figure 1. The energy scheme of CARS. ωp is the frequency of a pump field, ωs is the 

frequency of a Stokes field, ωmolecule is the frequency of natural oscillations of a molecule, 

ωCARS is the frequency of a probe field [5]. 

It is natural, that scattering on the phase matching oscillations will lead to significant 

growth of intensity of the scattered light. It achieves 1% from intensity of the probe 

wave. It is necessary to underline, that so effective scattering is a corollary first of all 

phase matching or coherence of forced oscillations, instead of their big amplitude. 

The spectrum of a coherent scattering can be received, if there is a possibility of 

smooth frequency tuning of the pump waves.

The  interesting  singularity  of  the  CARS signal  is  exhibited.  Radiation,  which  is 

coherently scattered by molecules on frequency ωa, consists of two components: the 

resonant component connected with oscillations of molecules, and the non-resonant 

component  which  is  not  connected  with  molecular  oscillations.  The  second 

component practically does not depend on the difference in frequencies of the pump 

waves. As these components are coherent, they interfere among themselves and in a 

registered signal there are characteristic maxima and minima of intensity at scanning 
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the difference in frequencies near to frequency of a molecular resonance. Therefore 

the form of the line shape of molecular oscillations in spectroscopy CARS strongly 

differs from the form of a spontaneous Raman spectroscopy line [6].

2.3 Main principles and scheme of CARS spectrometry

The schematic diagram of experiments in CARS spectroscopy is presented in Figure 

2. Two pulse lasers 1 and 2 create simple harmonic pump waves with frequencies ω1 

and ω2. Frequency of radiation of the laser 2 is smoothly tuned. Radiation of lasers is 

focused by lenses 3 and 4 on a sample 5. Coherently scattered radiation on frequency 

ωa is gathered by the lens 6 and goes in a monochromator 7. Intensity of the scattered 

radiation is registered by a photodetector 8. The common CARS spectrum is also 

presented in Figure 2. Non-scattered part  of pump radiation is  cut off by opaque 

screens 9 and 10. One of pump waves appears as a probe wave in this scheme. The 

angle between pump waves (for liquid samples it is 1°–3°) is taken such that the 

condition of phase synchronism is satisfied [3].

Figure 2. Schematic diagram of  CARS spectrometer [3].
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For investigation of fluid and solid samples the spectrometer on the basis of two 

pulse lasers creating emission on wave lengths λ1 = 532 nm and λ2 = 550 - 615 nm, 

with the pulse-recurrence frequency from tens Hz up to kHz and duration of an 

impulse about 10 ns and power 10 - 200 kW, can be used [3].

2.4 The advantages of CARS

The main advantages of CARS are [2,3,5,6]:

1. The small divergence of coherently scattered radiation allows to study shone 

plants:  flames,  discharges,  etc.  The solid  angle of  gathering of coherently 

scattered light is so small, that the contribution of a shone background noise 

becomes insignificant. Besides, the small area of overlapping of pump waves 

in  a  sample  (microlitres)  allows  to  study  distribution  of  temperature  and 

concentration of various gases in processes of combustion and plasma. CARS 

spectroscopy has found application for study of the processes happening in 

internal combustion engines (including jet and rocket drives), in turbulent gas 

jets, supersonic aerodynamic streams, etc.

2. High sensitivity of the method (which is proved in [7]), a possibility to use 

impulse lasers with small time of a pulse (nano-, picoseconds and less) make 

CARS  spectroscopy  a  perspective  method  of  research  of  fast  relaxation 

processes, short-lived excited states, yields of photochemical responses, etc.

3. Unique possibilities of CARS spectroscopy are especially interesting to the 

analysis of complicated spectral contours under which some lines disappear.

Let's  suppose,  that  in  a  researched  sample  there  is  a  mixture  of  two  grades  of 

molecules. Some normal oscillation of molecules of the first grade has frequency Ω1, 

and  the  second  grade  has  Ω2.  If  the  difference 1 —2 is  great  enough,  the 

complicated contour which is presented in Figure 3(a) will be observed in the spectra 

of spontaneous Raman scattering. However if the frequencies of normal oscillations 

of these molecules differ slightly, we cannot judge how many and what components 

are hidden under it by the form the resulting contour 3 (b).
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Figure 3. Interference in CARS spectra [3].

In essence, other picture is observed in CARS spectra. As the waves scattered by 

molecules of different grades are coherent, there will be their interference, instead of 

simple addition of the intensities as it happens in spontaneous Raman. The registered 

spectrum will represent result of an interference of three components of the scattered 

radiation:  non-resonant  background noise  and  the  resonant  radiation  scattered  on 

molecules of the first and second grades. The characteristic aspect of such spectrum 

is represented in Figure 3(c) [3].

It is necessary to note one more important point. The nonresonant background noise 

and  resonant  components  in  the  scattered  radiation  are  linearly  polarized.  Plane 

orientations  of  the  resonant  components  polarization  depend  on  properties  of 

dispersing molecules and will be generally various. If we locate a polarizer before 

the entering slot of the monochromator, waves will pass through it, which strengths 

are equal to projections of the strength vectors of these components  E(non-r),  E(1) and 

E(2). Rotating a polarizer, it is possible to change magnitude of these projections  and 

the contribution of these or those component to a registered interference picture. In 

other words, in CARS spectroscopy there is an unique possibility to control the form 

of an observable spectrum due to the modification of the relative share of scattered 
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waves in an observable signal.

Thus, the fundamental difference of CARS spectra in front of spontaneous Raman 

spectra  consists  in  the  coherent  nature  of  CARS  spectra.  Separate  spectral 

components  are  summed  at  the  level  of  dielectric  susceptibility,  which  results 

interference in the final spectral distribution. As a result maxima can amplify or on 

the  contrary  be  extinguished  from  each  other.  In  usual  spontaneous  scattering 

spectral  components  are  summed  at  the  level  of  intensity,  and  the  resulting 

distribution is the simple sum of separate resonances [8].
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3.  RETRIEVAL  OF  THE  PHASE  FUNCTION  IN  CARS 

SPECTROMETRY

3.1 Phase retrieval problem

In the work [8] it was explained, that for correct extraction of the information from 

CARS  spectra,  generally  it  is  required  to  measure  the  spectrum  of  spontaneous 

Raman scattering and to reveal separate modes. It makes possible to perform a least-

squares fit  of the theoretical expression of the CARS spectra to the experimental 

data. The required parameters can be usually deduced directly from the data.

Figure 4. (a) is the spectrum of spontaneous Raman scattering, (b) is the CARS spectrum, (c) 

is the reconstituted spectrum a spectrum spontaneous Raman [9].

As an example in Figure 4 spectra of substance (1-Palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine) (analyzed in the article [9]) are presented. In the first Figure 4(a) the 

spectrum of spontaneous Raman scattering is shown. Solid line represents the least-

square fit to the experimental data using nine vibrational modes. In the second figure 

the spectrum of the same substance measured at  the same temperature by CARS 

method is presented. In the second Figure 4(b) the measured CARS spectrum and its 

least-squares fit using the same nine vibrational modes are presented. If we try to 

calculate a reconstituted Raman spectrum from this least-squares fit, we will discover 

that  it  provides  us  with  incomplete  or  incorrect  information  about  the  original 
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spectrum (Figure 4(c)). 

As a result, following statements were suggested in [8]. It is possible to achieve a 

good fit for a spontaneous Raman spectrum by increasing the number of vibrational 

modes. But this is not true for a CARS spectrum. This is because of the fundamental 

difference between CARS and Raman spectra  described above.  Different spectral 

components  in  a  CARS spectrum cause  interference  in  a  final  spectrum,  but  for 

Raman it is just a sum of resonances.

The possibility of direct extraction of the Raman line shape from CARS spectra was 

demonstrated [8, 10]. It utilizes the maximum entropy method and does not require 

any prior knowledge of the vibrational resonances in a medium.

3.2 The maximum entropy method (MEM) in phase retrieval 

The ideas of using MEM were completely described in the articles [8,10,14]. It is 

important for the following discussion to present the main results of these works.

Coherent  anti-Stokes  Raman scattering of  light  is  a  non-linear  third-order  optical 

process  [3,4,11].  CARS  signal  is  emitted  owing  to  the  third-order  polarization 

P 3as  which  is  produced  by  three  fields.  They  are  an  electric  pump field 

E pu pu ,  a Stokes field E s s and a probe field E pr s . A femtosecond 

broadband  laser  is  used  in  a  multiplex  CARS measurement.  The  Stokes  field  is 

produced by this  laser.  Both  pump and probe fields  are  obtained  from the  same 

narrow-band laser. If we make all these fields parallel-polarized the CARS signal 

will be given by the equation [8,10]:

I CARS as∝∣P
3 as∣

2=∣E pu∣
2∣E pr∣

2∣E s∣
2∣11111

3  −as ; pu ,−s , pr∣
2 (9)

Where 11111
3  is the corresponding component of the tensor of the nonlinear third-

order dielectric susceptibility. As it was described above, a CARS spectrum consists 

of two parts.  Thus, it  is possible to consider  11111
3 as the sum of non-resonant 

NR
3  and resonant Raman R

3  parts [12].

1111
3 as=NR

3R
3 , (10)
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Where the non-resonant component is purely real and does not depend on frequency.

The resonant component is a complex function. It can be written as [12]:

R
3=∑

j

A j

 j− pu−s−i j
(11)

Where A j , j  and  j are the amplitude, the line width and the frequency of jth 

Raman mode accordingly. At experimental measurements the received CARS signal 

is normalized using reference signal from the sample which does not have vibrational 

resonances in the considered frequency range.

Thus, received spectral line shape S AS  is proportional to the squared modulus 

1111
3 :

S AS=
∣NR

3R
3as ∣

2

∣NR ,ref.
3 ∣2

=∣nr
3 r

3as∣
2=

=nr
3  22nr

3Re [r
3 as ]∣r

3 as∣
2 . (12)

Where  nr
3 is  the normalized  non-resonant  background term and  r

3  is  the 

normalized resonant Raman term [8,10,12].

For the purpose of extraction of the quantitative information from CARS spectra, for 

example,  concentration  of  substance  in  a  sample,  the  knowledge  of  imaginary 

component or phase function r
3  is necessary.

The spectral line of spontaneous Raman can be received from imaginary component 

of a linear dielectric susceptibility [8, 10]:

I R∝∑
j
∣R

1∣=∑
j

A j j

 j−2 j
2 (13)

From  comparison  of  expressions  (11)  and  (13)  it  is  visible,  that  imaginary 

components  R
3  in  CARS spectra  and  R

1  in  spontaneous  Raman  spectra 

contain  the  identical  spectral  information  and  they  can  be  compared.  The 
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determination  of  phase  function  of  a  CARS  spectrum allows  to  reconstitute  the 

spontaneous Raman line shape. For a determination of phase function the maximum 

entropy method is  used  as  the most  optimum.  Application of  MEM in CARS is 

described in the works [8,10, 13, 14]

A typical CARS spectrum consists of approximately 250 points, spaced by 2,6 cm-1. 

They cover a spectral range about 650 cm-1 [8].

The basic equation for the maximum entropy model for a CARS line shape [13]:

S  ; K =∣ K 

1∑
p=1

M

a p K exp −2 p ∣
2

=∣ K 
AM  ; K ∣

2

(14)

Here the spectrum is decomposed into M Fourier components AM. Each component 

can be expresses as:

AM ; K =1∑
p=1

M

a pK exp −2 p=∣AM  ; K ∣exp[ i ; K ] (15)

Where  ν is the normalized frequency from the least and greatest frequencies in a 

CARS spectrum  and squeezing parameter K.

= 1
2K1  as−min

max−min
K  ;min≤≤max ; K=0,1 , ... (16)

Special  interest  is  represented  with  a  phase  since  it  contains  the  information 

necessary  for  converting  of  a  CARS spectrum to  spontaneous  Raman.  It  can  be 

presented as [10]

 , K =− , K  (17)

Where  , K  is the error phase, and  is the final phase function.

S (ν; K) corresponds with S (ωas; K) as follows [8]:
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S  ; K ={S min; if 0
K
2K1 ;min

S ; if K
2K1 

K1
2K1 ;minmax

S max ; if K1
2K1 ≤1 ;max

(18)

Coefficients ap and β in the equation of the MEM model (14) are received by solution 

of system of simple equations [13,14].

[ С 0 C*1 ⋯ C*M 
С 1 C*0 ⋯ C M−1
⋮ ⋮ ⋱ ⋮

C M  C M −1 ⋯ C 0
][ 1

a1

⋮
a M

]=[∣∣
2

0
⋮
0 ] (19)

Where * means complex conjugate. Autocorrelation coefficients C(m) are defined by 

the discrete Fourier transform of a CARS line shape at the discrete set of normalized 

frequencies n=n /N n=0,1 , ... ,N  . Thus,

С m; K =N−1∑
n=0

N−1

S n ; K exp2 i mn , (20)

where N=2K1N 0−11 and N0 is the number of samples S (υN; K).

Thus, it is necessary to determine two parameters for the maximum entropy model: 

the number of autocorrelation coefficients  M + 1 and the value of the squeezing 

parameter K. Magnitude of M is limited by the number of data samples: M≤N /2.  

If  we use the greatest  possible  value  M=M max ,  MEM approximates required 

phase function to the true one most precisely [8].

However by using the maximum value of M we transfer to phase function also noise 

from the initial spectrum. To reduce this noise we should reduce the magnitude of M. 

Best value M is taken so that it is large enough for a good approximation to the true 

function and small enough to remove parasite noise. 

Squeezing  parameter  is  easier  to  choose.  It  can  be  set  to  zero,  then 

S  ; K =S as  . However, if K >  0, S as  is squeezed  to narrower range. 
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It matters when using MEM for definition of the phase function. When the value of 

K is  more  than  one,  it  leads  to  magnification  of  a  constant  background   in  the 

resulting phase . In practice in CARS spectroscopy only two values K=0 and K=1 are 

used.

It  is  important  to  note,  that  the  phase  function  ; K  has  been  received 

exclusively from approximation of the measured CARS spectrum by the maximum 

entropy  method,  i.e.  directly  from  CARS  measurements.  As  a  result  the  error 

function   ; K   is  the unique unknown part  in  the  equation.  Moreover,  the 

function   , K   and  the  function    contain  the  identical  spectral 

information because the error function is non-resonant and is simply a background 

term.

Thus, there is a problem of definition of error function which represents a slowly 

varying background. In CARS spectroscopy the spectrum consists of very narrow 

resonance band  arranged on the large background. Then in the elementary case it is 

possible  to  assume,  that  =0  for  the  part  of  a  spectrum where  there  are  no 

strongly visible resonances [8,10]. 

=tan−1[ Imr
3

r
3Rer

3 ]≈0 (21)

Where lays far from all resonances. We receive

est=est  ; K ≈. (22)

The required spontaneous line shape in that case is the equation:

Im [r
3 ]≈S sin est . (23)

That is the first way of background correction.

3.3 The problem of the background term

The  example  of  calculation  of  a  spectrum  by  the  above  described  method  is 

presented in Figure 5. 
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MEM has been utilized on the measured CARS spectrum 5(a). The phase ψ 5(b) had 

been  received.  Background  term  (dashed  line)  was  calculated  approximately.  In 

Figure 5(c) the spectrum received by application of MEM ( Im {3} ) is shown in 

comparison with spontaneous Raman spectrum measured directly ( Im {1} ) [10].

Figure 5. The maximum entropy method [10].

In this case the background term of the phase was obtained by guessing those part of 

the spectrum where the resonance is observed.  Such method  is difficult to program 

on a computer  language.  The main  problem of  the  given  work is  to  develop  an 

algorithm which could be programmed easily. 
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4 WAVELETS

4.1 Introduction to wavelets

The wavelet  analysis  represents a  special  type of linear  transform of signals  and 

physical data  represented by these signals about processes and physical properties of 

mediums and objects. The basis of the eigenfunctions, on which expansion of signals 

is  spent,  possesses  many  special  properties  and  possibilities.  They  allow  to 

concentrate  attention  to  those  or  other  singularities  of  analyzed  processes  which 

cannot be revealed by means of traditional Fourier and Laplace transforms. 

Wavelets  are  the functions of a definite  form localized on the axis  of arguments 

(explanatory  variables),  invariant  to  shift  and  linear  to  operation  of  scaling 

(compression/stretching).  They  form  by  means  of  special  basis  functions  which 

determine their aspect and properties. On localization in temporary and frequency 

representation  wavelets  occupy  the  intermediate  position  between  the  harmonic 

functions localized on frequency, and the function of Dirac localized in time. For the 

first  time  this  term was  used  by  A.  Grossmann  and  J.Morlet  at  the  analysis  of 

properties of seismic and acoustic signals [15]. 

The  theory  of  wavelets  is  not  the  fundamental  physical  theory,  but  it  gives  the 

convenient  tool  for  a  solution  of  many  practical  problems.  The  basic  scope  of 

wavelet transforms is the analysis and processing of signals and functions which are 

non-stationary in time or inhomogeneous in space, when outcomes of the analysis 

should  contain  not  only  common  frequency  characteristics  of  a  signal,  but  also 

information about the certain local coordinates. In comparison with Fourier series 

expansion of signals, wavelets are capable with much higher exactitude to represent 

local singularities of signals. Unlike transforms of Fourier, the wavelet transform of 

one-dimensional  signals  ensures  two-dimensional  result,  thus  frequency  and 

coordinate are considered as explanatory variables that enables the analysis of signals 

at once in two spaces. 

One  of  the  principals  of  wavelet  representation  of  signals  at  various  levels  of 

decomposition  consists in separation of functions of an approximation to a signal on 

two  groups:  approximation  group,  which  is  rough,  with  enough  slow temporary 
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dynamics of modifications, and detail group, which has local and fast dynamics of 

modifications on a hum noise of smooth dynamics. It is possible both in temporary, 

and in frequency areas of wavelet representation of signals. 

Integral Fourier transform and Fourier serieses are the basis of the Fourier analysis. 

Fourier coefficients received as a result of the transform, give in enough information 

for simple physical interpretation, and simplicity at all does not belittle importance of 

the subsequent conclusions about character of an investigated signal. Application of 

the  integral  Fourier  transform  and  Fourier  serieses  (in  evaluations,  analytical 

transforms) is very obvious, all necessary properties and formulas leave by means of 

only two real-valued functions sin(t),  cos(t) (or one complex which is a sine wave 

cos it=cost i sint  ) [15].

4.2 Basic wavelet theory

Wavelet transform is not so good and widely known as Fourier, as it is applied rather 

recently and is in a stage of active development. We shall briefly describe the bases 

of wavelet transforms  (mainly from the article [16]).

L2R is the space of the functions f t on the all real axis  R— ∞ , ∞.  

This space has the definition of norm:

E f=∫
0

2

∣ f t ∣2 dt=∑
−∞

∞

∣cn∣
2 . (24)

The spaces L20,2 ,  which is used in expansions of Fourier, and L2R  are 

much different from each other. If we define the space on the all real axis L2 R ,  

the average value of a function should aspire to zero on ± infinity. The sine wave, 

in  that  case,  does not belong to L2R space,  and,  hence,  the set  of sine waves 

cannot be the basis of this functional space. It is necessary to discover simple enough 

functions for designing basis of the space L2 R.

The waves which form the space  L2 R , should aspire to zero at ±∞ and for 

practical purposes the faster, the better. We shall use well localized solitary waves as 

the basis functions. They are wavelets.
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All Fourier space  R20,2 is  completely built up by means of only one basis 

function w t . In the case of wavelets, we will try to build the functional space 

L2R the same way. That is we use only one wavelet t.  We shall note, that 

it  can be a wavelet with one frequency or with a gang of frequencies. Let's  first 

describe discrete transforms.

The task is  to  cover  all  real  axis  R−∞ ,∞ using only one localized function 

which fast aspires zero.  Most simply it can be made, having provided system of 

shifts or transpositions along an axis. Let for simplicity they will be integer values, 

i.e t−k  .

Now we need an analogue of a sine wave frequency. For simplicity we shall note it 

through degrees of the two: 2 j t−k  , here j and k are integers. Thus, by means 

of  discrete  scale  transforms  ( 1/2 j )  and  shifts  ( k /2 j )  we  can  describe  all 

frequencies and cover all axis, having unique basis wavelet t  [16]. 

Definition of norm: 

∣∣p∣∣2=〈 p , p 〉1 /2 , (25)

〈 p ,q〉=∫
−∞

∞

p t q*t dt . (26)

 Hence, 

∣∣2 j t−k ∣∣2=2− j / 2∣∣t∣∣2,  (27)

I.e.  if  a  wavelet  ∈L2 R  has  unit  norm,  then  all  wavelets  from the  set  of 

{ jk }

 jk t =2 j/22 j t−k  , j , k∈ I (28)

have also norm 1, i.e. ∣∣ jk∣∣2=∣∣∣∣2=1 .

Wavelet ∈L2 R is called orthogonal if the set { jk } defined by the expression 

(28) represents orthonormal basis of a function space LR  ,  i.e. 



25

〈 jk ,ℑ〉= jlkm (29)

And each function f ∈L2R could be presented in the form of the series

f t = ∑
j , k=−∞

∞

c jk jk t . (30)

A simple example of an orthogonal wavelet is HAAR-wavelet, named so after Haar 

who had suggested it. This wavelet is defined by the relations 

          H t ={1,    0≤t1/ 2,
−1,    1/2≤t1,
0,   t0, t≥1.

(31)               

We shall construct basis of a function space L2R by means of continuous scale 

transforms and transpositions of the wavelet t  with arbitrary values of basis 

parameters [16]. We shall use the scale factor a and the parameter of shift b: 

ab=∣a∣
−1 /2 t−b

a  ,    a ,b∈R ,    ∈L2R (32)

Figure 6. HAAR wavelet

Now we can write the integral wavelet transform on its basis [17]: 
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[W  f ] a , b=∣a∣−1 /2∫
−∞

∞

f t * t−b
a  dt=∫

−∞

∞

f t ab
* tdt (33)

Let's spend the further analogy to Fourier transform. Coefficients c jk of the wavelet 

series expansion (30) we can determine through the integral wavelet transform:

c jk=[W  f ] 1
2 j , k

2 j  . (34)

So,  each  function  from  the  space L2R can  be  determined  the  sum  of  scale 

transforms  and shifts  of  the basis  wavelet,  i.e.  this  is  a  composition  of  “wavelet 

waves”. 

Use of discrete wavelet transform allows us to lead the proof of many rules of the 

wavelet  theory,  connected  with  completeness  and  an  orthogonality  of  basis, 

convergence  of  series,  etc.  It  is  necessary  to  prove  this  rules,  for  example,  at 

compression of the information or in problems of numerical modeling. 

Let's  consider  inverse  wavelet  transform [17].  The sine  wave forms  orthonormal 

basis  of  the  function  space L20,2 and  problems  do  not  arise  with  inverse 

transform of Fourier. But in the wavelet transforms the basis L2R is not always 

orthonormal. It is defined by a choice basis wavelet, and a mode of construction of 

the basis (values of basis parameters a, b).    However strict proofs of completeness 

and orthogonality  are complicated.  Besides  for  practical  purposes it  is  enough to 

have “approximate” orthogonality  of a system of expansion functions,  i.e.  that  is 

enough, that it is “almost the basis”. 

Let's write out inverse transform for those two cases that are described above: for the 

basis (28) supposing expansions and shifts, and the basis (32) constructed at arbitrary 

values (a, b).

At the basis parameters a ,b ,    a ,b∈R inverse wavelet transform is written by 

means of the same basis, as the direct  [16]:

 f t =C 
−1∫∫ [W  f ]a ,b abt 

da db
a2 , (35)
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Cψ is the normalizing coefficient (similar to the coefficient which normalizes Fourier 

transform): 

C=∫
−∞

∞

∣ ∣2∣∣−1 d ∞ (36). 

The condition of finiteness of the constant C limits the class of functions which can 

be used as a wavelet basis. In particular, it is obvious, that the Fourier imager should 

be equal to zero at the origin of coordinates and, hence, it should be equal to zero at 

least at zero moment: ∫
−∞

∞

t dt=0.

More often in applications that is enough reviewing only positive frequencies, i.e. 

a0.  Wavelet, accordingly, should satisfy to the condition 

C=2∫
−∞

∞

∣ ∣2∣∣−1 d=2∫
−∞

∞

∣−∣2∣∣−1 d ∞ (37)

In case of discrete wavelet transform the steady basis is defined as follows. 

Function ∈L2R is  called  R-function  if  the  basis { jk } ,  defined  by 

expression (28), is the basis of Riesz in the sense that there are two constants A and 

B,   for which the relation

A∥{c jk }∥2
2≤∥ ∑j=−∞

∞

∑
k=−∞

∞

C jk  jk∥2

2

≤B∥{}c jk∥2
2 (38)

is true at any sequences {cjk}: 

∥{c jk }∥2
2≤∑

j=−∞

∞

∑
k=−∞

∞

∣C jk∣
2∞. (39)

For any R-function there is a basis { jk }, which is “double” of basis { jk } by 

means of which it is possible to construct the reconstruction expression

 f t= ∑
j , k=−∞

∞

〈 f , jk 〉
jk t . (40)

If ψ is the orthogonal wavelet and { jk } is the orthonormal basis then { jk } and 
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{ jk } coincide  and  the  formula  is  formula  of  inverse  transform.  If  ψ is  not 

orthogonal wavelet, but is two-place or conjugate R-wavelet, it has the double ψ by 

means of whom the double of a set { jk } is constructed similarly to the basis [16]:

 jk=̇ jk
* =2 j/22 jt−k  , j , k∈ I. (41)

4.3 Wavelet analysis applied to removing of a spectroscopic background

Spectroscopic background  can be divided into two types: constant and varying. In 

the  first  case  background  correction  does  not  represent  difficulties  since  the 

background  remains  constant  at  various  spectral  measurements.  However,  in  the 

second  case,  when  spectroscopic  background  is  not  constant  at  various 

measurements, correction is a rather difficult task, especially if it should be made 

automatically.

Further  the  so-called  algorithm of  a  “wavelet  prism”  (which  is  explained  in  the 

article [18]) is described. According to the theory of wavelets, the signal in the space 

L2R has  unique  wavelet  representation,  if  certain  conditions  are  met.  The 

discrete signal f i , for example, can be presented as 

f i=g i−1...g i−l f i−l (42)

Where f i−l  is the approximation component, which frequency is no larger, than 

2i−l .  This  component  is  orthogonal  to  the  detail  components  x j at  various 

levels j  j=i−1,... , i−l . These detail components in turn are orthogonal among 

themselves and their frequencies are in a range from  2 j1 up to 2 j . Generally 

undesirable spectroscopic background is a low-frequency component of the signal. 

Thus, for a solution of the problem of background correction it is possible to use 

wavelet decomposition. It does not depend on the type of a background (constant or 

varying).

On the basis of the fast wavelet transform algorithm (Mallat algorithm [19]), 
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decomposition can be made by means of the linear mathematical operations using 

scaling function and wavelet orthogonal filters: a lowpass filter  H and a highpass 

filter G. 

We can write for the first linear transform:

{c i−1
1 =Hci

0

d i−1
1 =Gci

0  (43) 

Thus, for the jth transform we have

{c
j1=Hc j

d j1=Gc j

j=0,1 ,... ,l .
 (44)

This decomposition can be presented as

 (45)

Low-frequency  and  high-frequency  filters  define approximation  and  detail 

coefficients.  High-frequency  coefficients  have  high  resolution  whereas  low-

frequency coefficients have low resolution. However, these two types do not give the 

information about the time resolution of the spectrum for deriving the information 

about spectroscopic background. The basic difficulty here consists in definition of a 

level  of  wavelet  decomposition  on  which  spectroscopic  background  is  observed 

which is necessary for its removing [18] .

Generally reconstruction of an original spectroscopic signal can be lead by means of 

inverse linear wavelet transform:

с j=HT c j1GT d j1 ,     j=0,1 ,... ,l (46)

Transform can be presented also as:

с0c1 c2 ...cl−1 c l

   d 1    d 2    d 3  ... d l
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с l c l−1 ... c2 c1 c0

   d 1   d l−1   ... d 2     d 1

 (47)

Wavelet inverse transform is a linear transformation, therefore it can be presented as 

the sum of terms:

f = c0≈g1g2...g l f 1 (48)

Where:

g1=GT d1

g2=H T GT d2

⋮
g l=H T HT ...H T

l−1

GT d l

f l=H T HT ... HT
l

c l

(49)

Approximation ( f 1 ) and detail  ( g l , ... , g 2, g1 ) components are reconstructed 

directly  from  wavelet  coefficients  ( c l , d l , ... , d 2, d 1 ).  These  components  are 

orthogonal among themselves, create the contribution of various range of frequencies 

to a signal and have same resolution as the original signal. As shown in a Figure 7, 

the described wavelet transform splits a signal like a prism splits light waves. Such 

method is called method of “wavelet prism”.

It is visible in the figure that the probable spectroscopic background can be found in 

the  lowest  frequencies  (such  as f 10 ).  Noise  components  are  found  at  high-

frequency components (such as g1, g 2 ). 

Thus, the following two conclusions were made in the article [18]:

• The  spectroscopic  background  is  the  spectral  component  arranged  in  low 

frequencies of wavelet decomposition ( f b ), whereas the useful signal is 

located  in  middle  frequencies  ( g s ).  Noise  is  the  third  component  of  a 

spectrum, which is usually observed on the higher frequencies ( gn ).
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• Background, useful and noise components of a signal are not superimposed 

among themselves and submit to a rule of additivity

f =g ng s f b (50)

Figure 7. “Wavelet prism” principle [18].

Thus, there is a possibility to eliminate the last item in the expression (50), as it will 

be elimination of a spectroscopic background.
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5 EXPERIMENTAL SECTION

5.1 Basic information about the spectrometers

To utilize all benefits of CARS spectrometry the multiplex CARS approach is used, 

which provides one with a signal with high signal-to-noise ratio.

CARS spectrometers are described in lots of works [20-24]. Let's briefly discuss the 

experimental setup for CARS measurements.  Two lasers  “Laser” and “Stokes” are 

synchronized on frequency and on time. They are focused by the objective of the 

microscope O1 on an investigated sample. Scattered CARS signal is collected in the 

forward direction by the second objective O2 and transited through the holographic 

filter F1 and the short-wave filter F2. Then the signal is collected by the spectrometer 

with CCD sensors.

Figure 8. The scheme of the CARS spectrometer [22].

The pump laser generates 10 ps impulses with the central wave length 710 nm. The 

Stokes  laser provides 80 fs impulses with the central wave length tunable between 

750 and 950 nm that corresponds to the vibrational range 750 - 3500 cm-1. Also this 

laser sets the sync for the second laser (works as a “master” laser).
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Typical mean power on a sample is 95 and 25 mW for the pump laser and  the Stokes 

laser accordingly.

A Raman microscope with 6 mW He-Ne laser  was used for spontaneous Raman 

scattering measurements. It has spectral resolution 5 cm-1.

5.2 Experimental data

The  spectra  of  two  samples  were  provided  for  the  analysis:  the  DMPC  (1,2-

Dimyristoyl-sn-glycero-3-phosphocholine) lipid and the AMP/ADP/ATP mixture. 

Measured CARS spectrum of AMP/ADP/ATP is presented in Figure 9. Spontaneous 

Raman spectrum of the same sample is shown in Figure 10.

CARS spectrum of the DMPC is presented in Figure 11.

Figure 9. CARS spectrum of  the AMP/ADP/ATP mixture
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Figure 10. Spontaneous Raman spectrum of  the AMP/ADP/ATP mixture

Figure 11. CARS spectrum of  the DMPC lipid
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Spectral  measurements  were  made  on  the  parts  of  the  spectrum  for  which  the 

vibrational resonances for the given samples are observed. For DMPC  the greatest 

maxima  is  observed  on  2847  cm-1.  For  AMP/ADP/ATP  mixture  the  greatest 

resonance is observed about 1350 cm-1, resonances of separate components of the 

mixture are visible on 1123 cm-1 for ATP and 1100 cm-1 for ADP (Figure 10).

Also  three  unknown  spectra  were  provided.  Their  line  shapes  are  much  more 

complicated. They are presented in Figures 12,13 and 14. 

Figure 12. CARS spectrum of  the first unknown sample (CCG5C.D)



36

Figure 13. CARS spectrum of  the second unknown sample (CCS5CN.D)

Figure 14. CARS spectrum of  the third unknown sample (CCF5CN.D)
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 6 DEVELOPMENT OF A PHASE RETRIEVAL ALGORITHM

6.1 Statement of the problem

Let's  compare  the  spectra  received  for  the  same  substances  by  the  spontaneous 

Raman spectrometer and the CARS spectrometer, i.e. we shall compare Figure 9 with 

Figure 10. For the spectrum received  by Raman spectrometer, the basic resonances, 

which allows us to determine sample structure are well investigated. CARS spectra 

generally do not contain any visible resonances in the initial form.

The maximum entropy method has been described above. It allows us to retrieve 

phase of CARS signal without background correction, using exclusively the intensity 

measured  by  a  spectrometer.  At  the  moment,  this  method  is  well  studied  and 

described in several scientific works, including works on its practical application for 

study of various complicated substances. The program was developed, which applies 

MEM to a measured CARS spectrum and retrieves phase [25].

Removal of a spectroscopic background is more difficult task. Earlier methods used 

approximation,  being  based  on  the  fact,  that  vibrational  resonances  are  narrow 

components on a large background.

In the work [18] the method of the wavelet analysis of spectra with the purpose of 

removal of a low-frequency background and high-frequency noise from spectra was 

suggested. It was called the “wavelet prism” and was described above. 

The main purpose of this work is to apply the maximum entropy method and wavelet 

analysis  for the development of an universal phase retrieval algorithm for CARS 

spectroscopy. 

The input data for the algorithm is a CARS spectrum of intensity, measured by a 

CARS spectrometer. And the output data is the corresponding calculated spontaneous 

Raman spectrum, based only on information from CARS measurements.
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6.2 Components of the algorithm

1. Calculation  of  the  phase  function    from  the  intensity  spectrum 

I CARS as ,  measured by CARS spectrometer using the maximum entropy 

method. We will  receive a phase function which represents the sum of an 

informative signal and a spectroscopic background as the output data.

2. Selection of an acceptable wavelet. Daubechies wavelets with different scale 

parameters are usually the best. The task is to select a scale of the function.

3. Use of the multilevel one dimensional discrete fast wavelet transform of the 

previously  calculated  phase  function   .  Decomposition  of  this 

function is calculated up to some level l (which is usually equal to 6 - 8). The 

result is presented as number of approximation and detail coefficients (45).

4. According to the  “wavelet prism” principle there is an analytical signal at 

middle  frequencies  ( f s  )  and  noise  at  high  frequencies.  “Prism” 

decomposes  a  signal  on  frequency levels.  Then these  levels  are  summed, 

having excluded the lowermost (the low-frequency filter)  and possibly the 

highest (high-frequency noise filter). We  make reconstruction of an initial 

signal,  using only the detailing coefficients  received during decomposition 

and having accepted approximation coefficient equal to zero.

f s=g1g 2...g l=GT d 1HT GT d 2...H T l GT d l (50)

5. Analysis of the calculated results. If the chosen level of decomposition  l is 

too big, the significant contribution to the calculated signal is brought by low 

frequencies, i.e. there is a spectroscopic background. At magnification of  l, 

the signal aspires to take the form of an initial signal. On the other hand, 

exclusively high frequencies predominate in a signal at small  l. In that case 

the  calculated  signal  is  considerably  distorted  and  is  not  suitable  for  the 

analysis as a spectrum.

6. On  the  basis  of  the  analysis,  we  make  a  decision,  whether  the  signal  is 

satisfactory  for  the  quantitative  analysis  of  components  containing  in  a 

sample. If it is not satisfactory, we decrease or increase the decomposition 
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level l  and repeat step 3. If all decomposition levels were tested and are not 

acceptable, chose different scale parameter of the wavelet and repeat step 2.

6.3 Realization and test of the algorithm

The algorithm was tested on 5 different samples. CARS spectra for these samples 

were shown above in the experimental section. For one of the samples, the spectrum 

of spontaneous Raman scattering was provided for comparison.

We will use spectra AMP/ADP/ATP and DMPC for the first experimental part. For 

the first sample not only the measured spectra of coherent anti-Stokes scattering are 

accessible but also spectra of spontaneous Raman scattering. For the second sample, 

some information of  a correct  Raman line shape is  also provided.  So,  there is  a 

possibility to check of the algorithm on experimental data.  Let's make calculations 

for the spectrum of mixture AMP/ADP/ATP (Figure 9).

Calculations of the phase function by the maximum entropy method (14) was made 

using the program on the web-site of the developers of this phase retrieval method 

[25]. Input data was the file containing a spectrum of CARS signal strength (Figure 

9),  i.e.  normalized  dependency  of  CARS  signal  strength  on  the  Raman  shift  (

I CARS as  ). As it has been told above the maximum entropy method demands the 

indication of two parameters: the number of autocorrelation coefficients M and the 

squeezing parameter K.

The squeezing parameter is usually taken 0 or 1. We shall use K=1 . The initial 

file has 504 points. Then, according to (20),

N=2K1N 0−11=2⋅11504−11=1510

Fourier  transforms  in  the  maximum entropy  method  will  be  made  at  a  discrete 

number of normalized frequencies n=
n
N
= n

1510 . The number of autocorrelation 

coefficients  is  determined  as  M≤N /2 .  We will  take   M=M max ,  because 

noise can be filtered later by wavelet methods and now we are trying to achieve a 
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maximum approximation of a signal to the original. Thus M=M max=
1510

2
=755 . 

Having received the input data, it is possible to make calculations. We upload the file 

with the spectrum and required parameters to the web-site with the program [13]. 

The  program  makes  the  approximation  of  the  signal  using  MEM  (14-20),  and 

determines the phase function from the calculated approximated spectrum. We will 

receive a text file, which contains discrete values of the phase function depending on 

the  Raman  shift  (  ).  Also  the  program  draws  the  corresponding  graph. 

Calculated phase function for the  spectrum AMP/ADP/ATP is presented in Figure 

15.

Figure 15. Phase function without background correction of the spectrum of AMP/ADP/ATP

From comparison  of  the  phase  function  of  CARS spectrum (Figure  15)  and  the 

spectrum of spontaneous Raman scattering (Figure 10) it is obvious, that the phase 

function of coherent anti-Stokes scattering has a nonlinear spectroscopic background.

All  computations  on  spectroscopic background removal  were  made  in  the 

mathematical  software  MATLAB  [17].  The  phase  function  of  CARS  spectrum 

AMP/ADP/ATP are uploaded into the software (written on the MATLAB internal 
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language), which was calculated earlier (Figure 15). We also upload the spectrum of 

spontaneous Raman scattering of the same sample for comparison (Figure 10).

For realization of the wavelet-processing of the signal first of all it is necessary to 

choose an orthogonal wavelet basis of decomposition. The basic characteristics of 

the  orthogonal  wavelet  function  are  smoothness  of  function,  its  symmetry, 

compactness  of  the carrier  in  space and frequency areas.  The main criteria  for  a 

wavelet  for  our  task  are  maximum  smoothness  and  compactness  of  a  function, 

because the function should authentically transmit all small details and singularities 

of an investigated spectrum [26]. After check of set of wavelets with various scales 

of functions it has been decided, that Daubechies wavelet with the scale of function 

15 has the best characteristics for the task. It is presented in Figure 16.

Figure 16. Daubechies wavelet with the scale of function 15

Further for wavelet decomposition of a signal it  is necessary to choose a level of 

decomposition, i.e. how many times wavelet transforms will be  made. The number 

of decomposition coefficients depends on it. We shall accept a level equal l = 8.

Let's note, that the better result with less signal distortion is observed, when we fuse 

the original signal with its mirror image.

The  function  of  multilevel  wavelet  transform  from  MATLAB 
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[С ,L ]=wavedec y , l ,wwl  was  used,  where  y is  the  initial  function  (phase 

function),  l is the necessary level of decomposition (equal 8),  wwl is the wavelet-

basis  of  decomposition  (“db15”).  Calculated  vectors  C and  L contain  a  set  of 

approximation and detail coefficients which will be used for inverse decomposition 

of a signal.

This  set  of  wavelet  coefficients  allows  us  to  utilize  the  method  of  the  “wavelet 

prism”, which consists of decomposition of the signal on wavelet frequencies for its 

analysis on presence of a background or noise. The high-frequency component is 

separated from the signal at each next wavelet transform. At magnification of the 

level of decomposition,  frequencies of these component fall.  After separating last 

high-frequency component at the final (lth) level of decomposition,  lth branch of the 

approximation coefficients also remains which represents ultra-low frequencies.

We restore a signal, using only detail coefficients (on one branch of coefficients on a 

signal), and also the  lth branch of approximation coefficients. For this purpose the 

function  xn=wrcoef type , C , L , wwl , n , where  type=' a ' for  reconstruction 

on a branch of approximation coefficients and  type=' d' for  reconstruction on a 

branch of detail coefficients, n is the level of decomposition (from 1 up to 8 for detail 

coefficients  and  8  for  approximation  coefficients)  is  used.  Thus  we  obtain  nine 

functions, representing “prismatic” decomposition on wavelet frequencies.

Nine signals  are  presented in  Figure 17.  It  is  easy to  notice,  that  the first  graph 

reflects the contribution of the highest frequencies, and last reflects the lowest. The 

spectroscopic  background of  a  signal  places  on  the  lowest  frequencies.  Here  the 

background is at the last graph in the figure. Now it is enough to restore the initial 

signal, using only eight branches of detail coefficients, in other words, to sum and 

then to normalize functions at n equal from 1 up to 8 Thus, the signal which does not 

have an ultra-low wavelet frequency will be received. This signal should not contain 

the spectroscopic background.  The result  of  the low frequency removal  from the 

phase function is presented in Figure 18.

Here we observe some distortion at the shift between 900 and 1000. These possibly 

could be avoided, if the spectrum with higher bandwidth is provided.
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Figure 17. Realization of the method of a  “wavelet prism” for the spectrum of 

AMP/ADP/ATP 
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Figure 18. Estimated Raman spectrum of mixture AMP/ADP/ATP after spectroscopic 

background removal

Let's  estimate  an  optimality  of  choice  of  the  decomposition  level.  The  resulting 

spectra after application of the described method at three various levels of wavelet 

decomposition:  9,  8  and  7  are  shown  in  Figure  19. Calculated  CARS  signal  is 

presented in comparison with the spectrum of spontaneous Raman scattering (from 

Figure 10).

At the decomposition level  l = 9 the contribution of the low-frequency background 

component of a  signal is  still  significant.  The spectrum is  inclined.  On the other 

hand,  if  to  accept  the  decomposition  level  l =  7,  important  mid-frequency 

components are deleted  from the spectrum. We observe distortion of the signal by 

dominance  of  high  frequencies.  Thus,  the  decomposition  level  equal  eight 

approximates the form of the signal of CARS spectrum to the form of the signal of 

spontaneous Raman spectrum the best way.
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Figure 19. Estimated Raman spectrum of mixture AMP/ADP/ATP (marked as “CARS”) at 

three various decomposition levels in comparison with the spectrum spontaneous Raman 

scattering (marked as “Raman”)

We shall note, that the chosen decomposition level is generally fair only for the given 

spectrum line shape (AMP/ADP/ATP) and for the given spectral resolution (1 cm-1 

per measurement). I.e. the optimum decomposition level depends on the form of a 

spectrum line shape of an investigated signal, and also from a spectral resolution of 



46

the lead measurement.

Automatic definition of the necessary decomposition level is possible if the signal of 

spontaneous Raman scattering, on which it is possible to be guided, is known or if 

more  than  one  spectrum are provided for  the  same sample (it  is  possible  to  use 

Shannon entropy in such case).  However,  initially the method was developed for 

cases when such comparison to lead it is impossible, since CARS equipment allows 

to receive a “picture” of a condition of substance in a very short time interval, for 

example, during a fast multistage chemical response. 

Thus, the level of expansion is chosen manually. It does not take much time, because 

the number of possible variants is usually less than ten. It is possible to calculate 

instantly all and of them to choose the most suitable for the subsequent research of a 

spectrum.

Let's consider the test of the DMPC substance. An optimum decomposition level is 7 

for CARS signal of DMPC. The result was calculated like shown above. MEM and 

“wavelet prism” were used.

For the method of maximum entropy the following parameters were used: 

N 0=301

M=M max=450

K=1

The result data from the MEM program for evaluation of phase function is presented 

in Figure 20. Then we make wavelet decomposition through the “prism” (Figure 21). 

Like in the previous example,  we will  remove the last  low-frequency component 

from the signal and make the reverse wavelet transform. Thus, we will receive the 

spectrum without spectroscopic background.  The CARS spectrum of this substance 

after spectroscopic background removal is shown in Figure 22.
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Figure 20. Phase function with a spectroscopic background of the DMPC spectrum
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Figure 21. Realization of the method of a  “wavelet prism” for the spectrum of DMPC 
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Figure 22.Estimated Raman spectrum for DMPC lipid 

6.4 Wavelet decomposition of more complicated spectra

The spectra in Figures 12,13 and 14 are more difficult to analyze, because absolutely 

no  additional  information  is  provided  about  vibrational  resonances  of  these 

substances. We will try to apply the algorithm to remove spectroscopic background 

from these spectra.

Let's  skip the MEM part  and consider  only wavelet  transforms of  the  signals  to 

remove spectroscopic backgrounds of their MEM phases. In Figures 23, 24 and 25 

MEM phases of these samples for background removal are provided. On the basis of 

these MEM phases we can suggest  that these samples have some kind of sine wave 

background.
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Figure 23. Phase function of the first unknown sample (CCG5C.D)

Figure 24. Phase function of the second unknown sample (CCS5CN.D)
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Figure 25. Phase function of the third unknown sample (CCF5CN.D)

Let's process the first sample. We will use the “wavelet prism” method to decompose 

the  signal  on  frequencies  up  to  level  7  (Figure  26).  If  we  compare  the  gained 

decomposition to the previous samples (Figures 17 and 21), it  is visible,  that the 

spectrum has the significant noise component. This noise part is arranged in high-

frequency  components  g1  and  g2.  Thus,  it  is  possible  to  remove  noise  without 

significant distortion of the spectrum. For this purpose we shall remove the detail 

components  g1 and g2 at  the inverse transform of  the  signal.  Calculated Raman 

spectrum with elimination and without elimination of noise is presented in Figure 27.
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Figure 26. The method of a “wavelet prism” for the first sample (CCG5C.D)
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Figure 27. Estimated Raman spectrum for the first sample (CCG5C.D) with and without 

noise removal

The second sample does not contain much noise, but has a different problem. It is 

impossible  to  get  an  acceptable  background  removal  with  the  wavelet  used 

previously (“db15”).  So, the scale parameter of the Daubechies wavelet has been 

taken equal 8 (“db8”).  The decomposition level has been also taken l = 8  . 

The “wavelet  prism” decomposition of the second sample using selected wavelet 

“db8”  is  shown in  Figure  28.  The  result  of  background  removal  for  the  second 

spectrum is shown in Figure 29 in two cases: with use of the wavelet "db15" and the 

wavelet “db8” . 

The best result here is observed without addition of the mirror image to the spectrum. 

Another  problem  arises  that  we  can  not  check  where  all  minima  are  detected 

correctly. For example, there is a possibility that the minimum near 915 cm-1 should 

be near zero on the IRaman axis. 
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Figure 28. The method of a “wavelet prism” for the second sample (CCS5CN.D) using 

Daubechies wavelet with the scale parameter 8 (“db8”)
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Figure 29. Estimated Raman spectrum for the second sample (CCS5CN.D) using wavelets 

with different scales: Daubechies 15 (upper line) and Daubechies 8 (lower line)

For the decomposition of the third sample's spectrum, the Daubechies wavelet with 

the scale parameter 8 was used again.  The decomposition level was chosen as 7. 

“Prism” decomposition again is shown in Figure 30.

Noise was filtered in this spectrum by removing the first detail component g1. The 

resulting Raman spectrum is shown in Figure 31.

Thus,  the  background  correction  was  rather  successfully  applied  to  these  three 

samples.  Also the possibility  of  noise removal  from the spectra  was investigated 

successfully.
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Figure 30. The method of a “wavelet prism” for the third sample (CCF5CN.D) using 

Daubechies wavelet with the scale parameter 8 (“db8”)
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Figure 31. Estimated Raman spectrum for the third sample (CCF5CN.D) 
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7. CONCLUSIONS

The  objective  of  this  work  was  to  develop  a  new phase  retrieval  algorithm and 

technique for  CARS spectrometry.  That  is  to  retrieve a  line  shape  similar  to  the 

spontaneous Raman line shape from a CARS spectrum. The algorithm utilizes the 

maximum  entropy  method  for  phase  retrieval  and  wavelet  decomposition  for 

spectroscopic background removal.

It has been shown that suggested approach can be applied to the spectra of different 

substances.  The wavelet  part  of the algorithm requires  selection of the type of a 

wavelet  with  its  scale  parameter  (if  needed)  and  the  decomposition  level.  The 

algorithm is based on the idea, that wavelet decomposition can split a signal into 

different  frequencies.  Spectroscopic  background,  analytical  signal  and  noise  are 

located in different frequencies, so they can be easily separated from each other.

When the algorithm was tested on five different substances, it was noticed, that the 

wavelet method can not sometimes provide the same accuracy as manual fitting of a 

background. The result can be improved by selecting a different wavelet, but not in 

all cases. The main advantage is that the algorithm can have easy realization in a 

computer program. All calculations were made in MATLAB. It is also possible to 

write  a  program  which  can  provide  additional  corrections  to  a  resulting  phase 

function.

The results of the thesis give important information about specific features of CARS 

spectra. The developed method can be used in wide range of scientific experiments 

which use methods of  multiplex coherent anti-Stokes scattering spectroscopy. It can 

find  application in biophysics [22,27-29], biology and in examinations of properties 

of materials [30,31].
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