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ABSTRACT

Lappeenranta University of Technology
Department of Information Technology
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61 pages, 39 figures, 3 tables and 4 appendices

Examiners: Professor Heikki Haario
Dr Matti Heilié
Keywords:  T-junction, Head Loss, Navier-Stokes EquatiGappa Epsilon model.

The aim of this work is to study flow properties at T-junctidnpgpe, pressure loss suf-
fered by the flow after passing through T-junction and to ptadiability of the classical
engineering formulas used to find head loss for T-junctiopipés. In this we have com-
pared our results with CFD software packages with classicaldila and made an attempt
to determine accuracy of the classical formulas. In thiskweg have studies head loss in
T-junction of pipes with various inlet velocities, headdas T-junction of pipes when the
angle of the junction is slightly different from 90 degreew &-junction with different
area of cross-section of the main pipe and branch pipe.

In this work we have simulated the flow at T-junction of pipgwiLUENT and Comsol
Multiphysics and observed flow properties inside the T4iomcand studied the head
loss suffered by fluid flow after passing through the junctid®e have also compared
pressure (head) losses obtained by classical formulas bgzsonyi and Andrew Gardel
and formulas obtained by assuming T-junction as combinatfamther pipe components
and observations obtained from software experiments. @tle@urposes of this study
is also to study change in pressure loss with change in afgdiguoction.

Using software we can have better view of flow inside the jiamcand study turbulence,
kinetic energy, pressure loss etc. Such simulations sameatime and can be performed
without actually doing the experiment. There were no rdel éixperiments made, the
results obtained completely rely on accuracy of softwarkrarmerical methods used.
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NOTATIONS

Alphabetical Conventions

A
C.U
Cle! C2e

dp,

Pipe cross sectional area:(?)

Constant used in mixing length turbulence model (Dimensiss)l
Standard k-epsilon Model constants (Dimensionless)

Pipe diameterdm)

Hydraulic diameterdm)

Absolute roughness of pipe

Element of FEM domain

Acceleration due to gravityefn?/s) (g = 9.80665m?/s)
Component of gravitational vector in thi&direction

Minor Loss Coefficient of pipe component (Dimensionless)
Loss-coefficient for flow coming from branctio branchj
turbulent kinetic energy

Relative roughness

Length of pipe {m)

Node in element of FEM

Inner Pipe diametel:(n)

Pressure field

Effect of buoyancy

Production oft

Turbulent Prandtl number for energ¥,{ = 0.85) [default value for stan-
dard K-epsilon models]

Volumetric flow rate
Roughness coefficient of pipe material (dimensionless)
Reynolds numbers

modulus of the mean rate of strain tensor
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U Velocity vector field U = (uy, us, uz) each function of: andt)

u x-component of velocity,(n/s)

v y-component of velocitydmn/s)

w z-component of velocity,cn/s)

v y-component of mean velocityn /s

u x-component of mean velocityn /s

w z-component of mean velocityn /s

Greek Conventions

Q@ Angle in T-junction (for combining flow)

B,y Angles in T-junction (for dividing flow) [used in Chapter-4]
Coefficient of thermal expansion

T Shear Stress

n Dynamic viscosity

A Friction Factor (dimensionless)

A1y A2, A3 Coefficients in Vazsonyi’'s formulas (dimensionless)

(x,t) Turbulent dissipation rate

1 Fluid Viscosity, Pa — s

Lt Turbulent viscosityPa — s

o Symmetric stress tensor

ok Turbulent Prandtl number for k

O Turbulent Prandtl number far

P Density of the fluidg/cm?

Tw Shear stress}a

S Kinematic viscosity of fluid

0 Angle between main pipe and branch
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Mathematical Conventions

log(x) logarithm base 10 of x

e’ exponential of x-that isg raise to the power of x
Yo a the sum from i=1 to n that isy; +as + ... + a,
[T, a; the product fromi=1tonthatis, x a; x ... X a,

0 f(x)/0 x partial derivative of with respect to x

V= (%,...,%) Vector differential operator (gradient)
A= (88—;2, o %) Laplace operator (nabla)

A (cVu) ai ( aa_> agn (%%)

b () o (2

fa f(x) the integral of with respect to x

F(x;0) function of x, with implied dependence upén

Mathematical Operations

equivalent to (or defined to be)

x proportional to
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1 Introduction

Pipe networks are mainly used for transportation and suppfiuids and gases. These
networks vary from fewer pipes to thousands of pipes (e.glems&upply network of a
large city, see in figure 1.1). In addition to pipes, the neknaiso consists of elbows,
T-junctions, bends, contractions, expansions, valvesemepumps, turbines and many
other components. All these components cause loss in peedsa to change in momen-
tum of the flow caused due to friction and pipe componentss Teans conversion of
flow energy in to heat due to friction or energy lost due to tlehce.

Pipe networks are very common in industries, where fluid segare to be transported
from one location to the other. The head loss (pressure hoay)vary depending on
the type of components occurring in the network, materighefpipe and type of fluid
transported through the network. In industries the netwarie usually large and require
very precise pressure at certain points of network. It is atametimes essential to place
valves, pumps or turbines of certain capacity to controkguee in the network. The
placement of valves, pumps and turbines is important tooovee pressure loses caused
by other components in the network. This is one of the impnt@asons why this study
was conducted.

Figure 1.1: Water Distribution in city and industries.

In this work we have concentrated our attention to a very samal common component
of pipe network: T-junction (Some also refer as 'Tee’). Tgtion is a very common
component in pipe networks, mainly used to distribute (djegthe flow from main pipe
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to several branching pipes and to accumulate (converges ftmm many pipes to a single
main pipe. Depending on the inflow and outflow directions, libbavior of flow at the
junction also changes. The following figure shows some pdgigs of fluid entering and
leaving the junction.

Figure 1.2: Various possibilities of fluid entering and le@vthe junction

In present work we will numerically simulate the fluid flow irjinction of pipes with
Comsol Multiphysics and FLUENT. The results obtained bysafe were compared
with available classical formula and formulas construdigcassuming T-junction to be
made up of two different components. This comparison aldpelein verification of
some loss coefficients used in classical formula.

In fluid dynamicsheadis the difference in elevation between two points in a colwhn
fluid, and the resulting pressure of the fluid at the lower poihis possible to express
head in either units of height (e.g. meters) or in units obpoee such as Pascals. When
considering a flow, one says that head is lost if energy ispdigsd, usually through
turbulence; equations such as the Darcy-Weisbach equadm been used to calculate
the head loss due to friction.

Head losses are of two types major and minor. Major head s$dqsdso called Frictional
losses) are due to rough internal surface of pipe and ocairrlemgth of pipe. They are
mainly due to friction. Minor losses are losses due to thengkan fluid momentum.
They are mainly due to pipe components due to bends, valudgles changes in pipe
diameter, etc. Minor losses are usually negligible congbaoefriction losses in larger
pipe systems. Presence of additional components offestagsie to flow and turbulence.

In this work, our aim is to study behavior of fluid at T-juncti@f pipes, head losses
caused by T-junction and change in pressure loss with charegggle of the junction.



2 CFD tools used

In this chapter we present an assortment of mathematicéladethat we have used in
this study. This chapter includes overview of the CFD metheidge Element method
(FEM) and Finite Volume Method (FVM).

We begin this section with a small introduction to FEM. Thidl wclude overview and
basic steps of FEM. Then, we will introduce FVM and also giasib steps of it.

2.1 Finite Element Method

The essence of the Finite Element Method (FEM) is to take apt@aproblem whose

solution may be difficult if not impossible to obtain, and dewose it into pieces upon
each of which a simple approximation of the solution may bestmicted, and then put
the local approximate solutions together to obtain a glapakoximate solution. FEM is
widely used to find approximate solutions of differentialiaijons which are not solvable
with analytical methods or which have geometrically commglemains. There are com-
mercial software packages like Comsol Multiphysics and AlSSailable for usage.

In FEM, we divide, domairf2 € R? of the boundary value problem into a number of
closed sub-regions called elemer{tsl}le). When we do this we take following precau-
tions

1. Avoid very large and very small angles.

2. Element should be placed most densely in region whereotbéan of the problem
and its expected to vary rapidly.

3. High accuracy requires a fine mesh or many nodes per element

Suppose that for a given finite element mesh there is asedcwath each nodev;, =
(z;,y;) a function, defined of with certain properties (semppendix-C), this function
is called Elements basis functions. Local basis functioer alement; is simply the
restriction of global element basis functionepf

This method involves simple steps as described briefly.



1. Discretization of the domain Discretize the geometrically complex domain into

set of finite elements calleelements We can divide the domain into desired num-
ber of elements and desired number of nodes. These elememtsraoverlapping.
It can be easily observed that the elements have simple geoatdorm and are
only part of the very complex looking geometry and nodes heepoints where
these elements meet. For 1-D the elements are interval®;@othe elements are
triangles or quadrilaterals.

2. Weak formulation of the differential equation over element. Multiply the equa-
tion by a weight function and integrate the equation ovedibmain. Distribute the
differentiation among the weight function. Use the defamtof the natural bound-
ary condition in the weak form.

element

governg £ 0
Sromg form
iy T
Yo=4 rartational (weak) formm

fe00.0,00xa7 | )
Linedar eguations

Ax=b

Figure 2.1: Finite Element Discretization of the domain &veak formulation

3. Local Approximation of Solution: On each element let us attempt to compute the
length. We assume that the length of each arc can be appredrog the length of
the chord i.e. we approximate the arc using a straight line.

4. Assemble the Element Equations Collect the element equations to get a repre-
sentation of the whole system. Assemble the element equsaticobtain the global
system of equations.

5. Imposition of boundary conditions.



6. Solution of the algebraic system of equationsObtain the Solution of standard
matrix equation by direct or indirect (iterative) method.

7. Post processing This final operation displays the solution to system eaqunetin
tabular graphical or pictorial form. Other meaningful qties may be derived
from the solution and also displayed.

The finite element solution converges to the true solutiothasnumber of elements is
increased. FEM is easy to use and it is also easy to approxitnatdifferential terms of
higher order. This method demands a good engineering judigre choice of type of
element and other basis functions can be crucial.

2.2 Finite Volume Method

The Finite Volume Method (FVM) is a numerical method basedmegral conservation

law. These methods are used for solving partial differéetiations that calculates the
values of the conserved variables averaged across the &olUie integral conserva-
tion law is enforced for small control volumes defined by tbenputational mesh. One
advantage of FVM over FDMs is that it does not require a stmect mesh (although a
structured mesh can also be used). Furthermore, FVM isnatdéeto other methods as
a result of the fact that boundary conditions can be appladinvasively. This is true

because the values of the conserved variables are locattaid tiie volume element, and
not at nodes or surfaces. FVMs are especially powerful orsepaon-uniform grids and

in calculations where the mesh moves to track interfacebarks.

The FVMs are very efficient in solving conservative probleifisey are extensively used
in fluid mechanics and many other engineering areas govdimednservative systems
that can be written in integral control volume form. The paityn advantages of these
methods are numerical robustness, applicability on venegd unstructured meshes,
and the intrinsic local conservation properties of the ltesgischemes.

To use FVM concrete choice of control volumes, type of appnation inside them and
numerical methods for evaluation of integrals and fluxesegeired to be chosen care-
fully in advance. This method (Based on the control volumenidation of analytical
fluid dynamics) involves simple steps as described briefly.

1. In FVM, computational domain is first tessellated into Bemion of non overlap-
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ping control volumes that completely cover the domain iedivide the domain

into a number of control volumes where the variable of irgei®located at the cen-
troid of the control volume. The control volumes are dividedo two categories:

cell-centered and vertex-centered control volume (See2ip. 2n the cell-centered
finite volume method shown, the triangles themselves sergertrol volumes with

solution unknowns (degrees of freedom) stored on a pegfiedasis. In the vertex-
centered finite volume method shown, control volumes amadéoras a geometric
dual to the triangle complex and solution unknowns storec qer triangulation

vertex basis. The following figures give clear idea abouétgpcontrol volumes in

1D, 2D and 3D.

Vertex-centered FVM Cell-centered FVM

1D Uy 1D (]

Li-1/2 Lit1/2

1]

e storage location

% control volume

Figure 2.2: Control volume variants used in the finite volurethnod: cell-centered and
vertex-centered control volume

2. Integrate the differential form of the governing equasi¢very similar to the control
volume approach) over each control volume.

3. Interpolation profiles are then assumed in order to desdhe variation of the
concerned variable between cell centroids. The resultqwaton is called the
discretized or discretization equation. In this manneg, discretization equation
expresses the conservation principle for the variablelenthe control volume.
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The most compelling feature of the FVM is that the resultinyson satisfies the con-
servation of quantities such as mass, momentum, energgpmuies. This is exactly sat-
isfied for any control volume as well as for the whole compatetl domain and for any

number of control volumes. Even a coarse grid solution ethéxact integral balances.
FVM is the ideal method for computing discontinuous solui@rising in compressible
flows. Any discontinuity must satisfy the Rankine-Hugoniatnp condition which is a

consequence of conservation. Since FVMs are conservagyeutomatically satisfy the
jump conditions and hence give physically correct weaktgwis.



3 Governing Equations and Boundary Conditions

The flow of most fluids can be mathematically described by sgeaf continuity equation

and momentum equation. According to continuity equatiba,amount of fluid entering

in certain volume leaves that volume or remains there andrdo to momentum equa-
tion tells about the balance of the momentum. The momenturatems are sometimes
also referred as Navier-Stokes (NS) equation. They are comsionly used mathemati-
cal equations to describe flow. In this section we shall fiesstve NS equations and then
K-Epsilon model. At the end we shall also briefly discuss twzug conditions used.

In this section, we shall derive Navier-Stokes equationsdnytrol volume method, the
simplest approach. These equations can be used to desaibeflow situations. Being

second order, non-homogeneous, non-linear partial difteal equations we require at
least two boundary conditions for obtaining solution.

3.1 Continuity equation

Consider a volume of fluid in the stream with dimensidns Ay andAz. Consider that
the fluid flow is in positive x direction. Thus, the the amountflaid that enters the
volume from face-1 is equal to product of density, (velocity of fluid in x-direction {;)
and area of the face-I\NyAz). Thus,

volumein, = pulAyAz (3.1)

w
- Az
U

e

Ax

Ay

Figure 3.1: Elemental volume used to derive the equations



The mass leaving from face-2 is negative (its leaving theiwa) product of density,
velocity of fluid in x-direction and area of the face-2. Bug tthensity and velocity of the
fluid changes from: to u + Au andp to p + Ap. Thus,

volumeout, = —(u+ Au)(p + Ap)ulAyAz (3.2)

Similarly, for other two faces parallel to y-axis, the eqaas for mass entering and leav-
ing will be
volumein, = pvAzAz (3.3)

volumeout, = —(v+ Av)(p + Ap)vAzAz (3.4)

And, for other two faces parallel to z-axis, the equationrsni@ss entering and leaving
will be
volumein, = pwAxAy (3.5)

volumeout, = —(w + Aw)(p + Ap)wAzxAy (3.6)
Also, the total amount of fluid accumulated in the volutheAy Az is

Ap

(Kt) AxAyAz (3.7)

This amount must be equal to the numerical sum of all the tegpeesenting fluid en-
tering the volume and fluid leaving from the volume. Addingiatipns (3.1) to (3.7),
equating td) and usingA(fg) = fAg + gAf + AfAg, we get

(%)  (A(pu) uDyAz — (A (pv) vAzAz — (A (pw)) wAzAy (3.8)

At AxAyAz
Ap\ | Alpu) | Alpv)  A(p2)
:>(At>+ Ar T Ay TAs (3.9)

And when,At — 0, we can replacé\ operator by partial differential operator.

dp 9(pu)  O(pv)  O(pw) _
5 ox t oy T o =" (3.10)

Which is generaContinuity equation for compressible fluid. For incompressible fluids
the Continuity Equation reduces to

ou Ov Ow

T s A1
8x+3y+82 0 (3.11)



Also, if the densityp is a function of co-ordinates, y andz but not time then,

d(pu) N d(pv) N d(pw)

= 3.12
ox oy 0z 0 ( )

3.2 Navier-Stokes equation

Navier-Stokes (NS) equations are system of momentum @msator each co-ordinate
directions. We shall derive the equation only foco-ordinate and then write for and

z similarly. First we shall calculate Momentum Change and FEod then calculate the
forces.

3.2.1 Momentum Change and Flux

Consider a volume of fluid in the stream with dimensidns Ay andAz. The change in
momentum with respect to time is given bY(pu)/0t) AzAyAz.

The flux of momentum in the x direction at face-1 of the volusthe product of the mass
flux (pu), the x-direction velocity4) and the area of face-I\NyAz) i.e. puulAyAz. The
flux of momentum in the face opposite to face-t$puu + (9(puu)) /0xAx] AyAz.

Similarly, for faces parallel to y-axis the flux of momentumthe y direction igvuAzAz
and the flux of momentum in the opposite to face-ipvu + (0(pvu)) /OyAy] AxAz.

And, for faces parallel to y-axis the flux of momentum in thelirection at entering
face of the volume ipwuAxAy and the flux of momentum in the opposite to face is
— [pwu + (0(pwu)) /0zAz] AxAy. Adding all these terms and simplifying we get,

a(ﬂ“”) AxAyAZ + a(pvu) A:L'AyAZ + a(pwu) AxAyAz (313)
Ox dy 0z

According to conservation of momentum law, algebraic sualldhese fluxes of momen-
tum and the external forces at faces parallel to x-axisH,) should be equal to change
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in momentum in volume with respect to time i.e.

O(pu) O(puu) O(pvu) a(pwu)
P = _ ——— Az AyA F,
o Ay [ o ArAyAz + 5 S AgAyAz + = a5
(3.14)
Re-arranging , we get
puw)  d(pvu) | d(pwu)
— ArAyAz = F, 3.15
i{at(pu)—l— s 9y +—5, rAyAz Z (3.15)
Applying the derivative of product rule we get,
0 0 0 0 0 0 0 0
{pﬁ—:ﬁ + ua—f + u% + pua—z + v(aL:) + pva—z + w% + pwa—u} AxAyAz = ZEE
(3.16)

Rearranging the terms we get,

dp  I(pu)  I(pu)  I(pu) ou ou ou ou
P o2 w2 L @ Arayas = ST,
{ {aﬁ or T oy T o | TP T gy T, TG, pArdyAz=

(3.17)

The terms in square bracket sum up to zero because of eqoétiontinuity. Thus, above
equation reduces to momentum equation given below

ou ou ou ou
i s — = E F A
{ PoF +pua +pvay+pwa }AwAyAz v (3.18)

Similarly, we can obtain,

v v v v
{ Por + puz— + pva—y + pwa—} AxzAyAz = E F, (3.19)

and ow ow ow ow
{ o + pu—o— + pva—y + pwa—} ArzAyAz = E F, (3.20)

3.2.2 Calculating Forces

The external force _ F,,>  F, and)_ F, which are external forces on the considered
volume. These forces are of two types: Body forces (acting @uome) and surface
forces (acting on surfaces).

Body forces are mostly due to gravitational forces actinglenftuid. The total body
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force acting on the volume considered is the product of carapbof acceleration due to
gravity in x-direction, mass of the fluid in the volume i.e.

JuepATAYyAz (3.21)

Surface forces act on only one particular surface of themaelat a time, and arise due
to pressure or viscous stresses. The stress on a surface adritrol volume acts in the
outward direction, and is given the symhbg} with two subscripts. The first subscript
I indicates the normal direction of the face on which thesstracts, while the second
subscript j indicates the direction of the stress.

The force due to the stress is the product of the stress andré@aeover which it acts.
Thus, on the faces with normals in the x-directidny(z), the forces acting in the x-
direction due to the direct stresses argAyAz and{am + aggz Aa:} AyAz Which sum
to {%} AxAyAz.

Similarly, on the faces with normals in the y-directioAAAz), the forces in the x-

direction due to shear stresses sumgggﬁA:rAyAz and on the faces with normals

in the z-direction AxAy), the forces in the x-direction due to shear stresses sum to
%} AxAyAz.

The sum of all surface forces in the x-direction is thus

00 n 00y n 00 .0
ox ox ox

) AxAyAz (3.22)

The stresw ., includes the pressure p (negative sign because it is actward) and the
normal viscous stress,.. The stresses,,, ando, include only viscous shearing stresses
o, ando,. This gives the force in the x-direction as:

B (0}9 N OT s N 0Ty N 0T

92 on o o ) AxzAyAz (3.23)

3.2.3 Newtonian/Non-Newtonian Fluids

A Newtonian fluid is one whose stress at each point is lingarbportional to its strain
rate at that point. The best example of this is water. A nomdideian fluid is one whose
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viscosity changes with the applied strain rate. Thus, wesaegrthat non-Newtonian fluids
do not have a well-defined viscosity. The following figure cpawve a better idea of how
fluids can be classified in Newtonian and other type of fluids.

Thermoplastics
Clay, Tar

Faper pulp
Grease

{or-]
Teuyp
2
Water /
Gasoline -
/ S

Motor oils

v = Shear stress, dynes/cm?

T (shear stress)

Beachsand
Starch in water

0 = Shear rate, 1/sec

Figure 3.2: Fluid type Newtonian/conventional fluids vsnidewtonian fluids

A simple equation to describe Newtonian fluid behavior is- ;4“. In common terms,
this means the fluid continues to flow, regardless of the ®ating on it. If the fluid is
incompressible and viscosity is constant across the fla@eguation governing the shear
stress, in the Cartesian coordinate system, is

U, dU,

WhereU = (u,v,w) andX = (z,vy, z). Thus,

du du du dv  du dw du
Tm—u<%+%) ZQMEJW —M(%‘f‘@) s Tew = [ (%‘FE) (3.25)

Substituting these values in equation obtained above, We ge

op  oCu(w) O0(E4E)) oG+t

o o 3y P AxzAyAz (3.26)

op ., Pu (Pu O(F) u  O(F)
= — (—x +2u—— + <ay2 %y ozt o AzAyAz  (3.27)
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The terms)?u/dz?, 0 (dv/dx) /Oy andd (dw/dz) /0= cancel out due to continuity equa-
tion. The terms that remain along with the body force due teeksration due to gravity
would give the equation for the force in the x-direction,

B op Pu  0*u  O%u
Z F, = {pgz ~ +u <8x2 + B + 8,22) } AxAyAz (3.28)

Substituting this in momentum equation, we get

0*u N 0%u N 0*u
ox?  0y? 022
(3.29)

Ju ou Ju Ju Op
{ 8t+pua—+pva—y+pwa—}AxAyAz pgx—%-k,u(

Similarly, we can obtain,

8 + ua——i— va——i— wa— AzAyAz = @+ 8zv+8zv+82v
Pot TP TPy TP, Y PIv = 5y THE\ 022 T a2 T 922
(3.30)
and
82w+82w+82w
ox?  0y? 022
(3.31)

These are the Navier-Stokes equations. There have beep&tt® solve these equations
but the computational complexity involved has not allowedngn but some solutions.
Navier-Stokes equation can be solved numerically, but thatisns are obtained after
only making some assumptions and some of them are not stdbighaReynolds number.

ow ow ow ow Op
{8t+p a—+pva—y+pwa—}AxAyAz pgz—a—l—u(

There are two important issues that arise in the solutiooge® first is non-linearity of
the equations and second is the coupling of the equatiorGFIDhthe stress tensor terms
are often approximated by a turbulence model. The non4lityemakes most problems
difficult or impossible to solve and is part of the cause obtlence.

3.3 Turbulence

Dictionary meaning of turbulence is the state of being tlebuand turbulent means dis-
turbed. When we talk about turbulence in fluid dynamics it nsgand flow with violent
disorder where the disorder has no specific direction oepattAlso, its quoted as a
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random secondary motion caused by eddies with in the fluidatian. Even though tur-
bulence is an everyday experience, it is extremely diffimidind solutions, quantify, or in
general characterize. When the flow is turbulent, we can &@eery rapid and random
change in fluid and fluid motion properties like momentumudiibn, high momentum
convection, variation of pressure and velocity in spacetand. Its difficult to express
turbulence mathematically for following reasons.

1. Irregularity or randomness: impossible to apply a deitsistic approach.

2. Diffusivity: This characteristic causes rapid mixingdancreased rate of momen-
tum, heat and mass transfer.

3. Large Reynolds number: Turbulent flow or instable lamira.fl

4. 3D Vorticity fluctuations: Turbulence is 3D and rotatibnBurbulence is character-
ized by high levels of fluctuating vorticity.

5. Dissipation: Turbulence flows are always dissipativesc@us shear stress performs
deformation work which increases the internal energy offthiel at expense of
kinetic energy of the turbulence. A continuous energy syppheeded to keep up
these loses. If no energy is supplied turbulence decaysdlyapi

The K-epsilon model is one of the most common turbulence tsottencludes two trans-
port equations to represent the turbulent properties diakae This allows a two equation
model to account for history effects like convection anduiion of turbulent energy. The
first transported variable is turbulent kinetic energy. (The second transported variable
in this case is the turbulent dissipatiai). (These variables determine the scale of the tur-
bulence and energy in the turbulence. In next part, we skale Kappa-Epsilon model
from Incompressible NS equations.

3.4 Kappa-Epsilon Model

The K-epsilon model is most commonly used to describe thavaehof turbulent flows.
It was proposed by A.N Kolmogrov in 1942, then modified by ldarbnd Nakayama and
produced K-Epsilon model for turbulence.
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The Transport Equations for K-Epsilon model are Epr

0 0 0 ok
a(pk‘) + a(pkul) = o7 {(M + %) %} + P+ P, —pe — Y, + Sk (3.32)
J J
Fore,
0 0 0 e\ Oe €
100+ o) = 5 [ (10 24) JE | € (B CacP) ~ a5, 339

Realizable k-epsilon model and RNG k-epsilon model are sorher otariants of K-
epsilon model. K-epsilon model has solution in some speaxdaks. K-epsilon model
is only useful in regions with turbulent, high Reynolds numib@wvs.

3.5 Derivation

K-epsilon model equations can be derived form incomprésaiavier stokes equation.

p(u.NV)u =V {=pl +n(Vu+ (Vu)")} + F (3.34)
V=0 (3.35)

Where,u is velocity vector fieldp is pressure field, following are steps for deriving k-
epsilon model.

1. Apply statistical averaging to NS equation (3.35)
ou,; Ouj \
( + Z 4 3@)

Where,u(z, t) represents the velocity vector field,z, ¢) is the pressure field. Be-
ing derived from Equations of conservation of mass, monmardnd energy, we

have,
+ Z = ngf —0 (3.37)

J

Applying statistical averaging to equation (3.36) produBReynolds equation:

ou; ou;  Ou, , OTi;
P ot + Zu] (puj Jz; * p@x ) 3% * Z 1 0z; (3.38)

(3.36)
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With v = w + «/ written in the mean plus fluctuation decomposition, averggi
satisfying the field rules (sesppendix C) and using the following two equations.

(0 o
=1 Or;  Ox;
0T
2 _ ij
U; = ; a—%

2. Multiply Navier-Stokes (3.36) by, and average it.

u; 8% __Op Oy
Par uz+PZ = an 2, (3.39)
3. Multiply obtained Reynolds equation (3.38) iy
8u_l_ ou, op__ 87-3-_
= 4
Par +Z<puﬂa R ) axi“”r Oz, (3.40)
Where,
ou; 0 (ui)
Oz J Ox;
or equivalently
8u—,_ op__ Oryj__ 0Ty __
p(?t B 3xiu2+z(8xj - 0z, u2> (341)

With T}; = —pu;u; representing the components of the Reynolds stress nfatrix

4. Subtracting equation ((3.39)) from equation ((3.41)9,get.

o, Oui 0w _ 0p : u ;0T —

(3.42)

ot ,  O(7u;) 8uz )

U —T..
i . g
Ox; Ox; ou;

5. Neglecting very small viscous transfer or turbulent gpewe get (3.43). Since,
the szuz represents the viscous transfer of turbulent energy, asmll quantity

in contrast to the terms responsible for the turbulent gniergt is neglected. Thus
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becomes

6. Summing over equation (3.43) becomes energy balance equation of tunidide,
with turbulent kinetic energyK) and rate of dissipation of the turbulent energly (

7. Using hypothesis for class of fluid flow under consideratite equation of turbu-
lent energy balance reduces to For

ok 0 ok

Where ¢, is turbulent exchange coefficient. Ror

de 0 Oe
2 (0%) v (3.45)

Where,C. is turbulent energy dissipation rate exchange coefficiadt@rate of
homogenification of the dissipation rate and-i$).

3.6 Initial condition and Boundary condition

There are number of boundary conditions that we will use lkeesocompressible Navier-
Stokes Equation and Kappa-Epsilon model. The figure 3.6 staswexample how the
boundary conditions could be applied. The boundary camtithave been listed below.

Inflow/Outflow boundary condition
For inlet, imposed velocity i.e. the velocity vector norrtathe boundary can be specified

by:

u-n = ug = (up, vy, wp)

which is denoted as the Inflow/Outflow boundary conditionthl@ above equation is a
unit vector that has a direction perpendicular to a boundanormal to a boundary.

Outflow/Pressure boundary condition
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e 7 Navier-Stokes Equations
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Figure 3.3: Use of boundary conditions with Comsol

For outlet, we can impose a certain pressure in the Outfl@s#ire boundary condition:
P="Po
or
[—p[ +n (Vu + (Vu)Tﬂ = —po
This is the Normal flow/Pressure boundary condition, whietls $he velocity components

in the tangential direction to zero, and sets the pressuaespecific value.

Slip/Symmetry boundary condition
The Slip/Symmetry condition states that there are no vgl@cmponents perpendicular
to a boundary.

n-u=>0
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No slip boundary condition
The No-slip boundary condition eliminates all componeifithe velocity vector.

u =0
Neutral boundary condition
The Neutral boundary condition states that transport byarsk&esses is zero across a

boundary. This boundary condition is denoted neutral strd@es not put any constraints
on the velocity and states that there are no interactiormsathe modeled boundary.

n (Vu + (Vu)T> n=>0

The neutral boundary condition means that no forces act effluid and the computa-
tional domain extends to infinity.
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4 Head losses

Head is a term used to specify measure of pressure of totedyeper unit weight above

a point of reference. In general, head is sum of three compspelevation head(the
elevation of the point at which the pressure is measured &loowe or below the arbitrary
horizontal observation point i.e. relative potential gyan terms of an elevationyeloc-

ity head (kinetic energy from the motion of water) (it is mainly useddetermine minor
losses) anghressure head(equivalent gauge pressure of a column of water at the base of
the piezometer):

In cases where the fluid is moving with very low velocity ortstaary fluid, we ignore the
velocity head because the fluid is either stationary or ngpwith very low velocity and
in the cases where the fluid is moving with very high velooiigdes where the Reynolds’s
number exceeds 10) the elevation head and pressure heasbéeetad.

Head loss in fluid flow in pipes means loss of flow energy dueittidn or due to turbu-
lence. Head losses result in to loss in pressure at finaltotithe pressure loss is divided
in two categories of Major (friction) losses and Minor loss€hese losses are dependent
on both the type of fluid and the material of the pipe.

Head loss is a measure to calculate reduction or loss in hdadd loss is mainly due
to friction between fluid and walls of the duct (in our casesipipe), friction between
adjacent layers of fluid and turbulence caused by presenppefetwork components
like T-junction, elbows, bends, contractions, expansignsnps, valves. Head losses
result in to loss in pressure at final outlet, thus also knowmpr@ssure loss. Pressure
losses are divided in to two categories of major losses andmipsses.

e Major losses Losses due to friction between fluid and internal pipe si&fd hese
losses occur over the length of pipe. They can be easily deted by Darcy-
Weisbach equation. Frictional loss is that part of the tb&dd loss that occurs as
the fluid flows through straight pipes

e Minor losses Losses occur at points where there is change in momenturmy Th
mainly occur at elbows, bends, contractions, expansi@tges, meters and similar
other pipe fittings that commonly occur in pipe networks.

A piezometer is small diameter water well used to measurbytieaulic head of underground water.
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The major head loses may be large when the pipes are longp{pegnetwork occurring
in water distribution in a city) and minor losses will also/ka large contribution because
of attachments and fittings occurring in these networks.sTtue can say that head loss
in reality are unavoidable, since no pipes are perfectlyamto have fluid flow without
friction, there does not exist a fluid in which flows withoutkulence.

The head loss for fluid flow is directly proportional to thedémof pipe, the square of the
fluid velocity, and a term accounting for fluid friction call¢he friction factor. The head
loss is inversely proportional to the diameter of the pipea#tloss is unavoidable in pipe
networks with real fluids, since there is no pipe with peffestnooth inner surface and
there is no fluid that can flow without turbulence.

Figure 4.1: Fluid behavior when pipe is smooth or rough fraside

The calculation of the head loss depends on whether the fldamgar, transient or
turbulent and this we can determine by calculating Reynaloisiyer.

4.1 Major head loss

There are many equations available to determine major lresseéd in a pipe. The most
fundamental of all is Darcy-Weisbach Equation. Major hezss I(loss due to friction) is

determined by
B [ pv?
o =) ()
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This equation is valid for fully developed, steady, incoegsible flow. The hydraulic
diameter {;,) is division on cross-section area of pipe by wetted pemmet
_crosssectionareaof pipe 4 (7r

2
- = ) =2r=2D
wetted perimeter 27r

Thus, hydraulic diameter is the inner diameter of pipe. &f@e, major head loss formula
reduces to
Pmaior = A L U—2 (4.1)
major — D 29 .

4.2 Friction Factor

Friction factor ) depends on whether the flow is laminar, transient or turiiulghich
again depends on Reynolds numb&iction Factor for Laminar Flow
Consider

y=r—R=dy= —dr

and shearing stress
dv

_H%

T =

Where,v is rate of change of velocity.

If we consider the fluid to be isolated from the surroundiing, inlet will have velocity
(v1) and pressurep() and outlet will have velocity:;) and pressuren().

Using momentum principfe(in fluid dynamics), we get
1A — poA + (shearing stress X perimeter of pipe X length of pipe) = pQ (vy — v1)

= (p1 — p2) ar? — T(2nrL) = pQ (ve — v1)

We know that
S b1 — P2 .
2L

and
_
Mdr

2The principle of conservation of momentum is an applicatbMNewton’s second law of motion to
an element of fluid. That is, when considering a given massudf,flt is stated that the rate at which the
momentum of the fluid mass is changing is equal to the netmadtéorce acting on the mass.

T =
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Comparing both we get,
dy = -PL P2 gy
2L

On integrating both sides and using= 0 atr = R and takingp; — p, = Ap, we get

_ AP (g
V= oL (R T)

The volumetric flow ()) can be determined by

Q:/V(Qm’)dr:/oﬁ(}#—ﬁ) (27r) dr

rR 2Lp

Ap 4
=Q=—
Q 4L,u7rr

And average velocityl() can be determined by

Q AP4 1

= — = —17r « —

A 4L 2

L

Since, head loss equals pressure drdp)(divided by~

Ap 4Lu
hmajor = = ? :
Y Y
Also, ,
LV
hmajor )\D : E
Comparing both, we get
_64% 64
VD R,

Thus,\ = % when R, < 2100. This can also be confirmed from Nikuradse’s graph for
laminar flow.3

Friction Factor for Transient Flow
If the Reynolds number for the flow is between 2300 and 3000yihe of flow exhibited
by the fluid is known as transient flow. This is type of flow wheedocity and pressure of

3Nikuradse showed the dependence on roughness by usingapijiiesally roughened by fixing a coat-
ing of uniform sand grains to the pipe walls. The degree oghmess was designated as the ratio of the
sand grain diameter to the pipe diamdietD).
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the flow are changing with time. The flow also switches betweeoulent and laminar.
Because of this behavior it is difficult to determine the fdotcoefficient. Thus, the
friction coefficient for Transient flow can not be determined

Friction Factor for Turbulent Flow
When the flow is turbulent, the frictional factok)(can be obtained by solving the equa-
tion 1 2.51 1
. T
— = —2.0lo ——+
I PONR N4, 372

Where,r, is relative roughness of the pipe.

This equation is well known as Colebrooke equatidbolebrooke equation is also graph-
ically presented by Moody Chartwhich can be easily used if some required parameter
values are known. The Moody chart relates the friction fatdo fully developed pipe
flow to the Reynolds number and relative roughness of a cirqife. Relative rough-
ness for some common materials can be found in the tableelbw.

Surface Roughness{,) x10~% m
Copper, Lead, Brass, Aluminum (new) 0.001 — 0.002

PVC and Plastic Pipes 0.0015 — 0.007

Epoxy, Vinyl Ester and Isophthalic pipe0.005

Stainless steel 0.015

Steel commercial pipe 0.045 — 0.09

Rusted steel (corrosion) 0.15

Smoothed cement 0.3—-1

Ordinary concrete 0.3—0.5

Table 1: Relative roughness for some common materials detediy experiments.

Relative roughness of the pipe,f can be easily determined if we know the material of
the pipe. This value completely depends on material of pippese values are also easily
available on some manuals. Table-2 summarizing relatidwdsn Reynolds number
(R.), the type of flow and Friction coefficienh)

The Friction coefficientX) can also be determined by Moody Chart. There is also a sec-
tion in this chapter that briefly describes the use. An itlatsbn is also given to understand

4The Colebrook equation is an implicit equation which coresirexperimental results of studies of
laminar and turbulent flow in pipes. It was developed in 198€bF. Colebrook.

5In 1944 Lewis F. Moody, Professor, Hydraulic Engineeringn&ton University, published paper
titled Friction Factors for Pipe Flow. The work of Moody, atite Moody Diagram has become the basis
for many of the calculations on friction loss in pipes andtduck.

6Table for Relative roughness for some common materials wakent from website
http://www.engineeringtoolbox.com.
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Reynolds number(R.)

Nature of flow

Friction coefficient ()\)

< 2300

Laminar Flow

X = 64/R,

2300 — 4000

Transient Flow Can not be determined

> 4000

Turbulent FlovviA = —2.0logyp |2.51/ (Re\/X> +1,/3.72d),

vy

Table 2: Reynolds Number, Nature of Flow and Friction coefhei()).

this more clearly.

We can summarize above discussion in these points

e If the Reynolds numbers is less than ab2ud0 the flow will be laminar. This

indicates that the viscous force of the fluid is dominating ¢kher forces that may
disturb the flow. When flow is laminar, the fluid seems to movesimlled manner

with regular streamlines. It would look like very thin gla#sns are sliding over

each other.

If the Reynolds number is betwe2s00 and3000 the flow will be transient. This is
category between laminar and turbulent flow, where we cadetetrmine anything
about the flow. There may also be observed a small amount laflence in the
flow.

If the Reynolds number is greater tha®00 which is common when the fluid is
moving with high speed or with some obstacles or rough sarédauct then the
flow is said to be turbulent. The flow being turbulent indisateat the inertial forces
are more than forces due to velocity and that the streaméiresio more parallel
to each other and the flow pattern is irregular and the fluitiggas may cross one
point in domain more than once.

4.3 Minor head loss

Minor losses (losses due to various attachments and chamgementum) can be calcu-
lated by following formula.

'U2
major — H a_
Frmes - (29>

Where,H, is loss coefficient for the pipe component anid acceleration due to gravity.

The loss coefficients for various pipe components are dlaila several textbooks, man-
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uals and supplier manuals. Tablé3ts minor loss coefficients for some common com-
ponents in pipe networks. These relative roughness forrmattavere determined by
experiments.

Type of Component or Fitting Minor Loss Coefficient (H})
Flanged Tees, Line Flow 0.2
Threaded Tees, Line Flow 0.9
Flanged Tees, Branched Flow 1.0
Threaded Tees, Branch Flow 2.0
Flanged Regula®0° Elbows 0.3
Threaded Regulai0° Elbows 1.5
Threaded Regula0° Elbows 0.4
Flanged Long Radius0° Elbows (0.2
Threaded Long Radiu¥)°® Elbows 0.7
Flanged Long Radius0° Elbows (0.2

Flanged180° Return Bends 0.2
Threaded 80° Return Bends 1.5
Fully Open Globe Valve 10
Fully Open Angle Valve 2

Table 3: Minor loss coefficients for some of the most commadusomponents in pipe
and tube systems

As mentioned before several textbooks, manuals and suppdiruals. Values in various
sources may vary depending upon the experimental condjtformulas and calculation
techniques used. Thus, one must first determine if the eaxpetal conditions of the data
are the same as the conditions of the current experimenthendther additional data
related to the same experiment are from the source.

4.4 Using the Moody Diagram

Head loss is a function of Reynolds number and relative roeghnoefficient. Colebrook
developed an empirical transitibfunction for commercial pipes, which relates friction
factor and the Reynolds number. The Moody diagram is baseaeo@alebrook equation
in the turbulent regime. The Moody chart relates the frictiactor for fully developed
pipe flow to the Reynolds number and relative roughness otalairpipe. The frictional
factor (\) for head loss can be determined if Reynolds number and tatweloughness
of the pipe are known. The rougher the pipe the more turbakenflow is through that

"Table for Minor loss coefficients was taken from website Hitpvw.engineeringtoolbox.com.
&Transition’ is the term used by Colebrook to describe rags of pipe. By 'transition’ he meant that
the pipes are neither too rough nor too smooth.
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pipe. The relative roughness of a pipe is givereBy, wheree is absolute roughness of

pipe andD is diameter of pipe.

0.09 LY Wholly turbulent fl
| Y olly turbulent flow
008 Y= G
007l {0.05
I " 0.04
0.0
003
0.05 i0.02
10.015
0.04/ |
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;o003 s
0004 D
0.025— |
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 0.0008
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0015 | / j
Smooth : 0.0002
Transition range s 0.0001
.| { 0.00005
0:.009—
FcFta =1 R0 Y s 0 5 0 0 O 0 O O 9 R R G 0 - W 4 1 0.00001
210 4 6 8 Hl0% 4 6 8 210 4 & &8
107 10* 107 165 107
Re = avD

Figure 4.2: Moody chart for estimating Frictional factor

By looking at the Moody diagram it shows that the right top &vris completely tur-
bulent and the left top is laminar (smooth flow). To deterntime frictional factor, find
the relative roughness value for the pipe on the right. Tioeatk the pipes Reynolds
number on the bottom. Follow the relative roughness curvettere it crosses the deter-
mined Reynolds number. Now at that point project a straigta to the left, the number
determined on the left is the frictional factor.

4.4.1 Example of using Moody chart

Consider flow situation where pipe diametér)(is 1 ft, Kinematic Viscosity isl4.1 x
10-% L2, velocity of fluid is0.141 £ ande is 0.002 ft.
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First we compute /D andR.

e 0.002ft
D 1ft
Dv  (1ft)(0.141L)
S 14.1x 10642

= 0.002

R = = 10000

Now, we consider the value ef D and follow the curve wher& is 10000. We project a
straight line to left and can see that the value.ig4.

4.5 Total Head Loss in Serial Connected Pipes

If total head loss in a single pipe is given by

LV? V2
Ao+ K — 4.2
Da2g "My, (4.2)

Then, the total head loss in several serial connected psdgebraic sum of all the head
losses due to pipes in the network. In networkigdipes, ifi is the number of pipe the
the total head loss can be expressed as the following formula

i=1 2 2
h=>Y" (Aiv— ‘2/ ) (4.3)
g
k

Where, the quantities with indexs connected t@" pipe in the network.
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5 Head Loss Coefficient for T-junction

The pressure loss caused by the T-junction depends on iadeisrof the branches, ve-
locity of fluid entering or leaving from the junction and thage of the junction (there are
various approaches for this calculations, some cases esemted in the following text).
There are some classical formulas for pressure loss coeetfifor T-junctions. Most of
these formulas depending on angle of T-junction, inlet amtebvelocities. To compute
head loss coefficients, we have used formulas derived by 2sorfayP, A. Gardet® and
V. Curict.

One other idea for computing pressure loss co-efficientfonctions with angles, was to
consider T-junction as combination of two pipe componerggwo elbows or an elbow
and a contraction. According to this idea, we assume then@tjon to be made up of
two pipe components. The choice of components would depertieoflow conditions

I.e from which arms the flow is coming toward the junction arahf which arms the flow
is leaving from the junction.

In this section we shall mention the classical formulas dnadformulas that were con-
structed by assuming T-junction to be made up of other pipepoments.

5.1 For dividing flows

These formulas are used for the situation where flow from glesibranch flows to the
other two remaining branches. The picture in the left of #g{#.1) gives more clear idea
about such flow situations.

Various studies have been made on T-junction with dividiag fituation. Of these stud-
ies, results obtained by Andrew Vazsonyi's were believdaktthe closest to the available
statistical data then. Vazsonyi derived two formulas fordihg case and combining
cases (5.1). In his work he explained relation between ugloatios, angles of the junc-
tion and loss coefficient. The formulas are the result of t@garisons made by him.

9The reference book [2] contains 'Vazsonyi, Andrew: Presdusss in Elbows and Duct Branches.
Trans. ASME, vol. 66, no. 3, Apr. 1944, pp. 177-183’ as onéhefimportant reference for these formula.

1%The reference book [1] contains 'A. Gardel, Pressure drogtows through T-shaped pipe-fittings,
Bull. Tech. Suisse Romande 9 (1957), pp. 122130’ as one airthertant reference for these formula.

LIFull derivations and details of the formulas derived by édesng T-junction as two components are
available in [3]
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The formula available from work of Vazsonyi is as following

Branch Branch Branch Branch

L

Branch 0 (inlet) Branch 0 (outlet)
Branch
}4.— Branch

| Branch “"7
| I Branch
‘ |
|
Branch 0 (inlet)

Branch 0 (outlet)

Figure 5.1: Example of flow situations and angles for comigrand dividing flow

i\’ V;
Kop =M+ (20 — A1) (71) — 2\, (%) cos o (5.1)
0

0

Here K is depending on kinetic energy of the combined flow in bratchnd

A= 0.07122° ™ +0.37 fora < 22.5° (5.2)
AN =10 fora > 225 (5.3)
Ao = 0.0592a%7% 10.37 fora < 22.5° (5.4)
A3 =0.9 fora>225° (5.5)
and
o = 1.41a — 0.00594> (5.6)

The figure (5.1) shows the plots fag, A\, (left) and plot for)\s (right).

The other empirical formula obtained by Gardelq7). His idea was to calculate pressure
loss coefficients separately for each inlet (loss coeffid@nflow from inlet-1 to outlet-3
and loss coefficient for flow from inlet-2 to outlet-3), so fach flow situation we have
two loss coefficientsK’3; andK32). These formulas were derived by applying momentum
balance to the main pipe section of the junction (sectiew in fig (5.3)) and equation of
continuity to the whole t-junction. Then energy balanceppled individually for each
inlet.
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08— —

06— -

04— —
02— -

02— -

a 0 30° 60° 90° 120° 150° 180°

Figure 5.3: Diagram for combining flow

The formula obtained by Gardel are,

Kz =0.95(1—¢)" +¢° K1.3tan§ g3y 2 0da 0'1a) (1 ~0.9 (f> 2)]

a? a

1
+0.4q ( —(: ¢ tan %)

(5.7)

K3y = 0.03(1 — ¢)* 4+ 0.35¢* — 0.2¢(1 — q) (5.8)

Where,a = A;/As and¢ = 7 — 6.

It can be clearly observed that there is no effect of area matradius of pipe on the loss
coefficientks,.
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5.2 For combining flows

These formulas are used for the situation where flow from trem¢hes combine in the
remaining branch. The figure (5.3) gives more clear idea tdaaeh flow situations. The
formula available from work of Vazsonyi are as follows

2
o= (i) o2 |(7) (@) o (1) (@) ] 9

Where, K is again depending on kinetic energy of the combined flow anbhb. @ is
volumetric flow rate £ AV). A3 is defined in the graph given by figure (5.1) amd 5’
are calculated as similar to equation (5.4).

It was also stated by Vazsonyi that there is no variation ef lthss coefficient with
Reynolds numberK, > 1000).

The other empirical formula obtained by Gardglq7) are given by

1 0 1
K3 = —0.92(1—¢)> — ¢ (1.2 - r5> (Coas . 1) +0.8¢2 (1 . ?)
(5.10)

—0.8¢2 G — 1) cosf+ (2 —a)(1—q)q

cos

Kos = 0.03(1—¢)?—¢? [1 n (1.62 . r%) ( . 1) —0.38(1 — a)} +(2—a)(1—q)q

(5.11)

a

Where,a = A; /A3

5.3 Combined Formula

For certain flow conditions we can assume the T-junction tenlaele up of other pipe
components like elbows, sudden contraction or sudden sxpanTo calculate pressure
loss of such combination we consider pressure loss caudée bpmponents individually
and then add them. The following figures and formulas canegxphis very easily. This
idea was used by Vladimir Curic in his work [3]. The full deadlf the derivation of these
formulas are available in his work. The formulas in this sectvere taken from his work.

T-junction as combination of an elbow and a contraction
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For a combining flow situation as described in figure (5.3)rction can be considered
as combination of an elbow and a contraction. For computiegotressure loss for such
combination, we can compute pressure loss for the compssepirately and then add
them. For doing so, we have to find the point where the elbowcantraction are joined.
For this purpose, we need to solve equation (5.16).fafhe loss coefficient for elbow is

> X '
) 0, _ P
l —~4—3 p,

Figure 5.4: T-junction as combination of an elbow and a @wtion

- V2 ? ‘/2 QQ L
Ko; = 0.61 (73) +1-2 (73) (@) cos o (5.12)

Wherel, = Q2 /A andV; = Q3/(A — z).

And, loss coefficient for sudden contraction is

X
Kiz=1-— 5.13
w=1-7 (5.13)

These values can be substituted in the following formulagetermine the pressure loss.

.1 ?
P1—p1 = 5/3[(13 (@) (5-14)
T
and )
.1 Q2
— Py = —pK 5.15
P2 — P2 2P 23 (A — x) ( )

The unknownz can be determine by solving the equation

o= 3o () (&) = (%) + () oo (i)}

(5.16)
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T-junction as combination of two elbows

For a combining flow situation as described in figure (5.5r&tion can be considered
as combination of two elbows. For computing the pressureflmssuch combination, we
can compute pressure loss for the elbows separately an@dtlethem. For doing so, we
have to find the point where the two elbow are joined. For thippse, we need to solve
equation (5.21) for.

0
AP, — > <2y
vy
P p;
A,—x x
4

Figure 5.5: T-junction as combination of two elbows

For elbow-1, the loss coefficient is

A, —x 2 A, —x
K3 =0.61 1-2 ! A7
13 =20.6 ( 1 ) + ( 1 )cos& (5.17)

For elbow-2, the loss coefficient is

Ko = 0.61 (%)2 +1-2 (%) cos (5.18)

These values can be substituted in the following formulagetermine the pressure loss.

1 Q \°
—p; = —pK 5.19
b1 — D1 20 13 (Am—x> ( )
and )
i 1
D2 — P2 = §,OK23 (—QQ) (5.20)
T

The unknownz can be determine by solving the equation

o 1 Q% B Q% Ql 2 Q22 Q% o Q% Al
p1—p2—§p{0.61 ( yE +Am—x - —2mcosa —2m0056
(5.21)
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6 Computational Experiments

In this section we shall discuss observations and resuttred by experiments made
with softwares FLUENT and Comsol Multiphysics. We shall atempare the results
obtained by softwares with the results obtained from varidassical head loss formulas
mentioned in last chapter. The section includes resultaimdd by experiments with

Figure 6.1: Cross-section plot for example case of flow innicjion

T-junction with various diameters and inflow velocities,nmerical results obtained by
slightly changing the angle of the junction frasa® and also, we shall also explain how
the T-junction can be split in to two pipe components (e.go elbows) and compare
the head loss obtained by classical formula of the head b3gunction and formula
obtained by splitting T-junction in to two pipe components.

Figure 6.2 shows and example of comparison of head-lossasgichl formula and head
loss observed by software of an example cases of flow in THpmcThe curve with data
points presented by star is the curve for head loss obsepeadlftware and the curve with
data points presented by square is the curve for head-laamet by classical formula.
We can clearly observe that the curves agree good foBfssts of velocities but then on
the curves do not agree.

The graphs in the following section can be similarly intetpd.
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Graph of Head-loss from software(SW) VS Head-loss from
classical formula(CF) for example flow case
7.5 ; : :

~v2=1,Sw3d
I =ve=1.cF

Pressure in Pascals
[*2)

2 3 4
Velocity in inlet-1 (v1) in cm/sec

Figure 6.2: Comparison of head-loss by classical formularezadl loss by software of an
example cases of flow in T-junction

6.1 Head loss comparison for combining flow

Case-1This is the case where the flow in coming toward the junctiomftwo branches
in main pipe and leaving from the junction from the perpeuldicbranch (See figure 6.3).

i _—

inletl inlet2

outlet

Figure 6.3: Combining flow: Case-1

From figure 6.4, it can be observed that the head loss by s&ftarad classical formulas
(using the formula by Andrew Vazsonyi) do not agree in thisecal' here is abow 2 %
error between results by software and classical formula.

Case-2This is the case where the flow in coming toward the junctiemfione branch
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Graph of Head-loss from software(SW) VS Head-loss from
classical formula(CF) for Combining flow case-1

——v2=1,5W3d
-v2=1,CF
v2=1.5,SW3d
T 1= v2=15,cF
——v2=2,SW3d
—~\2=2,CF
1| —v2=2.5,5W3d
—~\2=2.5,CF
v2=3,SW3d
v2=3,CF

8

Pressure in Pascals

2 3 4
Velocity in inlet-1 (v1) in cm/sec

Figure 6.4: Head loss for Combining flow: Case-1, Radius of brases0.5 cms, Inlet
velocities vary froml c¢m/sec to 3 em/sec (25 different cases plotted), Outlet pressure is
100 Pascals and classical pressure loss formula by Andrew ¥igizso

in main pipe and the branch perpendicular to it and leavioghfthe junction from the
remaining branch in the main pipe (See figure 6.5) [The otlteation is exactly the
mirror imagel].

outlet inlet2

inletl

Figure 6.5: Combining flow: Cases-2

From figure 6.6, we can observe that the head loss by softwatelassical formulas
also do not agree in this case. There is aljougo error between results by software and
classical formula.
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Graph of Head-loss from software(SW) VS Head-loss from
classical formula(CF) for Combining flow case-2

——v2=1,SW3d
—=—v2=1,CF
v2=1.5,SW3d
v2=1.5,CF
——v2=2,SW3d
--v2=2,CF
——v2=2.5,SW3d
—=—v2=2.5,CF
v2=3,SW3d
v2=3,CF

Pressure in Pascals

2 3 4
Velocity in inlet-1 (v1) in cm/sec

Figure 6.6: Head loss for Combining flow: Case-2, Radius of brases0.5 cms, Inlet
velocities vary froml c¢m/sec to 3 em/sec (25 different cases plotted), Outlet pressure is
100 Pascals and Classical pressure loss formula by A. Gardel

6.2 Head loss comparison for dividing flow

Case-1This is the case where the flow in coming toward the junctiomfthe perpen-
dicular branch and leaving from the junction from two braggin main pipe (See figure
6.7).

. - —

outletl outlet2

inletl

Figure 6.7: Dividing flow: Case-1

Case-2This is the case where the flow in coming toward the junctiemfione branch
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Graph of Head-loss from software(SW) VS Head-loss from
classical formula(CF) for T-junction with diverging flow

—-v1=3,SW
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—v1=2,SW
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| v1=1,SW
v1=1,CF
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a4t
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Pressure in Pascals

/ 4//‘ .
1 15 2 25 3
Velocity in inlet-1 cm/sec

Figure 6.8: Head loss for dividing flow: Case-1, Radius of bhascis0.5 cms, Inlet
velocity vary from1 c¢m/sec to 3 c¢m/sec, at both outlet pressure i€)0 Pascals and
Classical pressure loss formula by A. Gardel

in main pipe and perpendicular branch and leaving from thetjan from the remaining
branch in the main pipe (See figure 6.9) [The other situasa@xactly the mirror image]

e — s -

inletl

outletl
|

outlet2

Figure 6.9: Dividing flow: Case-2

From figure 6.8 and 6.8, we can observe that the head loss byasefand classical
formulas also do not agree in this case. Though the curves) seget along with the in-
crease in inlet velocities, but they do not exactly matchefoy combination of velocities.
There is about.5 to 6.1 % error between results by software and classical formula.

6.3 Head loss change with change in angle of T-junction branches

In this part we shall display comparison of head loss obthlmesoftware and classical
formulas for different angles of T-junction. The figure 6ddses for inflow, outflow and
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Graph of Head-loss from software(SW) VS Head-loss from
classical formula(CF) for T-junction with diverging flow, Case-2

l ‘ 1 [~-v1=3,S5W
—~v1=3,CF
6l J|-=-vi=2,sW
—~v1=2,CF
v1=1,SW
v1=1,CF

[¢)]
T

=

3,

Pressure in Pascals

1 15 2 25 3
Velocity in inlet-1 cm/sec

Figure 6.10: Head loss for dividing flow: Case-2, Radius of bh@s is0.5 cms, Inlet
velocity vary from1 c¢m/sec to 3 cm/sec, at both outlet pressure iK)0 Pascals and
Classical pressure loss formula by A. Gardel

angle. For all the comparisons we have use formulas by Antfezsonyi for combining
flow case-1 and formulas by A. Gardel for case-2.

witie— p—— e o
outletl outlet2  outletl outlet?
inletl T inletl

Figure 6.11: T-junction with different angles between maie and branch pipe

In cases shown in figure-6.12 to figure-6.17, we have caledlahd compared head loss
suffered by T-junction with angle = 91, v = 91, v = 93, v = 89, v = 88 and~y = 87.
These calculations were for combining flow case-1, where ffowoming toward the
junction from opposite pipes and leaving from the junctibrotugh perpendicular pipe
(see figure 6.3). It was observed that the head loss increattescrease in angle. Also,
for all the cases; the head loss obtained by software andicéh$ormula were close to
each other.
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Graph of Head-loss from software(SW) VS Head-loss from classical formula(CF)

——v2=1,SW3d
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Figure 6.12: Head loss for T-junction with angle= 91, combining flow: Case-1, Radius

of branches i6.5 cms, Inlet velocities vary from cm/sec to 3 em/sec (25 different cases
plotted), Outlet pressure i€)0 Pascals and Classical pressure loss formula by Andrew
Vazsonyi

The figure 6.18 shows head loss for different angles of T{janc These calculations
were for combining flow case-2, where flow is coming towardjtimetion from perpen-
dicular pipes and leaving from the junction through remagmain pipe (see figure 6.5).
It was observed that when the angle gammhig less, head loss suffered is less. This
is because there is no significant change in of momentum dfahebetween incoming
and out going flow. It was also observed that when the anglexgafm) is more, head
loss suffered is more. This is because of change in momentuaine dlow while passing
through T-junction.

From the cases = 87 (fig-6.15),y = 88 (fig-6.16),y = 89 (fig-6.17),y = 91 (fig-6.12),

~v = 92 (fig-6.13) andy = 93 (fig-6.14), we can observe that the head loss by software
and classical formulas also do not agree in any case. Thaxglome cases and certain
inlet velocity combinations, the curves seem to get alornty wach other but this is not
sufficient to conclude that the head losses obtained by betlsaurces agree. There is
about4.6 t0 6.7 % error between results by software and classical formula.
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Graph of Head-loss from software(SW) VS Head-loss from
classical formula(CF) for T-junction with 92 degree angle
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Figure 6.13: Head loss for T-junction with angle= 92, combining flow: Case-1, Radius

of branches i6.5 cms, Inlet velocities vary from cm/sec to 3 em/sec (25 different cases
plotted), Outlet pressure i€)0 Pascals and Classical pressure loss formula by Andrew
Vazsonyi

6.4 Head loss for T-junction with different radius of branches

Case-1 This is the case where the cross-section area of main pipeddalf of that
of perpendicular branch pipe. The flow is coming toward theefion from the opposite
branches in main pipe and leaving from the perpendiculardiréSee figure 6.19).

Case-2 This is the case where the cross-section area of main pgeeishird of perpen-
dicular branch pipe. The flow is coming toward the juncticonirthe opposite branches
in main pipe and leaving from the perpendicular branch (Spedi6.21).

Case-3 This is the case where the cross-section area of main pgreiourth of perpen-
dicular branch pipe. The flow is coming toward the juncticomirthe opposite branches
in main pipe and leaving from the perpendicular branch sinid above two cases.

The figure 6.24 shows head loss for different cross-sectiegsaof branches of T-junction
(A1 =area of main pipeA2 =area of branch pipe). These calculations were for com-
bining flow case-1, where flow is coming toward the junctiamifropposite branches in
main pipe and leaving the junction from perpendicular brgpipes (see figure 6.5).

From figure 6.20, figure 6.22 and figure 6.23 we can observétbdiead loss by software
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Graph of Head-loss from software(SW) VS Head-loss from
classical formula(CF) for T-junction with 93 degree angle
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Figure 6.14: Head loss for T-junction with angle= 93, combining flow: Case-1, Radius

of branches i6.5 cms, Inlet velocities vary from cm/sec to 3 em/sec (25 different cases
plotted), Outlet pressure i€)0 Pascals and Classical pressure loss formula by Andrew
Vazsonyi

and classical formulas also do not agree. There is abdwb 6.8 % error between results
by software and classical formula.

It was observed that head loss is reducing when the crosisisecea of the main pipe
is reducing (for all the cases cross-section area of thegpeipular branch pipe was kept
samel cm.). This observations also verifies claims by A. Gardedt the head loss
increases with increase in ratio of the cross section af@dA1 where, A1 =area of
main pipe,A2 =area of branch pipe). These observations are for the case tvadlow
Is combining case-1, where the flow is coming in from opposiEnches in main pipe
and leaving from perpendicular branch pipe. The obsemasi@exactly reverse when we
consider combining flow case-2, where the flow is coming imfrane branch in main
pipe and perpendicular branch pipe and leaving from remg@ibiranch in main pipe. The
head loss suffered will increase with increase in ratio efdtoss section areal/Al).
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Graph of Head-loss from software(SW) VS Head-loss from
classical formula(CF) for T—junction with 87 degree angle
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Figure 6.15: Head loss for T-junction with angle= 87, combining flow: Case-1, Radius

of branches i6.5 cms, Inlet velocities vary fronh cm/sec to 3 em/sec (25 different cases
plotted), Outlet pressure i€)0 Pascals and Classical pressure loss formula by Andrew
Vazsonyi

Graph of Head-loss from software(SW) VS Head-loss from
classical formula(CF) for T-junction with 88 degree angle
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Figure 6.16: Head loss for T-junction with angle= 88, combining flow: Case-1, Radius

of branches i6.5 cms, Inlet velocities vary fromh cm /sec to 3 em/sec (25 different cases
plotted), Outlet pressure i€)0 Pascals and Classical pressure loss formula by Andrew
Vazsonyi
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Graph of Head-loss from software(SW) VS Head-loss from
classical formula(CF) for T—junction with 89 degree angle
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Figure 6.17: Head loss for T-junction with angle= 89, combining flow: Case-1, Radius

of branches i8.5 cms, Inlet velocities vary fronh cm/sec to 3 em/sec (25 different cases
plotted), Outlet pressure i)0 Pascals and Classical pressure loss formula by Andrew
Vazsonyi

Graph of Head-loss for different angle of T—junction
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Figure 6.18: Head loss for different angle of T-junctionmdmning flow: Case-2, Radius
of branches i9.5 cms, Inlet velocities vary fromh ¢cm/sec to 3 cm/sec, Outlet pressure
is 100 Pascals and Classical pressure loss formula by A. Gardel
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Figure 6.19: Dividing flow: Case-1

Graph of Head-loss from software(SW) VS Head-loss from classical formula(CF)
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Figure 6.20: Head loss for area case-1, combining flow cas&adius of main pipe is
branches i9.25 cms, Radius of perpendicular pipe is branchelsams, Inlet velocity in
both inlets vary from c¢m/secto 3 em/sec, pressure at outlet i€)0 Pascals and Classical
pressure loss formula by Andrew Vazsonyi
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Figure 6.21: Dividing flow: Case-1

Graph of Head-loss from software(SW) VS Head-loss from classical formula(CF)
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Figure 6.22: Head loss for area case-2, combining flow cas&adius of main pipe is
branches i$).3 cms, Radius of perpendicular pipe is branchekasns, Inlet velocity in
both inlets vary from c¢m/secto 3 em/sec, pressure at outlet i€)0 Pascals and Classical
pressure loss formula by Andrew Vazsonyi
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Graph of Head-loss from software(SW) VS Head-loss from
classical formula(CF) for T—junction with A2=A1/2
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Figure 6.23: Head loss for area case-1, combining flow cag@adius of main pipe is
branches i9.25 cms, Radius of perpendicular pipe is branchelsams, Inlet velocity in
both inlets vary from c¢m/secto 3 em/sec, pressure at outlet i)0 Pascals and Classical
pressure loss formula by Andrew Vazsonyi

Graph of Head-loss for different cross—section areas of branches of
T—junction, Al=area of main pipe, A2=area of branch pipe
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Figure 6.24: Head-loss for different cross-section areladranches of T-junction,
Al =area of main pipeA2 =area of branch pipe, combining flow: Case-1, Radius of
branches i$).5 cms, Inlet velocities vary from ¢m/sec to 3 em/sec, Outlet pressure is
100 Pascals and Classical pressure loss formula by A. Gardel
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7 Discussion and future scope of the work

7.1 Discussion

From results in the previous section, we can observe thet thelifference between head
loss in T-junction of pipes observed by calculations frorfivgare packages Fluent and
Comsol. Our main aim was to study the difference between tkerghtions from CFD
softwares and classical formula by Andrew Vazsonyi, A. @aethd formulas available
in reference [3].

In case of combining flow, the difference between obseraatmbtained by Comsol (3D
experiments) and classical formula were in the rangédfo 5.1 %. Incase of dividing
flow, this difference was in the range ¢ to 5.5 %. In the case, where we varied the
angle of the T-junction fron87 degrees t®3 degrees, difference between observations
by Comsol (3D experiments) and classical formula was in thgeaf4.6 to 6.7 %.

One of the reasons for these errors is likely the limited bdpias of software. These
differences are as a result of software’s inability to harcbmplicated flow conditions.
Comsol Multiphysics (version 3.2a) can not handle flow sitret with turbulence. Also,
this version of Comsol Multiphysics does not have ability todal rough inner surface
of pipes.

For all our experiments the fluid was considered water withmab properties at room
temperature. Also the classical formulas are valid onlyfligid that is incompressible
and inviscid. The formulas reference [3], with the idea ofisidering the T-junction as
combination of two pipe components, is only valid for 2D case

Our main aim was to study the difference between the obsensgstrom CFD software
and classical formula by Andrew Vazsonyi, A. Gardel and folas available in refer-
ence [3]. The values obtained by CFD software were in cerigieeanent with classical
formulas both by Andrew Vazsonyi and A. Gardel but valuesimigd by CFD software
were better agreement with A. Gardel. It can be clearly otegkthat for combining flow
situations where we used Gardel’s formula, the differenas im range 08.2 to 5.0 %
and for dividing flow cases where we used Vazsonyi formulesdifference was in range
of 4.5 10 6.0 %.

Gardel’'s formulas were as result of a systematic derivdtiom basic principles of mo-
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mentum (applied to the main pipe), continuity principle te fluid in whole T-junction
and energy balance principle (individually) to flow comingrh the branches. Unfor-
tunately, none of the classical formulas consider pipe hoegs as factor for the head
loss. Roughness of the pipe varies from as material and is® @nsidered as one of
the major cause for major losses. This is where the accurkcyedficients obtained
by classical formula can be questioned. Though, the losgafréction between fluid
and junction inner surface is very less, but theses smalkgatan be very significant for
precise calculations.

During this work, we also observe that the difference betwaeservations by 2D sim-
ulations of software and classical formula were considgrkger than the difference
between observations by 3D simulation of software and dak&rmula. We also rec-
ommend 3D simulation for such calculations, since 3D sitnuiaare more near to the
reality and also effect of turbulence can be modeled andeedén 3D simulations. Also,
3D simulation give more clear view of swirl movements, stnéaes and turbulence in
the fluid.

During the work we realized that Fluent is a better optionHeavy and precise simu-
lations. Since, Fluent has capability to model turbulendd werity of Kappa-Epsilon

models and also because Gambit is a very handy tool to createcemplicated geome-
tries. But, Fluent can be sometimes very expensive in ternesmiputational time. The
only advantage with Comsol Multiphysics is that we can createmetry and carry out
calculations in the same environment and the grid does nettocbe exported every time
the experiments are repeated.

From our experience during this work, we would suggest toRligent for similar simu-
lations. There are also some higher versions of Comsol &aithat have capability to
handle complex flow situations. Gardel’s formulas were asltef a systematic deriva-
tion from basic principles of momentum (applied to the mapef?), continuity principle
to the fluid in whole T-junction and energy balance princiatelividually) to flow coming
from the branches.

2For this purpose he considered main pipe as a control volmaagplied momentum balance principle.

51



7.2 Future scope of the work

In this work was restricted to only water at room temperaéune t-junctions with smooth
inner surface. There can be more work done to generalize thsslts for the other fluids
and T-junction with rough inner surfaces.

Also, with software our ambition was to construct a real tismaulation of T-junction
with varying angle. Though this is a very lengthy process¢eifluent takes too much
time with dynamic mesh, but this is possible with higher iars of fluent and other CFD
packages.

Unfortunately, none of the classical formulas consideepipughness as factor for the
head loss. Roughness of the pipe varies from as material adlgo considered as one
of the major cause for major losses. This is where the acguwfcoefficients obtained
by classical formula can be questioned. Though the loss aldiection between fluid
and junction inner surface is very less but theses smalbgatan be very significant for
precise calculations.

During this study, we also came across an industrial prolgdencerning to flow of pulp
like fluid in pipes. The problem was placing a valve of certeaqpacity for regulating
supply of pulp like material based on the pressure and wglgeofiles in the supply
network. Initially, pipe with elastic property was used tgply the material and a large
forceps was used to reduce the diameter of pipe where théysupp not needed or to be
regulated. Such kind of problems can be solved with simdehniques.

In this work all, we made an attempt to study effect of différeadius of main pipe and
branch pipe. The range of flow parameters (flow velocity, mi@eneter and pressure)
used in our computational experiments was relatively sniaiks also possible that the
difference of head loss observed and inaccuracy of the flarmsieven larger in broader
range of parameters. Thus we suggest that there should lge3aromputational exper-
iments done using more advanced CFD software packages.

This can play important role in verifying other claims madedasis of classical formulas.
E.g. Andrew Gardel’s observation that head-loss increastesncrease in ratio of areas
of main pipe and branch pipe.
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8 APPENDIX A. ELEMENTS BASIS FUNCTIONS AND LOCAL BASIS
FUNCTIONS APPENDIX A

8 Appendix A. Elements Basis functions and Local Basis

Functions

Suppose that for a given finite element mesh there is asedoigth each nodev, =
(7, ;) a function ,defined of2 with following properties.

1. The restriction ofp; to any element; mesh is associated with each a polynomial
form

T
¢i(z,y) = Z C(ii)xpsyqs
s=1
; (z,y) € eewhere powerg andgs, s = 1,2, ..., T are independent afand;.
2. ¢1(NJ> = 5ij for 1,7 =1,2,...M

3. ¢; is uniquely determined on every element edge by its valusatddes belonging
to that edge.

4. ¢; € C(Q)
5. ¢; assumes non-zero values only in those elements to whidielongs.

6. If V;is not onI',then®; vanishes on the boundary of its supportMfin on T, then
¢; vanishes on part of boundary of its support that lieQin

7. Itis possible to chose a standard (or reference) elementhe z — ¢ plane with
local basis functions, (&, 7), ..., 6r (&, 7) of type é:(x,y) = >._, C{L zPy* and
find for every element; invertible affine variable transformation.

r=x(Z,9) = fu+ fi2y + by

Yy =y(@,7) = far® + for + by

(z,7) € é depends om, such that this mapsontoe; (mapping nodes onto nodes)
and

¢r(jag) = ¢i($(56,§),y(f,zj))
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8 APPENDIX A. ELEMENTS BASIS FUNCTIONS AND LOCAL BASIS
FUNCTIONS APPENDIX A

denoting the inverse transformation by
T =272(z,y)
andg = j(z,y) thus(z,y) € e;We can rewrite, (z, j) as

O (2,y) = O} (2,y)(@(z, y), (=, y))

Local basis function ovet;, defined by

qy(“l) (z,y) = q’;(l)(% Y)

, (z,y) € e, 7 = 1,2,...TA local basis function is simply the restriction of some gbb
basis function te;.
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9 APPENDIX B. LAX MILGRAM LEMMA APPENDIX B

9 Appendix B. Lax Milgram Lemma

Consider a functional

yuev
V = {v e C?a,b];v(a) =v(b) =0}

Where,p € Ca,b], ¢,p € Cla,b], 0 < py < p(z) < py and0 < gy < q(z) < ¢ for
a < b with py,p1,q; @s constants.

a(u,v) = /ba {p(x)u'v" + q(x)uv} dx

yu,v €V

, u € VWe can expres$ as, f(u) = sa(u,u) — G(u), u € V. Let,V be any arbitrary
Hilbert Space with inner produdt, .), and norm|ju|, = (u,u)}; v € V. Leta :
V x V — R be a mapping with following four properties.

1. a(au + fv,w) = a.a(u,w) + f.a(v,w), u,v,w € V,af € R
2. a(w,au + fv) = a.a(w,u) + f.a(w,v), u,v,w € V,af € R
3. Jconstant? > |a(u,v)| < B lully [|v]ly, w,v,w € Vi.eais bounded.

4. 3 constanp > 0 3 a(u,v) > p|lul’, u € Vi.eais coercive. LeG : V — R be a
mapping with following properties :

5. G(au + fv) = aG(u) + fG(v) ;u,v,w € V,af € RieGislinear.

6. 3 constant > 03 |G(u)| < p||ul,, v € V i.e G is bounded.

Under these assumptions faf and’d’, there exist a unique elemefite V' such that
a(t,u) = G(u),Yu € V.
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10 APPENDIX C. FIELD AND DERIVATIVE RULES

APPENDIX C

10 Appendix C. Field and derivative rules

For any arbitrary fields andw,

e v+w=v4+w
e av = avu, wherea is constant.

@ = a, Wherea is constant.

ov _ Jv — e _
52 = 2., Wheres =z; ors =1t

=

°
S
3|

Some consequences of these averaging rules are as following

P - oy .
® UjU; = ULy + U;U )

—_— o ’ A — /7 /Ay / . [
o Ul = Uy Uy, + WUy + Ul 4w i)+ WU

Ou; =

ot Wi — T Ui = 5 Uy

1. Py, — G 4 Sty

2. i = 2 + P

3 %;” u; = Gl + gz, 7

4. ung“;ui — u_j%u_i = U;%u_i + g—iu;u; + u;%u_i + Wg_i
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11 APPENDIX D. CREATING GEOMETRY IN GAMBIT APPENDIX D

11 Appendix D. Creating geometry in Gambit

We can create t-junction geometry by two ways, one is crgdivwo rectangles perpendic-
ular to each other and then merging them second is creathtexygoints and connecting
them by edges. We will do this by second way.

e First we shall create the points that will be used to creatdities and then faces
of the domain. Operation > Geometry > \ertex > Create VertexA(0,0), B(0,5),
C(5,1), D(0,1), E(2,1), F(3,1), G(2,3), H(3,3).

¥
Geometry

= ololclel
9] ) 1 | ¢

Slitch Faces

Vartices || E Type: 4 Real  Virusl Humber: 4 Single polume
Type: 4 Real - Vituzl - Create planar lerant face ~ Woiiple volmes
ol s s + Real
Lt # S SR e
I i S,
7 l— v o s il
Label : Toleranze. Aute

I |

apy | meset | cese |

aply | Reset | cose |

Figure 11.1: Buttons for drawing geometry

e Now draw the straight lines that will complete the domain. @t the points to
create the following line segments: AB, BC, CD, DE, EF, FG, GH, HA.

e Operation > Geometry > Face > Form Face Select all the line segments in the
drop list and create the face.

e Operation > Mesh > Mesh Face Select the face and specify the spacing or ratio.

e Operation > Zones > Specify Boundary Types Create boundary conditions as
follows: Left face =Velocity Inletl, Right face =Velocity Inlet2, Upper face =
Pressure Outlet and all the other facesvaadis.
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11 APPENDIX D. CREATING GEOMETRY IN GAMBIT APPENDIX D

e Save the Gambit file anelxport to the Fluent mesh.
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12 APPENDIX D. SOLVING PROBLEM WITH FLUENT APPENDIX D

12 Appendix D. Solving problem with fluent

e Load the mesh into Fluent. File > Read > Case.
e Check the mesh for errors. Grid > Check

e For this problem, the default Solver settings will be suffiti Ensure that the
proper viscous model is selectddefine > Models > Viscous

e Now recall liquid water from the materials database so theamn be specified in
the boundary conditionsDefine > Materials. Enter the database by clicking on
Database. Select water liquid (h20<I>) in the Fluid Materist. Click Copy and
then Close. Now move the reference pressure into the flow domai

e Define > Operating Conditions

e Boundary conditions can now be set. Define > Boundary ConditiSe$ect fluid
in the selection menu on the left and then click on Set. Changiidl Name to
water-liquid. Now click on inletin the Zones menu and enkervtelocity-inlet win-
dow. Change Velocity Specification Method to Components atel envelocity of
2.01e-4 m/s (liquid water at Re = 20) next to X-Velocity. Chattgediscretization
method to a higher order scheme.

e Solve > Controls > Solution Change the Discretization for Momentum to 2nd
Order Upwind.

e The flow domain can now be initialize®olve > Initialize > Initialize. Initialize
the flow with the inlet conditions.

e Enable the plotting option for residuals and turn off auttmeonvergence check-
ing. Solve > Monitors > Residual

e The problem is ready to be iterateslolve > Iterate Start with 200 iterations.
e Once Fluent has stopped iterating, we can post-procesathetiour interest.

e We can us®isplay > Contours. and view contour of velocity, pressure etc.
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