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ABSTRACT
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The aim of this work is to study flow properties at T-junction of pipe, pressure loss suf-
fered by the flow after passing through T-junction and to study reliability of the classical
engineering formulas used to find head loss for T-junction ofpipes. In this we have com-
pared our results with CFD software packages with classical formula and made an attempt
to determine accuracy of the classical formulas. In this work we have studies head loss in
T-junction of pipes with various inlet velocities, head loss in T-junction of pipes when the
angle of the junction is slightly different from 90 degrees and T-junction with different
area of cross-section of the main pipe and branch pipe.

In this work we have simulated the flow at T-junction of pipe with FLUENT and Comsol
Multiphysics and observed flow properties inside the T-junction and studied the head
loss suffered by fluid flow after passing through the junction. We have also compared
pressure (head) losses obtained by classical formulas by A.Vazsonyi and Andrew Gardel
and formulas obtained by assuming T-junction as combination of other pipe components
and observations obtained from software experiments. One of the purposes of this study
is also to study change in pressure loss with change in angle of T-junction.

Using software we can have better view of flow inside the junction and study turbulence,
kinetic energy, pressure loss etc. Such simulations save a lot of time and can be performed
without actually doing the experiment. There were no real life experiments made, the
results obtained completely rely on accuracy of software and numerical methods used.
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3-D Three Dimensional
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NOTATIONS

Alphabetical Conventions

A Pipe cross sectional area (cm2)

Cµ Constant used in mixing length turbulence model (Dimensionless)

C1ǫ, C2ǫ Standard k-epsilon Model constants (Dimensionless)

D Pipe diameter (cm)

dh Hydraulic diameter (cm)

e Absolute roughness of pipe

el Element of FEM domain

g Acceleration due to gravity (cm2/s) (g = 9.80665cm2/s)

gi Component of gravitational vector in theithdirection

Hl Minor Loss Coefficient of pipe component (Dimensionless)

K(i,j) Loss-coefficient for flow coming from branchi to branchj

k(x, t) turbulent kinetic energy

k Relative roughness

l Length of pipe (cm)

Ni Node in element of FEM

r Inner Pipe diameter (cm)

p Pressure field

Pb Effect of buoyancy

Pk Production ofk

Prt
Turbulent Prandtl number for energy (Prt

= 0.85) [default value for stan-

dard K-epsilon models]

Q Volumetric flow rate

rp Roughness coefficient of pipe material (dimensionless)

Re Reynolds numbers

S modulus of the mean rate of strain tensor
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U Velocity vector field (U = (u1, u2, u3) each function ofx andt)

u x-component of velocity, (cm/s)

v y-component of velocity (cm/s)

w z-component of velocity, (cm/s)

v̄ y-component of mean velocitycm/s

ū x-component of mean velocitycm/s

w̄ z-component of mean velocitycm/s

Greek Conventions

α Angle in T-junction (for combining flow)

β, γ Angles in T-junction (for dividing flow) [used in Chapter-4]

β Coefficient of thermal expansion

τ Shear Stress

η Dynamic viscosity

λ Friction Factor (dimensionless)

λ1, λ2, λ3 Coefficients in Vazsonyi’s formulas (dimensionless)

ǫ(x, t) Turbulent dissipation rate

µ Fluid Viscosity,Pa − s

µt Turbulent viscosity,Pa − s

σ Symmetric stress tensor

σk Turbulent Prandtl number for k

σǫ Turbulent Prandtl number forǫ

ρ Density of the fluid,g/cm3

τω Shear stress,Pa

ς Kinematic viscosity of fluid

θ Angle between main pipe and branch
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Mathematical Conventions

log(x) logarithm base 10 of x

ex exponential of x-that is,e raise to the power of x
∑n

i=1 ai the sum from i=1 to n that is,a1 + a2 + . . . + an

∏n

i=1 ai the product from i=1 to n that is,a1 × a2 × . . . × an

∂ f(x)/∂ x partial derivative off with respect to x

∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)

Vector differential operator (gradient)

∆ =
(

∂2

∂x2

1

, . . . , ∂2

∂x2
n

)

Laplace operator (nabla)

∆ · (c∇u) = ∂
∂x1

(

c ∂u
∂x1

)

+ . . . + ∂
∂xn

(

c ∂u
∂xn

)

β · ∇u = β1

(

∂u
∂x1

)

+ . . . + β2

(

∂u
∂xn

)

∫ b

a
f(x) the integral off with respect to x

F(x;θ) function of x, with implied dependence uponθ

Mathematical Operations

≡ equivalent to (or defined to be)

∝ proportional to
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1 Introduction

Pipe networks are mainly used for transportation and supplyof fluids and gases. These

networks vary from fewer pipes to thousands of pipes (e.g. water supply network of a

large city, see in figure 1.1). In addition to pipes, the network also consists of elbows,

T-junctions, bends, contractions, expansions, valves, meters, pumps, turbines and many

other components. All these components cause loss in pressure due to change in momen-

tum of the flow caused due to friction and pipe components. This means conversion of

flow energy in to heat due to friction or energy lost due to turbulence.

Pipe networks are very common in industries, where fluid or gases are to be transported

from one location to the other. The head loss (pressure loss)may vary depending on

the type of components occurring in the network, material ofthe pipe and type of fluid

transported through the network. In industries the networks are usually large and require

very precise pressure at certain points of network. It is also sometimes essential to place

valves, pumps or turbines of certain capacity to control pressure in the network. The

placement of valves, pumps and turbines is important to overcome pressure loses caused

by other components in the network. This is one of the important reasons why this study

was conducted.

Figure 1.1: Water Distribution in city and industries.

In this work we have concentrated our attention to a very small and common component

of pipe network: T-junction (Some also refer as ’Tee’). T-junction is a very common

component in pipe networks, mainly used to distribute (diverge) the flow from main pipe

1



to several branching pipes and to accumulate (converge) flows from many pipes to a single

main pipe. Depending on the inflow and outflow directions, thebehavior of flow at the

junction also changes. The following figure shows some possibilities of fluid entering and

leaving the junction.

Figure 1.2: Various possibilities of fluid entering and leaving the junction

In present work we will numerically simulate the fluid flow in T-junction of pipes with

Comsol Multiphysics and FLUENT. The results obtained by software were compared

with available classical formula and formulas constructedby assuming T-junction to be

made up of two different components. This comparison also helped in verification of

some loss coefficients used in classical formula.

In fluid dynamics,head is the difference in elevation between two points in a columnof

fluid, and the resulting pressure of the fluid at the lower point. It is possible to express

head in either units of height (e.g. meters) or in units of pressure such as Pascals. When

considering a flow, one says that head is lost if energy is dissipated, usually through

turbulence; equations such as the Darcy-Weisbach equationhave been used to calculate

the head loss due to friction.

Head losses are of two types major and minor. Major head losses (also called Frictional

losses) are due to rough internal surface of pipe and occur over length of pipe. They are

mainly due to friction. Minor losses are losses due to the change in fluid momentum.

They are mainly due to pipe components due to bends, valves, sudden changes in pipe

diameter, etc. Minor losses are usually negligible compared to friction losses in larger

pipe systems. Presence of additional components offer resistance to flow and turbulence.

In this work, our aim is to study behavior of fluid at T-junction of pipes, head losses

caused by T-junction and change in pressure loss with changein angle of the junction.
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2 CFD tools used

In this chapter we present an assortment of mathematical methods that we have used in

this study. This chapter includes overview of the CFD methodsFinite Element method

(FEM) and Finite Volume Method (FVM).

We begin this section with a small introduction to FEM. This will include overview and

basic steps of FEM. Then, we will introduce FVM and also give basic steps of it.

2.1 Finite Element Method

The essence of the Finite Element Method (FEM) is to take a complex problem whose

solution may be difficult if not impossible to obtain, and decompose it into pieces upon

each of which a simple approximation of the solution may be constructed, and then put

the local approximate solutions together to obtain a globalapproximate solution. FEM is

widely used to find approximate solutions of differential equations which are not solvable

with analytical methods or which have geometrically complex domains. There are com-

mercial software packages like Comsol Multiphysics and ANSYS available for usage.

In FEM, we divide, domainΩ ∈ ℜ2 of the boundary value problem into a number of

closed sub-regions called elements ({el}L

l=1). When we do this we take following precau-

tions

1. Avoid very large and very small angles.

2. Element should be placed most densely in region where the solution of the problem

and its expected to vary rapidly.

3. High accuracy requires a fine mesh or many nodes per element.

Suppose that for a given finite element mesh there is associated with each nodeNi =

(xi, yi) a function, defined on̄Ω with certain properties (seeappendix-C), this function

is called Elements basis functions. Local basis function over elementel is simply the

restriction of global element basis function ofel.

This method involves simple steps as described briefly.

3



1. Discretization of the domain: Discretize the geometrically complex domain into

set of finite elements calledelements. We can divide the domain into desired num-

ber of elements and desired number of nodes. These elements are non-overlapping.

It can be easily observed that the elements have simple geometrical form and are

only part of the very complex looking geometry and nodes are the points where

these elements meet. For 1-D the elements are intervals, for2-D the elements are

triangles or quadrilaterals.

2. Weak formulation of the differential equation over elements: Multiply the equa-

tion by a weight function and integrate the equation over thedomain. Distribute the

differentiation among the weight function. Use the definition of the natural bound-

ary condition in the weak form.

Figure 2.1: Finite Element Discretization of the domain andWeak formulation

3. Local Approximation of Solution : On each element let us attempt to compute the

length. We assume that the length of each arc can be approximated by the length of

the chord i.e. we approximate the arc using a straight line.

4. Assemble the Element Equations: Collect the element equations to get a repre-

sentation of the whole system. Assemble the element equations to obtain the global

system of equations.

5. Imposition of boundary conditions.

4



6. Solution of the algebraic system of equations: Obtain the Solution of standard

matrix equation by direct or indirect (iterative) method.

7. Post processing: This final operation displays the solution to system equations in

tabular graphical or pictorial form. Other meaningful quantities may be derived

from the solution and also displayed.

The finite element solution converges to the true solution asthe number of elements is

increased. FEM is easy to use and it is also easy to approximate the differential terms of

higher order. This method demands a good engineering judgment. The choice of type of

element and other basis functions can be crucial.

2.2 Finite Volume Method

The Finite Volume Method (FVM) is a numerical method based onIntegral conservation

law. These methods are used for solving partial differential equations that calculates the

values of the conserved variables averaged across the volume. The integral conserva-

tion law is enforced for small control volumes defined by the computational mesh. One

advantage of FVM over FDMs is that it does not require a structured mesh (although a

structured mesh can also be used). Furthermore, FVM is preferable to other methods as

a result of the fact that boundary conditions can be applied non-invasively. This is true

because the values of the conserved variables are located within the volume element, and

not at nodes or surfaces. FVMs are especially powerful on coarse, non-uniform grids and

in calculations where the mesh moves to track interfaces or shocks.

The FVMs are very efficient in solving conservative problems. They are extensively used

in fluid mechanics and many other engineering areas governedby conservative systems

that can be written in integral control volume form. The primary advantages of these

methods are numerical robustness, applicability on very general unstructured meshes,

and the intrinsic local conservation properties of the resulting schemes.

To use FVM concrete choice of control volumes, type of approximation inside them and

numerical methods for evaluation of integrals and fluxes arerequired to be chosen care-

fully in advance. This method (Based on the control volume formulation of analytical

fluid dynamics) involves simple steps as described briefly.

1. In FVM, computational domain is first tessellated into a collection of non overlap-
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ping control volumes that completely cover the domain i.e. to divide the domain

into a number of control volumes where the variable of interest is located at the cen-

troid of the control volume. The control volumes are dividedin to two categories:

cell-centered and vertex-centered control volume (See fig 2.2) . In the cell-centered

finite volume method shown, the triangles themselves serve as control volumes with

solution unknowns (degrees of freedom) stored on a per triangle basis. In the vertex-

centered finite volume method shown, control volumes are formed as a geometric

dual to the triangle complex and solution unknowns stored ona per triangulation

vertex basis. The following figures give clear idea about type of control volumes in

1D, 2D and 3D.

Figure 2.2: Control volume variants used in the finite volume method: cell-centered and
vertex-centered control volume

2. Integrate the differential form of the governing equations (very similar to the control

volume approach) over each control volume.

3. Interpolation profiles are then assumed in order to describe the variation of the

concerned variable between cell centroids. The resulting equation is called the

discretized or discretization equation. In this manner, the discretization equation

expresses the conservation principle for the variable inside the control volume.
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The most compelling feature of the FVM is that the resulting solution satisfies the con-

servation of quantities such as mass, momentum, energy, andspecies. This is exactly sat-

isfied for any control volume as well as for the whole computational domain and for any

number of control volumes. Even a coarse grid solution exhibits exact integral balances.

FVM is the ideal method for computing discontinuous solutions arising in compressible

flows. Any discontinuity must satisfy the Rankine-Hugoniot jump condition which is a

consequence of conservation. Since FVMs are conservative they automatically satisfy the

jump conditions and hence give physically correct weak solutions.
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3 Governing Equations and Boundary Conditions

The flow of most fluids can be mathematically described by the use of continuity equation

and momentum equation. According to continuity equation, the amount of fluid entering

in certain volume leaves that volume or remains there and according to momentum equa-

tion tells about the balance of the momentum. The momentum equations are sometimes

also referred as Navier-Stokes (NS) equation. They are mostcommonly used mathemati-

cal equations to describe flow. In this section we shall first derive NS equations and then

K-Epsilon model. At the end we shall also briefly discuss boundary conditions used.

In this section, we shall derive Navier-Stokes equations bycontrol volume method, the

simplest approach. These equations can be used to describe many flow situations. Being

second order, non-homogeneous, non-linear partial differential equations we require at

least two boundary conditions for obtaining solution.

3.1 Continuity equation

Consider a volume of fluid in the stream with dimensions∆x,∆y and∆z. Consider that

the fluid flow is in positive x direction. Thus, the the amount of fluid that enters the

volume from face-1 is equal to product of density (ρ), velocity of fluid in x-direction (u)

and area of the face-1 (∆y∆z). Thus,

volumeinx = ρu∆y∆z (3.1)

Figure 3.1: Elemental volume used to derive the equations

8



The mass leaving from face-2 is negative (its leaving the volume) product of density,

velocity of fluid in x-direction and area of the face-2. But, the density and velocity of the

fluid changes fromu to u + ∆u andρ to ρ + ∆ρ. Thus,

volumeoutx = −(u + ∆u)(ρ + ∆ρ)u∆y∆z (3.2)

Similarly, for other two faces parallel to y-axis, the equations for mass entering and leav-

ing will be

volumeiny = ρv∆x∆z (3.3)

volumeouty = −(v + ∆v)(ρ + ∆ρ)v∆x∆z (3.4)

And, for other two faces parallel to z-axis, the equations for mass entering and leaving

will be

volumeinz = ρw∆x∆y (3.5)

volumeoutz = −(w + ∆w)(ρ + ∆ρ)w∆x∆y (3.6)

Also, the total amount of fluid accumulated in the volume∆x∆y∆z is

(

∆ρ

∆t

)

∆x∆y∆z (3.7)

This amount must be equal to the numerical sum of all the termsrepresenting fluid en-

tering the volume and fluid leaving from the volume. Adding equations (3.1) to (3.7),

equating to0 and using∆(fg) = f∆g + g∆f + ∆f∆g, we get

(

∆ρ

∆t

)

= −(∆ (ρu)) u∆y∆z − (∆ (ρv)) v∆x∆z − (∆ (ρw)) w∆x∆y

∆x∆y∆z
(3.8)

⇒
(

∆ρ

∆t

)

+
∆(ρu)

∆x
+

∆(ρv)

∆y
+

∆(ρz)

∆z
(3.9)

And when,∆t → 0, we can replace∆ operator by partial differential operator.

∂ρ

∂t
+

∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (3.10)

Which is generalContinuity equation for compressible fluid. For incompressible fluids

the Continuity Equation reduces to

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (3.11)

9



Also, if the densityρ is a function of co-ordinatesx, y andz but not time then,

∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (3.12)

3.2 Navier-Stokes equation

Navier-Stokes (NS) equations are system of momentum equations for each co-ordinate

directions. We shall derive the equation only forx co-ordinate and then write fory and

z similarly. First we shall calculate Momentum Change and Fluxand then calculate the

forces.

3.2.1 Momentum Change and Flux

Consider a volume of fluid in the stream with dimensions∆x,∆y and∆z. The change in

momentum with respect to time is given by(∂(ρu)/∂t) ∆x∆y∆z.

The flux of momentum in the x direction at face-1 of the volume is the product of the mass

flux (ρu), the x-direction velocity (u) and the area of face-1 (∆y∆z) i.e. ρuu∆y∆z. The

flux of momentum in the face opposite to face-1 is− [ρuu + (∂(ρuu)) /∂x∆x] ∆y∆z.

Similarly, for faces parallel to y-axis the flux of momentum in the y direction isρvu∆x∆z

and the flux of momentum in the opposite to face is− [ρvu + (∂(ρvu)) /∂y∆y] ∆x∆z.

And, for faces parallel to y-axis the flux of momentum in thez direction at entering

face of the volume isρwu∆x∆y and the flux of momentum in the opposite to face is

− [ρwu + (∂(ρwu)) /∂z∆z] ∆x∆y. Adding all these terms and simplifying we get,

−
[

∂(ρuu)

∂x
∆x∆y∆z +

∂(ρvu)

∂y
∆x∆y∆z +

∂(ρwu)

∂z
∆x∆y∆z

]

(3.13)

According to conservation of momentum law, algebraic sum ofall these fluxes of momen-

tum and the external forces at faces parallel to x-axis (
∑

Fx) should be equal to change
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in momentum in volume with respect to time i.e.

∂(ρu)

∂t
∆x∆y∆z = −

[

∂(ρuu)

∂x
∆x∆y∆z +

∂(ρvu)

∂y
∆x∆y∆z +

∂(ρwu)

∂z
∆x∆y∆z

]

+
∑

Fx

(3.14)

Re-arranging , we get

⇒
[

∂

∂t
(ρu) +

∂(ρuu)

∂x
+

∂(ρvu)

∂y
+

∂(ρwu)

∂z

]

∆x∆y∆z =
∑

Fx (3.15)

Applying the derivative of product rule we get,

[

ρ
∂u

∂t
+ u

∂ρ

∂t
+ u

∂(ρu)

∂x
+ ρu

∂u

∂x
+ v

∂(ρu)

∂y
+ ρv

∂u

∂y
+ w

∂(ρu)

∂z
+ ρw

∂u

∂z

]

∆x∆y∆z =
∑

Fx

(3.16)

Rearranging the terms we get,

{

u

[

∂ρ

∂t
+

∂(ρu)

∂x
+

∂(ρu)

∂y
+

∂(ρu)

∂z

]

+ ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z

}

∆x∆y∆z =
∑

Fx

(3.17)

The terms in square bracket sum up to zero because of equationof continuity. Thus, above

equation reduces to momentum equation given below

{

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z

}

∆x∆y∆z =
∑

Fx (3.18)

Similarly, we can obtain,

{

ρ
∂v

∂t
+ ρu

∂v

∂x
+ ρv

∂v

∂y
+ ρw

∂v

∂z

}

∆x∆y∆z =
∑

Fy (3.19)

and
{

ρ
∂w

∂t
+ ρu

∂w

∂x
+ ρv

∂w

∂y
+ ρw

∂w

∂z

}

∆x∆y∆z =
∑

Fz (3.20)

3.2.2 Calculating Forces

The external force
∑

Fx,
∑

Fy and
∑

Fz which are external forces on the considered

volume. These forces are of two types: Body forces (acting on volume) and surface

forces (acting on surfaces).

Body forces are mostly due to gravitational forces acting on the fluid. The total body
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force acting on the volume considered is the product of component of acceleration due to

gravity in x-direction, mass of the fluid in the volume i.e.

gxρ∆x∆y∆z (3.21)

Surface forces act on only one particular surface of the volume at a time, and arise due

to pressure or viscous stresses. The stress on a surface of the control volume acts in the

outward direction, and is given the symbolσij with two subscripts. The first subscript

i indicates the normal direction of the face on which the stress acts, while the second

subscript j indicates the direction of the stress.

The force due to the stress is the product of the stress and thearea over which it acts.

Thus, on the faces with normals in the x-direction (DyDz), the forces acting in the x-

direction due to the direct stresses areσxx∆y∆z and
{

σxx + ∂σxx

∂x
∆x
}

∆y∆z Which sum

to
{

∂σxx

∂x

}

∆x∆y∆z.

Similarly, on the faces with normals in the y-direction (∆x∆z), the forces in the x-

direction due to shear stresses sum to∂σyx

∂x
∆x∆y∆z and on the faces with normals

in the z-direction (∆x∆y), the forces in the x-direction due to shear stresses sum to
{

∂σzx

∂x

}

∆x∆y∆z.

The sum of all surface forces in the x-direction is thus
(

∂σxx

∂x
+

∂σyx

∂x
+

∂σzx

∂x

)

∆x∆y∆z (3.22)

The stressσxx includes the pressure p (negative sign because it is acting inward) and the

normal viscous stressτxx. The stressesσyx andσzx include only viscous shearing stresses

σyx andσzx. This gives the force in the x-direction as:

−
(

∂p

∂x
+

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z

)

∆x∆y∆z (3.23)

3.2.3 Newtonian/Non-Newtonian Fluids

A Newtonian fluid is one whose stress at each point is linearlyproportional to its strain

rate at that point. The best example of this is water. A non-Newtonian fluid is one whose
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viscosity changes with the applied strain rate. Thus, we cansay that non-Newtonian fluids

do not have a well-defined viscosity. The following figure cangive a better idea of how

fluids can be classified in Newtonian and other type of fluids.

Figure 3.2: Fluid type Newtonian/conventional fluids vs. non-Newtonian fluids

A simple equation to describe Newtonian fluid behavior isτ = µdu
dx

. In common terms,

this means the fluid continues to flow, regardless of the forces acting on it. If the fluid is

incompressible and viscosity is constant across the fluid, the equation governing the shear

stress, in the Cartesian coordinate system, is

τij = µ

(

dUi

dXj

+
dUj

dXi

)

(3.24)

WhereU = (u, v, w) andX = (x, y, z). Thus,

τxx = µ

(

du

dx
+

du

dx

)

= 2µ
du

dx
, τyx = µ

(

dv

dx
+

du

dy

)

, τzx = µ

(

dw

dx
+

du

dz

)

(3.25)

Substituting these values in equation obtained above, we get,

−





∂p

∂x
+

∂
(

2µ
(

du
dx

))

∂x
+

∂
(

µ
(

dv
dx

+ du
dy

))

∂y
+

∂
(

µ
(

dw
dx

+ du
dz

))

∂z



∆x∆y∆z (3.26)

⇒ −
(

∂p

∂x
+ 2µ

∂2u

∂x2
+ µ

(

∂2u

∂y2
+

∂
(

dv
dx

)

∂y
+

∂2u

∂z2
+

∂
(

dw
dx

)

∂z

))

∆x∆y∆z (3.27)
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The terms∂2u/∂x2, ∂ (dv/dx) /∂y and∂ (dw/dx) /∂z cancel out due to continuity equa-

tion. The terms that remain along with the body force due to acceleration due to gravity

would give the equation for the force in the x-direction,

∑

Fx =

{

ρgx −
∂p

∂x
+ µ

(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)}

∆x∆y∆z (3.28)

Substituting this in momentum equation, we get

{

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z

}

∆x∆y∆z = ρgx −
∂p

∂x
+ µ

(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

(3.29)

Similarly, we can obtain,

{

ρ
∂v

∂t
+ ρu

∂v

∂x
+ ρv

∂v

∂y
+ ρw

∂v

∂z

}

∆x∆y∆z = ρgy −
∂p

∂y
+ µ

(

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)

(3.30)

and
{

ρ
∂w

∂t
+ ρu

∂w

∂x
+ ρv

∂w

∂y
+ ρw

∂w

∂z

}

∆x∆y∆z = ρgz −
∂p

∂z
+µ

(

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)

(3.31)

These are the Navier-Stokes equations. There have been attempts to solve these equations

but the computational complexity involved has not allowed many but some solutions.

Navier-Stokes equation can be solved numerically, but the solutions are obtained after

only making some assumptions and some of them are not stable at high Reynolds number.

There are two important issues that arise in the solution process first is non-linearity of

the equations and second is the coupling of the equations. InCFD the stress tensor terms

are often approximated by a turbulence model. The non-linearity makes most problems

difficult or impossible to solve and is part of the cause of turbulence.

3.3 Turbulence

Dictionary meaning of turbulence is the state of being turbulent and turbulent means dis-

turbed. When we talk about turbulence in fluid dynamics it means fluid flow with violent

disorder where the disorder has no specific direction or pattern. Also, its quoted as a
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random secondary motion caused by eddies with in the fluid in motion. Even though tur-

bulence is an everyday experience, it is extremely difficultto find solutions, quantify, or in

general characterize. When the flow is turbulent, we can expect a very rapid and random

change in fluid and fluid motion properties like momentum diffusion, high momentum

convection, variation of pressure and velocity in space andtime. Its difficult to express

turbulence mathematically for following reasons.

1. Irregularity or randomness: impossible to apply a deterministic approach.

2. Diffusivity: This characteristic causes rapid mixing and increased rate of momen-

tum, heat and mass transfer.

3. Large Reynolds number: Turbulent flow or instable laminar flow.

4. 3D Vorticity fluctuations: Turbulence is 3D and rotational. Turbulence is character-

ized by high levels of fluctuating vorticity.

5. Dissipation: Turbulence flows are always dissipative. Viscous shear stress performs

deformation work which increases the internal energy of thefluid at expense of

kinetic energy of the turbulence. A continuous energy supply is needed to keep up

these loses. If no energy is supplied turbulence decays rapidly.

The K-epsilon model is one of the most common turbulence models. It includes two trans-

port equations to represent the turbulent properties of theflow. This allows a two equation

model to account for history effects like convection and diffusion of turbulent energy. The

first transported variable is turbulent kinetic energy (k). The second transported variable

in this case is the turbulent dissipation (ǫ). These variables determine the scale of the tur-

bulence and energy in the turbulence. In next part, we shall derive Kappa-Epsilon model

from Incompressible NS equations.

3.4 Kappa-Epsilon Model

The K-epsilon model is most commonly used to describe the behavior of turbulent flows.

It was proposed by A.N Kolmogrov in 1942, then modified by Harlow and Nakayama and

produced K-Epsilon model for turbulence.
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The Transport Equations for K-Epsilon model are Fork,

∂

∂t
(ρk) +

∂

∂t
(ρkui) =

∂

∂xj

[(

µ +
µt

σk

)

∂k

∂xj

]

+ Pk + Pb − ρǫ − Yk + Sk (3.32)

For ǫ,

∂

∂t
(ρǫ)+

∂

∂t
(ρǫui) =

∂

∂xj

[(

µ +
µt

σk

)

∂ǫ

∂xj

]

+C1ǫ

ǫ

k
(Pk + C3ǫPb)−C2ǫρ

ǫ2

k
+Sǫ (3.33)

Realizable k-epsilon model and RNG k-epsilon model are some other variants of K-

epsilon model. K-epsilon model has solution in some specialcases. K-epsilon model

is only useful in regions with turbulent, high Reynolds number flows.

3.5 Derivation

K-epsilon model equations can be derived form incompressible Navier stokes equation.

ρ(u.∇)u = ∇
{

−pI + η
(

∇u + (∇u)T
)}

+ F (3.34)

∇.u = 0 (3.35)

Where,u is velocity vector field,p is pressure field, following are steps for deriving k-

epsilon model.

1. Apply statistical averaging to NS equation (3.35)

ρ

(

∂ui

∂t
+
∑

j

uj

∂uj

∂xj

)

=
∂p

∂xi

+ η∇2ui (3.36)

Where,u(x, t) represents the velocity vector field,p(x, t) is the pressure field. Be-

ing derived from Equations of conservation of mass, momentum and energy, we

have,
∂ρ

∂t
+
∑

j

uj

∂ρ

∂xj

=
∑

j

uj

∂uj

∂xj

= 0 (3.37)

Applying statistical averaging to equation (3.36) produces Reynolds equation:

ρ
∂ui

∂t
+
∑

j

uj

(

ρuj

∂ui

∂xj

+ ρ
∂u

′

i

∂xj

u
′

j

)

=
∂p

∂xi

+
∑

j

uj

∂τij

∂xj

(3.38)
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With u = u + u′ written in the mean plus fluctuation decomposition, averaging

satisfying the field rules (seeappendix C) and using the following two equations.

τij = η

(

∂ui

∂xj

+
∂uj

∂xi

)

η∇2ui =
∑

j

∂τij

∂xj

2. Multiply Navier-Stokes (3.36) byui and average it.

ρ
∂ui

∂t
ui + ρ

∑

j

uj

∂ui

∂xj

ui = − ∂p

∂xi

ui +
∑

j

∂τij

∂xj

ui (3.39)

3. Multiply obtained Reynolds equation (3.38) byui.

ρ
∂ui

∂t
ui +

∑

j

(

ρuj

∂ui

∂xj

ui + ρ
∂u

′

i

∂xj

u
′

j

)

= − ∂p

∂xi

ui +
∑

j

∂τij

∂xj

ui (3.40)

Where,
∂u

′

i

∂xj

u
′

j =
∂
(

u
′

iu
′

j

)

∂xj

or equivalently

ρ
∂u

′

i

∂t
u

′

i + ρ
∑

j

uj

∂ui

∂xj

ui = − ∂p

∂xi

ui +
∑

j

(

∂τij

∂xj

ui +
∂Tij

∂xj

ui

)

(3.41)

With Tij = −ρu
′

iu
′

j representing the components of the Reynolds stress matrixT .

4. Subtracting equation ((3.39)) from equation ((3.41)), we get.

ρ
∂u

′

i

∂t
u

′

i + ρ
∑

j

(

uj

∂ui

∂xj

ui − uj

∂ui

∂xj

ui

)

= −∂p′

∂xi

u
′

i +
∑

j

(

∂τ
′

ij

∂xj

u
′

i −
∂Tij

∂xj

ui

)

(3.42)

Where,
∂τ

′

ij

∂xj

u
′

i =
∂(τ

′

iju
′

i)

∂xj

− ∂u
′

i

∂ui

τ
′

ij

5. Neglecting very small viscous transfer or turbulent energy, we get (3.43). Since,

the τ
′

iju
′

i represents the viscous transfer of turbulent energy, a verysmall quantity

in contrast to the terms responsible for the turbulent energy in, it is neglected. Thus
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becomes

ρ
∂u

′

i

∂t
u

′

i + ρ
∑

j

u
′

i

∂u
′

i

∂xj

uj +
∑

j

(

ρ
∂u

′

i

∂xj

u
′

iu
′

j +
∂ρu

′

iu
′

j

∂xj

ui + ρu
′

ju
′

i

∂u
′

i

∂xj

)

= − ∂p′

∂xj

u
′

i −
∑

j

(

∂u
′

i

∂xj

τ
′

ij +
∂Tij

∂xj

u
′

i

) (3.43)

6. Summing overi equation (3.43) becomes energy balance equation of turbulent flow,

with turbulent kinetic energy (K) and rate of dissipation of the turbulent energy (ǫ).

7. Using hypothesis for class of fluid flow under consideration the equation of turbu-

lent energy balance reduces to Fork,

∂k

∂t
=

∂

∂t

(

ck

∂k

∂x

)

− ǫ (3.44)

Where,ck is turbulent exchange coefficient. Forǫ,

∂ǫ

∂t
=

∂

∂t

(

Cǫ

∂ǫ

∂x

)

− U (3.45)

Where,Cǫ is turbulent energy dissipation rate exchange coefficient and S rate of

homogenification of the dissipation rate and is> 0.

3.6 Initial condition and Boundary condition

There are number of boundary conditions that we will use to solve Incompressible Navier-

Stokes Equation and Kappa-Epsilon model. The figure 3.6 shows an example how the

boundary conditions could be applied. The boundary conditions have been listed below.

Inflow/Outflow boundary condition

For inlet, imposed velocity i.e. the velocity vector normalto the boundary can be specified

by:

u · n = u0 = (u0, v0, w0)

which is denoted as the Inflow/Outflow boundary condition. Inthe above equationn is a

unit vector that has a direction perpendicular to a boundaryor normal to a boundary.

Outflow/Pressure boundary condition
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Figure 3.3: Use of boundary conditions with Comsol

For outlet, we can impose a certain pressure in the Outflow/Pressure boundary condition:

p = p0

or
[

−pI + η
(

∇u + (∇u)T
)]

= −p0

This is the Normal flow/Pressure boundary condition, which sets the velocity components

in the tangential direction to zero, and sets the pressure toa specific value.

Slip/Symmetry boundary condition

The Slip/Symmetry condition states that there are no velocity components perpendicular

to a boundary.

n · u = 0
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No slip boundary condition

The No-slip boundary condition eliminates all components of the velocity vector.

u = 0

Neutral boundary condition

The Neutral boundary condition states that transport by shear stresses is zero across a

boundary. This boundary condition is denoted neutral sinceit does not put any constraints

on the velocity and states that there are no interactions across the modeled boundary.

η
(

∇u + (∇u)T
)

n = 0

The neutral boundary condition means that no forces act on the fluid and the computa-

tional domain extends to infinity.
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4 Head losses

Head is a term used to specify measure of pressure of total energy per unit weight above

a point of reference. In general, head is sum of three components; elevation head(the

elevation of the point at which the pressure is measured fromabove or below the arbitrary

horizontal observation point i.e. relative potential energy in terms of an elevation),veloc-

ity head (kinetic energy from the motion of water) (it is mainly used to determine minor

losses) andpressure head(equivalent gauge pressure of a column of water at the base of

the piezometer).1

In cases where the fluid is moving with very low velocity or stationary fluid, we ignore the

velocity head because the fluid is either stationary or moving with very low velocity and

in the cases where the fluid is moving with very high velocity (cases where the Reynolds’s

number exceeds 10) the elevation head and pressure head are neglected.

Head loss in fluid flow in pipes means loss of flow energy due to friction or due to turbu-

lence. Head losses result in to loss in pressure at final outlet. The pressure loss is divided

in two categories of Major (friction) losses and Minor losses. These losses are dependent

on both the type of fluid and the material of the pipe.

Head loss is a measure to calculate reduction or loss in head.Head loss is mainly due

to friction between fluid and walls of the duct (in our case it is pipe), friction between

adjacent layers of fluid and turbulence caused by presence ofpipe network components

like T-junction, elbows, bends, contractions, expansions, pumps, valves. Head losses

result in to loss in pressure at final outlet, thus also known as pressure loss. Pressure

losses are divided in to two categories of major losses and minor losses.

• Major losses: Losses due to friction between fluid and internal pipe surface. These

losses occur over the length of pipe. They can be easily determined by Darcy-

Weisbach equation. Frictional loss is that part of the totalhead loss that occurs as

the fluid flows through straight pipes

• Minor losses: Losses occur at points where there is change in momentum. They

mainly occur at elbows, bends, contractions, expansions, valves, meters and similar

other pipe fittings that commonly occur in pipe networks.

1A piezometer is small diameter water well used to measure thehydraulic head of underground water.

21



The major head loses may be large when the pipes are long (e.g.pipe network occurring

in water distribution in a city) and minor losses will also have a large contribution because

of attachments and fittings occurring in these networks. Thus, we can say that head loss

in reality are unavoidable, since no pipes are perfectly smooth to have fluid flow without

friction, there does not exist a fluid in which flows without turbulence.

The head loss for fluid flow is directly proportional to the length of pipe, the square of the

fluid velocity, and a term accounting for fluid friction called the friction factor. The head

loss is inversely proportional to the diameter of the pipe. Head loss is unavoidable in pipe

networks with real fluids, since there is no pipe with perfectly smooth inner surface and

there is no fluid that can flow without turbulence.

Figure 4.1: Fluid behavior when pipe is smooth or rough from inside

The calculation of the head loss depends on whether the flow islaminar, transient or

turbulent and this we can determine by calculating Reynolds number.

4.1 Major head loss

There are many equations available to determine major head losses in a pipe. The most

fundamental of all is Darcy-Weisbach Equation. Major head loss (loss due to friction) is

determined by

hmajor = λ

(

l

dh

)(

ρv2

2

)
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This equation is valid for fully developed, steady, incompressible flow. The hydraulic

diameter (dh) is division on cross-section area of pipe by wetted perimeter.

dh =
cross section area of pipe

wetted perimeter
=

4 (πr2)

2πr
= 2r = D

Thus, hydraulic diameter is the inner diameter of pipe. Therefore, major head loss formula

reduces to

hmajor = λ

(

l

D

)(

v2

2g

)

(4.1)

4.2 Friction Factor

Friction factor (λ) depends on whether the flow is laminar, transient or turbulent, which

again depends on Reynolds number.Friction Factor for Laminar Flow

Consider

y = r − R ⇒ dy = −dr

and shearing stress

τ = −µ
dν

dr

Where,ν is rate of change of velocity.

If we consider the fluid to be isolated from the surrounding, the inlet will have velocity

(v1) and pressure (p1) and outlet will have velocity (v2) and pressure (p2).

Using momentum principle2 (in fluid dynamics), we get

p1A − p2A + (shearing stress × perimeter of pipe × length of pipe) = ρQ (v2 − v1)

⇒ (p1 − p2) πr2 − τ(2πrL) = ρQ (v2 − v1)

We know that

τ =
p1 − p2

2L
· r

and

τ = −µ
dν

dr

2The principle of conservation of momentum is an applicationof Newton’s second law of motion to
an element of fluid. That is, when considering a given mass of fluid, it is stated that the rate at which the
momentum of the fluid mass is changing is equal to the net external force acting on the mass.
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Comparing both we get,

dν = −p1 − p2

2Lµ
· rdr

On integrating both sides and usingν = 0 at r = R and takingp1 − p2 = ∆p, we get

ν = − ∆p

2Lµ
·
(

R2 − r2
)

The volumetric flow (Q) can be determined by

Q =

∫

ν (2πr) dr =

∫ 0

R

∆p

2Lµ

(

R2 − r2
)

(2πr) dr

⇒ Q =
∆p

4Lµ
πr4

And average velocity (V ) can be determined by

V =
Q

A
=

∆p

4Lµ
πr4 · 1

πr2

⇒ ∆p =
4Lµ

R2
· V

Since, head loss equals pressure drop (∆p) divided byγ

hmajor =
∆p

γ
=

4Lµ

γR2
· V

Also,

hmajor = λ
L

D
· V 2

2g

Comparing both, we get

λ =
64 L

D

V D
=

64

Re

Thus,λ = 64
Re

whenRe < 2100. This can also be confirmed from Nikuradse’s graph for

laminar flow.3

Friction Factor for Transient Flow

If the Reynolds number for the flow is between 2300 and 3000 the type of flow exhibited

by the fluid is known as transient flow. This is type of flow wherevelocity and pressure of

3Nikuradse showed the dependence on roughness by using pipesartificially roughened by fixing a coat-
ing of uniform sand grains to the pipe walls. The degree of roughness was designated as the ratio of the
sand grain diameter to the pipe diameter(ǫ/D).
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the flow are changing with time. The flow also switches betweenturbulent and laminar.

Because of this behavior it is difficult to determine the friction coefficient. Thus, the

friction coefficient for Transient flow can not be determined.

Friction Factor for Turbulent Flow

When the flow is turbulent, the frictional factor (λ) can be obtained by solving the equa-

tion
1√
λ

= −2.0log10

[

2.51

Re

√
λ

+
rp

dh

· 1

3.72

]

Where,rp is relative roughness of the pipe.

This equation is well known as Colebrooke equation4. Colebrooke equation is also graph-

ically presented by Moody Chart5, which can be easily used if some required parameter

values are known. The Moody chart relates the friction factor for fully developed pipe

flow to the Reynolds number and relative roughness of a circular pipe. Relative rough-

ness for some common materials can be found in the table- 16 below.

Surface Roughness (rp) ×10−3 m
Copper, Lead, Brass, Aluminum (new)0.001 − 0.002
PVC and Plastic Pipes 0.0015 − 0.007
Epoxy, Vinyl Ester and Isophthalic pipe0.005
Stainless steel 0.015
Steel commercial pipe 0.045 − 0.09
Rusted steel (corrosion) 0.15
Smoothed cement 0.3 − 1
Ordinary concrete 0.3 − 0.5

Table 1: Relative roughness for some common materials determined by experiments.

Relative roughness of the pipe (rp) can be easily determined if we know the material of

the pipe. This value completely depends on material of pipe.These values are also easily

available on some manuals. Table-2 summarizing relation between Reynolds number

(Re), the type of flow and Friction coefficient (λ)

The Friction coefficient (λ) can also be determined by Moody Chart. There is also a sec-

tion in this chapter that briefly describes the use. An illustration is also given to understand

4The Colebrook equation is an implicit equation which combines experimental results of studies of
laminar and turbulent flow in pipes. It was developed in 1939 by C. F. Colebrook.

5In 1944 Lewis F. Moody, Professor, Hydraulic Engineering, Princeton University, published paper
titled Friction Factors for Pipe Flow. The work of Moody, andthe Moody Diagram has become the basis
for many of the calculations on friction loss in pipes and ductwork.

6Table for Relative roughness for some common materials was taken from website
http://www.engineeringtoolbox.com.
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Reynolds number(Re) Nature of flow Friction coefficient (λ)
< 2300 Laminar Flow λ = 64/Re

2300 − 4000 Transient Flow Can not be determined

> 4000 Turbulent Flow 1√
λ

= −2.0log10

[

2.51/
(

Re

√
λ
)

+ rp/3.72dh

]

Table 2: Reynolds Number, Nature of Flow and Friction coefficient (λ).

this more clearly.

We can summarize above discussion in these points

• If the Reynolds numbers is less than about2100 the flow will be laminar. This

indicates that the viscous force of the fluid is dominating the other forces that may

disturb the flow. When flow is laminar, the fluid seems to move in controlled manner

with regular streamlines. It would look like very thin glassfilms are sliding over

each other.

• If the Reynolds number is between2300 and3000 the flow will be transient. This is

category between laminar and turbulent flow, where we can notdetermine anything

about the flow. There may also be observed a small amount of turbulence in the

flow.

• If the Reynolds number is greater than3000 which is common when the fluid is

moving with high speed or with some obstacles or rough surface of duct then the

flow is said to be turbulent. The flow being turbulent indicates that the inertial forces

are more than forces due to velocity and that the streamlinesare no more parallel

to each other and the flow pattern is irregular and the fluid particles may cross one

point in domain more than once.

4.3 Minor head loss

Minor losses (losses due to various attachments and change in momentum) can be calcu-

lated by following formula.

pmajor = HL

(

v2

2g

)

Where,HL is loss coefficient for the pipe component andg is acceleration due to gravity.

The loss coefficients for various pipe components are available in several textbooks, man-
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uals and supplier manuals. Table-37 lists minor loss coefficients for some common com-

ponents in pipe networks. These relative roughness for materials were determined by

experiments.

Type of Component or Fitting Minor Loss Coefficient (HL)
Flanged Tees, Line Flow 0.2
Threaded Tees, Line Flow 0.9
Flanged Tees, Branched Flow 1.0
Threaded Tees, Branch Flow 2.0
Flanged Regular90o Elbows 0.3
Threaded Regular90o Elbows 1.5
Threaded Regular90o Elbows 0.4
Flanged Long Radius90o Elbows 0.2
Threaded Long Radius90o Elbows 0.7
Flanged Long Radius90o Elbows 0.2
Flanged180o Return Bends 0.2
Threaded180o Return Bends 1.5
Fully Open Globe Valve 10
Fully Open Angle Valve 2

Table 3: Minor loss coefficients for some of the most common used components in pipe
and tube systems

As mentioned before several textbooks, manuals and supplier manuals. Values in various

sources may vary depending upon the experimental conditions, formulas and calculation

techniques used. Thus, one must first determine if the experimental conditions of the data

are the same as the conditions of the current experiment and the other additional data

related to the same experiment are from the source.

4.4 Using the Moody Diagram

Head loss is a function of Reynolds number and relative roughness coefficient. Colebrook

developed an empirical transition8 function for commercial pipes, which relates friction

factor and the Reynolds number. The Moody diagram is based on the Colebrook equation

in the turbulent regime. The Moody chart relates the friction factor for fully developed

pipe flow to the Reynolds number and relative roughness of a circular pipe. The frictional

factor (λ) for head loss can be determined if Reynolds number and the relative roughness

of the pipe are known. The rougher the pipe the more turbulentthe flow is through that

7Table for Minor loss coefficients was taken from website http://www.engineeringtoolbox.com.
8’Transition’ is the term used by Colebrook to describe roughness of pipe. By ’transition’ he meant that

the pipes are neither too rough nor too smooth.

27



pipe. The relative roughness of a pipe is given bye/D, wheree is absolute roughness of

pipe andD is diameter of pipe.

Figure 4.2: Moody chart for estimating Frictional factor

By looking at the Moody diagram it shows that the right top corner is completely tur-

bulent and the left top is laminar (smooth flow). To determinethe frictional factor, find

the relative roughness value for the pipe on the right. Then locate the pipes Reynolds

number on the bottom. Follow the relative roughness curve towhere it crosses the deter-

mined Reynolds number. Now at that point project a straight line to the left, the number

determined on the left is the frictional factor.

4.4.1 Example of using Moody chart

Consider flow situation where pipe diameter (D) is 1 ft, Kinematic Viscosity is14.1 ×
10−6 ft2

s
, velocity of fluid is0.141 ft

s
ande is 0.002 ft.
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First we computee/D andR.

e

D
=

0.002ft

1ft
= 0.002

R =
Dv

ς
=

(1ft)(0.141ft

s
)

14.1 × 10−6 ft2

s

= 10000

Now, we consider the value ofe/D and follow the curve whereR is 10000. We project a

straight line to left and can see that the value is0.034.

4.5 Total Head Loss in Serial Connected Pipes

If total head loss in a single pipe is given by

λ
L

D

V 2

2g
+ KL

V 2

2g
(4.2)

Then, the total head loss in several serial connected pipes is algebraic sum of all the head

losses due to pipes in the network. In network ofk pipes, if i is the number of pipe the

the total head loss can be expressed as the following formula:

h =
i=1
∑

k

(

λi

Li

Di

V 2
i

2g
+ KLi

V 2
i

2g

)

(4.3)

Where, the quantities with indexi is connected toith pipe in the network.
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5 Head Loss Coefficient for T-junction

The pressure loss caused by the T-junction depends on inner radius of the branches, ve-

locity of fluid entering or leaving from the junction and the angle of the junction (there are

various approaches for this calculations, some cases are presented in the following text).

There are some classical formulas for pressure loss co-efficient for T-junctions. Most of

these formulas depending on angle of T-junction, inlet and outlet velocities. To compute

head loss coefficients, we have used formulas derived by A. Vazsonyi9, A. Gardel10 and

V. Curic11.

One other idea for computing pressure loss co-efficient for T-junctions with angles, was to

consider T-junction as combination of two pipe components e.g two elbows or an elbow

and a contraction. According to this idea, we assume the T-junction to be made up of

two pipe components. The choice of components would depend on the flow conditions

i.e from which arms the flow is coming toward the junction and from which arms the flow

is leaving from the junction.

In this section we shall mention the classical formulas and the formulas that were con-

structed by assuming T-junction to be made up of other pipe components.

5.1 For dividing flows

These formulas are used for the situation where flow from a single branch flows to the

other two remaining branches. The picture in the left of figure (5.1) gives more clear idea

about such flow situations.

Various studies have been made on T-junction with dividing flow situation. Of these stud-

ies, results obtained by Andrew Vazsonyi’s were believed tobe the closest to the available

statistical data then. Vazsonyi derived two formulas for dividing case and combining

cases (5.1). In his work he explained relation between velocity ratios, angles of the junc-

tion and loss coefficient. The formulas are the result of the comparisons made by him.

9The reference book [2] contains ’Vazsonyi, Andrew: Pressure Loss in Elbows and Duct Branches.
Trans. ASME, vol. 66, no. 3, Apr. 1944, pp. 177-183’ as one of the important reference for these formula.

10The reference book [1] contains ’A. Gardel, Pressure drops in flows through T-shaped pipe-fittings,
Bull. Tech. Suisse Romande 9 (1957), pp. 122130’ as one of theimportant reference for these formula.

11Full derivations and details of the formulas derived by considering T-junction as two components are
available in [3]
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The formula available from work of Vazsonyi is as following

Figure 5.1: Example of flow situations and angles for combining and dividing flow

K0,1 = λ1 + (2λ2 − λ1)

(

V1

V0

)2

− 2λ2

(

V1

V0

)

cos α′ (5.1)

HereK is depending on kinetic energy of the combined flow in branch-0, and

λ1 = 0.0712α0.7141 + 0.37 for α < 22.50 (5.2)

λ1 = 1.0 for α ≥ 22.50 (5.3)

λ2 = 0.0592α0.7029 + 0.37 for α < 22.50 (5.4)

λ3 = 0.9 for α ≥ 22.50 (5.5)

and

α′ = 1.41α − 0.00594α2 (5.6)

The figure (5.1) shows the plots forλ1, λ2 (left) and plot forλ3 (right).

The other empirical formula obtained by Gardel (1957). His idea was to calculate pressure

loss coefficients separately for each inlet (loss coefficient for flow from inlet-1 to outlet-3

and loss coefficient for flow from inlet-2 to outlet-3), so foreach flow situation we have

two loss coefficients (K31 andK32). These formulas were derived by applying momentum

balance to the main pipe section of the junction (sectionabcd in fig (5.3)) and equation of

continuity to the whole t-junction. Then energy balance is applied individually for each

inlet.
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Figure 5.2: Plot ofλ3 (left) and Plot ofα andβ (right)

Figure 5.3: Diagram for combining flow

The formula obtained by Gardel are,

K31 = 0.95 (1 − q)2 + q2

[(

1.3 tan
φ

2
− 0.3 +

0.4 − 0.1a

a2

)(

1 − 0.9
(r

a

) 1

2

)]

+0.4q

(

1 + a

a
tan

φ

2

) (5.7)

K32 = 0.03(1 − q)2 + 0.35q2 − 0.2q(1 − q) (5.8)

Where,a = A1/A3 andφ = π − θ.

It can be clearly observed that there is no effect of area ratio or radius of pipe on the loss

coefficientK32.
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5.2 For combining flows

These formulas are used for the situation where flow from two branches combine in the

remaining branch. The figure (5.3) gives more clear idea about such flow situations. The

formula available from work of Vazsonyi are as follows

K0,1 = λ3

(

V1

V0

)2

+ 1 − 2

[(

V1

V0

)(

Q1

Q0

)

cos β′ +

(

V2

V0

)(

Q2

Q0

)

cos α′

]

(5.9)

Where,K is again depending on kinetic energy of the combined flow in branch-0. Q is

volumetric flow rate (= AV ). λ3 is defined in the graph given by figure (5.1) andα′, β′

are calculated as similar to equation (5.4).

It was also stated by Vazsonyi that there is no variation of the loss coefficient with

Reynolds number (RD > 1000).

The other empirical formula obtained by Gardel (1957) are given by

K31 = −0.92(1 − q)2 − q2
(

1.2 − r
1

2

)

(

cos θ

a
− 1

)

+ 0.8q2

(

1 − 1

a2

)

−0.8q2

(

1

a
− 1

)

cos θ + (2 − a)(1 − q)q

(5.10)

K23 = 0.03(1−q)2−q2

[

1 +
(

1.62 − r
1

2

)

(

cos θ

a
− 1

)

− 0.38(1 − a)

]

+(2−a)(1−q)q

(5.11)

Where,a = A1/A3

5.3 Combined Formula

For certain flow conditions we can assume the T-junction to bemade up of other pipe

components like elbows, sudden contraction or sudden expansion. To calculate pressure

loss of such combination we consider pressure loss caused bythe components individually

and then add them. The following figures and formulas can explain this very easily. This

idea was used by Vladimir Curic in his work [3]. The full details of the derivation of these

formulas are available in his work. The formulas in this section were taken from his work.

T-junction as combination of an elbow and a contraction
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For a combining flow situation as described in figure (5.3), T-junction can be considered

as combination of an elbow and a contraction. For computing the pressure loss for such

combination, we can compute pressure loss for the components separately and then add

them. For doing so, we have to find the point where the elbow andcontraction are joined.

For this purpose, we need to solve equation (5.16) forx. The loss coefficient for elbow is

Figure 5.4: T-junction as combination of an elbow and a contraction

K23 = 0.61

(

V2

V3

)2

+ 1 − 2

(

V2

V3

)(

Q2

Q3

)

cos α′ (5.12)

WhereV2 = Q2/A2 andV3 = Q3/(A − x).

And, loss coefficient for sudden contraction is

K13 = 1 − x

A
(5.13)

These values can be substituted in the following formulas todetermine the pressure loss.

p1 − ṕ1 =
1

2
ρK13

(

Q1

x

)2

(5.14)

and

p2 − ṕ2 =
1

2
ρK23

(

Q2

A − x

)2

(5.15)

The unknownx can be determine by solving the equation

p1−p2 =
1

2
ρ

{

(

A − x

A

)(

Q1

x

)2

−
((

0.61

A2
2

)

+

(

1

(A − x)2

))

Q2 + 2 cos α′

(

Q2
2

A2(A − x)

)

}

(5.16)
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T-junction as combination of two elbows

For a combining flow situation as described in figure (5.5), T-junction can be considered

as combination of two elbows. For computing the pressure loss for such combination, we

can compute pressure loss for the elbows separately and thenadd them. For doing so, we

have to find the point where the two elbow are joined. For this purpose, we need to solve

equation (5.21) forx.

Figure 5.5: T-junction as combination of two elbows

For elbow-1, the loss coefficient is

K13 = 0.61

(

Am − x

A

)2

+ 1 − 2

(

Am − x

A

)

cos α′ (5.17)

For elbow-2, the loss coefficient is

K23 = 0.61
( x

A

)2

+ 1 − 2
( x

A

)

cos β′ (5.18)

These values can be substituted in the following formulas todetermine the pressure loss.

p1 − ṕ1 =
1

2
ρK13

(

Q1

Am − x

)2

(5.19)

and

p2 − ṕ2 =
1

2
ρK23

(

Q2

x

)2

(5.20)

The unknownx can be determine by solving the equation

p1−p2 =
1

2
ρ

{

0.61

(

Q2
1 − Q2

2

A2

)

+
Q1

Am − x

2

− Q2

x

2

− 2
Q2

1

A(Am − x)
cos α′ − 2

Q2
2

A.x
cos β′

}

(5.21)
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6 Computational Experiments

In this section we shall discuss observations and results obtained by experiments made

with softwares FLUENT and Comsol Multiphysics. We shall alsocompare the results

obtained by softwares with the results obtained from various classical head loss formulas

mentioned in last chapter. The section includes results obtained by experiments with

Figure 6.1: Cross-section plot for example case of flow in T-junction

T-junction with various diameters and inflow velocities, numerical results obtained by

slightly changing the angle of the junction from900 and also, we shall also explain how

the T-junction can be split in to two pipe components (e.g. two elbows) and compare

the head loss obtained by classical formula of the head loss of T-junction and formula

obtained by splitting T-junction in to two pipe components.

Figure 6.2 shows and example of comparison of head-loss by classical formula and head

loss observed by software of an example cases of flow in T-junction. The curve with data

points presented by star is the curve for head loss observed by software and the curve with

data points presented by square is the curve for head-loss obtained by classical formula.

We can clearly observe that the curves agree good for first3 sets of velocities but then on

the curves do not agree.

The graphs in the following section can be similarly interpreted.
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Figure 6.2: Comparison of head-loss by classical formula andhead loss by software of an
example cases of flow in T-junction

6.1 Head loss comparison for combining flow

Case-1This is the case where the flow in coming toward the junction from two branches

in main pipe and leaving from the junction from the perpendicular branch (See figure 6.3).

Figure 6.3: Combining flow: Case-1

From figure 6.4, it can be observed that the head loss by software and classical formulas

(using the formula by Andrew Vazsonyi) do not agree in this case. There is about3.2 %

error between results by software and classical formula.

Case-2This is the case where the flow in coming toward the junction from one branch
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Figure 6.4: Head loss for Combining flow: Case-1, Radius of branches is0.5 cms, Inlet
velocities vary from1 cm/sec to 3 cm/sec (25 different cases plotted), Outlet pressure is
100 Pascals and classical pressure loss formula by Andrew Vazsonyi

in main pipe and the branch perpendicular to it and leaving from the junction from the

remaining branch in the main pipe (See figure 6.5) [The other situation is exactly the

mirror image].

Figure 6.5: Combining flow: Cases-2

From figure 6.6, we can observe that the head loss by software and classical formulas

also do not agree in this case. There is about5.0 % error between results by software and

classical formula.
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Figure 6.6: Head loss for Combining flow: Case-2, Radius of branches is0.5 cms, Inlet
velocities vary from1 cm/sec to 3 cm/sec (25 different cases plotted), Outlet pressure is
100 Pascals and Classical pressure loss formula by A. Gardel

6.2 Head loss comparison for dividing flow

Case-1This is the case where the flow in coming toward the junction from the perpen-

dicular branch and leaving from the junction from two branches in main pipe (See figure

6.7).

Figure 6.7: Dividing flow: Case-1

Case-2This is the case where the flow in coming toward the junction from one branch
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Figure 6.8: Head loss for dividing flow: Case-1, Radius of branches is0.5 cms, Inlet
velocity vary from1 cm/sec to 3 cm/sec, at both outlet pressure is100 Pascals and
Classical pressure loss formula by A. Gardel

in main pipe and perpendicular branch and leaving from the junction from the remaining

branch in the main pipe (See figure 6.9) [The other situation is exactly the mirror image]

Figure 6.9: Dividing flow: Case-2

From figure 6.8 and 6.8, we can observe that the head loss by software and classical

formulas also do not agree in this case. Though the curves, seem to get along with the in-

crease in inlet velocities, but they do not exactly match forany combination of velocities.

There is about4.5 to 6.1 % error between results by software and classical formula.

6.3 Head loss change with change in angle of T-junction branches

In this part we shall display comparison of head loss obtained by software and classical

formulas for different angles of T-junction. The figure 6.11cases for inflow, outflow and
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Figure 6.10: Head loss for dividing flow: Case-2, Radius of branches is0.5 cms, Inlet
velocity vary from1 cm/sec to 3 cm/sec, at both outlet pressure is100 Pascals and
Classical pressure loss formula by A. Gardel

angle. For all the comparisons we have use formulas by AndrewVazsonyi for combining

flow case-1 and formulas by A. Gardel for case-2.

Figure 6.11: T-junction with different angles between mainpipe and branch pipe

In cases shown in figure-6.12 to figure-6.17, we have calculated and compared head loss

suffered by T-junction with angleγ = 91, γ = 91, γ = 93, γ = 89, γ = 88 andγ = 87.

These calculations were for combining flow case-1, where flowis coming toward the

junction from opposite pipes and leaving from the junction through perpendicular pipe

(see figure 6.3). It was observed that the head loss increaseswith increase in angle. Also,

for all the cases; the head loss obtained by software and classical formula were close to

each other.

41



1 1.5 2 2.5 3 3.5 4 4.5 5
2

3

4

5

6

7

8

P
re

ss
ur

e 
in

 P
as

ca
ls

Velocity in inlet−1 (v1) in cm/sec

Graph of Head−loss from software(SW) VS Head−loss from classical formula(CF)

 

 
v2=1,SW3d
v2=1,CF
v2=1.5,SW3d
v2=1.5,CF
v2=2,SW3d
v2=2,CF
v2=2.5,SW3d
v2=2.5,CF
v2=3,SW3d
v2=3,CF

Figure 6.12: Head loss for T-junction with angleγ = 91, combining flow: Case-1, Radius
of branches is0.5 cms, Inlet velocities vary from1 cm/sec to3 cm/sec (25 different cases
plotted), Outlet pressure is100 Pascals and Classical pressure loss formula by Andrew
Vazsonyi

The figure 6.18 shows head loss for different angles of T-junction. These calculations

were for combining flow case-2, where flow is coming toward thejunction from perpen-

dicular pipes and leaving from the junction through remaining main pipe (see figure 6.5).

It was observed that when the angle gamma (γ) is less, head loss suffered is less. This

is because there is no significant change in of momentum of theflow between incoming

and out going flow. It was also observed that when the angle gamma (γ) is more, head

loss suffered is more. This is because of change in momentum of the flow while passing

through T-junction.

From the casesγ = 87 (fig-6.15),γ = 88 (fig-6.16),γ = 89 (fig-6.17),γ = 91 (fig-6.12),

γ = 92 (fig-6.13) andγ = 93 (fig-6.14), we can observe that the head loss by software

and classical formulas also do not agree in any case. Though for some cases and certain

inlet velocity combinations, the curves seem to get along with each other but this is not

sufficient to conclude that the head losses obtained by both the sources agree. There is

about4.6 to 6.7 % error between results by software and classical formula.
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Figure 6.13: Head loss for T-junction with angleγ = 92, combining flow: Case-1, Radius
of branches is0.5 cms, Inlet velocities vary from1 cm/sec to3 cm/sec (25 different cases
plotted), Outlet pressure is100 Pascals and Classical pressure loss formula by Andrew
Vazsonyi

6.4 Head loss for T-junction with different radius of branches

Case-1: This is the case where the cross-section area of main pipe isone half of that

of perpendicular branch pipe. The flow is coming toward the junction from the opposite

branches in main pipe and leaving from the perpendicular branch (See figure 6.19).

Case-2: This is the case where the cross-section area of main pipe isone third of perpen-

dicular branch pipe. The flow is coming toward the junction from the opposite branches

in main pipe and leaving from the perpendicular branch (See figure 6.21).

Case-3: This is the case where the cross-section area of main pipe isone fourth of perpen-

dicular branch pipe. The flow is coming toward the junction from the opposite branches

in main pipe and leaving from the perpendicular branch similar to above two cases.

The figure 6.24 shows head loss for different cross-section areas of branches of T-junction

(A1 =area of main pipe,A2 =area of branch pipe). These calculations were for com-

bining flow case-1, where flow is coming toward the junction from opposite branches in

main pipe and leaving the junction from perpendicular branch pipes (see figure 6.5).

From figure 6.20, figure 6.22 and figure 6.23 we can observe thatthe head loss by software
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Figure 6.14: Head loss for T-junction with angleγ = 93, combining flow: Case-1, Radius
of branches is0.5 cms, Inlet velocities vary from1 cm/sec to3 cm/sec (25 different cases
plotted), Outlet pressure is100 Pascals and Classical pressure loss formula by Andrew
Vazsonyi

and classical formulas also do not agree. There is about4.4 to 6.8 % error between results

by software and classical formula.

It was observed that head loss is reducing when the cross-section area of the main pipe

is reducing (for all the cases cross-section area of the perpendicular branch pipe was kept

same1 cm.). This observations also verifies claims by A. Gardel, that the head loss

increases with increase in ratio of the cross section area (A2/A1 where,A1 =area of

main pipe,A2 =area of branch pipe). These observations are for the case when the flow

is combining case-1, where the flow is coming in from oppositebranches in main pipe

and leaving from perpendicular branch pipe. The observation is exactly reverse when we

consider combining flow case-2, where the flow is coming in from one branch in main

pipe and perpendicular branch pipe and leaving from remaining branch in main pipe. The

head loss suffered will increase with increase in ratio of the cross section area (A2/A1).
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Figure 6.15: Head loss for T-junction with angleγ = 87, combining flow: Case-1, Radius
of branches is0.5 cms, Inlet velocities vary from1 cm/sec to3 cm/sec (25 different cases
plotted), Outlet pressure is100 Pascals and Classical pressure loss formula by Andrew
Vazsonyi
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Figure 6.16: Head loss for T-junction with angleγ = 88, combining flow: Case-1, Radius
of branches is0.5 cms, Inlet velocities vary from1 cm/sec to3 cm/sec (25 different cases
plotted), Outlet pressure is100 Pascals and Classical pressure loss formula by Andrew
Vazsonyi
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Figure 6.17: Head loss for T-junction with angleγ = 89, combining flow: Case-1, Radius
of branches is0.5 cms, Inlet velocities vary from1 cm/sec to3 cm/sec (25 different cases
plotted), Outlet pressure is100 Pascals and Classical pressure loss formula by Andrew
Vazsonyi
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Figure 6.18: Head loss for different angle of T-junction, combining flow: Case-2, Radius
of branches is0.5 cms, Inlet velocities vary from1 cm/sec to 3 cm/sec, Outlet pressure
is 100 Pascals and Classical pressure loss formula by A. Gardel
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Figure 6.19: Dividing flow: Case-1
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Figure 6.20: Head loss for area case-1, combining flow case-1, Radius of main pipe is
branches is0.25 cms, Radius of perpendicular pipe is branches is1 cms, Inlet velocity in
both inlets vary from1 cm/sec to 3 cm/sec, pressure at outlet is100 Pascals and Classical
pressure loss formula by Andrew Vazsonyi
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Figure 6.21: Dividing flow: Case-1
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Figure 6.22: Head loss for area case-2, combining flow case-1, Radius of main pipe is
branches is0.3 cms, Radius of perpendicular pipe is branches is1 cms, Inlet velocity in
both inlets vary from1 cm/sec to 3 cm/sec, pressure at outlet is100 Pascals and Classical
pressure loss formula by Andrew Vazsonyi
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Figure 6.23: Head loss for area case-1, combining flow case-1, Radius of main pipe is
branches is0.25 cms, Radius of perpendicular pipe is branches is1 cms, Inlet velocity in
both inlets vary from1 cm/sec to 3 cm/sec, pressure at outlet is100 Pascals and Classical
pressure loss formula by Andrew Vazsonyi
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Figure 6.24: Head-loss for different cross-section areas of branches of T-junction,
A1 =area of main pipe,A2 =area of branch pipe, combining flow: Case-1, Radius of
branches is0.5 cms, Inlet velocities vary from1 cm/sec to 3 cm/sec, Outlet pressure is
100 Pascals and Classical pressure loss formula by A. Gardel
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7 Discussion and future scope of the work

7.1 Discussion

From results in the previous section, we can observe that there is difference between head

loss in T-junction of pipes observed by calculations from software packages Fluent and

Comsol. Our main aim was to study the difference between the observations from CFD

softwares and classical formula by Andrew Vazsonyi, A. Gardel and formulas available

in reference [3].

In case of combining flow, the difference between observations obtained by Comsol (3D

experiments) and classical formula were in the range of3.2 to 5.1 %. Incase of dividing

flow, this difference was in the range of4.5 to 5.5 %. In the case, where we varied the

angle of the T-junction from87 degrees to93 degrees, difference between observations

by Comsol (3D experiments) and classical formula was in the range of4.6 to 6.7 %.

One of the reasons for these errors is likely the limited capabilities of software. These

differences are as a result of software’s inability to handle complicated flow conditions.

Comsol Multiphysics (version 3.2a) can not handle flow situations with turbulence. Also,

this version of Comsol Multiphysics does not have ability to model rough inner surface

of pipes.

For all our experiments the fluid was considered water with normal properties at room

temperature. Also the classical formulas are valid only forfluid that is incompressible

and inviscid. The formulas reference [3], with the idea of considering the T-junction as

combination of two pipe components, is only valid for 2D case.

Our main aim was to study the difference between the observations from CFD software

and classical formula by Andrew Vazsonyi, A. Gardel and formulas available in refer-

ence [3]. The values obtained by CFD software were in certain agreement with classical

formulas both by Andrew Vazsonyi and A. Gardel but values obtained by CFD software

were better agreement with A. Gardel. It can be clearly observed that for combining flow

situations where we used Gardel’s formula, the difference was in range of3.2 to 5.0 %

and for dividing flow cases where we used Vazsonyi formulas, the difference was in range

of 4.5 to 6.0 %.

Gardel’s formulas were as result of a systematic derivationfrom basic principles of mo-

50



mentum (applied to the main pipe), continuity principle to the fluid in whole T-junction

and energy balance principle (individually) to flow coming from the branches. Unfor-

tunately, none of the classical formulas consider pipe roughness as factor for the head

loss. Roughness of the pipe varies from as material and it is also considered as one of

the major cause for major losses. This is where the accuracy of coefficients obtained

by classical formula can be questioned. Though, the loss dueto friction between fluid

and junction inner surface is very less, but theses small values can be very significant for

precise calculations.

During this work, we also observe that the difference between observations by 2D sim-

ulations of software and classical formula were considerably larger than the difference

between observations by 3D simulation of software and classical formula. We also rec-

ommend 3D simulation for such calculations, since 3D simulation are more near to the

reality and also effect of turbulence can be modeled and observed in 3D simulations. Also,

3D simulation give more clear view of swirl movements, streamlines and turbulence in

the fluid.

During the work we realized that Fluent is a better option forheavy and precise simu-

lations. Since, Fluent has capability to model turbulence with verity of Kappa-Epsilon

models and also because Gambit is a very handy tool to create even complicated geome-

tries. But, Fluent can be sometimes very expensive in terms ofcomputational time. The

only advantage with Comsol Multiphysics is that we can creategeometry and carry out

calculations in the same environment and the grid does not have to be exported every time

the experiments are repeated.

From our experience during this work, we would suggest to useFluent for similar simu-

lations. There are also some higher versions of Comsol available that have capability to

handle complex flow situations. Gardel’s formulas were as result of a systematic deriva-

tion from basic principles of momentum (applied to the main pipe12), continuity principle

to the fluid in whole T-junction and energy balance principle(individually) to flow coming

from the branches.
12For this purpose he considered main pipe as a control volume and applied momentum balance principle.
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7.2 Future scope of the work

In this work was restricted to only water at room temperatureand t-junctions with smooth

inner surface. There can be more work done to generalize these results for the other fluids

and T-junction with rough inner surfaces.

Also, with software our ambition was to construct a real timesimulation of T-junction

with varying angle. Though this is a very lengthy process, since fluent takes too much

time with dynamic mesh, but this is possible with higher versions of fluent and other CFD

packages.

Unfortunately, none of the classical formulas consider pipe roughness as factor for the

head loss. Roughness of the pipe varies from as material and itis also considered as one

of the major cause for major losses. This is where the accuracy of coefficients obtained

by classical formula can be questioned. Though the loss due to friction between fluid

and junction inner surface is very less but theses small values can be very significant for

precise calculations.

During this study, we also came across an industrial problemconcerning to flow of pulp

like fluid in pipes. The problem was placing a valve of certaincapacity for regulating

supply of pulp like material based on the pressure and velocity profiles in the supply

network. Initially, pipe with elastic property was used to supply the material and a large

forceps was used to reduce the diameter of pipe where the supply was not needed or to be

regulated. Such kind of problems can be solved with similar techniques.

In this work all, we made an attempt to study effect of different radius of main pipe and

branch pipe. The range of flow parameters (flow velocity, pipediameter and pressure)

used in our computational experiments was relatively small. It is also possible that the

difference of head loss observed and inaccuracy of the formula is even larger in broader

range of parameters. Thus we suggest that there should be more 3D computational exper-

iments done using more advanced CFD software packages.

This can play important role in verifying other claims made on basis of classical formulas.

E.g. Andrew Gardel’s observation that head-loss increaseswith increase in ratio of areas

of main pipe and branch pipe.
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8 APPENDIX A. ELEMENTS BASIS FUNCTIONS AND LOCAL BASIS
FUNCTIONS APPENDIX A

8 Appendix A. Elements Basis functions and Local Basis

Functions

Suppose that for a given finite element mesh there is associated with each nodeNi =

(xi, yi) a function ,defined on̄Ω with following properties.

1. The restriction ofφi to any elementel mesh is associated with each a polynomial

form

φi(x, y) =
T
∑

s=1

Cil
(s)x

psyqs

; (x, y) ∈ elwhere powersps andqs, s = 1, 2, ..., T are independent ofi andj.

2. φi(Nj) = δij for i, j = 1, 2, ...M

3. φi is uniquely determined on every element edge by its value at the nodes belonging

to that edge.

4. φi ∈ C(Ω̄)

5. φi assumes non-zero values only in those elements to whichNi belongs.

6. If Niis not onΓ,thenΦi vanishes on the boundary of its support. IfNi in onΓ, then

φi vanishes on part of boundary of its support that lies inΩ.

7. It is possible to chose a standard (or reference) elementẽ in the x̃ − ỹ plane with

local basis functions̃φ1(x̃, ỹ), ..., φ̃T (x̃, ỹ) of typeφi(x, y) =
∑T

s=1 Cil
(s)x

psyqs and

find for every elementel invertible affine variable transformation.

x = x(x̃, ỹ) = f11x̃ + f12ỹ + b1

y = y(x̃, ỹ) = f21x̃ + f22ỹ + b2

(x̃, ỹ) ∈ ẽ depends onl, such that this maps̃e ontoe1 (mapping nodes onto nodes)

and

φ̃r(x̃, ỹ) = φl
r(x(x̃, ỹ), y(x̃, ỹ))
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denoting the inverse transformation by

x̃ = x̃(x, y)

andỹ = ỹ(x, y) thus(x, y) ∈ elWe can rewriteφ̃r(x̃, ỹ) as

Φr
l (x, y) = ˜Φr

l (x, y)(x̃(x, y), ỹ(x, y))

Local basis function overel, defined by

Φr
(l)(x, y) = Φr

ir(l)(x, y)

, (x, y) ∈ el, r = 1, 2, ...TA local basis function is simply the restriction of some global

basis function toel.
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9 Appendix B. Lax Milgram Lemma

Consider a functional

f(u) =

∫ a

b

{

1

2
p(x)(u′)2 +

1

2
q(x)(u)2 − g(x)u

}

dx

, u ∈ V

V =
{

v ∈ C2[a, b]; v(a) = v(b) = 0
}

Where,p ∈ C1[a, b], q, p ∈ C[a, b], 0 < p0 ≤ p(x) ≤ p1 and0 < q0 ≤ q(x) ≤ q1 for

a ≤ b with p0,p1,q1 as constants.

a(u, v) =

∫ a

b

{p(x)u′v′ + q(x)uv} dx

, u, v ∈ V

G(u) =

∫ a

b

g(x)udx

, u ∈ V We can expressf as,f(u) = 1
2
a(u, u) − G(u), u ∈ V . Let, V be any arbitrary

Hilbert Space with inner product(., .)v and norm‖u‖v = (u, u)v
1

2

; u ∈ V . Let a :

V × V → ℜ be a mapping with following four properties.

1. a(αu + βv, w) = α.a(u,w) + β.a(v, w), u, v, w ∈ V , αβ ∈ ℜ

2. a(w,αu + βv) = α.a(w, u) + β.a(w, v), u, v, w ∈ V , αβ ∈ ℜ

3. ∃ constantβ ∋ |a(u, v)| ≤ β ‖u‖V ‖v‖V , u, v, w ∈ V i.e a is bounded.

4. ∃ constantρ > 0 ∋ a(u, v) ≥ ρ ‖u‖2
v, u ∈ V i.e a is coercive. LetG : V → ℜ be a

mapping with following properties :

5. G(αu + βv) = αG(u) + βG(v) ; u, v, w ∈ V , αβ ∈ ℜ i.e G is linear.

6. ∃ constantδ > 0 ∋ |G(u)| ≤ ρ ‖u‖v, u ∈ V i.e G is bounded.

Under these assumptions for′a′ and ′a′, there exist a unique elementû ∈ V such that

a(û, u) = G(u),∀u ∈ V .
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10 Appendix C. Field and derivative rules

For any arbitrary fieldsv andw,

• v + w = v + w

• av = av, wherea is constant.

• a = a, wherea is constant.

• ∂v
∂s

= ∂v
∂s

, wheres = xi or s = t

• vw = vw

Some consequences of these averaging rules are as following

• uiuj = uiuj + u
′

iu
′j

• uiujuk = u
′

iu
′

ju
′

k + u
′

iu
′

juk + u
′

ju
′

kui + u
′

ku
′iuj + uiujuk

• ∂ui

∂t
ui − ∂ui

∂t
ui =

∂u
′

j

∂t
u

′

i

Some rules for derivative

1. ∂ui

∂t
ui = ∂ui

∂t
ui +

∂u
′

i

∂t
u

′

i

2. ∂p

∂xi
ui = ∂p

∂xi
ui + ∂∆p

′

∂ui
u

′

i

3. ∂τij

∂xi
ui =

∂τij

∂xi
ui +

∂u
′

i

∂ui
τ

′

ij

4. uj
∂ui

∂xj
ui − uj

∂ui

∂xj
ui = u

′

i

∂u
′

i

∂xj
ui +

∂u
′

i

∂xj
u

′

iu
′

j + u
′

i

∂u
′

i

∂xj
ui + u

′

iu
′

i

∂u
′

i

∂xj
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11 Appendix D. Creating geometry in Gambit

We can create t-junction geometry by two ways, one is creating two rectangles perpendic-

ular to each other and then merging them second is creating vertex points and connecting

them by edges. We will do this by second way.

• First we shall create the points that will be used to create the lines and then faces

of the domain.Operation > Geometry > Vertex > Create VertexA(0,0), B(0,5),

C(5,1), D(0,1), E(2,1), F(3,1), G(2,3), H(3,3).

Figure 11.1: Buttons for drawing geometry

• Now draw the straight lines that will complete the domain. Connect the points to

create the following line segments: AB, BC, CD, DE, EF, FG, GH, HA.

• Operation > Geometry > Face > Form Face. Select all the line segments in the

drop list and create the face.

• Operation > Mesh > Mesh Face. Select the face and specify the spacing or ratio.

• Operation > Zones > Specify Boundary Types. Create boundary conditions as

follows: Left face =Velocity Inlet1, Right face =Velocity Inlet2, Upper face =

Pressure Outlet and all the other faces arewalls.
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• Save the Gambit file andexport to the Fluent mesh.
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12 Appendix D. Solving problem with fluent

• Load the mesh into Fluent. File > Read > Case.

• Check the mesh for errors. Grid > Check

• For this problem, the default Solver settings will be sufficient. Ensure that the

proper viscous model is selected.Define > Models > Viscous.

• Now recall liquid water from the materials database so that it can be specified in

the boundary conditions.Define > Materials. Enter the database by clicking on

Database. Select water liquid (h2o<l>) in the Fluid Materials list. Click Copy and

then Close. Now move the reference pressure into the flow domain.

• Define > Operating Conditions.

• Boundary conditions can now be set. Define > Boundary Conditions. Select fluid

in the selection menu on the left and then click on Set. Change Material Name to

water-liquid. Now click on inlet in the Zones menu and enter the velocity-inlet win-

dow. Change Velocity Specification Method to Components and enter a velocity of

2.01e-4 m/s (liquid water at Re = 20) next to X-Velocity. Changethe discretization

method to a higher order scheme.

• Solve > Controls > Solution. Change the Discretization for Momentum to 2nd

Order Upwind.

• The flow domain can now be initialized.Solve > Initialize > Initialize. Initialize

the flow with the inlet conditions.

• Enable the plotting option for residuals and turn off automatic convergence check-

ing. Solve > Monitors > Residual.

• The problem is ready to be iterated.Solve > Iterate. Start with 200 iterations.

• Once Fluent has stopped iterating, we can post-process the data of our interest.

• We can useDisplay > Contours. and view contour of velocity, pressure etc.
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