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The aim of this work is to study flow properties at T-junction of pipe, pressure loss suf-
fered by the flow after passing through T-junction and to study reliability of the classical
engineering formulas used to find head loss for T-junction of pipes. In this we have com-
pared our results with CFD software packages with classical formula and made an attempt
to determine accuracy of the classical formulas. In this work we have studies head loss in
T-junction of pipes with various inlet velocities, head loss in T-junction of pipes when the
angle of the junction is slightly different from 90 degrees and T-junction with different
area of cross-section of the main pipe and branch pipe.
In this work we have simulated the flow at T-junction of pipe with FLUENT and Comsol
Multiphysics and observed flow properties inside the T-junction and studied the head
loss suffered by fluid flow after passing through the junction. We have also compared
pressure (head) losses obtained by classical formulas by A. Vazsonyi and Andrew Gardel
and formulas obtained by assuming T-junction as combination of other pipe components
and observations obtained from software experiments. One of the purposes of this study
is also to study change in pressure loss with change in angle of T-junction.
Using software we can have better view of flow inside the junction and study turbulence,
kinetic energy, pressure loss etc. Such simulations save a lot of time and can be performed
without actually doing the experiment. There were no real life experiments made, the
results obtained completely rely on accuracy of software and numerical methods used.
ii
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VOCABULARY
1-D One Dimensional
2-D Two Dimensional
3-D Three Dimensional
N-D N Dimensional (Where N is positive integer)
CFD Computational Fluid Dynamics
NS Navier-Stokes Equation
INS Incompressible Navier-Stokes Equation
FDM Finite Difference Method
FEM Finite Element Method
FVM Finite Volume Method
K-Epsilon Kappa-Epsilon
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NOTATIONS
Alphabetical Conventions
A Pipe cross sectional area (cm2)
Cµ Constant used in mixing length turbulence model (Dimensionless)
C1ǫ, C2ǫ Standard k-epsilon Model constants (Dimensionless)
D Pipe diameter (cm)
dh Hydraulic diameter (cm)
e Absolute roughness of pipe
el Element of FEM domain
g Acceleration due to gravity (cm2/s) (g = 9.80665 cm2/s)
gi Component of gravitational vector in the ithdirection
Hl Minor Loss Coefficient of pipe component (Dimensionless)
K(i,j) Loss-coefficient for flow coming from branch i to branch j
k(x, t) turbulent kinetic energy
k Relative roughness
l Length of pipe (cm)
Ni Node in element of FEM
r Inner Pipe diameter (cm)
p Pressure field
Pb Effect of buoyancy
Pk Production of k
Prt Turbulent Prandtl number for energy (Prt = 0.85) [default value for stan-
dard K-epsilon models]
Q Volumetric flow rate
rp Roughness coefficient of pipe material (dimensionless)
Re Reynolds numbers
S modulus of the mean rate of strain tensor
vii
U Velocity vector field (U = (u1, u2, u3) each function of x and t)
u x-component of velocity, (cm/s)
v y-component of velocity (cm/s)
w z-component of velocity, (cm/s)
v¯ y-component of mean velocity cm/s
u¯ x-component of mean velocity cm/s
w¯ z-component of mean velocity cm/s
Greek Conventions
α Angle in T-junction (for combining flow)
β, γ Angles in T-junction (for dividing flow) [used in Chapter-4]
β Coefficient of thermal expansion
τ Shear Stress
η Dynamic viscosity
λ Friction Factor (dimensionless)
λ1, λ2, λ3 Coefficients in Vazsonyi’s formulas (dimensionless)
ǫ(x, t) Turbulent dissipation rate
µ Fluid Viscosity, Pa− s
µt Turbulent viscosity, Pa− s
σ Symmetric stress tensor
σk Turbulent Prandtl number for k
σǫ Turbulent Prandtl number for ǫ
ρ Density of the fluid, g/cm3
τω Shear stress, Pa
ς Kinematic viscosity of fluid
θ Angle between main pipe and branch
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Mathematical Conventions
log(x) logarithm base 10 of x
ex exponential of x-that is, e raise to the power of x∑n
i=1 ai the sum from i=1 to n that is, a1 + a2 + . . .+ an∏n
i=1 ai the product from i=1 to n that is, a1 × a2 × . . .× an
∂ f(x)/∂ x partial derivative of f with respect to x
∇ =
(
∂
∂x1
, . . . , ∂
∂xn
)
Vector differential operator (gradient)
∆ =
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)
Laplace operator (nabla)
∆ · (c∇u) = ∂
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∂xn
(
c ∂u
∂xn
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∫ b
a
f(x) the integral of f with respect to x
F(x;θ) function of x, with implied dependence upon θ
Mathematical Operations
≡ equivalent to (or defined to be)
∝ proportional to
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1 Introduction
Pipe networks are mainly used for transportation and supply of fluids and gases. These
networks vary from fewer pipes to thousands of pipes (e.g. water supply network of a
large city, see in figure 1.1). In addition to pipes, the network also consists of elbows,
T-junctions, bends, contractions, expansions, valves, meters, pumps, turbines and many
other components. All these components cause loss in pressure due to change in momen-
tum of the flow caused due to friction and pipe components. This means conversion of
flow energy in to heat due to friction or energy lost due to turbulence.
Pipe networks are very common in industries, where fluid or gases are to be transported
from one location to the other. The head loss (pressure loss) may vary depending on
the type of components occurring in the network, material of the pipe and type of fluid
transported through the network. In industries the networks are usually large and require
very precise pressure at certain points of network. It is also sometimes essential to place
valves, pumps or turbines of certain capacity to control pressure in the network. The
placement of valves, pumps and turbines is important to overcome pressure loses caused
by other components in the network. This is one of the important reasons why this study
was conducted.
Figure 1.1: Water Distribution in city and industries.
In this work we have concentrated our attention to a very small and common component
of pipe network: T-junction (Some also refer as ’Tee’). T-junction is a very common
component in pipe networks, mainly used to distribute (diverge) the flow from main pipe
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to several branching pipes and to accumulate (converge) flows from many pipes to a single
main pipe. Depending on the inflow and outflow directions, the behavior of flow at the
junction also changes. The following figure shows some possibilities of fluid entering and
leaving the junction.
Figure 1.2: Various possibilities of fluid entering and leaving the junction
In present work we will numerically simulate the fluid flow in T-junction of pipes with
Comsol Multiphysics and FLUENT. The results obtained by software were compared
with available classical formula and formulas constructed by assuming T-junction to be
made up of two different components. This comparison also helped in verification of
some loss coefficients used in classical formula.
In fluid dynamics, head is the difference in elevation between two points in a column of
fluid, and the resulting pressure of the fluid at the lower point. It is possible to express
head in either units of height (e.g. meters) or in units of pressure such as Pascals. When
considering a flow, one says that head is lost if energy is dissipated, usually through
turbulence; equations such as the Darcy-Weisbach equation have been used to calculate
the head loss due to friction.
Head losses are of two types major and minor. Major head losses (also called Frictional
losses) are due to rough internal surface of pipe and occur over length of pipe. They are
mainly due to friction. Minor losses are losses due to the change in fluid momentum.
They are mainly due to pipe components due to bends, valves, sudden changes in pipe
diameter, etc. Minor losses are usually negligible compared to friction losses in larger
pipe systems. Presence of additional components offer resistance to flow and turbulence.
In this work, our aim is to study behavior of fluid at T-junction of pipes, head losses
caused by T-junction and change in pressure loss with change in angle of the junction.
2
2 CFD tools used
In this chapter we present an assortment of mathematical methods that we have used in
this study. This chapter includes overview of the CFD methods Finite Element method
(FEM) and Finite Volume Method (FVM).
We begin this section with a small introduction to FEM. This will include overview and
basic steps of FEM. Then, we will introduce FVM and also give basic steps of it.
2.1 Finite Element Method
The essence of the Finite Element Method (FEM) is to take a complex problem whose
solution may be difficult if not impossible to obtain, and decompose it into pieces upon
each of which a simple approximation of the solution may be constructed, and then put
the local approximate solutions together to obtain a global approximate solution. FEM is
widely used to find approximate solutions of differential equations which are not solvable
with analytical methods or which have geometrically complex domains. There are com-
mercial software packages like Comsol Multiphysics and ANSYS available for usage.
In FEM, we divide, domain Ω ∈ ℜ2 of the boundary value problem into a number of
closed sub-regions called elements ({el}Ll=1). When we do this we take following precau-
tions
1. Avoid very large and very small angles.
2. Element should be placed most densely in region where the solution of the problem
and its expected to vary rapidly.
3. High accuracy requires a fine mesh or many nodes per element.
Suppose that for a given finite element mesh there is associated with each node Ni =
(xi, yi) a function, defined on Ω¯ with certain properties (see appendix-C), this function
is called Elements basis functions. Local basis function over element el is simply the
restriction of global element basis function of el.
This method involves simple steps as described briefly.
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1. Discretization of the domain: Discretize the geometrically complex domain into
set of finite elements called elements. We can divide the domain into desired num-
ber of elements and desired number of nodes. These elements are non-overlapping.
It can be easily observed that the elements have simple geometrical form and are
only part of the very complex looking geometry and nodes are the points where
these elements meet. For 1-D the elements are intervals, for 2-D the elements are
triangles or quadrilaterals.
2. Weak formulation of the differential equation over elements: Multiply the equa-
tion by a weight function and integrate the equation over the domain. Distribute the
differentiation among the weight function. Use the definition of the natural bound-
ary condition in the weak form.
Figure 2.1: Finite Element Discretization of the domain and Weak formulation
3. Local Approximation of Solution: On each element let us attempt to compute the
length. We assume that the length of each arc can be approximated by the length of
the chord i.e. we approximate the arc using a straight line.
4. Assemble the Element Equations: Collect the element equations to get a repre-
sentation of the whole system. Assemble the element equations to obtain the global
system of equations.
5. Imposition of boundary conditions.
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6. Solution of the algebraic system of equations: Obtain the Solution of standard
matrix equation by direct or indirect (iterative) method.
7. Post processing: This final operation displays the solution to system equations in
tabular graphical or pictorial form. Other meaningful quantities may be derived
from the solution and also displayed.
The finite element solution converges to the true solution as the number of elements is
increased. FEM is easy to use and it is also easy to approximate the differential terms of
higher order. This method demands a good engineering judgment. The choice of type of
element and other basis functions can be crucial.
2.2 Finite Volume Method
The Finite Volume Method (FVM) is a numerical method based on Integral conservation
law. These methods are used for solving partial differential equations that calculates the
values of the conserved variables averaged across the volume. The integral conserva-
tion law is enforced for small control volumes defined by the computational mesh. One
advantage of FVM over FDMs is that it does not require a structured mesh (although a
structured mesh can also be used). Furthermore, FVM is preferable to other methods as
a result of the fact that boundary conditions can be applied non-invasively. This is true
because the values of the conserved variables are located within the volume element, and
not at nodes or surfaces. FVMs are especially powerful on coarse, non-uniform grids and
in calculations where the mesh moves to track interfaces or shocks.
The FVMs are very efficient in solving conservative problems. They are extensively used
in fluid mechanics and many other engineering areas governed by conservative systems
that can be written in integral control volume form. The primary advantages of these
methods are numerical robustness, applicability on very general unstructured meshes,
and the intrinsic local conservation properties of the resulting schemes.
To use FVM concrete choice of control volumes, type of approximation inside them and
numerical methods for evaluation of integrals and fluxes are required to be chosen care-
fully in advance. This method (Based on the control volume formulation of analytical
fluid dynamics) involves simple steps as described briefly.
1. In FVM, computational domain is first tessellated into a collection of non overlap-
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ping control volumes that completely cover the domain i.e. to divide the domain
into a number of control volumes where the variable of interest is located at the cen-
troid of the control volume. The control volumes are divided in to two categories:
cell-centered and vertex-centered control volume (See fig 2.2) . In the cell-centered
finite volume method shown, the triangles themselves serve as control volumes with
solution unknowns (degrees of freedom) stored on a per triangle basis. In the vertex-
centered finite volume method shown, control volumes are formed as a geometric
dual to the triangle complex and solution unknowns stored on a per triangulation
vertex basis. The following figures give clear idea about type of control volumes in
1D, 2D and 3D.
Figure 2.2: Control volume variants used in the finite volume method: cell-centered and
vertex-centered control volume
2. Integrate the differential form of the governing equations (very similar to the control
volume approach) over each control volume.
3. Interpolation profiles are then assumed in order to describe the variation of the
concerned variable between cell centroids. The resulting equation is called the
discretized or discretization equation. In this manner, the discretization equation
expresses the conservation principle for the variable inside the control volume.
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The most compelling feature of the FVM is that the resulting solution satisfies the con-
servation of quantities such as mass, momentum, energy, and species. This is exactly sat-
isfied for any control volume as well as for the whole computational domain and for any
number of control volumes. Even a coarse grid solution exhibits exact integral balances.
FVM is the ideal method for computing discontinuous solutions arising in compressible
flows. Any discontinuity must satisfy the Rankine-Hugoniot jump condition which is a
consequence of conservation. Since FVMs are conservative they automatically satisfy the
jump conditions and hence give physically correct weak solutions.
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3 Governing Equations and Boundary Conditions
The flow of most fluids can be mathematically described by the use of continuity equation
and momentum equation. According to continuity equation, the amount of fluid entering
in certain volume leaves that volume or remains there and according to momentum equa-
tion tells about the balance of the momentum. The momentum equations are sometimes
also referred as Navier-Stokes (NS) equation. They are most commonly used mathemati-
cal equations to describe flow. In this section we shall first derive NS equations and then
K-Epsilon model. At the end we shall also briefly discuss boundary conditions used.
In this section, we shall derive Navier-Stokes equations by control volume method, the
simplest approach. These equations can be used to describe many flow situations. Being
second order, non-homogeneous, non-linear partial differential equations we require at
least two boundary conditions for obtaining solution.
3.1 Continuity equation
Consider a volume of fluid in the stream with dimensions ∆x,∆y and ∆z. Consider that
the fluid flow is in positive x direction. Thus, the the amount of fluid that enters the
volume from face-1 is equal to product of density (ρ), velocity of fluid in x-direction (u)
and area of the face-1 (∆y∆z). Thus,
volumeinx = ρu∆y∆z (3.1)
Figure 3.1: Elemental volume used to derive the equations
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The mass leaving from face-2 is negative (its leaving the volume) product of density,
velocity of fluid in x-direction and area of the face-2. But, the density and velocity of the
fluid changes from u to u+∆u and ρ to ρ+∆ρ. Thus,
volumeoutx = −(u+∆u)(ρ+∆ρ)u∆y∆z (3.2)
Similarly, for other two faces parallel to y-axis, the equations for mass entering and leav-
ing will be
volumeiny = ρv∆x∆z (3.3)
volumeouty = −(v +∆v)(ρ+∆ρ)v∆x∆z (3.4)
And, for other two faces parallel to z-axis, the equations for mass entering and leaving
will be
volumeinz = ρw∆x∆y (3.5)
volumeoutz = −(w +∆w)(ρ+∆ρ)w∆x∆y (3.6)
Also, the total amount of fluid accumulated in the volume ∆x∆y∆z is
(
∆ρ
∆t
)
∆x∆y∆z (3.7)
This amount must be equal to the numerical sum of all the terms representing fluid en-
tering the volume and fluid leaving from the volume. Adding equations (3.1) to (3.7),
equating to 0 and using ∆(fg) = f∆g + g∆f +∆f∆g, we get
(
∆ρ
∆t
)
= −(∆ (ρu))u∆y∆z − (∆ (ρv)) v∆x∆z − (∆ (ρw))w∆x∆y
∆x∆y∆z
(3.8)
⇒
(
∆ρ
∆t
)
+
∆(ρu)
∆x
+
∆(ρv)
∆y
+
∆(ρz)
∆z
(3.9)
And when, ∆t→ 0, we can replace ∆ operator by partial differential operator.
∂ρ
∂t
+
∂(ρu)
∂x
+
∂(ρv)
∂y
+
∂(ρw)
∂z
= 0 (3.10)
Which is general Continuity equation for compressible fluid. For incompressible fluids
the Continuity Equation reduces to
∂u
∂x
+
∂v
∂y
+
∂w
∂z
= 0 (3.11)
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Also, if the density ρ is a function of co-ordinates x, y and z but not time then,
∂(ρu)
∂x
+
∂(ρv)
∂y
+
∂(ρw)
∂z
= 0 (3.12)
3.2 Navier-Stokes equation
Navier-Stokes (NS) equations are system of momentum equations for each co-ordinate
directions. We shall derive the equation only for x co-ordinate and then write for y and
z similarly. First we shall calculate Momentum Change and Flux and then calculate the
forces.
3.2.1 Momentum Change and Flux
Consider a volume of fluid in the stream with dimensions ∆x,∆y and ∆z. The change in
momentum with respect to time is given by (∂(ρu)/∂t)∆x∆y∆z.
The flux of momentum in the x direction at face-1 of the volume is the product of the mass
flux (ρu), the x-direction velocity (u) and the area of face-1 (∆y∆z) i.e. ρuu∆y∆z. The
flux of momentum in the face opposite to face-1 is − [ρuu+ (∂(ρuu)) /∂x∆x] ∆y∆z.
Similarly, for faces parallel to y-axis the flux of momentum in the y direction is ρvu∆x∆z
and the flux of momentum in the opposite to face is − [ρvu+ (∂(ρvu)) /∂y∆y] ∆x∆z.
And, for faces parallel to y-axis the flux of momentum in the z direction at entering
face of the volume is ρwu∆x∆y and the flux of momentum in the opposite to face is
− [ρwu+ (∂(ρwu)) /∂z∆z] ∆x∆y. Adding all these terms and simplifying we get,
−
[
∂(ρuu)
∂x
∆x∆y∆z +
∂(ρvu)
∂y
∆x∆y∆z +
∂(ρwu)
∂z
∆x∆y∆z
]
(3.13)
According to conservation of momentum law, algebraic sum of all these fluxes of momen-
tum and the external forces at faces parallel to x-axis (∑Fx) should be equal to change
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in momentum in volume with respect to time i.e.
∂(ρu)
∂t
∆x∆y∆z = −
[
∂(ρuu)
∂x
∆x∆y∆z +
∂(ρvu)
∂y
∆x∆y∆z +
∂(ρwu)
∂z
∆x∆y∆z
]
+
∑
Fx
(3.14)
Re-arranging , we get
⇒
[
∂
∂t
(ρu) +
∂(ρuu)
∂x
+
∂(ρvu)
∂y
+
∂(ρwu)
∂z
]
∆x∆y∆z =
∑
Fx (3.15)
Applying the derivative of product rule we get,
[
ρ
∂u
∂t
+ u
∂ρ
∂t
+ u
∂(ρu)
∂x
+ ρu
∂u
∂x
+ v
∂(ρu)
∂y
+ ρv
∂u
∂y
+ w
∂(ρu)
∂z
+ ρw
∂u
∂z
]
∆x∆y∆z =
∑
Fx
(3.16)
Rearranging the terms we get,
{
u
[
∂ρ
∂t
+
∂(ρu)
∂x
+
∂(ρu)
∂y
+
∂(ρu)
∂z
]
+ ρ
∂u
∂t
+ ρu
∂u
∂x
+ ρv
∂u
∂y
+ ρw
∂u
∂z
}
∆x∆y∆z =
∑
Fx
(3.17)
The terms in square bracket sum up to zero because of equation of continuity. Thus, above
equation reduces to momentum equation given below
{
ρ
∂u
∂t
+ ρu
∂u
∂x
+ ρv
∂u
∂y
+ ρw
∂u
∂z
}
∆x∆y∆z =
∑
Fx (3.18)
Similarly, we can obtain,
{
ρ
∂v
∂t
+ ρu
∂v
∂x
+ ρv
∂v
∂y
+ ρw
∂v
∂z
}
∆x∆y∆z =
∑
Fy (3.19)
and {
ρ
∂w
∂t
+ ρu
∂w
∂x
+ ρv
∂w
∂y
+ ρw
∂w
∂z
}
∆x∆y∆z =
∑
Fz (3.20)
3.2.2 Calculating Forces
The external force
∑
Fx,
∑
Fy and
∑
Fz which are external forces on the considered
volume. These forces are of two types: Body forces (acting on volume) and surface
forces (acting on surfaces).
Body forces are mostly due to gravitational forces acting on the fluid. The total body
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force acting on the volume considered is the product of component of acceleration due to
gravity in x-direction, mass of the fluid in the volume i.e.
gxρ∆x∆y∆z (3.21)
Surface forces act on only one particular surface of the volume at a time, and arise due
to pressure or viscous stresses. The stress on a surface of the control volume acts in the
outward direction, and is given the symbol σij with two subscripts. The first subscript
i indicates the normal direction of the face on which the stress acts, while the second
subscript j indicates the direction of the stress.
The force due to the stress is the product of the stress and the area over which it acts.
Thus, on the faces with normals in the x-direction (DyDz), the forces acting in the x-
direction due to the direct stresses are σxx∆y∆z and
{
σxx +
∂σxx
∂x
∆x
}
∆y∆z Which sum
to
{
∂σxx
∂x
}
∆x∆y∆z.
Similarly, on the faces with normals in the y-direction (∆x∆z), the forces in the x-
direction due to shear stresses sum to ∂σyx
∂x
∆x∆y∆z and on the faces with normals
in the z-direction (∆x∆y), the forces in the x-direction due to shear stresses sum to{
∂σzx
∂x
}
∆x∆y∆z.
The sum of all surface forces in the x-direction is thus(
∂σxx
∂x
+
∂σyx
∂x
+
∂σzx
∂x
)
∆x∆y∆z (3.22)
The stress σxx includes the pressure p (negative sign because it is acting inward) and the
normal viscous stress τxx. The stresses σyx and σzx include only viscous shearing stresses
σyx and σzx. This gives the force in the x-direction as:
−
(
∂p
∂x
+
∂τxx
∂x
+
∂τyx
∂y
+
∂τzx
∂z
)
∆x∆y∆z (3.23)
3.2.3 Newtonian/Non-Newtonian Fluids
A Newtonian fluid is one whose stress at each point is linearly proportional to its strain
rate at that point. The best example of this is water. A non-Newtonian fluid is one whose
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viscosity changes with the applied strain rate. Thus, we can say that non-Newtonian fluids
do not have a well-defined viscosity. The following figure can give a better idea of how
fluids can be classified in Newtonian and other type of fluids.
Figure 3.2: Fluid type Newtonian/conventional fluids vs. non-Newtonian fluids
A simple equation to describe Newtonian fluid behavior is τ = µdu
dx
. In common terms,
this means the fluid continues to flow, regardless of the forces acting on it. If the fluid is
incompressible and viscosity is constant across the fluid, the equation governing the shear
stress, in the Cartesian coordinate system, is
τij = µ
(
dUi
dXj
+
dUj
dXi
)
(3.24)
Where U = (u, v, w) and X = (x, y, z). Thus,
τxx = µ
(
du
dx
+
du
dx
)
= 2µ
du
dx
, τyx = µ
(
dv
dx
+
du
dy
)
, τzx = µ
(
dw
dx
+
du
dz
)
(3.25)
Substituting these values in equation obtained above, we get,
−

∂p
∂x
+
∂
(
2µ
(
du
dx
))
∂x
+
∂
(
µ
(
dv
dx
+ du
dy
))
∂y
+
∂
(
µ
(
dw
dx
+ du
dz
))
∂z

∆x∆y∆z (3.26)
⇒ −
(
∂p
∂x
+ 2µ
∂2u
∂x2
+ µ
(
∂2u
∂y2
+
∂
(
dv
dx
)
∂y
+
∂2u
∂z2
+
∂
(
dw
dx
)
∂z
))
∆x∆y∆z (3.27)
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The terms ∂2u/∂x2, ∂ (dv/dx) /∂y and ∂ (dw/dx) /∂z cancel out due to continuity equa-
tion. The terms that remain along with the body force due to acceleration due to gravity
would give the equation for the force in the x-direction,
∑
Fx =
{
ρgx − ∂p
∂x
+ µ
(
∂2u
∂x2
+
∂2u
∂y2
+
∂2u
∂z2
)}
∆x∆y∆z (3.28)
Substituting this in momentum equation, we get
{
ρ
∂u
∂t
+ ρu
∂u
∂x
+ ρv
∂u
∂y
+ ρw
∂u
∂z
}
∆x∆y∆z = ρgx − ∂p
∂x
+ µ
(
∂2u
∂x2
+
∂2u
∂y2
+
∂2u
∂z2
)
(3.29)
Similarly, we can obtain,
{
ρ
∂v
∂t
+ ρu
∂v
∂x
+ ρv
∂v
∂y
+ ρw
∂v
∂z
}
∆x∆y∆z = ρgy − ∂p
∂y
+ µ
(
∂2v
∂x2
+
∂2v
∂y2
+
∂2v
∂z2
)
(3.30)
and{
ρ
∂w
∂t
+ ρu
∂w
∂x
+ ρv
∂w
∂y
+ ρw
∂w
∂z
}
∆x∆y∆z = ρgz− ∂p
∂z
+µ
(
∂2w
∂x2
+
∂2w
∂y2
+
∂2w
∂z2
)
(3.31)
These are the Navier-Stokes equations. There have been attempts to solve these equations
but the computational complexity involved has not allowed many but some solutions.
Navier-Stokes equation can be solved numerically, but the solutions are obtained after
only making some assumptions and some of them are not stable at high Reynolds number.
There are two important issues that arise in the solution process first is non-linearity of
the equations and second is the coupling of the equations. In CFD the stress tensor terms
are often approximated by a turbulence model. The non-linearity makes most problems
difficult or impossible to solve and is part of the cause of turbulence.
3.3 Turbulence
Dictionary meaning of turbulence is the state of being turbulent and turbulent means dis-
turbed. When we talk about turbulence in fluid dynamics it means fluid flow with violent
disorder where the disorder has no specific direction or pattern. Also, its quoted as a
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random secondary motion caused by eddies with in the fluid in motion. Even though tur-
bulence is an everyday experience, it is extremely difficult to find solutions, quantify, or in
general characterize. When the flow is turbulent, we can expect a very rapid and random
change in fluid and fluid motion properties like momentum diffusion, high momentum
convection, variation of pressure and velocity in space and time. Its difficult to express
turbulence mathematically for following reasons.
1. Irregularity or randomness: impossible to apply a deterministic approach.
2. Diffusivity: This characteristic causes rapid mixing and increased rate of momen-
tum, heat and mass transfer.
3. Large Reynolds number: Turbulent flow or instable laminar flow.
4. 3D Vorticity fluctuations: Turbulence is 3D and rotational. Turbulence is character-
ized by high levels of fluctuating vorticity.
5. Dissipation: Turbulence flows are always dissipative. Viscous shear stress performs
deformation work which increases the internal energy of the fluid at expense of
kinetic energy of the turbulence. A continuous energy supply is needed to keep up
these loses. If no energy is supplied turbulence decays rapidly.
The K-epsilon model is one of the most common turbulence models. It includes two trans-
port equations to represent the turbulent properties of the flow. This allows a two equation
model to account for history effects like convection and diffusion of turbulent energy. The
first transported variable is turbulent kinetic energy (k). The second transported variable
in this case is the turbulent dissipation (ǫ). These variables determine the scale of the tur-
bulence and energy in the turbulence. In next part, we shall derive Kappa-Epsilon model
from Incompressible NS equations.
3.4 Kappa-Epsilon Model
The K-epsilon model is most commonly used to describe the behavior of turbulent flows.
It was proposed by A.N Kolmogrov in 1942, then modified by Harlow and Nakayama and
produced K-Epsilon model for turbulence.
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The Transport Equations for K-Epsilon model are For k,
∂
∂t
(ρk) +
∂
∂t
(ρkui) =
∂
∂xj
[(
µ+
µt
σk
)
∂k
∂xj
]
+ Pk + Pb − ρǫ− Yk + Sk (3.32)
For ǫ,
∂
∂t
(ρǫ)+
∂
∂t
(ρǫui) =
∂
∂xj
[(
µ+
µt
σk
)
∂ǫ
∂xj
]
+C1ǫ
ǫ
k
(Pk + C3ǫPb)−C2ǫρǫ
2
k
+Sǫ (3.33)
Realizable k-epsilon model and RNG k-epsilon model are some other variants of K-
epsilon model. K-epsilon model has solution in some special cases. K-epsilon model
is only useful in regions with turbulent, high Reynolds number flows.
3.5 Derivation
K-epsilon model equations can be derived form incompressible Navier stokes equation.
ρ(u.∇)u = ∇{−pI + η (∇u+ (∇u)T )}+ F (3.34)
∇.u = 0 (3.35)
Where, u is velocity vector field, p is pressure field, following are steps for deriving k-
epsilon model.
1. Apply statistical averaging to NS equation (3.35)
ρ
(
∂ui
∂t
+
∑
j
uj
∂uj
∂xj
)
=
∂p
∂xi
+ η∇2ui (3.36)
Where, u(x, t) represents the velocity vector field, p(x, t) is the pressure field. Be-
ing derived from Equations of conservation of mass, momentum and energy, we
have,
∂ρ
∂t
+
∑
j
uj
∂ρ
∂xj
=
∑
j
uj
∂uj
∂xj
= 0 (3.37)
Applying statistical averaging to equation (3.36) produces Reynolds equation:
ρ
∂ui
∂t
+
∑
j
uj
(
ρuj
∂ui
∂xj
+ ρ
∂u
′
i
∂xj
u
′
j
)
=
∂p
∂xi
+
∑
j
uj
∂τij
∂xj
(3.38)
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With u = u + u′ written in the mean plus fluctuation decomposition, averaging
satisfying the field rules (see appendix C) and using the following two equations.
τij = η
(
∂ui
∂xj
+
∂uj
∂xi
)
η∇2ui =
∑
j
∂τij
∂xj
2. Multiply Navier-Stokes (3.36) by ui and average it.
ρ
∂ui
∂t
ui + ρ
∑
j
uj
∂ui
∂xj
ui = − ∂p
∂xi
ui +
∑
j
∂τij
∂xj
ui (3.39)
3. Multiply obtained Reynolds equation (3.38) by ui.
ρ
∂ui
∂t
ui +
∑
j
(
ρuj
∂ui
∂xj
ui + ρ
∂u
′
i
∂xj
u
′
j
)
= − ∂p
∂xi
ui +
∑
j
∂τij
∂xj
ui (3.40)
Where,
∂u
′
i
∂xj
u
′
j =
∂
(
u
′
iu
′
j
)
∂xj
or equivalently
ρ
∂u
′
i
∂t
u
′
i + ρ
∑
j
uj
∂ui
∂xj
ui = − ∂p
∂xi
ui +
∑
j
(
∂τij
∂xj
ui +
∂Tij
∂xj
ui
)
(3.41)
With Tij = −ρu′iu′j representing the components of the Reynolds stress matrix T .
4. Subtracting equation ((3.39)) from equation ((3.41)), we get.
ρ
∂u
′
i
∂t
u
′
i + ρ
∑
j
(
uj
∂ui
∂xj
ui − uj ∂ui
∂xj
ui
)
= −∂p
′
∂xi
u
′
i +
∑
j
(
∂τ
′
ij
∂xj
u
′
i −
∂Tij
∂xj
ui
)
(3.42)
Where,
∂τ
′
ij
∂xj
u
′
i =
∂(τ
′
iju
′
i)
∂xj
− ∂u
′
i
∂ui
τ
′
ij
5. Neglecting very small viscous transfer or turbulent energy, we get (3.43). Since,
the τ ′iju
′
i represents the viscous transfer of turbulent energy, a very small quantity
in contrast to the terms responsible for the turbulent energy in, it is neglected. Thus
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becomes
ρ
∂u
′
i
∂t
u
′
i + ρ
∑
j
u
′
i
∂u
′
i
∂xj
uj +
∑
j
(
ρ
∂u
′
i
∂xj
u
′
iu
′
j +
∂ρu
′
iu
′
j
∂xj
ui + ρu
′
ju
′
i
∂u
′
i
∂xj
)
= − ∂p
′
∂xj
u
′
i −
∑
j
(
∂u
′
i
∂xj
τ
′
ij +
∂Tij
∂xj
u
′
i
) (3.43)
6. Summing over i equation (3.43) becomes energy balance equation of turbulent flow,
with turbulent kinetic energy (K) and rate of dissipation of the turbulent energy (ǫ).
7. Using hypothesis for class of fluid flow under consideration the equation of turbu-
lent energy balance reduces to For k,
∂k
∂t
=
∂
∂t
(
ck
∂k
∂x
)
− ǫ (3.44)
Where, ck is turbulent exchange coefficient. For ǫ,
∂ǫ
∂t
=
∂
∂t
(
Cǫ
∂ǫ
∂x
)
− U (3.45)
Where, Cǫ is turbulent energy dissipation rate exchange coefficient and S rate of
homogenification of the dissipation rate and is > 0.
3.6 Initial condition and Boundary condition
There are number of boundary conditions that we will use to solve Incompressible Navier-
Stokes Equation and Kappa-Epsilon model. The figure 3.6 shows an example how the
boundary conditions could be applied. The boundary conditions have been listed below.
Inflow/Outflow boundary condition
For inlet, imposed velocity i.e. the velocity vector normal to the boundary can be specified
by:
u · n = u0 = (u0, v0, w0)
which is denoted as the Inflow/Outflow boundary condition. In the above equation n is a
unit vector that has a direction perpendicular to a boundary or normal to a boundary.
Outflow/Pressure boundary condition
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Figure 3.3: Use of boundary conditions with Comsol
For outlet, we can impose a certain pressure in the Outflow/Pressure boundary condition:
p = p0
or [
−pI + η
(
∇u+ (∇u)T
)]
= −p0
This is the Normal flow/Pressure boundary condition, which sets the velocity components
in the tangential direction to zero, and sets the pressure to a specific value.
Slip/Symmetry boundary condition
The Slip/Symmetry condition states that there are no velocity components perpendicular
to a boundary.
n · u = 0
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No slip boundary condition
The No-slip boundary condition eliminates all components of the velocity vector.
u = 0
Neutral boundary condition
The Neutral boundary condition states that transport by shear stresses is zero across a
boundary. This boundary condition is denoted neutral since it does not put any constraints
on the velocity and states that there are no interactions across the modeled boundary.
η
(
∇u+ (∇u)T
)
n = 0
The neutral boundary condition means that no forces act on the fluid and the computa-
tional domain extends to infinity.
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4 Head losses
Head is a term used to specify measure of pressure of total energy per unit weight above
a point of reference. In general, head is sum of three components; elevation head (the
elevation of the point at which the pressure is measured from above or below the arbitrary
horizontal observation point i.e. relative potential energy in terms of an elevation), veloc-
ity head (kinetic energy from the motion of water) (it is mainly used to determine minor
losses) and pressure head (equivalent gauge pressure of a column of water at the base of
the piezometer). 1
In cases where the fluid is moving with very low velocity or stationary fluid, we ignore the
velocity head because the fluid is either stationary or moving with very low velocity and
in the cases where the fluid is moving with very high velocity (cases where the Reynolds’s
number exceeds 10) the elevation head and pressure head are neglected.
Head loss in fluid flow in pipes means loss of flow energy due to friction or due to turbu-
lence. Head losses result in to loss in pressure at final outlet. The pressure loss is divided
in two categories of Major (friction) losses and Minor losses. These losses are dependent
on both the type of fluid and the material of the pipe.
Head loss is a measure to calculate reduction or loss in head. Head loss is mainly due
to friction between fluid and walls of the duct (in our case it is pipe), friction between
adjacent layers of fluid and turbulence caused by presence of pipe network components
like T-junction, elbows, bends, contractions, expansions, pumps, valves. Head losses
result in to loss in pressure at final outlet, thus also known as pressure loss. Pressure
losses are divided in to two categories of major losses and minor losses.
• Major losses: Losses due to friction between fluid and internal pipe surface. These
losses occur over the length of pipe. They can be easily determined by Darcy-
Weisbach equation. Frictional loss is that part of the total head loss that occurs as
the fluid flows through straight pipes
• Minor losses: Losses occur at points where there is change in momentum. They
mainly occur at elbows, bends, contractions, expansions, valves, meters and similar
other pipe fittings that commonly occur in pipe networks.
1A piezometer is small diameter water well used to measure the hydraulic head of underground water.
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The major head loses may be large when the pipes are long (e.g. pipe network occurring
in water distribution in a city) and minor losses will also have a large contribution because
of attachments and fittings occurring in these networks. Thus, we can say that head loss
in reality are unavoidable, since no pipes are perfectly smooth to have fluid flow without
friction, there does not exist a fluid in which flows without turbulence.
The head loss for fluid flow is directly proportional to the length of pipe, the square of the
fluid velocity, and a term accounting for fluid friction called the friction factor. The head
loss is inversely proportional to the diameter of the pipe. Head loss is unavoidable in pipe
networks with real fluids, since there is no pipe with perfectly smooth inner surface and
there is no fluid that can flow without turbulence.
Figure 4.1: Fluid behavior when pipe is smooth or rough from inside
The calculation of the head loss depends on whether the flow is laminar, transient or
turbulent and this we can determine by calculating Reynolds number.
4.1 Major head loss
There are many equations available to determine major head losses in a pipe. The most
fundamental of all is Darcy-Weisbach Equation. Major head loss (loss due to friction) is
determined by
hmajor = λ
(
l
dh
)(
ρv2
2
)
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This equation is valid for fully developed, steady, incompressible flow. The hydraulic
diameter (dh) is division on cross-section area of pipe by wetted perimeter.
dh =
cross section area of pipe
wetted perimeter
=
4 (πr2)
2πr
= 2r = D
Thus, hydraulic diameter is the inner diameter of pipe. Therefore, major head loss formula
reduces to
hmajor = λ
(
l
D
)(
v2
2g
)
(4.1)
4.2 Friction Factor
Friction factor (λ) depends on whether the flow is laminar, transient or turbulent, which
again depends on Reynolds number. Friction Factor for Laminar Flow
Consider
y = r −R⇒ dy = −dr
and shearing stress
τ = −µdν
dr
Where, ν is rate of change of velocity.
If we consider the fluid to be isolated from the surrounding, the inlet will have velocity
(v1) and pressure (p1) and outlet will have velocity (v2) and pressure (p2).
Using momentum principle2 (in fluid dynamics), we get
p1A− p2A+ (shearing stress× perimeter of pipe× length of pipe) = ρQ (v2 − v1)
⇒ (p1 − p2)πr2 − τ(2πrL) = ρQ (v2 − v1)
We know that
τ =
p1 − p2
2L
· r
and
τ = −µdν
dr
2The principle of conservation of momentum is an application of Newton’s second law of motion to
an element of fluid. That is, when considering a given mass of fluid, it is stated that the rate at which the
momentum of the fluid mass is changing is equal to the net external force acting on the mass.
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Comparing both we get,
dν = −p1 − p2
2Lµ
· rdr
On integrating both sides and using ν = 0 at r = R and taking p1 − p2 = ∆p, we get
ν = − ∆p
2Lµ
· (R2 − r2)
The volumetric flow (Q) can be determined by
Q =
∫
ν (2πr) dr =
∫ 0
R
∆p
2Lµ
(
R2 − r2) (2πr) dr
⇒ Q = ∆p
4Lµ
πr4
And average velocity (V ) can be determined by
V =
Q
A
=
∆p
4Lµ
πr4 · 1
πr2
⇒ ∆p = 4Lµ
R2
· V
Since, head loss equals pressure drop (∆p) divided by γ
hmajor =
∆p
γ
=
4Lµ
γR2
· V
Also,
hmajor = λ
L
D
· V
2
2g
Comparing both, we get
λ =
64 L
D
V D
=
64
Re
Thus, λ = 64
Re
when Re < 2100. This can also be confirmed from Nikuradse’s graph for
laminar flow. 3
Friction Factor for Transient Flow
If the Reynolds number for the flow is between 2300 and 3000 the type of flow exhibited
by the fluid is known as transient flow. This is type of flow where velocity and pressure of
3Nikuradse showed the dependence on roughness by using pipes artificially roughened by fixing a coat-
ing of uniform sand grains to the pipe walls. The degree of roughness was designated as the ratio of the
sand grain diameter to the pipe diameter (ǫ/D).
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the flow are changing with time. The flow also switches between turbulent and laminar.
Because of this behavior it is difficult to determine the friction coefficient. Thus, the
friction coefficient for Transient flow can not be determined.
Friction Factor for Turbulent Flow
When the flow is turbulent, the frictional factor (λ) can be obtained by solving the equa-
tion
1√
λ
= −2.0log10
[
2.51
Re
√
λ
+
rp
dh
· 1
3.72
]
Where, rp is relative roughness of the pipe.
This equation is well known as Colebrooke equation4. Colebrooke equation is also graph-
ically presented by Moody Chart5, which can be easily used if some required parameter
values are known. The Moody chart relates the friction factor for fully developed pipe
flow to the Reynolds number and relative roughness of a circular pipe. Relative rough-
ness for some common materials can be found in the table- 16 below.
Surface Roughness (rp) ×10−3 m
Copper, Lead, Brass, Aluminum (new) 0.001− 0.002
PVC and Plastic Pipes 0.0015− 0.007
Epoxy, Vinyl Ester and Isophthalic pipe 0.005
Stainless steel 0.015
Steel commercial pipe 0.045− 0.09
Rusted steel (corrosion) 0.15
Smoothed cement 0.3− 1
Ordinary concrete 0.3− 0.5
Table 1: Relative roughness for some common materials determined by experiments.
Relative roughness of the pipe (rp) can be easily determined if we know the material of
the pipe. This value completely depends on material of pipe. These values are also easily
available on some manuals. Table-2 summarizing relation between Reynolds number
(Re), the type of flow and Friction coefficient (λ)
The Friction coefficient (λ) can also be determined by Moody Chart. There is also a sec-
tion in this chapter that briefly describes the use. An illustration is also given to understand
4The Colebrook equation is an implicit equation which combines experimental results of studies of
laminar and turbulent flow in pipes. It was developed in 1939 by C. F. Colebrook.
5In 1944 Lewis F. Moody, Professor, Hydraulic Engineering, Princeton University, published paper
titled Friction Factors for Pipe Flow. The work of Moody, and the Moody Diagram has become the basis
for many of the calculations on friction loss in pipes and ductwork.
6Table for Relative roughness for some common materials was taken from website
http://www.engineeringtoolbox.com.
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Reynolds number (Re) Nature of flow Friction coefficient (λ)
< 2300 Laminar Flow λ = 64/Re
2300− 4000 Transient Flow Can not be determined
> 4000 Turbulent Flow 1√
λ
= −2.0log10
[
2.51/
(
Re
√
λ
)
+ rp/3.72dh
]
Table 2: Reynolds Number, Nature of Flow and Friction coefficient (λ).
this more clearly.
We can summarize above discussion in these points
• If the Reynolds numbers is less than about 2100 the flow will be laminar. This
indicates that the viscous force of the fluid is dominating the other forces that may
disturb the flow. When flow is laminar, the fluid seems to move in controlled manner
with regular streamlines. It would look like very thin glass films are sliding over
each other.
• If the Reynolds number is between 2300 and 3000 the flow will be transient. This is
category between laminar and turbulent flow, where we can not determine anything
about the flow. There may also be observed a small amount of turbulence in the
flow.
• If the Reynolds number is greater than 3000 which is common when the fluid is
moving with high speed or with some obstacles or rough surface of duct then the
flow is said to be turbulent. The flow being turbulent indicates that the inertial forces
are more than forces due to velocity and that the streamlines are no more parallel
to each other and the flow pattern is irregular and the fluid particles may cross one
point in domain more than once.
4.3 Minor head loss
Minor losses (losses due to various attachments and change in momentum) can be calcu-
lated by following formula.
pmajor = HL
(
v2
2g
)
Where, HL is loss coefficient for the pipe component and g is acceleration due to gravity.
The loss coefficients for various pipe components are available in several textbooks, man-
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uals and supplier manuals. Table-37 lists minor loss coefficients for some common com-
ponents in pipe networks. These relative roughness for materials were determined by
experiments.
Type of Component or Fitting Minor Loss Coefficient (HL)
Flanged Tees, Line Flow 0.2
Threaded Tees, Line Flow 0.9
Flanged Tees, Branched Flow 1.0
Threaded Tees, Branch Flow 2.0
Flanged Regular 90o Elbows 0.3
Threaded Regular 90o Elbows 1.5
Threaded Regular 90o Elbows 0.4
Flanged Long Radius 90o Elbows 0.2
Threaded Long Radius 90o Elbows 0.7
Flanged Long Radius 90o Elbows 0.2
Flanged 180o Return Bends 0.2
Threaded 180o Return Bends 1.5
Fully Open Globe Valve 10
Fully Open Angle Valve 2
Table 3: Minor loss coefficients for some of the most common used components in pipe
and tube systems
As mentioned before several textbooks, manuals and supplier manuals. Values in various
sources may vary depending upon the experimental conditions, formulas and calculation
techniques used. Thus, one must first determine if the experimental conditions of the data
are the same as the conditions of the current experiment and the other additional data
related to the same experiment are from the source.
4.4 Using the Moody Diagram
Head loss is a function of Reynolds number and relative roughness coefficient. Colebrook
developed an empirical transition8 function for commercial pipes, which relates friction
factor and the Reynolds number. The Moody diagram is based on the Colebrook equation
in the turbulent regime. The Moody chart relates the friction factor for fully developed
pipe flow to the Reynolds number and relative roughness of a circular pipe. The frictional
factor (λ) for head loss can be determined if Reynolds number and the relative roughness
of the pipe are known. The rougher the pipe the more turbulent the flow is through that
7Table for Minor loss coefficients was taken from website http://www.engineeringtoolbox.com.
8
’Transition’ is the term used by Colebrook to describe roughness of pipe. By ’transition’ he meant that
the pipes are neither too rough nor too smooth.
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pipe. The relative roughness of a pipe is given by e/D, where e is absolute roughness of
pipe and D is diameter of pipe.
Figure 4.2: Moody chart for estimating Frictional factor
By looking at the Moody diagram it shows that the right top corner is completely tur-
bulent and the left top is laminar (smooth flow). To determine the frictional factor, find
the relative roughness value for the pipe on the right. Then locate the pipes Reynolds
number on the bottom. Follow the relative roughness curve to where it crosses the deter-
mined Reynolds number. Now at that point project a straight line to the left, the number
determined on the left is the frictional factor.
4.4.1 Example of using Moody chart
Consider flow situation where pipe diameter (D) is 1 ft, Kinematic Viscosity is 14.1 ×
10−6 ft
2
s
, velocity of fluid is 0.141 ft
s
and e is 0.002 ft.
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First we compute e/D and R.
e
D
=
0.002ft
1ft
= 0.002
R =
Dv
ς
=
(1ft)(0.141ft
s
)
14.1× 10−6 ft2
s
= 10000
Now, we consider the value of e/D and follow the curve where R is 10000. We project a
straight line to left and can see that the value is 0.034.
4.5 Total Head Loss in Serial Connected Pipes
If total head loss in a single pipe is given by
λ
L
D
V 2
2g
+KL
V 2
2g
(4.2)
Then, the total head loss in several serial connected pipes is algebraic sum of all the head
losses due to pipes in the network. In network of k pipes, if i is the number of pipe the
the total head loss can be expressed as the following formula:
h =
i=1∑
k
(
λi
Li
Di
V 2i
2g
+KLi
V 2i
2g
)
(4.3)
Where, the quantities with index i is connected to ith pipe in the network.
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5 Head Loss Coefficient for T-junction
The pressure loss caused by the T-junction depends on inner radius of the branches, ve-
locity of fluid entering or leaving from the junction and the angle of the junction (there are
various approaches for this calculations, some cases are presented in the following text).
There are some classical formulas for pressure loss co-efficient for T-junctions. Most of
these formulas depending on angle of T-junction, inlet and outlet velocities. To compute
head loss coefficients, we have used formulas derived by A. Vazsonyi9, A. Gardel10 and
V. Curic11.
One other idea for computing pressure loss co-efficient for T-junctions with angles, was to
consider T-junction as combination of two pipe components e.g two elbows or an elbow
and a contraction. According to this idea, we assume the T-junction to be made up of
two pipe components. The choice of components would depend on the flow conditions
i.e from which arms the flow is coming toward the junction and from which arms the flow
is leaving from the junction.
In this section we shall mention the classical formulas and the formulas that were con-
structed by assuming T-junction to be made up of other pipe components.
5.1 For dividing flows
These formulas are used for the situation where flow from a single branch flows to the
other two remaining branches. The picture in the left of figure (5.1) gives more clear idea
about such flow situations.
Various studies have been made on T-junction with dividing flow situation. Of these stud-
ies, results obtained by Andrew Vazsonyi’s were believed to be the closest to the available
statistical data then. Vazsonyi derived two formulas for dividing case and combining
cases (5.1). In his work he explained relation between velocity ratios, angles of the junc-
tion and loss coefficient. The formulas are the result of the comparisons made by him.
9The reference book [2] contains ’Vazsonyi, Andrew: Pressure Loss in Elbows and Duct Branches.
Trans. ASME, vol. 66, no. 3, Apr. 1944, pp. 177-183’ as one of the important reference for these formula.
10The reference book [1] contains ’A. Gardel, Pressure drops in flows through T-shaped pipe-fittings,
Bull. Tech. Suisse Romande 9 (1957), pp. 122130’ as one of the important reference for these formula.
11Full derivations and details of the formulas derived by considering T-junction as two components are
available in [3]
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The formula available from work of Vazsonyi is as following
Figure 5.1: Example of flow situations and angles for combining and dividing flow
K0,1 = λ1 + (2λ2 − λ1)
(
V1
V0
)2
− 2λ2
(
V1
V0
)
cosα′ (5.1)
Here K is depending on kinetic energy of the combined flow in branch-0, and
λ1 = 0.0712α
0.7141 + 0.37 for α < 22.50 (5.2)
λ1 = 1.0 for α ≥ 22.50 (5.3)
λ2 = 0.0592α
0.7029 + 0.37 for α < 22.50 (5.4)
λ3 = 0.9 for α ≥ 22.50 (5.5)
and
α′ = 1.41α− 0.00594α2 (5.6)
The figure (5.1) shows the plots for λ1, λ2 (left) and plot for λ3 (right).
The other empirical formula obtained by Gardel (1957). His idea was to calculate pressure
loss coefficients separately for each inlet (loss coefficient for flow from inlet-1 to outlet-3
and loss coefficient for flow from inlet-2 to outlet-3), so for each flow situation we have
two loss coefficients (K31 andK32). These formulas were derived by applying momentum
balance to the main pipe section of the junction (section abcd in fig (5.3)) and equation of
continuity to the whole t-junction. Then energy balance is applied individually for each
inlet.
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Figure 5.2: Plot of λ3 (left) and Plot of α and β (right)
Figure 5.3: Diagram for combining flow
The formula obtained by Gardel are,
K31 = 0.95 (1− q)2 + q2
[(
1.3 tan
φ
2
− 0.3 + 0.4− 0.1a
a2
)(
1− 0.9
(r
a
) 1
2
)]
+0.4q
(
1 + a
a
tan
φ
2
) (5.7)
K32 = 0.03(1− q)2 + 0.35q2 − 0.2q(1− q) (5.8)
Where, a = A1/A3 and φ = π − θ.
It can be clearly observed that there is no effect of area ratio or radius of pipe on the loss
coefficient K32.
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5.2 For combining flows
These formulas are used for the situation where flow from two branches combine in the
remaining branch. The figure (5.3) gives more clear idea about such flow situations. The
formula available from work of Vazsonyi are as follows
K0,1 = λ3
(
V1
V0
)2
+ 1− 2
[(
V1
V0
)(
Q1
Q0
)
cos β′ +
(
V2
V0
)(
Q2
Q0
)
cosα′
]
(5.9)
Where, K is again depending on kinetic energy of the combined flow in branch-0. Q is
volumetric flow rate (= AV ). λ3 is defined in the graph given by figure (5.1) and α′, β′
are calculated as similar to equation (5.4).
It was also stated by Vazsonyi that there is no variation of the loss coefficient with
Reynolds number (RD > 1000).
The other empirical formula obtained by Gardel (1957) are given by
K31 = −0.92(1− q)2 − q2
(
1.2− r 12
)(cos θ
a
− 1
)
+ 0.8q2
(
1− 1
a2
)
−0.8q2
(
1
a
− 1
)
cos θ + (2− a)(1− q)q
(5.10)
K23 = 0.03(1−q)2−q2
[
1 +
(
1.62− r 12
)(cos θ
a
− 1
)
− 0.38(1− a)
]
+(2−a)(1−q)q
(5.11)
Where, a = A1/A3
5.3 Combined Formula
For certain flow conditions we can assume the T-junction to be made up of other pipe
components like elbows, sudden contraction or sudden expansion. To calculate pressure
loss of such combination we consider pressure loss caused by the components individually
and then add them. The following figures and formulas can explain this very easily. This
idea was used by Vladimir Curic in his work [3]. The full details of the derivation of these
formulas are available in his work. The formulas in this section were taken from his work.
T-junction as combination of an elbow and a contraction
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For a combining flow situation as described in figure (5.3), T-junction can be considered
as combination of an elbow and a contraction. For computing the pressure loss for such
combination, we can compute pressure loss for the components separately and then add
them. For doing so, we have to find the point where the elbow and contraction are joined.
For this purpose, we need to solve equation (5.16) for x. The loss coefficient for elbow is
Figure 5.4: T-junction as combination of an elbow and a contraction
K23 = 0.61
(
V2
V3
)2
+ 1− 2
(
V2
V3
)(
Q2
Q3
)
cosα′ (5.12)
Where V2 = Q2/A2 and V3 = Q3/(A− x).
And, loss coefficient for sudden contraction is
K13 = 1− x
A
(5.13)
These values can be substituted in the following formulas to determine the pressure loss.
p1 − p´1 = 1
2
ρK13
(
Q1
x
)2
(5.14)
and
p2 − p´2 = 1
2
ρK23
(
Q2
A− x
)2
(5.15)
The unknown x can be determine by solving the equation
p1−p2 = 1
2
ρ
{(
A− x
A
)(
Q1
x
)2
−
((
0.61
A22
)
+
(
1
(A− x)2
))
Q2 + 2 cosα
′
(
Q22
A2(A− x)
)}
(5.16)
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T-junction as combination of two elbows
For a combining flow situation as described in figure (5.5), T-junction can be considered
as combination of two elbows. For computing the pressure loss for such combination, we
can compute pressure loss for the elbows separately and then add them. For doing so, we
have to find the point where the two elbow are joined. For this purpose, we need to solve
equation (5.21) for x.
Figure 5.5: T-junction as combination of two elbows
For elbow-1, the loss coefficient is
K13 = 0.61
(
Am − x
A
)2
+ 1− 2
(
Am − x
A
)
cosα′ (5.17)
For elbow-2, the loss coefficient is
K23 = 0.61
( x
A
)2
+ 1− 2
( x
A
)
cos β′ (5.18)
These values can be substituted in the following formulas to determine the pressure loss.
p1 − p´1 = 1
2
ρK13
(
Q1
Am − x
)2
(5.19)
and
p2 − p´2 = 1
2
ρK23
(
Q2
x
)2
(5.20)
The unknown x can be determine by solving the equation
p1−p2 = 1
2
ρ
{
0.61
(
Q21 −Q22
A2
)
+
Q1
Am − x
2
− Q2
x
2
− 2 Q
2
1
A(Am − x) cosα
′ − 2 Q
2
2
A.x
cos β′
}
(5.21)
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6 Computational Experiments
In this section we shall discuss observations and results obtained by experiments made
with softwares FLUENT and Comsol Multiphysics. We shall also compare the results
obtained by softwares with the results obtained from various classical head loss formulas
mentioned in last chapter. The section includes results obtained by experiments with
Figure 6.1: Cross-section plot for example case of flow in T-junction
T-junction with various diameters and inflow velocities, numerical results obtained by
slightly changing the angle of the junction from 900 and also, we shall also explain how
the T-junction can be split in to two pipe components (e.g. two elbows) and compare
the head loss obtained by classical formula of the head loss of T-junction and formula
obtained by splitting T-junction in to two pipe components.
Figure 6.2 shows and example of comparison of head-loss by classical formula and head
loss observed by software of an example cases of flow in T-junction. The curve with data
points presented by star is the curve for head loss observed by software and the curve with
data points presented by square is the curve for head-loss obtained by classical formula.
We can clearly observe that the curves agree good for first 3 sets of velocities but then on
the curves do not agree.
The graphs in the following section can be similarly interpreted.
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Figure 6.2: Comparison of head-loss by classical formula and head loss by software of an
example cases of flow in T-junction
6.1 Head loss comparison for combining flow
Case-1 This is the case where the flow in coming toward the junction from two branches
in main pipe and leaving from the junction from the perpendicular branch (See figure 6.3).
Figure 6.3: Combining flow: Case-1
From figure 6.4, it can be observed that the head loss by software and classical formulas
(using the formula by Andrew Vazsonyi) do not agree in this case. There is about 3.2 %
error between results by software and classical formula.
Case-2 This is the case where the flow in coming toward the junction from one branch
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Figure 6.4: Head loss for Combining flow: Case-1, Radius of branches is 0.5 cms, Inlet
velocities vary from 1 cm/sec to 3 cm/sec (25 different cases plotted), Outlet pressure is
100 Pascals and classical pressure loss formula by Andrew Vazsonyi
in main pipe and the branch perpendicular to it and leaving from the junction from the
remaining branch in the main pipe (See figure 6.5) [The other situation is exactly the
mirror image].
Figure 6.5: Combining flow: Cases-2
From figure 6.6, we can observe that the head loss by software and classical formulas
also do not agree in this case. There is about 5.0 % error between results by software and
classical formula.
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Figure 6.6: Head loss for Combining flow: Case-2, Radius of branches is 0.5 cms, Inlet
velocities vary from 1 cm/sec to 3 cm/sec (25 different cases plotted), Outlet pressure is
100 Pascals and Classical pressure loss formula by A. Gardel
6.2 Head loss comparison for dividing flow
Case-1 This is the case where the flow in coming toward the junction from the perpen-
dicular branch and leaving from the junction from two branches in main pipe (See figure
6.7).
Figure 6.7: Dividing flow: Case-1
Case-2 This is the case where the flow in coming toward the junction from one branch
39
1 1.5 2 2.5 30
0.5
1
1.5
2
2.5
3
3.5
4
4.5
Pr
es
su
re
 in
 P
as
ca
ls
Velocity in inlet−1 cm/sec
         Graph of Head−loss from software(SW) VS Head−loss from 
        classical formula(CF) for T−junction with diverging flow
 
 
v1=3,SW
v1=3,CF
v1=2,SW
v1=2,CF
v1=1,SW
v1=1,CF
Figure 6.8: Head loss for dividing flow: Case-1, Radius of branches is 0.5 cms, Inlet
velocity vary from 1 cm/sec to 3 cm/sec, at both outlet pressure is 100 Pascals and
Classical pressure loss formula by A. Gardel
in main pipe and perpendicular branch and leaving from the junction from the remaining
branch in the main pipe (See figure 6.9) [The other situation is exactly the mirror image]
Figure 6.9: Dividing flow: Case-2
From figure 6.8 and 6.8, we can observe that the head loss by software and classical
formulas also do not agree in this case. Though the curves, seem to get along with the in-
crease in inlet velocities, but they do not exactly match for any combination of velocities.
There is about 4.5 to 6.1 % error between results by software and classical formula.
6.3 Head loss change with change in angle of T-junction branches
In this part we shall display comparison of head loss obtained by software and classical
formulas for different angles of T-junction. The figure 6.11 cases for inflow, outflow and
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Figure 6.10: Head loss for dividing flow: Case-2, Radius of branches is 0.5 cms, Inlet
velocity vary from 1 cm/sec to 3 cm/sec, at both outlet pressure is 100 Pascals and
Classical pressure loss formula by A. Gardel
angle. For all the comparisons we have use formulas by Andrew Vazsonyi for combining
flow case-1 and formulas by A. Gardel for case-2.
Figure 6.11: T-junction with different angles between main pipe and branch pipe
In cases shown in figure-6.12 to figure-6.17, we have calculated and compared head loss
suffered by T-junction with angle γ = 91, γ = 91, γ = 93, γ = 89, γ = 88 and γ = 87.
These calculations were for combining flow case-1, where flow is coming toward the
junction from opposite pipes and leaving from the junction through perpendicular pipe
(see figure 6.3). It was observed that the head loss increases with increase in angle. Also,
for all the cases; the head loss obtained by software and classical formula were close to
each other.
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Figure 6.12: Head loss for T-junction with angle γ = 91, combining flow: Case-1, Radius
of branches is 0.5 cms, Inlet velocities vary from 1 cm/sec to 3 cm/sec (25 different cases
plotted), Outlet pressure is 100 Pascals and Classical pressure loss formula by Andrew
Vazsonyi
The figure 6.18 shows head loss for different angles of T-junction. These calculations
were for combining flow case-2, where flow is coming toward the junction from perpen-
dicular pipes and leaving from the junction through remaining main pipe (see figure 6.5).
It was observed that when the angle gamma (γ) is less, head loss suffered is less. This
is because there is no significant change in of momentum of the flow between incoming
and out going flow. It was also observed that when the angle gamma (γ) is more, head
loss suffered is more. This is because of change in momentum of the flow while passing
through T-junction.
From the cases γ = 87 (fig-6.15), γ = 88 (fig-6.16), γ = 89 (fig-6.17), γ = 91 (fig-6.12),
γ = 92 (fig-6.13) and γ = 93 (fig-6.14), we can observe that the head loss by software
and classical formulas also do not agree in any case. Though for some cases and certain
inlet velocity combinations, the curves seem to get along with each other but this is not
sufficient to conclude that the head losses obtained by both the sources agree. There is
about 4.6 to 6.7 % error between results by software and classical formula.
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Figure 6.13: Head loss for T-junction with angle γ = 92, combining flow: Case-1, Radius
of branches is 0.5 cms, Inlet velocities vary from 1 cm/sec to 3 cm/sec (25 different cases
plotted), Outlet pressure is 100 Pascals and Classical pressure loss formula by Andrew
Vazsonyi
6.4 Head loss for T-junction with different radius of branches
Case-1: This is the case where the cross-section area of main pipe is one half of that
of perpendicular branch pipe. The flow is coming toward the junction from the opposite
branches in main pipe and leaving from the perpendicular branch (See figure 6.19).
Case-2: This is the case where the cross-section area of main pipe is one third of perpen-
dicular branch pipe. The flow is coming toward the junction from the opposite branches
in main pipe and leaving from the perpendicular branch (See figure 6.21).
Case-3: This is the case where the cross-section area of main pipe is one fourth of perpen-
dicular branch pipe. The flow is coming toward the junction from the opposite branches
in main pipe and leaving from the perpendicular branch similar to above two cases.
The figure 6.24 shows head loss for different cross-section areas of branches of T-junction
(A1 =area of main pipe, A2 =area of branch pipe). These calculations were for com-
bining flow case-1, where flow is coming toward the junction from opposite branches in
main pipe and leaving the junction from perpendicular branch pipes (see figure 6.5).
From figure 6.20, figure 6.22 and figure 6.23 we can observe that the head loss by software
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Figure 6.14: Head loss for T-junction with angle γ = 93, combining flow: Case-1, Radius
of branches is 0.5 cms, Inlet velocities vary from 1 cm/sec to 3 cm/sec (25 different cases
plotted), Outlet pressure is 100 Pascals and Classical pressure loss formula by Andrew
Vazsonyi
and classical formulas also do not agree. There is about 4.4 to 6.8 % error between results
by software and classical formula.
It was observed that head loss is reducing when the cross-section area of the main pipe
is reducing (for all the cases cross-section area of the perpendicular branch pipe was kept
same 1 cm.). This observations also verifies claims by A. Gardel, that the head loss
increases with increase in ratio of the cross section area (A2/A1 where, A1 =area of
main pipe, A2 =area of branch pipe). These observations are for the case when the flow
is combining case-1, where the flow is coming in from opposite branches in main pipe
and leaving from perpendicular branch pipe. The observation is exactly reverse when we
consider combining flow case-2, where the flow is coming in from one branch in main
pipe and perpendicular branch pipe and leaving from remaining branch in main pipe. The
head loss suffered will increase with increase in ratio of the cross section area (A2/A1).
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                       Graph of Head−loss from software(SW) VS Head−loss from 
                      classical formula(CF) for T−junction with 87 degree angle
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Figure 6.15: Head loss for T-junction with angle γ = 87, combining flow: Case-1, Radius
of branches is 0.5 cms, Inlet velocities vary from 1 cm/sec to 3 cm/sec (25 different cases
plotted), Outlet pressure is 100 Pascals and Classical pressure loss formula by Andrew
Vazsonyi
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          Graph of Head−loss from software(SW) VS Head−loss from 
          classical formula(CF) for T−junction with 88 degree angle
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Figure 6.16: Head loss for T-junction with angle γ = 88, combining flow: Case-1, Radius
of branches is 0.5 cms, Inlet velocities vary from 1 cm/sec to 3 cm/sec (25 different cases
plotted), Outlet pressure is 100 Pascals and Classical pressure loss formula by Andrew
Vazsonyi
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                       Graph of Head−loss from software(SW) VS Head−loss from 
                       classical formula(CF) for T−junction with 89 degree angle
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Figure 6.17: Head loss for T-junction with angle γ = 89, combining flow: Case-1, Radius
of branches is 0.5 cms, Inlet velocities vary from 1 cm/sec to 3 cm/sec (25 different cases
plotted), Outlet pressure is 100 Pascals and Classical pressure loss formula by Andrew
Vazsonyi
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Figure 6.18: Head loss for different angle of T-junction, combining flow: Case-2, Radius
of branches is 0.5 cms, Inlet velocities vary from 1 cm/sec to 3 cm/sec, Outlet pressure
is 100 Pascals and Classical pressure loss formula by A. Gardel
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Figure 6.19: Dividing flow: Case-1
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Figure 6.20: Head loss for area case-1, combining flow case-1, Radius of main pipe is
branches is 0.25 cms, Radius of perpendicular pipe is branches is 1 cms, Inlet velocity in
both inlets vary from 1 cm/sec to 3 cm/sec, pressure at outlet is 100 Pascals and Classical
pressure loss formula by Andrew Vazsonyi
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Figure 6.21: Dividing flow: Case-1
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Figure 6.22: Head loss for area case-2, combining flow case-1, Radius of main pipe is
branches is 0.3 cms, Radius of perpendicular pipe is branches is 1 cms, Inlet velocity in
both inlets vary from 1 cm/sec to 3 cm/sec, pressure at outlet is 100 Pascals and Classical
pressure loss formula by Andrew Vazsonyi
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                            Graph of Head−loss from software(SW) VS Head−loss from 
                        classical formula(CF) for T−junction with A2=A1/2
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Figure 6.23: Head loss for area case-1, combining flow case-1, Radius of main pipe is
branches is 0.25 cms, Radius of perpendicular pipe is branches is 1 cms, Inlet velocity in
both inlets vary from 1 cm/sec to 3 cm/sec, pressure at outlet is 100 Pascals and Classical
pressure loss formula by Andrew Vazsonyi
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Figure 6.24: Head-loss for different cross-section areas of branches of T-junction,
A1 =area of main pipe, A2 =area of branch pipe, combining flow: Case-1, Radius of
branches is 0.5 cms, Inlet velocities vary from 1 cm/sec to 3 cm/sec, Outlet pressure is
100 Pascals and Classical pressure loss formula by A. Gardel
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7 Discussion and future scope of the work
7.1 Discussion
From results in the previous section, we can observe that there is difference between head
loss in T-junction of pipes observed by calculations from software packages Fluent and
Comsol. Our main aim was to study the difference between the observations from CFD
softwares and classical formula by Andrew Vazsonyi, A. Gardel and formulas available
in reference [3].
In case of combining flow, the difference between observations obtained by Comsol (3D
experiments) and classical formula were in the range of 3.2 to 5.1 %. Incase of dividing
flow, this difference was in the range of 4.5 to 5.5 %. In the case, where we varied the
angle of the T-junction from 87 degrees to 93 degrees, difference between observations
by Comsol (3D experiments) and classical formula was in the range of 4.6 to 6.7 %.
One of the reasons for these errors is likely the limited capabilities of software. These
differences are as a result of software’s inability to handle complicated flow conditions.
Comsol Multiphysics (version 3.2a) can not handle flow situations with turbulence. Also,
this version of Comsol Multiphysics does not have ability to model rough inner surface
of pipes.
For all our experiments the fluid was considered water with normal properties at room
temperature. Also the classical formulas are valid only for fluid that is incompressible
and inviscid. The formulas reference [3], with the idea of considering the T-junction as
combination of two pipe components, is only valid for 2D case.
Our main aim was to study the difference between the observations from CFD software
and classical formula by Andrew Vazsonyi, A. Gardel and formulas available in refer-
ence [3]. The values obtained by CFD software were in certain agreement with classical
formulas both by Andrew Vazsonyi and A. Gardel but values obtained by CFD software
were better agreement with A. Gardel. It can be clearly observed that for combining flow
situations where we used Gardel’s formula, the difference was in range of 3.2 to 5.0 %
and for dividing flow cases where we used Vazsonyi formulas, the difference was in range
of 4.5 to 6.0 %.
Gardel’s formulas were as result of a systematic derivation from basic principles of mo-
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mentum (applied to the main pipe), continuity principle to the fluid in whole T-junction
and energy balance principle (individually) to flow coming from the branches. Unfor-
tunately, none of the classical formulas consider pipe roughness as factor for the head
loss. Roughness of the pipe varies from as material and it is also considered as one of
the major cause for major losses. This is where the accuracy of coefficients obtained
by classical formula can be questioned. Though, the loss due to friction between fluid
and junction inner surface is very less, but theses small values can be very significant for
precise calculations.
During this work, we also observe that the difference between observations by 2D sim-
ulations of software and classical formula were considerably larger than the difference
between observations by 3D simulation of software and classical formula. We also rec-
ommend 3D simulation for such calculations, since 3D simulation are more near to the
reality and also effect of turbulence can be modeled and observed in 3D simulations. Also,
3D simulation give more clear view of swirl movements, streamlines and turbulence in
the fluid.
During the work we realized that Fluent is a better option for heavy and precise simu-
lations. Since, Fluent has capability to model turbulence with verity of Kappa-Epsilon
models and also because Gambit is a very handy tool to create even complicated geome-
tries. But, Fluent can be sometimes very expensive in terms of computational time. The
only advantage with Comsol Multiphysics is that we can create geometry and carry out
calculations in the same environment and the grid does not have to be exported every time
the experiments are repeated.
From our experience during this work, we would suggest to use Fluent for similar simu-
lations. There are also some higher versions of Comsol available that have capability to
handle complex flow situations. Gardel’s formulas were as result of a systematic deriva-
tion from basic principles of momentum (applied to the main pipe12), continuity principle
to the fluid in whole T-junction and energy balance principle (individually) to flow coming
from the branches.
12For this purpose he considered main pipe as a control volume and applied momentum balance principle.
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7.2 Future scope of the work
In this work was restricted to only water at room temperature and t-junctions with smooth
inner surface. There can be more work done to generalize these results for the other fluids
and T-junction with rough inner surfaces.
Also, with software our ambition was to construct a real time simulation of T-junction
with varying angle. Though this is a very lengthy process, since fluent takes too much
time with dynamic mesh, but this is possible with higher versions of fluent and other CFD
packages.
Unfortunately, none of the classical formulas consider pipe roughness as factor for the
head loss. Roughness of the pipe varies from as material and it is also considered as one
of the major cause for major losses. This is where the accuracy of coefficients obtained
by classical formula can be questioned. Though the loss due to friction between fluid
and junction inner surface is very less but theses small values can be very significant for
precise calculations.
During this study, we also came across an industrial problem concerning to flow of pulp
like fluid in pipes. The problem was placing a valve of certain capacity for regulating
supply of pulp like material based on the pressure and velocity profiles in the supply
network. Initially, pipe with elastic property was used to supply the material and a large
forceps was used to reduce the diameter of pipe where the supply was not needed or to be
regulated. Such kind of problems can be solved with similar techniques.
In this work all, we made an attempt to study effect of different radius of main pipe and
branch pipe. The range of flow parameters (flow velocity, pipe diameter and pressure)
used in our computational experiments was relatively small. It is also possible that the
difference of head loss observed and inaccuracy of the formula is even larger in broader
range of parameters. Thus we suggest that there should be more 3D computational exper-
iments done using more advanced CFD software packages.
This can play important role in verifying other claims made on basis of classical formulas.
E.g. Andrew Gardel’s observation that head-loss increases with increase in ratio of areas
of main pipe and branch pipe.
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8 APPENDIX A. ELEMENTS BASIS FUNCTIONS AND LOCAL BASIS
FUNCTIONS APPENDIX A
8 Appendix A. Elements Basis functions and Local Basis
Functions
Suppose that for a given finite element mesh there is associated with each node Ni =
(xi, yi) a function ,defined on Ω¯ with following properties.
1. The restriction of φi to any element el mesh is associated with each a polynomial
form
φi(x, y) =
T∑
s=1
Cil(s)x
psyqs
; (x, y) ∈ elwhere powers ps and qs, s = 1, 2, ..., T are independent of i and j.
2. φi(Nj) = δij for i, j = 1, 2, ...M
3. φi is uniquely determined on every element edge by its value at the nodes belonging
to that edge.
4. φi ∈ C(Ω¯)
5. φi assumes non-zero values only in those elements to which Ni belongs.
6. If Niis not on Γ,then Φi vanishes on the boundary of its support. If Ni in on Γ, then
φi vanishes on part of boundary of its support that lies in Ω.
7. It is possible to chose a standard (or reference) element e˜ in the x˜ − y˜ plane with
local basis functions φ˜1(x˜, y˜), ..., φ˜T (x˜, y˜) of type φi(x, y) =
∑T
s=1C
il
(s)x
psyqs and
find for every element el invertible affine variable transformation.
x = x(x˜, y˜) = f11x˜+ f12y˜ + b1
y = y(x˜, y˜) = f21x˜+ f22y˜ + b2
(x˜, y˜) ∈ e˜ depends on l, such that this maps e˜ onto e1 (mapping nodes onto nodes)
and
φ˜r(x˜, y˜) = φ
l
r(x(x˜, y˜), y(x˜, y˜))
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denoting the inverse transformation by
x˜ = x˜(x, y)
and y˜ = y˜(x, y) thus (x, y) ∈ elWe can rewrite φ˜r(x˜, y˜) as
Φrl (x, y) =
˜Φrl (x, y)(x˜(x, y), y˜(x, y))
Local basis function over el, defined by
Φr(l)(x, y) = Φ
r
ir(l)(x, y)
, (x, y) ∈ el, r = 1, 2, ...TA local basis function is simply the restriction of some global
basis function to el.
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9 APPENDIX B. LAX MILGRAM LEMMA APPENDIX B
9 Appendix B. Lax Milgram Lemma
Consider a functional
f(u) =
∫ a
b
{
1
2
p(x)(u′)2 +
1
2
q(x)(u)2 − g(x)u
}
dx
, u ∈ V
V =
{
v ∈ C2[a, b]; v(a) = v(b) = 0}
Where, p ∈ C1[a, b], q, p ∈ C[a, b], 0 < p0 ≤ p(x) ≤ p1 and 0 < q0 ≤ q(x) ≤ q1 for
a ≤ b with p0,p1,q1 as constants.
a(u, v) =
∫ a
b
{p(x)u′v′ + q(x)uv} dx
, u, v ∈ V
G(u) =
∫ a
b
g(x)udx
, u ∈ V We can express f as, f(u) = 1
2
a(u, u) − G(u), u ∈ V . Let, V be any arbitrary
Hilbert Space with inner product (., .)v and norm ‖u‖v = (u, u)v1
2
; u ∈ V . Let a :
V × V → ℜ be a mapping with following four properties.
1. a(αu+ βv, w) = α.a(u,w) + β.a(v, w), u, v, w ∈ V , αβ ∈ ℜ
2. a(w,αu+ βv) = α.a(w, u) + β.a(w, v), u, v, w ∈ V , αβ ∈ ℜ
3. ∃ constant β ∋ |a(u, v)| ≤ β ‖u‖V ‖v‖V , u, v, w ∈ V i.e a is bounded.
4. ∃ constant ρ > 0 ∋ a(u, v) ≥ ρ ‖u‖2v, u ∈ V i.e a is coercive. Let G : V → ℜ be a
mapping with following properties :
5. G(αu+ βv) = αG(u) + βG(v) ; u, v, w ∈ V , αβ ∈ ℜ i.e G is linear.
6. ∃ constant δ > 0 ∋ |G(u)| ≤ ρ ‖u‖v, u ∈ V i.e G is bounded.
Under these assumptions for ′a′ and ′a′, there exist a unique element uˆ ∈ V such that
a(uˆ, u) = G(u),∀u ∈ V .
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10 APPENDIX C. FIELD AND DERIVATIVE RULES APPENDIX C
10 Appendix C. Field and derivative rules
For any arbitrary fields v and w,
• v + w = v + w
• av = av, where a is constant.
• a = a, where a is constant.
• ∂v
∂s
= ∂v
∂s
, where s = xi or s = t
• vw = vw
Some consequences of these averaging rules are as following
• uiuj = uiuj + u′iu′j
• uiujuk = u′iu′ju′k + u′iu′juk + u′ju′kui+ u′ku′iuj + uiujuk
• ∂ui
∂t
ui − ∂ui∂t ui =
∂u
′
j
∂t
u
′
i
Some rules for derivative
1. ∂ui
∂t
ui =
∂ui
∂t
ui +
∂u
′
i
∂t
u
′
i
2. ∂p
∂xi
ui =
∂p
∂xi
ui +
∂∆p
′
∂ui
u
′
i
3. ∂τij
∂xi
ui =
∂τij
∂xi
ui +
∂u
′
i
∂ui
τ
′
ij
4. uj ∂ui∂xj ui − uj
∂ui
∂xj
ui = u
′
i
∂u
′
i
∂xj
ui +
∂u
′
i
∂xj
u
′
iu
′
j + u
′
i
∂u
′
i
∂xj
ui + u
′
iu
′
i
∂u
′
i
∂xj
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11 APPENDIX D. CREATING GEOMETRY IN GAMBIT APPENDIX D
11 Appendix D. Creating geometry in Gambit
We can create t-junction geometry by two ways, one is creating two rectangles perpendic-
ular to each other and then merging them second is creating vertex points and connecting
them by edges. We will do this by second way.
• First we shall create the points that will be used to create the lines and then faces
of the domain. Operation > Geometry > Vertex > Create Vertex A(0,0), B(0,5),
C(5,1), D(0,1), E(2,1), F(3,1), G(2,3), H(3,3).
Figure 11.1: Buttons for drawing geometry
• Now draw the straight lines that will complete the domain. Connect the points to
create the following line segments: AB, BC, CD, DE, EF, FG, GH, HA.
• Operation > Geometry > Face > Form Face. Select all the line segments in the
drop list and create the face.
• Operation > Mesh > Mesh Face. Select the face and specify the spacing or ratio.
• Operation > Zones > Specify Boundary Types. Create boundary conditions as
follows: Left face = Velocity Inlet1, Right face = Velocity Inlet2, Upper face =
Pressure Outlet and all the other faces are walls.
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• Save the Gambit file and export to the Fluent mesh.
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12 APPENDIX D. SOLVING PROBLEM WITH FLUENT APPENDIX D
12 Appendix D. Solving problem with fluent
• Load the mesh into Fluent. File > Read > Case.
• Check the mesh for errors. Grid > Check
• For this problem, the default Solver settings will be sufficient. Ensure that the
proper viscous model is selected. Define > Models > Viscous.
• Now recall liquid water from the materials database so that it can be specified in
the boundary conditions. Define > Materials. Enter the database by clicking on
Database. Select water liquid (h2o<l>) in the Fluid Materials list. Click Copy and
then Close. Now move the reference pressure into the flow domain.
• Define > Operating Conditions.
• Boundary conditions can now be set. Define > Boundary Conditions. Select fluid
in the selection menu on the left and then click on Set. Change Material Name to
water-liquid. Now click on inlet in the Zones menu and enter the velocity-inlet win-
dow. Change Velocity Specification Method to Components and enter a velocity of
2.01e-4 m/s (liquid water at Re = 20) next to X-Velocity. Change the discretization
method to a higher order scheme.
• Solve > Controls > Solution. Change the Discretization for Momentum to 2nd
Order Upwind.
• The flow domain can now be initialized. Solve > Initialize > Initialize. Initialize
the flow with the inlet conditions.
• Enable the plotting option for residuals and turn off automatic convergence check-
ing. Solve > Monitors > Residual.
• The problem is ready to be iterated. Solve > Iterate. Start with 200 iterations.
• Once Fluent has stopped iterating, we can post-process the data of our interest.
• We can use Display > Contours. and view contour of velocity, pressure etc.
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