
Lappeenranta University of Technology

Department of Information Technology

Computing the persistent homology

of range images with alpha shapes
(Master’s thesis)

Author: Martynov Ivan, a0315930

Supervisor: Professor, Ph.D. Heikki Haario

Examiner: Researcher/Teacher, Ph.D. Tuomo Kauranne

Lappeenranta

2008

Abstract

Laser scanning is becoming an increasingly popular method for
measuring 3D objects in industrial design. Laser scanners produce a
cloud of 3D points. For CAD software to be able to use such data,
however, this point cloud needs to be turned into a vector format. A
popular way to do this is to triangulate the assumed surface of the
point cloud using alpha shapes. Alpha shapes start from the convex
hull of the point cloud and gradually refine it towards the true surface
of the object.

Often it is nontrivial to decide when to stop this refinement. One
criterion for this is to do so when the homology of the object stops
changing. This is known as the persistent homology of the object.
The goal of this thesis is to develop a way to compute the homology
of a given point cloud when processed with alpha shapes, and to infer
from it when the persistent homology has been achieved. Practically,
the computation of such a characteristic of the target might be applied
to power line tower span analysis.

1

Contents

1 Introduction 3

2 Problem description 5

3 Simplices and simplicial complexes 8

4 Homology and Betti numbers 11

5 Alpha shapes and the persistent homology 13
5.1 Delaunay triangulation 13
5.2 Alpha shapes . 18
5.3 The persistent homology 19

6 Software to compute the persistent homology 23
6.1 Ashape: a pedestrian alpha shape

extractor . 23
6.2 PLEX — simplicial complexes in

MATLAB . 28

7 Results 47
7.1 The persistent homology of artificial data 47
7.2 The persistent homology of real data 52

8 Conclusions and future perspectives 63

References 66

2

1 Introduction

Over the last decade or so, range imaging with laser scanners
has become an increasingly important tool in industrial design and
manufacturing. Laser scanners can produce a point cloud that
lies on the surface of even very complex an object. For scanning
results to be useful in industrial design, however, such a point cloud
must be converted into a surface built from polygons, such as a
simplicial complex. This is a nontrivial task, because the apparent
connections between neighboring points depend on our assumptions
on the smoothness and other properties of the surface.

A useful tool for formulating a sequence of increasingly accurate
renderings on such a surface are alpha shapes that proceed smoothly
from the convex hull of the point cloud towards an increasingly fine-
featured representation. Eventually, however, the points will become
disconnected components each, by which time we will have gone too
far. A good indicator of when the radius of alpha shapes is optimal
is the persistent homology of an object. This means a set of Betti
numbers that initially keep increasing and eventually stay invariant
for an optimal range of alpha values. This thesis will implement
an algorithm in MATLAB that computes the persistent homology
in two and three dimensions and produces the stable Betti numbers.
The algorithm will also render the laser scanned point cloud as a
simplicial complex built from an alpha shapes representation with
such an optimal alpha value.

In section 2 we describe problems which may require tools of
combinatorial topology theory. The approaches to solve the tasks
are mentioned as well. In section 3 we shall dive in the theory of
combinatorial topology, recall its basics and a definition and features
of simplicial complexes [1]. In next section we get familiar with such
a topological characteristic as a target’s homology and with Betti
numbers as its intuitive presentation [15]. Section 5 demonstrates
different techniques of an object’s approximation and tells about the
author of one of them. An idea of combining these approximation
methods is shown. There is a persistent homology concept presented
as well as one of the ways to compute Betti values of a simplicial

3

complex. Some combinatorial topology methods, which have been
already developed, are introduced in section 6. We demonstrate our
results in section 7. There we illustrate how our routines work with
synthetic and real data. Finally, the last section is dedicated to
conclusions and directions of probable future work.

4

2 Problem description

There are many industrially important modeling problems that require
us to define the connectivity degree of an object, the number of holes
of it or the topological structure in general. Methods to realize this lie
in the combinatorial topology and they allow us to describe homology
of the object by delineating it by tetrahedra, triangles and segments.
There are techniques to characterize a simplicial representation of the
target and they are very useful. In this thesis we show how to construct
complexes and calculate the number of objects, holes and cavities.
Sometimes we do not have a real image of the object but several
vertices of it. We use these points to make a tetrahedralization (a
triangulation in two dimensions) of the object and to get its topological
structure. One of the most efficient ways to build the complex is based
on the Delaunay triangulation. In the paper we represent a synthesis
of alpha shapes and Delaunay triangulation. The alpha number helps
us to cut unnecessary segments and thereby to delineate connected
components, holes and voids of the object. The process of building
simplices starts with an alpha value big enough (simply infinity, if
possible) and then continues by decreasing the parameter gradually
until the homology stops to change. After processing the points we
eventually get the final simplicial complex and the homology of the
object.

We would like to mention a couple other reasons to use the scanned
vertices instead of the whole real image. First, it does not take much
space from computer since the coordinates of the points are simply
written in a text file. Second, it is very difficult to find the number of
holes and cavities the target has and its degree of connectivity from
a dense set of points. In other words, the scanned points are much
better for analyzing and processing.

Nowadays, there is one technique to get a point cloud of the object
and it is getting more and more popular and widely used. It is based
on laser scanning. The target object is being scanned and we get the
3D coordinated of it. After that we may build a simplicial structure
of the object and define its homology. There are several real tasks
that can use such an approach. For example, depicting the structure

5

of power line tower system. The problem is to figure out how many
wires it has and where they exactly go through the power towers (see
Figure 1).

Figure 1: Power lines

We range a part of the power line with laser scanning and store
the vertices we have got (see Figure 2). Then we apply an algorithm
to make a simplicial complex of it and to compute the homology
of the target, namely the Betti numbers. As the result we get a
tetrahedralization of the power tower (see Figure 3).

6

Figure 2: The vertices

Figure 3: The tetrahedralization

7

3 Simplices and simplicial complexes

In this section we recall the basic definitions and other information
about a simplex construction.

First, let us recall what affinely independent points are. Consider
a set of points a0, a1, . . . , ak in a space Rn for an arbitrary natural
number n and for a value k which is between zero and n

(0 6 k 6 n). These points make vectors
−−→
aiaj which generate a linear

subspace denoted by V (a0, . . . , ak). Since
−−→
aiaj =

−−→
aia0 +

−−→
a0aj then

the vectors u1 =
−−→
a0a1, u2 =

−−→
a0a2, . . . , uk =

−−→
a0ak compose a system

of generators (a basis) of the space V (a0, . . . , ak) whose dimension is
thus less than or equal to k. The points a0, a1, . . . , ak are said
to be affinely independent ones if the dimension of the subspace
V (a0, . . . , ak) equals k, that is if the vectors u1, . . . , uk are linearly
independent. We have the result that any k+ 1 points a0, a1, . . . , ak

of the space Rn belong to a hyperplane R(a0, . . . , ak). This plane is
constructed as an apposition of all vectors u ∈ V (a0, . . . , ak) to one
of the points a0, a1, . . . , ak, for example to the point a0. Any vector
u from the space V (a0, . . . , ak) is a linear combination of the vectors
u1, . . . , uk. The points a0, a1, . . . , ak are affinely independent if and
only if they lie in the k-dimensional hyperplane R(a0, . . . , ak) and
do not belong to any smaller dimensional plane.

Let us have affinely independent points a0, a1, . . . , ak in a space
Rn (k 6 n). Vectors u1 =

−−→
a0a1, u2 =

−−→
a0a2, . . . , uk =

−−→
a0ak are linearly

independent. Applying all linear combinations of the vectors to the
point a0 we shall get all points x of a hyperplane Rk = R(a0, . . . , ak)
and only these points. We may write them in the following way:

x = a0 + µ1u1 + · · · + µkuk

= a0 + µ1(a1 − a0) + · · · + µk(ak − a0)

= (1− µ1 − µ2 − · · · − µk)a0 + µ1a
1 + · · · + µka

k

If the value (1− µ1 − µ2 − · · · − µk) is denoted by µ0 then the point
x will be written as x = µ0a

0 + µ1a
1 + · · · + µka

k.
Hence, the hyperplane R(a0, . . . , ak) is a set of points which are

represented as “weighted sums” of the points a0, a1, . . . , ak and the

8

“weights” (µ1, µ2, . . . , µk) are restricted by only the condition:

µ0 + µ1 + · · · + µk = 1.

Thanks to this criterion the numbers µ1, µ2, . . . , µk are uniquely
defined. And they are called barycentric coordinates of the point
x ∈ Rn in the barycentric coordinate system composed of the points
a0, . . . , ak.

Let us have a set of affinely independent points a0, . . . , ak in
Rn, k 6 n and consider a set of points x ∈ Rn such that their
barycentric coordinates are positive. Then this family of the points x
is called an open k-dimensional simplex with the vertices a0, . . . , ak

and it is denoted by T k = |a0, . . . , ak|. Respectively, a family of
points x whose barycentric coordinates in the system a0, . . . , ak are
non-negative is called a closed k-dimensional simplex with the vertices
a0, . . . , ak and it is denoted by T k = a0, . . . , ak. If it is clear from
the context then we call the family of the points purely a simplex .
Figure 4 shows examples of geometrical interpretations of simplices.

Figure 4: 0, 1, 2, 3-simplices

9

The 0-simplex (0-dimensional simplex) is the point, an open 1-simplex
is represented by the line segment without its ends. Obviously,
we shall get a closed 1-simplex by adding both ends, which are
0-simplices themselves. Next, the triangle illustrates a 2-simplex and
the tetrahedron is, respectively, an interpretation of a 3-dimensional
simplex.

The set of all vertices of the simplex is called its skeleton. It is
easily seen that T k is the closure of T k and the simplex uniquely defines
its skeleton. Let aj0 , . . . , ajr be a few vertices of a k-simplex T k.
Then they are certainly affinely independent and define the simplex
T r = |aj0 , . . . , ajr | in the plane R(aj0 , . . . , ajr) ⊂ R(a0, . . . , ak).
The simplex T r is called an r-dimensional facet of the k-simplex T k

(with the vertices aj0 , . . . , ajr). Also, the simplex T r represents itself
as a set of points x ∈ Rk(a0, . . . , ak) whose every coordinate j is
equal to zero if j is different from j0, . . . , jr.

We shall need to use oriented simplices and let us describe their
definition. An orientation of a k-simplex is an equivalence of vertices’
orderings. In other words, T k = |a0, . . . , ak| is equivalent to
|aj(0), . . . , aj(k)| if a sign of j is 1 and vice versa if signj = −1.

Here we come to the point to introduce simplicial complexes.
Intuitively they can be imagined as a set (a complex) of simplices.
And, in fact a simplicial complex is indeed a family of open simplices.
A simplicial complex may fulfill to one or more additional conditions
and the complex is then accompanied by the corresponding adjective.
For example, we consider only finite simplicial complexes in this
thesis. That is, the complexes consisting of finite sets of simplices.
The complex K is called an n-dimensional one if all its simplices
have dimensions no greater than n and at least one simplex has the
dimension n. A complete complex K assumes that every facet of a
simplex of K is itself an element of the complex. In fact, we deal with
finite complete simplicial complexes whose elements are disjunctive
oriented simplices of the given space Rn and a complex of such type
is called a triangulation

10

4 Homology and Betti numbers

In order to introduce the homology we start from a chain complex. Let
K be a simplicial complex (a triangulation, further we shall sometimes
skip this characterization) and Ck is said to be the kth chain group of
K and it represents a family of oriented k-simplices. For example, C2

can be simply imagined as all triangles in the complex K.
We call an element of Ck a k-chain if it is got from the following

formula:
∑
j
njT

j where nj are integer terms and T j ∈ K.

Let us introduce the boundary operator which maps from Ck to
Ck−1 and appears to be a homomorphism. The boundary operator
δk : Ck → Ck−1 is linearly defined on a k-chain c by the following
formula:

δkT =
∑
j

(−1)j |a0, a1, . . . , âj , . . . , ak|

where T = |a0, . . . , ak| ∈ c and âj denotes the deleted element
from the sequence. Eventually, the boundary operator helps us to
accumulate all chain groups into a chain complex C:

· · · → Ck+1
δk+1−−−→ Ck

δk−→ Ck−1 → · · · .

After defining the boundary operator we characterize two subgroups
of the kth chain group, and namely the cycle group Zk = ker δk and
the boundary group Bk = im δk+1 [12]. We would like to mention
a very important property of boundary operators which says that
δkδk+1 = ∅ always. In other words, it can be understood in the
way of the idea that a boundary does not have a boundary. Let
us illustrate this property. Consider a simple complex consist of a
tetrahedron, its triangles, the lines and the vertices, so we take a
simplex T = |a, b, c, d| and apply the boundary operators δ3 and δ2

on it. The process looks as follows:

δ2(δ3(T)) = δ2(|b, c, d| − |a, c, d|+ |a, b, d| − |a, b, c|) =

= |c, d| − |b, d|+ |b, c| − |c, d|+ |a, d| − |a, c|+ . . .

+ |b, d| − |a, d|+ |a, b| − |b, c|+ |a, c| − |a, b| = ∅.

11

An idea of a proof for a general case is described below. Let us
have a simplex T = |a0, . . . , ak| and apply an operator δkδk+1 to it:
δkδk+1(T). An element of the result might be represented as

(−1)p|a0, . . . , ai−1, âi, ai+1, . . . , aj−1, âj , aj+1, . . . , ak|,

that is the entries âi and âj were deleted. And we have exactly two
elements with this structure with the fixed i and j (let us say that
i < j), however these elements have different p powers. If the ith

vertex was deleted first, then the index of the jth vertex decreased by
one. Therefore, the first p equals i+ j−1. For the second element the
jth vertex was eliminated first and, consequently, the index of the ith

vertex did not change. Hence, the second p is equal to i+ j. It means
that the elements have different signs and eliminate each other, since
they have absolutely the same vertices.

Now, we finally come to the point to introduce homology. It is
defined by its groups. Precisely, the kth homology group is a quotient
space Zk mod Bk, that is Hk = Zk/Bk = ker δk/im δk+1. The rank
of the kth homology group is said to be the kth Betti number of the
complex and we shall denote it by βk.

Intuitively, Betti numbers can illustrate some simple geometrical
elements of objects [10]. We consider only the first three Betti
numbers. The zeroth Betti number represents the degree of
connectivity of an object: how many connected components belong
to the object. You may think about the first Betti number as a value
which shows how many holes the target has. And the second Betti
number is to be understood as a quantity of voids of the target object.
The voids are cavities we do not see, like we do not see an emptiness
inside a ball or in a bicycle tube, they are kind of 2-dimensional holes.
Since there are no cavities in a plane the second Betti number is
zero when we are in R2, as well as the first Betti number in the
one-dimensional case.

12

5 Alpha shapes and the persistent

homology

In this section we describe a technique of making a triangulation of
a set of points. The definition of alpha shapes and the persistent
homology is given as well. We use synthesis of the alpha shape
algorithm and the Delaunay triangulation routine to compute the
persistent homology.

5.1 Delaunay triangulation

In order to make a proper triangulation (a tetrahedralization in three
dimensions) of an object the Delaunay technique is usually used.
This algorithm is reliable and produces nice triangulations avoiding
narrow triangles. Besides, it is fast to compute and there are software
implementations available. The technique of triangulating a set of
vertices was invented by the russian mathematician Boris Delaunay
(see Figure 5) in 1934. Let us describe history of this corresponding
member of the Academy of Sciences of the USSR.

Delaunay was a child of a professorial family, and he continued
this tradition. Being a son of a mathematician he brought up a
physicist, however his grandchild became a poet and a human rights
defender. Boris successfully graduated from the Kiev University
where he started to produce results in number theory and algebra.
Considering the scientific activities of Delaunay, we would like to say
he made important works in different areas of mathematics. In the
number theory he had results in theory of the indefinite equation of
the third degree with two undeterminates.

With taking a glance in algebra we find a geometrization of Galois
theory. Most of Delaunay’s works lie in geometry. He has developed
the theory of regular space partitions, the theory of reduction of
quadratic forms, the theory of lattice covering of a space by spheres,
the theory of stereohedra and mathematical crystallography.

As every great scientist, he was fond of not mathematics only
but alpinism as well. He loved mountain journeys since childhood.
Every summer the family got round to Switzerland. It was actually

13

cheaper to go abroad than to travel in Caucasus in those years. He
has made his first ascension in 1903 when he was thirteen years old.
It happened in Cinque Torri (Five Towers, 2361 meters), the place
near the famous village Cortina d’Amprezzo. Cinque Torri represents
itself a small complex of middle peaks and is considered as an ideal
place for apprentices in mountain climbing. This place is famous also
by the fact that it was a battle-ground in the Great War and you still
can find helmets in Alpine taverns which store also cartridge cases,
military uniforms and rusted rifles of those times. Mountains became
a part of Boris’ life and he decided to be an alpinist, and in fact it was
not an obstacle for him continuing his research in mathematics.

Figure 5: Boris Delaunay

There were only three professional mountain climbers in Russia
before the revolution in 1917. They were Panyutin, Golubev and
Delaunay. Boris was one of the first sportsmen who got the sport
master degree in mountain climbing and one of the founders of Soviet
alpinism. However, mountain tourism led him later with many famous
people such as Igor Tamm (a member of the Academy, Nobel laureate

14

in physics), his son Eugene Tamm (a professor, famous climber
and the captain of the first Soviet Himalayan expedition to conquer
Chomolungma in 1982), A. Alexandrov (a member of the Academy,
great mathematician) and others. Delaunay wrote the book “The
Peaks of the Western Caucasus” and thereby confirmed the famous
words of Karl Weierstrass: “It is true that a mathematician who is
not also something of a poet will never be a perfect mathematician”.
Probably, this is even more impressively reflected in his grandson. And
Delaunay quite successfully combined climbing with being a professor
of Leningrad and Moscow Universities.

And now we come back to geometry and the algorithm of a
Delaunay triangulation. Let us say we have a set of points X. Then a
Delaunay triangulation is a triangulation (remind that a triangulation
is a finite complete simplicial complex) such that there are no vertices
from X inside the circumcircle of any triangle (see Figure 6). In the 3D
case we replace the words circumcircle and triangle by circumsphere
and tetrahedron. The circumcircle of a triangle is said to be empty
if it does not contain points except the three points from X that
form this circumcircle. The points on the border of the circumcircle
are the ones allowed. However, if there are four points on the same
circle then the Delaunay triangulation is not unique. And a Delaunay
triangulation does not exist if all points are on one line, because there
is no triangulation at all.

A Delaunay triangulation might be generalized for other metrics,
however we can not ensure that a Delaunay triangulation exists or is
unique then. A generalization for the n-dimensional Euclidean space
exists and says that there are no points from X inside the circum-
hypersphere of any simplex of a triangulation. The condition for the
uniqueness of the Delaunay triangulation is represented as follows: all
points of the set X are in the general position. It means that there
are no n+1 points on one hyperplane and no n+2 points on the same
hypersphere. In two dimensions the meaning of the general position is
simple: there are no three points on the same line and no four points
on one circle.

The proof of this fact is not difficult and the idea is the following. If
we have a point cloud X in the n-dimensional Euclidean space then we

15

Figure 6: Delaunay triangulation

extend it into the n+1-dimensional one by putting the last coordinate
equals |x|2 =

∑
i
x2
i for each x ∈ X. Then we construct the convex

hull of this new set of points and it is well known that it is unique
for a set of points. Thus, we project the convex hull in n dimensions
excluding the upper part of the hull (see Figure 7) and, consequently,
we get the unique triangulation of X (we assume that all facets of the
hull present themselves as simplices).

The Delaunay triangulation is perfectly implemented in the Qhull
software tool [2] and it is embedded in MATLAB. There are several
routines in MATLAB based on the Qhull algorithms. They are
delaunay (to triangulate a set of points), delaunayn (might be applied
for dimensions from three to nine), convhulln, voronoin, griddatan and
others.

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7: Projection of the bottom part of the convex hull

17

5.2 Alpha shapes

When we are talking about alpha shapes we first take a set of points
into account. For this set we may construct a convex hull which is
in most cases not enough to get sufficient information. We want to
get a more precise approximation of an object the points represent.
The alpha shape of the cloud of the points may be considered as a
generalization of the convex hull. The word alpha refers us to the
following idea: we use a real parameter which is in fact a variable.
Alpha can be shown either as a limit for a distance between points
or a radius of a circle. In the first case, if the distance is less than
alpha then these points are connected. In the second case, if points
are inside of the circle then they are to be connected as well. If we
take the value big enough then it will produce exactly the convex hull
of the object. And it is often taken as the starting point to make an
alpha shape. After this, the alpha value is being gradually reduced
to refine the approximation. After several steps (most likely already
after the first one) the alpha shape stops to be convex and at some
point it can even become disconnected to represent few components
of the object. However, if alpha is very small, such that there are
no points to be connected, then the alpha shape of the point cloud is
empty. It is also a successful result which is in fact the point cloud
itself, every point is a separate topological component.

Now let us give the formal definition of alpha shapes. We take a set
of points X and consider a positive value α (0 < α <∞). We establish
an α-ball as an open ball with a radius that equals α. For convenience
and completeness we determine a 0-ball as a point and an ∞-ball as
an open half-space. An α-ball B is said to be empty if its intersection
with the set of the points is empty: B

⋂
X = ∅. Every subset Y of

X with a size value that equals k + 1 for k = 0, 1, 2, 3 represents a
k-simplex T k, which is indeed the convex hull of Y . Assuming that all
points of X are in the general position we ensure that all k-simplices
are “properly” k-dimensional ones. Let us consider the values of k
such as 0 6 k 6 2. Then we call a k-simplex T k an α-exposed one if
an α-ball B exists with Y = ∂B

⋂
X, where ∂B is a boundary of B

in the form of either a sphere or a plane. Eventually, a fixed value α
defines sets Sk,α of α-exposed k-simplices for 0 6 k 6 2. The α-shape

18

of X is then the polytope whose boundary is built of the triangles
S2,α, the segments from S1,α and the vertices which come from S0,α.
The α-shape is denoted by Xα. It might also be useful to mention
that the k-simplices Sk,α are called k-faces of Xα as well.

In this paper we consider alpha complexes which are indeed
simplicial complexes based on the techniques of alpha shapes and a
Delaunay triangulation. Thus, we take a set of points and make a
tetrahedralization (in three dimensions) or a triangulation (in two
dimensions) of the cloud. In order to make an alpha complex of
the family of the points we keep only those 1-simplices from the
Delaunay triangulation (tetrahedralization) whose vertices have a
distance between them less than alpha [4].

The first value of alpha might be taken as infinity or an adequately
big number to get the convex hull. Next, after correcting the
Delaunay triangulation, we compute the Betti numbers of the built
complex, which in fact represents a chain complex by all its tetrahedra,
triangles, segments and vertices. On the following step, we decrease
the alpha value, rebuild the simplicial complex and recalculate the
Betti values. We continue reducing our parameter until the Betti
numbers will stop changing, unless we reach the point which equals
zero or too small alpha number. If the refinement is successful we get
the proper Betti values and here we achieve the idea of persistency.

5.3 The persistent homology

The persistent homology is a topological invariant which is the
same among homeomorphic objects. And in real computations it
is represented by the Betti numbers of a simplicial complex which
tetrahedralize (triangulate) an object by the set of its vertices. Here
it is very important to choose how to change alpha, because if the
progression is too slow we may decide to stop the process too early
and if it is too big we may jump to a very small value rather fast. In
both cases we lose persistency. However, as far as we find a rather
wide range of alpha values that have identical Betti numbers we may
say that it is a stable alpha scope. Such the stable range is a good
indication that the target’s persistent homology has been reached.

19

Now we shall describe an algorithm for computing Betti numbers.
It is called the reduction algorithm [14]. Let us take a complex K

and the kth chain group Ck. The k-simplices will form the standard
basis for Ck. The boundary operator δk : Ck → Ck−1 then can be
represented through the standard bases of the chain groups as a
matrix Mk whose elements are {−1, 0, 1}. The matrix is said to
be the standard matrix representation of δk. The number of rows
of Mk is a number of (k − 1)-simplices and it is denoted by mk−1.
Respectively, the symbol mk is reserved for the number of columns
of the matrix and shows how many k-simplices we have. The cycle
group of Ck is Zk = ker δk and it is represented by the null-space
of the standard matrix representation; and the range-space of Mk

corresponds to Bk−1 = im δk, the boundary group of Ck−1.

The reduction algorithm uses simple row and column operations
on the matrix Mk in order to derive the matrix for δk to a diagonal
form. Each row operation leads to changes in the basis for Ck−1 and
the basis of Ck is modified whenever the algorithm applies a column
operation. For instance, if we take the ith and the jth (i 6= j) elements
of the Ck basis (ei and ej , respectively) into account, then we may
replace, for example ei with ei + q · ej , where q is an integer number.
Gradually, we reduce the matrix Mk to its normal form.

M̃k =



b1 0
. . . 0

0 brk

0 0



In this normal form representation rk is for the rank of the matrix:
rk = rank(Mk) = rank(M̃k), the ranks of the original matrix and
the reduced one are equal. Every bj is greater or equal than one
(bj > 1) and we have got one more feature for all bi-s: bi|bi+1 ∀i such
that 1 6 i < rk. And now we extract all information about the kth

homology group Hk:

20

• Those elements bi whose values are greater than one are the
torsion coefficients of Hk;

• The rank of the group Zk is calculated as mk − rk since
{ej | rk + 1 6 j 6 mk} is a basis for Zk. Remind that Zk
represents the kernel of the operator δk;

• Similarly, {bj ẽj | 1 6 j 6 rk} performs a basis for the boundary
group Bk−1 and consequently, rank(Bk−1) = rank(Mk) = rk.

Combining the last entries we get a formula for the kth Betti number:
βk = rank(Zk) − rank(Bk) = mk − rk − rk+1 [3]. Now let us specify
the formulas for first three Betti numbers.

For the zeroth Betti number we shall have m0 — a number of
vertices (0-simplices), r0 — rank of the matrix M0 and the rank of
M1 is represented by r1. However, the matrix M0 has m0−1 = m−1

rows and, namely, m−1 of the -1-simplices or the empty sets. It means
that m−1 is equal to zero and M0 = ∅ whose rank is zero. Therefore,
the formula for the zeroth Betti number looks like β0 = m0 − r1.

For the first Betti number we first consider two dimensions. In this
case, as we know, the second Betti number is zero and the formula
for it is next one: β2 = m2 − r2 − r3 = 0. Here the parameter r3
performs the rank of the matrix M3 whose number of columns is the
number of the 3-simplices or the tetrahedra. Obviously, there are no
tetrahedra in 2D space. Consequently, the rank is zero and we have
the equation m2−r2 = 0 which heads to the result that the rank of the
matrix M2 equals the number of the 2-simplices (the triangles). We
apply this result to the formula for the first Betti number. Precisely,
β1 = m1 − r1 −m2.

In the case of three dimensions there is no refinement for the first
Betti number, the formula is the following β1 = m1− r1− r2, because
there are might be tetrahedra. However, we change the formula for the
second Betti number. The idea is the same: the third Betti number is
zero and its formula helps us to compute the rank of the matrix M3.
In details, β3 = m3 − r3 − r4 = 0 and r4 = 0 because there are no
4-simplices in the 3D space. Hence, r3 = m3, the rank of M3 is the
number of the tetrahedra we have. Finally, the formula for the second
Betti number is β2 = m2 − r2 −m3.

21

We even can do the same reasonings for the elementary 1D case
and get the result that the first Betti number is equal to the difference
between the number of vertices and the number of segments and other
Betti numbers are zeros. And, generally, for the (n + 1)-dimensional
Euclidean space the formula for the nth Betti number is
βn = mn − rn − mn+1 and β0 = m0 − r1 for the first Betti value.
Let us underline the results for the Betti numbers for three different
dimensions.

1. One dimension: β0 = m0 −m1, β1 = β2 = 0;

2. Two dimensions: β0 = m0 − r1, β1 = m1 − r1 −m2, β2 = 0;

3. Three dimensions: β0 = m0 − r1, β1 = m1 − r1 − r2,
β2 = m2 − r2 −m3.

22

6 Software to compute the persistent

homology

On the web it is possible to find many different codes and applets
which are dedicated to making a triangulation or a tetrahedralization
of a set of points or an object. However, there are not so much
developed tools for computing the persistent homology of the target.
We would like to mention some of them. In this part of the thesis
we present different techniques which were exploited with the purpose
to compute or/and to illustrate the persistent homology. All of them
process a set of points in two or three dimensions.

6.1 Ashape: a pedestrian alpha shape

extractor

Ashape represents itself as a simple wrapper for a family of routines
implemented in MATLAB by people who work in this company.
These routines are combined together in the Aslib.m file and serve
for extracting and displaying 2-dimensional alpha shapes and alpha
patches from a set of data points. Aslib gives a construction which has
all relevant parameters, data and results holding graphics handles as
well to plotted elements. However, Aslib records handles of a function
to every subroutine and it can be used to make more wrappers. Thus,
it is open for further development.

To illustrate the process implemented in these routines we use a
set of points found in the Internet and they delineate a teapot (see
Figure 8). First we take original number of points and apply the
procedures to them. The process starts to define a shape of the target
using α-circles which are 2-dimensional α-balls (see Figure 9). On the
next step it continues refining the set of the points and we may see this
intermediate result in Figure 10. In the picture we see three different
color bars which represent frames of some parts of the object. And
the final result is presented in Figure 11. There are two rows with
different colours. The first row performs the frames of the separated
parts of the target and the second row illustrates the colours of the
patches which are bounded by these frames.

23

Figure 8: The teapot points

Figure 9: The beginning of the process

24

Figure 10: Refinement

Figure 11: The result

As you can see, the result is not good because it returns that
our points produced many separate objects whereas we know that it
should yield one object with one hole.

25

Now we produce more points to get a better result. Originally,
we have 3644 points and using one technique, which will be described
later (see p. 35), we produce 42332 vertices (see Figure 12) of our
teapot. And now let us see the stages of the processing of the device
point cloud.

Figure 12: The kettle points

Figure 13: The beginning of the process

26

The procedure is the same: it uses α-circles for processing the
vertices (see Figure 13). Then refinement of the point cloud continues
the implementation and is shown in Figure 14. The final result is
illustrated in Figure 15.

Figure 14: Refinement

Figure 15: The result

27

Here it is easily seen that the result is much better and even more,
it returns the correct representation of the target: one object which
has only one hole. The comparison we made was invoked to show that
you really need a lot of points to get the proper result using Ashape
and Aslib. It is also necessary to record the computation time we have
spent in both cases. In the first time around 14 seconds were needed
to finish the computations, and the corresponding result in the latter
case was around 635 seconds (ten and a half minutes). Considerably
good timing for 42332 vertices indeed.

If the reader desires to download and use this set of routines we
refer you to [11].

6.2 PLEX — simplicial complexes in

MATLAB

PLEX presents itself as a set of routines written in MATLAB and
C++. They were developed by a group of researches at Stanford
University from 2000 to 2006. The functions and procedures were
designed and coded by Vin de Silva mostly. Dawn Banard (nowadays
Dawn B. Woodard) has made mod 2 methods, which are all written
in C and embedded in MATLAB using the corresponding MEX
functions. She, Patrick Perry and Peter Lee have incorporated several
valuable improvements.

Being a MATLAB library PLEX might be considered as a
MATLAB toolbox whose prime purpose is computing homology and
the persistent homology. The idea of solving such tasks is the
following: a space X is to be homeomorphic to a simplicial complex
and the homology of the space is being computed by recovering
its Betti numbers. Therefore, the toolbox first constructs the
simplicial complex using the data points of the space X as the
vertices of the complex. After building this structure, PLEX routines
allow us to compute the Betti numbers of the triangulation (the
tetrahedralization) of the space X.

The approach to construct a simplicial complex is based on
covering the space X by open sets Ui which are good in the
following sense: they are all contractible as are the finite intersections

28

Ui0
⋂
. . .
⋂
Uik . Then we construct a complex with an ith vertex for

every non-empty Ui and with a k-cell for a set of (k + 1) indices
{i0, . . . , ik} such as Ui0

⋂
. . .
⋂
Uik 6= ∅.

The authors of PLEX describe an ε-approximation to build a
simplicial complex homeomorphic to the space X as one of possible
ways to do this [8]. A set of points, which represents this space, is
taken to make a complex. For generality, let us assume that the space
X is in the N -dimensional Euclidean space RN and we have n points
(every point pi ∈ RN). In the beginning of building we create a space
Pε which consists of the points and open balls Bi

(
ε
2

)
with their centers

in the points pi. The open balls make a good covering of the space
Pε and we use it to create a complex. In fact, the ε-approximation
technique to make a complex is a composition of alpha shapes and
a triangulation and we would call it either an α-approximation or
ε-shapes.

The PLEX creators describe this method, however they have
another one which has been implemented in the routines. The complex
Cε(P) is being built with every data point pi and k-cell for each
{p0, . . . , pk} such as the distance between every pair of points in
this cell is less than ε. That is, ‖ pi − pj ‖< ε. As you remember,
the skeleton of the simplicial complex uniquely defines its structure.
Consequently, it is computationally cheaper to store the 1-simplices
only and restore the full complex whenever you need.

In order to use the toolbox PLEX you have to do a couple
of simple procedures. Namely, you need to download the zip
archive plex-2.0.1-windows.zip from the web page of PLEX on your
computer and extract it in some directory [9]. The next step is
adding the two following catalogues into the MATLAB search path:
plex-2.0.1-windows/matlab/Plex/ and
plex-2.0.1-windows/matlab/Plex/metric/.

It works like this. In the main window in MATLAB you choose
File-Set Path... in the menu. You proceed by clicking the button
Add Folder... and put the mentioned above catalogues into the
path. And then you simply check whether it was successful or not by
typing the command plex in the MATLAB command window. To
get familiar with PLEX the authors offer to start making simplicial

29

complexes by hand and the first task is to build a complex to display
the word HELLO [6]. Here we show letters which are presented by
their complexes and constructed by hand. Let us consider the letter
A first. In order to present it in a form of a simplicial complex we
need to define a number of vertices and their coordinates. First we
draw the letter on a piece of paper and after we figure out that we
need 11 vertices. Thus, we need to start building our complex from
0-simplices. There is the function

C = attach(C1, C2)

in the toolbox. It assembles two simplicial complexes into one.
Therefore, we apply this routine: C = attach(plex,1:11).

Figure 16: The letter A

From Figure 16 we may see which vertices are to be connected.
Consequently, we add indices of the segments into the complex C:
C = attach(C, s1) where

s1 =

(
1 1 1 1 2 2 2 3 3 3 4
2 7 8 9 3 9 10 4 10 11 5

4 4 5 6 6 7 7 7 9 9 10
6 11 6 7 11 8 9 11 10 11 11

)
.

30

The same idea is kept for 2-simplices. We attach s2 to the complex:
C = attach(C, s2) where

s2 =

 1 1 1 2 2 3 3 4 4 6 7
2 7 7 3 9 4 10 5 6 7 9
9 8 9 10 10 11 11 6 11 11 11

 .

The picture was produce by the PLEX routine

plot3complex(C,X)

where X represents the coordinates of the vertices and equals(
x 0 0.3 0.7 1 0.8 0.7 0.3 0.2 0.4 0.5 0.6
y −1 1 1 −1 −1 −0.5 −0.5 −1 0 0.5 0

)
.

The coordinates were taken by hand as well.
One detail we want to indicate is that you do not have to construct

all simplices but the 2-simplices are needed. If we invoke the function
attach to make the complex C = attach(plex,s2) then we get
the same result, because other simplices are being automatically
constructed. However is works in the only case when we have no
1-simplices and 0-simplices which are facets of the trianlges.

The toolbox PLEX has the built-in function betti(C, n) which
returns an nth Betti number of the complex C. After applying it to
our letter simplicial complex we have got the results β0 = 1 and β1 = 1
which completely satisfies us.

We have coded several letters in MATLAB using the toolbox in
order to be able to construct words in future. We assembled the
characters in one routine

[C X] = choose2DLetter(L)

which returns a complex C and coordinates X for the letter L. It
has been made to practise building simplicial complexes and there is
no need to make the whole alphabet unless someone wants to apply
the letters for some reason. Each character’s simplicial complex is
constructed by specifying coordinates of its points and by labeling
the vertices. The procedure [C X] = choose2DLetter(L) has been
coded in the following way:

31

switch L

case ’A’
[C X] = A2D;

case ’B’
[C X] = B2D;

case ’D’
[C X] = D2D;

case ’E’
[C X] = E2D;

case ’H’
[C X] = H2D;

case ’I’
[C X] = I2D;

case ’K’
[C X] = K2D;

case ’L’
[C X] = L2D;

case ’M’
[C X] = M2D;

case ’N’
[C X] = N2D;

case ’O’
[C X] = O2D;

case ’T’
[C X] = T2D;

case ’U’
[C X] = U2D;

case ’Y’
[C X] = Y2D;

otherwise
error(’an unknown letter, the routine is

terminated’)

end

In this procedure every case is occupied for a letter. For example,

32

the routine [C X] = B2D describes the letter B in two dimensions.

function [C X] = B2D

% Letter ’B’ using simplices in 2D space

C = attach(plex, [1 2 5; 2 5 8; 2 8 9; 2 9 10; 2 3 10;

3 10 11; 3 10 11; 3 4 11; 4 8 11; 4 5 8; 5 6 13; 6 13

14;

6 7 14; 7 14 15; 1 7 15; 1 12 15; 1 12 13; 1 5 13]’);

X = [0 0 1 1 0.15 1 1 0.15 0.15 0.85 0.85 0.15 0.15 0.85

0.85

-1 1 1 0.3 0 0 -1 0.15 0.85 0.85 0.4 -0.85 -0.15 -0.15

-0.85];

Using this set of the letters we may easily build a complex

for the word HELLO. For this purpose we have made the function

[C X] = word2DComplex(W)

which constructs a word using a simplex technique (W performs

a word — a char array). Here is the structure of the function.

We use the PLEX function

simplices(C, k)

which gives k-cells of the simplicial complex C.

dist = 0.5; % a distance between letters

[C X] = choose2DLetter(W(1));

m = max(X(1,:));

m0 = max(simplices(C,0));

m1 = max(max(simplices(C,1)));

m2 = max(max(simplices(C,2)));

for j = 2:length(W)

% get the current letter of the word

[Ccurr Xcurr] = choose2DLetter(W(j));

Y = Xcurr(1,:);

33

% shift all coordinates appropriately

Y = Y + (m - min(Y)) + dist;

Xcurr(1,:) = Y;

% increase the indices of the vertices

s0 = simplices(Ccurr,0) + m0;

s1 = simplices(Ccurr,1) + m1;

s2 = simplices(Ccurr,2) + m2;

% add simplices into the entire complex

C = attach(C, s0);

C = attach(C, s1);

C = attach(C, s2);

% assembling coordinates of the points

X = [X Xcurr];

% redefine the parameters

m = max(Y);

m0 = max(s0);

m1 = max(max(s1));

m2 = max(max(s2));

end

Now we invoke this function to get a simplicial complex and

coordinates of the word: [C X] = word2DComplex(’HELLO’);.

After that we launch the function plot3complex(C,X) to

make the visual presentation (see Figure 17). The functions

betti(C, 0) and betti(C, 1) returns the results 5 and 1,

respectively (and, of course, the second Betti number occurs to

be zero).

If we have a set of points and we do not know how to

identify a simplicial complex for it, then there is one way to

build the complex using the PLEX routines. First, we calculate

the distances between all points of the space X using the function

D = px euclid(X).

Now we have to choose a threshold value ε in order to get the

34

Figure 17: The word HELLO triangulated

proper triangulation. The simplicial structure is being computed

by the routine C = plex(D < ε). This returns the skeleton of

the complex and in order to get the full representation we invoke

the function C = expand(C, 1, 2). After this we can compute

the Betti numbers of our simplicial complex and plot it to take a

look.

In order to show this idea practically we need some data. Let

us make data points from an object whose view appearance we

know. For instance, we consider the letter B. We know that it is

one solid object with two holes. Since we have the routine to get

a triangulation then we would love to get a lot of points inside of

every triangle. Otherwise, there are too little points. To make the

points we generate a point cloud in the unit triangle and then map

them into every triangle from the original triangulation. Here we

come to the point when we need to recall barycentric coordinates

of a point. A triangle has three vertices a0, a1, a2 which are

affinely independent and every interior point x is represented by

its barycentric coordinates: x = µ0a
0 + µ1a

1 + µ2a
2. Therefore,

35

we calculate the barycentric coordinates of points inside the unit

triangle and use these coordinates to get the inner points of each

triangle from the triangulation.

Let us assume that we have already generated enough points

X in the unit triangle and want to get their barycentric values.

Let us consider an inner point p ∈ X of the unit triangle (see

Figure 18) to show a way to compute its barycentric coordinates.

Figure 18: Division of the unit triangle by a point

The point divides the triangle into three parts as shown in

the picture. We remind that barycentric coordinates are also

understood as “weights” of the point. Here it is illustrated very

well because every barycentric number of p is the relation of the

corresponding part area to the area of the whole triangle.

36

That is,

µ0 =
S1

S
, µ1 =

S2

S
, µ2 =

S3

S

where the symbol S denotes the area of the unit triangle and

equals 1
2

and S1, S2, S3 occupy the denotations of the areas

of the separated parts. Hence, for this occasion we may use

the formulas µ0 = 2S1, µ1 = 2S2, µ2 = 2S3 to compute the

barycentric values of the point p. Once we computed them for

p let us see an example how it maps into any another triangle.

The triangle which has been chosen has the coordinates of its

vertices equal to

(
x 0 0 0.15

y −1 1 0

)
. The point p is mapped to

the point marked in Figure 19.

Figure 19: Map of the point p

37

Using the described technique we may produce data points

from a triangulation of any object. Below we present the

MATLAB routine [xunif yunif] = unifInTriangle(X, Y, n)

which implements this algorithm.

% define the unit triangle coordinates

Xunit = [0 1 0];

Yunit = [0 0 1];

% generate n random points in a basic triangle

t = 0:1/(n-1):1;

[x y] = meshgrid(t,t);

in = inpolygon(x,y,Xunit,Yunit);

x = x(in);

y = y(in);

S = 2; % 1/polyarea(Xunit,Yunit)

n = length(x);

% initialize vectors for the barycentric values

xunif = []; yunif = [];

% processing every interior point

for j = 1:n

p = x(j); q = y(j);

% calculate barycentric coordinates of the point

u = polyarea([0 p 0],[0 q 1])*S;

v = polyarea([0 p 1],[0 q 0])*S;

w = polyarea([0 p 1],[1 q 0])*S;

if (u ∼= 0) && (v ∼= 0) && (w ∼= 0)

xunif = [xunif dot([u v w],X)];

yunif = [yunif dot([u v w],Y)];

end

end

We apply this function to the triangulation of the letter B

which we got from the implementation of the routine

[C X] = B2D. We store indices of the triangles and then collect

38

all generated points to yield data for making an experiment with

the routine plex(D < ε). We choose a number of points to be

generated in such a triangle accordingly to its area. This is made

with the purpose to get data with more or less equal density in

the whole area. Thus, the code for assembling the data looks as

follows:

[C X] = B2D;

% get the indices of the triangles

s = simplices(C,2);

% initialize vectors for data

x = [];

y = [];

% number of points to be used for every triangle

n = 120;

% initializations for every triangle

X1 = zeros(1,3);

X2 = zeros(1,3);

% processing every triangle

for j=1:size(s,2)

t = s(:,j);

X1 = X(1,t);

X2 = X(2,t);

% generating the points inside of the triangle

[x1 y1] = unifInTriangle(X1,X2,round(n*polyarea(X1,X2)));

x = [x x1];

y = [y y1];

end

On the next step we assemble all points in X = [x; y]

and launch the function D = px euclid(X) to determine the

distances between the vertices. The parameter α (or ε) is set to

0.2. A skeleton of a complex is being constructed by applying the

routine C = plex(D < α). After that we use the PLEX routine

39

C = expand(C, 2) to expand the complex to the full one. The

generated vertices and the final triangulation can be seen in

Figure 20. The routines betti(C, 0) and betti(C, 1) give the

numbers 1 and 2 which are corresponding to the number of objects

we have (one letter) and the number of holes of the target.

Figure 20: The generated data and the complex for the letter B

However, in this case the computation of Betti numbers

took around 150 seconds. It obviously has too many triangles

according to the picture. Later we shall describe how to manage

this problem (see p. 47).

The toolbox allows us to compute a simplicial complex

for three dimensions as well and even for higher dimensions.

Nevertheless, we take only the 3D case into account for practical

40

reasons. And one of the first PLEX authors’ tasks for the

three-dimensional Euclidean space is to build a simplicial complex

to produce a torus. We have chosen to make an object which is

homeomorphic to the torus and it is shown in Figure 21. As you

can see there are no tetrahedra, hence it is called a triangulation.

Figure 21: The torus triangulated

The complex was built in MATLAB due to the following code:

c = [1 2 3; 1 3 4; 2 3 6; 3 6 7; 5 6 8;

6 7 8; 1 4 8; 1 5 8]’;

c = [c c+8];

c1 = [3 4 11; 3 7 11; 7 11 15; 7 15 16;

7 8 16; 4 8 16; 4 12 16; 4 11 12]’;

c2 = zeros(3,size(c1,2));

c2(mod(c1,2) == 1) = c1(mod(c1,2) == 1)-1;

c2(mod(c1,2) == 0) = c1(mod(c1,2) == 0)-3;

C = attach(plex, [c c1 c2]);

41

We defined the torus coordinates using the next

representation:

x = [1 0 0 1];

y = [0 0 0 0 1 1 1 1];

z = [0 0 0.3 0.3];

X = [repmat(x,1,2) repmat(abs(x-.3),1,2)

y abs(y-.3)

repmat(z,1,4)];

Eventually, the picture was plotted, as usual, by the routine

plot3complex(C,X). The Betti values are correct and equal

to 1, 2, 1 for the number of objects, the first Betti number and

the number of the voids of the torus, respectively. Computing the

persistent homology in this case is very fast, because we have only

16 vertices. To check ability of PLEX to maintain 3-dimensional

data we have coded a function which extends a 2-dimensional

simplicial complex into a 3D one. The function

[C3 X3] = conv3D(C,X, d)

works as explained below:

First, it expands the vertices by adding required indices into

the simplicial structure and appends necessary coordinates. The

variable d in the function plays a role of the depth, that is how

far we go in the axis z direction. Hence, on the first stage the

routine also produces lines which connect the vertices with the

same 2D coordinates and the different depths.

s = simplices(C,0);

if ∼isempty(s)
n = length(s);

C3 = attach(plex, [s s+max(max(s))]);

s = simplices(C3,0);

for k=1:n

42

C3 = attach(C3, [s(k);s(k+n)]);

end

if size(X,1) == 1

X3 = [repmat(X,1,2); repmat(zeros(1,n),1,2)

zeros(1,n) d*ones(1,n)];

else

X3 = [repmat(X(1,:),1,2); repmat(X(2,:),1,2)

zeros(1,n) d*ones(1,n)];

end

else

error(’The simplicial complex C is empty’)

end

On the next step we expand the segments of the complex. It

makes a 2D rectangle and provides it with two triangles. Here

we start using the PLEX routine C = union(C1, C2) which

helps us to combine two simplicial complexes into one.

s = simplices(C,1);

if ∼isempty(s)
n = size(s,2);

m = max(max(s));

C1 = attach(plex, [s s+max(max(s))]);

s = simplices(C1,1);

for k=1:n

for j=1:2

C1 = attach(C1, [s(j:2,k); s(1:j,k+n)]);

end

end

C3 = union(C3, C1);

end

And the final stage expands the triangles to prisms which are

represented by three tetrahedra.

43

s = simplices(C,2);

if ∼isempty(s)
n = size(s,2);

C2 = attach(plex, [s s+m]);

s = simplices(C2,2);

for k = 1:n

for j=1:3

C2 = attach(C2, [s(j:3,k); s(1:j,k+n)]);

end

end

C3 = union(C3, C2);

end

To illustrate this algorithm we made the function

[C X] = word3DComplex(W,d)

which works very similarly to the function

[C X] = word2DComplex(W).

One of the differences is the parameter d to specify a depth of

the word W . For visual representation we have chosen to launch

this routine with randomly chosen word and depth

[C X] = word3DComplex(’MATYLDA’, 0.37) and apply the

PLEX function plot3omplex(C,X) (see Figure 22).

We would like to know how many letters and holes the word

has. To display them we again invoke the function betti(C, k).

However, this time we use three k’s: 0 6 k 6 2. The results are:

β0 = 7, β1 = 3, β2 = 0, that is the word MATYLDA has 7 letters,

3 holes and no cavities. We are glad that we got the correct result

in around two seconds and now we shall test the toolbox PLEX

for 3-dimensional not handmade data but generated from one of

the letters. For this purpose we take the letter O in 2 dimensions

first and generate data in the same way as we did for the letter

44

B. Then we expand the data into the 3D space, take the vertices

only and construct a simplicial complex using a bunch of Plex’s

routines.

Figure 22: The word MATYLDA tetrahedralized

Thus, we use 35 points to generate vertices from the

triangulation of the letter O and increase this amount twice

taking the depth parameter to equal 0.2. After that we construct

a simplicial complex with an alpha value 0.75 and compute its

Betti numbers. The graphical representation is demonstrated in

Figure 23 and the zeroth Betti value is 1, the second one equals

1 and there are no cavities. The procedure

C = plex(px euclid(X) < 0.75) returns the complex C with

40 vertices, 280 segments, 968 triangles and 2148 tetrahedra.

The Betti numbers were computed within around 2.34 seconds.

However, one problem occurred when we repeated the same

algorithm using 40 points to generate data. We have built a

tetrahedralization and computed the zeroth and the first Betti

numbers but the routine was not able to compute the second Betti

45

number, because MATLAB returned the error “Out of memory”.

It happened because the procedure

C = plex(px euclid(X) < 0.75) returned the complex C

consisting of 68 vertices, 790 segments, 4868 triangles and 20118

tetrahedra. Too many elements to maintain the computation.

Figure 23: The letter O tetrahedralized

If you want to get more information about PLEX you are

welcome to take a look at its web page [9].

46

7 Results

In this section we present our approaches to solve a problem of

the computation of the persistent homology of an object. We

show how our routines work with artificial and real data.

7.1 The persistent homology of artificial data

After testing the PLEX routines we started to think how to get

rid of unnecessary simplices and the first idea was to compute

a Delaunay triangulation. Implementing the MATLAB built-in

algorithm delaunay(x, y) we got the indices of the triangles of

the simplicial structure in two dimensions. For the 3D Euclidean

space there is a function delaunay3(x, y, z). However, we had

here another problem — the Delaunay triangulation does not

consider an alpha parameter at all, therefore we should have

coded an algorithm to build a triangulation with taking the alpha

value into account. The concept is to erase those segments of the

simplicial complex whose vertices have a distance between them

no less than alpha.

Let us first maintain this case in two dimensions. The

MATLAB Delaunay function returns an m-by-3 matrix where

m is the number of triangles. If we find a line whose vertices

are not sufficiently close to each other, then we can not erase the

whole row because the triangle may have an acceptable segment.

Therefore, we store all segments in the certain variable that we

denote by s1 to specify that it contains 1-simplices. Eventually,

besides s1 we have two more “storages” of such type: s0 for

vertices and s2 for triangles.

Since our task is to compute homology and the persistent

homology then it would be nice to take care of betti values in

advance. And that is what we do, and we construct the standard

matrix representation for the boundary operator and count how

many vertices, lines and triangles the complex has. Remind that

in the 2D case we need only the matrix that connects vertices

47

and segments. Below we demonstrate parts of a routine we have

coded in MATLAB. We called this routine

function [C, b] = alphaBetti(x, y, Alpha)

and it returns the simplicial complex C and the Betti number in

the vector b.

First, we make some simple preparation: compute a Delaunay

triangulation, define vertices of a future simplicial complex,

add an additional parameter to make the computation faster

and put null values to necessary elements. In order to define

0-simplices correctly we should go through the Delaunay indices

and memorize them. We need this procedure because there

might be some points which are not in the general position

in the point cloud. For instance, we may find three or more

points on the same line or no less than four points on the same

circumcircle. In the end we shall have a set of vertices whose

size is not necessarily the same as the size of the data.

% make a general triangulation

d = delaunay(x,y);

% initiliaze parameters

% define a square radius of an alpha circle

a = Alpha^2;

s0 = []; % 0-simplices (vertices)

s1 = []; % 1-simplices (lines)

s2 = []; % 2-simplices (triangles)

D1 = []; % matrix connecting vertices with lines

i0 = 0; % number of vertices

i1 = 0; % number of lines

i2 = 0; % number of triangles

% assemble all vertices of the delaunay triangulation

for j = 1:length(x)

if ismember(j,d)

s0 = [s0; j];

48

i0 = i0 + 1;

end

end

Now we go through all triangles made after the Delaunay

procedure. We add some accessorial parameters for our usual

purpose — to speed up the computation. We take every separate

row of d, which represents the Delaunay structure, and process

each segment of it. After checking the distance between vertices

of a segment we decide whether to add this line to s1 or not.

If we add then we increment the number of lines and add two

entries into the matrix D1. If all segments were accepted to be

put into s1 then we put the current triangle into s2 as well and

increment the number of triangles.

for i = 1:size(d,1)

% some additional parameters

d1 = d(i,:);

xx = x(d1); yy = y(d1);

b = true; % the points make a triangle

% processing every triangle

for j = 1:2

% auxiliary elements

xcurr = xx(j); ycurr = yy(j);

d1j = d1(j);

for k = j+1:3

d1k = d1(k);

d2 = [d1j d1k];

% points should be close enough to each other

if(xcurr-xx(k))^2 + (ycurr-yy(k))^2 < a

% do we have this segment?

if ∼ismember(d2,s1,’rows’) &&...

∼ismember([d1k d1j],s1,’rows’)

s1 = [s1; sort(d2)];

49

i1 = i1 + 1;

% store proper values in the matrix D1

D1(d1j,i1) = -1;

D1(d1k,i1) = 1;

end

else

b = false;

end

end

if b

s2 = [s2; d1];

i2 = i2 + 1;

end

end

Following this technique for every triangle we build the

standard matrix representation and, eventually, compute its

rank. Finally, we assemble all simplices in one structure and

compute Betti numbers using the formulas we have derived

earlier (see p. 22).

r1 = rank(D1);

C.s2 = s2;

C.s1 = s1;

C.s0 = s0;

b = [i0-r1, i1-r1-i2];

Let us demonstrate the algorithm on the example with the

teapot points. In distinction from the Ashape case we use the

original points only, which are presented in Figure 24.

After several attempts we found out that the alpha parameter

0.4 is a very good value to make a proper triangulation C. The

graphical result of applying the described routine is shown in

Figure 25.

50

Figure 24: The kettle points

Figure 25: The triangulation of the teapot vertices

The Betti numbers we get, are equal to 1 and 1 for the

number of elements and the number of holes, respectively. The

coded algorithm has spent around 240 seconds (in other words,

51

four minutes) and produced the simplicial complex C consisting

of 1724 vertices, 3302 segments and 5026 triangles. To compare

it with the PLEX routines we convert every k-chain (that is, all

k-simplices) of the complex C to a PLEX simplicial structure

denoted by PC. We applied the PLEX routine betti to compute

the values, however, MATLAB returned the message that it was

out of memory:

>> tic; b = [betti(PC,0) betti(PC,1) betti(PC,2)];

t =toc;

??? Error using ==> svd

Out of memory

7.2 The persistent homology of real data

Now we consider a real problem. Let us say we have a 3D point

cloud which represents a tower of power line. And the structure of

the target is interesting for us and, therefore, we are to compute

the persistent homology of the object. First we would like to

test the data in two dimensions. Thus, we erase the superfluous

coordinate and apply our procedure for the 2-dimensional points

(see Figure 26).

On the next step we utilize our technique with an alpha

parameter equals 3.5. We choose this value from the picture of

the vertices to avoid searching an alpha parameter since we want

to present one of the results and finding the correct alpha value

using some algorithm would take quite much time. It might also

return a wrong value. As a result we get the Betti numbers 1 and

2, the number of connected elements and the number of holes,

respectively. The triangulation can be seen in Figure 27.

From these two plots we can see that for the case of the power

line tower this is clearly an underestimate, but the correct one for

alpha equals 3.5. The result shows that we have only one object

which is correct because the power line tower does not consist of

52

disconnected components.

Figure 26: The tower’s vertices

Figure 27: The tower’s triangulation

53

In order to deal with 3D points we have coded the

routine function [C, b] = alphaBetti3(x, y, z, Alpha) whose

structure is similar to the 2D case function, however we have

to construct more matrices. Here we need to add an additional

option in the delaunay3 function. The options Qt, Qbb, Qc

are the default ones and the option Qz is to allow the Delaunay

triangulation of cospherical sites. For example, it helps when

we are computing the persistent homology of a sphere. It also

reduces precision errors for nearly cospherical sites.

% make a general triangulation

d = delaunay3(x,y,z,{’Qt’, ’Qbb’, ’Qc’, ’Qz’});
% initiliaze parameters

% define a square radius of an alpha circle

a = Alpha^2;

s0 = []; % 0-simplices (vertices)

s1 = []; % 1-simplices (lines)

s2 = []; % 2-simplices (triangles)

s3 = []; % 3-simplices (tetrahedra)

D1 = []; % matrix connecting vertices with lines

D2 = []; % matrix connecting lines with triangles

M1 = []; % an auxiliary matrix

i0 = 0; % number of vertices

i1 = 0; % number of lines

i2 = 0; % number of triangles

i3 = 0; % number of tetrahedra

% assemble all vertices of the delaunay triangulation

for j = 1:length(x)

if ismember(j,d)

s0 = [s0; j];

i0 = i0 + 1;

end

end

54

Here we introduce the matrix M1 which will store indices

of the segments using the indices of the vertices. Then we

go through all tetrahedra and consider every triangle of the

3-simplex. For each 1-simplex we repeat the same procedure

as in two dimensions, however there is a difference that for the

triangles the matrix D2 is being built. And in the end of the

exterior loop we add the tetrahedron in our variable s3 that

contains all segments that have been accepted.

for i = 1:size(d,1)

d1 = d(i,:); % some additional parameters

xx = x(d1); yy = y(d1); zz = z(d1);

t = true; % the points make a tetrahedron

% processing every tetrahedron

ind = [1 2 3; 1 2 4; 1 3 4; 2 3 4];

for w = 1:4

b = true; % the points make a triangle

for j = 1:2

% auxiliary elements

p = ind(w,j);

xcurr = xx(p); ycurr = yy(p); zcurr = zz(p);

d1p = d1(p);

for k = j+1:3

q = ind(w,k);

d1q = d1(q);

d2 = [d1p d1q];

% points should be close enough

% to each other

if (xcurr-xx(q))^2 + (ycurr-yy(q))^2 +...

(zcurr-zz(q))^2 < a

% do we have this line?

if ∼ismember(d2,s1,’rows’) &&...

∼ismember([d1q d1p],s1,’rows’)

s1 = [s1; sort(d2)];

55

i1 = i1 + 1;

% the auxiliary matrix connects the

% lines and the triangles

M1(d1p,d1q) = i1;

M1(d1q,d1p) = i1;

% store proper values in the matrix

D1(d1p,i1) = -1;

D1(d1q,i1) = 1;

end

else % the distance between the points

% is too big

b = false;

t = false;

end

end

end % the triangle’s lines have been processed

if b

d3 = sort(d1(ind(w,:)));

dperm = perms(d3);

bool = true;

% do we have this triangle?

for j = 1:6

if ismember(dperm(j,:),s2,’rows’)

bool = false;

break

end

end

if bool

s2 = [s2; d3];

i2 = i2 + 1;

D2(M1(d3(1),d3(2)),i2) = 1;

D2(M1(d3(1),d3(3)),i2) = -1;

D2(M1(d3(2),d3(3)),i2) = 1;

end

56

end % the triangle has been processed

end % the tetrahedron’s triangles

% have been processed

if t

s3 = [s3; d1];

i3 = i3 + 1;

end

end % all tetrahedra have been processed

The same last stage: computing the rank of the built standard

matrix representation, assembling all simplices in one structure

and computing Betti numbers using the derived formulas (see p.

22).

r1 = rank(D1);

r2 = rank(D2);

C.s3 = s3;

C.s2 = s2;

C.s1 = s1;

C.s0 = s0;

b = [i0-r1, i1-r1-r2, i2-r2-i3];

To demonstrate this algorithm we have applied it to the real

3D points of the scanned power tower (see Figure 28). We have

empirically chosen an alpha parameter equal to 3.5, the same as

for the two-dimensional case. The routine has spent around 1400

seconds (23 minutes, 20 seconds) and produced 868 vertices, 4506

segments, 6566 triangles and 2912 tetrahedra. The Betti values,

which have been computed, denote that we have got 18 connected

elements, six holes and four cavities in the power tower. The

simplicial complex, which geometrically appoximates our target,

is shown in Figure 29 and it is visible that the tower has been

presented as one object.

57

Figure 28: 3D points

Figure 29: Tetrahedralization

Let us assume that we have scanned points of wires which

connect power line towers. Then we would take considerably

large alpha to handle these vertices, since every wire is very long.

This idea may help us to distinguish one cable from another and

58

count their number. However, here we may get a problem with

the tower itself. With a very big alpha number we get one solid

object and we are not able to identify bars and beams of the

tower. When we try to find an appropriate value of alpha to

label the bars, then we can easily lose our simplicial structure

and come to a discrete point cloud.

In order to solve such a task one may try to apply a concept

of using different alpha values for different regions of the vertices.

For example, use smaller alpha for a more dense area and vice

versa.

Another solution is to use the same alpha parameter, but a

more dense set of points. To get this real data we used for the

illustration, the method of Airborne Laser Scanning (ALS) was

applied. However, it does not produce a very dense point cloud.

In order to make plenty of vertices it is better to use Terrestrial

Laser Scanning technology (TLS).

In our algorithm we may get one more problem when the

matrices are too big and we are not able to compute the persistent

homology because MATLAB runs out of memory then. However,

we have made the routines C = alphaDelaunay(x, y, Alpha)

and C = alphaDelaunay3(x, y, z, Alpha) which allow us to

construct simplicial complexes of a point cloud in two and three

dimensions, respectively. For example, with the original 3D

points of the kettle (see Figure 30) we are able to construct a

tetrahedralization only and in order to implement this the routine

C = alphaDelaunay3(x, y, z, Alpha) is applied. The code of

the function is very similar to the structure of alphaBetti3

function except that here we do not build the standard matrix

representations.

The procedure has built a simplicial complex for this 3D point

cloud within around 790 seconds (a bit more than 13 minutes).

The complex contains 3241 vertices, 10273 lines, 24512 triangles

and 171300 tetrahedra. The tetrahedralized teapot presentation

is shown in Figure 31. One can easily recognize the handle, the

59

beak and the lid.

Figure 30: The vertices of the kettle

Figure 31: The tetrahedralization of the teapot

60

Now let us speak about the problem of choosing alpha. The

most reliable way to choose it is to look at the vertices and

roughly define a starting value. Then we need a step of changing

this number. One solution is to decrease the alpha parameter

twice on each step. We stop the computation when either the

Betti numbers do not change anymore or the alpha value is

less than the minimal distance between the vertices. The code

representing this idea in two dimensions is shown below. At

every step we plot triangulations of the object, thus you can see

at which step the value satisfies you better.

distData = dist([x y]’);

minDist = min(min(distData(distData > 0)));

[C, b] = alphaBetti(x,y,Alpha);

bnew = inf;

while (∼isequal(b,bnew)) && (Alpha > minDist)

Alpha = Alpha*0.5;

bnew = b;

[C, b] = alphaBetti(x,y,Alpha);

figure

hold on

if ∼isempty(C.s1)
if ∼isempty(C.s2)

fill(x(C.s2’), y(C.s2’), ’b’); alpha(0.5)

end

line(x(C.s1’), y(C.s1’), ’color’,’k’);

end

plot(x(C.s0), y(C.s0), ’r.’);

end

Another solution is leaving the alpha value as it is and accept

the result it produces. If it does not satisfy us, then choose

another alpha parameter empirically. For honesty, we confess

that during all experiments, we have conducted, we were almost

61

always choosing parameters empirically. Except the last one we

present here. We take the 2-dimensional points of the teapot and

initialize the first alpha value as the following

Alpha = max(max(distData(distData > 0)))/6.

After several steps we have got the result which is illustrated

in Figure 32. As you can see the described algorithm brought us

come back to the vertices of the kettle. Most likely, in order to

use this technique efficiently we shall need a plenty of points like

in the Ashape’s case.

Figure 32: The stages of the triangulation of the teapot

62

8 Conclusions and future perspectives

In the paper we have presented ideas and implemented methods

to compute the persistent homology of a target. In most

cases, the persistent homology is represented by Betti numbers

which are topological invariants and, basically, are unique for

homeomorphic objects. The tools such as Ashape and PLEX

have made first steps in the direction of development and

implementation of the ideas using programming languages.

Most likely, the Ashape MATLAB routines can be expanded

into three dimensions. They may also be improved in the sense

of using a prefiltered set of points: probably, we do not need a

very dense point cloud to demonstrate the target sufficiently well.

Thus, it is one direction where we can look to find refinement.

Another point is to develop the PLEX C++ and MATLAB

routines in such a way that they do not need to make so many

simplices. One can assume that our routines might be useful for

this purpose. The Delaunay triangulation technique is a very

helpful one to be used in the tools. The routines may also

provide an option for building a simplicial complex: to build

the complex only or to calculate the Betti numbers during the

process. Sometimes we need the complex only and it is certainly

faster to make it than add the computation of Betti numbers

in the algorithm. However, we are to be sure that we shall

not need them in future because calculating the Betti values

within building the simplicial structure takes much less time than

constructing the complex and computing them only afterwards.

Our results are not perfect and the biggest problems are

nowadays the fact that we use matrices which might be too big,

and the choice of the alpha parameter. One can think about using

sparse matrices, however we shall have to connect the ranks of the

sparse matrices (which are not the same as ones for the original

matrices) and the formulas for the Betti numbers. One of ideas

of choosing the alpha value is changing it according to the local

63

density of the point cloud. That is, take small regions of the

points and use different alpha numbers for each region. For more

details we refer the reader to [13].

The area of studying the problem of computing the persistent

homology is not old and is nowadays under rapid development.

There is a nice idea of using barcodes with a combination of

filtered simplicial complexes and this concept helps us to identify

Betti numbers of the simplicial structure with regard to the alpha

value. You can read more about this approach in [5] and [7].

As you can see there is a lot of things to do and, likely, some

techniques might be assembled and refined in order to get better

results.

64

Index

α-ball, 18

∞-ball, 18

0-ball, 18

empty α-ball, 18

α-shape, 18

k-chain, 11, 52

k-face, 19

r-dimensional facet, 10

affinely independent, 8, 35

alpha shape, 18

Ashape, 23

Aslib, 23

barycentric coordinates, 9, 35

Betti number, 12, 21, 28, 48

boundary group, 11

boundary operator, 11, 47

chain complex, 11

chain group, 11

cycle group, 11

Delaunay, 13

Delaunay triangulation, 47

general position, 15, 18, 48

homology group, 12

orientation, 10

persistent homology, 19, 28

PLEX, 28, 39

Qhull, 16

reduction algorithm, 20

simplex, 9, 18

α-exposed simplex, 18

closed k-simplex, 9

open k-simplex, 9

oriented simplex, 10

simplicial complex, 10, 11, 28, 48

n-dimensional complex, 10

complete complexes, 10

finite complex, 10

skeleton, 10

standard matrix representation, 20, 47

tetrahedralization, 13, 19

triangulation, 10, 19, 28, 41

Delaunay triangulation, 15, 16

65

References

[1] Alexandrov, P. S., “Introduction to dimension theory”, Moscow: Nauka,

1973, 191–211 (in russian)

[2] Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. T., “The Quickhull

algorithm for convex hulls”, ACM Transactions on Mathematical

Software, 22(4): 469–483, Dec 1996, http://www.qhull.org/

[3] Edelsbrunner, H., and J. Harer, “Persistent homology — a survey”,

Contemporary Mathematics 453 (2008): 257-282.

[4] Edelsbrunner, H., and E. P. Mücke, “Three-dimensional alpha shapes”,

ACM Transactions on Graphics 13 (1994): 43–72.

[5] Carlsson G. and T. Ishkhanov, “A topological analysis of the space of

natural images”, preprint (2008), http://comptop.stanford.edu/preprints/

[6] Carlsson, G., and V. de Silva, “Computational topology using Plex”,

TMSCSCS: Plex, 10 Jul 2006,

<http://comptop.stanford.edu/programs/Plexercises2.pdf>

[7] Chris R., “Barcodes: The persistent topology of data”, Bulletin (New

Series) Of The American Mathematical Society Volume 45, Number 1,

Jan 2008: 61–75.

[8] De Silva, V., “Plex – a MATLAB library for studying simplicial

homology”,TMSCSCS: Plex, 24 Oct 2003,

<http://comptop.stanford.edu/programs/plex/plexintro.pdf>

[9] De Silva, V., TMSCSCS: Plex, 7 Sep 2006,

<http://comptop.stanford.edu/programs/plex.html>

[10] Ishkhanov T., “Topological method for shape comparison”, preprint

(2008), http://comptop.stanford.edu/preprints/

[11] MATLAB Central File Exchange — ashape: a pedestrian alpha shape

extractor, 24 Apr 2007,

<http://www.mathworks.com/. . . /loadFile.do?objectId=6760>

[12] Tamal K. Dey, and Guha S., “Computing homology groups of simplicial

complexes in R3”. Journal of the ACM 45 (1998): 266–287.

66

http://www.qhull.org/
http://comptop.stanford.edu/preprints/
http://comptop.stanford.edu/programs/Plexercises2.pdf
http://comptop.stanford.edu/programs/plex/plexintro.pdf
http://comptop.stanford.edu/programs/plex.html
http://comptop.stanford.edu/preprints/
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=6760

[13] Tenenbaum, J. B., V. de Silva, and J. C. Langford, Isomap Homepage,

22 Dec 2000, <http://isomap.stanford.edu/>

[14] Zomorodian, A., and G. Carlsson, “Computing persistent homology”,

Proceedings of the twentieth annual symposium on Computational

geometry, New York, NY, USA: ACM, 2004, 347–356.

[15] Zomorodian, A., and G. Carlsson, “Localized Homology”,

Computational Geometry (2008), doi:10.1016/j.comgeo.2008.02.003

67

http://isomap.stanford.edu/

	Introduction
	Problem description
	Simplices and simplicial complexes
	Homology and Betti numbers
	Alpha shapes and the persistent homology
	Delaunay triangulation
	Alpha shapes
	The persistent homology

	Software to compute the persistent homology
	Ashape: a pedestrian alpha shape extractor
	PLEX --- simplicial complexes in MATLAB

	Results
	The persistent homology of artificial data
	The persistent homology of real data

	Conclusions and future perspectives
	References

