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Abstract
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This thesis studies the properties and usability of operators called t-norms, t-conorms,

uninorms, as well as many valued implications and equivalences. Into these operators,

weights and a generalized mean are embedded for aggregation, and they are used for

comparison tasks and for this reason they are referred to as comparison measures.

The thesis illustrates how these operators can be weighted with a differential evolution

and aggregated with a generalized mean, and the kinds of measures of comparison

that can be achieved from this procedure. New operators suitable for comparison

measures are suggested. These operators are combination measures based on the

use of t-norms and t-conorms, the generalized 3Π-uninorm and pseudo equivalence

measures based on S-type implications.

The empirical part of this thesis demonstrates how these new comparison measures

work in the field of classification, for example, in the classification of medical data.

The second application area is from the field of sports medicine and it represents an

expert system for defining an athlete’s aerobic and anaerobic thresholds.

The core of this thesis offers definitions for comparison measures and illustrates that

there is no actual difference in the results achieved in comparison tasks, by the use of

comparison measures based on distance, versus comparison measures based on many

valued logical structures. The approach has been highly practical in this thesis and

all usage of the measures has been validated mainly by practical testing. In general,

many different types of operators suitable for comparison tasks have been presented

in fuzzy logic literature and there has been little or no experimental work with these

operators.

Keywords: Fuzzy logic, Operators, Comparison, Expert systems, Classification, Med-

ical data.
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1 Introduction

William James has written the following about the sense of sameness [40]: ”This

sense of sameness is the very keel and backbone of our thinking.” The fields of prob-

lem solving, categorization, data mining, classification, memory retrieval, inductive

reasoning, and cognitive processes in general require that the matter of how to as-

sess sameness is understood. Sometimes, in practice, comparison measures used to

measure sameness in the field of soft computing are based on a very intuitive under-

standing of the theoretical backgrounds of mathematics or a naive idea of coupling

the measure of sameness to the Euclidean distance. Taking measures intuitively can

be a crucial mistake and can lead to so-called black-box systems, which can work but

no one is able to say how and why they work. An example of these kinds of systems

are neural networks [38]. In particular, neural networks are called black-box systems

since for the most part the user cannot explain how the learning from input data

was done or how performance can be consistently ensured. One of the first things to

consider in the systems, which do any kind of comparison, should be the comparison

measures used. In this thesis some many-valued structures are presented, which are

then combined with weights, and the values achieved are then aggregated with a gen-

eralized mean. These structures are called comparison measures, which can be used

in various different applications and have many good properties for further analysis.

The standard approach is to create mathematical models with a kind of logic where

every axiom, sentence, connective etc. is based on the classical, Aristotelian, bivalent

logic, which is concerned with the interpretations of two values, 0 and 1. The real

world, however, is not so black and white, and therefore models offered by bivalent

logic are sometimes inaccurate from the beginning, and this inaccuracy originates

from the basic nature of this logic. Fuzzy logic is considered in this thesis as the

type of many valued logic where every interpretation is in the closed interval of 0 and

1 and used connectives is derived from the many valued logics. It is this nature of

offering an infinite number of possible interpretations between 0 and 1 which makes

fuzzy logic, in general, more practically suitable than a bivalent approach.

1.1 Fuzzy Set Theory

Fuzzy set theory is an active research area, highly mathematical in its nature. It

can provide a robust and consistent foundation for information processing, including

pattern-formatted information processing. It plays at least two roles in the pattern

recognition. In one role, it serves as an interface between the linguistic variables, seem-

ingly preferred by humans and the quantitative characterizations appropriate for ma-

chines. In this role, it might also serve as a bridge between symbolic processing of arti-

ficial intelligence and the parallel distributed processing approaches favoured by adap-
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tive pattern recognition. In another role, it emphasizes the possibility-distribution

interpretation of the concept of fuzziness. The value of this role is that it legitimizes

and provides a meaningful interpretation for some distributions that are believed to

be useful, but that might be difficult to justify on the basis of the objective proba-

bilities. The two roles are not distinct, but the differences are interesting and worth

noting [67].

Interesting application of the fuzzy set theory in classification and clustering is rel-

evance feedback in information retrieval systems. In these methods, the user’s sub-

jective judgments are represented using numbers or distributions in a measurement

space and fuzzy sets provide an appropriate framework for the mathematical model-

ing of this process. The fuzzy classifier presented in this thesis can be used as the base

for the fuzzy relevance feedback method with small modifications. Although fuzzy

information retrieval methods are shown to be very efficient in many applications,

they are not very well-known among information retrieval researchers outside the

fuzzy research community. Good sources of information retrieval and, in particular,

of fuzzy information retrieval are e.g. [64] and [2].

The expressions fuzzy set, t-norm, t-conorm, uninorm, similarity, S-type equivalence,

aggregation, averaging operator and generalized mean appear many times in this the-

sis. Here at the beginning of the thesis, I give a short definition of each of them.

Firstly, the difference is defined between the classical crisp set vs. fuzzy set [48].

The classical set theory deals with the crisp sets, where each member x of the universal

set X is a member or non-member of the subset in question, therefore when A ⊂ X,

then for all x ∈ X it remains true that either x ∈ A or x /∈ A. The crisp set is a

sort of degenerated fuzzy set, which can be defined by a function called characteristic

function that declares which elements of X are members of the set and which are not.

Definition 1 Set A is defined by its characteristic function χA, as follows:

χA : X → {0, 1} .

The fuzzy set theory deals with fuzzy sets, where each member x of the universal set

X has a certain membership grade in the set in question. The term fuzzy set was

first used by Lotfi Zadeh [115]. The fuzzy set theory deals with situations where the

ordinary set theory is not accurate enough for the problems at hand.

The membership function assigns to each member of the universal set X a certain

value which falls within a specific range. The most commonly used range is the unit

interval [0, 1]. The value indicates the membership grade of the member x of the

universal set X in the set in question.
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Definition 2 Fuzzy set A by its membership function µA is as follows:

µA : X → [0, 1] .

In a fuzzy set the membership values µA : X → [0, 1] may be interpreted in terms of

truth values of any propositions that can be considered to belong to some set, and

fuzzy set operators in terms of logical connectives in many-valued logic. This provides

a formulation of fuzzy set theory based on many-valued logic [47]. In this thesis, I

will study this kind of set theoretic based fuzzy logic.

There are also other approaches to fuzzy logic. Klir studied in [47] modal logic

[11] as a basis for the development of the fuzzy set theory. This offers a research

direction, in which fuzzy sets with non-truth-functional set-theoretic operators are

studied. Rough sets [69] can also be treated as a special class of fuzzy sets, in which

membership functions are interpreted in terms of conditional probabilities [109].

For more details, see for example [48], [115], [119], [35], [3].

1.2 Fuzzy Negations, Fuzzy Intersections and Fuzzy Unions

When different objects are compared, perhaps the most important and frequently

used logic operators are the negation, conjunction and disjunction. These operators

can, in a set theoretic view, be seen as complement, intersection, and union. Standard

fuzzy negation ¬ is most often used and it is of the form 1 − a for ¬a. Functions,

which qualify as fuzzy intersections and unions of any given pair of fuzzy sets are

t-norms and t-conorms. Originally, t-norms and t-conorms were used in the field of

statistical metric spaces as the tool for generalizing the classical triangular inequality

[62], [93].

Definition 3 A t-norm is a binary operation T : [0, 1]2 → [0, 1] that satisfies at least

the following for all x, y, z ∈ [0, 1]:

a1) T (x, 1) = x (boundary condition),

b) T (x, y) = T (y, x) (commutativity),

c) y ≤ z implies T (x, y) ≤ T (x, z) (monotonicity),

d) T (x, T (y, z)) = T (T (x, y) , z) (associativity).

The only difference between t-norms and t-conorms is the choice of the neutral element

in the boundary condition. For t-conorms, this is defined by the following:
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a2) S (x, 0) = x (boundary condition).

The simple properties above ensure that fuzzy sets aggregated by t-norms denoted

by T , and t-conorms denoted by S are intuitively acceptable as meaningful fuzzy

intersections and unions of any given pair of fuzzy sets.

The following definition [94] for t-conorms is equivalent to the axiomatic definition

given above. This same definition shows the duality that combines t-norms and t-

conorms together:

Definition 4 A function S : [0, 1]2 → [0, 1] is a dual t-conorm of t-norm such that

for all (x, y) ∈ [0, 1]2 both of the following equivalent equalities holds

S (x, y) = 1− T (1− x, 1− y) , (1)

T (x, y) = 1− S (1− x, 1− y) . (2)

From the definition (4) it can be seen that t-norms and t-conorms also always have

dual forms. The t-conorm given by (1) is called the dual t-conorm of T , and cor-

respondingly, the t-norm given by (2) is called the dual t-norm of S [46]. One can

see that the definition (4) is the generalization of the normal De Morgan’s theorem

[15] into many valued logics. Duality expressed in (1) allows us to change properties

of t-norms into the corresponding properties of t-conorms. Duality also changes the

order, that is, if two t-norms are ordered as T1 ≤ T2, then corresponding t-conorms

are ordered as S1 ≥ S2.

Some important additional requirements that restrict the class of t-norms and t-

conorms and that are needed in this thesis are continuity and Archimedean property.

These can be expressed as follows:

Definition 5 T and S are continuous functions (continuity). A t-norm T : [0, 1]2 →
[0, 1] is continuous if for all convergent sequences (xn)n∈N (yn)n∈N ∈ [0, 1]N we have

T

(
limxn
n→∞

, lim yn
n→∞

)
= lim

n→∞
T (xn, yn)

Definition 6 A continuous t-norm (correspondingly for t-conorm) that satisfies T (x, x) <

x (for t-conorm S (x, x) > x), when x ∈]0, 1[ is an Archimedean t-norm (correspond-

ingly Archimedean t-conorm).
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e) A continuous t-norm (correspondingly for t-conorm) that is continuous and

increasing is called strict.

Continuity prevents a situation in which a very small change in the membership

grade of either set A or set B would produce a large (discontinuous) change in the

membership grade of the intersection or union. From this consideration, it can be

seen that in practice it is preferable to use t-norms and t-conorms that are continuous.

Archimedean property clearly guarantees that t-norms and t-conorms are intuitionally

acceptable to be intersections and unions, when membership degrees are in the interval

]0, 1[. Non-Archimedean t-norms are also not guaranteed to be measurable [8].

Theorem 7 Representation theorem for t-norms: Let T be a binary operation on the

unit interval. Then, T is an Archimedean t-norm iff there exists a rational function

f such that

T (x, y) = f−1 (f (x) + f (y)) (3)

for all x, y ∈ [0, 1].

Proof. See Schweizer and Sklar, 1963 [95] and Ling, 1965 [51].

The following are examples of three parameterized classes of rational functions (de-

creasing generators) and the corresponding classes of t-norms. In each case, the

parameter is used as a subscript of f and T to distinguish different generators and

t-norms in each class.

Example 8 Schweizer and Sklar, 1963 [95]: The class of decreasing generators dis-

tinguished by parameter p is defined by

fp (x) = 1− xp (p 6= 0) . (4)

f−1
p (z) =


1, when z ∈ ]−∞, 0[

(1− z)
1
p , when z ∈ [0, 1]

0, when z ∈ ]1,∞[

(5)

and it is obtained corresponding class of t-norms by applying representation theorem

of t-norms

Tp (x, y) = f−1
p (fp (x) + fp (y))

= f−1
p (2− xp − yp)

=

{
(xp + yp − 1)

1
p , when 2− xp − yp ∈ [0, 1]
0, otherwise

so

Tp (x, y) = (max (0, xp + yp − 1))
1
p . (6)
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Example 9 Yager, 1980 [110]: Given a class of decreasing generators with parameter

w

fw (x) = (1− x)w (w > 0) , (7)

one obtains

f−1
w (z) =

{
1− z 1

w , when z ∈ [0, 1]
0, when z ∈ ]1,∞[

(8)

and it is reached corresponding class of t-norms by applying characterization theorem

of t-norms

Tw (x, y) = f−1
w (fw (a) + fw (y))

= f−1
w ((1− x)w + (1− y)w)

=

{
1− ((1− x)w + (1− y)w)

1
w , when (1− x)w + (1− y)w ∈ [0, 1]
0, otherwise

so

Tw (x, y) = 1−min
(

1, [(1− x)w + (1− y)w]
1
w

)
. (9)

Example 10 Frank, 1979 [29]: This class of t-norms is based on the class of de-

creasing generators

fs (x) = − ln
sx − 1

s− 1
(s > 0, s 6= 1) , (10)

whose pseudo-inverses are given by

f−1
s (z) = logs

(
1 + (s− 1) e−z

)
. (11)

and corresponding class of t-norms is obtained by applying characterization theorem

of t-norms
Ts (x, y) = f−1

s (fs (x) + fs (y))

= f−1
s

(
− ln (sx−1)(sy−1)

(s−1)2

)
= logs

[
1 + (s− 1) (sx−1)(sy−1)

(s−1)2

]
so

Tw (x, y) = logs

[
1 +

(sx − 1) (sy − 1)

s− 1

]
. (12)

Remark 11 Yager class of fuzzy intersections [110] among some other intersections

like Dombi (1982) [16]covers the whole range of fuzzy t-norms.

By choosing different pairs of t-norms T and associated t-conorms S (x, y) = 1 −
T (1− x, 1− y), for all x, y ∈ [0, 1] one can derive distinct fuzzy set systems.

Example 12 The following are examples of some t-norms that are frequently used

as fuzzy conjunctions (each defined for all x, y ∈ [0, 1]).
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Table 1: Examples of t-norms

Name t-norm
Minimum (largest) Tmin (x, y) = min (x, y)
Algebraic product TAprod (x, y) = xy
Bounded product T L (x, y) = max (0, x+ y − 1)

Drastic product (smallest) TDprod (x, y) =


x, when y = 1
y, when x = 1
0, otherwise

Hamacher p ≥ 0 TH(x, y) = xy
p+(1−p)(x+y−xy)

Dombi p > 0 (1982) [16] TD(x, y) = 1

1+(( 1
x
−1)

p
+( 1

y
−1)

p
)

1
p

Frank p > 0, p 6= 1 (1979) [29] TF (x, y) = logp

(
1 + (px−1)(py−1)

p−1

)
Yager p ≥ 1 (1980) [110] TY (x, y) = 1−

(
1 ∧ ((1− x)p + (1− y)p)

1
p

)
Schweizer & Sklar’s 1st p > 0 (1963) [95] T 1

SS(x, y) = (0 ∨ (xp + yp − 1))
1
p

Yu p > −1 (1985) [114] TY u(x, y) = max(0, (1 + p)(x+ y − 1)− pxy)

Example 13 The following are examples of associated t-conorms that are frequently

used as fuzzy disjunctions (each defined for all x, y ∈ [0, 1]).

Below is the table of properties of some t-norms and t-conorms that are used in this

thesis.

Norm Archimedean continuous strict
Tmin, Smax no yes no
T L, S L yes yes no
TAprod, SAsum yes yes yes
TD, SD yes yes yes
TY , SY yes yes no
TF , SF yes yes yes
T 1
SS, S1

SS yes yes no
TY u, SY u yes yes no

Below are limits of some t-norms and t-conorms that are used in this thesis. These

show limits for the valuations that comparison measures created from these t-norms

and t-conorms can get.

1. Dombi:

lim
p→0

TD = TDprod and lim
p→0

SD = SDsum

lim
p→1

TD = lim
p→0

TH and lim
p→1

SD = lim
p→0

SH

lim
p→∞

TD = Tmin and lim
p→∞

SD = Smax

15



Table 2: Examples of t-conorms

Name t-conorm
Maximum (smallest) Smax (x, y) = max (x, y)
Algebraic sum SAsum (x, y) = x+ y − xy
Bounded sum S L (x, y) = min (1, x+ y)

Drastic sum (largest) SDsum (x, y) =


x, when y = 0
y, when x = 0
1, otherwise

Hamacher p ≥ 0 SH(x, y) = x+y−xy−(1−p)xy
1−(1−p)xy

Dombi p > 0 (1982) [16] SD(x, y) = 1

1+
(
( 1

x
−1)

−p
+( 1

y
−1)

−p
)− 1

p

Frank p > 0, p 6= 1 (1979) [29] SF (x, y) = 1− logp

(
1 +

(p1−x−1)(p1−y−1)
p−1

)
Yager p ≥ 1 (1980) [110] SY (x, y) = 1 ∧ (xp + yp)

1
p

Schweizer & Sklar’s 1st p > 0 (1963) [95] S1
SS(x, y) = 1− (0 ∨ ((1− x)p + (1− y)p − 1))

1
p

Yu p > −1 (1985) [114] SY u(x, y) = min(1, x+ y + pxy)

2. Yager:

lim
p→0

TY = TDprod and lim
p→0

SY = SDsum

lim
p→1

TY = T L and lim
p→1

SY = S L

lim
p→∞

TY = Tmin and lim
p→∞

SY = Smax

3. Frank:

lim
p→0

TF = Tmin and lim
p→0

SF = Smax

lim
p→1

TF = TAprod and lim
p→1

SF = SAsum

lim
p→∞

TF = T L and lim
p→∞

SF = S L

4. SS1:

lim
p→0

T 1
SS = TAprod and lim

p→0
S1
SS = SAsum

lim
p→1

T 1
SS = T L and lim

p→1
S1
SS = S L

lim
p→∞

T 1
SS = TDprod and lim

p→∞
S1
SS = SDsum

5. Yu:

lim
p→−1

TY u = TAprod and lim
p→−1

SY u = SAsum

T0 = T L and S0 = S L

lim
p→∞

TY u = TDprod and lim
p→∞

SY u = SDsum

Almost every disjunction or conjunction, many-valued or crisp, compensates the val-

ues and gives a compensated valuation of these values. If many compensated valua-

tions are combined by a generalized mean and then added into every valuation of its
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own weight it reaches very flexible and adaptive combined measures, which can be

used for comparison as will be seen later in this thesis.

1.3 Aggregation

Aggregation operators are used to combine various degrees of membership into one

numerical value, or, more generally, several fuzzy sets are combined in a desirable

way to produce a single fuzzy set. An important class of aggregation operators are

averaging operators.

Definition 14 A mapping f : [0, 1]n → [0, 1] is called an aggregation function f if it

fulfills the following conditions

a) f (0, 0, ..., 0) = 0 and f (1, 1, ..., 1) = 1(boundary conditions).

b) For any pair of n-tuples 〈a1, a2, . . . , an〉 and 〈b1, b2, . . . , bn〉 such that ai, bi ∈ [0, 1]

for all i ∈ N, if ai ≤ bi for all i ∈ N, then

f (a1, a2, . . . , an) ≤ f (b1, b2, . . . , bn) ;

that is, f is monotonic increasing in all its arguments.

c) f is a continuous function.

Two important additional requirements are the following ones:

d) f is a symmetric function in all its arguments; that is,

f (a1, a2, . . . , an) = f
(
ap(1), ap(2), . . . , ap(n)

)
for any permutation p on Nn.

e) f is an idempotent function; that is,

f (a, a, . . . , a) = a

for all a ∈ [0, 1].

Aggregation operations that are idempotent are called averaging operations. For more

details see [16], [18] and [26]

The following definition is for aggregation operators in general [16]:
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Definition 15 For the aggregation of a number n of arguments, it holds that

A (a1, . . . , an) = f−1

(
n∑
i=1

f (ai)

)
, (13)

where ai denotes arguments and f is a generator function as defined in [16].

Thus, if a generator function is chosen to be f (ai) = ami , where m ∈ R and m 6= 0,

which is invertible, the following form for aggregation of number n of arguments ai is

reached:

A (a1, . . . , an) =

(
n∑
i=1

ami

) 1
m

. (14)

Obviously, this is the same as taking the Lp-norm from the arguments. This can be

transformed by generalization into the weighted form of the generalized mean [37].

Definition 16 The weighted form of the generalized mean operator of dimension n,

m 6= 0 and
n∑
i=1

wi = 1 is in the form

A (a1, . . . , an) =

(
n∑
i=1

wia
m
i

) 1
m

, (15)

where ai denotes arguments, wi denotes weights and m denotes the parameter used to

define the mean.

The formula above corresponds to the formulation found in [37, 21].

Lemma 17 By setting wi = 1
n

, ∀i ∈ N it is reached normal formulation of the

generalized mean.

From the [37, 21, 113] one can find that the weighted form of the generalized mean

defined in (15) is an averaging operator. It also possesses several other good properties

listed in [21].

A highly compelling feature of the fuzzy set theory is to provide categories for the

sets of measures called aggregation connectives [18, 26]. In the papers [82, 83, 84, 85]

I used a generalized mean as the aggregative operator in order to compensate and

combine values. These articles introduced several new generalized measures starting

from t-norms, t-conorms, 3Π-uninorm and pseudo equivalences based on the use of
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S-implications. These measures are aggregated with a generalized mean and called

Generalized Weighted T-norm measure in (44) and (47), also a new parameterized

3Π-operator is given in (61). All along several new comparison measures based on

S-type pseudo equivalences have been created and presented in (36), (39), (42) and

(43).

The generalized mean [37, 21] or quasilinear mean [18] is an aggregation operator that

belongs to the class called averaging or mean operators. Other well-known averaging

operators include OWA operators [111]. The name averaging operator originates from

the fact that it combines arguments by giving them some kind of compensation value.

Averaging operators can also be considered as extending the space of the universal

quantifier ∀ (for all) and ∃ (at least one) from the pair ∀,∃ to the interval [∀,∃]. More

recently, the generalized mean has been implemented in OWA operators in [113] to

obtain a generalized version of these operators. This GOWA operator seems to be an

important special case of the use of the generalized mean.

Definition 18 Grade of compensation: Since the generalized mean increases mono-

tonically with respect to m, the grade of compensation is achieved by any strictly mono-

tone increasing transformation γ of the compensation parameter m from [−∞,∞]

onto [0, 1].

Example 19 The grade of compensation can be achieved for instance by

γ = 0.5

(
1 +

m

1 + |m|

)
or

γ = 0.5

(
1 +

2

π
arctan (m)

)
.

Both yield:
γ = 0.00 for minimum m→ −∞
γ = 0.25 for harmonic mean m = −1
γ = 0.50 for geometric mean m = 0
γ = 0.75 for arithmetic mean m = 1
γ = 1.00 for maximum m→∞,

where γ = 0 and γ = 1 characterize min and max type of operators [115], which

are only t-norms and t-conorms that are idempotent and distributive [7]. From this

it is seen that t-norms and t-conorms provide a lower and upper bound for averaging

operators.

Compensative property clearly means that the generalized mean is a valuable tool

for the combining values. It also provides more freedom than the use of well-known

arithmetic, geometric or harmonic means. The coming chapters illustrate how the

generalized mean has been used for combining operators such as t-norms, t-conorms,

uninorms, S-type implications and many valued equivalences.

19



1.4 Uninorms

Uninorms are an important generalization of triangular norms and conorms, having

a neutral element lying anywhere in the unit interval. József Dombi introduced ag-

gregative operators in 1982 [16], which form a class of representable uninorms. Ronald

Yager first used the term uninorms in 1996 [112]. Uninorms are very closely related

to the t-norms and t-conorms because of their neutral element. The main difference

between fuzzy intersections and unions and uninorms is that the latter have a neutral

element e lying in the interval between 0 and 1. The case e = 1 leads back to t-norms

and the case e = 0 leads back to t-conorms. For more details, see [25].

Definition 20 A mapping U : [0, 1]2 → [0, 1] is called a uninorm if it is a commuta-

tive, monotonic and associative operator that satisfies

(∃e ∈ [0, 1]) (∀x ∈ [0, 1]) (U (e, x) = x) (16)

element e is unique and is called the neutral element of U .

1.5 Fuzzy Implications

Implications x→ y are naturally suitable for decision-making.

Remark 21 In general, a fuzzy implication I is a function of the form

I : [0, 1]× [0, 1]→ [0, 1]

Which defines the valuation of the conditional proposition ”if x then y” for all x and

y.

In classical logic x, y ∈ {0, 1}, implications can be defined in several distinct forms.

While these forms are equivalent in classical logic, their extension into fuzzy logic are

not equivalent and result in distinct classes of fuzzy implications. This fact makes the

concept of fuzzy implication somewhat complicated and several definitions for fuzzy

implications have been given, see for example, [23], [48]. There is however a consensus

that every fuzzy implication should be an extension of the classical implication. This

means that they should at least fulfill the following I : [0, 1]× [0, 1]→ [0, 1] is a fuzzy

implication if and only if I(1, 1) = I(0, 1) = I(0, 0) = 1 and I(1, 0) = 0. One can

see that fuzzy implications are obtained by generalizing the implication operator of

classical logic. That is, they collapse to the classical implication when truth values

are restricted to 0 and 1.

Identifying various properties of the classical implication and generalizing them ap-

propriately leads to the following acceptable properties (compare for example [23],

[48]):
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Properties 22 a) If x ≤ z then I (x, y) ≥ I (z, y) (monotonicity in first argu-

ment).

b) If y ≤ z then I (x, y) ≤ I (x, z) (monotonicity in second argument).

c) I (0, y) = 1 (dominance of falsity).

d) I (x, 1) = 1 (neutrality of truth).

e) I (x, x) = 1 (identity).

f) I (x, I (y, z)) = I (y, I (x, z)) (exchange principle).

g) If x ≤ y then I (x, y) = 1 (boundary condition).

h) I (x, y) ≥ y

i) I is a continuous function (continuity).

j) I (x, y) = I (¬ (y) ,¬ (x)). This is valid when ¬ is a standard fuzzy negation.

Definition 23 Fuzzy implications that results from the use of the formula x → y ≡
S (¬x, y), define an implication class called S-implications. Here ¬ denotes a standard

fuzzy negation that is of the form 1− x, and S denotes used t-conorm.

Example 24 Kleene-Dienes, Reichenbach,  Lukasiewicz, the largest S-implications

are basic S-implications. The order of these implications are Kleene-Dienes ≤ Re-

ichenbach ≤  Lukasiewicz ≤ Largest S-implication. Later in this thesis, the use of

these type of implications as the measures for comparison is demonstrated.

Definition 25 Fuzzy implications that results from the use formula x→ y ≡ sup{z ∈
[0, 1] |T (x, z) ≤ y} are normally referred to in the literature as a class called R-

implications.

There are papers published in 19th century that are in some degree relevant to the

many-valued logic like H. McColl [59] and C.S. Peirce [70]. However it is the opinion

of many authors such as Petr Hájek [35] that Jan  Lukasiewicz [53] was the first one

who investigated systematically many-valued logics in the 1920’s. In 1935, Morchaj

Wajsberg showed that infinite valued sentential logic was complete with respect to the

axioms conjectured by  Lukasiewicz. Wajsberg’s proof has never been published. How-

ever, in 1958 A. Rose and J.B. Rosser [72] were the first ones to prove that  Lukasiewicz

propositional calculus was complete and in the same year C.C. Chang introduced MV-

algebras [10] which allows for another completeness proof of  Lukasiewicz’s logic. In

1979 Jan Pavelka [68] published a paper in which he generalized  Lukasiewicz’s logic.
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1.6 Fuzzy Equivalence Relations and their Connection with
Pseudo-Metrics

Definition 26 Pseudo-metric, on a set X, is a mapping d : X×X → [0,∞[ such

that ∀x, y, z ∈ X the following conditions holds true:

1. d(x, x) = 0

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

Equivalence is naturally suitable for the comparison of different objects. In soft

computing, there is a variety of measures that have been applied to comparison.

Some of these measures are set-theoretical, distance based, logical or heuristical.

Similarity relations are used many times as synonyms for measures, which are used

for comparison. The well-known definition for similarity relations in the field of

fuzzy logic is the one presented by Lotfi Zadeh [116]. There is a close link between

this notion of similarity and that of distance (see for example [27] and [104]). This

definition is a fuzzy logical generalization of the equivalence relation, and it is also

an inverse pseudo-metric. The definition given by Zadeh [116] coincides with the

following one:

Definition 27 A mapping E : X2 → [0, 1] is called fuzzy equivalence relation with

respect to t-norm T or just T-equivalence if it fulfills the following conditions, where

x, y, z ∈ [0, 1], 0 = minE〈x, y〉 and 1 = maxE〈x, y〉:

1. ∀x ∈ X : E〈x, x〉 = 1 or ∀x ∈ X : E〈x,¬x〉 = 0

2. ∀x, y ∈ X : E〈x, y〉 = E〈y, x〉

3. ∀x, y, z ∈ X : T 〈E〈x, y〉, E〈y, z〉〉 ≤ E〈x, z〉

E is also called a similarity relation, a fuzzy equivalence [45], an indistinguishability

operator [100], fuzzy equality [39] or a proximity relation [19]. In the case of the

definition (27), it is assumed that the similarity relation used is reflexive, symmetric
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and t-transitive. By replacing the set [0, 1] with the two-element set {0, 1}, the

similarity relation (27) coincides with the usual equivalence relation.

It is known that pseudo-metrics bounded by one and fuzzy equivalence relations

with respect to the bounded product max {a+ b− 1, 0} are dual concepts [45], which

means that E is a fuzzy equivalence relation on X with respect to a bounded product

if and only if 1−E is a pseudo-metric in X. So fuzzy equivalence S〈x, y〉 now acquires

the form E〈x, y〉 = 1−d(x, y). In a case where the pseudo-metric d is not bounded by

one, this property is enforced by considering the pseudo-metric
∧
d = min{d(x, y), 1},

which coincides with d for ’small’ distances. Thus any pseudo-metric induces an

equivalence relation of X with respect to the bounded product by

E〈x, y〉 = 1−
∧
d = 1−min{d(x, y), 1}. (17)

The following theorem that was presented by Siegfried Gottwald in [32] shows that t-

norms used has to be bigger or equal than the bounded product in order to maintain

pseudo-metricity in fuzzy equivalence. In his results, Gottwald used fuzzy equiv-

alences T ((a → b), (b → a)) where implications are of the type R look definition

(25).

Theorem 28 d〈x, y〉 = 1− E〈x, y〉 is a pseudo-metric if and only if used t-norm T

in T ((a→ b), (b→ a)) is larger or equal to the bounded product T L.

Proof. The proof is presented in [32].

From the equation E〈x, y〉 = T ((x → y), (y → x)) one can see that created logical

equivalences depend on the used implication as well as used t-norms. It is also known

that some R- and S-implications (25), (23) overlap. This is the case for example

with the so called  Lukasiewicz implication which is the same in both of its R- and S-

forms. Use of certain left continuous t-norms called nilpotent minimum which satisfy

conditions given in [24] also leads to the implications where S- and R-forms always

overlap.

It is well-known that sometimes the demands of reflexivity, symmetricity or t-transitivity

can be unsuitable for the problems or data sets at hand [101, 92, 14, 41]. It is over-

simplyfing to consider the similarity relation as defined in the definition (27) as the

only measure for sameness or comparison. The meaning of sameness is wider than

the definition of this pseudo-metric based similarity relation. For example, in this

thesis logical equivalences are created which are not reflexive. Symmetricity and tri-

angular inequality have also been questioned in for example [102], and sometimes

non-symmetric measures are called directed similarities [28]. Tversky has especially
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shown that measures of similarity that conform to human perception do not satisfy

the usual properties of a metric [101, 102].

In general, Mathematical machinery used in engineering leans heavily on the use of

metrics. An example of this would be the embedding of signals of interest in metric

spaces, after which it is possible to measure the similarity or dissimilarity of signals,

fidelity and dissortion, as distance. In practice it is always an application that de-

cides the choice of an axiom-set and the flavor of the mathematics used. There are,

however, many metric spaces that can be used to measure distance for example:

Manhattan:

d(x, y) =
N∑
i=1

|xi − yi| (18)

Euclidean:

d(x, y) =

√√√√ N∑
i=1

(xi − yi)2 (19)

Cumulative Euclidean:

d(x, y) =

√√√√ N∑
i=1

(
i∑

u=1

xu −
i∑

u=1

yu

)2

(20)

Minkowsky:

d(x, y) =

(
N∑
i=1

|xi − yi|p
) 1

p

(21)

Cumulative Minkowsky:

d(x, y) =

(
N∑
i=1

∣∣∣∣∣
i∑

u=1

xu −
i∑

u=1

yu

∣∣∣∣∣
p) 1

p

(22)

Landmover:

d(x, y) =
N∑
i=1

∣∣∣∣∣
i∑

u=1

xu −
i∑

u=1

yu

∣∣∣∣∣ (23)

Mahalanobis:

d(x, y) = (x− y)T C−1 (x− y) , (24)

where C is the covariance matrix.
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Modified G:

(25)

d (x, y) = 2

{[ ∑
f=x,y

N∑
i=1

fi log fi

]

−

[ ∑
f=x,y

(
N∑
i=1

fi

)
log

(
N∑
i=1

fi

)]

−

[
N∑
i=1

( ∑
f=x,y

fi

)
log

( ∑
f=x,y

fi

)]

+

[( ∑
f=x,y

N∑
i=1

fi

)
log

∑
f=x,y

N∑
i=1

fi

]}
Of the commonly used distance functions the most common ones are Euclidean cor-

responding to the norm L2 and Manhattan corresponding to the norm L1, these are

both special cases of the Minkowsky, the norm of which is Lp. As the degree of

the norm (p) increases, the weight of a large difference between values of a single

attributes increases. Thus, the Euclidean distance weights have large differences in

comparison with the Manhattan distance. Both the Euclidean and Manhattan dis-

tances are calculated separately for each dimension, and thus, they are not very good

measures of similarity between objects where attributes are correlated and ordered.

In this kind of situation The Cumulative Euclidean and Landmover distances can

be used, because they measure the difference of cumulative values of attribute vec-

tors. Thus the Cumulative Euclidean and Landmover distances can be considered

to measure the spatial concentration of the values in the attribute vector and the

order of the attributes affects the value of the distance. Therefore, with ordered data

these measures are likely to provide better results than the standard Euclidean and

Manhattan distances.

To prevent the effects of unbalanced ranges of different dimensions, the attributes

are often normalized. The normalization can be performed by dividing the attribute

values by the range (maximum-minimum) of the corresponding attribute. Another

possibility is to perform the normalization using the standard deviation instead of

the range.

Most of these distance functions, performed previously, consider the attributes to be

non-correlated. For cross-correlated attributes, statistical properties of a data set can

be used to reduce the effect of correlations. One such distance function with a statisti-

cal factor, the correlation matrix is the Mahalanobis distance. Eventually, calculation

of the correlation matrix in the Mahalanobis distance needs considerable data, the

exact amount depending on the length of the attribute vectors and the variation be-

tween them. If there is not enough variation in the data, numerical calculation of

the inverse of covariance matrix may be impossible because of the singularity of the
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matrix (ill-posed problem). A comprehensive study of the Mahalanobis distance with

a limited sample size can be found in [99]. Furthermore, the removal of the correla-

tion effect should be computed among the samples of the same class rather than over

samples in all classes. Such a calculation procedure is again problematic if the classes

are unknown.

Another statistical method, the log likelihood ratio G, measures the degree to which

observed data corresponds to an expected distribution. As a distance function the ba-

sic G metric has the drawback of depending on the order of variables (non-symmetric

metric), i.e., which variable is considered to be the sample and which the expected

distribution. Sokal and Rohlf [98] introduced a modified G test, which is a two-way

test of interaction or heterogeneity.

With statistical metrics such as Mahalanobis distance and Modified G, there are

some limitations and they cannot always be used. With the Mahalanobis distance,

the covariance matrix is calculated and this cannot always be done because of the

singularity of the matrix. With Modified G there is a logarithm involved and this

causes problems when values are close to zero. These kinds of metrics have been

tested in, for example, [76], [56], and [80], but the results have never been promising.

1.7 Lattices, Algebras and Similarities

To commence with, these are the underlying definitions.

Definition 29 (Cartesian Product Space). Let (x, y) be an ordered pair, where x ∈
X and y ∈ Y , the Cartesian product is defined as the set:

X × Y = {(x, y) : x ∈ X, y ∈ Y } (26)

Definition 30 (Binary relation). Any subset R ⊆ X × Y defines a binary relation

between the elements of X and Y :

R = {(x, y) ∈ X × Y : R (x, y) holds} (27)

A relation is a multi-valued correspondence:

R : X × Y → {0, 1}
(x, y)→ R (x, y} (28)
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Definition 31 A binary relation is a quasi-order if it is reflexive and transitive.

If it is also anti-symmetric then binary relation is partial order. If quasi-order is

symmetric it is an equivalence relation.

Definition 32 A partially ordered set or poset is a set L on which an order relation

≤ has been defined. Of course, on a set L various order relations can be defined. If

in a poset L either x ≤ y or y ≤ x for each x, y ∈ L, then L is linear and is called

a chain. In such a case, the order ≤ is a total order and L is referred to as linearly

ordered.

Definition 33 A lattice is a poset L such that for any x, y ∈ L, x∩y and x∪y exits

in L. x∩ y is called meet, x∪ y is called join of x and y. A lattice L is a (countable)

complete lattice if
⋃
{x | x ∈ X} and

⋂
{x | x ∈ X} exist in L for any (countable)

subset X ⊆ L. A lattice is often denoted by 〈L,≤,∩,∪〉.

Example 34 The unit interval I, for example, is a complete lattice under the usual

order of x ∪ y = max {x, y} and x ∩ y = min {x, y}.

Definition 35 A lattice is called residuated if it contains the greatest element 1,

and binary operations � ( continuous t-norm) and → (called residuum) such

that the following conditions hold true

1. � is associative, commutative and isotone

2. a� 1 = a for all elements a ∈ L and

3. for all elements a, b, c ∈ L, a� c ≤ b if and only if c ≤ (a→ b).

Definition 36 Basic Logic (BL) algebra is a residuated lattice 〈L,≤,∧,∨,�,→, 0, 1〉,
where ∀x, y ∈ L holds:

1. x ∧ y = x� (x→ y)

2. x ∨ y = [(x→ y)→ y] ∧ [(y → x)→ x]

3. (x→ y) ∨ (y → x) = 1
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Remark 37 Each continuous t-norm determines a Basic Logic algebra in the unit

interval [0, 1] with its standard linear ordering as Hájek has shown in [35].

The following demonstrates how to use similarity in order to find similar pairs. Here

a chosen situation is examined where features of different objects can be expressed

in values between [0,1]. Let X be the set of m objects. If the similarity value of the

features are known f1, ..., fn between objects, the object can be chosen that has the

highest total similarity value. The problem is to find for object xi a similar object

xj, where 1 ≤ i, j ≤ m and i 6= j. By choosing for example  Lukasiewicz-structure

for features of the objects n similarities are achieved for comparing the two objects

(x1, x2)

Sfi
〈x1, x2〉 = E(x1(fi), x2(fi)), (29)

where x1, x2 ∈ X and i ∈ {1, ..., n}. Because  Lukasiewicz-structure is chosen for the

membership of objects, the similarity can be defined as follows

S〈x1, x2〉 =
1

n

n∑
i=1

E(x1(fi), x2(fi)). (30)

Different non-zero weights (W1, ..,Wn) can also be given to the different features

in order to obtain the following formula, which again meets the definition of the

similarity.

S〈x1, x2〉 =

∑n
i=1 WiE(x1(fi), x2(fi))∑n

i=1Wi

. (31)

In the ordinary  Lukasiewicz-structure equivalence relation E(x, y) as well as similarity

S(x, y) is defined as

E(x, y) = 1− |x− y| = S(x, y). (32)

In the case of the so called generalized  Lukasiewicz-structure [48], the equivalence

relation (or similarity in case of  Lukasiewicz) is more complicated, i.e.

E(x, y) = (1− |xp − yp|)
1
p = S(x, y). (33)

This similarity has a clear connection with Minkowsky-metrics.

Lemma 38 Consider n  Lukasiewicz valued fuzzy similarities Si, i = 1, ..., n on a set

X. Then · · ·

S 〈x, y〉 =
1

n

n∑
i=1

Si 〈x, y〉

is a  Lukasiewicz valued similarity on X.

Proof. As all Si, i = 1, ..., n are reflexive and symmetric consequently S is also. The

transitivity of S can be seen in the following way. Let A = S 〈x, y〉 � S 〈y, z〉.
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Then

A =

(
1
n

n∑
i=1

Si 〈x, y〉
)
�
(

1
n

n∑
i=1

Si 〈y, z〉
)

= 1
n

n∑
i=1

Si 〈x, y〉+ 1
n

n∑
i=1

Si 〈y, z〉 − 1

= 1
n

(
n∑
i=1

Si 〈x, y〉+
n∑
i=1

Si 〈y, z〉 − n
)

= 1
n

[(S1 〈x, y〉+ S1 〈y, z〉 − 1) + · · ·+ (Sn 〈x, y〉+ Sn 〈y, z〉 − 1)]

= 1
n

[(S1 〈x, y〉 � S1 〈y, z〉) + · · ·+ (Sn 〈x, y〉 � Sn 〈y, z〉)]

≤ (S1 〈x, z〉+ · · ·+ Sn 〈x, z〉)

= S 〈x, z〉

Since generalized mean is a monotonically increasing aggregation operator the follow-

ing result can be concluded::

Corollary 39 Consider n  Lukasiewicz valued fuzzy similarities Si, i = 1, ..., n on a

set X. Then

S 〈x, y〉 =

[
1

n

n∑
i=1

(Si 〈x, y〉)p
] 1

p

is a  Lukasiewicz valued similarity on X.

1.8 Classification

Since classification is used to test all comparison measures in this thesis then a de-

scription of this classification procedure and data sets are given first.

Much of the fuzzy set theory’s original inspiration and further developments originate

from the problems of pattern classification and cluster analysis. Essentially, this is the

reason why classification is chosen to be the test bench for many valued logic based

comparison measures in this thesis. In classification, the question is not whether a

given object is or is not a member of a class, but the degree to which the object

belongs to the class. This means that most classes in real situations are fuzzy in

nature [117]. This fuzzy nature of real world classification problems may shed some

light on the general problem of decision making [66].

Many times a given set of data is already grouped into classes, and the problem is

then to predict to which class the new data items belong. This is normally referred to

as a classification problem. The first set of data is referred to as a training set, while

this new set of data is referred to as a test set [36]. Classification is seen here as a
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comparison between the training set and test set. A classification procedure demon-

strated here could be categorized as a supervised learning method [20] or instance

based learning.

Classification procedure could also be categorized as locally weighted learning, that

uses weighted learning to average, interpolate between, extrapolate from, or otherwise

combine training data [105]. This can be seen from the following definition [1]. Lazy

learning method means (defers) processing of training data until a query needs to be

answered. When training data is stored into the memory and relevant data in the

database is found to answer a particular query, lazy learning is sometimes referred to

as memory-based learning. Relevance is often measured using some distance function,

with nearby points having high relevance. Since the query to be answered is known

during processing of training data, training query-specific local models is possible in

lazy learning. Weighted average local models average the outputs of nearby points,

inversely weighted by their distance to the query point and locally weighted regression

fits with a surface on nearby points using a distance weighted regression. Automatic

tuning of the learning algorithm’s parameters to specific tasks or data sets is part of

the previous methods. Therefore, this classification model could be called something

like similitude based weighted averaging, based on minimizing difference between test

data and learning data. It is important to note the following two facts [1]:

1. Local learning is critically dependant on the distance function. Distance func-

tion in locally weighted learning does not need to satisfy the formal mathemat-

ical requirements for a distance metric. The relative importance of the input

dimensions in generating the distance measurement depends on how the inputs

are scaled (normalized).

2. Distance functions can be asymmetric and nonlinear, so that a distance along

a particular dimension can depend on whether the query point’s value for the

dimension is larger or smaller than the stored point’s value for that dimension.

The distance along the dimension can also depend on the values being compared.

Measures have been tested in this thesis with six different data sets which are avail-

able from [103]. The data sets chosen for the test were: Ionosphere, Iris, Pima, Post,

Thyroid gland and Wine. These are derived from the fields of medicine, biology, geol-

ogy and engineering. These learning sets differ greatly in the magnitude of instances

and number of predictive attribute values. By classification several new generalized

measures will be tested, such as The Generalized Weighted T-norm measure (44)

and (47), a new parameterized 3Π-operator (61) and several new measures based on

S-type pseudo equivalences were also tested (36), (39), (42) and (43).

The stability of the measures has been tested by classification for different weight

values. Each parameter value p and m has been tested and differential evolution is
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used to find the right weights. Classification has also been tested with weight values

which were randomly chosen 200 times to find out how stable these measures really

were. At each point the maximum, minimum, mean values and variation has been

calculated . Tables of results are appended to this thesis in (3), (4), (5), (6), (7), (8),

(9), (10), (11), (12), (13), (14).

1.8.1 Description of the Comparison Measure Based Classifier

Objects, each characterized by one feature vector in [0, 1]n, is classified into different

classes. The assumption that the vectors belong to [0, 1]n is not restrictive since the

appropriate shift and normalization can be done for any space [a, b]n. The comparison

measures can be used to compare objects to classes. Below is the used classifier in

the algorithmic form:

Require: data

scale data between [0, 1]

Require: test,learn[1...n],weights,dim

for i = 1 to n do

idealvec[i] = IDEAL[learn[i]]

maxcomp[i] =
(

1
dim

)1/m

(
dim∑
j=1

weights [j] (CM (idealvec [i, j] , test [j]))m
)1/m

end for

class = arg maximaxcomp[i]

In the algorithm, the comparison measure CM with a generalized mean is used.

IDEAL[i] is the vector that best characterizes the class i and here the generalized

mean vector of the class as an IDEAL-operator has been used.

Evolutionary algorithm is used because of its diversity and robustness to find weights

in classification process, information about evolutionary algorithms in general can be

found for example from [31], [60], [63] and [33]. Obviously, other optimizers can be

used as well. Evolutionary algorithm is based on differential evolution [71]. Differ-

ential Evolution (DE) is a method of mathematical optimization of multidimensional

functions and belongs to the class of evolution strategy optimizers.

The classification task can also be described as in the flowchart (1).

One can see that with respect to L, the number of classes, the classification time is

O(L) after the parameters have been fixed and ideal vectors calculated. However,
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Figure 1: Simplified Flow Chart of the Classification Procedure

finding good parameters can be difficult, but it seems that all measures presented in

this thesis are relatively stable with respect to the parameters, which is demonstrated

later. The advantage of using this classifier here in this thesis is that its results mainly

depend on which comparison measure is chosen to be used.

1.8.2 Data Sets

In the classification tasks presented in my articles [82, 83, 84, 85], the data is in all

cases divided into learning sets and test sets. Weights are estimated with differential

evolution. The only main difference between classification tasks is the use of different

types of measures of comparison.

• Iris: Perhaps the best-known database to be found in the pattern recognition

literature. The number of attributes is 4 and the class. The data set contains

3 classes of 50 instances each, where each class refers to a type of iris plant.
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• Ionosphere: This is radar data where the targets were free electrons in the

ionosphere. Here are two classes: ”Good” and ”Bad”. ”Good” radar returns

are those showing evidence of some type of structure in the ionosphere. ”Bad”

returns are those that do not; their signals pass through the ionosphere. The

number of instances is 351. The number of attributes is 34 plus the class

attribute.

• Pima: The diagnostic, binary-valued variable investigated is whether the pa-

tient shows signs of diabetes. All the instances here are females of Pima Indian

heritage who are at least 21 years old. The number of Instances is 768. The

number of attributes is 8 plus the class. Class 1 (negative for diabetes) 500,

Class 2 (positive for diabetes) 268. Reported 76 % classification result.

• Post Operative: Task of this database is to determine where patients in a

postoperative recovery area should be sent to next. The attributes correspond

roughly to body temperature measurements. The number of Instances is 90.

The number of attributes is 9 including the decision (class attribute). Attribute

8 has 3 missing values.

• Thyroid: Five laboratory tests are used to try to predict whether a patient’s

thyroid belongs to the class euthyroidism, hypothyroidism or hyperthyroidism.

The diagnosis (the class label) was based on a complete medical record, in-

cluding anamnesis, scan etc. The number of instances is 215. The number of

attributes is 5 plus the class. Class 1 (normal) 150, Class 2 (hyper) 35 and Class

3 (hypo) 30.

• Wine: The data is the result of a chemical analysis of wines grown in the

same region in Italy but derived from three different cultivars. The analysis

determined the quantities of 13 constituents found in each of the three types of

wines. The number and deviation of instances: class 1 59, class 2 71, class 3 48.

In classification tasks, measures based on t-norms, t-conorms, uninorms, fuzzy im-

plications, fuzzy equivalence relations and fuzzy pseudo equivalence relations, which

have been combined with weights and aggregated by a generalized mean, are tested.

The results achieved can be seen from the tables (3), (4), (5), (6), (7), (8), (9), (10),

(11), (12), (13), (14). Classifications, in all tasks are tested with weights that were

randomly selected 200 times (RND) and with weights which were optimized 10 times

(DE) for each p- and m-value.
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1.9 Short Notations

It is known that  Lukasiewicz logic is theoretically the best choice from multi-valued

logic used with fuzzy logic in the sense that it possesses the completeness theorem [68]

and all the theorems that are true in first-order logic are also true in  Lukasiewicz logic

[65]. Furthermore, all multi-valued logics, which possess completeness theorem are

isomorphic to the  Lukasiewics logic [68]. In this sense Pavelka showed that the only

good fuzzy implication rule operator in [0, 1], as far as R-implications are concerned,

is the  Lukasiewics’s implication, up to the isomorphism. However there have been

reports of bad undecidability of  Lukasiewics logic [34].

In this thesis, the approach generally has been highly practical and all usage of

measures presented has been validated by practical testing. That is, all comparison

measures created have been validated with experimental data. Therefore this thesis

can be a valuable tool especially for practitioners. It will concentrate on presenting

new comparison measures and a number of ways of creating and using structures,

such as the combination of t-norms and t-conorms, the generalized 3Π-uninorm and

S-type equivalences created from S-type implications. In all cases, the measures

created are implemented with the generalized mean. At the end of this thesis, how

these comparison measures have been applied to the classification, and to sports

medicine in defining an athlete’s aerobic and anaerobic thresholds will be presented.

For fuzzification in classification tasks only fuzzy comparison measures created and

presented in this thesis are to be used. The only case where values are ’really’ fuzzified

is when the athlete’s anaerobic and aerobic thresholds are estimated.

During the process of writing this thesis the following 25 articles has been published

by me [54, 73, 55, 74, 56, 75, 76, 80, 57, 58, 79, 81, 77, 78, 86, 82, 84, 83, 85, 43, 87,

88, 89, 90, 91].
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2 Logical Comparison Measures

It is a common belief that measures for comparison should hold true for some prop-

erties of metric spaces. This belief originates from the blinkered view that the com-

parison of objects should always have something to do with distance. This has been

questioned in many papers [101, 92, 28, 14, 102]. In practice, it seems that properties

of distance have little or no affect at all on the results that can be achieved from the

use of different comparison measures. This becomes empirically clear when one looks

at the test results presented in this thesis.

Definition 40 A set function g defined on X, where X is a fuzzy set and has the

following properties is called a fuzzy measure:

1. g (∅) = 0, g (X) = 1

2. If A,B ∈ X and A ⊆ B then g (A) ≤ g (B)

3. If An ∈ B, A1 ⊆ A2 ⊆ . . . ⊆ An−1 ⊆ An then lim
n→∞

g (An) = g
(

lim
n→∞

An

)

A general definition is given below of what in this thesis is meant by a comparison

measure.

It is suggested here that the comparison measures used in fuzzy sets, where com-

parison is done feature by feature and then these comparisons are aggregated, could

actually be any measures which fulfil the following properties:

Properties 41 1. The comparison measure used has a clear logical structure e.g.

it is an Archimedean t-norm or t-conorm (like Frank (49), (54)) or S-equivalence

((35), (42), (39)).

2. The comparison measure is monotone. This condition ensures that a decrease

(or increase) in any values that are to be compared cannot produce an increase

(or decrease) in the comparison result.

3. The comparison measure is associative. This guarantees that the final compar-

ison results are independent of the grouping of the arguments and that one can

expand these comparison to more than two arguments.

4. The comparison measure is continuous. This guarantees that one can safely

compute with the values that are to be compare.
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In this chapter comparison measures are derived starting from the logical structures.

Some of the resulting structures can be categorized as metric based comparison mea-

sures. Comparison measures based on metric axioms formally called similarities are

measures which are reflexive, symmetric and transitive. Basically, they are a type of

one minus distance. However most of the measures achieved in this chapter do not

fulfil the demands of similarity, and they can be categorized as logic based measures.

The usefulness of these measures is validated by practical testing.

The idea behind using logical structures instead of, for example, simple distances lies

in the fact that logical structures always have some kind of linguistic content inside

them. For example t-norms and t-conorms can be seen as corresponding to the words

”and” and ”or”, equivalence as corresponding to the expression ”if and only if”. One

can see that just by using these logical measures it is possible to give some linguistic

meaning to the comparison procedure.

Some criteria for comparison measures are suggested here. The following criteria are

almost the same as Lowen gives for aggregation operators [52] and originally they

are presented by Bellman-Giertz [7]. It has also been suggested that not all of these

criteria are necessary [42]. One can, however, see that the criteria by Bellman R. and

Giertz M. also applies well to the comparison measures presented in this thesis.

Criterion 42 1. Axiomatic strength. It is suggested here that the operator is

better if the axioms the operator satisfies are less limiting, this is equivalent to

Lowen [52]. It is seen that depending on the choice of the logical structure used

this will fit well with the definition given in (41).

2. Flexibility. Through the flexibility three things are met that are of an empirical

fit, adaptability and compensation. Adaptability comes from the fact that all

comparison measures created in this thesis are parameterized. Compensation

property follows from the use of a generalized mean to combine the different

values. Empirical fit follows then from the three things and these are the use

of logical structures, adaptability and compensation. Empirical fit can naturally

only finally be proven by empirical testing, as is done in this thesis.

3. Numerical efficiency. Some operators such as min and max are numeri-

cally more efficient than, for example, Frank’s t-norm and t-conorm. In large

problems this will always be problematic to some degree. However, it is gradually

becoming less of problem as computers computing power is constantly increasing.

4. Range of compensation. In general, the larger the range of compensation the

better the compensatory operator. In some comparison measures presented in

this thesis the range of compensation has been increased by combining t-norms

and t-conorms and in all comparison measures a generalized mean has been

used.
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5. Aggregating behavior of the comparison measure. Aggregating behavior

can in the comparison measures presented here, be adjusted by the use of proper

mean value in the generalized mean. For example, if a parameter value of 0 is

used with a generalized mean a geometric mean will be obtained, which is to say

that one attains the product of the values and subsequently each value ”added”

normally decreases the resulting aggregate degrees of membership.

6. Required scale level of membership functions. Comparison measures

presented in this thesis have very little restrictions concerning scale levels.

2.1 Equivalences and Implications as the Measures for Com-
parison

The logical operation of a many-valued equivalence is commonly used when the com-

parison of two fuzzy propositions a, b ∈ [0, 1] are required. Equivalence can then

be interpreted to define the valuation of the two-way conditional proposition ”a if

and only if b”. For this reason, it is naturally suitable for the comparison of differ-

ent objects. The implication can logically be interpreted to define the conditional

proposition ”if a then b”. Implications are naturally suitable for decision-making and

therefore they are generally widely used in approximate reasoning. Rule based clas-

sifiers are quite popular in classification processes [50] and they are normally used as

counterparts for fuzzy control systems.

One way of extending the implication is to first use the classical logic formula x→ y ≡
¬x∨ y for all x, y ∈ {0, 1}. This is done by interpreting the disjunction as a t-conorm

and negation by the use of a standard fuzzy complement (¬x ≡ 1− x). This results

in defining the implication with the formula a → b ≡ S (¬a, b) for all a, b ∈ [0, 1],

which gives rise to the family of many valued implications called S-implications.

Equivalences used in this thesis are of the form a ↔ b ≡ T (a→ b, b→ a). On the

other hand, fuzzy implications that result from the use of the formula a → b ≡
sup{x ∈ [0, 1] |T (a, x) ≤ b} are normally referred to in the literature as a class called

R-implications.

Jan  Lukasiewicz used only implication and negation, when he studied many-valued

logic. However O. Frink Jr. [30] used the term for the first time. ” Lukasiewicz

arithmetical conjunction” from the T (a, b) = max{0, a + b − 1} is also known as

bounded difference. Nowadays, it is common to call bounded difference as  Lukasiewicz

conjunction or  Lukasiewicz t-norm and bounded sum S (a, b) = min{1, a + b} as

 Lukasiewicz disjunction or  Lukasiewicz t-conorm see, for example, Hájek [35], Klir

[48], Kundu [49] etc.

 Lukasiewicz used implication given by a→ b = min{1, 1− a + b}, where a, b ∈ [0, 1]
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and negation ¬a = 1 − a as primitive connectives when he created his many valued

structure [53]. Jorma K. Mattila has shown that if one uses definitions as  Lukasiewicz

used one should use only min as conjunctions and max as disjunctions [61].

Here S-type implications and T-norms are used to create equivalences. The S-

type implication is a combination of T-conorm and the negation approach here is

reversed to the approach used by  Lukasiewicz [53]. It is known that operations, t-

norms, t-conorms and negation should be selected very carefully for, example, in the

case of  Lukasiewics correct ’and’ operation for the creation of S-type equivalence is

max{0, a+b−1} and correct ’or’ operation for the creation of S-type is min{1, a+b}
[35], Klir [48], Kundu [49] etc.

2.1.1 Comparison Measures Based on S-Type Implications

Comparison measures, which arise from the fuzzy set theoretic class of implications

called S-implications are now presented. In addition, comparison measures based on

the functional form of implications and first presented by Smetz and Magrez, 1987 in

[97] are also presented.

Articles [76, 77] studies the use of the  Lukasiewicz type of equivalence, with means

and weights. In the article [84] this study was taken further by the use of a gener-

alized mean and weights. In the equations presented in [84] implications have been

parameterized by replacing the variables in the formulas by their exponential forms.

When these kinds of formulations are used one can see that they hold true for all

the properties of the corresponding implications, since the exponent is a monotonic

operator. In this thesis it will be demonstrated that these new many-valued equiva-

lences and implications, which have been combined with weights and then aggregated

with a generalized mean in order to make them comparison measures, are able to give

competitive results when they are tested in classification tasks.

The following procedure given is for defining logical equivalences from implications .

1. Firstly take an implication of the type x→ y ≡ S(¬x, y). Ordinary  Lukasiewicz

implication I L (x, y) = min (1, 1− x+ y) is obtained by the use of a bounded

sum as a t-conorm. Another way of defining this implication is to employ (close

to Galois correspondence) the formula a → b ≡ max{x ∈ {0, 1} |a ∧ x ≤ b}
for all a, b ∈ {0, 1} and interpreting the conjunction as a min-operator, which

gives the original definition of the  Lukasiewicz implication. In cases where the

conjunction is interpreted as t-norm, this results in defining implications in fuzzy

logic by the formula a → b ≡ sup{x ∈ [0, 1] |T (a, x) ≤ b} for all a, b ∈ [0, 1]

and the bounded difference max (0, a+ b− 1) as a t-norm again achieves the

 Lukasiewicz implication. From this it can be seen that S-type and R-type
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 Lukasiewicz implications coincide.

2. Secondly a parameterized form is created from the implications chosen by set-

ting variables into exponential forms. For example by setting x := xp and

y := yp to the ordinary  Lukasiewicz implication, leads to the following formula

I L (xp, yp) = min (1, 1− xp + yp).

3. Thirdly equation x ↔ y ≡ T ((x→ y) , (y → x)) will be used, where T refers

to the any t-norm and → to any implication. For example, in the case of

 Lukasiewicz one may choose to use a bounded product as the conjunction which

leads to the following equivalence equation E L (x, y) = 1− |xp − yp|.

4. In the fourth step of this operator the weights wi, i ∈ N will be added, and these

weighted equivalences are combined with the generalized mean m. In the exam-

ple case here, this leads to the equation E L (xi, yi) =

(
n∑
i=1

wi (1− |xpi − y
p
i |)

m

) 1
m

.

It can easily be seen that, in general, this kind of equivalence does not hold true for

the definition of similarity, i.e. that they are reflexive, symmetric and transitive. In

this approach, the ’right’ measure is selected using the metamathematical structure

of logic instead of the syntactical structure of mathematics. The second approach

which has been used here has been a sort of combination of the syntactic approach

originating from mathematics and the semantic approach originating from the many

valued logic.

1. First the equation I (x, y) = f−1 (f (1)− f (x) + f (y)) is used, that maps

I : [0, 1]2 → [0, 1], where f : [0, 1] → [0,∞[ is a strictly increasing continu-

ous function such that f (0) = 0, for all x, y ∈ [0, 1] [97]. The implications

that follow from the usage of the previous equation have many important prop-

erties, and therefore some of these are mentioned here. The first property is

the monotonicity in the first and second argument, which means that the truth

value of many valued implications increase if the truth value of the antecedent

decreases or the truth value of the consequent increases. The second property

is that it is continuous, which is a property that ensures that small changes

in the truth values of the antecedent or the consequent do not produce large

(discontinuous) changes in the truth values of many valued implications. The

third is that it is bounded, which means that many valued implications are

true if and only if the consequent is at least as true as the antecedent. For

example, one can select f (x) = xp, which leads to the implication of the form

I (xp, yp) = min
{

1, (1− xp + yp)
1
p

}
, also known as the pseudo- Lukasiewicz type

2 implication [48], and if one allows p ∈ [−∞,∞] this can also be seen as a

Schweizer and Sklar type 1 implication [107, 48].
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2. In the next phase two many valued implications are combined by the use of

a proper many valued conjunction into the equivalence of the form x ↔ y ≡
T ((x→ y) , (y → x)). In the example case here fuzzy conjunction of the form

(max {xp + yp − 1, 0})
1
p , where p ∈ [−∞,∞] is chosen or one can also select

min to be the fuzzy conjunction. These both lead to the equivalence equation

of the form E (x, y) = (1− |xp − yp|)
1
p , where p ∈ [−∞,∞].

3. In this third step, the previous step is further generalized by using weights wi,

i ∈ N and a generalized mean m. In the example case this leads to the equation

E (xi, yi) =

(
n∑
i=1

wi (1− |xpi − y
p
i |)

m
p

) 1
m

.

This thesis demonstrates that there is no significant difference between the results

achieved by comparison measures done by logical manipulations of equations versus

the comparison measures achieved, in the first place, by using functional properties.

2.1.2 Created Equivalences, Pseudo Equivalences and Implications as
Comparison Measures

It was noted that since S-type implications were used as basic algebraic structure,

the implications were defined by the formula a → b ≡ S (¬a, b) for all a, b ∈ [0, 1],

where S is a t-conorm, and a dual t-norm of this t-conorm was used for the creation

of pseudo equivalences as comparison measures since this seems to be the obvious

choice.

1. Kleene-Dienes Based Comparison Measure

Kleene-Dienes implication [48] is obtained by using standard fuzzy disjunction as a

t-conorm:

IK−D (x, y) = max (1− x, y)

One can create a parameterized form of Kleene-Dienes by setting x := xp and y := yp,

which leads to the parameterized Kleene-Dienes implication:

IK−D (x, y) = max (1− xp, yp) (34)

A standard fuzzy conjunction was then used to combine two implications IK−D (x, y) =

max (1− xp, yp) and IK−D (y, x) = max (1− yp, xp) from this the following was achieved

Corollary 43 The logical equivalence based on parameterized Kleene-Dienes impli-

cation:

EK−D (x, y) = min (max (1− xp, yp) ,max (1− yp, xp)) (35)
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Since for example EK−D (x, x) 6= 1 in general (35) can not fulfill reflexivity, one

can see that (35) is not a similarity relation as defined in [116]. For (35) weights

can be applied and combine values achieved with a generalized mean. From this

procedure more values are obtained for evaluation. This approach has been proven

to be practically effective in many previous studies [77, 83, 85, 113].

Definition 44 Comparison measure based on the Kleene-Dienes implication:

EK−D (f1 (i) , f2 (i)) =

(
n∑
i=1

wi (EK−D (f1 (i) , f2 (i)))m
) 1

m

(36)

2. Reichenbach Based Comparison Measure

Reichenbach implication [48] is obtained by using the algebraic sum as a t-conorm:

IR (x, y) = 1− x+ xy

A parameterized form of Reichenbach implication can be set by setting x := xp and

y := yp, which leads to the equation

IR (x, y) = 1− xp + xpyp (37)

The algebraic product is then used as a conjunction to combine two implications

IR (x, y) = 1− xp + xpyp and IR (y, x) = 1− yp + xpyp from this one will reach

Corollary 45 The logical equivalence based on parameterized Reichenbach implica-

tion:

ER (x, y) = (1− xp + xpyp) (1− yp + xpyp) (38)

The formula above cannot fulfil reflexivity, so it cannot be considered as a similarity

in the manner defined by Zadeh [116]. To this formula weights can also be applied

and combined values with a generalized mean in order to obtain an extra parameter,

which then can be used to obtain more values for evaluation.

Definition 46 Comparison measure based on the parameterized Reichenbach impli-

cation:

ER (f1 (i) , f2 (i)) =

(
n∑
i=1

wi (ER (f1 (i) , f2 (i)))m
) 1

m

(39)

3.  Lukasiewicz Based Comparison Measure
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 Lukasiewicz S-type implication [48] is obtained by using a bounded sum as a t-conorm:

IL (x, y) = min (1, 1− x+ y)

A parameterized form of the  Lukasiewicz implication is obtained by setting x := xp

and y := yp, which leads to the equation

IL (x, y) = min (1, 1− xp + yp) (40)

The algebraic bounded product is then used as a conjunction to combine two impli-

cations IL (x, y) = min (1, 1− xp + yp) and IL (y, x) = min (1, 1− yp + xp) from this

procedure one attains

Corollary 47 The logical equivalence based on parameterized  Lukasiewicz implica-

tion:

EL (x, y) = 1− |xp − yp| (41)

The equation above is reflexive, symmetric and transitive as are normal pseudo type

 Lukasiewicz structures. When weights are added and then values aggregated with a

generalized mean the following form of equation is obtained:

Definition 48 Comparison measure based on the parameterized  Lukasiewicz impli-

cation:

EL (f1 (i) , f2 (i)) =

(
n∑
i=1

wi (EL (f1 (i) , f2 (i)))m
) 1

m

(42)

4. Combined Lukasiewicz and Shweizer & Sklar Based Comparison Mea-

sure

Here the comparison measure is created which arises from the functional definition

for the implications given in [97]. It is noted that pseudo  Lukasiewicz type 2 [48] and

Shweizer and Sklar type 1 [107, 48] implications form almost the same equivalence

relation when these equivalences are formed by using a fuzzy conjunction such as min

to combine corresponding implications.

This  Lukasiewicz equivalence is included in the corresponding Shweizer & Sklar equiv-

alence by taking the parameter values which go from negative to positive, thus

p ∈ ]−∞,∞[.

Definition 49 Comparison measure based on Shweizer & Sklar -  Lukasiewicz:

ESSL (f1 (i) , f2 (i)) =

(
n∑
i=1

wi (1− |fp1 (i)− fp2 (i)|)
m

p

) 1
m

(43)
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2.1.3 Some Statistical Results

Below, the tables are displayed of the variances, maximums and averages from the

classification results obtained from the classifications, and the results are briefly dis-

cuss.

Table 3: Classification Variances With Optimized (DE) and Randomized (RND)
Weights 1 for Equivalences and Implications

Ionosphere Iris Pima
Kl-Die eqvDE [0, 0.0057163] [0.00011062, 0.010827] [0, 0.0089028]
Kl-Die eqvRND [0, 0.066186] [0.00057889, 0.0086307] [0, 0.0206]
Kl-Die impDE [0.0001277, 0.046692] [0, 0.025025] [0, 0.0035672]
Kl-Die impRND [0, 0.040445] [0, 0.027154] [0, 0.022037]
 Luka ekvDE [0, 0.014592] [0, 0.0038894] [0, 0.0029255]
 Luka ekvRND [0, 0.067938] [0.00038825, 0.0036141] [0.00030067, 0.020311]
 Luka impDE [0.00010366, 0.0053217] [0.00016593, 0.01266] [0, 0.022284]
 Luka impRND [0, 0.0025634] [0.0011248, 0.01024] [0, 0.019975]
Rbach ekvDE [0.00011514, 0.033759] [0, 0.02963] [0, 0.0066011]
Rbach ekvRND [0, 0.065684] [0, 0.02215] [0, 0.01895]
Rbach impDE [0.00013236, 0.045485] [0, 0.027702] [0, 0.014974]
Rbach impRND [0, 0.038049] [0, 0.024116] [0, 0.021102]
SS ekvDE [0, 0.00624] [0, 0.0039131] [0, 0.0036583]
SS ekvRND [0, 0.006687] [0.00041094, 0.0034994] [0, 0.0254]
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Table 4: Classification Variances With Optimized (DE) and Randomized (RND)
Weights 2 for Equivalences and Implications

Post Thyroid Wine
Kl-Die eqvDE [0.00044444, 0.038195] [0, 0.10974] [0.00011523, 0.017827]
Kl-Die impDE [0, 0.040829] [0, 0.11805] [0, 0.018705]
Kl-Die eqvRND [0.00012785, 0.036564] [0.00077909, 0.079777] [0.0010296, 0.012229]
Kl-Die impRND [0.0017656, 0.10286] [0, 0.023163] [0, 0.01122]
 Luka ekvDE [0.00041701, 0.033498] [0, 0.11064] [0.00011111, 0.004561]
 Luka impDE [0.00035665, 0.033997] [0, 0.10951] [0.00022085, 0.010557]
 Luka ekvRND [0.00034662, 0.015962] [0.00049578, 0.096275] [0.00091196, 0.0032172]
 Luka impRND [0.0090717, 0.034177] [0.0022482, 0.08285] [0.00099499, 0.0087482]
Rbach ekvDE [0, 0.04085] [0, 0.080061] [0, 0.023259]
Rbach impDE [0, 0.040077] [0, 0.086187] [0, 0.023808]
Rbach ekvRND [0.0001409, 0.098257] [0.0002145, 0.079288] [0, 0.0241]
Rbach impRND [0.0088538, 0.097995] [0, 0.052141] [0, 0.010503]
SS ekvDE [0.0012949, 0.03341] [0, 0.11955] 0, 0.0043676]
SS ekvRND [0.0039882, 0.016374] [0.00045619, 0.097096] [0.00095514, 0.0031575]

Table 5: Maximal Classification Results with Optimized (DE) and Randomized
(RND) Weights for Equivalences and Implications

Iono Iris Pima Post Thyroid Wine
Kl-Die eqvDE 0.92045 1 0.79688 0.77778 1 1
Kl-Die impDE 0.875 1 0.78385 0.77778 0.96296 0.97778
Kl-Die eqvRND 0.91477 1 0.80469 0.75556 1 1
Kl-Die impRND 0.84659 0.66667 0.78906 0.75556 0.81481 0.91111
 Luka ekvDE 0.93182 1 0.79427 0.77778 1 1
 Luka impDE 0.85227 0.96 0.77083 0.8 1 0.94444
 Luka ekvRND 0.9375 1 0.8099 0.73333 1 1
 Luka impRND 0.84659 0.89333 0.74219 0.77778 1 0.95556
Rbach ekvDE 0.93182 1 0.79688 0.8 1 1
Rbach impDE 0.88636 1 0.77604 0.8 0.99074 0.97778
Rbach ekvRND 0.92614 1 0.80729 0.77778 1 1
Rbach impRND 0.85227 0.66667 0.6849 0.77778 0.98148 0.9
SS ekvDE 0.89773 1 0.80208 0.77778 1 1
SS ekvRND 0.90909 1 0.8151 0.73333 1 1
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Table 6: Mean Classification Results with Optimized (DE) and Randomized (RND)
Weights for Equivalences and Implications

Iono Iris Pima Post Thyroid Wine
Kl-Die eqvDE 0.79007 0.86727 0.73059 0.61517 0.88318 0.90853
Kl-Die impDE 0.78037 0.62923 0.68996 0.68962 0.67952 0.62989
Kl-Die eqvRND 0.79479 0.86293 0.68817 0.53682 0.8487 0.90526
Kl-Die impRND 0.75613 0.58612 0.66238 0.64956 0.49774 0.46769
 Luka ekvDE 0.78627 0.97073 0.72927 0.58266 0.92598 0.93849
 Luka impDE 0.77261 0.8481 0.70728 0.67291 0.84262 0.83737
 Luka ekvRND 0.79199 0.98617 0.74453 0.52977 0.92166 0.95437
 Luka impRND 0.75426 0.81669 0.58129 0.65336 0.85509 0.79738
Rbach ekvDE 0.79891 0.84002 0.7458 0.63128 0.84133 0.88149
Rbach impDE 0.78547 0.74251 0.70939 0.69027 0.63493 0.79292
Rbach ekvRND 0.80155 0.80921 0.71335 0.56499 0.777 0.85355
Rbach impRND 0.75602 0.62764 0.5041 0.67733 0.36739 0.61571
SS ekvDE 0.79102 0.97048 0.73304 0.58396 0.93213 0.94992
SS ekvRND 0.79755 0.98837 0.7477 0.58824 0.92596 0.96354
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2.2 T-norms and T-conorms as the Measures for Comparison

In the paper [82] measures have been defined based on the use of the generalized mean,

weights, t-norms and t-conorms. Below these results are added to the definition of

the combination measure of the t-norm and t-conorm.

Connectives play an important role when trying to model reality by equations. For

example, when linguistic interpretations such as ”AND” or ”OR” are used for con-

nectives in conjunction and disjunction, quite often this does not require or mean

crisp connectives, but that these connectives are only needed to some degree. In such

cases connectives called t-norms or t-conorms may be used. The t-norm gives mini-

mum compensation, while the t-conorm gives maximum compensation. This means

that t-norms tend to give more value for the low values, while t-conorms give more

value for the high values in the interval in which they are used. In practice, neither

of these connectives fit the collected data appropriately. There is still a lot of infor-

mation that is left in between of these two connectives. An important issue when

dealing with t-norms and t-conorms is the question of how to combine them in a

meaningful way, since neither of these connectives alone give a general compensation

for the values where they are adapted. For this reason one should use a measure that

somewhat compensates for this gap in values between these two norms. [21] shows

how the generalized mean works as the compensative connective between minimum

and maximum connectives. The scope of aggregation operators is demonstrated in

Figure (2).

Figure 2: Compensation of t-norms and t-conorms

The first researchers to try the compensation of t-norms and t-conorms were Zim-

mermann and Zysno in [118]. They used the weighted geometric mean in order to

compensate the gap between fuzzy intersections and unions. When one uses the ge-

ometric mean equal compensation is allocated to the all values, and problems might

occur if some of the values combined are relatively very low or high.
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2.2.1 Combined Measure for Comparison Based on T-norms and T-conorms

In (44) a general definition is given for the comparison measure based on t-norms

and t-conorms, where fuzzy unions and intersections are combined by the generalized

mean and weights.

It is clear that the comparison measure (44) should be able to give at least equal

results to any comparison measure made from fuzzy intersections (45) or unions (46)

alone, as long as the weights are chosen properly. Differential evolution is used for

the weight selection problem. The t-norms and t-conorms used should be continuous

for all vectors x1, x2 ∈ [0, 1]. Archimedean t-norms and t-conorms are a good choice

since they are continuous and monotonic [8].

The motivation for the equations (44), (45) and (46) is that when a generalized mean

and weights for aggregation are used, it is possible to go through all the possible

variations of the magnitude of the combined values of fuzzy intersections and unions.

Definition 50 A combined comparison measure based on a fuzzy intersection and a

fuzzy union with weights aggregated by a generalized mean:

Fp (x1, x2) =

(
n∑
i=1

(wi(ωT iTi (x1, x2)) + (1− wi) (ωSiSi (x1, x2)))m
) 1

m

, (44)

where i = 1, . . . , n, p is a parameter combined with the corresponding class of weighted

fuzzy intersections Ti and unions Si, ωT i, ωSi and wi are weights.

It can be seen that if one sets wi = 1, ∀i ∈ Z the following equation is reached:

Definition 51 A comparison measure based on fuzzy intersection with weights and

a generalized mean:

Cp (x1, x2) =

(
n∑
i=1

(ωT iTi (x1, x2))m
) 1

m

, (45)

where p is a parameter combined with the corresponding class of weighted fuzzy inter-

sections and i = 1, . . . , n and ωT i is the weight belonging to the fuzzy intersection.

If one sets wi = 0, ∀i ∈ Z the following equation is reached:

Definition 52 Comparison measure based on a fuzzy union with weights and a gen-

eralized mean:

Dp (x1, x2) =

(
n∑
i=1

(ωSiSi (x1, x2))m
) 1

m

, (46)
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where p is a parameter combined with the corresponding class of weighted fuzzy unions

and i = 1, . . . , n and ωSi is the weight belonging to the fuzzy union.

From the formulation of (44), (45) and (46) it can be seen that the combined measure

of fuzzy intersections and unions includes all the valuations that weighted t-norms

and t-conorms can give and in this way will always give results at least as good as

any combined t-norms or t-conorms alone, as long as weights are chosen in a sensible

way. In the experimental part of this thesis results will be presented on how these

comparison measures worked in classification tasks with some well-known t-norms

and t-conorms.

2.2.2 Created Comparison Measures From T-norms and T-conorms

The following is a brief representation of the algebraic equations that can be created

by combining weights into some important t-norms and t-conorms and then the com-

bining values are given that were achieved by aggregating them with a generalized

mean.

Definition 53 Combined comparison measure based on the t-norm and t-conorm

with a generalized mean and weights:

Fp 〈f1 (i) , f2 (i)〉 =

(
n∑
i=1

(wiT
p
i 〈f1 (i) , f2 (i)〉+ (1− wi) (Spi 〈f1 (i) , f2 (i)〉))m

) 1
m

,

(47)

where i = 1, . . . , n, p is a parameter combined to the corresponding class of fuzzy

intersections Ti and unions Si and wi are weights and i = 1, . . . , n.

The comparison measure (47) has been tested by combining it with the following

comparison measures (48), (49), (50), (51), (52), (53), (54), (55), (56) and (57). The

measure (47) has been tested without weights ωci and ωdi, since the weighting process

was too time consuming with differential evolution. All the comparison measures

mentioned in this sub-chapter have been tested in classification tasks. T-norms and t-

conorms are tested with weights, where a generalized mean has been used to aggregate

and compensate the values.

Parameterized families of t-norms and t-conorms are used here. These families are

the Dombi family, Frank family, Schweizer-Sklar family, Yager family and Yu family.

The Frank and Schweizer-Sklar families of t-norms are also copula families [96] so

they have some good statistical properties see Fisher 1997 [22]. The Yager, Dombi

and Yu families are among the most popular families for modelling the intersection.
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Yager also has several applications for the fuzzy set theory in the context of fuzzy

numbers.

From these t-norms and t-conorm families have been created for the following com-

parison measures.

Definition 54 Measure based on Dombi (1982), [16] class of t-norm with generalized

mean and weights:

CD 〈f1 (i) , f2 (i)〉 =

 n∑
i=1

ωci

(
1 +

[(
1

f1 (i)
− 1

)p
+

(
1

f2 (i)
− 1

)p] 1
p

)−m 1
m

,

(48)

where p > 0 and i = 1, . . . , n.

Definition 55 Measure based on Frank (1979) [29] class of t-norm with generalized

mean and weights:

CF 〈f1 (i) , f2 (i)〉 =

(
n∑
i=1

ωci

(
logp

[
1 +

(
pf1(i) − 1

) (
pf2(i) − 1

)
p− 1

])m) 1
m

, (49)

where p > 0, p 6= 1 and i = 1, . . . , n.

Definition 56 Measure based on Schweizer & Sklar 1 (1963) [95] class of t-norm

with generalized mean and weights:

CSS 〈f1 (i) , f2 (i)〉 =

(
n∑
i=1

ωci (max {0, (f1 (i))p + (f2 (i))p − 1})
m
p

) 1
m

, (50)

where p 6= 0 and i = 1, . . . , n.

Definition 57 Measure based on Yager (1980) [110] class of t-norm with generalized

mean and weights:

CY 〈f1 (i) , f2 (i)〉 =

(
n∑
i=1

ωci

(
1−min

{
1, [(1− f1(i))p + (1− f2(i))p]

1
p

})m) 1
m

,

(51)

where p > 0 and i = 1, . . . , n.

Definition 58 Measure based on Yu (1985) [114] class of t-norm with generalized

mean and weights:

CY u 〈f1 (i) , f2 (i)〉 =

(
n∑
i=1

ωci (max {0, (1 + p) (f1 (i) + f2 (i)− 1)− p · f1 (i) f2 (i)})m
) 1

m

,

(52)

where p > −1 and i = 1, . . . , n.
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Definition 59 Measure based on Dombi (1982) [16] class of t-conorm with general-

ized mean and weights:

DD 〈f1 (i) , f2 (i)〉 =

 n∑
i=1

ωdi

1 +

[(
1

f1 (i)
− 1

)−p
+

(
1

f2 (i)
− 1

)−p]− 1
p

−m
1
m

,

(53)

where p > 0 and i = 1, . . . , n.

Definition 60 Measure based on Frank (1979) [29] class of t-conorm with generalized

mean and weights:

DF 〈f1 (i) , f2 (i)〉 =

(
n∑
i=1

ωdi

(
1− logp

[
1 +

(
p1−f1(i) − 1

) (
p1−f2(i) − 1

)
p− 1

])m) 1
m

,

(54)

where p > 0, p 6= 1 and i = 1, . . . , n.

Definition 61 Measure based on Schweizer & Sklar 1 (1963) [95] class of t-conorm

with generalized mean and weights:

DSS 〈f1 (i) , f2 (i)〉 =

(
n∑
i=1

ωdi

(
1− (max {0, (f1 (i))p + (f2 (i))p − 1})

1
p

)m) 1
m

, (55)

where p 6= 0 and i = 1, . . . , n.

Definition 62 Measure based on Yager (1980) [110] class of t-conorm with general-

ized mean and weights:

DY 〈f1 (i) , f2 (i)〉 =

(
n∑
i=1

ωdi

(
min

{
1, [(f1(i))p + (f2(i))p]

1
p

})m) 1
m

, (56)

where p > 0 and i = 1, . . . , n.

Definition 63 Measure based on Yu (1985) [114] class of t-conorm with generalized

mean and weights:

DY u 〈f1 (i) , f2 (i)〉 =

(
n∑
i=1

ωdi (min {1, f1 (i) + f2 (i) + p · f1 (i) f2 (i)})m
) 1

m

, (57)

where p > −1 and i = 1, . . . , n.

2.2.3 Some Statistical Results
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Table 7: Classification Variances With Optimized (DE) and Randomized (RND)
Weights 1 for T-norms and T-conorms

Ionosphere Iris Pima
Dombi tDE [0, 0.022195] [0, 0.031565] [0, 0.0071898]
Dombi tcoDE [0, 0.042921] [0, 0.067319] [0, 0.031025]
Dombi comboDE [0, 0.062152] [0, 0.10634] [0, 0.024517]
Dombi tRND [0, 0.015997] [0, 0.022814] [0, 0.022922]
Dombi tcoRND [0, 0.022625] [0, 0.0068198] [0, 0.013764]
Dombi comboRND [0, 0.030018] [0, 0.006287] [0, 0.013362]
Frank tDE [0, 0.0035511] [0, 0.034497] [0, 0.0070928]
Frank tcoDE [0.00022419, 0.045307] [0, 0.039982] [0, 0.017554]
Frank comboDE [0, 0.0075833] [0, 0.022331] [0, 0.016104]
Frank tRND [0, 0.0018317] [0, 0.024154] [0, 0.018401]
Frank tcoRND [0, 0.036171] [0, 0.021666] [0, 0.023652]
Frank comboRND [0, 0.034384] [0.0027093, 0.047313] [0, 0.026613]
SS1 tDE [0, 0.0039888] [0, 0.02259] [0, 0.022478]
SS1 tcoDE [0, 0.046902] [0, 0.037894] [0, 0.0029705]
SS1 comboDE [0, 0.0066302] [0, 0.037651] [0, 0.0036146]
SS1 tRND [0, 0.0017585] [0, 0.024946] [0, 0.020029]
SS1 tcoRND [0, 0.019612] [0, 0.025581] [0, 0.0097393]
SS1 comboRND [0.0013732, 0.035834] [0.0010476, 0.04591] [0, 0.022846]
Yager tDE [0, 0.0044626] [0, 0.020585] [0, 0.014673]
Yager tcoDE [0, 0.081635] [0, 0.063378] [0, 0.022963]
Yager comboDE [0, 0.0588] [0, 0.10281] [0, 0.03236]
Yager tRND [0, 0.001915] [0, 0.024094] [0, 0.018067]
Yager tcoRND [0, 0.071424] [0, 0.0035212] [0, 0.014494]
Yager comboRND [0, 0.019078] [0, 0.012974] [0, 0.014832]
Yu tDE [0, 0.0040806] [0, 0.032128] [0, 0.019328]
Yu tcoDE [0, 0.070861] [0, 0.030864] [0, 0.0092253]
Yu comboDE [0, 0.062489] [0, 0.043615] [0, 0.03739]
Yu tRND [0, 0.001886] [0, 0.026196] [0, 0.0163]
Yu tcoRND [0, 0.060143] [0, 0.0028854] [0, 0.0066133]
Yu comboRND [0, 0.0043759] [0, 0.014497] [0, 0.0061772]
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Table 8: Classification Variances With Optimized (DE) and Randomized (RND)
Weights 2 for T-norms and T-conorms

Post Thyroid Wine
Dombi tDE [0, 0.047276] [0, 0.11967] [0.00023182, 0.024347]
Dombi tcoDE [0, 0.034546] [0, 0.11996] [0, 0.045152]
Dombi comboDE [0, 0.057004] [0, 0.10742] [0, 0.053108]
Dombi tRND [0, 0.076472] [0, 0.074297] [0, 0.011611]
Dombi tcoRND [0, 0.031498] [0, 0.0026813] [0, 0.014835]
Dombi comboRND [0.0040719, 0.069764] [0, 0.019775] [0, 0.016622]
Frank tDE [0, 0.043764] [0, 0.075766] [0, 0.030317]
Frank tcoDE [0.00046091, 0.050283] [0.0001105, 0.072303] [0.00013169, 0.028911]
Frank comboDE [0, 0.027852] [0, 0.074909] [0.00013855, 0.022344]
Frank tRND [0.013187, 0.07996] [0, 0.013771] [0, 0.011413]
Frank tcoRND [0.00064341, 0.026005] [0.00039394, 0.090032] [0.0036436, 0.022923]
Frank comboRND [0.021903, 0.080807] [0.00053232, 0.098421] [0.0027008, 0.045572]
SS1 tDE [0, 0.030837] [0, 0.066443] [0, 0.025582]
SS1 tcoDE [0, 0.069882] [0, 0.063047] [0, 0.031364]
SS1 comboDE [0, 0.028143] [0, 0.067086] [0.00016461, 0.024951]
SS1 tRND [0, 0.073282] [0, 0.024676] [0, 0.011099]
SS1 tcoRND [0, 0.043788] [0, 0.060266] [0, 0.02044]
SS1 comboRND [0.02529, 0.081395] [0.00020141, 0.048737] [0.0014516, 0.02555]
Yager tDE [0, 0.030228] [0, 0.072021] [0, 0.028956]
Yager tcoDE [0, 0.033257] [0, 0.10218] [0, 0.044012]
Yager comboDE [0, 0.041706] [0, 0.11024] [0, 0.046147]
Yager tRND [0, 0.070296] [0, 0.041101] [0, 0.0134]
Yager tcoRND [0, 0.026539] [0, 0.067553] [0, 0.017146]
Yager comboRND [0.0059061, 0.071157] [0.00011029, 0.074523] [0, 0.017791]
Yu tDE [0, 0.030091] [0, 0.077271] [0, 0.019638]
Yu tcoDE [0, 0] [0, 0.12428] [0, 0.035365]
Yu comboDE [0, 0.030486] [80, 0.095002] [0.00035117, 0.025158]
Yu tRND [0, 0.073576] [0, 0.0035122] [0, 0.010529]
Yu tcoRND [0, 0] [0.00019166, 0.0055831] [0, 0.011344]
Yu comboRND [0.019738, 0.073204] [0.00026761, 0.036305] [0, 0.014517]
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Table 9: Maximal Classification Results with Optimized (DE) and Randomized
(RND) Weights for T-norms and T-conorms

Iono Iris Pima Post Thyroid Wine
Dombi tDE 0.89773 0.93333 0.75521 0.8 1 0.97778
Dombi tcoDE 0.88068 0.94667 0.78125 0.82222 0.98148 0.93333
Dombi comboDE 0.90909 1 0.77604 0.8 1 0.98889
Dombi tRND 0.85227 0.72 0.7474 0.77778 1 0.94444
Dombi tcoRND 0.67614 0.33333 0.76042 0.82222 0.69444 0.35556
Dombi comboRND 0.88068 0.66667 0.77604 0.82222 0.92593 0.76667
Frank tDE 0.90341 0.98667 0.74479 0.8 0.99074 0.97778
Frank tcoDE 0.93182 0.90667 0.79948 0.8 0.99074 0.96667
Frank comboDE 0.94886 1 0.80729 0.77778 1 1
Frank tRND 0.875 0.66667 0.72135 0.84444 0.87037 0.9
Frank tcoRND 0.89773 0.66667 0.79167 0.77778 0.98148 0.91111
Frank comboRND 0.94318 1 0.8151 0.82222 1 1
SS1 tDE 0.88636 0.97333 0.77865 0.77778 0.92593 0.94444
SS1 tcoDE 0.88068 0.97333 0.79427 0.77778 0.90741 0.93333
SS1 comboDE 0.93182 1 0.79167 0.8 0.91667 0.96667
SS1 tRND 0.88068 0.66667 0.78385 0.8 0.82407 0.86667
SS1 tcoRND 0.86364 0.66667 0.78906 0.82222 0.72222 0.84444
SS1 comboRND 0.89773 0.97333 0.78906 0.8 0.90741 0.93333
Yager tDE 0.90341 0.97333 0.78385 0.8 0.99074 0.98889
Yager tcoDE 0.89773 0.97333 0.77865 0.8 0.99074 0.97778
Yager comboDE 0.94886 1 0.78125 0.8 0.99074 0.98889
Yager tRND 0.875 0.66667 0.77083 0.77778 0.98148 0.95556
Yager tcoRND 0.86364 0.41333 0.71354 0.8 0.69444 0.66667
Yager comboRND 0.86364 0.66667 0.75521 0.82222 0.75926 0.88889
Yu tDE 0.89773 0.98667 0.78125 0.8 0.84259 0.95556
Yu tcoDE 0.90341 0.66667 0.73698 0.022222 0.96296 1
Yu comboDE 0.92614 1 0.79167 0.82222 0.9537 0.97778
Yu tRND 0.86932 0.66667 0.79167 0.77778 0.7963 0.87778
Yu tcoRND 0.85227 0.33333 0.72656 0.022222 0.64815 0.47778
Yu comboRND 0.86932 0.66667 0.73958 0.8 0.94444 0.8
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Table 10: Mean Classification Results with Optimized (DE) and Randomized (RND)
Weights for T-norms and T-conorms

Iono Iris Pima Post Thyroid Wine
Dombi tDE 0.81003 0.70245 0.63523 0.71632 0.75537 0.7972
Dombi tcoDE 0.59766 0.69219 0.70636 0.71072 0.58936 0.71955
Dombi comboDE 0.56841 0.82143 0.6429 0.71131 0.74274 0.82988
Dombi tRND 0.68855 0.50687 0.51795 0.72117 0.57869 0.64626
Dombi tcoRND 0.4228 0.33285 0.49723 0.67868 0.13854 0.30177
Dombi comboRND 0.50663 0.37502 0.52403 0.73466 0.29497 0.40796
Frank tDE 0.58678 0.73116 0.6521 0.72316 0.36156 0.68854
Frank tcoDE 0.82523 0.69186 0.71644 0.72687 0.81572 0.8369
Frank comboDE 0.8368 0.91677 0.74105 0.72103 0.83698 0.90467
Frank tRND 0.54345 0.46915 0.51067 0.72808 0.24405 0.49268
Frank tcoRND 0.5183 0.41616 0.64671 0.5054 0.6633 0.64959
Frank comboRND 0.79859 0.7161 0.72448 0.7252 0.75595 0.87217
SS1 tDE 0.57586 0.56898 0.6616 0.43899 0.57813 0.44556
SS1 tcoDE 0.56161 0.57267 0.69433 0.69862 0.59627 0.53976
SS1 comboDE 0.80951 0.69026 0.69809 0.72104 0.6099 0.70736
SS1 tRND 0.54718 0.51817 0.64657 0.43461 0.58367 0.41418
SS1 tcoRND 0.38858 0.33992 0.66522 0.68328 0.50116 0.39618
SS1 comboRND 0.75039 0.62171 0.69545 0.73047 0.55252 0.54878
Yager tDE 0.58224 0.66718 0.64665 0.68692 0.67863 0.7041
Yager tcoDE 0.5832 0.65698 0.69679 0.60789 0.59708 0.70006
Yager comboDE 0.78778 0.78848 0.61902 0.72001 0.64222 0.76967
Yager tRND 0.54963 0.48627 0.52905 0.693 0.64195 0.55067
Yager tcoRND 0.48709 0.30432 0.50614 0.599 0.15576 0.33845
Yager comboRND 0.53824 0.39725 0.5192 0.72894 0.32447 0.42781
Yu tDE 0.58429 0.76449 0.66028 0.46831 0.47884 0.53567
Yu tcoDE 0.58484 0.47904 0.67926 0.022222 0.61134 0.76706
Yu comboDE 0.75966 0.80896 0.64811 0.72136 0.63387 0.74479
Yu tRND 0.54521 0.66425 0.66475 0.49218 0.47256 0.48777
Yu tcoRND 0.53801 0.25542 0.53917 0.022222 0.19901 0.34205
Yu comboRND 0.53366 0.46593 0.54644 0.72011 0.47866 0.55863
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2.3 Generalized 3Π-uninorm as The Measure for Comparison

3Π-uninorm was presented for the first time in [16] by József Dombi. In the papers

[83] and [90] a generalized form of the 3Π-uninorm is given. In this subsection these

results are recalled. The uninorm was defined in (20) and the representation theorem

for uninorms can be defined as follows:

Theorem 64 Suppose U is an almost continuous uninorm with a neutral element

e ∈ ]0, 1[. Then there exists a strictly increasing continuous function h : [0, 1] → R

with h (e) = 0 such that representation

U (x, y) = h−1 (h (x) + h (y)) (58)

holds true if and only if the following two conditions are satisfied:

a) U is strictly increasing on the open unit square;

b) U is self-dual with respect to a strong negation

N with fixed point e.

Proof. Look [25] for proof.

The only class of uninorms that can be represented in the form (58) are aggregative

operators that József Dombi introduced in 1982 [16], [25], [26].

Definition 65 A multiplicative form of the representation theorem for uninorms can

be derived for uninorms by setting h as an additive generator of the uninorm U and

f (x) = exph (x), which is strictly increasing continuous function from [0, 1] to [0,∞]

such that
U (x1, x2) = h−1 (h (x1) + h (x2)) =
f−1 (f (x1) f (x2))

(59)

holds true.

Corollary 66 If f (xp) = xp

1−xp is set then f−1 (xp) = xp

1+xp is obtained and from this

it follows
U (xp1, x

p
2) ={

0 if x1 = 0 and x2 = 1 or x1 = 1 and x2 = 0
xp
1x

p
2

xp
1x

p
2+(1−xp

1)(1−xp
2)

otherwise
. (60)

This is the parameterized form of the 3π-uninorm, p > 0 and neutral element e = p

√
1
2
.
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Lemma 67 A parameterized form of the 3π-uninorm can be defined by the following

formula

U (xp1, x
p
2) =

{
0 if x1 = 0 and x2 = 1 or x1 = 1 and x2 = 0

xp
1x

p
2

xp
1x

p
2+(1−xp

1)(1−xp
2)

otherwise (61)

p > 0 and neutral element e = p

√
1
2
.

Proof. The commutativity is obvious. The mapping is also still increasing since

the power value p holds true for the monotonicity. Associativity follows on from the

associativity of U (x1, x2). It is also an easy calculation to show that the neutral

element e = p

√
1
2
.

In the measure (62) two vectors x1, x2 ∈ [0, 1]n are given:the elements of which present

the properties of two objects. These objects are to be compared by the 3π-uninorm

with a generalized mean. The parameters for measures are the mean value m ∈
R \ {0}, weights w = (w1, . . . , wn) and parameter value p.

Theorem 68 The weighted, generalized mean compensated form of the parameterized

3π-uninorm, is a function U3π : ([0, 1]n)
2 → [0, 1] defined as:

U3π (xp1, x
p
2;m,w) =

0 if x1 = 0 and x2 = 1 or x1 = 1 and x2 = 0(
n∑
i=1

wi

(
xp
1(i)xp

2(i)

xp
1(i)xp

2(i)+(1−xp
1(i))(1−xp

2(i))

)m) 1
m

,

(62)

where p > 0, 0 ≤ wi ≤ 1 and 1
n

n∑
i=1

wi = 1. In fact, the way the weights are normalized

is not important in classification since it affects only the range of the measure, not

the order of values.

Proof. Since the generalized mean is a continuous and monotonic operator, when

m ∈ R \ {0} all uninorm properties stay intact.

2.3.1 Some Statistical Results
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Table 11: Classification Variances With Optimized (DE) and Randomized (RND)
Weights 1 for 3Π-uninorm

Ionosphere Iris Pima
3Π-uniDE [0, 0.035158] [0, 0.026825] [0, 0.011224]
3Π-uniRND [0, 0.015214] [0, 0.022218] [0, 0.020157]

Table 12: Classification Variances With Optimized (DE) and Randomized (RND)
Weights 2 for 3Π-uninorm

Post Thyroid Wine
3Π-uniDE [0.00013717, 0.035276] [0, 0.079961] [0, 0.032368]
3Π-uniRND [0.0097227, 0.030767] [0, 0.006699] [0, 0.015109]

Table 13: Maximal Classification Results with Optimized (DE) and Randomized
(RND) Weights for 3Π-uninorm

Iono Iris Pima Post Thyroid Wine
3Π-uniDE 0.90909 0.97333 0.78385 0.82222 1 0.97778
3Π-uniRND 0.82955 0.66667 0.6901 0.82222 0.83333 0.9

Table 14: Mean Classification Results with Optimized (DE) and Randomized (RND)
Weights for 3Π-uninorm

Iono Iris Pima Post Thyroid Wine
3Π-uniDE 0.59147 0.61591 0.60158 0.6983 0.29837 0.56514
3Π-uniRND 0.56686 0.46184 0.51414 0.67234 0.20889 0.43728
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2.4 Results From Classification Tasks

From the tables (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14) it can be

seen that variances, all the way through, were relatively small; normally maximum

variance is just a few per cent. This can also be seen from the mean classification

results.

The results achieved by the different equivalences based comparison measures give

no great differences. Accordingly, it seems that it does not matter much, in practice,

whether one uses logically or functionally formulated equivalences in classification.

In the Post-operative data set, implication based comparison measures worked bet-

ter than equivalence based ones. In all other cases, equivalence based comparison

measures mostly gave significantly better classification results than implication based

ones.

It can also be seen that in most cases combined comparison measure (47) from t-norms

and t-conorms give better results than plain t-norms or t-conorms. This is of course

dependent on the data sets because t-norms give more value for small values and

t-conorms gives more value for large values. However, in 37 of 60 mean classification

cases and in 41 of 60 maximum classification cases the best classification results were

achieved using a combined measure. In many cases classification results also improve

a great deal by the use of combination of t-norms and t-conorms. For example, this is

the case where the t-norms and t-conorms of Frank (49) and (54) or Schweizer & Sklar

1 (50) and (55) are used. It is also worth noting that in all of the classification tasks

presented here Frank based comparison measures gave the best classification results,

which are the same or better than those coming from the pseudo equivalences. All

but one of these best results achieved by Frank come from the use of a combined

measure (47) of t-norm (49) and t-conorm (54).
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3 Applications

The benefits that one can obtain by applying an algebraic form of many-valued logical

operators with weights and by combining these with a generalized mean in compari-

son tasks becomes apparent when these comparison measures are used to model the

systems which are somewhat graded in their nature. Examples of these kinds of sys-

tems are expert systems and decision analysis, where the management of uncertainty

often plays an important part.

This section will present how the comparison measures that have been briefly intro-

duced in previous chapters, work in application areas concerning the defining of an

athlete’s aerobic and anaerobic thresholds and medical data classification.

3.1 Defining an Athlete’s Aerobic and Anaerobic Thresholds

Described here is an expert system for defining an athlete’s aerobic and anaerobic

thresholds that successfully mimics the decision-making done by sport medicine pro-

fessionals [85]. The functionality of this system is based on the fuzzy comparison

measure, generalized mean, membership functions and differential evolution. Dif-

ferential evolution is used to tune the parameters in the comparison measure. The

comparison measure is based on the use of fuzzy equivalences and a modification

factor that tunes the shape of the membership function in hand. The measure pre-

sented is especially suitable for expert systems. The system is tested in order to show

that the results do not show any statistically significant differences from the values

estimated by experts.

The increase in the blood lactate, above a certain exercise intensity, has been recog-

nized since the early 20th century [17]. The term anaerobic threshold was first used

by Wasserman and McIlroy [106] when the blood lactate is about 2.0mmol
l

. Later, Kin-

derman et al [44] used a blood lactate of 4.0mmol
l

to describe the aerobic-anaerobic

threshold. The terminology used has been the source of continued controversy and

debate in sports medicine. A somewhat stable practice nowadays is to call Wasser-

man’s threshold aerobic and Kinderman’s threshold anaerobic. These thresholds can

be defined in a laboratory with commonly accepted criteria. However, in this case a

human expert is always needed to define these thresholds, and moreover, most of the

laboratories have done some small modifications to their criteria so that the results

are not comparable with each other even from the same data. People’s subjective

opinions and the weighting of different variables and criteria also create considerable

differences in the thresholds that are related to the client. Here, the goal has been

to establish a simulation model which computes the threshold values mentioned, by

mimicking expert judgments for thresholds values.

59



It is of vital importance for top athletes to know their individual aerobic and anaerobic

thresholds. This is due to the fact that their workouts will be more efficient and can

be more focused on different parts of endurance if the thresholds are known. The

basic aerobic endurance is improved with workouts when the pulse does not exceed

the aerobic threshold. Aerobic speed endurance, on the other hand, is improved when

the pulse stays between these thresholds. Finally, the maximal aerobic endurance is

improved when the pulse is over the anaerobic threshold. The thresholds are given

in heartbeats per minute.

It has been shown that there are no statistically significant difference between the

results given by this system versus the results given by sport’s medicine experts. The

fuzzy decision-making system presented in this thesis is based on the use of mem-

bership functions of fuzzy criteria set by experts, fuzzy equivalence, the generalized

mean, weights and modifying factors. The generalized mean, weights and modify-

ing factors are used as parameters in the comparison measure. Differential evolution

is used to find such values for these parameters that the thresholds defined by this

system, compared to the values defined by experts are as close to each other as pos-

sible. The correct thresholds are, by assumption, to be found at the point where the

combination of comparison measure gives the maximal value for the pulse.

3.1.1 System Definition

The measurement data sets were provided by KIHU - the Research Institute for

Olympic Sports. Each file in the set contains an athlete’s measurements during an

incremental workout. In total, 154 data files were used, all of which included 11

variables. The variables used for defining the aerobic and anaerobic thresholds are

the following: 1) the content of lactic acid in the capillary blood, 2) ventilation, 3) the

consumption of oxygen, 4) the production of carbon dioxide, 5) the relative amount

of oxygen in the respiration air, 6) the relative amount of carbon dioxide in the

respiration air, 7) the ventilation equivalent for oxygen, 8) the ventilation equivalent

for carbon dioxide and 9) the respiration quotient. The last two were the pulse in

beats per minute and times per minute.

The criteria deduced from the experts’ instructions for defining the aerobic threshold

were the following:

1. The pulse is about 40 beats per minute below the maximal pulse.

2. The content of lactic acid in the capillary blood begins to rise.

3. The content of lactic acid in the capillary blood is about 1.0 − 2.5 mmol per

liter.
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4. The ventilation begins to rise from the initial level.

5. The relative amount of oxygen in the respiration air reaches its maximum.

6. The ventilation equivalent for oxygen is the lowest.

7. The lactic acid divided by the consumption of oxygen is the lowest.

When the load is raised over the aerobic threshold, the muscles start to work at the

aerobic-anaerobic level. If the load is raised enough, the anaerobic production of

energy will increase over the point where the ability of the muscles to remove lactic

acid and to control the acidity is insufficient. This point is the anaerobic threshold.

The corresponding criteria for defining the anaerobic threshold were the following:

1. The pulse is about 15 beats per minute below the maximal pulse.

2. The content of lactic acid in the capillary blood is about 2.5 − 4.0 mmol per

liter.

3. The content of lactic acid in the capillary blood begins to raise radically.

4. The ventilation equivalent for carbon dioxide changes radically.

5. The ventilation equivalent for oxygen begins to rise radically.

6. The relative amount of oxygen in the respiration air begins to drop.

This information was the starting point from which the system for the thresholds’

definition was created. Because most of the criteria were vague, fuzzy logic offered

suitable tools for the modeling of this kind of system.

3.1.2 Fuzzy Decision Making Model

Linear interpolation is used to interpolate the measurement data along the pulse.

Various different interpolation methods were also tested but they gave significantly

poorer results.

Setting the criteria for the aerobic and anaerobic threshold was taken from the criteria

presented. Using the membership functions, which were Gaussian, triangular and

trapezoidal, fuzzified these criteria. These are chosen to imitate an expert’s judgment

as a grade of certainty with the corresponding data.

In the equations below, weights wi and membership values xi, yi and µ have been

normalized to the values between [0, 1], ∀i and m 6= 0.
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One result concerning the choice of comparison measure, is that if one supposes that

the values set by experts are ideal, that is valuation xi = 1, for all i then the following

formula will always be reached:

E (xi, yi) =

(
n∑
i=1

wiy
m
i

) 1
m

, (63)

where E (xi, yi) is the total sameness between all fuzzified criteria for the correspond-

ing data. This follows from the following:

1. implications have neutrality of the truth I (1, b) = b and boundary condition ii)

I (a, b) = 1 iff a ≤ b

2. every t-norm must satisfy the boundary condition, that is T (1, yi) = yi.

When the membership value yi = µpi

Aeti
for aerobic and yi = µpi

Anti
for anaerobic are

set, then the modifying factor pi tunes the shape of the membership function i. This

corresponds to the real situation where for, example, experts’ subjective opinions

affect the final decision. Index i shows the number of corresponding membership

functions, which mimic the criteria. This gives the following two equations:

EAet
(
xi, µ

pi

Aeti

)
=

[
n∑
i=1

wiµ
pi·m
Aeti

] 1
m

(64)

for the aerobic threshold and

EAnt
(
xi, µ

pi

Anti

)
=

[
n∑
i=1

wiµ
pi·m
Anti

] 1
m

(65)

for the anaerobic threshold.

3.1.3 Use of Differential Evolution for Finding the Right Parameters

Differential evolution (DE) is used for finding the correct parameter values for the

system. DE is a simple population based stochastic function minimizer. The ob-

jective of DE is to iterate each member of the population and compare its value to

the trial member value, and the superior member stays for the next iteration. The

evolution strategy defines the way in which a trial member is generated. DE tries to

seek parameters that will give the maximal similarity compared to the values set by

experts. This is done so that DE tries to minimize the value of the objective function
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with trial member values. The objective function is the total difference between the

thresholds defined by experts and the thresholds defined by similarity used here for

all learning data sets. Finally, DE gives the optimal parameter values. The basic

action of used differential evolution is demonstrated in figure (3). Figures (4) and

(5) show that differential evolution reached the optimal solution rather quickly. The

solution, in this case, is the mean error of classification with the current training data

set.

Measurement data

Interpolation of measurement
data

Fuzzyfication of interpolated
data Generate random population

Classifier with optimal
weights

Classification

Select next member from
population

Do mutation and crossover

Test classification

Better member stays for next
generation

Still need to continue
evolution?

yes

no

Figure 3: Simplified computational model for DE

After the optimization, the parameters shown in Table (15) were reached for the

aerobic threshold and the parameters shown in Table (16) for the anaerobic threshold.

Table 15: Optimized parameters, aerobic

i wi pi m
1 3.1394 9.4039 0.2307
2 45.0996 3.0604
3 25.7102 4.7183
4 18.4844 0.6633
5 0.2418 0.6976
6 7.2322 6.0769
7 0.0925 5.6312
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Figure 5: Mean error development for anaerobic

3.1.4 Final Model

The making of this computational model consisted of the following steps:

1. The interpolation of the measurement data, which interpolates data on the pulse

and the ventilation of oxygen.

2. Setting the criteria for aerobic and anaerobic thresholds in co-operation with

sports medicine experts.

3. The selection of the membership functions which correspond as well as possible

to the fuzzy criteria set by experts.

4. The fuzzification of the interpolated data which fuzzifies data with the mem-

bership functions.
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Table 16: Optimized parameters, anaerobic

i wi pi m
1 0.0967 9.3537 0.4517
2 33.4295 9.7802
3 23.6398 3.0888
4 6.9080 0.8098
5 34.5696 2.8369
6 1.3564 0.1598

5. Counting the partial similarities and combining them to the total similarity.

6. Estimating the parameters for partial similarities with differential evolution and

combining the best parameters into the model.

7. The model is ready for use.

Interpolate data

Fuzzify data

Find maximal
similarity

Begin

switch

datafile

Output / visualize
results

End

Interpolate data

Learnin
set

Fuzzify data

Find optimal
weight, pi and m

values using
evolution

Find thresholds

Find new parameter

exit

Figure 6: Computational model for the system

From the flow chart of the final model in Figure (6) it can be seen that with some

measurement data the computations needed can be done in a quite straightforward
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manner because the interpolation used is linear, and finding the right evaluation

result is a simple task of finding the maximal combination of membership values.

This means that once the correct parameter values are estimated, this system works

rapidly.

3.1.5 Results and Discussion

The following section considers the statistical effects of the parameters in equivalence

for the thresholds estimated by this system versus the thresholds given by experts.

Tables (17) and (18) show the comparison statistics from the optimal values set by

experts and calculations with three different mean measures, arithmetic, geometric

and harmonic with and without weights vs. newest model. In this latest model, in

addition to weights an individual parameter pi for different membership values and

the generalized mean were also used. The following notations have been used in tables

(17) and (18). The word expert means a thresholds heartbeat value, which is defined

by the expert. Letters A, G and H illustrate the corresponding arithmetic, geometric

and harmonic averages that are used in the measure to achieve estimates for the

heartbeat, noW means that no optimized weights have been used, so that all weights

equal 1 and W means the weight. The word final means the heartbeat thresholds that

have been obtained from the most recent model. Test called the multiple range test

were used, which in this case was Fisher’s least significant difference (LSD) method,

an approach suggested by the statistician R. A. Fisher. This procedure carries out

pair-wise comparisons using the variances for the groups chosen for the test.

Table 17: Fisher’s least significant differences (LSD), aerobic (* denotes a statistically
significant difference.)

expert - final 1.6755

AnoW - final *-12.2185

AW - final -0.450331

GnoW - final *-20.6755

GW - final *-20.2517

HnoW - final *-6.1457

HW - final *-3.72848

It can be noticed that the model with individual parameter values and a generalized

mean give the best results. One can also notice that in most of the cases the results

that obtained by using ordinary means such as arithmetic, geometric or harmonic

usually differ significantly from the results obtained with optimized mean value. In

all cases, the weighted version was better than the non-weighted. For the aero-

bic threshold, the results did not show any statistically significant difference when
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Table 18: Fisher’s least significant differences (LSD), anaerobic (* denotes a statisti-
cally significant difference.)

expert - final 0.298013

AnoW - final -0.966887

AW - final -0.543046

GnoW - final *-59.2119

GW - final *-59.2119

HnoW - final -0.211921

HW - final 0.152318

weights were applied for the similarity measure at a 95.0 % confidence level. For

the anaerobic threshold the results were better when weights were used, but already

the un-weighted version of this system worked so well that there was no statistically

significant difference to the expert values at a 95.0 % confidence level.

All the way through, the results were very good and there were no statistically signifi-

cant differences between the results estimated by this system and the results estimated

by experts. In conclusion, this model can be regarded as a fully developed working

system to determine an athlete’s aerobic and anaerobic thresholds.

Obviously the use of three parameters - weights, modification factors and a generalized

mean - improved the accuracy of the forecasted thresholds.

3.2 Medical Data Classification Using Comparison Measures

In this chapter, the kind of results that can be established using comparison mea-

sures in classification of some well-known medical data sets, are studied. Results are

compared in comparison with some known results and one can see from the results

presented that the comparison measures used are able to produce the results better;

pointing out the importance of choosing the right comparison measures.

3.2.1 Data sets and used comparison measures

Medical data sets are to be tested with equivalence based comparison measures that

have been presented in this thesis so they are of the form E(x, y) = T (S(¬x, y), S(¬y, x)),

where T and S present the corresponding pairs of t-norms and t-conorms. The com-

parison measures tested were the combined  Lukasiewicz and Shweizer & Sklar based

comparison measure with a generalized mean presented in (43), the Kleene-Dienes

based comparison measure with a generalized mean presented in (36), the Reichenbach

based comparison measure with a generalized mean presented in (39), the  Lukasiewicz
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based comparison measure with a generalized mean presented in (42). The data sets

chosen for the test were: Pima Indians diabetes, Thyroid gland, BUPA liver disor-

ders and Wisconsin Diagnostic Breast Cancer (WDBC). They were all derived from

medical sources.

• Pima, row 1: The diagnostic, binary-valued variable investigated is whether

the patient shows signs of diabetes. All instances here are females of Pima

Indian heritage of at least 21 years of age. The number of instances is 768. The

number of attributes is 8 plus the class. Class 1 (negative for diabetes) 500,

Class 2 (positive for diabetes) 268.

Past usage Zhou Z.H. and Jiang Y. [120] etc.

• Thyroid, row 2: Five laboratory tests are used to try to predict whether a

patient’s thyroid belongs to the class euthyroidism, hypothyroidism or hyper-

thyroidism. The diagnosis (the class label) was based on a complete medical

record, including anamnesis, scan etc. The number of instances is 215. The

number of attributes is 5 plus the class. Class 1 (normal) 150, Class 2 (hyper)

35 and Class 3 (hypo) 30.

Past usage Coomans, D. et. al. [12], [13] etc.

• BUPA, row 3: The first 5 variables are all blood tests which are thought to be

sensitive to liver disorders that might arise from excessive alcohol consumption.

Each line in the bupa.data file constitutes the record of a single male individual.

The number of instances is 345. The number of attributes is 6 plus the class.

Class 1 145 and Class 2 200.

Past usage Bologna G. [9] etc.

• WDBC, row 4: Wisconsin Diagnostic Breast Cancer. The features are com-

puted from a digitized image of a fine needle aspirate (FNA) of a breast mass.

They describe characteristics of the cell nuclei present in the image. The num-

ber of instances is 569. The number of attributes is 30, including the mean,

standard error and maximum value from 10 different measures, plus the class.

Class 1 (benign) 357 and 2 (malignant -dangerous) 212.

Past usage, Wolberg W. H. and Mangasarian O. L. [108].

3.2.2 Classification

Classification in this study was carried out by using a comparison measure based

classifier described in the introduction part of this thesis in Figure (1). For each

parameter value p and m, corresponding weight values were randomly chosen 200

68



Table 19: Maximum classification accuracy

SS1 KD RB L
Pima 0.8021 0.7969 0.7969 0.7943
Thyroid 1.0000 1.0000 1.0000 1.0000
BUPA 0.9942 0.9942 0.9942 0.9942
WDBC 0.9860 0.9825 0.9825 0.9895

times. Results achieved are compared with the results that were achieved in the

articles [120], [12], [13], [9] and [108].

The following are very short descriptions of classifiers that are used for comparison

of classification results here, although better descriptions can be found from Bologna

G. [9].

• C4.5 is a popular decision tree classifier.

• LDA is described as a linear discriminant analysis classifier.

• MLP is a multi-layer perceptron based classifier.

• DIMLP is a discrete interpretable multi-layer perceptron based classifier.

3.2.3 Results and discussion

Below is a table displaying the maximum and average classification results and a brief

discussion of the results.

In the tables (19), (20) and (21) SS1 mean that the combined  Lukasiewicz and

Schweizer & Sklar based comparison measure presented is used in (43), KD means

that the Kleene-Dienes based comparison measure presented in (36) is used, RB

means that the Reichenbach based comparison measure presented in (39) is used and

 L means that the  Lukasiewicz based comparison measure presented in (42) is used.

From Table (19) the maximal classification result can be seen using the optimal pa-

rameters of p and m. From Table (20) can be seen the average classification results,

that are the means of classification results over all p- and m-values. From Table (21)

can be seen the variances of classification results, which show that all equivalences

are also able to give quite stable results.

From the Table (22) it can be seen that equivalence based comparison measures are

able to give better results than other methods used before for classification in Bologna

G. [9], where reported results were better than results reported in [120], [12], [13] or
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Table 20: Average classification accuracy

SS1 KD RB L
Pima 0.7659 0.7607 0.7682 0.7643
Thyroid 0.9741 0.9694 0.9667 0.9769
BUPA 0.9249 0.6861 0.7110 0.6884
WDBC 0.9611 0.9493 0.9369 0.9490

Table 21: Maximum variance in classification

SS1 KD RB L
Pima 0.0037 0.0089 0.0066 0.0029
Thyroid 0.1196 0.1097 0.0801 0.1106
BUPA 0.0750 0.0194 0.0255 0.0203
WDBC 0.0051 0.0212 0.0338 0.0295

[108]. Except when Coomans D. uses in [13] a different kernel density methods, some

of which achieve 100 % correct classification for Thyroid data.

It can seen from the (22) that the best result for the Pima data set is 3.42 % better

than best result achieved in the articles used for comparison. For the thyroid data

set the best result is 3.76 % better than best result achieved in the articles used for

comparison. For the BUPA data set the best result is 28.71 % better than best result

achieved in the articles used for comparison. For the WNBC data set the best result

is 1.52 % better than best result achieved in the articles used for comparison.

Figures (7) and (8) show typical classification results from which one can see that

comparison measures give large areas where results remain very stable. Classification

results and the best p- and m-values are dependent on the data set used.

Table 22: Classifier comparison

LDA C4.5 MLP DIMLP CM
Pima 0.7640 0.7380 0.7638 0.7679 0.8021
Thyroid 0.8134 0.9326 0.9624 0.9486 1.000
BUPA 0.6912 0.6657 0.7023 0.7071 0.9942
WDBC 0.9719 0.9406 0.9743 0.9692 0.9895
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Figure 7: Average classification results using  Lukasiewics comparison measure
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Figure 8: Average classification results using Reichenbach comparison measure

71



In this chapter illustrates that the results achieved by using comparison measures pre-

sented in this thesis, see Table (22), were either better or the same [13] in classification

tasks chosen as comparisons, than the classification results presented in articles [120],

[12], [9] and [108]. One can also see from Figure (7) and Table (21) that normally

these classification results remain quite stable with any parameter values.
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4 Conclusions

In basically every area of human life some kind of measures for comparison are needed.

In soft computing, these areas include classification, pattern recognition, clustering,

expert systems, medical diagnosis systems, decision support systems, and fuzzy con-

trol. Recently, new areas have been generated, for example, in web-search engines,

where information retrieval is of high importance. There are several different logical

operators presented in the literature of fuzzy logic for example in [48], [119], [35], [3]

and [18]. Some have also suggested ways to create operators directly from the data

at hand [4], [5] and [6]. Many authors have presented operators that can be used for

comparison purposes and even claim that these work well in practice, but normally

they show no data to support the claim that they actually work in practice. In this

thesis, all comparison measures have been tested with some practical data, and it has

been shown that they in fact give reasonable results when applied.

In classification and the development of expert systems, the problem of choosing the

right functions for comparison is often faced. When data has different dependencies,

different operators should be used. Usually the simplest operators are selected, which

are not normally the optimal choice. As a solution to this problem this thesis has

offered different approaches for creating comparison measures, on a logically sound

basis. It has been shown that these comparison measures give reasonable results.

Even if these comparison measures always only concentrated on a few pieces of data

at a time, and not, for example, on membership functions or deviations, they gave

good results, which supports the claim that perhaps people handle the concept of

sameness in a similar way [121].

4.1 Comparison Measures

It is also suggested that the comparison measures used in a fuzzy sets, where com-

parison is done feature by feature and then these comparisons are aggregated, could

actually be any measures which fulfills the properties (41), listed below:

1. The comparison measure used has a clear logical structure e.g. it is an Archimedean

t-norm or t-conorm (like Frank (49), (54)) or S-equivalence ((35), (42), (39)).

2. The comparison measure is monotone. This condition ensures that a decrease

(or increase) in any values that are to be compared cannot produce an increase

(or decrease) in the comparison result.

3. The comparison measure is associative. This guarantees that the final compar-

ison results are independent of the grouping of the arguments and that one can

expand these comparisons to more than two arguments.
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4. The comparison measure is continuous. This guarantees that one can safely

compute with the values that are to be compared.

Three methods to create comparison measures from t-norms and t-conorms, implica-

tions and equivalences and from 3Π-uninorm are presented in this thesis.

Furthermore, several new generalized measures it is introduced starting from t-norms,

t-conorms, 3Π-uninorm and pseudo equivalences based on the use of S-implications.

The Generalized Weighted T-norm measure (44) and (47) were created. A new param-

eterized 3Π-operator was given (61). Several new measures based on S-type pseudo

equivalences were also given (36), (39), (42) and (43).

In order to give freedom and adaptability for the comparison tasks weights and gen-

eralized mean are used with comparison measures. From the generalized mean one

can find min and max operators by giving the generalized mean the lowest and corre-

spondingly highest compensation values. This is a theoretically interesting property

since these are also the upper and lower bounds of the t-norm and t-conorm ranges,

respectively, and these operators are also the only ones satisfying distributivity and

idempotency [7]. One can also see that comparison measures quite satisfactorily fulfil

the criteria presented in (42). Properties of the created comparison measures are

mainly dependent of the properties of the used t-norms and t-conorms. For example,

continuity follows directly from continuity of the used t-norms and t-conorms that is

if they are continuous then the following comparison measures will also be. One has

to of course be careful with m-value 0, when using a generalized mean.

Due the algorithm that is used, optimal mean values wrt. data and comparison

measures will automatically be selected.

4.2 Practical Results

One can see that the classification presented in (6) and in (1) is a quite straight-

forward instance based classification. Classification is seen as a cyclic comparison

between the training set and test set. The parameter values for the operators and the

generalized mean are predefined for a selected interval with steps. For weight opti-

mization differential evolution was used. Differential evolution gives a weight vector

where every attribute or property of the data has its own weight. Actually, this weight

vector can be used for reading how important different properties measured are for

the conclusion; this ought to be valuable data for practitioners. It is also noted that

this procedure gives comparison measures high adaptability for the data in hand.

It has been shown that the comparison measures introduced in this thesis consistently

give good and stable results in classification, which can be seen from the following

tables which show variances, means and maximal results (3), (4), (5), (6), (7), (8),
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(9), (10), (11), (12), (13), (14). For example, when one uses a combined measure

(47), that is the Generalized Weighted T-norm operator in the classification, the

results improved a great deal more than by using t-norms or t-conorms alone. For

example, combined comparison measures (47) based on Frank type of t-norm (49)

and t-conorm (54) gave the best classification results, which are the same or better

than those attained from the pseudo equivalences. All but one of these best results

achieved by Frank measures came from the use of a combined measure. Pseudo

equivalences also gave good and stable results in classification. One can also see that

the improvements in classification results due to changing to the right comparison

measures were quite significant.

From the tested combined comparison measures (47) use of a combination of Frank

type t-norm and t-conorm is recommended. When using logical equivalences  Lukasiewicz

type (42) is to be recommended since it is computationally more effective than the

comparison measure based on Shweizer & Sklar -  Lukasiewicz (43).

In general, logical equivalences give better results than combined comparison mea-

sures therefore logical equivalences are recommended over combined comparison mea-

sures.

The comparison measures created were tested with data coming from several different

disciplines, but one particular type of data namely the medical data was given special

attention. It was shown that the results achieved by using these simple comparison

measures, see table (22), were mainly better in classification tasks chosen as an ex-

ample of comparison than most of the classification results found in [9]. One can also

see from Figure (7) and Table (21) that normally these classification results remained

quite stable with any parameter values.

Comparison measures were also applied to the expert system and a working applica-

tion for defining an athlete’s aerobic and anaerobic thresholds was created. Differen-

tial evolution presented in figure (3) was now used to tune free parameters of used

comparison measures. Figures (4) and (5) show that differential evolution reached

the optimal parameter values rather rapidly.

One result concerning the choice of comparison measure was that if it is supposed

that the values set by experts are ideal, that is valuation xi = 1, for all i the resulting

formula is always:

E (xi, yi) =

(
n∑
i=1

wiy
m
i

) 1
m

, (66)

where E (xi, yi) is the total sameness between all fuzzified criteria for the correspond-

ing data. This follows from the following:
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1. implications have neutrality of the truth I (1, b) = b and boundary condition

I (a, b) = 1 iff a ≤ b

2. every t-norm must satisfy the boundary condition, that is T (1, yi) = yi.

The results were consistently very good and there were no statistically significant

differences between the results estimated by this system and the results estimated

by experts. In conclusion, it can be stated that a working system to determine an

athlete’s aerobic and anaerobic thresholds was developed.

This thesis presented some guidelines concerning which measures used for comparison

ought to have, as well as creating several comparison measures and presenting two

application areas. The results achieved were consistently relatively good.

I hope that this thesis will be used for the guidance of practitioners in the creation

and use of fuzzy logical comparison measures and an inspiration for the theoretical

study of comparison.
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