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ABSTRACT
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Flexible Multibody Simulation Approach in the Dynamic Analysis of Bone Strains
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The objective of this study is to show that bone strains due to dynamic mechanical

loading during physical activity can be analysed using the flexible multibody simulation

approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on

previous studies, it has been shown that dynamic loading seems to be more important for

bone (re)modeling than static loading. The finite element method has been used

previously to assess bone strains. However, the finite element method may be limited to

static analysis of bone strains due to the expensive computation required for dynamic

analysis, especially for a biomechanical system consisting of several bodies. Further, in

vivo implementation of strain gauges on the surfaces of bone has been used previously in

order to quantify the mechanical loading environment of the skeleton. However, in vivo

strain measurement requires invasive methodology, which is challenging and limited to

certain regions of superficial bones only, such as the anterior surface of the tibia.

In this study, an alternative numerical approach to analyzing in vivo strains, based on the

flexible multibody simulation approach, is proposed. In order to investigate the reliability

of the proposed approach, three 3-dimensional musculoskeletal models where the right

tibia is assumed to be flexible, are used as demonstration examples. The models are

employed in a forward dynamics simulation in order to predict the tibial strains during

walking on a level exercise. The flexible tibial model is developed using the actual
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geometry of the subject’s tibia, which is obtained from 3-dimensional reconstruction of

Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data

obtained from walking at a constant velocity is used to calculate the desired contraction

trajectory for each muscle. In the forward dynamics simulation, a proportional derivative

servo controller is used to calculate each muscle force required to reproduce the motion,

based on the desired muscle contraction trajectory obtained from the inverse dynamics

simulation. Experimental measurements are used to verify the models and check the

accuracy of the models in replicating the realistic mechanical loading environment

measured from the walking test. The predicted strain results by the models show

consistency with literature-based in vivo strain measurements. In conclusion,

the non-invasive flexible multibody simulation approach may be used as a surrogate for

experimental bone strain measurement, and thus be of use in detailed strain estimation of

bones in different applications. Consequently, the information obtained from the present

approach might be useful in clinical applications, including optimizing implant design

and devising exercises to prevent bone fragility, accelerate fracture healing and reduce

osteoporotic bone loss.
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1. INTRODUCTION

Models and computer simulations of the human musculoskeletal system have served

many purposes in biomechanical research. Numerous models have been used to predict

or estimate characteristics of human mechanisms in body movement and simulate

surgical treatments. The power of modeling is increasingly recognized in the field of

biomechanics with the birth of specialized software in human modeling, providing a

realistic and economical set of tools to improve and maintain the skills of healthcare

providers and adding a valuable dimension to medical education, training and research.

Due to the complexity involved in developing human biomechanical models, their

fidelity and consistency with the real physical process they intend to mimic can be

considered one of the main challenges [1]. Therefore, using experimental data combined

with a human biomechanical model is considered a powerful scientific tool. Experimental

data can be used as the source of model input parameters and as an evaluation of the

validity of the model. Biomechanical models can replace some of the experimental

measurements and provide a reasonable access to parameters, such as the internal forces

in the skeleton and muscular  actions,  which may be difficult  to  conduct  any other  way

[2]. Moreover, biomechanical models can be used to provide more quantitative

explanations and analysis of how the neuromuscular and musculoskeletal systems interact

to produce movement [3]. Therefore, mathematical and computational tools in general,

and multibody dynamics in particular have been utilized extensively to build

biomechanical models. Generally, biomechanical models can be divided into two types;

finite element biomechanical models and multibody biomechanical models.

A biomechanical finite element model is developed from the geometrical description and

mechanical properties of the anatomical component in order to analyze stress and strain

in different anatomical structures, such as bones and tendons. Usually, a finite element

biomechanical model requires a detailed geometrical description and mechanical

properties of the anatomical component. Therefore, computer techniques such as Magnet

Resonance Images (MRI) and Computed Tomography (CT) are commonly used in

obtaining the actual geometry of the anatomical components. When a geometrical

15
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biomechanical model has been developed based on MRI or CT scans, it can be meshed in

order to obtain a finite element model. The finite element biomechanical model can be

used to determine interface stresses, deformations, forces, pressures and alignments in

biomechanical systems, consisting of structural components like bones, muscles, joints

and ligaments. Finite element analysis of biomechanical models can be used in a wide

range of medical applications, including the orthopedic domain, bone (re)modeling

analysis, studying the fracture process of anatomical structures, and assisting in the

design of implants. As an example, Figure 1.1 shows a finite element model of a human

femur obtained from successive CT scans, which is used to study the strain distribution

during gait in different mechanical loading environments [4].

Figure 1.1 Finite element model based on CT scans of a human femur, with thigh
muscles represented by arrows [4].
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Cheung et al. [5] have developed a 3-dimensional finite element model of the foot and

ankle based on MRI to investigate the internal stresses/strains within bones and soft

tissues of the ankle and foot under various loadings. Van Rietbergen et al. [6] have

developed microfinite element models of healthy and osteoporotic human femurs based

on micro CT scans to quantify the strain distribution in femoral heads. The obtained

strain distributions are used to establish a safety factor for the femoral trabecular bone. A

3-dimensional finite element model of a human proximal femur based on CT scans is

used in the study of Lotz et al. [7] to predict the ultimate failure load based on

stress/strain distributions in fall and one legged stance simulations. Karsa and Grynpas

[8] have developed a 3-dimensional finite element model of the vertebral trabecular bone

in order to study its static and dynamic responses under compressive loading. To study

trabecular bone damage accumulation during cyclic compressive loading, a

2-dimensional finite element model of an idealized trabecular bone specimen has been

developed in the study of Guo et al. [9]. A 3-dimensional finite element model of an

artificial hip implant is used to study the failure of the implant based on stress/strain

distribution [10, 11].

It can be concluded from the aforementioned studies that bone strains have been analyzed

for various purposes using the finite element method. However, due to the complex

geometry of a bone, a finite element model used in stress analysis requires fine element

meshes,  which  in  turn  leads  to  a  large  number  of  nodal  degrees  of  freedom.  For  this

reason, numerical solutions of models are computationally expensive, limiting the finite

element analyses to a piece of bone or a single bone. It is also noteworthy that, due to

expensive computation, finite element models are usually applied in a static or short

term-dynamic solution. Accordingly, the finite element method is considered

computationally impractical to be used in the dynamic analysis of human musculoskeletal

models, where number of bones and muscles as well as their interaction need to be taken

into consideration.

The multibody dynamic approach is a mathematical tool that can be used to model

different mechanical and structural systems. For instance, systems included in the
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definition of multibody systems comprise robots, manipulators, vehicles, and the human

skeleton. The multibody dynamics system has been the focus of intensive research for the

past years due to its wide practical applications, including the analysis, design, and

control of ground, air, and space transportation vehicles (such as bicycles, automobiles,

trains, airplanes, and spacecraft), manipulators and robots, articulated earthbound

structures (such as cranes and draw bridges), articulated space structures (such as

satellites and space stations) and bio-dynamical systems (such as human body, animals,

and insects). Figure 1.2 illustrates a general multibody system shown in an abstract form.

Figure 1.2 Sketch of a general multibody system.
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It  can  be  seen  in  Figure  1.2  that  a  multibody  system  consists  of  a  number  of

interconnected bodies, which can be rigid, flexible or both. These bodies are connected

together by means of kinematic joints described mathematically by constraint equations.

The forces applied over the multibody system bodies may be a result of springs, dampers,

actuators or any other externally applied forces, such as gravity. The multibody

biomechanical human models are typically more complicated than technical multibody

systems, as they involve a larger variety of joint types, body forms and complex actuators

in the form of muscles and neighbouring soft tissue [12]. Therefore, many commercial

software such as SIMM [13] have been developed based on multibody dynamics theories

in order to enhance the development of biomechanical modeling. For example, Figure 1.3

shows a graphic representation of a full body human musculoskeletal model, which has

been developed based on a multibody dynamics commercial software [14] and is used to

simulate riding a bicycle.

Figure 1.3 Graphic representation of a full body human musculoskeletal model used
in the simulation of riding a bicycle.
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Biomechanical models based on multibody dynamics have been used widely in the

analysis of human physical activities, such as jumping, kicking, running, walking and

many other exercises in sports science, medicine and orthopedics [15]. Anderson and

Pandy [16] have developed a 3-dimensional human model consisting of 10 rigid bodies

actuated by 54 muscles, to simulate maximal vertical jump. A 3-dimensional human

skeletal model consisting of 16 rigid bodies with 35 degrees of freedom has been

developed by Nagano et al. [17] to simulate a motion similar to the flight phase of a

horizontal jump. In the work of Sasaki and Neptune [18], the forward dynamics of

2-dimensional musculoskeletal human model consisting of seven rigid bodies and

15 Hill-type musculotendon actuators at each leg is used to identify differences in muscle

function between walking and running at the preferred transition speed. In the study of

Bei and Fregly [19], a musculoskeletal multibody knee model consisting of two rigid

bones and one deformable contact surface has been created to predict muscle forces and

contact pressures in the knee joint simultaneously during gait. Multibody biomechanical

models have been applied to passive human motion analysis in order to study different

injury scenarios, such as these observed in impact or fall down situations. For example,

Silva at al. [20] have studied the injury scenarios for a human head with impact

simulation of different vehicle crash situations and the offside tackle of an athlete, using a

3-dimensional biomechanical model consisting of 12 rigid bodies coupled by

11 kinematic joints with passive torque applied at each joint. The biomechanical model

described in the previous study of Silva et al. [20] is used in the work of Ambrósio and

Silva [21] to investigate the whiplash injury scenario for three occupants in a roll over of

an all-terrain vehicle simulation.

Multibody biomechanical models have been used widely in the analysis of the

biomechanical consequences of surgical reconstructions, such as joint replacements and

tendon transfer. Delp [22] has developed a 3-dimensional musculoskeletal lower

extremity model consisting of seven rigid bodies and 43 muscles, to study the

biomechanical consequences of surgical reconstructions of the lower extremity. In order

to predict the motions of knee implants during a step-up activity, a 3-dimensional
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musculoskeletal model consisting of six rigid bodies with 21 degrees of freedom and

13 musculotendon actuators has been developed in the study of Piazza and Delp [23].

In all of the aforementioned studies, the bones are assumed to be rigid bodies, a fact that

makes these models impractical for bone strain analysis. In this study, a flexible

multibody simulation approach which couples the finite element method with multibody

dynamics is used to predict the dynamic bone strains during physical activity. The

proposed approach overcomes the expensive computation of the dynamic analysis of the

biomechanical model using the finite element method. This is an important issue as

dynamic  bone  strains  rather  than  static  strains  play  the  primary  role  in  the  bone

(re)modeling process [24, 25, 26, 27]. For this reason, the dynamic analysis of bone

strains can provide a better elucidation of the bone’s functional adaptation to mechanical

loading environment stimuli. A schematic representation to illustrate the idea of the

proposed approach, which can be of use in the dynamic bone strain analysis, is shown in

Figure 1.4.
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Figure 1.4 Graphic representation of the idea of using the flexible multibody
simulation  approach  in  the  field  of  dynamic  bone  strain  analysis;  (1)  Graphic
representation of a rigid multibody biomechanical model, (2) finite element model of a
bone and (3) graphic representation of a flexible multibody biomechanical model.

The absolute numbers and age-specific incidence rates of osteoporotic fractures have

increased all over the world in recent decades, and without population level intervention,

the increasing trend is likely to continue, thus creating a true public health problem for

our societies [28]. For example, the number of hip fractures in Finnish people aged 50 or

over has tripled between 1970 and 1997 [29]. Although there are several risk factors that

affect fracture development, bone strength is considered one of the primary predictors.

Thus for preventive and treatment purposes, the ultimate goal is to reduce the risk of

fractures by increasing or maintaining the bone strength. Mechanical forces act upon
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bone by means of joint surfaces or muscles insertions lead to stress and strain in bone

tissue. Strains applied to bone can stimulate its development and functional adaptation

[30]. It is evident that the bones get stronger if sufficient magnitudes of strain,

particularly at a high strain rate and in varying patterns are regularly imposed on the bone

[24]. Of all bone traits, a strong bone structure is considered an essential factor in

reducing bone fragility [31]. Exercise, in turn, is an efficient means to improve bone

strength [32] and reduce fragility fractures [33]. To be specific in devising effective

exercise regimes on bones, valid information on incident strain distributions is needed.

However, measuring bone strains in vivo requires invasive methodology, which is

challenging and not feasible for a majority of bones.

1.1. Scope of the Work and Outline of the Dissertation

The objective of this study is to use the flexible multibody dynamics simulation approach

to assess dynamic bone strains during physical activity. It is widely known that

mechanical tissue strain is an important intermediary signal in the transduction pathway

linking the external loading environment to bone maintenance and functional adaptation.

This study introduces briefly the theory of flexible multibody dynamics used in dynamic

bone strain estimation. To illustrate the use of the flexible multibody simulation approach

in bone strain analysis, three 3-dimensional musculoskeletal models are introduced. In

the introduced models, the right tibia is assumed to be a flexible body. The flexible tibial

model is obtained from a 3-dimensional reconstruction of Magnetic Resonance Images

(MRI). The introduced models are used to simulate walking on a level exercise in order

to predict the tibial strains. The parametric components used in developing the simulation

models introduced in this study are discussed in detail.

This study is organized as follows. In Chapter 2, the flexible multibody formulations

available in the literature are discussed briefly. The feasibility of flexible multibody

formulations in the analysis of bone strain is explained. The theory of the floating frame

of reference, which is used in this study in the estimation of dynamic bone strains, is

briefly presented.
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In Chapter 3, the anatomical components used in this study to develop a general flexible

multibody biomechanical model are explained. The process of developing the finite

element model of the bone based on a 3-dimensional reconstruction of MRI is explained.

Moreover, the simulation procedure for predicting dynamic bone strains during physical

activity is described in detail. The limitations of the anatomical components used to

develop  a  general  flexible  multibody  biomechanical  model  are  also  addressed  in

Chapter 3.

In Chapter 4, the general parametric anatomical components described in Chapter 3 are

used to develop the introduced biomechanical models. In the introduced models, the right

tibia is assumed to be the flexible body, and the tibial finite element model is generated

from a 3-dimensional reconstruction of MRI. The introduced models are used to simulate

walking on a level exercise in order to predict the tibial strains. The conducted

experimental measurements which are needed either in developing or verifying the

introduced biomechanical models are explained. The verification of the introduced

models based on the experimental measurements is explained. The reliability of the

predicted tibial strains obtained from the introduced models is studied on the basis of the

reported literature-based in vivo strain measurements. The strain distribution about the

cortical cross section at the middle of the tibial shaft during the stance phase is also

demonstrated and compared to the literature-based in vitro strain measurement study. The

limitations and future development of the introduced models are also addressed in

Chapter 4. Finally, conclusions are drawn in Chapter 5.

1.2. Contribution of the Dissertation

The original contribution of this dissertation is using the flexible multibody simulation

approach in dynamic bone strain analysis during physical activity. The bone strain

environment is significant in the process of bone (re)modeling control and bone

stimulation due to mechanical loadings. Therefore bone strains are considered to be a

primary factor in the bone strengthening process. Based on previous studies, it has been
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shown that dynamic strains rather than static strains are the primary stimulus of the

functional adaptation of a bone. Finite element biomechanical models have been used

previously to assess bone strains. Due to computational reasons, however, dynamic

analysis  of  the  bone  strains  using  the  finite  element  method  may  be  impractical,

especially for a biomechanical system consisting of several bodies interconnected with

each other. On the other hand, rigid multibody biomechanical models are limited to the

dynamic analysis of rigid bodies where the flexibility of the bones can not be accounted

for. In order to fill the gap and overcome the limitations that render the finite element

method and rigid multibody dynamics unfeasible for dynamic bone strain analysis, the

floating frame of reference formulation is used in estimating dynamic bone strains. The

proposed approach to estimate dynamic bone strains overcomes also problems associated

with  experimental  strain  measurements.  This  is  due  to  the  fact  that in vivo

implementation of strain gauges on the surfaces of bone is a challenging, highly invasive

technique and not feasible for the majority of bones. The approach presented in this

dissertation may be utilized in a wide range of medical applications including, bone

remodelling analysis, optimizing the exercise regime, and pre-clinical testing of implants

against damage accumulation failure scenarios.

The author has proposed the simulation procedure method and created the introduced

models as demonstration examples to perform the strain analysis for the bones. The finite

element models of the bones were based on Magnetic Resonance Images which were

acquired in the central hospital of Lappeenranta and Jyväskylä. The human experiments

required as input parameters (i.e., motion capture) and to verify the introduced models

(i.e., ground reaction force and Electromyographical muscle activity measurements) were

carried out at the University of Jyväskylä with the help of the stuff of the Neuromuscular

Research Center.
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2. STRAIN ANALYSIS IN MULTIBODY DYNAMICS

In structures in general, strain plays a crucial role in understanding and defining material

behavior and the elucidation of structural behavior and design. Bone can be considered to

be a living tissue that can adapt its structure and geometry to its mechanical loading

environment in order to maintain the skeletal mechanical integrity. Therefore,

deformation of bone, which can be quantified as bone strain, is significant to the process

of bone (re)modeling control and bone stimulation due to mechanical loadings. As a

conclusion, bone strain is considered to be a fundamental factor in studying the

effectiveness of the exercise regime in stimulating bone mass [34]. It is important to

emphasize that bone adaptation is driven by dynamic rather than static loading [24, 25,

26, 27]. Therefore, in this study the bone strains are obtained from a dynamic analysis of

the multibody biomechanical model. The deformations and corresponding strains of a

body within a multibody system can be studied using four approaches:

1. The nonlinear finite element approach [35, 36].

2. The approach based on the linear theory of elastodynamics [35].

3. The lumped mass approach [37].

4. The approach based on the floating frame of reference formulation [35].

In the first approach, nonlinear finite element formulations, such as the absolute nodal

coordinate formulation [35] and large rotational vector formulation [36] are embedded in

the multibody formalism in order to describe the mechanical flexibility. Absolute nodal

coordinate and large rotational vector formulations can be used efficiently in the large

deformation and rotation analysis of a flexible multibody system that undergoes an

arbitrary reference displacement [35, 36, 38, 39]. The absolute nodal coordinate

formulation has been developed recently based on the finite element formulation, and is

basically devoted for large deformation analysis of flexible multibody system. Authors

have applied the absolute nodal coordinate formulation to 3-dimensional beam elements

[40, 41] and 3-dimensional shell elements [42]. Absolute nodal coordinate formulation

represents a departure from the conventional finite element formulations used in
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conclusion, bone strain is considered to be a fundamental factor in studying the

effectiveness of the exercise regime in stimulating bone mass [34]. It is important to

emphasize that bone adaptation is driven by dynamic rather than static loading [24, 25,

26, 27]. Therefore, in this study the bone strains are obtained from a dynamic analysis of

the multibody biomechanical model. The deformations and corresponding strains of a

body within a multibody system can be studied using four approaches:

1. The nonlinear finite element approach [35, 36].

2. The approach based on the linear theory of elastodynamics [35].

3. The lumped mass approach [37].

4. The approach based on the floating frame of reference formulation [35].

In the first approach, nonlinear finite element formulations, such as the absolute nodal

coordinate formulation [35] and large rotational vector formulation [36] are embedded in

the multibody formalism in order to describe the mechanical flexibility. Absolute nodal

coordinate and large rotational vector formulations can be used efficiently in the large

deformation and rotation analysis of a flexible multibody system that undergoes an

arbitrary reference displacement [35, 36, 38, 39]. The absolute nodal coordinate

formulation has been developed recently based on the finite element formulation, and is

basically devoted for large deformation analysis of flexible multibody system. Authors

have applied the absolute nodal coordinate formulation to 3-dimensional beam elements

[40, 41] and 3-dimensional shell elements [42]. Absolute nodal coordinate formulation

represents a departure from the conventional finite element formulations used in
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engineering analysis. In the formulation, slopes and positions are used as the nodal

coordinates instead of infinitesimal or finite rotations. Beam and plate elements based on

the absolute nodal coordinate formulation can describe large rigid body rotations exactly

unlike the classical beam and plate finite elements that may not lead to accurate modeling

of the rigid body dynamics. Using slopes and displacements as nodal coordinates avoids

the cumbersome interpolation of rotational coordinates while no assumptions are made

with regard to the magnitude of the deformation within the element. The advantages of

using the absolute nodal coordinate formulation in the dynamic analysis of flexible

multibody systems are its simplicity in describing some of the joint constraints and

formulating the generalized forces. In addition, this formulation leads to a simple

expression of the inertia forces in two and three dimensional cases leading to constant

representation of mass matrix. The constant mass matrix simplifies the nonlinear

equations of motion. The large rotational vector formulation has been the subject of

extensive research for over two decades. The formulation has been successfully applied

into nonlinear analysis of, for example, lightweight space structures. The formulation is

based on the large displacement and rotation theory. In case of beam elements based on

the large rotational vector formulation, the rotations of the cross section and global

displacements of the centreline can be used as nodal coordinates. In this formulation, the

element nodal coordinates are defined with respect to the global coordinate system which

gives them a clear physical meaning. This also simplifies the description of the inertia of

the element. The cross section or fiber rotation within an element can be approximated

through the use of interpolation polynomials. Unlike the absolute nodal coordinate

formulation, in 3-dimensional case the large rotational vector formulation does not lead

to a constant mass matrix. The use of finite rotations as nodal coordinates can lead to

numerical difficulties in representing the large rotation of the cross section of the finite

element [38]. Accordingly, large rotation vector formulations can lead to singularity

problems when slender structures are considered. [43].

The first approach can also be of use in the dynamic simulation of a small deformation of

a flexible multibody system that undergoes an arbitrary reference displacement [38, 39].

However, for a body with a complex geometry, such as bone, where the discretization
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results in a large number of nodal degrees of freedom, the method may be considered

computationally expensive [36]. This is attributed to the fact that the dimensionality

(i.e., degrees of freedom) of the problem can not be reduced, as the deformation of a

flexible body can not be expressed using the deformation mode shapes [35, 36]. The

shape of the bone is highly irregular and complex. Therefore, dynamic analysis of a

biomechanical model consisting of interconnected flexible and rigid bones using the first

approach can be considered unfeasible due to the expensive computation. Further, the

finite element model of the bone used in strain analysis is usually based on 3-dimensional

reconstruction of MRI or CT scans in order to obtain the exact geometry of the bone. In

addition, the finite element model of the bone is usually discretized with solid elements

which correspond more realistically to the nature of the bone structure than beam and

shell elements. Discretization of the finite element model of the bone using solid

elements can not be achieved using the first approach, because it is limited to flexible

bodies that can be modeled using beam and shell elements only [36].

In the second approach, based on the linear theory of elastodynamics, the response of the

flexible body is calculated by uncoupling rigid body motion and elastic deformation. To

this end, the flexible multibody system is first assumed to be a collection of rigid bodies

in order to solve for the inertia and reaction forces, based on the analysis of rigid bodies

using general purpose multibody computer programs. To account for the deformation of

the bodies, the inertia and reaction forces obtained from the analysis of rigid bodies are

applied to a linear elasticity problem. The final response of the system can be obtained by

superimposing the deformation on the rigid motion of the body. Dynamic bone strains

could be calculated using the linear theory of elastodynamics. However, in this approach,

the deformation of the body is assumed to be small and has a negligible effect on the

rigid body motion. Accordingly, the inertia terms in the reference equations are assumed

to be independent of the elastic deformation [43]. In other words, in this approach the

deformation and large rigid body motion are not coupled, possibly leading to an unnatural

solution. In the linear theory of elastodynamics, the boundary conditions defined in the

finite element model and used in the calculation of the deformation must correspond to

the constraint equations of the rigid body calculation. For this reason, the boundary
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conditions may be laborious to define in practical problems so that they accurately

represent the constraint equations used in the multibody system simulation.

In the lumped mass approach, the flexible body is idealized into several mass elements.

Spring elements are placed between these masses to account for flexibility. Each of the

mass elements can be considered as a rigid body, a response which can be obtained from

the equations of motion. The stiffness of each spring located between each mass element

can be usually obtained using the finite element method. In the lumped mass approach,

the use of deformation modes to study the flexibility of the body is not possible.

Therefore, this approach can be considered to be computationally expensive for a flexible

body with complicated geometry, such as bone, as the flexible body has to be idealized

with a large number of mass elements connected by springs in order to obtain accurate

deformation.

The approach based on the floating frame of reference formulation is currently the most

widely used method in the computer simulation of flexible multibody systems. It is

implemented in several commercial as well as research general purpose multibody

computer programs. Multibody dynamics with floating frame of reference formulation

can be used in the analysis of flexible bodies that undergo large reference displacements;

rotational and translational, with small deformations [35]. The configuration of the

flexible body in the floating frame of reference is described using a mixed set of absolute

reference and local deformation coordinates. In this approach, the classical linear finite

element is embedded in the multibody formalism. Unlike the first and third approaches,

the size of the problem can be reduced in the floating frame of reference formulation by

using deformation mode shapes and assuming that during the motion a few modes are

significant. While the first approach is limited to bodies that can be modeled using shell

and beam elements only, the floating frame of reference does not suffer from this

limitation, as solid elements can be used as well. In contrast to the approach based on the

linear theory of elastodynamics, the rigid body motion and deformations are coupled in

the floating frame of reference method, which makes it suitable for more general

applications. The main feature of the approach based on the floating frame of reference
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formulation as compared to the other approaches is the use of a reference frame. The use

of the reference frame makes it possible to couple deformations and large reference

motions in the inertia description of the flexible body. Thus the deformations of the

flexible body can be assumed to be linear with respect to the reference frame. The

assumption makes it possible to use modal coordinates instead of nodal coordinates in the

description of flexible body deformations, where the number of modal coordinates is

much smaller than that of nodal coordinates. Consequently, the computational cost

decreases drastically with a minimum deterioration of accuracy [35]. It is noteworthy that

the floating frame of reference formulation can be used to model nonlinear deformations.

The methods used to account for the nonlinear deformation in the floating frame of

reference formulation can be categorized into two groups [44]. The first group is based

on the substructring technique [45]. To account for the geometric elastic nonlinearity, the

flexible body can be divided into substructures where a local reference coordinate system

is employed for each substructure. Each substructure is assumed to experience small

strain, and the deformation of each substructure is modeled using combinations of normal

vibration and static correction modes. Consequently, the original floating frame of

reference formulation is preserved. However, the previous method has two

disadvantages. First, the number and size of the substructures must be chosen such that

the linear elasticity theory has to remain valid within each substructure. Second, defining

the compatibility constraints between adjacent substructures might be laborious,

particularly, in case where the adjacent substructures are connected at multiple points.

The second group is based on including nonlinear terms in the description of the stiffness

matrix of the flexible body [44]. These nonlinear terms result from preserving the

quadratic terms in the strain-displacement relationship. In case of linear deformation

assumption, these terms are neglected. As a result of the nonlinear terms contribution to

the strain-displacement relationship, the strain energy function will lead to the definition

of the nonlinear geometric stiffness matrix. It is important to note that the concept of the

component mode synthesis can not be used when the stiffness matrix is nonlinear.

As a conclusion, in a multibody system where the geometries of the bodies are

complicated and small deformations are expected with large displacements, the floating
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frame of reference formulation may be the best choice [36]. Human bones have complex

shapes, and during a variety of movements, the bones experience large translational and

rotational displacements while strains within the bones remain small – of the order of

3000 microstrain at maximum [46]. Therefore, in this study, the multibody simulation

approach with the floating frame of reference formulation is used as a procedure in the

prediction of dynamic bone strains during physical activity. In the following sections of

this chapter, the theory of the floating frame of reference is presented briefly. The

components of the equations of motion of a flexible body (i.e., bone) are shown only.

2.1. Description of Coordinates

The deformation of the flexible body in the floating frame of reference formulation can

be described using various discretization techniques, while in this study, the deformation

is described using the finite element approach. Floating frame of reference is based on the

use of two coordinate systems; reference and nodal coordinate systems. Figure 2.1 shows

the floating frame of reference coordinate systems used in the description of a spatial

flexible body i.
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Figure 2.1 Coordinates for spatial flexible body i in the floating frame of reference
formulation.

The position of an arbitrary node iP  on flexible body i shown  in  Figure  2.1  can  be

expressed with respect to the global coordinate system as follows:

)( iP
f
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o
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where iR is the vector which describes the translation of flexible body i reference

coordinate system iii XXX 321  with respect to the global coordinate system 321 XXX  and

iA  is the transformation matrix which describes the rotation of flexible body i reference

coordinate system with respect to the global coordinate system. The matrix, iA , can be

expressed using the three independent Euler angles [35]. In Eq (2.1), iPu  is the vector

which describes the translational position of node iP  with  respect  to  flexible  body i

reference coordinate system, iP
ou  and iP

fu  are the vectors which describe the translational

undeformed and deformed position of node iP  with respect to flexible body i reference
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coordinate system, respectively. Hereafter, superscript i denotes the flexible body

(i.e., bone).

2.2. Component Mode Synthesis

In case the geometry of the flexible body is complex, such as bone, the finite element

model results with a large number of nodal degrees of freedom, which makes it

computationally expensive to define the deformations in time domain analyses. This

computational problem can be alleviated using component mode synthesis [47]. As a

result, the deformation of the flexible body can be described using deformation shape

modes instead of nodal coordinates. The dimensionality of the flexible body finite

element model (i.e., degrees of freedom) can be reduced by using only m deformation

modes, where m << n (nodal coordinates). This, in turn, reduces the computational effort

drastically without a significant loss of accuracy [35]. A reduced order model of the

flexible body can be described using m deformation modes as follows [32]:

ii
t

i
f pu = , (2.2)

 where i
fu  is the vector which describes the translational deformed position of all nodes

on the flexible body with respect to the body reference coordinate system, i
t  is the

modal transformation matrix whose columns are the selected m deformation modes

associated with the translational degrees of freedom of all nodes of the flexible body and
ip  is the vector of the modal coordinates associated with the deformation modes. In the

floating frame of reference formulation, the deformation due to the nodal rotation can be

neglected, since it has insignificant effect in the deformation of the flexible body.

However, the nodal rotational degrees of freedom can be taken into account in the

definition of the constraints of the flexible body. The deformation modes have to be

selected with care, as they should be capable to describe the behaviour of the system

accurately. There are a number of methods to select the m deformation modes, while in

this study the strain energy method [48] is used to select the significant deformation
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modes of the flexible body. The deformation modes defined in Eq (2.2) can be obtained

either by eigenvalue analysis of the finite element model or by using experimentally

identified modes [49]. In this study, the deformation modes defined in Eq (2.2) are

obtained using eigenvalue analysis based on the Craig-Bampton method with the

orthonormalization procedure [50], which yields the orthonormalized Craig-Bampton

modes. As a result of using the component mode synthesis in the floating frame of

reference formulation, the generalized coordinates of the flexible body can be defined as

follows:

[ ] [ ]TiTiTiTTiTiT
r

i pRpqq == , (2.3)

where i
rq  is the vector of reference coordinates, which describes the large displacements

(i.e., rigid motion; translational iR  and rotational i ) of the flexible body reference

coordinate system with respect to the global coordinate system. In the Craig-Bampton

method, the vector of the nodal coordinates of the flexible body finite element model is

partitioned into boundary and interior nodal coordinates. The equation of motion based

on the flexible body finite element model can be defined as follows:
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where ie  is the vector of the nodal coordinates of the flexible body resulting from the

body descritization into a finite number of elements, i
fm  and i

fK  are the finite element

mass and stiffness matrices associated with the nodal coordinates of the flexible body,

respectively, and i
fF  is the vector of the external force associated with the nodal

coordinates of the flexible body. Based on the Craig-Bampton partitioning, Eq (2.4) can
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where subscripts B and I correspond to the boundary and interior nodal coordinates,

respectively. The Craig-Bampton method results in two sets of modes; non-orthogonal

constraint modes and orthogonal fixed interface normal modes. The constraint modes

describe deformation due to unit displacements of boundary nodal coordinates and can be

obtained from a static equilibrium analysis of the flexible body finite element model

expressed in Eq (2.5). As a result of applying a static equilibrium analysis, Eq (2.5) can

be expressed in the following form:
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The constraint modes can be extracted from Eq (2.6), assuming that the interior forces

equal to zero as follows:
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Consequently:
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where i
C  is the mode matrix whose columns are the non-orthogonal constraint modes.

On the other hand, the fixed interface normal modes describe vibration modes when fixed

boundary conditions are applied at all the boundary nodal coordinates. The fixed

interface normal modes can be obtained by solving an eigenvalue analysis of Eq (2.5) as

follows:

[ ] 0aKm =+− iNi
II

i
II

iN 2)(ω ,  (2.9)

where iNω is a set of eigenvalues or natural frequencies associated with eigenvectors iNa .

These eigenvectors are called fixed interface normal modes. The combination of the
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constraint modes and fixed interface normal modes yields the non-orthogonal

Craig-Bampton deformation modes. Assembling the non-orthogonal Craig-Bampton

modes in a matrix yields a mode matrix whose columns are the non-orthogonal Craig-

Bampton modes as follows:









= i

N
i
C

i
CB

0I
,  (2.10)

where i
N  is the mode matrix whose columns are the fixed interface normal modes

obtained from Eq (2.9). It is essential to emphasize here that the non-orthogonal

Craig-Bampton modes expressed in Eq (2.10) are not orthogonal with respect to the finite

element mass and stiffness matrices. As a result, the modal mass and stiffness matrices of

the non-orthogonal Craig-Bampton modes will contain non-zero off-diagonal terms. For

this reason, the coupling between the generalized elastic coordinates can not be removed.

An important issue that should be taken into account when selecting the deformation

modes is that the modes must be defined in one reference coordinate system [51]. The

Craig-Bampton modes containing the constraint and vibration modes described in

Eq (2.8) and Eq (2.9), respectively, may be defined using different reference coordinate

systems. Therefore, the Craig-Bampton modes defined in Eq (2.10) should be used with

care in the floating frame of reference formulation. The orthonormalization procedure can

be applied to the non-orthogonal Craig-Bampton modes in order to enforce them as

orthogonal. The orthonormalization procedure can be accomplished by solving the

following eigenvalue analysis:

[ ] 0bKm =+− ii
CB

i
CB

i 2* )(ω ,  (2.11)

where *iω is a set of eigenvalues or natural frequencies associated with eigenvectors ib .

These eigenvectors are the selected m orthonormalized Craig-Bampton modes of the

flexible body. In Eq (2.11), i
CBm and i

CBK  are the modal mass and stiffness matrices of
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the non-orthogonal Craig-Bampton modes, respectively. The matrices are not diagonal

matrices and they can be expressed respectively as follows:

i
CB

i
f

iT
CB

i
CB mm = .  (2.12)

i
CB

i
f

iT
CB

i
CB KK = .  (2.13)

It can be noticed from Eq (2.11) that the orthonormalized Craig-Bampton modes

represent the eigenvectors of the Craig-Bampton representation of the finite element

model. As a result of the orthonormalization procedure, the original physical description

of the Craig-Bampton modes defined in Eq (2.10) is changed. Consequently, the resulting

orthonormalized Craig-Bampton modes will include approximate free-free modes

(i.e., modes of the unconstrained body) and the vibration modes of the boundary degrees

of freedom. The orthonormalized Craig-Bampton modes resulting from the

orthonormalization procedure expressed in Eq (2.11) can be assembled in a matrix. This

modal matrix can be defined as follows:

[ ]i
m

ii bb L1= ,  (2.14)

where i is the modal transformation matrix whose columns are the selected

m orthonormalized Craig-Bampton modes. It is worth noting that the modal

transformation matrix i
t  defined in Eq (2.2) is a slice from the modal transformation

defined in Eq (2.14) that corresponds only to the translational degrees of freedom of the

nodes, while the modal matrix i corresponds to the translational and rotational degrees

of freedom of the nodes of the flexible body. The orthonormalized Craig-Bampton modes

defined in Eq (2.14) can be normalized with respect to the mass matrix expressed in

Eq (2.12). Consequently, the diagonal mass and stiffness matrices can be expressed in the

following forms:

)( mm
ii

CB
iTi

pp ×== Imm ,  (2.15)
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where i
ppm and i

ppK  are  the  diagonal  modal  mass  and  stiffness  matrices  of  the

orthonormalized Craig-Bampton modes, respectively.

2.3. Kinematics Description of the Flexible Body

The biomechanical multibody model presented in this study consists of interconnected

rigid and flexible bodies. In computer aided analysis of such a heterogeneous system, it is

desirable to use a formulation that yields the rigid body inertia properties exactly [52]. In

order to obtain the exact rigid body inertia properties (i.e., the mass, the mass moment of

inertia and the moment of mass) of the flexible body, the equations of motion of the

flexible body are defined with respect to the fixed global coordinate system [52]. Thus,

Eq (2.1) can be rewritten using the generalized coordinates of the flexible body described

in Eq (2.3) as follows:

)( iTiP
t

iP
o

iiiP puARr ++= ,  (2.17)

where iP
t  is the modal transformation matrix whose columns are the selected

m deformation modes which are associated with the translational degrees of freedom of

node iP  on the flexible body. The global velocity equation of node iP  can be obtained by

differentiating Eq (2.17) with respect to time, which yields the following:

iTiP
t

iiiiP
o

iiiTiP
t

iiiiPiiiP pAGhuARpAGuARr &&&&&&& ++−=+−= )~~(~ ,  (2.18)

where iPu~  is the skew symmetric matrix of vector iPu , iP
ou~  is the skew symmetric matrix

of vector iP
ou  and iG is the matrix that can be used to define the relation between the
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angular velocity vector defined in the flexible body reference coordinate system and the

time derivative of the rotational coordinates of the flexible body reference coordinate

system with respect to the global coordinate system as follows:

G &ii = .  (2.19)

In Eq (2.18), h~  is the skew symmetric matrix of vector h . Vector h  can be defined as

follows:

iTiP
t ph = .  (2.20)

The velocity vector defined in Eq (2.18) can be described in a partitioned form as

follows:
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where I is the 3 × 3 identity matrix. Differentiating Eq (2.21) with respect to time yields

the global acceleration equation of node iP . Using the relations expressed in this section,

the global acceleration equation of node iP can be expressed in the following form:

iiP
t

iiiP
t

iiiiP
t

iP
o

iiiiP
t

iP
o

iiiiiP pppupuRr &&&&&&&& ++++++= ~2)(~)(~~ . (2.22)

2.4. Inertia and Force Description of the Flexible Body

In this section, the inertia and force description of the flexible body are expressed by

employing the principle of the virtual work of the inertial forces, ∫=
iV

iiiTii
i dVW rr &&δρδ ,

where iρ  and iV  are the density and volume of the flexible body, respectively.
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Description of Inertia

The generalized mass matrix of the flexible body can be defined using the expression of

the virtual work of the inertial forces [35] as follows:
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where the subscripts R, θ  and p denote the reference translational, rotational and modal

coordinates, respectively, of the flexible body. The sub-matrices of the generalized mass

matrix iM  defined in Eq (2.23) can be expressed as follows:
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where fn  is the number of nodes of the flexible body, im  is the mass of the flexible body

and iPm  is the mass of node iP  on the flexible body.

Generalized Forces

The generalized forces acting on node iP  on the flexible body can be divided into three

types; external forces, elastic forces and damping forces. The external forces are

produced by the muscles, ligaments, contact and gravity. The elastic forces are due to the

deformation of the flexible body, while the damping forces are due to the viscoelasticity

property of the flexible body (i.e., bone). Viscoelasticity of the bone can arise from a

variety of mechanisms at different structural scales of the bone [53]. Viscoelasticity

includes phenomena, such as creep, relaxation, and dynamic response. In this study, the

dynamic strains of the bone occurring during physical activities are the point of interest.

Therefore the influence of the viscoelasticity of the bone on the dynamic response under

different types of loading that can be imposed on the bone is taken into account by

defining critical damping ratios for the deformation modes of the bone. The principle of

virtual work can be used to obtain the equations of the generalized forces [35]. The vector

of the external forces acting on node iP , and associated with the generalized coordinates

of the flexible body can be expressed as follows:

[ ]TiP
t

iiiPiiP
e

i
e AGuAIFQ ~−= ,  (2.30)

where iP
eF  is the vector of the external forces acting on node iP  on the flexible body.

The vector of the elastic forces associated with the generalized coordinates of the flexible

body can be expressed as follows:

iiTi
s KqQ −= ,  (2.31)

where iK  is the generalized stiffness matrix of the flexible body, which can be defined

as follows:
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The vector of the damping forces associated with the derivative of the generalized

coordinates of the flexible body can be expressed as follows:

i
d

iTi
d CqQ &−= ,  (2.33)

where i
dC  is the generalized damping matrix of the flexible body, which can be defined

as follows:
















=

i
dd

i
d

C
C

L

MOM

0

000
,  (2.34)

where i
ddC  is the diagonal modal damping matrix of the orthonormalized Craig-Bampton

modes of the flexible body. The matrix can be expressed as follows:
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where *i
mc  is the critical damping ratio associated with the thm orthonormalized

Craig-Bampton mode of the flexible body.

Quadratic Velocity Vector

The vector of the quadratic velocity inertia forces, which contains the terms that are

quadratic in velocity, such as gyroscopic and Coriolis forces, can be defined using the
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The vector of the damping forces associated with the derivative of the generalized

coordinates of the flexible body can be expressed as follows:
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expression of the virtual work of the inertial forces, and the global acceleration vector

defined in Eq (2.22) [35] as follows:
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where the components of the quadratic velocity vector i
vQ  defined in Eq (2.36) can be

expressed as follows:
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2.5. Equations of Motion of the Biomechanical Model

In this study, the equations of motion of the biomechanical model are formulated using

an augmented technique based on Lagrange multipliers. The equations of motion of the

biomechanical model presented in this study can be expressed as follows [35]:

ve
T

d QQCKqqCqM
q

+=+++ &&& ,  (2.40)

where q  is the vector of the generalized coordinates of all bodies in the biomechanical

model, qC is the Jacobian matrix of the nonlinear constraints equation, and  is the

vector of the Lagrange multipliers. Eq (2.40) represents a system of second-order

differential equations whose solution must satisfy the algebraic constraint equations

during the dynamic simulation. The algebraic constraint equations which describe the
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mechanical joints of the bodies in the model as well as their specified trajectories can be

expressed as follows:

0qC =),( t ,  (2.41)

where t is  the time and C is the vector of the linearly independent nonlinear constraint

equations of the biomechanical model. Eq (2.40) and Eq (2.41) represent a set of

nonlinear differential algebraic equations (DAE), which have to be solved

simultaneously. However, an integrator of such a system of equations is still under

research and development [35]. The stability convergence and accuracy of the methods

used in solving DAE are still not deeply known [36]. Therefore, the set of DAE

expressed  in  Eq (2.40) and Eq (2.41) can be transformed to a set of second ordinary

differential equations (ODE), where the accuracy of solving this set of equations and the

stability convergence have been the topic of numerous studies [36]. The transformation

from DAE to ODE can be accomplished by differentiating the kinematic constraint

equations defined in Eq (2.41) twice with respect to time, which yields the following

equation:

qqCqCCQqC qqqq &&&&& )(2 −−−== tttc .  (2.42)

As a result, Eq (2.40) and Eq (2.42) can be combined in one matrix equation which can

be solved for accelerations and the vector of Lagrange multipliers. The system can be

expressed in the following form [35]:
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Having solved for the modal coordinates from Eq (2.43), the strain vector of the flexible

body, i , can be obtained as a post-processing procedure as follows:
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iiii pD= ,  (2.44)

where iD  is the kinematics matrix that describes the strain-displacement relationship.

The matrix can be obtained using the shape function matrix. The strain-displacement

relationship described by matrix iD  is assumed to linear. Consequently, the geometric

elastic nonlinearity and the material nonlinearity are assumed to be neglected. As regard

assuming the geometric elastic nonlinearity to be neglected, it was shown in previous

studies [46] that the strain within the bone remains small during different physical

activities, in the range of 3000 microstrain at maximum, which validates the assumption.

Neglecting the material nonlinearity can be justified for a bone based on the linear load

deformation curves obtained in the elastic region for a human femur subjected to uniaxial

tension or compression and torsion loading tests [54]. Therefore, based on the previous

study of Reilly and Burstein [54], the material law of the bone can be assumed linear in

the elastic region. However, for bone fracture analysis, the nonlinear deformation due to

large strain and material nonlinearity that accounts for the plastic deformation of the bone

upon fracture has to be accounted. In this case, the approach proposed in the study of

Ambrósio and Nikravesh [55] might be used for this type of analysis.
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3. MULTIBODY MUSCULOSKELETAL MODELING

Multibody musculoskeletal models can be considered as an important tool in the field of

biomechanics. The models are broadly used in medicine, orthopedics, ergonomics and

sports. The multibody dynamics theory provides a means to study and analyze the

behavior of different biomechanical systems, as well as their components. Multibody

musculoskeletal models are playing an increasingly significant role in surgical treatment

simulation [56]. Surgeons are seeking for tools to support them in the planning phase of

surgery treatment and studying the consequences of the treatment prior to its application

[57]. The input parameters required in developing musculoskeletal models, such as bone

geometry, description of joint kinematics and muscle attachments as well as architecture

are typically based on in vivo or in vitro studies and cadaveric measurements [56]. Most

of the model parameters are highly dependent on the individual person’s anthropometric

data including height, weight, age, ethnicity, size, gender and physical condition [58]. For

this reason, scaling and extrapolation techniques are often used in the commercial

software specialized in biomechanical modeling to fit the parameters of the model with

the specified anthropometric data. Musculoskeletal models based on multibody dynamics

have proved to be effective, practical and appealing tools due to ethical and economical

reasons. The multibody musculoskeletal model developed by Delp [22] can be used as a

training simulator for less experienced surgeons to investigate the effects of surgical

decisions on a model rather than a patient. In some cases, it can be more economical to

use multibody musculoskeletal models to obtain the required measurements rather than

using in vivo and/or in vitro experimental procedures, for example, to simulate and

predict joint response under different loading conditions [59]. Internal forces and strains

of the skeleton, as well as muscular actions can be estimated using multibody

musculoskeletal models without a need to employ invasive techniques. It is important to

note that some physical parameters, such as trabecular bone strains, can be impossible to

obtain in vivo.

In this chapter, the anatomical components used to develop a general flexible

musculoskeletal multibody model which can be utilized in the dynamic analysis of bone
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strains during physical activity are explained. The anatomical components in addition to

the simulation procedure, as well as the limitations of the anatomical components are

described in the following sections.

3.1. Skeletal Model

The general shape of the human skeleton can be considered to have a symmetrical pattern

[60]. In general, the skeleton has physiological functions, such as generation of blood

cells and storing calcium, as well as mechanical functions, such as providing support for

the body against external forces (e.g. gravity) and acting as a lever system to transfer

forces (e.g. muscular forces) [25]. In human movement modelling, the mechanical

functions are of interest. Due to the fact that the skeleton serves as a lever system where

the origins and insertions of the muscles are placed, the accurate geometry of the bone is

essential for developing an accurate model to predict muscular forces and joint moments.

For this reason, in many commercial software specialized in human modelling, such as

BRG.LifeMODE [14], the skeleton model is developed based on MRI or CT scans.

Skeleton models can be scaled according to experimental subject anthropometric

variables (height, weight, age, ethnicity and gender). The bones forming the structure of

the skeleton model are usually determined according to the scope and objective of the

study. For example, if the objective of the study is to investigate the ankle movement

during physical activity, the foot may be considered as one segment rather than

separating it into different bodies. According to the proposed approach in this study, the

bone under strain analysis is assumed to be a flexible body while other bones can be

assumed rigid.

Flexible Bone

The flexible multibody simulation approach with the floating frame of reference

formulation explained in Chapter 2 can be used to describe the flexibility of the bone.

Depending on the type of the strain analysis to be performed, CT scans or MRI data

47
46

strains during physical activity are explained. The anatomical components in addition to

the simulation procedure, as well as the limitations of the anatomical components are

described in the following sections.

3.1. Skeletal Model

The general shape of the human skeleton can be considered to have a symmetrical pattern

[60]. In general, the skeleton has physiological functions, such as generation of blood

cells and storing calcium, as well as mechanical functions, such as providing support for

the body against external forces (e.g. gravity) and acting as a lever system to transfer

forces (e.g. muscular forces) [25]. In human movement modelling, the mechanical

functions are of interest. Due to the fact that the skeleton serves as a lever system where

the origins and insertions of the muscles are placed, the accurate geometry of the bone is

essential for developing an accurate model to predict muscular forces and joint moments.

For this reason, in many commercial software specialized in human modelling, such as

BRG.LifeMODE [14], the skeleton model is developed based on MRI or CT scans.

Skeleton models can be scaled according to experimental subject anthropometric

variables (height, weight, age, ethnicity and gender). The bones forming the structure of

the skeleton model are usually determined according to the scope and objective of the

study. For example, if the objective of the study is to investigate the ankle movement

during physical activity, the foot may be considered as one segment rather than

separating it into different bodies. According to the proposed approach in this study, the

bone under strain analysis is assumed to be a flexible body while other bones can be

assumed rigid.

Flexible Bone

The flexible multibody simulation approach with the floating frame of reference

formulation explained in Chapter 2 can be used to describe the flexibility of the bone.

Depending on the type of the strain analysis to be performed, CT scans or MRI data

47



47

acquisition methods of the geometry of the bone can be employed. Of these two methods,

CT scan data acquisition can be considered more general, as it provides information

about the inhomogeneous material properties of the bone. It is noteworthy, however, that

the CT scan data acquisition method imposes radiation doses on the subject. For this

ethical reason, the MRI data acquisition method is used in this study to obtain the

geometrical configuration of the bone. Figure 3.1 shows the general 3-dimensional

reconstruction process of MRI used to generate the finite element model of a bone.

Figure 3.1 Generation process of the finite element model of the bone based on
3-dimensional reconstruction of MRI.
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As depicted in Figure 3.1, the MRI are segmented using 3-dimensional image processing

software, such as 3D-DOCTOR [61] to define the boundaries of the cortical bone’s inner

and outer surfaces. The boundary surfaces of the cortical bone are processed to form

3-dimensional surface model of the bone. The 3-dimensional surface model of the bone

consisting of inner and outer cortical surfaces can be imported to Computer Aided Design

CAD software, such as SolidWorks [62] to perform smoothening processes. The

smoothening processes are required in order to create a 3-dimensional solid model of the

bone suitable for meshing. The 3-dimensional solid model of the bone can be imported to

Finite Element Analysis (FEA) software, such as ANSYS [63] to describe the finite

element model of the bone using solid element. It is essential to note that the solid model

of the bone results from the subtraction of the inner volume model of the bone consisting

of the inner cortical surface from the outer volume model consisting of the outer cortical

surface. For this reason, the subsequent solid cortical layer is represented by a complex

irregular thickness which can be only meshed using solid element. Eigenvalue analysis

based on the Craig-Bampton method can be performed on the finite element model of the

bone in order to obtain the reduced finite element model of the bone, as shown in Figure

3.2.

Figure 3.2 Reduced finite element model of the bone to be coupled with the rigid
biomechanical model.
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As explained in Chapter 2, the reduced finite element model of the bone can be described

using the orthonormalized Craig-Bampton deformation modes. In this study, the software

(ANSYS) is used to obtain the orthonormalized Craig-Bampton modes employed in the

floating frame of reference formulation. As a result of the eigenvalue analysis, the nodal

coordinates of the finite element model of the bone can be transformed to modal

coordinates with the help of the modal transformation matrix of the orthonormalized

Craig-Bampton modes, as explained in Eq (2.2). The strain energy method can be used to

select the significant orthonormalized Craig-Bampton modes during the forward

dynamics simulation of the physical activity [48].

3.2. Joints and ligaments

Joints in musculoskeletal models describe the transformations that relate the position and

orientation of one bone to another. In biomechanical models, the anatomical joints can be

represented either by kinematic joints (i.e., mechanical joints) or by contact joints

(i.e., realistic anatomical joints), depending on the objective of the analysis. However, in

most of the biomechanical models used in human movement investigation, the

anatomical joints are represented by mechanical joints [3, 15], such as revolute joints for

knees and elbows, or spherical joints for hips and shoulders. In this study, the anatomical

joints are modeled as mechanical joints which are represented by nonlinear constraint

equations relating the coordinates of the bodies connected by such joints. The function of

ligaments is basically to guide joint movement and constrain the movement within the

allowed physical angular limits of the joint [3, 25]. This function is incorporated in the

model by applying a nonlinear torsional spring and torsional damper at each constraint

degree of freedom in the model [3]. The magnitude of the applied torsional spring varies

with the joint orientation so that it is small at the initial joint orientation to permit joint

deformation with minimal resistance, while it increases exponentially near the physical

angular limits to protect the joint from exceeding impossible physical angles [16]. In the

physical operating range of the joint, the torque varies linearly with the joint orientation

[25]. The stiffness of the torques at the physical operating range of the joint can be
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defined experimentally based on the passive joint response and can be found for some

joints such as flexion/extension for hip and elbow joints, in the literature [64, 65]. The

damping is included to increase the numerical stability of the model during the forward

dynamic simulation [16]. The overall stiffness of the joint is provided by ligaments and

muscles  as  well  as  cartilage,  capsule  and  menisci.  However,  cartilage,  capsule  and

menisci are usually not included in multibody biomechanical models used for movement

investigations [3]. This can be justified that these structures do not affect the transmission

of the muscular forces by the joints [3].

3.3.  Muscles

Muscle modeling is an important component of body segmental motion analysis. Several

researchers have studied the properties of muscles and their contribution in applying

forces to the skeleton [66, 67]. Muscles are responsible of the body movement actuation

by developing forces that generate moments about the joints. The muscles are excited and

activated by the central nervous system to develop forces which are transmitted to the

skeleton by means of tendons. There are a number of models describing the muscle in the

literature [68, 69]. Generally, the muscle models available in the literature can be divided

into two types: molecular models [70] and phenomenological models [66]. The molecular

models describe the muscle force generation process on the sarcomer level, taking into

account biophysical/biochemical processes. The phenomenological models describe the

muscle actions using parametric mathematical models without the analysis of

biophysical/biochemical processes. In multibody biomechanical models used for human

movement investigation, molecular muscle models appear to be unfeasible [71]. On the

other hand, phenomenological models have proved to be practical in many simulations

for human movements [68]. In this study, the muscle is modeled as a contractile active

element in series with a viscoelastic element, as shown in Figure 3.3.
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Figure 3.3 Muscle model used in this study. CE is the contractile element, SE is the
spring element and DE is the damping element.

In the muscle model shown in Figure 3.3, the viscoelastic element describes the passive

behaviour of the muscle. The element is responsible for recording the desired contraction

muscle trajectory. The contractile active element describes the activity of the muscle. The

element is represented by a proportional derivative servo controller. The controller is

used to calculate the muscle force based on the desired muscle contraction trajectory in

order to reproduce the motion and keep each muscle force within its allowable

physiological limit. The maximum allowable muscle force can be defined as follows

[72]:

max,max, PCSA musclemuscleF σ⋅= ,  (3.1)

where PCSA is the physiological cross sectional area of the muscle and max,muscleσ is the

maximum muscle stress. In this study, the maximum muscle stress is assumed to be

87.1 N/cm 2 according to Hatze [73]. The paths of the muscles (i.e., muscle origin and

insertion sites) in addition to the physiological cross sectional areas of the muscles are

defined according to Eycleshymer and Schoemaker [74] and scaled to the model based on

the anthropometric data of the experimental subject.
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3.4. Simulation Procedure

The simulation procedure employed in this study to analyse the dynamic bone strains

during physical activity is based on the nature of the muscle model used. As explained in

this chapter, the muscle model consists of an active contractile element that generates the

muscle force based on the recorded desired muscle contraction trajectory. Therefore, the

biomechanical model needs a training environment where the desired muscles contraction

trajectories for a given movement can be calculated. In this study, inverse dynamics

simulation is used to provide such a training environment. In order to perform the inverse

dynamics simulation, motion capture of the physical activity under investigation is

required. The forward dynamics simulation is vital for the purpose of this study in order

to analyze the bone strains in a realistic environment where the muscles are the prime

actuators of the model. As a summary, the simulation procedure used in this study

comprises both inverse and forward dynamics simulations. Flexible multibody dynamics

including inverse and forward dynamics have been used previously in the analysis and

design of controllers of flexible multibody systems [49]. The simulation procedure used

in this study to predict dynamic bone strains during physical activity consists of the

following respective steps.

Motion analysis

The study of biomechanics involves motion analysis. There are a number of methods that

can be used to analyze human motion, such as body structure analysis, tracking and

recognition [75]. In this study, tracking motion analysis using multiple cameras setup is

used to capture the movement. There are a number of advantages in using multiple

cameras over a single camera, such as enlarging the area captured [75]. In order to track

the human body motion, visual markers are placed on various locations on the subject.

This should be accomplished in such a way that the motion capture system is able to track

the marker trajectories during the physical activity under investigation. The digitization

of the video images and converting them into 3-dimensional coordinates of the markers

can be done using a number of software, such as Peak Motus. The motion capture data is
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used to drive the musculoskeletal model through motion agents during the inverse

dynamics simulation. The motion agents are massless bodies attached to the model

segments at the same locations where the visual markers have been placed on the subject.

The motion agent is attached to a segment of the musculoskeletal model using a six

degrees of freedom spring damper element. The motion agents are constrained using the

marker trajectories which have been recorded via the motion capture. To illustrate the

function and configuration of the motion agent in the biomechanical model, a leg

flexion/extension activity is given as a demonstration example in Figure 3.4.

Figure 3.4 Graphic illustration of the configuration and function of the motion agent
for a leg flexion/extension activity driven by a motion agent attached to the foot segment
of the biomechanical model during inverse dynamics simulation.

Since motion capture is used to compute the position and orientation of the body

segments from the positions of the markers attached to the skin of the subject, accurate

marker positions are required. The experimental errors in motion capture can be divided

into two major groups. The first group is caused by errors in the capture of the positions

of the markers attached to the skin of the subject, and the second group is due to the

movement of the skin and consequently of the markers with respect to the underlying

bone (skin artefacts) [76]. The first group contains the errors caused by an imperfect

calibration of the system. Those errors can be due to image distortions, digitizing of the

image, because of the limited resolution of the digital cameras, and human errors in the
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manual digitizing of the markers. The latter two errors are due to inaccurate

determination of the exact location of the centroids of the markers during the digitizing

process. This is due to the fact that the marker is seen in the image as a group of a few

bright pixels. The second group is considered to be the major source of error in the

motion capture [76]. The aforementioned experimental errors in the motion capture can

cause large errors in the determination of the position and orientation of the segments and

should, therefore, be minimized. There are several techniques used to reduce these errors,

such as smoothing the 3-dimensional coordinates of the markers by means of discrete

filters and adequate positioning as well as distribution of the markers on the subject to

prevent the propagation of the errors. Filtration procedure with the objective of reducing

the noise level (i.e., errors) in the motion capture in order to make it suitable for use in

the inverse dynamics simulation can be applied using a number of software, such as

MATLAB.

Inverse dynamics simulation

In inverse dynamics simulation, the applied forces necessary to generate a desired motion

response are calculated. The motion of the biomechanical model can be generally

acquired using experimental techniques based on video imaging. The muscular forces

which are the prime actuators of the body are not considered to be the governors of the

motion in inverse dynamics simulation [25]. For this reason, the strains of the bone

obtained from inverse dynamics simulation may not be realistic. In the inverse dynamics

simulation, the forces of different muscular groups can be lumped as moments about

anatomical joints leading to a determinate inverse dynamics problem. The control method

applied in the inverse dynamics simulation is the computed torque method [49]. From the

joint moments (i.e., torques) and desired muscular contraction trajectories calculated in

the inverse dynamics simulation the muscular forces can be obtained. The marker

trajectories serve as input for the inverse dynamics simulation that drives the model

during the simulation. The marker trajectories are generated from a 3-dimensional

reconstruction of the motion capture data of the markers placed at various locations on

the subject and tracked during the motion. It is important to emphasize that the model has
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to be consistent with the kinematic data (i.e., motion capture), and as a consequence, the

kinematic constraint equations of the model and their derivatives have to be satisfied

during the inverse dynamics simulation. To insure that the model is consistent with the

kinematic data, the motion agents are used to drive the model during the inverse

dynamics simulation as it is demonstrated in Figure 3.4. These motion agents enforce the

degrees of freedom of the joints in the model to follow the marker trajectories obtained

via motion capture. An important issue in performing inverse dynamics simulation is the

reduction of the experimental errors in motion capture, which were explained previously

in this chapter, in order to obtain an accurate performance of the physical activity similar

to the measured one.

Forward dynamics simulation

Forward dynamics simulation refers to the computational strategies used to calculate the

accelerations, velocities and positions of the generalized coordinates. In forward

dynamics simulation, either muscular forces or joint torques are used to actuate the

biomechanical model. In this study, muscular forces are used to drive the model in

forward dynamics simulation. Muscular forces are selected as actuators instead of the

joint torques in order to obtain the dynamic bone strains from a realistic environment

simulation  where  the  muscles  are  the  actuators  of  the  model.  Furthermore,  in

coordination studies, it is not recommended to utilize joint torque-actuated models, as

such models represent the net effect of muscular forces around the joint. Also, in some

cases joint torque-actuated models give a misleading interpretation of the muscle function

[3]. In the forward dynamics simulation used in this simulation procedure, the muscular

forces calculated in the inverse dynamics simulation are tracked using proportional

derivative (PD) servo controllers, in order to guarantee the reproduction of the motion.

The PD servo controller minimizes the error between the desired muscle contraction

trajectory obtained from the inverse dynamics simulation and the instantaneous one

obtained from the forward dynamics simulation at each simulation time step. In addition,

it keeps each muscle force within its physiological limit (physiological cross sectional

muscle area multiplied by maximum muscle stress). Using the forward dynamics
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simulation, the musculoskeletal model with flexible bone(s) can be employed to estimate

bone deformations due to dynamic loading during physical activity. The significant

deformation modes of the flexible bone in the forward dynamics simulation are selected

based on the strain energy method. The selected deformation modes are used in the

dynamic analysis in order to define the bone strains. Due to the nature of the muscle

model used in this study, dynamic optimization techniques used to overcome the muscle

redundancy problem can not be used in the forward dynamics simulation. This is due to

the fact, that most of the dynamic optimization techniques require activation dynamics to

be taken into account in the muscle model, as they are generally based on the search for

the neural excitations that drive a forward-dynamics model of the musculoskeletal model

to track the prescribed motion, or on the determination of the optimal neural excitations

using a systematic procedure to optimize a certain performance of the physical activity

[15]. However, in general, dynamic optimization is considered to be computationally

expensive as it can solve one optimization problem for one complete cycle of the

movement [3, 15]. Therefore, parallel computing is usually used to perform the dynamics

optimization [3]. The simulation procedure employed to analyse the dynamic bone strains

due to mechanical loading during physical activity is described in the schematic diagram

provided in Figure 3.5. The software used at each modeling and simulation step in this

study is shown in the schematic diagram provided in Figure 3.6.
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Figure 3.5 Schematic diagram of the simulation procedure used in this study.
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Figure 3.5 Schematic diagram of the simulation procedure used in this study.
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Figure 3.6 Schematic diagram of the software used in this study at each modeling and
simulation step.
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Figure 3.6 Schematic diagram of the software used in this study at each modeling and
simulation step.
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3.5. Limitations of the Anatomical Components

It is essential to reiterate that the anatomical components presented in this chapter can be

used to develop a general flexible multibody biomechanical model which can be used in

the dynamic analysis of bone strains during physical activity. The accuracy of dynamic

bone strain prediction can be further improved by addressing some of the limitations of

the presented anatomical components. It is worth noting that these limitations are not

related to the objective of this study. The limitations of the anatomical components

presented in this chapter can be considered as some of the challenges of developing

multibody biomechanical models used in human movement investigation in general.

However, these limitations may affect the accuracy of bone strain analysis using the

approach proposed in this study. The limitations of the anatomical components can be

listed as follows:

1. The accuracy of the biomechanical model generated based on the anatomical

components presented in this chapter can be limited by the estimation procedure

of muscular forces. This is due to the fact that extensive description of a human

musculoskeletal model including the skeleton and many muscle groups for the

simulation of human motions still remains an ambitious and challenging task.

2. The simulation procedure employs motion capture of the subject’s body

kinematics. This task may not be possible in some environments due to the high

costs associated with the measurement systems, or due to technical difficulties,

such as external activities.

3. Despite the fact that the anatomical joints in most multibody biomechanical

models, as well as the introduced models, used in the human movement

investigation, are represented by mechanical joints [3, 15], the usage of the real

joint models that describe the complex behaviour of the joints might improve the

consistency of the kinematic data (i.e., motion capture) with the model and the

compliance of the joints in the dynamic analysis.

4. The inverse dynamics simulation employed by the simulation procedure requires

the positions, velocities and acceleration of the segments of the model. The

velocities and accelerations of the model segments are the marker trajectories
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derivatives, which can be considered a major source of error due to noise

amplification in the numerical derivatives. The accumulation error may affect the

performance of the inverse dynamics simulation, which in turn affects the

accuracy of muscular forces estimation in the forward dynamics simulation.

However, in order to avoid noise amplification in the numerical derivatives, the

motion capture of the physical activity should be obtained carefully.

5. Another general limitation can arise from the fact that the proposed approach in

this study requires employing the forward dynamics simulation for bone strain

analysis. This is because the forward dynamics simulation provides a realistic

environment in which the muscles are the prime actuators of the model. In some

cases where the biomechanical model involves more complex muscle model, the

forward dynamics simulation might become expensive, especially in the cases

where dynamic optimization techniques are used [3, 76].

6. In this study, the flexible bone is generated based on 3-dimensional reconstruction

of MRI. This may limit the definition of the material properties of the bone, as the

density and elasticity are assumed to be homogenous, while in reality they are

inhomogeneous [25, 77]. This problem can be overcome by using CT scans

instead of MRI in the modeling of flexible bones.
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4. NUMERICAL EXAMPLE

In this chapter, the accuracy of the flexible multibody simulation approach proposed in

this study to analyze dynamic bone strains during physical activity is studied. The

anatomical components described in Chapter 3 are used to develop three 3-dimensional

musculoskeletal models with a right flexible tibia in each model. The introduced models

are applied to simulate walking on a level exercise in order to predict the tibial strains.

Walking is chosen as a numerical example because it is the most common daily exercise.

The multibody biomechanical models used to simulate walking exercise including

verification have been extensively reported in the literature [78]. Further, walking

exercise has been the focus of many in vivo and in vitro strain measurements studies [46,

79, 80, 81, 82, 83], and thus the reliability of the predicted strain results by the introduced

models can be easily investigated. The simulated tibial strains are compared with

previous in vivo tibial strain measurements conducted for walking [46, 79, 80, 81]. The

strain distribution around the cortical tibia in the middle of the tibial shaft are also

presented and compared with a previous in vitro strain measurement study [82].

Experimental measurements of the ground reaction force and Electromyographical

(EMG) muscle activity are used to verify the introduced models mimicking capability of

the real mechanical loading environment during walking test.

4.1. Description of Normal Human Walking

Normal human walking or human gait gives people a picture of a nearly periodic and

symmetric motion, where the patterns occurring in one side of the body repeat in the

other side, 180 o out of phase. This periodic leg movement is the essence of the cyclic

nature of human gait. The walking cycle can be divided into phases characterized by the

contacts occurring between feet and ground. There are two main phases in the gait cycle

[78]: the stance phase starting from the heel strike until the toe-off and the swing phase

starting from the toe-off until the heel strike. During the stance phase, the foot is in

contact with the ground, whereas in the swing phase that same foot is no longer in contact

with the ground and the leg is swinging through in preparation for the next foot strike.
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The stance phase can be divided into two sub-phases namely: double support phase and

single support phase. In the double support phase both feet are in contact with the ground,

and it begins with the heel strike of one foot, and ends with the toe-off of the opposite

foot. In the single support phase, only one of the feet is in contact with the ground. The

swing phase consists of three sub-phases namely: initial swing, mid-swing and terminal

swing. At normal walking speed, the stance phase takes about 62% of the gait cycle

period and the swing phase takes approximately 38% of the gait cycle period [78]. At a

certain speed, the human will switch from walking to running, where swing phase time

becomes more than the stance time for both legs, and the double stance phase completely

disappears [76]. An illustration of normal human walking cycle is shown in Figure 4.1.

Figure 4.1 Phases of normal human walking cycle.

4.2. Experimental Subjects

Three healthy voluntary Caucasian men served as subjects for the study. The first subject

is 25 years old, 1840 mm in height and with 89 kg mass, the second subject is 52 years

old, 1680 mm in height and with 65 kg mass and the third subject is 28 years old,
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4.3. Description of the Introduced Biomechanical Models

The introduced biomechanical models in this study are developed using the commercial

software BRG.LifeMODE [14]. The software is based on the commercial multibody

software ADAMS [84]. The skeleton of the musculoskeletal models is generated from

the anthropometric database accessible through the software based on the experimental

subject’s height, weight, age, ethnicity and gender. Hereafter the first model [85, 86]

corresponds to the first subject, the second model [87] corresponds to the second subject

and the third model corresponds to the third subject. The first model is represented by a

lower body musculoskeletal model, while the second and third models are represented by

a full body musculoskeletal model. The first and second models are presented in this

chapter, while the third model is presented in Appendix A(I). The third model has

completely  the  same  parameters  of  the  second  model,  however,  the  third  model  is

generated based on different anthropometric data that corresponds to its subject.

In the first model, the skeleton is modeled using seven segments: lower torso, two thighs,

two shanks and two feet. The skeleton of the second model consists of the skeleton

segments of the first model with the addition of 12 segments representing the upper body

skeleton model: head, neck, upper torso, central torso, two scapulas, two arms, two

forearms and two hands. All the segments in the first and second models are assumed to

be rigid bodies, except for the tibia at the right shank segment which is assumed to be a

flexible body. Figure 4.2 shows the segments used in modeling the skeleton in the

introduced models, in addition to the locations of joints. Table 4.1 shows the types of

joints used to constrain the segments in the models, in addition to their kinematic

description.
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Figure 4.2 Graphic representation of the skeleton model with joint locations
represented as centers of the spheres. The underlined segments and joints are used in the
first model, while all the segments and joints are used in the second and third models.
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Figure 4.2 Graphic representation of the skeleton model with joint locations
represented as centers of the spheres. The underlined segments and joints are used in the
first model, while all the segments and joints are used in the second and third models.
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Table 4.1 Kinematic constraints in the introduced models.

Joint

Number

Joint

Name

Type Segments Motion

1 Ankle Universal Lower

torso

Thigh Flexion

/extension

Inversion

/eversion

-

2 Knee Revolute Shank  Thigh Flexion

/extension

- -

3 Hip Spherical Shank Foot Flexion

/extension

Abduction

/adduction

Rotation

4 Lumbar Revolute Lower

torso

Central

torso

Flexion

/extension

- -

5 Thoracic Revolute Central

torso

Upper

torso

Flexion

/extension

- -

6 Lower

neck

Revolute  Upper

torso

Skull Flexion

/extension

- -

7 Upper

neck

Fixed Neck Skull - - -

8 Scapular Fixed Upper

torso

Scapula - - -

9 Shoulder Universal Scapula Arm Flexion

/extension

Abduction

/adduction

10 Elbow Revolute Arm Forearm Flexion

/extension

- -

11 Wrist Revolute Forearm Hand Flexion

/extension

- -

The torsional stiffness value defined within the physical angular limit of each degree of

freedom of the joint in the lower body model is estimated based on the equations defined

by Amankwah et al. [64], except for ankle inversion/eversion and hip rotation. For ankle

inversion/eversion, a stiffness value of 10000 Nmm/º is used to maintain the stability of
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the ankle joint in the inverse dynamics simulation, while the stiffness of hip rotation is

assumed to be 800 Nmm/º. This numerical value is obtained by studying the angular

trajectory responses between the inverse and forward dynamics simulations. In the

second model, the torsional stiffness value for the shoulder flexion/extension is estimated

based on the study of Zhang et al. [88], for the elbow flexion/extension is estimated based

on the study of Lin et al. [65], and for the wrist flexion/extension is estimated based on

the study of Leger et al. [89]. The torsional stiffness values for shoulder

abduction/adduction and lumbar, thoracic and lower neck flexion/extension are assumed,

as they can not be found in the literature. Table 4.2 shows the stiffness and damping

values of the joints used in the first and second models.

Table 4.2 Joint stiffness and damping used for the joints in the introduced models.

 Flexion/extension
Inversion/eversion

Abduction/adduction
 Rotation

Joints
Stiffness

[Nmm/º]

Damping

[Nmms/º]

Stiffness

[Nmm/º]

Damping

[Nmms/º]

Stiffness

[Nmm/º]

Damping

[Nmms/º]

Ankle 210 21 10000 1000 - -

Knee 270 27 - - - -

Hip 700 70 1500 150 800 80

Lumbar 1000 100 - - - -

Thoracic 1000 100 - - - -

Lower neck 1000 100 - - - -

Shoulder 700 70 700 70 - -

Elbow 60 6 - - - -

Wrist 30 3 - - - -
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The first model is actuated by 12 muscle groups including 17 muscles. The muscle

groups are: the soleus, gastrocnemius, tibialis anterior, biceps femoris, vastus lateralis,

rectus femoris, iliacus, gluteus medius, gluteus maximus, adductor magnus, vastus

medialis and semitendinosus. The second model is actuated by 39 muscle groups

consisting of the 12 muscle groups used in the first model with the addition of 27 muscle

groups including 43 muscles used in the upper body model. The muscle groups in the

upper body model are: the rectus abdominis, obliquus extremus abdom, erector spinae,

scalenus anterior, scalenus medius, scalenus posterior, splenius cervicis, splenius capitis,

sternocleidomastiodeus, pectoralis major, pectoralis minor, trapezius, latissimus dorsi,

deltoideus, biceps brachii, brachioradialis, triceps brachii, pronator teres, flexor carpi

ulnaris, flexor carpi radialis, flexor pollicis longus, psoas major, flexor digitorum

profundus, extensor carpi rad longus, extensor digti minimi, abductor pollicis longus and

subclavius. Figure 4.3 shows graphic representations of the first and second models used

in this study.

Figure 4.3 Graphic representations of the musculoskeletal first (A) and second as
well as third (B) model used in this study.
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Flexible Tibia

The geometrical configuration of the right flexible tibia of the first and second subjects is

obtained from 3-dimensional reconstruction of MRI. In the introduced models, the tibial

finite element model is described in ANSYS [63] using a 4-node tetrahedral solid

element. Figure 4.4 shows the 4-node tetrahedral element used in discretizing the tibial

finite element models.

Figure 4.4 4-node tetrahedral solid element j used to describe the tibial finite element
models.

The assumed nodal displacement field of element j shown in Figure 4.4 can be written as

follows:

ijijijijijijijijijijijij uNuNuNuNzyxu 44332211),,( +++= ,  (4.1)

ijijijijijijijijijijijij vNvNvNvNzyxv 44332211),,( +++= ,  (4.2)
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ijijijijijijijijijijijij wNwNwNwNzyxw 44332211),,( +++= ,  (4.3)

where ijijij zyx is the element coordinate system that is assumed to be parallel to the finite

element tibial reference coordinate system iii XXX 321 , ij
ku  is the translation of node

k(k = 1,..,4) in ijx  direction, ij
kv  is the translation of node k in ijy  direction, ij

kw  is  the

translation of node k in ijz  direction and ij
kN  is the shape function of the degrees of

freedom of node k in element j. The shape function ij
kN  can be described using the

volume coordinates of element j as follows:

ij
k

ij
k LN = ,  (4.4)

where ij
kL  is a volume coordinate of element j which can be defined as follows [90]:
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where ij
k

ij
k

ij
k zyx  is the coordinates of node k in element j coordinate system. The constants

1a , 1b , 1c  and 1d  in Eq (4.5) can be defined as follows:
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The other constants in Eq (4.6) to Eq (4.8) can be defined by cyclic permutation of

subscripts 1, 2, 3 and 4 in the order 14321 →→→→ . Recalling back Eq (2.44), the

kinematic matrix of element j in the flexible body i can be defined as follows:
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The finite element model of the right tibia of the (1) first subject and (2) second subject,

generated based on MRI is shown in Figure 4.5.

Figure 4.5 The tibial finite element model generated based on MRI and used in the
forward dynamics simulation for strain analysis. (1) first subject and (2) second subject.
A = two selected boundary nodes, B =  massless rigid beams and C = surface nodes.
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The finite element model of the right tibia of the (1) first subject and (2) second subject,

generated based on MRI is shown in Figure 4.5.

Figure 4.5 The tibial finite element model generated based on MRI and used in the
forward dynamics simulation for strain analysis. (1) first subject and (2) second subject.
A = two selected boundary nodes, B =  massless rigid beams and C = surface nodes.

72



72

In order to couple the flexible tibia to the adjacent bodies, massless nodes are modeled at

the location of the ankle and knee joints. These nodes are selected as boundary nodal

coordinates, and connected to the nodes at the surface of the tibial metaphyses using a

number of beam elements with unrealistic density and high stiffness as shown in Figure

4.5. This leads to a beam description to be practically rigid with no mass (i.e., massless

rigid beams). These massless rigid beams transform constraint forces due to the joints to

the flexible tibia. A large number of massless rigid beams are used in order to ensure that

the constraint forces due to the joints do not cause unnatural local deformation in the

flexible tibia. The flexible tibia is used in the forward dynamics analysis to calculate

deformation due to dynamic loading using Eq (2.2). The material properties of the cortex

bone are modeled to be linearly elastic and transversely isotropic. Young’s modulus and

the shear elastic modulus of the cortex bone are assumed to be 17 GPa and 10 GPa,

respectively, in the longitudinal direction along the bone, while they are assumed to be

transversely isotropic with the values of 5 and 3.5 GPa, respectively [91]. The total

number of nodal degrees of freedom of the tibial finite element models of the first and

second subjects are 16719 (i.e., n = 16719) and 18384, respectively.

Foot-Ground Contact Model

An increasing number of applications of the biomechanical models in sports, gait

analysis, health and product development requires comprehensive modeling of the

contact with the surrounding environment. The interaction between the biomechanical

model and the environment, such as the gravity, contact and collision forces has to be

taken into account during the simulation. In the introduced models, the contact between

the foot and the ground has to be taken into account. The foot-ground contact model

should prevent the foot from falling down through the ground and release it from the

ground at the toe-off as well. Generally, in the biomechanical models, the description of

the contact, such as the foot-ground contact, consists of two models. The first model is

the contact force model which represents the interaction between the matting surfaces.

The second model is the contact detection model based on the geometric description of

the contacting surfaces. In this study, the foot-ground contact force is modeled using five
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spring-damper systems located under each metatarsal head, in addition to one

spring-damper system located under the calcaneous. Each spring applies force in all three

directions; vertical, fore-aft and transverse. The vertical force varies exponentially with

the height of the foot above the ground in order to diminish quickly as the foot rises

above the ground [16]. The forces in the fore-aft and transverse directions are linear

functions of the foot position in the transverse plane and represent the friction forces

preventing the foot from slipping during contact. The magnitude of the ground reaction

force is typically the resultant of the vertical and friction forces. The foot-ground contact

force model properties consists of stiffness of the contact, damping of the contact,

vertical force exponent coefficient, full damping depth, static friction coefficient,

dynamic friction coefficient, friction transition velocity and stiction transition velocity.

Table 4.3 shows the values used to define the foot-ground contact force model properties

in the introduced models.

Table 4.3 Foot-ground contact force model parameters in the first and second

models. The stiffness, damping and full damping depth values are defined based on the

study of Gilchrist and Winter [92].

Contact parameters First Model Second and Third Models

Stiffness 200 N/mm 150 N/mm

Damping 2 Ns/mm 20 Ns/mm

Exponent coefficient 1 1

Full damping depth 1 mm 1 mm

Static friction coefficient 1 1

Dynamic friction coefficient 0.8 0.8

Friction transition velocity 1 mm/s 1 mm/s

Stiction transition velocity 1 mm/s 1 mm/s

The geometrical contact detection model, in this study, is represented by a 3-dimensional

ellipsoid contact surface located under each metatarsal head, in addition to one ellipsoid

contact surface located under the calcaneous, while the ground is represented by a flat

surface. The use of the ellipsoid surface provides easiness in detecting the contact points
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between the foot and the ground plane, calculating the ground reaction force with higher

fidelity, and increasing the compliance between the foot and the ground. The values of

the stiffness and damping of the foot-ground contact models can be tuned so that the

simulated ground reaction force for each model would be in a good agreement with the

experimental measured one. Generally, it can be noticed that increasing the stiffness

value will increase the ground reaction force and decrease the contact time between the

foot and the ground. Increasing the damping value will decrease the oscillations in the

ground reaction force curve and increase the contact time between the foot and the

ground. Figure 4.6 shows a graphic representation of the ellipsoid contact surfaces used

in calculating the ground reaction force.

Figure 4.6 Graphic representation of the 3-dimensional contact ellipsoid surfaces.

4.4. Human Experiments

Gait analysis laboratories equipped with motion capture systems, force plates and EMG

electrodes recorders are increasingly being used to measure body motion, ground forces

and muscular activation patterns, respectively, in a non-invasive manner. The human

experiments were conducted in the Neuromuscular Research Center in the department of

Biology of Physical Activity at University of Jyväskylä. The subjects are asked to walk

barefoot at a constant velocity (1.47 m/s for the first subject and 1.5 m/s for the second

subject) on top of a 10 m long force platform (Raute Inc, Finland) on a level ground.
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Vertical and horizontal ground reaction forces are collected separately for the right leg

from both subjects. The resultant ground reaction force is calculated from the right leg of

each subject. EMG activity of the right tibialis anterior, soleus, rectus femoris, vastus

lateralis, biceps femoris and gluteus medius muscles are recorded simultaneously from

the walking test conducted for the first subject. EMG activity from the right tibialis

anterior, soleus, rectus femoris, vastus lateralis, biceps femoris, gluteus medius, vastus

medialis, gastrocnemius medialis, gastrocnemius lateralis, and gluteus maximus muscles

are recorded simultaneously from the walking test conducted for the second subject.

Bipolar EMG Ag/AgCl electrodes with inter-electrode distance of 20 mm are used. The

EMG electrodes are prepared and positioned according to SENIAM [93]

recommendations. In case of tibialis anterior, biceps femoris and vastus lateralis the

positioning is made in accordance with the study of Rainoldi et al. [94]. The ground

reaction force and EMG are sampled at 2000 Hz (CED limited analog to digital board,

Cambridge, England). The video, ground reaction force and EMG collection are

synchronized and the data collection is started with a pair of photocells. The photocells

are also used to determine the walking velocity. The walking exercise conducted for the

first subject is recorded with four digital video cameras (COHU High Performance CCD

Camera,  San  Diego  CA,  USA)  at  50  Hz  sampling  frequency.  The  walking  exercise

conducted for the second subject is recorded with four video cameras (two analogic:

HSC-200  PM,  Peak  Performance  Technologies  Inc.,  CO,  USA  and  two  digital:

HDR-HC3E, Sony Corporation, Japan) at a 50 Hz sampling frequency. Schematic

illustrations of the measurement set up of the first and second subjects are provided in

Figure 4.7.
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Figure 4.7 Schematic illustration of the experimental set up of the first subject (A)
and the second as  well  as  third subjects  (B).  1.  Cameras.  2.  Light  source.  3.  Photocells.
4. Force platform. 5. Visual markers. 6. Telemetric EMG transmitter.

The camera pick-up area is adjusted in such a way that approximately a 1.5 walking cycle

could be recorded from each camera. Visual markers are placed on the first and second

subjects before the beginning of the experiments in predefined anatomical and technical

landmarks, following guidelines given in Reference [14] as shown in Figure 4.8.
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Figure 4.8 Schematic illustration of the motion capture marker placement. The
markers on the lower body are applied on the first subject while the markers on the full
body are applied on the second and third subjects. BHD = back head, FHD = front head,
C7  =  7th cervical vertebrae, Clav = clavicle, SHO = acromio-clavicular joint,
UPA = upper arm between ELB and SHO markers, PSIS = posterior superior iliac spine,
ELB = humeral lateral epicondyle, ASIS = anterior superior iliac spine, FRA = forearm
between  ELB  and  WRB  markers,  WRB  =  ulnar  epicondyle  THI  =  lower  lateral
1/3 surface of the thigh, KNE = femoral lateral epicondyle, ANK = lateral malleolus,
TIB = lower 1/3 of the shank, TOE = second metatarsal head, HEE = calcaneous at the
same height as the toe marker.

One walking cycle, from heel strike of the right leg to the next heel strike, is selected for

the  analysis.  The  video  clips  from  all  four  cameras  are  digitized  using

Peak Motus 8.1.0 (Peak Performance Technologies Inc, USA), and the software is used

to calculate the 3-dimensional coordinates for each marker. The coordinate system is

arranged so that the X-axis is in the direction of the walking movement, the Y-axis is from
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right to leg compared to the direction of the movement, and the Z-axis is directed up. The

3-dimensional coordinates are exported to MATLAB® [95]. In order to minimize the

digitization error, each of the coordinates is filtered with a 2nd order 5 Hz low-pass

Butterworth filter [2]. The direction of the movement is transferred linearly, so that all of

the digitized markers move an equal amount in X-direction, while each of the markers has

the same Z and Y coordinate values at the beginning and end of the walking cycle.

Successive walking cycles of one person can be assumed to have a similar pattern [78].

Therefore, the coordinates are interpolated so that coordinate data for a total of four

identical walking cycles are produced. A total number of 250 sagittal MRI from the right

tibia of the first subject with slice thickness of 1.2 mm are taken (Signa 1.5T Excite,

GE Medical Systems, France) with intervals of 0.6 mm in the neutral unloaded position.

As regards the second subject, a total number of 130 coronal MRI from the right tibia

with slice thickness of 1.2 mm are taken (Philips Intera 1.5T, Netherlands) with intervals

of 0.6 mm in the neutral unloaded position.

4.5. Numerical Analysis

The significant deformation modes in the forward dynamics simulation of the walking

exercise  are  selected  based  on  the  strain  energy  method.  A  total  number  of

10 deformation modes (i.e., m = 10) are used in the numerical analysis of the first model,

and a total number of 11 deformation modes are used in the numerical analysis of the

second model. A critical damping ratio of 1 is applied to the selected modes based on the

study of Dias Rodrigues et al. [96]. Figure 4.9 and Figure 4.10 show the selected tibial

deformation modes for the first and second models, respectively, with their natural

frequencies used in the forward dynamics analysis to obtain the tibial strains.
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Figure 4.9 The selected tibial deformation modes with their natural frequencies of the
flexible tibia used in the first model.

80
79

Figure 4.9 The selected tibial deformation modes with their natural frequencies of the
flexible tibia used in the first model.

80



80

Figure 4.10 Same as Figure 4.9 for the second model.

The principal strains and maximum shear strain are obtained from the introduced models

at a location corresponding to the location defined by Lanyon et al. [79], Burr et al. [46],

Milgrom et al. [80, 81] at the anteromedial aspect of the right tibial midshaft. The

principal strains and maximum shear strain obtained from the previous in vivo strain

measurements studies are calculated from the measured in plane strains using rosette
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strain gauge bonded to the anteromedial aspect of the right tibial midshaft. Therefore, for

the sake of comparison with the previous in vivo strain measurements, the principal and

maximum shear strains can be calculated based on the in plane strains obtained from the

models using the following standard formulas [97]:
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where 2,1ε  and maxγ are the maximum, minimum principal and maximum shear strains,

respectively and zy εε , and yzγ  are the in plane normal strains in Y and Z directions and

the shear strain in the YZ plane, respectively, which can be obtained from the introduced

models.

To demonstrate the strain distributions around the cross section at the middle of the tibial

shaft during the stance phase, the axial strain defined in the direction of the long axis of

the tibia is simulated in four locations corresponding to the locations defined by Peterman

et al. [82]. The muscular forces and the ground reaction force dominate the loading on the

bone [98], which in turn determines the strain behavior. Therefore, in order to verify the

accuracy of the introduced models, the ground reaction force and EMG activation

patterns obtained from experiments are compared with their correspondences obtained

from the models in terms of the cross-correlation coefficient ( ). It is essential to point

out that due to the ethical and legal restrictions in measuring the muscle force in humans

invasively, muscular forces obtained from the simulation models are usually evaluated

based on a qualitative comparison with the corresponding EMG patterns obtained from

experimental measurements [66, 99]. There is an agreement in the scientific community

about the relation between the EMG signal and the corresponding muscle force, in a
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sense that, increasing the firing rate of an individual motor unit and/or increasing the

number of motor units leads to an increment in the generated muscle force and the

corresponding EMG signal [25, 66]. However, the nature of this relation is still under

research and investigation due to many reasons which are explained later on in this

chapter. The kinematics of the models obtained from the inverse and forward dynamics

simulations are compared in order to verify the capability of the models of replicating the

motion in the forward dynamics simulation. This is accomplished by comparing the

position of the mass center of each segment in the models in the X, Y and Z directions,

resulting from inverse dynamics simulation to their correspondences resulting from

forward dynamics simulation in terms of .

4.6. Results

Four walking cycles are simulated using a simulation time step of 0.02 seconds. Screen

shots of the walking performance during the forward dynamics simulation for one

walking cycle of the right leg from the (1) first model (2) second model are provided in

Figure 4.11.
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Figure 4.11 Screen shots of the walking performance during the forward dynamics
simulation  for  one  walking  cycle  of  the  right  leg  in  the  (1)  first  model  and  (2)  second
model. A) Heel strike, B) Full foot-heel off, C) heel off-toe off and D) forward swing.

The values for the maximum and minimum principal strain, maximum shear strain and

axial strain are obtained from the models. The numerical strain results obtained from the

models and their correspondences reported from the previous in vivo strain measurements

are given in Table 4.4. Figure 4.12 and Figure 4.13 show the simulated maximum and

minimum principal strains and maximum shear strains for four walking cycles.
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Table 4.4 The principal and maximum shear strain magnitudes with their rates.
Literature values from in vivo measurements and the values estimated by the models. The
principal and maximum shear strains are obtained from the anteromedial aspect of the
tibial midshaft, which is the same location in all of the studies mentioned in the table.

Strain magnitude
[microstrain]

Strain rate
[microstrain/s]

Max
principal

Min
principal

Max
Shear

Max Min Max
shear

Lanyon et al. [79] 395 -434 829 Not
reported -4000 Not

reported
Burr et al. [46] 437 -544 871 11006 -7183 16162
Milgrom et al. [80] 840 -454 1183 3955 -3306 10303
Milgrom et al. [81] 394 -672 Not

reported 4683 -3820 Not
reported

First model 305 -645 948 4000 -7000 10000
Second model 335 -453 785 6000 -6300 10230

Figure 4.12 Simulated maximum and minimum principal strains and maximum shear
strain curves at the anteromedial aspect of the right tibial shaft of the first model for four
walking cycles. The bolded line corresponds to one walking cycle.
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Figure 4.13 Same as Figure 4.12 for the second model.

As regards the ground reaction force and muscular forces, Table 4.5 shows the

cross-correlation coefficient ( ) between measured and simulated values.
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Table 4.5 Cross-correlation coefficient ( ) between measured and simulated values
of the ground reaction and muscular forces of the first and second models.

Compared Items First model

)

Second model

)

Ground reaction force 0.97 0.95

Soleus 0.94 0.64

Gluteus medius 0.75 0.84

Vastus lateralis 0.65 0.47

Tibialis anterior 0.39 0.80

Biceps femoris 0.33 0.55

Rectus femoris 0.22 0.29

Gastrocnemius Lateralis - 0.82

Gastrocnemius Medialis - 0.86

Gluteus maximus - 0.72

Vastus medialis - 0.50

Simulated and measured muscular forces of the first and second models are plotted in

Figure 4.14 and Figure 4.15. Simulated and measured ground reaction forces of the first

and second models are plotted in Figure 4.16. In the comparison of the kinematics of the

models between inverse and forward dynamics simulations,  is higher than 0.99 for the

position of the mass center of each segment in the models in the X, Y and Z directions.
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Figure 4.14 Measured electromyographical (EMG) muscle activity (dashed line ---)
and simulated muscular force production (solid line –––) obtained from the first model
plotted against normalized time for one walking cycle. EMG and force values are
normalized to the maximum values for each plot. EMG is rectified and low pass filtered
at 10 Hz. BicFem  = biceps femoris, GluMed = gluteus medius, RecFem = rectus femoris,
Sol = soleus, TibAnt = tibialis anterior and VasLat = vastus lateralis.
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Figure 4.15 Measured electromyographical (EMG) muscle activity (dashed line ---)
and simulated muscular force production (solid line –––) obtained from the second model
plotted against normalized time for one walking cycle. EMG and force values are
normalized to the maximum values for each plot. EMG is rectified and low pass filtered
at 10 Hz. BicFem  = biceps femoris, GluMed = gluteus medius, RecFem = rectus femoris,
Sol = soleus, TibAnt = tibialis anterior, VasLat = vastus lateralis,
GasLat = gastrocnemius lateralis, GasMed = gastrocnemius medialis, VasMed = Vastus
medialis, GluMax = Gluteus maximus.
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Figure 4.16 Measured ground reaction force (dashed line ---) and simulated ground
reaction force (solid line –––) obtained from the first model (A) and second model
(B) plotted against time for one walking cycle.

4.7. Discussion

No significant difference is found between the strain results obtained from the present

models and the previous in vivo strain measurements [46, 79, 80, 81]. The accuracy of the

strain results predicted by the introduced models is investigated. Based on this
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investigation, the strain magnitudes obtained from the models are strongly dependent on

the ground reaction force estimation and the significant deformation modes used in the

numerical analysis. This implies that if the models are capable of predicting reasonable

ground reaction force comparable to the values and patterns measured from the

experiment, the strain magnitude estimation can stay within the normal and acceptable

ranges. In order to investigate the effect of the deformation modes used to describe the

flexibility of the tibial model on the strain results, a total number of 25 deformation

modes is calculated for each model. Based on the strain energy method, the significant

deformation modes used in the numerical analysis for every model, represent the modes

at which the convergence of the strain results occurs. Therefore, including the other

deformation modes of each model has insignificant effect on the strain results. The

deformation modes calculated for each model are shown in Appendix A(II). Moreover,

the significant deformation modes of the flexible tibia rely on the geometrical

configuration of the individual flexible tibial model and the performance of the walking

exercise in the forward dynamics simulation. It is essential to point out that the local

strains developed at the nodes near the muscle insertion points on the bone, require local

deformation modes that can accurately capture the deformation at these locations. In

addition, the muscle insertion should be modeled with more complexity, taking into

account the insertion as an area rather than a point and giving an insight into the

distribution of the muscle force in the region where the muscle is inserted. Further, a

highly dense bone mesh at the muscle insertion region is required for this kind of

complex muscle attachment model, and to capture the local strains with an adequate

accuracy.

It can be depicted from Figure 4.16, that the ground reaction force corresponds to the

phases of the walking cycle explained previously in this chapter. It can be noticed that

there are two peaks representing the heel strike and the toe-off, respectively, and the sway

curve in between represents the stance phase occurring between the heel strike until the

toe- off and finally the curve starts to decay until it reaches zero during the forward swing

phase. The simulated ground reaction force and muscular forces are used to verify the

introduced models. Due to the fact that the musculoskeletal loading conditions are widely
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unknown and may vary considerably [100], the strain magnitudes obtained from the

present models may be considered as an acceptable approximation of the previous in vivo

strain measurements.

Strain Results

The study of Lanyon et al. [79] is considered as the first in vivo strain measurement on a

tibia for a normal subject during physical activities. In that study, walking on a belt

without shoes at 1.4 m/s is one of these physical activities where tibial strains are

assessed. The maximum principal and maximum shear strains obtained from the first

model are different by 23% and 14%, respectively, with respect to their correspondences

reported by Lanyon et al. [79]. The maximum and minimum principal strains and

maximum shear strain obtained from the second model differ by 15%, 4% and 5%,

respectively, with respect to values reported by Lanyon et al. [79]. The profiles of the

maximum and minimum principal strains shown in Figure 4.12 and Figure 4.13 seem to

be comparable to their correspondences obtained from the study of Lanyon et al. [79]

(see Appendix A(III)). The oscillations in the strains are apparently due to the

fluctuations of the muscular forces. The high peaks observed at the strain profiles shown

in Figure 4.13 at the heel strike and push off phases can be explained because of the over

estimated ground reaction force obtained from the second model at those phases, which

can be noticed in Figure 4.16. The study of Burr et al. [46] shows in vivo strain

measurements in two subjects during walking at 1.39 m/s and wearing heavy infantry

boots weighing 1.2 kg. The differences between the values of the minimum principal

strain and maximum shear strain obtained from the first model are 18% and 9%,

respectively, with respect to their correspondences obtained in Burr et al. [46]. The

maximum and minimum principal strains and maximum shear strain obtained from the

second model differ by 23%, 17% and 10%, respectively, with respect to the values

obtained in Burr et al. [46]. Yet, the maximum shear strain curve obtained from the

models appears to be comparable to the one obtained in Burr et al. [46] (see Appendix

A(III)). It can be noticed that the strain rate magnitudes obtained in Burr et al. [46] are

higher than their correspondences obtained from the models and the other in vivo strain
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measurement studies. However, the minimum strain rates obtained by the first and second

models are different by 3% and 12%, respectively, with respect to the value reported by

Burr et al. [46]. Milgrom et al. [80] present tibial principal strains measured in vivo in six

subjects during walking with running shoes on a treadmill at 1.39 m/s. While the value of

the maximum shear strain obtained from the first model is different by 20% of the

corresponding strain observed by Milgrom et al. [80], the maximum strain and maximum

shear strain rates obtained from the first model are within the range of ± 2% of their

correspondences reported in the same study. In the second model, the predicted minimum

principal strain and maximum shear strain rate are almost identical compared to the

values reported in the study of Milgrom et al. [80], with an insignificant difference which

can be considered negligible. Furthermore, in a recent study by Milgrom et al. [81], the

tibial principal strains and strain rates are measured in vivo during walking with running

shoes for four male subjects. The values of the maximum and minimum principal strains

obtained from the first model are different by 22% and 4% with respect to the

corresponding ones obtained by Milgrom et al. [81], while the value of the maximum

strain  rate  is  14%  lower  than  its  correspondence  reported  in  the  same  study.  The

maximum and minimum principal strains predicted by the second model differ by 15%

and 32%, respectively, with respect to the values observed in the study of Milgrom et al.

[81]. Comparing the previous in vivo strain measurements during walking to the

numerical results obtained from the present models, it can be concluded that the results

obtained from the models are reasonable and consistent with the in vivo strain data. The

differences between the strain results may be explained on the basis of many aspects such

as the subject’s age, gender, height and weight, in addition to the experimental techniques

used to measure the strains.

Strain Distributions

In the study of Peterman et al. [82], the dynamic gait simulator described by Sharkey and

Hamel [101] is used to measure the strain in vitro during the stance phase of walking

from heel strike to toe off. In that study, five cadaver feet from different donors are

harvested approximately 180 mm above the ankle, and seven gage strain rosettes are
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bonded at the middle of each harvested tibial shaft (approximately 90 mm above the

ankle) in seven locations around the cortex of the tibia. Axial strain profiles measured in

the direction of the long axis of the tibia from four gages are reported in that study.

Figure 4.17 and Figure 4.18 show the simulated axial strain profiles at the middle of the

tibia of the first and second models, respectively, in four locations which correspond

most closely to the locations defined by Peterman et al. [82].

Figure 4.17 Simulated axial strain curves at two anterior and two posterior sites around
the cortical tibia at the middle shaft during the stance phase. The shape represents the
cortical cross sectional geometry at the middle of the first subject’s tibia with marked
locations that correspond most closely to the locations defined in the study of Peterman et
al. [82].
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Figure 4.18 Same as Figure 4.17 for the second model.

The simulated strain profiles shown in Figure 4.17 and Figure 4.18 are similar to their

correspondences recorded in the study of Peterman et al. [82] (see Appendix A(III)). It is

worth mentioning that strains at different distances between the ankle and the middle of

the tibia are simulated using the presented models in the same locations around the

cortical tibia as defined by Peterman et al. [82], and their profiles were similar across all

simulations and distance levels. Peterman et al. [82] state that they measured the strains

around the cortical tibia at different distances 90, 120 and 150 mm above the ankle, and

their profiles were also similar across all measurements and mounting levels. Another

concluding remark obtained from the models agreeing with what is stated in the study of

Peterman et al. [82] is that the axial strains at the anterior location L1 has a similar profile

to the maximum principal strain while axial strain at the posterior location L5 reflects the

minimum principal strain. The strain measurements reported in the study of Peterman et

al.  [82]  from  the  seven  gage  strain  rosettes  about  the  cortical  tibia  and  their

correspondences obtained from the models are shown in Table 4.6.
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Table 4.6 Strain distribution magnitudes about the cortical tibia obtained from the
introduced models and their correspondences reported in the study of Peterman et al.
[82].

Locations & Type of
strains

Peterman et al.
[82] (mean*, peak)

[microstrain]

First model

[microstrain]

Second model

[microstrain]
L1
Axial strain 505*, 989 855 451
Maximum principal strain 603*, 1088 855 452
Minimum principal strain -155*, -240 -624 -368
Maximum shear 670*, 1185 1480 820
L2
Axial strain 600* 888 283
L3
Axial strain -500* -623 -257
L4
Axial strain -1400* -1800 -675
L5
Axial strain -1020*, -1864 -1900 -673
Maximum principal strain 369*, 674 1499 471
Minimum principal strain -1055*, -1926 -1907 -677
Maximum shear 1293*, 2317 3406 1148
L6
Axial strain -1200* -1300 -584
L7
Axial strain 0* -635 -273

The strain distributions obtained from the introduced models indicate that bending is the

primary mode of tibial loading, as it has been shown in other mammalian long bones

according to the studies of Biewener [102] and Garcia and da Silva [103]. It can be

noticed from Table 4.6 that in general the strain values obtained from the models have

acceptable agreement with their correspondences reported in the study of Peterman et al.

[82], except for the axial strain obtained at location L7. The discrepancy between the

simulated axial strain at location L7 and its corresponding measured strain reported in the

study of Peterman et al. [82] may be explained based on the location of the neutral axis of

bending during the stance phase. In the introduced models, the strain distributions
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represent simulated strains around the cortical tibia at the middle of the tibial shaft, where

the whole tibia is taken into consideration. On the other hand, in the study of Peterman et

al. [82], the strain distributions represent measured strains around the cortical tibia at the

middle of the tibial shaft, where the tibia is harvested 180 mm above the ankle.

Therefore, the location of the neutral axis of bending in the tibia of the introduced models

might differ from the one reported in the study of Peterman et al [82]. In the study of

Peterman et al. [82], the axial strains measured at location L7 nearly averaged to zero due

to the close proximity of this location to the neutral axis of bending during the stance

phase, as stated in that study. On the other hand, in the introduced models it seems that

location L7 experiences compressive stress during the stance phase. However, an

agreement can be found between the axial strain obtained from the introduced models at

location L7 and its correspondence measured from in vivo and in vitro in the study of

Milgrom et al. [83]. Based on the agreement between the predicted strains by the present

models and the previous in vitro strain measurement study [82], it can be concluded that

the models are able to predict the strain distributions around the cortical tibia during

changing mechanical loading environment in the gait stance phase.

Validation of the Introduced Biomechanical Models

The accuracy of the biomechanical models is studied by comparing the numerical results

of the ground reaction and muscular forces obtained from the models with their

correspondences measured from the practical experiments. The results have acceptable

overall agreement, while some discrepancy can be, however, observed between the

measured muscular activities and modeled muscular force production patterns. To avoid

invasive methodologies for measuring muscular forces in vivo because of ethical and

legal constraints concerning humans, EMG data is commonly used to investigate the

accuracy of muscular forces obtained from musculoskeletal models based on a qualitative

comparison [66, 99]. However, EMG data can tell when the muscle is active, but it can

not be considered an accurate indication of the muscular force patterns and magnitudes in

dynamic movements. The relationship between muscular forces and EMG data is
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nonlinear [104]. In addition, the duration of the muscle force signal may differ from the

duration of the corresponding EMG signal due to the temporal disassociation between the

two signals, which is accounted for by so-called electro-mechanical delay [25]. This

implies that the muscle force pattern does not necessarily agree with the EMG pattern.

Further, the nonlinear EMG- force relationship is dependent on the joint angle, which

makes EMG-force relationship indeterminate in dynamic situations [105]. In addition,

EMG data can not indicate the contribution of an individual muscle to the observed

motion. For example a muscle can accelerate joints that it does not span and body

segments  which  it  is  not  attached  to  [99].  It  is  also  important  to  bear  in  mind  the

methodological limitations of EMG measurements. More specifically, in order to predict

the force output of a distinct muscle, it is imperative that the EMG recorded represents

only the electrical activity of the muscle of interest. Especially in case of muscles where

the electrode placement site is spatially in close proximity to some other muscle, there is

almost invariably at least some unwanted signal (cross talk) recorded from the other

adjacent muscle [106].

In the first model, the discrepancy between the tibialis anterior and biceps femoris forces

obtained from the model, and their EMG measured from the experiment may be caused

by the algorithm used to solve the muscular force production. The algorithm is based on

changes in muscle length. Thus, in the case of tibialis anterior, the algorithm did not

account for coactivation of muscles. In the analogy to isometric force production, a

muscle can produce force without changing its length during coactivation of an

antagonist muscle. As regards the biceps femoris, the discrepancy found may be

explained because of the biarticulate nature of the biceps femoris muscle. The biarticulate

muscle can produce force without changing its length. It can be noticed that there is a

discrepancy found between the rectus femoris force obtained from both models and their

measured EMG patterns from the experiments. This discrepancy can be explained that

there might be a possibility that signals from surrounding muscles, especially vastus

lateralis and vastus medialis may also have been recorded during the EMG measurements

(cross talk) [107]. Accordingly, the initial activity noticed in the rectus femoris EMG

pattern shown in Figure 4.15 may be caused by cross talk from vastus lateralis and vastus
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medialis where both of them are active at the beginning. The second high peak noticed in

the force production patterns of the vastus lateralis and vastus medialis obtained from the

second model may be caused by the over estimated ground reaction force during the push

off phase which can be seen in Figure 4.16(B). Another reason which might have

contributed to the discrepancy between the simulated muscular forces and the measured

EMG activation patterns is the absence of a criterion for muscular force distribution. The

muscle model used in this study lacks the activation dynamics, and thus a number of

optimization techniques, such as the tracking dynamics optimization method [108], can

not be applied in order to uniquely determine the contribution of each individual muscle

during physical activity. Nevertheless, the forces of the five major muscle groups; gluteus

maximus, gluteus medius, vastus, soleus, and gastrocnemius, which are the prime

movers, contributing up to 70% of the total mechanical energy produced by all the

muscles and supporting the whole body during walking [3], are predicted reasonably by

the introduced models, except for the vastus muscle force, which is predicted less

accurately.

4.8. Limitations of the Introduced Biomechanical Models

In addition to the general limitations discussed in Chapter 3, caused by the anatomical

components used to develop a general flexible multibody biomechanical model, other

specific limitations of the introduced models related to the tibial finite element model can

be also listed as follows:

1. In the introduced models, the material properties of the cortical bone of the

flexible tibia are assumed to be homogenous, while in reality they are

inhomogeneous [25, 77]. The assumption of homogenous material properties

may limit the models to be suitable for tibial strains analysis in the mid-region

of the tibial shaft where the variation of the bone material properties is

relatively low [77]. However, to acquire an estimate of the inhomogeneous

properties of the bone, CT scans are needed. Therefore more sophisticated

simulation of bone material properties based on CT scans may further

improve the estimation of strain results using the introduced models.
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2. In the introduced models, the tibial finite element model consists of the

cortical bone only without taking into consideration the trabecular bone.

Neglecting the trabecular bone may limit the models to be suitable for tibial

strain analysis in the middle diaphysis of the tibia. This is due to the fact that

in the middle diaphysis of the tibia, where the strains are estimated, there is

little if any trabecular bone, and thus neglecting trabecular bone tissue may be

justified as it may have an insignificant effect on the estimated strains.

However, the introduced models may not be suitable for strain analysis in the

tibial metaphyses where the trabecular bone extensively exists.

4.9. Future Development of the Introduced Biomechanical Models

Developing accurate multibody biomechanical models is challenging because of the

intrinsic complexity of biological systems. The accuracy of using the flexible multibody

simulation approach in predicting dynamic bone strains is basically limited to the

complexity involved in developing multibody biomechanical models. Increasing the

accuracy of the multibody biomechanical model can lead to a more accurate estimation of

dynamic bone strains based on the flexible multibody approach. In the introduced

biomechanical models, several future enhancement proposals can be suggested. These

proposals may increase the accuracy of the bone strain estimation using the approach

proposed in this study. The proposals can be listed as follows:

1. Despite the fact that most multibody biomechanical models, as well as the

introduced models, assume that the muscle attachments are single points on the

bone [3], more sophisticated muscle attachment simulation may lead to further

enhancement of muscular force estimation. Thus, more accurate bone strains

estimation can be achieved using the introduced models.

2. More sophisticated muscle model may lead to more accurate muscular force

estimation. For example, the accuracy of the muscular forces predicted by the

introduced models may be increased by using other muscle models. For example,

Hill muscle model [67] or the musculotendon actuator model described in the
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study of Zajac [66], or by using a combined muscle model consisting of a neural

network to model the muscle activation dynamics based on EMG signals and Hill

muscle model to account for the muscle contraction dynamics [109, 110].

3. Integrating magnetic resonance imaging techniques into a musculoskeletal

modeling framework can enhance the modeling of musculoskeletal anatomy,

muscle architecture, joint motion, muscle moments arms and muscle motion

(muscle tissue deformation) [56]. For example, most musculoskeletal models, as

well as the introduced models, represent the muscle geometry as a series of line

segments [56]. This simplification limits the accuracy of muscles paths definition

and assumes that all fibres within each muscle compartment have the same length

and moment arm. Blemker and Delp [111] have shown that the limitations of the

muscle model described as series of line segments can be overcome by using a

3-dimensional finite element model of a muscle based on MRI. In the introduced

models, the prime actuator muscles of the simulated exercise may be modeled

using 3-dimenisonal finite element models based on MRI to give better estimation

of muscular forces and thus bone strains. However, using a 3-dimensional

representation of a muscle based on MRI is still under development and research,

as it can be considered impractical to be used in a large number of multibody

biomechanical models due the expensive computation [111]. Figure 4.19 shows

an example of 3-dimensional finite element models of gluteus maximus, gluteus

medius, psoas and illiacus generated on the basis of MRI and used to simulate hip

flexion-extension [111].
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Figure 4.19 3-dimensional finite element models of gluteus maximus, gluteus medius,
psoas and illiacus generated based on MRI and used to simulate hip flexion-extension
[111].
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Figure 4.19 3-dimensional finite element models of gluteus maximus, gluteus medius,
psoas and illiacus generated based on MRI and used to simulate hip flexion-extension
[111].
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5. CONCLUSIONS

The objective of this study was to demonstrate the utility of the flexible multibody

simulation approach in the field of dynamic bone strain analysis. It is evident that there is

a strong relation between strains within the bone tissue and bone (re)modeling. This has

been attributed to the fact that the soft tissues within a bone exhibit elastic deformations

under physiological loading. In fact the skeleton’s capacity to withstand external loading

is achieved and maintained because the adaptive (re)modeling of bone tissue is both

sensitive and responsive to the functional demands placed upon it. The in vivo strain

measurement is considered an invasive procedure and requires surgical implementation

of strain gauges, and it might involve risks, principally those of infection. In addition, it is

limited in practice to certain regions of superficial bones only. Based on previous studies,

it was shown that the bone remodelling process relies on dynamic bone strains rather

static strains. This shed a light on the uniqueness and significance of the flexible

multibody approach in dynamic bone strain analysis. This is due to the fact that the finite

element method may be limited to the static analysis of bone strains due to the expensive

computation required for the dynamic analysis, especially for a biomechanical model

consisting of several bodies. In addition, in rigid multibody biomechanical models the

flexibility of the bones can not be taken into account, a fact that renders such models

unfeasible for bone strain analysis. In order to investigate the capability of using the

flexible multibody simulation approach in estimating bone strains during physical

activity, two 3-dimensional musculoskeletal models with right flexible tibia in each

model generated based on MRI were used as demonstration examples. The introduced

models were applied to simulate walking on a level exercise in order to predict the tibial

strains. The principal strains were obtained from the models at a location corresponding

to the location defined in previous in vivo strain measurements at the anteromedial aspect

of the right tibial midshaft. The predicted tibial strains were compared with their

correspondences obtained from literature-based in vivo strain measurements conducted

for walking. The simulated tibial strains predicted by the models were consistent with

in vivo strain measurements. Further, the strain distributions around the cortical bone at
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the middle of the tibial shaft during the stance phase were found to be consistent with

previous in vitro strain measurement study.

The floating frame of reference formulation was used in this study in the dynamic bone

strain analysis during physical activity. The unique feature of the floating frame of

reference formulation is the use of deformation modes in describing the deformation of

the flexible body. This feature makes it feasible to be utilized in the dynamic analysis of

bone strains, while the other methods can not be practical due the expensive computation.

The proposed method was mainly limited to the complexity involved in developing

multibody biomechanical models. Developing accurate musculoskeletal models is

considered a challenging and ambitious task. This is attributed to the fact the mechanics

of the human body, including changing geometry and changing muscle moment arms are

complex. The models were verified by comparing numerical results of the ground

reaction force and muscular force production patterns obtained by the models with their

correspondences measured from the practical experiments. The introduced models were

mainly limited to the procedure used for muscular forces estimation. Some discrepancy

was found between the measured muscular activities and estimated muscular force

patterns by the models. On the other hand, the models showed a good accuracy in

mimicking the real mechanical loading environment of the ground reaction force

measured from the experiment.

Based on the reasonable agreement between the simulated strain estimates and in vivo

literature values, it can be concluded that the proposed approach may also be of use in the

estimation of bone strains in general where other bones rather than tibia can be assumed

as flexible bodies. Several future opportunities for development and research may be

initiated with the potential of developing other biomechanical models based on the

proposed approach that might be of use in the following medical applications: 1) studying

strain behavior in bones that are not directly accessible in vivo; 2) designing targeted

physical training exercises to improve skeletal rigidity; 3) developing of implants by

applying dynamic strain analysis to assess how the implant material behaves under

loading and 4) performing detailed internal strain analysis in the field of joint prostheses
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and characterize exercise induced loading in detail – e.g. whether the specific exercise

will be able to result in cortical thickening through bone redistribution. However, this

type of a detailed strain analysis might require a CT scanning, so that the inhomogeneous

density and elasticity distribution of the bone as well as the internal structure could be

better considered. Finally, it can be considered as a hypothesis that a more sophisticated

muscle model and attachments, as well as bone material properties could further lead to a

more accurate simulation of bone strains using the flexible multibody simulation

approach presented in this study.
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APPENDIX A

(I) The third model and the results obtained from it are presented in Figures 1-6 and

Tables 1-3.

Figure 1 The tibial finite element model generated based on MRI of the third model
and used in the forward dynamics simulation for strain analysis (n = 12726). A = two
selected boundary nodes, B =  massless rigid beams and C = surface nodes.
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Figure 2 The selected tibial deformation modes with their natural frequencies of the
flexible tibia used in the third model.
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Table 1 The principal and maximum shear strain magnitudes with their rates
obtained from the third model.

Strain magnitude
[microstrain]

Strain rate
[microstrain/s]

Max
principal

Min
principal

Max
Shear

Max Min Max
shear

Third model 260 -613 872 3100 -5750 10350

Figure 3 Simulated maximum and minimum principal strains and maximum shear
strain curves at the anteromedial aspect of the right tibial shaft of the third model for
three walking cycles. The bolded line corresponds to one walking cycle.
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Table 2 Cross-correlation coefficient ( ) between measured and simulated values
of the ground reaction and muscular forces of the third model.

Compared Items Third model

)

Ground reaction force 0.96

Soleus 0.93

Gluteus medius 0.88

Vastus lateralis 0.44

Tibialis anterior 0.22

Biceps femoris 0.71

Rectus femoris 0.42

Gastrocnemius Lateralis 0.76

Gastrocnemius Medialis 0.81

Gluteus maximus 0.89

Vastus medialis 0.48
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Figure 4 Measured electromyographical (EMG) muscle activity (dashed line ---)
and simulated muscular force production (solid line –––) obtained from the third model
plotted against normalized time for one walking cycle. EMG and force values are
normalized to the maximum values for each plot. EMG is rectified and low pass filtered
at 10 Hz. BicFem  = biceps femoris, GluMed = gluteus medius, RecFem = rectus femoris,
Sol = soleus, TibAnt = tibialis anterior, VasLat = vastus lateralis,
GasLat = gastrocnemius lateralis, GasMed = gastrocnemius medialis, VasMed = Vastus
medialis, GluMax = Gluteus maximus.
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Figure 5 Measured ground reaction force (dashed line ---) and simulated ground
reaction force (solid line –––) obtained from the third model plotted against time for one
walking cycle.
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Figure 6 Simulated axial strain curves at two anterior and two posterior sites around
the cortical tibia at the middle shaft during the stance phase. The shape represents the
cortical cross sectional geometry at the middle of the third subject’s tibia with marked
locations that correspond most closely to the locations defined in the study of Peterman et
al. [82].
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Table 3 Strain distribution magnitudes about the cortical tibia obtained from the
third model.

Locations & Type of strains
Third model

[microstrain]
L1
Axial strain 357
Maximum principal strain 359
Minimum principal strain -267
Maximum shear 626
L2
Axial strain 311
L3
Axial strain -646
L4
Axial strain -812
L5
Axial strain -670
Maximum principal strain 490
Minimum principal strain -680
Maximum shear 1170
L6
Axial strain -605
L7
Axial strain -583
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(II) The deformation modes calculated for each tibial finite element model using

ANSYS are shown in Figures 7-9.

Figure 7 Calculated deformation modes with their natural frequencies of the first
model. Shaded modes present the significant deformation modes used in the numerical
analysis.
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Figure 8 Same as Figure 7 for the second model.
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Figure 9 Same as Figure 7 for the third model.
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(III) Figures 10, 11 and 12 show the tibial strains reported in the previous in vivo [79,

46] and in vitro [82] strain measurement studies.

Figure 10 Maximum and minimum principal strains curves obtained by Lanyon et al.
[79] at the anteromedial aspect of the tibial midshaft shaft during one cycle of walking on
a belt without shoes.
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Figure 11 Maximum shear strain curve obtained by Burr et al. [46] at the
anteromedial aspect of the tibial midshaft shaft during walking with boots.
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Figure 12 Axial strain curves obtained by Peterman et al. [82] at two anterior and
two posterior sites around the cortical tibia at the middle shaft during the stance phase.
The light grey curve represents the measured vertical ground reaction force during the
in vitro strain measurements.
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The light grey curve represents the measured vertical ground reaction force during the
in vitro strain measurements.
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