
Petri Hannukainen

NON-LINEAR JOURNAL BEARING MODEL FOR 
ANALYSIS OF SUPERHARMONIC VIBRATIONS OF 
ROTOR SYSTEMS

Thesis for the degree of Doctor of Science 
(Technology) to be presented with due permission 
for public examination and criticism in the 
Auditorium 1383 at Lappeenranta University of 
Technology, Lappeenranta, Finland on the 14th of 
November, 2008, at noon. 

Acta Universitatis
Lappeenrantaensis
321

������������
������������������������



 

 

2

 
 
 

Supervisor Professor Aki Mikkola 

  Institute of Mechatronics and Virtual Engineering 

  Department of Mechanical Engineering 

  Lappeenranta University of Technology 

  Finland 

 

Reviewers Professor Jouko Karhunen 

  Laboratory of Machine Design 

  University of Oulu 

  Finland 

 

  D.Sc. Markku Keskiniva 

  Sandvik Mining and Construction 

Tampere 

Finland 

 

Opponents Professor Jouko Karhunen 

  Laboratory of Machine Design 

  University of Oulu 

  Finland 

 

  Professor Erno Keskinen 

  Machine Dynamics Laboratory 

  Tampere University of Technology 

  Finland 

 

 

ISBN 978-952-214-643-4 

ISBN 978-952-214-644-1 (PDF) 

ISSN 1456-4491 

 

Lappeenrannan teknillinen yliopisto 

Digipaino 2008 



 

 

3
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A rotating machine usually consists of a rotor and bearings that supports it. The non-

idealities in these components may excite vibration of the rotating system. The 

uncontrolled vibrations may lead to excessive wearing of the components of the rotating 

machine or reduce the process quality. Vibrations may be harmful even when 

amplitudes are seemingly low, as is usually the case in superharmonic vibration that 

takes place below the first critical speed of the rotating machine. Superharmonic 

vibration is excited when the rotational velocity of the machine is a fraction of the 

natural frequency of the system. In such a situation, a part of the machine’s rotational 

energy is transformed into vibration energy. The amount of vibration energy should be 

minimised in the design of rotating machines. The superharmonic vibration phenomena 

can be studied by analysing the coupled rotor-bearing system employing a multibody 

simulation approach. 

 

This research is focused on the modelling of hydrodynamic journal bearings and rotor-

bearing systems supported by journal bearings. In particular, the non-idealities affecting 

the rotor-bearing system and their effect on the superharmonic vibration of the rotating 

system are analysed. A comparison of computationally efficient journal bearing models 

is carried out in order to validate one model for further development. The selected 

bearing model is improved in order to take the waviness of the shaft journal into 
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account. The improved model is implemented and analyzed in a multibody simulation 

code. 

 

A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a 

supporting structure is analysed employing the multibody simulation technique. The 

modelled non-idealities are the shell thickness variation in the tube roll and the 

waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may 

cause subharmonic resonance in the system. In multibody simulation, the coupled effect 

of the non-idealities can be captured in the analysis. Additionally one non-ideality is 

presented that does not excite the vibrations itself but affects the response of the rotor-

bearing system, namely the waviness of the bearing bushing which is the non-rotating 

part of the bearing system. The modelled system is verified with measurements 

performed on a test rig. In the measurements the waviness of bearing bushing was not 

measured and therefore it’s affect on the response was not verified. In conclusion, the 

selected modelling approach is an appropriate method when analysing the response of 

the rotor-bearing system. When comparing the simulated results to the measured ones, 

the overall agreement between the results is concluded to be good. 

 

Keywords: Rotor dynamics, flexible multibody systems, journal bearing, shaft journal 

waviness 

UDC 621.822.5 : 534.44 
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NOMENCLATURE 

 

Abbreviations 

ADAMS Automatic Dynamic Analysis of Mechanical Systems 

FEM  Finite Element Method 

FFT  Fast Fourier Transform 

 

Symbols 
iA   Rotation matrix of body i 

1 2,a a   Adjusting parameters defined by Equations (2.47) and (2.48) 

1 2,b b   Adjusting parameters defined by Equations (2.59) and (2.60) 

1 2,C C   Integration constants 

1 2,e eC C  Integration constants in non-ideal equations 

C   Vector of kinematical constraint equations 

qC   Constraint Jacobian matrix 

c   Radial clearance of the bearing 

ec   Radial clearance of the non-ideal journal bearing 

1 5...,c c   Adjusting parameters defined by Equations (2.52) – (2.56) 

D   Diameter of the shaft journal 

ijD   Dimensional linearized damping coefficient of the bearing 

'
ijD   Dimensionless linearized damping coefficient of the bearing 

D   Damping matrix 

e   Eccentricity of the shaft journal 

0e   Eccentricity of the shaft journal at static equilibrium 

ue   Distance of mass unbalance from rotating axis 

,X Ye e   Eccentricity components of shaft journal 

,X YF F   Force components in bearing coordinate system 

,Xu YuF F  Force components caused by unbalance 

,slX slYF F  Force components caused by sliding in bearing coordinate system 
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,sqX sqYF F  Force components caused by squeezing in bearing coordinate system 

,r tF F   Radial and tangential force components, respectively 

0 0,r tF F  Radial and tangential force components at static equilibrium, 

respectively 

,slr sltF F  Radial and tangential force components caused by sliding, respectively 

,sqr sqtF F  Radial and tangential force components caused by squeezing, 

respectively 

,s cF F   Unbalance force vectors 

,r tg g   Dimensionless functions defined by Equations (2.67) – (2.70) 

h   Oil film thickness of ideal journal bearing 

beh   Non-ideal oil film thickness, when non-ideal shaft journal and bearing 

bushing accounted for 

eh   Non-ideal oil film thickness, when non-ideal shaft journal accounted for 

I   Inertia tensor 

ijK   Dimensional linearized stiffness coefficients of the bearing 

'
ijK    Dimensionless linearized stiffness coefficients of the bearing 

K   Stiffness matrix 

k   Order of the waviness component 

L   Length of the bearing 

M   Mass matrix 

M   Rotor mass 

um   Mass of unbalance 

n   Number of generalized coordinates 

cn   Number of constraint equations 

Oi   Origin of local coordinate system 

p   Pressure 

1cp   Centreline pressure caused by sliding 

2cp   Centreline pressure caused by squeezing 

ep   Pressure of non-ideal bearing 

slp   Pressure caused by sliding 
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sqp   Pressure caused by squeezing 

ip   Arbitrary particle of body I 

( )Q ε   Dimensionless function defined by Equation (2.91) 

cQ   Vector that arises by differentiating the constraint equations twice with 

respect to time 

eQ   Generalised force vector 

vQ   Quadratic velocity vector 

iq   Generalized coordinate  

iq   Vector of generalized coordinates 

0bR   Nominal radius of the bearing bushing 

beR   Non-ideal radius of the bearing bushing 

bkR   kth order waviness component of the bearing bushing 

eR   Non-ideal radius of the shaft journal 

kR   kth order waviness component of the shaft journal 

0R   Nominal radius of the shaft journal  

1 3...,R R  Position coordinates in local coordinate system 

iR   Position vector of the origin of the local coordinate system 
ir   Position vector in global coordinate system 

,d vSo So  Adjusted Sommerfeld numbers, defined by Equations (2.46) and (2.58), 

respectively 

T   Temperature of the lubricant 

t   Time 

it   Measured shell thickness of the roll in the node i 

'
it   Doubled shell thickness of the roll in the node i 

eU   Surface velocity of the non-ideal shaft journal 

0U   Surface velocity of the shaft journal 

1U   Surface velocity of the bearing 
iu   Position vector of a particle in local coordinate system 

W   Static load of the journal bearing 
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X   Bearing coordinate 

'x   Shaft journal local coordinate 

x   Displacement vector of the rotor 

,s cx x   Arbitrary vectors in solution of equations of motion  

Y   Bearing coordinate 

'y   Shaft journal local coordinate 

Z   Axial coordinate 

 

Greek Letters 

α   Position angle of the imbalance mass 

β   Orientation angle of the shaft journal about rotation axis 

χ   Auxiliary angle defined by Equation (2.51) 

kδ   Relative waviness amplitude of the kth order 

ε   Dimensionless eccentricity ratio of the shaft journal 

0ε   Dimensionless eccentricity ratio of the shaft journal in static equilibrium 

, tε ε& &   Dimensionless velocity components of shaft journal 

φ    Attitude angle of the shaft journal 

0φ     Attitude angle of the shaft journal in static equilibrium 

φ&    Time derivate of the attitude angle of the shaft journal 

η   Dynamic viscosity of lubricant 

xη   Lubricant constant  

ϕ   Angular coordinate of the shaft journal, defined by Equation (3.5) 

λ   Vector of Lagrange multipliers 

λ   Weighting factor 

1,2γ   Auxiliary angles, defined by Equations (2.71) and (2.72) 

' *, ,θ θ θ   Circumferential coordinates 
' '

1 2,θ θ   Integration limits 

ρ    Density of the lubricant 

τ    Phase angle of the unbalance mass 

ω   Angular velocity of shaft journal 

ω   Effective angular velocity of shaft journal defined by Equation (2.45) 
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bkψ   Phase angle of kth order waviness component of the bearing bushing 

kψ   Phase angle of kth order waviness component of the shaft journal 

 

Sub- and superscripts 

c  Centreline 

i  Body i 

id  Ideal representation, waviness excluded 

e  Non-ideal representation, waviness included 
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1 INTRODUCTION 

1.1 General 

Rotors are used in many practical devices such as electrical machines, combustion 

engines and paper machines. Rotors are supported by one or more bearings. The bearing 

plays a significant role when considering the dynamic and static characteristics of the 

rotating machine. Therefore, the machine designer should be aware of different types of 

bearings that could be used in the system under consideration [1]. Based on the 

structure, bearings can be divided into rolling bearings and journal bearings (also called 

as sliding bearings). Bearings can support either an axial or a radial load and, 

accordingly, bearings can also be classified based on the direction of the supported load. 

Additionally, there are bearing types that can carry both the axial and the radial load. In 

rolling bearings, the load carrying capacity is obtained by rolling elements such as rolls, 

needles or balls. In contrast, in journal bearings the load is carried by a pressurized oil 

film. The journal bearings can be divided into two groups based on the manner in which 

the oil film is pressurized. In hydrostatic bearings, the oil film is pressurized externally 

with a hydraulic pump. A hydrodynamic bearing can be considered as a self-acting 

bearing. This is due to the phenomena by which the pressure is generated inside the 

bearing. A hydrodynamic bearing needs no external pressure; only oil feeding needs to 

be taken care of. When the shaft rotates inside the bearing the oil starts to flow thus 

generating the load carrying pressure to the oil film.  

 

In Figure 1, several common geometries of hydrodynamic and hydrostatic bearings are 

presented. Different types of bearings are developed in order to obtain good 

performance and lubrication conditions for various operating conditions. Figure 1 shows 

that oil can be provided to the bearing clearance in several ways. Different geometries 

of bearings such as cases (d) to (h) in Figure 1 are designed to provide a more stable 

bearing performance as compared to traditional cylindrical design. Rolling bearings 

consist of different constructions, as can be seen in Figure 2 where structures of the 

most common rolling bearings are shown. Different types of rolling elements enable 

larger loads with tolerable surface pressure. Additionally, the use of, for example, 

tapered rolling elements enables axial loading conditions. It is important to note, 
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however, that both the rolling and journal bearings require lubrication. If there is an 

insufficient supply of fluid in the journal bearing, the fluid film breaks down and the 

journal contacts the bearing surface. Bearings where such contact continuously occurs 

are called boundary-lubricated bearings. During the running up sequence, 

hydrodynamic bearings are usually boundary-lubricated. This is caused by very low 

rotational velocity that is not capable of generating a high enough pressure to carry the 

load [2]. One application of hydrodynamic bearing is a squeeze-film damper in which 

the sliding velocity between journal and bearing surface is zero. The operation of the 

squeeze-film damper is based on a squeeze motion that generates the oil pressure in the 

clearance space between the journal and bearing surfaces. Typically, squeeze-film 

dampers are used as assistance bearings to provide more damping to the rotating system 

while the main support of the rotor is accomplished with other bearings. Gas-lubricated 

bearings operate according to the same principle as oil-lubricated bearings. However, 

they have different performance characteristics than oil-lubricated bearings due to a 

highly compressible lubricant. Gas bearings may also be self-acting or externally 

pressurized.  

(a) (b) (c) (d)

(e) (f) (g) (h)

 

Figure 1. Types of journal bearings, (a) plain cylindrical with two axial grooves, (b) 

with circumferential groove, (c) partial arc, (d) lemon bore, (e) three-lobe, (f) four-lobe, 

(g) offset halves, (h) tilting pad [1]. 
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

 
Figure 2. Different types of rolling bearings, (a) deep groove ball bearing, (b) double 

row ball bearing, (c) angular contact ball bearing, (d) cylindrical roller bearing, (e) 

needle roller bearing, (f) spherical bearing, (g) tapered roller bearing, (h) pressure ball 

bearing, (i) pressure cylindrical bearing and (j) spherical pressure bearing [3]. 

 

Demands of productivity in industry are continuously increasing. Consequently, the 

operating circumstances of the machines become more demanding from the product 

development point of view. When the angular velocity of the rotating machine 

increases, the vibration of the system plays a more significant role in the performance of 

the machine. The vibrations of the machine influence both the product quality and the 

operating life of the machine system. The use of a journal bearing is becoming more 

common in machines that operate at a high angular velocity. This is due to the fact that 

a journal bearing has significantly larger damping when compared to the traditional 

rolling bearing. Larger damping is a consequence of oil film thickness that is about ten 

times greater in journal bearings than in rolling bearings [4]. Another important feature 

in journal bearings is the low noise level while operating. This is also the result of thick 

oil film between the moving bodies.  The drawbacks of a journal bearing when 

compared to a roller bearing are higher losses and need for a separate lubrication 

system. 

 

It is important to note that a journal bearing has always some non-idealities that may 

excite vibrations in the rotor-bearing system, such as waviness in the shaft journal. In 
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addition, non-ideal geometry and material properties of the rotor may be a source of 

vibrations. A rotating machine is a complex system that consists of components that are 

coupled with each other. Accordingly, the overall performance of a rotating machine is 

defined by the operation of an individual components as well as interactions of 

components. The coupling sets high demands for the analysis of rotating systems. This 

is due to the fact that all dynamically significant components should be taken into 

consideration in the analysis of rotor systems. Traditionally, each component of a 

rotating machine has been studied individually since the available computing tools are 

mainly developed for analysing individual components, such as, computation of 

linearized bearing coefficients for a certain operation condition. Which are furthermore 

used in a calculation code for rotor dynamics. For this reason, the interaction between 

components has been difficult to understand and account for in dynamic analysis. 

 

The vibration of a rotor system depends upon its geometry and the type of the support, 

as well as the excitation forces. In this study, the bearing housing and pedestal are 

considered as the support structure. When considering the excitation of the bending 

vibrations of the rotor, the sources can be roughly divided into two areas namely, the 

rotor and the bearing assembly. Due to manufacturing tolerances, the rotor may have an 

uneven mass and stiffness distribution. On the other hand, the shaft journal waviness 

may excite vibrations due to an improper bearing assembly. As a result, these non-

idealities may cause superharmonic vibrations in the rotor system. In this case, the 

natural vibration mode of the rotor is excited when the rotational velocity is a fraction of 

the natural frequency. It is important to note that the support structure of the rotating 

system does not usually excite any vibrations by itself. However, the support structure 

may affect the total stiffness and damping of the system and therefore it may have a 

significant effect to the performance of the rotating machine. 

 

1.2 Analysing Tools for Rotating Machines 

Several analysing tools for rotating machines have been developed. The most traditional 

approach is to use analytical equations to compute response and critical speeds of the 

rotor. Many analytical models of rotors and rotor systems have been presented in 

previous studies such as the Jeffcott rotor, which was introduced in 1895 by Föppl. The 

model was named after Jeffcott because in 1919 he explained the science of 
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rotordynamics in a graphical way, which is still in use today [5]. Many important results 

can be obtained analytically using the simple model of the Jeffcott rotor. The finite 

element method (FEM) is a computer based approach for the detailed modelling of 

flexible structures including rotors. FEM provides the possibility of computing response 

and critical speeds of the rotor. A number of customized computer codes have been 

created for analyzing rotor systems. An alternative approach to the analysis of a 

complete rotor system is the multibody dynamics simulation [6]. The multibody 

dynamics simulation provides a possibility of making analyses that cover important 

non-idealities in the bearing and rotor as well as the interactions between the system’s 

components. Multibody simulation uses a general methodology that can describe the 

dynamics of machine components that undergo large relative translational and rotational 

displacement. This inevitably leads to non-linear equations of motion which must be 

solved with respect to time using numerical integration methods. The obtained time-

domain results can be post-processed in order to study the response of the rotor system 

in the frequency domain. In multibody dynamics simulation, the machine components 

are described as individual bodies that can interact with each other via force and/or 

constraint equations. This makes it possible to describe the hydrodynamic force 

developed in a journal bearing. The flexibility of the elements of the multibody 

simulation model can be described using for example the lumped mass or the floating 

frame of reference approaches [7] and [8]. 

 

The use of simulations as a part of product development reduces both the time used and 

the costs involved. These advantages can mainly be obtained by the reduced need for 

physical prototypes that are expensive and time consuming to build. With the help of 

simulations, safety issues can be covered more comprehensively than by using 

traditional prototypes. Some testing, for example in extreme operating conditions and 

accident scenarios, can be done without risks when using a simulation model [9]. 

 

1.3 Previous Studies on Journal Bearings 

Hydrodynamic journal bearings and their computational models have interested 

scientists for some time. A number of books and articles have been published 

concerning the theory of journal bearings. Pinkus and Sternlicht [10] have presented a 

theory of hydrodynamic lubrication. Specifically, Pinkus and Sternlicht presented the 
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general principles of fluid flow in the circumstances of bearing operation by introducing 

the differential equations for bases of bearing modelling. Also introduced were 

techniques for solving these equations analytically as well as some approximate 

solutions that provide the basis for the solutions of specific bearing problems. Cameron 

[11] has presented the basic theory and differential equations needed for journal bearing 

modelling. Techniques for solving bearing problems are presented in Cameron’s study. 

In addition to hydrodynamic journal bearings, Cameron introduced solutions to bearings 

of other types. He has studied pad bearings, porous bearings and hydrostatic bearings as 

well as some aspects on the theory of viscosity of the fluids. Hamrock [12] has given 

detailed information on fluid film lubrication. He presented the theory on hydrodynamic 

bearing computation including rolling-element bearings. Hamrock also presented some 

tables of stiffness and damping coefficients for different types of fluid film bearings. 

Someya [13] has produced a handbook for bearing design. He presented theories related 

to journal bearings and explained techniques to compute dynamic coefficients for 

journal bearings. Furthermore, he presented a wide range of pre-calculated bearings 

stiffness and damping coefficients for different types of journal bearings. 

 

Several authors have studied the non-idealities of journal bearings and their effect on 

the vibrations of the rotor system. Rasheed [14] has studied the surface waviness of a 

plain hydrodynamic bearing. He considered only the waviness of the non-rotating 

surface of the bearing, that is, the bearing bushing. Rasheed studied the influence of 

waviness on the load carrying capacity of the bearings and he concluded that the 

circumferential waviness of the bearing bushing increases load carrying capacity. 

Prakash and Peeken [15] have considered the combined effect of the roughness of the 

surface of the bearing and the elastic deformation of the bearing. They analyzed cases in 

which waviness was applied to both the rotating and the non-rotating surfaces. They 

found out that the elasticity of the bearing decreases the effects of roughness; however, 

they did not perform a vibration analysis of a rotor-bearing system. Bachschmid et al. 

[16] studied the geometrical errors of the shaft journal in a two-lobe “lemon-shaped” 

journal bearing. They considered only the so-called ovalization and its influence on the 

twice-running-speed vibration component of a rotating machine. Bachschmid et al. also 

carried out experimental measurements, which they compared to the simulations. In the 

simulations, they used a linearized model of the rotor-bearing system. The overall 

agreement between the measured and calculated results was not acceptable, but in the 
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horizontal direction, the vibrations were recognizable in both results. However, the 

mean value of the horizontal amplitude was considerable smaller in the analytical 

results. 

 

1.4 Scope of the Study and Overview of the Dissertation 

In this study, the models of hydrodynamic journal bearings are examined. One model is 

further developed to take the waviness of the shaft journal and bearing bushing into 

account. The bearing model is implemented in multibody dynamics simulation software 

where it performs as an interface element in a rotor system simulation. The focus of this 

study is in superharmonic vibrations of the rotor generated by the coupling of non-

idealities in the bearing assembly and the rotor. Analysis of superharmonic vibrations of 

the rotor system requires detailed bearing modelling. Therefore, this study concentrates 

on journal bearing modelling. 

 

Chapter 2 presents four different solutions for computing hydrodynamic forces acting in 

plain journal bearings. A comparison of the bearing models is accomplished by 

computing the load carrying capacity of the models and by computing the linearized 

dynamic coefficients based on each model. As well, the computation of linearized 

bearing coefficients is presented. In chapter 2, one model is chosen for further 

development in order to take non-idealities into account. 

 

Chapter 3 deals with the non-idealities of the bearing assembly. A method for 

describing the waviness of the shaft journal and bearing bushing is introduced. In the 

method, a geometrical error is introduced to the equation of journal bearings film 

thickness with help of the Fourier cosine series. This expansion leads to the integration 

of complex trigonometric equations that are solved numerically to obtain the description 

of the hydrodynamic force. The simulation model of the hydrodynamic plain journal 

bearing that is extended in this study to include the waviness of the shaft journal and 

bearing bushing is employed in a simulation model of a tube roll supported by journal 

bearings. By exploiting geometric information measured from the real structure, the 

present inaccuracies can be modelled accurately. 
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Chapter 4 presents two different numerical examples to study the developed bearing 

model. The first example consists of a simple rotor-bearing system with two degrees of 

freedom. This example is used to study the difference between linear and non-linear 

bearing theory. In addition, the non-linear bearing model used is verified with the 

results obtained from literature. In the second example the simulation model and the 

measurement installation of the test rig are presented. The results from comparison of 

the simulation model and experimental data from the test rig are presented to verify the 

simulation model of the test rig. 

 

Conclusions and suggestions for further studies are given in Chapter 5. 

 

1.5 Contribution of the Dissertation 

The contribution of the research is the modelling of non-idealities in the journal bearing 

assembly. Non-idealities under investigation include waviness of a shaft journal as well 

as waviness of a bearing bushing. These non-idealities have been introduced to non-

linear journal bearing model by employing cosine terms of the Fourier series in the 

equation of bearings film thickness and its derivates. This leads to complex 

representation of pressure distribution in the journal bearing. For this reason, the 

numerical integration procedure based on the Midpoint rule with appropriate boundary 

conditions is used to compute bearing force components. In this study, the introduced 

modelling approach to account for non-idealities of the journal bearing assembly is 

employed in the dynamic analysis of cylindrical journal bearings. However, the 

modelling approach can be extended in a straightforward manner to other journal 

bearing types. Non-linear journal bearing model with description of shaft journal and 

bearing bushing waviness is implemented into a multibody simulation software 

application where the model can be used as an interface element between the rotor and 

supporting structure. In the multibody simulation, the bearing model is used to analyze 

superharmonic responses of a tube roll. In order to validate introduced simulation 

model, numerical results are verified with experimental measurements. 
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2 MODELS OF JOURNAL BEARINGS 

In this chapter, different solutions for computing hydrodynamic forces acting in a plain 

cylindrical journal bearing are introduced. A survey is made to explore models of 

journal bearings obtained from literature for a plain journal bearing that is shown in 

Figure 3.  

 

In this study, only resulting force component equations are presented, while derivations 

of equations may be found in References [17]-[21]. Two solutions for infinitely short 

journal bearings and two solutions for finite length journal bearings are studied. All 

models are based on the analytical solution of the Reynolds equation. The Reynolds 

equation is a second order differential equation that can be used to describe pressure 

distribution over the bearing surface as a function of eccentricity, angular and radial 

velocities of the journal. The solution of Reynolds equation usually employs the Half-

Sommerfeld boundary condition in the integration of the pressure equation. A closed 

form solution for integration of pressure equation can be obtained in certain cases [22]. 

It is noteworthy that the journal bearing models based on the Reynolds equation 

computes non-linear bearing forces. For this reason, they also apply to scenarios where 

large displacements of the shafts take the place. Such situations are in practice, for 

example, a run-up of a rotating machine or the acceleration of a rotor over its critical 

speed. One of the introduced models is chosen for detailed studies of the rotor system. 

The selected model is further developed to be appropriate for use in simulations in 

which the vibrations of rotating systems supported with plain journal bearings is under 

consideration. 
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Figure 3. Geometry of the plain journal bearing. 

 

In Figure 3, the geometry of the journal bearing, force components and coordinate 

systems are depicted. In this study, three different coordinate systems are used. The 

bearing coordinate system ( XY ) is fixed, that is, it does not rotate or translate; the 

hydrodynamic forces are computed in this coordinate system. The moving coordinate 

system ( xy ) is used in the definition of the Reynolds equation. The coordinate system 

( ' 'x y ) is attached to the journal. The axial coordinate is described with Z, and two 

circumferential coordinates are used. Firstly, circumferential coordinate θ  is defined in 

the bearing coordinate system and is used in the definition of the Reynolds equation 

while 'θ  is a circumferential coordinate which is used in integration of the 

hydrodynamic pressure equation. The relationship between circumferential coordinates 

can be presented as 'θ θ φ= − , where φ  is the attitude angle of the journal as can be 

seen in Figure 3. The attitude angle φ  is defined in Equation (2.23). Furthermore, the 

directions of hydrodynamic force components are illustrated in Figure 3. The force 

components XF  and YF  apply on fixed directions of bearing coordinate axes X and Y. 

The directions of radial rF  and tangential tF  force components depend on the journal 

attitude angle φ . 
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2.1 Reynolds Equation 

The basic problem of hydrodynamic bearing analysis is the determination of the fluid-

film pressure for a given bearing geometry. A solution to this problem can be found by 

solving the Reynolds equation of the case under investigation. In the following, the 

pressure distribution of the journal bearing is introduced. The Reynolds equation was 

originally developed by Osborne Reynolds in 1886. This equation provides the basis of 

modern lubrication theory. Presentation of the Reynolds equation can be found in 

reference [17]. For the journal bearing geometry, as shown in Figure 3, the Reynolds 

equation can be written as follows [17]: 

 

( )3 3
0 16 2p p hh h U U h

x x Z Z x t
η∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎧ ⎫⎡ ⎤+ = + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎩ ⎭

,   (2.1) 

 

where h and η are the fluid film thickness and the dynamic viscosity of an 

incompressible lubricant, respectively. In Equation (2.1), p is the hydrodynamic 

pressure acting in the journal bearing and t is time. According to Figure 3, Z is the axial 

and x is the circumferential coordinate of the bearing. In Equation (2.1), U0 and U1 are 

the surface velocities of the shaft and the bearing housing in tangential direction. The 

variable U1 can be set to zero when the bearing housing is fixed. The Equation (2.1) 

includes a number of assumptions that the user should be aware of. Understanding the 

limitations of the solutions of Equation (2.1) is essential when applying the equation for 

practical applications. The assumptions of Equation (2.1) can be summarized as 

follows: 

1. Viscous shear effects dominate in terms of the fluid parameter. In practice, the 

viscosity is the only fluid parameter used while other parameters such as fluid 

inertia forces are ignored. 

2. The fluid is assumed to be incompressible. In general, fluid compressibility 

plays a role in machine dynamics as it is often the case in hydraulically driven 

machines. However, in the case of hydrodynamic bearings, the film is thin and 

the oil volume small so that the compression would be negligible. 

3. The viscosity is assumed to be constant throughout the film. Due to the thinness 

of the oil film this assumption can be made without a significant loss of 

accuracy. 
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4. The pressure is assumed to be constant throughout the film thickness. In some 

situations, as in sudden impacts, there may appear local pressure waves in the 

lubricant film. However, in the case of thin fluid film, the pressure can be 

assumed to be constant over the film thickness. 

5. The fluid film is assumed to be thin compared to the length and width of the 

bearing. When this assumption is valid, any curvature of the film can be ignored. 

6. It is assumed that there is no slip on the wall (in between the fluid-solid 

boundaries). This is an assumption that is generally used in hydrodynamics. 

7. The lubricant is assumed to be Newtonian; stress is proportional to the rate of 

the shear. The lubricants used in journal bearings are usually considered to 

behave as Newtonian fluids. 

 

The use of cylindrical coordinates (θ, Z) in the Reynolds equation is convenient because 

of the bearing’s geometry. The Reynolds equation can be modified to cylindrical 

coordinates by applying the following relation: 

 

 
0

1
x R θ
∂ ∂
=

∂ ∂
,         (2.2) 

 

where 0R  is the nominal radius of the journal. Substituting the cylindrical coordinates 

the Reynolds equation gives us: 

 

 3 3
0

0 0 0

1 1 16 2p p hh h U h
R R Z Z R t

η
θ θ θ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

.   (2.3) 

 

The film thickness h of the cylindrical bearing geometry can be expressed using 

notations shown in Figure 3 as follows: 

 

 ( ) ( )cos sinX Yh c e eθ θ= − − ,       (2.4) 

 

where c is the radial clearance of the bearing, Xe  and Ye  are the perpendicular 

components of shaft journal eccentricity e according to the bearing coordinate axis (XY), 
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respectively. The time derivative of the fluid film thickness in Equation (2.3) can be 

written as follows: 

 

 ( ) ( )cos sinX Y
h e e
t

θ θ∂
= − −

∂
& & ,       (2.5) 

 

where Xe&  and Ye&  are time derivates of the displacement components. The partial 

derivative of the film thickness with respect to the circumferential coordinate can be 

expressed as follows: 

 

 ( ) ( )sin cosX Y
h e eθ θ
θ
∂

= −
∂

.       (2.6) 

 

The surface velocity of the shaft can be written as 

 

 ( ) ( )0 0 sin cosX YU R e eω θ θ= − +& & ,      (2.7) 

 

where ω is the angular velocity of the shaft. The partial derivative of the surface 

velocity with respect to θ gives: 

 

 ( ) ( )0 cos sinX Y
U e eθ θ
θ

∂
= − −

∂
& & .      (2.8) 

 

The substitution of Equations (2.4), (2.5), (2.6), (2.7) and (2.8) to the right hand side of 

Equation (2.3) gives: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0
0

0

0

0

16 2

cos sin cos sin
6

sin cos sin cos

12 cos sin

X Y X Y

X Y X Y

X Y

hU h
R t

e e c e e
R

R e e e e
R

e e

η
θ

θ θ θ θ
η

ω θ θ θ θ

η θ θ

⎛ ⎞∂ ∂
+ =⎜ ⎟∂ ∂⎝ ⎠

⎧ ⎡ ⎤ ⎡ ⎤− − − −⎪⎣ ⎦ ⎣ ⎦ +⎨
⎪⎩

⎫⎡ ⎤ ⎡ ⎤− + − ⎪⎣ ⎦ ⎣ ⎦ +⎬
⎪⎭

⎡ ⎤− −⎣ ⎦

& &

& &

& &

 .  (2.9)  
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Making the approximation that c, eX, eY << R0, the equation can be simplified as 

follows: 

 

 ( ) ( ) ( ) ( )0
0

16 2 6 2 sin 2 cosX Y Y X
hU h e e e e

R t
η η ω θ ω θ

θ
⎛ ⎞∂ ∂ ⎡ ⎤+ = − − +⎜ ⎟ ⎣ ⎦∂ ∂⎝ ⎠

& & . (2.10) 

 

The Reynolds equation can be further simplified by making the assumption of a short 

journal bearing. The short bearing theory can be applied when the length-to-diameter 

(L/D) ratio is less than 0.5. This assumption means, in practice, that the circumferential 

pressure gradient 
0

1 p
R θ

∂
∂

 is negligible with respect to the axial pressure gradient p
Z
∂
∂

. In 

this case, the Reynolds equation can be written as: 

 

 
( ) ( ) ( ) ( )2

2 3

6 2 sin 2 cosX Y Y Xe e e ep
Z h

η ω θ ω θ⎡ ⎤− − +∂ ⎣ ⎦=
∂

& &
.   (2.11) 

 

In order to obtain the pressure equation that describes the 2-dimensional pressure field 

in the journal bearing, the Equation (2.11) should be integrated twice with respect to 

axial coordinate Z. The first integration gives: 

 

 0 13
0

6 1 2p hU h Z C
Z h R t

η
θ

⎛ ⎞∂ ∂ ∂⎛ ⎞ = + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
.     (2.12) 

 

The second integration gives: 

 

 2
0 1 23

0

3 1 2 hp U h Z C Z C
h R t
η

θ
⎛ ⎞∂ ∂

= + + +⎜ ⎟∂ ∂⎝ ⎠
,     (2.13) 

 

where C1 and C2 are constants of integration. To obtain values for the constants C1 and 

C2 two boundary conditions are introduced. Firstly, it can be stated that the pressure on 

both sides of the bearing is zero if the atmospheric pressure is ignored, as it is very 

small when compared to the hydrodynamic pressure acting in the bearing. Secondly, the 
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pressure distribution in the axial direction is assumed to be parabolic and symmetric 

with respect to the centreline of the bearing. This condition can be written as follows: 

 

 0, 0p Z
Z
∂⎛ ⎞ = =⎜ ⎟∂⎝ ⎠

.        (2.14) 

 

According to this condition, it can be seen that C1 = 0. The second constant of 

integration can be solved employing the first condition. When using / 2Z L=  in 

Equation (2.13), where L is the length of the bearing, and setting the pressure to zero C2 

can be solved as follows: 

 

 
2

2 03
0

3 1 2
2

h LC U h
h R t
η

θ
⎛ ⎞∂ ∂

= − +⎜ ⎟∂ ∂⎝ ⎠
.      (2.15) 

 

Accordingly, the pressure equation in cylindrical coordinates can be written as: 

 

 ( )
2

2
03

0

3 1, 2
2

h Lp Z U h Z
h R t
ηθ

θ
⎛ ⎞⎛ ⎞∂ ∂

= + −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 .    (2.16) 

 

Using the notations of Equations (2.4), (2.5) and (2.8) the pressure equation takes the 

form: 

 

 ( ) ( ) ( ) ( ) ( )
2

2
3

3, 2 sin 2 cos
2X Y Y X
Lp Z e e e e Z

h
ηθ ω θ ω θ

⎛ ⎞
⎡ ⎤= − − + −⎜ ⎟⎣ ⎦

⎝ ⎠
& &  . (2.17) 

 

2.1.1 Boundaries in the Integration of the Pressure Equation 

A common procedure when computing non-linear hydrodynamic forces acting in a plain 

journal bearing is to integrate the pressure equation over the bearing surfaces. As can be 

seen in Figure 4, the pressure equation is a function of two variables that are the axial 

and circumferential coordinates of the bearing. The axial distribution of pressure is 

defined by a parabolic function while the circumferential distribution is defined by 

trigonometric functions. The pressure distribution in the journal bearing is generated 
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due to sliding and squeezing according to Equation (2.17). In Figure 4, the two-

dimensional pressure distributions caused by these two phenomena are depicted with 

respect to axial and circumferential coordinates Z and θ, respectively. 
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Figure 4. The pressure field generated in the journal bearing by (a) sliding, (b) 

squeezing. 

 

There are several different boundary conditions introduced in literature that can be used 

to integrate the pressure field along circumferential coordinate of the hydrodynamic 

bearing. These boundary conditions are introduced in the following. Basically, different 

boundary conditions introduce different integration boundaries in circumferential 

direction θ when integrating the pressure equation into the hydrodynamic force 

equations. 

 

Full-Sommerfeld Boundary Condition 

In case of Full-Sommerfeld boundary condition, the pressure is integrated over the 

bearing’s circumferential coordinate ( 0...2θ π= ). As can be seen, for example, in 

Figure 6, the solution of the Reynolds equation with respect to the journal motion 

develops a high positive pressure at one side of the bearing while there is an equal 

negative pressure on the opposite side of the bearing. In natural conditions, the lubricant 

cannot stand negative pressure due to the rupture of the oil film. The saturation pressure 

of commonly used mineral oils is close to the normal ambient pressure. Additionally 
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this condition assumes that the zero pressure is obtained in circumferential coordinate 

positions where the film thickness is smallest and largest as can be seen when looking at 

Figure 5 and Figure 3. Due to the abovementioned reasons, the Full-Sommerfeld 

boundary condition gives an unrealistic pressure field. Consequently, the hydrodynamic 

force obtained using these integration boundaries may be defected. 

 

Half-Sommerfeld Boundary Condition 

This condition is similar to Full-Sommerfeld boundary condition except that all 

negative pressures are ignored. According to the first presenter of this method, it is also 

called Gumbel’s boundary condition. When integrating the pressure field according to 

the Half-Sommerfeld condition the integration boundaries are '
1θ π= −  and '

2 0θ = . 

Even if this is a very simplified approach it gives reasonable results and is often used. 

The advantage of this method is that it leads to analytical solution of the plain 

cylindrical bearing. 

 

Reynolds Boundary Condition 

The Half-Sommerfeld boundary condition gives a more realistic description than the 

Full-Sommerfeld boundary condition. However, it is important to note that the Half-

Sommerfeld boundary condition leads to a violation of the continuity of mass flow at 

the outlet end of the pressure curve. When investigating the pressure according to the 

Half-Sommerfeld boundary condition near ´ 0θ = , it can be seen that the pressure 

gradient is not zero when ´ 0θ <  but jumps suddenly to zero at ´ 0θ =  while remaining 

at zero when ´ 0θ ≥ . This can clearly be seen from Figure 5 (b). A more realistic 

boundary condition can be obtained using the Reynolds boundary condition, where 

 

 0p =  and ´ 0dp
dθ

=  at ´ *θ θ= . 

 

Where *θ  is the circumferential coordinate where pressure goes to zero as can be seen 

in Figure 5. The Reynolds boundary condition is rarely used because of its complexity. 

The use of the Reynolds boundary condition leads to an iteration method. Since the 

Half-Sommerfeld boundary condition has proven to give a good prediction of a 



 

 

32

 
 
 

bearing’s performance, despite a violation of the continuity of the mass flow, it is used 

frequently [23]. Different boundary conditions are illustrated in Figure 5. 

 

θ´ [rad]

p 

θ´ [rad] θ´ [rad]

p p θ*

(a) (b) (c)  

Figure 5. Different boundary conditions for integration of the pressure field, (a) Full-

Sommerfeld boundary condition, (b) Half-Sommerfeld boundary condition, (c) 

Reynolds boundary condition. 

 

Zero-Pressure Boundary Condition 

If the rotor is not in equilibrium, that is, the journal has a translational movement when 

0e ≠& , the pressure distribution fluctuates along the circumferential coordinate. The 

boundary of the zero-pressure has changed when comparing pressure curves of zero 

radial velocity and non-zero radial velocity. This can be observed from Figure 6, where 

the centreline pressures are plotted. 

 

As can be seen in Figure 6 where the radial velocity component is depicted as a dotted 

line, both the Full-Sommerfeld and Half-Sommerfeld conditions result in faulty 

integration boundaries as they assume that zero pressure is located in the 

circumferential position of smallest and largest film thickness. If the pressure is 

generated by a sliding motion only, as is the case of the solid line in Figure 6, the 

positive pressure region can be obtained by setting the boundaries to be '
1θ π= −  and 

'
2 0θ = , corresponding to the Half-Sommerfeld boundary condition. On the other hand, 
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if the radial motion of the journal is involved, the use of Half-Sommerfeld boundary 

conditions leads to the integration of a pressure curve that is partly negative and partly 

positive. For this reason, the hydrodynamic force obtained by such an integration of the 

pressure equation may not be correct, when the assumption that oil fields rupture in the 

negative pressure region is valid. It is important to note that the roots of the pressure 

curve vary according to the radial velocity. Therefore, in order to obtain correct 

integration boundaries the roots of the pressure equation should be solved during 

simulation. In this case, the definition of integration limits needs to be carried out at 

each time step of the computation. In practice, it is convenient to use a numerical 

integration of the pressure equation while using the Zero-Pressure boundary condition 

with varying integration limits. Such a computation also takes into account the positive 

pressure region correctly even if the length of the region is not π in the circumferential 

direction, which is the assumption that both Half- and Full-Sommerfeld conditions 

make. The Zero-Pressure boundary condition should be applied when computing 

transient analysis where radial velocity components of the shaft journal are not zero. In 

this study a boundary condition that is based on Zero-Pressure boundary condition is 

used. The used boundary condition is discussed further in Chapter 3.1. A comparison of 

simulation results obtained from the rotor-bearing system by using the Half-

Sommerfeld boundary condition and zero-pressure boundary condition can be found in 

[24]. 
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Figure 6. Centreline pressures of the bearing when the radial velocity of the journal 

appears, dotted line, and when the radial velocity is zero, solid line. 

 

2.2 Short Journal Bearing Model 1 

The solution of the infinitely short journal bearing introduced by Vance [17] is a general 

form of an analytical solution of hydrodynamic forces acting in a short journal bearing. 

The model employs the Half-Sommerfeld boundary condition in the integration of the 

pressure equation (Equation (2.17)). The integration is performed over a contracting 

region of oil film, in which case the selected integration limits are set to '
1θ π= −  and 

'
2 0θ =  according to the coordinate system shown in Figure 3. The hydrodynamic force 

components are obtained by integrating the Equation (2.17), as follows: 

 

 ( )
0 2

' ' '
0

2

( , ) cos

L

r
L

F R p Z dZ d
π

θ θ θ
− −

= ∫ ∫ ,      (2.18) 

 

 ( )
0 2

' ' '
0

2

( , )sin

L

t
L

F R p Z dZ d
π

θ θ θ
− −

= ∫ ∫ ,      (2.19) 
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where rF  and tF  are the radial and tangential components of the hydrodynamic force, 

respectively. When evaluating the integrals in Equations (2.18) and (2.19), the 

hydrodynamic force components in the rotating coordinates can be written as: 

 

( )
( )

( )
( )

22 2

0 2 5/ 22 2

1 2
2

1 2 1
r

LF R L
c

π ε εεη ω φ
ε ε

⎡ ⎤+⎛ ⎞ ⎢ ⎥= − − +⎜ ⎟ ⎢ ⎥⎝ ⎠ − −⎣ ⎦

&
& ,   (2.20) 

 

( )
( ) ( )

2

0 3/ 2 22 2

22
4 1 1

t
LF R L
c

πε εεη ω φ
ε ε

⎡ ⎤
⎛ ⎞ ⎢ ⎥= − +⎜ ⎟ ⎢ ⎥⎝ ⎠ − −⎣ ⎦

&& ,    (2.21) 

 

where φ&  is the angular velocity of the journal whirling and can be written as follows: 

 

 ( ) ( )
2 2

sin cosX Y

X Y

e e

e e

φ φ
φ

− +
=

+

& && .       (2.22) 

 

The attitude angle φ  of the journal can be written as: 

 

1tan Y

X

e
e

φ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.        (2.23) 

 

The dimensionless radial velocity ε&  can be written as: 

 

 ( ) ( )cos sinX Ye e
c

φ φ
ε

+
=
& &

& ,       (2.24) 

 

where ε  is the dimensionless eccentricity ratio which can be written as: 

 

 
2 2

X Ye e
c

ε
+

= .        (2.25) 
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The perpendicular hydrodynamic force components XF  and YF  in the bearing 

coordinate system (XY) can be obtained using the following relationship: 

 

 
( )
( )

( )
( )

cos sin

sin cos
rX

tY

FF
FF

φ φ

φ φ

⎡ ⎤− ⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
.      (2.26) 

 

2.3 Short Journal Bearing Model 2 

The second model is based on the analytical solution of the Reynolds equation under the 

assumptions of the short bearing theory. The model is based on hydrodynamic force 

equations presented by Cameron [11] and Lang [25]. The combined model based on 

References [11] and [25] is presented by Keskiniva [18]. The model uses the Half-

Sommerfeld boundary condition. The difference in the model with respect to model 1 is 

that the sliding and squeeze pressure components are integrated using different 

boundary conditions. Typically, the Half-Sommerfeld boundary condition is used to 

integrate the pressure equation over the region where the pressure inside the bearing is 

known to be positive. This approach is applied in the model using two separate pressure 

distributions. The hydrodynamic force is computed from the positive pressure region of 

the sliding pressure and from the positive pressure region of the squeeze pressure. 

However, this approach may not correspond to the pressure distribution that can be 

found in reality. In the bearing, the pressure is formed due to the sliding and squeezing 

and for this reason the pressure field should be considered as a coupled function 

generated by both sliding and squeezing motions. If the radial velocity of the shaft is 

zero, this model leads to the same results as the short bearing model 1. As discussed in 

chapter 2.1.1, the dynamic behaviour of the bearing is rarely composed by this situation. 

If the radial velocity component is not equal to zero, the pressure distribution to be 

integrated is different in model 1 and in model 2, as can be seen in Figure 7. In Figure 7 

the centreline pressures are illustrated over the circumferential coordinate, both of 

which the short bearing model uses in integration of the pressure distribution. 
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p
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Figure 7. The circumferential pressure to be integrated according to two short journal 

bearing models with the presence of a radial velocity component. 

 

As can be seen in Figure 7, models 1 and 2 predict the pressure distribution differently 

when radial velocity component is not zero. As was stated earlier in this chapter the 

prediction of Short journal bearing model 2 may be unrealistic in some cases. 

Newerthless, the Short journal bearing model 1 also predict´s the pressure distribution 

need to be integrated unrealistically. According to model 1, the integration boundaries 

of circumferential coordinate 'θ  is set to π−  and 0  according to the Half-Sommerfeld 

boundary condition. As can be seen in Figure 7, by using such integration boundaries in 

this case we use partly negative pressure in integration and on the other hand the 

positive pressure region is partly left out of the integration. Similar errors are made also 

in both two long bearing models presented in next chapters since they are using similar 

boundary conditions for integration. The solution for obtaining more realistic results in 

integration requires that we need to consider numerical methods as was already 

discussed in Chapter 2.1.1. 

 

In the second model, the pressure distribution slp  caused by sliding motion is given as: 

 

 ( ) ( ) ( )
( )

' 2
' 2

32 '

3 2 sin
,

21 cos

t
sl

Lp Z Z
c

η εω ε θ
θ

ε θ
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&
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The dimensionless tangential velocity component tε&  in Equation (2.27) can be written 

as: 

 

( ) ( )( )1 sin cost X Ye e
c

ε φ φ= − +& & & .      (2.28) 

 

The sliding force components slrF  and sltF  in radial and tangential directions, 

respectively, are obtained from integration as: 

 

 ( ) ( )
0 2

' ' '
0

2

, cos

L

slr sl
L

F R p Z dZ d
π

θ θ θ
− −

= − ∫ ∫ ,     (2.29) 
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L

slt sl
L

F R p Z dZ d
π

θ θ θ
− −

= − ∫ ∫ .     (2.30) 

 

When obtaining values for the integrals in Equations (2.29) and (2.30), the force 

components caused by sliding motion can be written as follows: 
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3
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The force components caused by squeezing of the lubricant film can be treated 

separately for positive and negative radial velocities. The pressure distribution caused 

by a squeezing motion sqp  is given as: 
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' 2
' 2

32 '
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The squeezing force components in the case of positive radial velocity can be obtained 

from integration as follows: 

 

 ( ) ( )
2 2

' ' '
0

2 2

, cos , 0

L

sqr sq
L
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π

π

θ θ θ ε
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 ( ) ( )
2 2
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0
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L
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L
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π

θ θ θ ε
− −
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where sqrF  is the radial force component and sqtF  is the tangential force component 

caused by squeezing. For negative radial velocity the squeezing force components can 

be written as follows: 
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3
2 2
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When obtaining values for the integrals in Equations (2.34) - (2.37), the force 

components caused by a squeezing motion when positive radial velocity occurs can be 

written as follows: 
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 0, 0sqtF ε= ≥& .        (2.39) 

 

And, respectively, with negative radial velocity 



 

 

40

 
 
 

 
( )

( ) ( )
3

2 20
52

2 2

1 2 arccos 3 1 , 0
1

sqr
R LF

c
η ε ε ε ε ε ε

ε

⎡ ⎤= − + − − <
⎣ ⎦

−

&
& ,  (2.40) 

 

 0, 0sqtF ε= <& .        (2.41) 

 

The bearing force components caused by both phenomena in the rotating coordinates 

can be written as: 

 

r slr sqr

t slt sqt

F F F

F F F

= +

= +
.        (2.42) 

 

The transformation of forces to the XY-coordinate system can be made using Equation 

(2.26). 

 

2.4 Long Journal Bearing Model 1 

When the L/D ratio is larger than 0.5, the pressure gradient in the circumferential 

direction becomes significant. In this case the Reynolds equation can be written [23]: 

 

 3 3
06p p hh h R

x x Z Z x
η ω∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

.     (2.43) 

 

The analytical solution of Equation (2.43) is not available. A common assumption that 

is made to solve the Reynolds equation for journal bearings is to ignore either the first 

or second term on the left side of Equation (2.43). The selection of ignored components 

is based on the bearings L/D-ratio. In the case of a short bearing, the first term is 

ignored as discussed in chapter 2.1. In the case of a long bearing, the second term is 

ignored to obtain an approximate solution. It is important to note that this solution 

ignores the side leakage of the bearing and it assumes that the pressure is constant 

throughout the length of the bearing. Various approximate methods have been presented 

in literature, but only two of these solutions are discussed in this study: one introduced 

by Butenschön [19] and one by Barrett [20]. Firstly, the approximate solution given by 

Butenschön [19] which is based on the analytical solution of an infinitely short journal 
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bearing is considered. In this approach, the bearing force equations are modified in 

terms of Sommerfeld numbers in order to achieve consistency in the numerical solution. 

The Sommerfeld number is a dimensionless parameter used in lubrication analysis. The 

bearing force equations can be described by using a Sommerfeld number. In this model 

the Sommerfeld number used to compute hydrodynamic forces is modified by means of 

auxiliary polynomials to achieve consistency with the numerical solution of the finite 

length bearing. A detailed discussion of this method can be found in Reference [19]. In 

the long bearing model 1, the hydrodynamic force obtained from a sliding motion can 

be written as [18]: 

 
3

24sl d
LDF So
c

η ω= ,        (2.44) 

 

where the effective angular velocity ω  is given as 

 

 2ω ω φ= − & .         (2.45) 

 

The adjusted Sommerfeld number needed in Equation (2.44) can be written as follows 

 

 
( )

( ) ( )2
12 2 2

22
2

1
1 16

2 1
d

aLSo
D a

εε π ε ε
εε

−⎛ ⎞= − +⎜ ⎟ +⎝ ⎠ −
,   (2.46) 

 

where the adjusting parameters a1 and a2 are given by the polynomials 

 

 
2 3 4

1 1.1642 1.9456 7.1161 10.1073 5.0141L L L La
D D D D
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, (2.47) 

 

 

2

2

3 4
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.    (2.48) 

 

The sliding force components in XY-coordinates can be written as follows: 
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 cosslX slF F
ω

φ χ
ω

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
,       (2.49) 

 

 sinslY slF F
ω

φ χ
ω

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
.       (2.50) 

 

Angle χ  is given by: 
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2

i
i

i

cπ εχ ε
ε

−

=
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∑ ,      (2.51) 

 

where the parameters ci are defined as follows: 

 

D
Lc 105465.0152624.11 −= ,       (2.52) 

 

D
Lc 798745.05905.22 +−= ,       (2.53) 

 

D
Lc 3291.273393.83 −= ,       (2.54) 

 

D
Lc 424337.33415.134 +−= ,      (2.55) 

 

D
Lc 591732.16294.65 −= .       (2.56) 

 

The bearing force obtained from a squeezing motion can be written as follows: 

 
3

24sq v
LDF So
c

η ε= & .        (2.57) 

 

In Equation (2.57), the adjusted Sommerfeld number, vSo , is given by: 
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where the adjusting parameters b1 and b2 are given by: 

 

 
2 3 4
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.    (2.60) 

 

The squeezing force components in XY-coordinates can be written as follows: 

 

 ( )cossqX sqF F φ= ,        (2.61) 

 

 ( )sinsqY sqF F φ= .        (2.62) 

 

The resultant forces in bearing coordinates X, Y can be calculated as 

 

 X slX sqXF F F= + ,        (2.63) 

 

 Y slY sqYF F F= + .        (2.64) 

 

2.5 Long Journal Bearing Model 2 

This chapter introduces an alternative way of computing hydrodynamic force in the 

long journal bearing as proposed by Barrett et al. [20]. The solution uses finite length 

correction factors that extend the short bearing theory to a wider range of bearings L/D-

ratios. A detailed derivation of the force equations can be found in Reference [20]. The 
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non-linear bearing force components in the radial and tangential directions can be 

written as: 
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where the integration limits, '
1θ  and '

2θ , represent the boundaries in which the 

hydrodynamic pressure to be accounted for applies. In this study, the model is modified 

by means of the circumferential pressure boundaries '
1θ  and '

2θ , which are obtained by 

solving the roots of the pressure equation according the zero-pressure boundary 

condition. In the original model proposed by Barrett [20], the integration limits are 

applied according to the Half-Sommerfeld boundary condition with constant integration 

limits. The dimensionless auxiliary functions 1rg , 2rg , 1tg  and 2tg  in Equations 

(2.65) and (2.66) can be described as: 
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The auxiliary angles, which appear in Equations (2.67)-(2.70), can be written as 

follows: 
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The centreline pressures, 1cp  and 2cp , in Equations (2.65) and (2.66) are caused by the 

sliding and squeezing effects, respectively. The pressure in the centreline of the bearing 

can be obtained by setting the axial coordinate Z in Equations (2.27) and (2.33) to zero 

as follows: 
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By substituting Equations (2.73) and (2.74) into Equations (2.65) and (2.66), the 

resulting hydrodynamic forces can be written as follows: 
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Equations (2.75) and (2.76) describe the hydrodynamic forces in a plain journal bearing. 

In the model proposed by Barrett, the integrals in Equations (2.75)-(2.76) are computed 

according to the Half-Sommerfeld condition when the force equations take the form: 
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It is also important to note that the model predicts the behaviour of bearings in a large 

range of L/D-ratios. The short bearing theory can only be used when the L/D-ratio is 
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below 0.5; however, accurate results are obtained when the L/D-ratio is below 0.25. In 

the proposed model, the finite length correction factors introduced by Barrett et. al. [20] 

extend the short bearing model to cover bearings with L/D-ratios of up to 1.25. For 

these reasons, the model is more general that other models introduced in this study. 

 

2.6 Comparison and Validation of the Journal Bearing Models 

In chapter 2.5, four solutions for non-linear hydrodynamic forces of plain journal 

bearings were introduced. All the solutions are based on the same theory of solving the 

Reynolds equation. However, the resulting equations of hydrodynamic forces produce 

different results due to differences in implementing techniques. The short bearing 

solutions are simple to apply and they have a clear physical interpretation as compared 

to the approximate solutions of the long journal bearing. The long journal bearing 

models can be assumed to be more general solutions because of their ability to capture a 

wider range of bearing dimensions. All the models compute the non-linear force of the 

bearing that is an important feature when they are used in simulations of variable 

situations of the rotor-bearing system. In this chapter, the bearing models are compared. 

The comparison is carried out by comparing the static characteristics of the bearing 

model, that is, the load carrying capacity and dynamic characteristics of the bearing 

model namely the stiffness and the damping. Also, the equations that can be used to 

calculate the linearized bearing coefficients are presented in this chapter. This is of 

interest if a simplified linearized model of bearing is used in analysis. In the 

comparison, the bearing models are referred to by the following abbreviations: the first 

short bearing model introduced by Vance is SB1, the second short bearing model 

introduced by Keskiniva is SB2, the first long bearing model introduced by Butenschön 

is LB1 and the second long bearing model introduced by Barrett is LB2. 

 

2.6.1 Comparison of the Static Characteristics of the Models 

Comparison of the static characteristics of models is accomplished by using a simple 

model that consists of a rigid rotor that is assumed to be ideal. The rotor is supported in 

the middle and constrained such that it can move in a XY-plane, as shown in Figure 8. 

The aim of this comparison is to find out the differences between the models when the 

load carrying capacity of bearings is studied. Three different bearings which vary in 
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length of the bearings are simulated using the simple model. Bearing variables in the 

cases studied are shown in Table 1. 

 

Table 1. Bearing dimensions in test cases. 

CASE L [mm] D [mm] c [mm] η [Pa s] ω  [rad/s]

1 25 100 0.01 0.001 100π 

2 50 100 0.01 0.001 100π 

3 100 100 0.01 0.001 100π 

 

As can be seen in Table 1, the bearing L/D-ratio is varied from 0.25 to 1.0 in order to 

emphasise the difference in the results obtained from a short bearing and long bearing 

model. 

Y

X
g

rigid 
rotor

bearing ring
and oil film

bearing 
housing

Z

 

Figure 8. Simulation model of an ideal rotor-bearing system. 

 

The comparison is made by applying a specified load W (rotor mass) and simulating the 

rotor-bearing system. When the rotor is ideal and perfectly balanced, the rotor obtains a 

stable position when there are no external forces applied. The eccentricity ratio is 

obtained from this stable position. When the rotation of the rotor is perfectly stable, 

there are no radial velocity components and the hydrodynamic force of the bearing is 

generated completely by a sliding motion. Only one short bearing model, SB1, is 

included in the comparison of static characteristics. Both short bearing models compute 

the hydrodynamic force generated by a sliding motion similarly and therefore there is 

no need to study both of them. The results of the load carrying capacity comparison are 
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shown in Figures 9-11. The Figures 9-11 present the load carrying capacity of the 

bearing on the horizontal axis with respect to the eccentricity ratio on the vertical axis. 

 

L/D = 0.25

W [N]

ε
[-

] 

 

Figure 9. Load carrying capacity according to bearing models when L/D = 0.25. 
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L/D = 0.5

W [N]

ε
[-

] 

 

Figure 10. Load carrying capacity according to bearing models when L/D = 0.5. 

 

L/D = 1.0

W [N]

ε
[-

] 

 

Figure 11. Load carrying capacity according to bearing models when L/D = 1.0. 
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In Figures 9 - 11, it can clearly be seen that the short journal bearing model produces a 

larger load carrying capacity than the long bearing models when the bearings L/D-ratio 

increases. In the first case, L/D = 0.25, the results agree well with all the models. When 

the ratio L/D = 0.5, a significant difference can be seen in the results obtained from the 

short and long bearing models. Based on Figures 9 - 11 it can be concluded that the 

difference becomes larger as the L/D-ratio increases. When considering cases 1-3, both 

of the long bearing models compute the load carrying capacity very similarly. It can be 

also concluded that the short bearing model predicts a significantly larger load carrying 

capacity when the L/D-ratio is 0.5 or larger. The short bearing model predicts 

approximately a 40% larger load carrying capacity (ε = 0.7) when the L/D-ratio is 0.5 

and approximately a 150% larger load carrying capacity (ε = 0.7) when the L/D-ratio is 

1.0, in comparison to the long bearing model 2. 

 

2.6.2 Comparison of the Dynamic Characteristics of the Models 

A journal bearing can be considered as a spring-damper system with non-linear stiffness 

and damping coefficients. These coefficients may be linearized if the displacement of 

the journal is small around the equilibrium position. Based on an experimental study of 

oil-film dynamic coefficients, Zhou et al. [26] stated that when the excitation amplitude 

is large, the linear model is invalid. In this study, the comparison of the bearing models’ 

dynamic characteristics is accomplished by computing linearized coefficients. The 

theoretical background for the computation of bearing coefficients can be found in [1], 

[17] and [27]. The linearized bearing force components can be written using linearized 

stiffness and damping coefficients as follows [17]: 

 

 X XX XY XX XYF K X K Y D X D Y∆ = − − − −& &      (2.79) 

 

 Y YX YY YX YYF K X K Y D X D Y∆ = − − − −& &      (2.80) 

 

Equations (2.79) and (2.80) describe the force components when displacement and 

velocity are changed by a differential amount. The linearized coefficients describing the 

dynamics of the non-linear hydrodynamic bearing can be obtained by applying partial 

differentiation to the force equations as follows: 
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       (2.82) 

 

The description of perpendicular force components FX and FY can be obtained as 

presented previously for each bearing model. In this study, the partial differentiation is 

carried out numerically in order to obtain the dynamic coefficients. 

 

Figures 12 and 13 show the stiffness coefficient XXK  with respect to journal bearing 

load when the bearing L/D-ratio is 0.25 and 1.0, respectively. It should be noted that the 

vertical axis is logarithmic. The coefficient is plotted corresponding to each model 

presented in this study. Again, there are only three graphs in Figures 12 and 13 as in the 

static studies where the load carrying capacity comparison is examined. The stiffness 

coefficients are computed using sliding force component as squeezing force component 

is not dependent on the displacement. Therefore, the coefficients are computed in a 

similar manner corresponding to both short bearing models and only the results for one 

short bearing model are depicted. 

 

A common way to present bearing coefficients in literature is to depict dynamic 

coefficients with respect to the eccentricity ratio. In this case, when comparing 

coefficients between different models we should bear in mind that different models 

predict the static equilibrium position differently for certain load condition as can be 

seen in Figures 9 - 11. Thereby, when comparing the dynamic characteristics computed 

by different models we should compare them as dynamic characteristics around the 

respective static equilibrium position. For this reason the coefficients are shown with 

respect to the load carried by the bearing. 
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Figure 12. XXK  according to the bearing models when L/D = 0.25. 
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Figure 13. XXK  according to the bearing models when L/D = 1.0. 
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It can be seen in Figures 12 and 13 that the models for long and short journal bearings 

predicts the stiffness coefficient XXK  of the bearing quite similarly. The other three 

coefficients are shown in Appendix A and B. The only stiffness coefficient that has 

some differences between models is the cross-connection term XYK .  

 

The damping coefficients are presented for all four bearing models. Figures 14 and 15 

show the damping coefficient XXD  with respect to journal bearing load when the 

bearing L/D-ratio is 0.25 and 1.0, respectively. 

 

W [N]

D
XX

[N
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m
]

L/D = 0.25

 

Figure 14. XXD  according to the bearing models when L/D = 0.25. 
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Figure 15. XXD  according to the bearing models when L/D = 1.0. 

 

It can be seen from Figures 14 and 15 that in terms of the damping coefficient XXD , the 

bearing models disagree. When considering damping coefficients the differences 

between models are larger than in the case of stiffness coefficients. The SB1 and LB2 

predict most of the coefficients similarly when the L/D-ratio is small. This is expected 

since LB2 is based on model SB1. In general, LB1 gives the largest values for damping 

coefficients when looking at Figures 14 and 15 and Appendix C and Appendix D that 

illustrate the other three damping coefficients. Based on this study it is difficult to state 

which model gives most correct results for dynamic coefficients. It can nevertheless be 

stated that there are some differences between the models especially when considering 

the damping coefficients.  

 

Reference [17] proposes a method to compute the dynamic coefficients analytically for 

a short journal bearing. The analytic equations give the same results as the numerical 

computation when model SB1 is considered. In Reference [17], the dimensionless 

coefficients '
ijK  and '

ijD  are given by: 
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 ( ) ( )' 2 2 28 2 8XYD Qπ π ε ε⎡ ⎤= + −⎣ ⎦       (2.88) 

 

 ' '
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where 

 ( )
( ) 3/ 22 2 2

1

16
Q ε

π π ε
=
⎡ ⎤+ −⎣ ⎦

      (2.91) 

 

The dimensional dynamic coefficients can be obtained as follows: 

 

 '
ij ij

FK K
c

=          (2.92) 
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 '
ij ij

FD D
cω

=          (2.93) 

 

The use of dynamic coefficients can be considered as a simplified approach to describe 

the journal bearing in a simulation model. The use of coefficients leads to realistic 

description of bearing responses when there is no need to study the detailed behaviour 

of the system or non-idealities of the bearings. It is important to note, however, that the 

use of dynamic coefficients based on linearization is valid only when the displacements 

of the journal around its equilibrium are small. In this study, coefficients are presented 

only to show the differences between journal bearing models. 

 

2.6.3 A Validation of the Model for Multibody Simulations 

In this section, one of the presented models for the journal bearing is chosen based on 

its suitability for simulations of the rotor systems in multibody simulation software, 

such as ADAMS. The model should be appropriate for use in a number of situations, 

such as rotor run-up over critical speeds of the rotor. In practice, this means that the 

model needs to be able to describe the non-linear behaviour of the journal bearing. This 

is due to the fact that the amplitudes of the shaft motion may be large in the simulations. 

A simulation model of the rotor system may consist of many bodies while some may 

need to be modelled as flexible bodies. For this reason, the simulation model that 

describes system mechanics may be computationally time-consuming and therefore 

expensive. Consequently, the bearing model should be efficient in a computational 

sense and, therefore, the solutions based on, for example, the FE-method are not 

considered. On the other hand, the simplest method, that is, the use of dynamic 

coefficients, is not an acceptable option because of its linear nature. 

 

As shown in the comparison of four bearing models, there is a significant difference 

between the results of the computed dynamic coefficients and the load carrying capacity 

obtained from the short and long journal bearing models. The long bearing models are 

more general as they produce more realistic results in a wider range of bearing L/D-

ratios. However, the short bearing theory is widely used and applied in the solution of 

the Reynolds equation. It is also noteworthy that the physical interpretation of the short 

bearing theory is more straightforward as compared to semi-analytical models of long 
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bearings. This gives a good opportunity to develop the model by modifying the pressure 

equation by including circumferential defects in the bearing bushing or in the shaft 

journal. The model of the finite length bearing by Barrett [20] is defined by applying the 

finite length correction factors. The use of correction factors modifies the non-linear 

bearing forces obtained from the short bearing theory. Barrett et al. compared their 

model with the analytical solution of finite length journal bearings. They concluded that 

the correlation with the analytical solution was good even at L/D = 1.25. Therefore this 

model is the most general one to use for modelling bearings of different size. 

Nevertheless, in this study the measurements from the real structure were performed 

with a bearing that has L/D = 0.33. Bearings with such L/D-ratios are still adequately 

covered using models of short journal bearings. Generally, short bearing theory operates 

well with L/D-ratios up to 0.5. Because of the size of the test bearing and issues 

mentioned above, the SB1 is considered to be most suitable for use in this study and to 

be developed further. It should also be noted that in the LB2 model the centreline 

pressure from the short bearing theory is used in the solution of the force equations. For 

this reason the developed model of short journal bearing including the circumferential 

defects can be presented in a similar way also with the LB2 model. In Chapter 4.1 the 

chosen bearing model is verified with the results obtained from literature. 
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3 NON-IDEALITIES IN JOURNAL BEARING 

The journal bearing assembly may consist of a number of non-idealities caused by 

manufacturing and/or inaccurate installation. Such non-idealities are, for example, 

waviness of the shaft journal, roughness of the sliding surfaces and misalignment of the 

bearings. All the non-idealities have an effect on the bearing’s behaviour. Choy et al. 

[28] studied the effects of axial misalignment on the bearing equilibrium position, 

lubricant fluid film thickness, pressure distribution and stiffness characteristics. They 

concluded that in light loading, the misalignment results in a double peak in pressure 

distribution instead of one pressure peak as in the case of a perfectly aligned bearing. 

The double peak was shown to decrease when the load was increased. They also 

concluded that the stiffness of the bearing increased as the misalignment increased. 

Guha [29] studied the steady-state characteristics of a misaligned journal bearing. He 

concluded that the load carrying capacity of the bearing increases as the misalignment 

increases due to the increased hydrodynamic pressure. Boyer and Fillon [30] studied 

experimentally the effects of misalignment on plain journal bearing performance. They 

concluded that the maximum pressure in the mid-plane of the bearing decreases as the 

misalignment occurs and the circumferential position of maximum pressure changes. 

They also noted that the oil flow rate is increased by the misalignment and the minimum 

film thickness is reduced. Finally, they came to the general conclusion that the effect of 

the misalignment is more significant when the rotational velocity and load are low and 

when the hydrodynamic effects are small in such that it is unable to counteract the 

misalignment. 

 

Based on previous studies it can be stated that misalignment has an effect on journal 

bearing performance especially when the bearing is lightly loaded and rotational 

velocity is low. However, misalignment is not expected to produce excitation forces in 

the system and as this study is focused on the superharmonic vibrations of rotor 

systems, misalignments are ignored. As presented in chapter 1, non-idealities that excite 

vibrations have been studied by few authors. The waviness of the shaft journal is a non-

ideality that can lead to superharmonic vibrations in which the natural vibration mode of 

the rotor is excited when the rotational velocity is a fraction of the natural frequency of 

the rotor-bearing system. In practice, the cross-section of the shaft journal is never 
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ideally circular. The waviness is present due to inaccuracy in manufacturing. When 

considering the vibrations of rotor-bearing system, the waviness of the shaft journal 

should be accounted for. In the proposed model the waviness is included in the equation 

of bearings film thickness. In the model, the cross-sectional shape of the shaft journal is 

described using the Fourier cosine series. The Fourier series offers a possibility to 

describe nearly any function with a sum of cosine and sine terms with proper 

coefficients [31]. In this case, the waviness of the shaft journal can be described 

employing cosine terms only in the Fourier series. The shaft journal of a real structure 

can be measured, for example, in the centre lathe by using a measuring device specially 

designed for the purpose. The measure device used in this study is named Hybrid (by 

RollResearch International) [32]. Hybrid uses inductive measuring rods which have an 

accuracy of 1 µm. The measuring device consists of four measuring rods which enable 

the separation of the shape of the journal surface from the movement of the journal. 

When the results are treated with Fast Fourier Transform (FFT) one can obtain a finite 

number of coefficients that describe the shape of the measured surface. The Fourier 

cosine series can be used to describe a finite amount of data as an infinite, continuous 

description as in Equation (3.1). 

 

3.1 Modelling of Waviness of the Shaft Journal 

This chapter introduces a method to describe the waviness non-ideality in the journal 

bearing model. The approach is further developed from the model presented in [24]. 

The approach presented in [24] was based on introducing the waviness of the shaft 

journal for the equation of film thickness in pressure Equation (2.17). The agreement of 

the results of simulation model and measurements from test rig was not perfect and 

therefore a new approach was considered. In this case the waviness of the shaft journal 

was introduced to the Reynolds equation. 

 

In the case of an ideal circular shaft journal, the film thickness of the bearing can be 

written as in Equation (2.4). It can be seen from Equation (2.17), that the film thickness 

does not depend on the rotation angle of the shaft. However, waviness in the shaft 

journal leads to a variation in the film thickness when the shaft rotates. Furthermore, 

variation in the film thickness leads to modified pressure distribution and therefore 
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affects the hydrodynamic force components of journal bearing. The radius of a non-

ideal shaft journal can be described with the help of the Fourier cosine series as follows: 

 

 ( )0 cos
s

e k k
k m

R R R kϕ ψ
=

= + ∑ +  ,      (3.1) 

 

where 0R  is the nominal radius of the shaft journal and kR  and kψ  are the amplitude 

and the phase angle of kth order waviness, respectively. In Equation (3.1), m is the 

lowest harmonic waviness component to be considered and s is, correspondingly, the 

highest. In this study, only waviness orders of 2, 3 and 4 are considered, since the 

amplitudes of higher orders were small in the measurements performed on the test 

bearing. It is important to point out that the higher waviness orders can be included in a 

similar manner when necessary. The amplitudes and phase angles of the harmonic 

components can be obtained from measurements and by analysing the results using 

FFT. In Equation (3.1), angle ϕ  is the angular coordinate of the shaft journal and can be 

written as follows: 

 

 ϕ θ β= − ,         (3.2) 

 

where angle β identifies the journal reference axis ( )' ',x y  orientation with respect to 

the reference coordinate system of the bearing ( ),X Y  as can be seen in Figure 3. 

 

By introducing non-ideal shaft journal profile expressed in Equation (3.1) into Reynolds 

equation as written in Equation (2.3), the effects due to waviness non-ideality can be 

captured by pressure equation of the journal bearing and furthermore to the 

hydrodynamic force equations. The Reynolds equation including non-ideal shaft journal 

profile can be written as: 

 

 3 31 1 16 2e e e
e e e e

e e e

p p hh h U h
R R Z Z R t

η
θ θ θ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

,  (3.3) 
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where ep  stands for the pressure in non-ideal bearing assembly. By making the 

assumption of short journal bearing and dividing the equation by 3
eh  the Reynolds 

equation can be written as: 

 

 
2

32

16 2 e
e e

ee

e

hU h
R tp

Z h

η
θ

⎛ ⎞∂∂
+⎜ ⎟∂ ∂∂ ⎝ ⎠=

∂
,      (3.4) 

 

where eh  is the film thickness of the journal bearing with non-ideal shaft journal and 

can be written as: 

 

 ( ) ( )cos sine e X Yh c e eθ θ= − − ,      (3.5) 

 

where ec  is the non-ideal radial clearance of the bearing and it can be defined as: 

 

 e b ec R R= − ,         (3.6) 

 

where bR  is the radius of bearing bushing and eR  radius of shaft journal as described in 

Equation (3.1). By substituting Equations (3.1) and (3.6) into the Equation (3.5) the film 

thickness can be written as: 

 

( ) ( ) ( )cos cos sin
s

e k k X Y
k m

h c R k e eϕ ψ θ θ
=

= − ∑ + − − .    (3.7) 

 

eU  in Equation (3.4) represents the surface velocity of non-ideal shaft journal and can 

be written as: 

 

( ) ( )sin cose e X YU R e eω θ θ= − +& & .      (3.8) 

 

After substitution of eR  the equation takes the following form: 

 



 

 

63

 
 
 

 ( ) ( ) ( )0 cos sin cos
s

e k k X Y
k m

U R R k e eω ϕ ψ θ θ
=

⎛ ⎞= + ∑ + − +⎜ ⎟
⎝ ⎠

& &    (3.9) 

 

The Reynolds equation for short journal bearing with non-ideal representation of shaft 

journal shape can be expressed by substituting Equations (3.1), (3.6) and (3.9) to the 

Equation (3.4) as follows: 
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  (3.10) 

 

Equation (3.10) can be solved for pressure equation by integrating it twice with respect 

to Z . After integration the equation twice with respect to Z  the pressure equation can 

be written as: 
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 (3.11) 

 

The integration constants 1eC  and 2eC  can be solved in a similar way as integration 

constants 1C  and 2C , in the case of ideal journal bearing as presented in Chapter 2.1. 

After solving the integration constants in Equation (3.11) the pressure equation becomes 

more complicated than in the case of ideal bearing and it can not be presented explicitly. 

The calculation is performed by using commercial calculation tool MapleTM from 

Maplesoft. The Fortran code is used in ADAMS to calculate the bearing forces as 

described above. Furthermore, the bearing model is built up as a subroutine in ADAMS 

that is called each time step. 

 

By taking the shaft journal waviness into account the pressure equation in respect to 

circumferential coordinate, is no longer defined only by trigonometric functions as 

described in chapter 2.1.1 for the case of ideal bearing. It is noteworthy that the negative 

and positive pressure regions differ from the ideal case. In the ideal journal bearing 

model, the pressure field is equally divided in the negative and positive pressure 

sections that both have length of π  radians in the direction of circumferential 

coordinate θ . However, in the case of non-ideal journal bearing the position is different 

as can be seen in Figure 16. 
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Figure 16. Pressure distribution according to circumferential coordinate in case of ideal 

and non-ideal shaft journal. 

 

As can be seen in Figure 16 the non-ideal pressure distribution differs from the ideal 

one. It is important to note that the shape of the pressure curve and the position of 

pressures zero-point changes while the shaft journal rotate. 

 

Due to the complex pressure equation of the non-ideal bearing, the closed form 

integration is not available when computing bearing force components contrary to the 

ideal bearing model. Still, the solution can be provided by means of numerical 

integration methods such as Midpoint rule, Simpson’s rule etcetera. For the curve 

shapes that represent non-ideal bearing distribution the both mentioned methods offers 

accurate results with reasonable number of steps. In computation, the numerical method 

used for integration is Midpoint rule [33], [34]. 

 

In the integration of the pressure field, the aim is to utilize the region in the oil film 

where pressure has positive values. In this sense, the approach resembles the Half- 
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Sommerfeld boundary condition. In the case of ideal shaft journal, the condition of 

positive pressure can be fulfilled with methods presented earlier in Chapter 2.1.1. 

However, in the case of non-ideal shaft journal the length of positive pressure region 

varies as the shaft journal rotates. At some point the positive region is longer than π  

radians and at some point the region is shorter than π  radians. 

 

The correct boundaries for integration can be obtained by monitoring the pressure 

equation for each integration step. The numerical integration is performed over the 

whole circumferential coordinate 0..2θ π= . During each step of numerical integration 

with each value of θ  the pressure equation is solved and the sign is verified. If the sign 

is positive, the respective numerical integration section is accounted for and to the 

contrary with negative sign the respective integration section is ignored in the 

computation of the hydrodynamic bearing force components. 

 

3.2 Modelling of Waviness of the Bearing Bushing 

Modelling of the waviness of bearing bushing that may exist in journal bearing is 

presented in this chapter. Defects of non-rotating part of journal bearing assembly, such 

as the waviness of bearing bushing, do not excite vibrations. However, this shape error 

has an effect on oil film thickness and therefore on the dynamic behaviour of the 

bearing as was stated for example by Rasheed [14]. 

 

The waviness of bearing bushing can be taken into account by introducing the non-ideal 

radius of bearing bushing in Equation (3.6). The non-ideal radius of bearing bushing can 

be written as: 

 

( )0 cos
s

be b bk bk
k m

R R R kθ ψ
=

= + ∑ +        (3.12) 

 

where 0bR  is the nominal radius of bearing bushing, bkR  and bkψ  are the amplitude and 

the phase angle of kth order waviness, respectively. By substituting bR  in Equation (3.6) 

with beR , the equation for journal bearing radial clearance can be written as follows: 
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 ( )0 cos
s

e b bk bk e
k m

c R R k Rθ ψ
=

= + + −∑       (3.13) 

 

Furthermore, by substituting the non-ideal presentation of shaft journal radius from 

Equation (3.1) into Equation (3.13), the expression of film thickness that takes into 

account both the waviness in shaft journal and waviness in bearing bushing can be 

written as follows: 

 

 ( ) ( ) ( ) ( )cos cos cos sin
s s

be bk bk k k X Y
k m k m

h c R k R k e eθ ψ ϕ ψ θ θ
= =

= + ∑ + − ∑ + − −  (3.14) 

 

By substituting Equation (3.14) into the Reynolds equation in similar manner as 

described in chapter 3.1, the pressure equation for hydrodynamic journal bearing with 

non-ideal shape of shaft journal and bearing bushing can be solved. 

In Figure 17, a graphical presentation of non-ideal shaft journal and bearing bushing is 

depicted. In both parts only the 2nd order waviness component of equal size is included. 

 

 

Figure 17. A graphical presentation of exaggerated waviness of the shaft journal and 

bearing bush, (a) 2 2 0bψ ψ= = , (b) 2 0bψ =  and 2 2
πψ = . 
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4 NUMERICAL EXAMPLES 

The proposed journal bearing model is implemented into a commercial multibody 

simulation software application (MSC.ADAMS [35]) by employing the equations 

introduced in the previous chapter. The model is used to analyse the dynamic response 

of a rotor system in which the journal bearing is measured to be non-ideal. In the first 

part of this chapter, a simple rigid rotor with two degrees of freedom supported by one 

journal bearing is studied. In the second part, a detailed model of a roll tube supported 

with two journal bearings is studied. The model of the roll tube describes the test rig 

that was used in measurements of non-idealities. The detailed model of the roll tube is 

verified using the measurement results of the test rig.  

 

4.1 A Rigid Rotor with Journal Bearing 

In general, non-linear behavior must be considered if the system operates in a non-linear 

region. A non-linear system can be described by using linear equations provided that 

changes of non-linear variables are insignificant during the operation. For example, a 

non-linear mass-spring system can be described with a linear spring coefficient if the 

displacement during operation is small enough that spring force changes linearly with 

respect to displacement. The hydrodynamic force produced by journal bearing is highly 

non-linear with respect to displacement of the journal. In this chapter, the linear and 

non-linear bearing models are compared by means of simple rotor system with two 

degrees of freedom in order to shed light on the capabilities of nonlinear bearing 

models. 

 

The example presented in this chapter consists of a rigid rotor described by two degrees 

of freedom that are translations in X- and Y-directions as presented in Figure 18. In this 

example, rotation velocity about Z-axis is assumed to be constant. The numerical results 

of different models are computed by using similar system parameters as explained in 

[36]. The linear model is computed by using a Matlab from The Mathworks Inc. The 

results are compared to the results presented in [36] for the linear computation. The 

results from linear model are also compared to the results computed in ADAMS 

environment in which the non-linear model is employed. It is important to reiterate that 
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the purpose of this chapter is to verify the non-linear simulation model built up in 

ADAMS with the results presented in [36]. 

 

ω

Y

X

W

φ0

e0

Fr0
Ft0

 

Figure 18. Plain cylindrical journal bearing in equilibrium position. 

 

4.1.1 The computation of linearized responses 

The equations of motion for a rigid rotor with a linear bearing can be written as follows: 

 

 
0

0
XuXX XY XX XY

YuYX YY YX YY
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⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

&& &

&& &
,  (4.1) 

 

where M is mass of the rigid rotor. Dij and Kij are the linearized damping and stiffness 

coefficients of the journal bearing, respectively. X and Y are the displacements of the 

rotor in fixed coordinate system. XuF  and YuF  are the excitation force components due 

to mass unbalance as described in Equation (4.11). Note that in the computing of the 

linearized model, the displacements ( ,X Y ) are assumed to be small with respect to 

static equilibrium position not respect to centre of the bearing. 
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In order to obtain closed form solutions for the linearized coefficients, a rotating 

coordinate system is used. The rotating coordinate system is used in a similar manner as 

in Chapter 2.2 when solving analytically the bearing forces based on assumption of 

short journal bearing. 

 

The static equilibrium of the journal bearing can be solved by setting journal bearing 

resultant forces in rotating coordinates equal to externally applied forces as follows:  

 

( )0 0cosrF W φ= −          (4.2) 

 

 ( )0 0sintF W φ= ,        (4.3) 

 

where W  is the static load of the journal bearing. The static load is due to gravity and it 

applies in Y-direction. In Equations (4.2) and (4.3), 0φ  is the attitude angle of the 

journal in static equilibrium position 0e , as depicted in Figure 18. 0rF  and 0tF  are the 

radial and tangential hydrodynamic force components of the bearing in static 

equilibrium position and they can be written employing short bearing theory by setting 

the translational velocity components to be zero and using static equilibrium 

eccentricity ratio as well as attitude angle for journal position in Equations (2.20) and 

(2.21) as follows:  

 

( )
2 2

0
0 0 22

01
r

LF R L
c

ωεη
ε

⎡ ⎤
⎛ ⎞ ⎢ ⎥= − ⎜ ⎟ ⎢ ⎥⎝ ⎠ −⎢ ⎥⎣ ⎦

      (4.4) 
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0 0 3/ 22

04 1
t

LF R L
c

ωπεη
ε

⎡ ⎤
⎛ ⎞ ⎢ ⎥= ⎜ ⎟ ⎢ ⎥⎝ ⎠ −⎢ ⎥⎣ ⎦

      (4.5) 

 

By substituting the hydrodynamic force components Equations (4.4) and (4.5) into 

Equations (4.2) and (4.3) the static equilibrium position can be defined as follows [36]: 
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    (4.6) 

 

and 

 

 ( )
2

0
0

0

1
tan

4
π ε

φ
ε
−

=         (4.7) 

 

The static equilibrium eccentricity ratio can be solved from Equation (4.6) using, for 

example, Newton-Raphson iteration method [33]. By using the solved eccentricity ratio, 

the attitude angle can be solved from Equation (4.7). 

 

Bearing forces can be calculated based on linearized bearing coefficients as described in 

equations of motion defined in Equation (4.1). In general, the linearized bearing 

coefficients can be obtained by calculating the partial derivatives of force components 

in static equilibrium position as explained in chapter 2.6.2. When computing 

coefficients according to the short bearing theory, it is possible to find analytical 

equations for radial and tangential coefficients as follows [36]: 
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The coordinate transformation of radial and tangential coefficients to XY-coordinate 

system can be performed in similar manner to both stiffness and damping coefficients as 

follows: 

 

 
( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 0 0 0

0 0 0 0

sin cos sin cos
cos sin cos sin

rr rtXX XY

tr ttYX YY

K KK K
K KK K

φ φ φ φ
φ φ φ φ

⎡ ⎤ ⎡ ⎤−⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (4.10) 

 

The right side of the equations of motion defined in Equation (4.1) describes the 

harmonic forces acting in the journal. In the studied case, forces are due to mass 

unbalance. Figure 19 depicts the centrifugal force caused by the unbalance mass, mu, 

which is located at distance eu from the Z-axis, that is, the rotating axis. 

 

Z
X

Y

Ω α

tΩ

2
um rΩ

 

Figure 19. Definition of unbalance mass and its centrifugal force. 

 
Components of the unbalancing force in Equation (4.1) can be written as follows [37]: 

 

( )
( )

2 cos
sin

Xu
u u

Yu

tF
m e

tF
ω τ

ω
ω τ

+⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦

 (4.11) 

 

Using the following trigonometric equalities,  

 

( ) ( ) ( ) ( ) ( )cos cos cos sin sint t tω τ ω τ ω τ+ = −  (4.12) 
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( ) ( ) ( ) ( ) ( )sin sin cos cos sint t tω τ ω τ ω τ+ = +  (4.13) 

 

Equation (4.11) can be written as: 

 

( )
( ) ( ) ( )

( ) ( )2 2sin cos
sin cos

cos sin
Xu

u u u u
Yu

F
m e m e

F
τ τ

ω ωτ ω ωτ
τ τ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (4.14) 

 

By identifying the time-independent force components the unbalance force vectors, sF  

and cF , can be written as follows: 

 

( ) ( ) T2 sin coss u um e ω τ τ= −⎡ ⎤⎣ ⎦F  (4.15) 

 

( ) ( ) T2 cos sinc u um e ω τ τ= ⎡ ⎤⎣ ⎦F  (4.16) 

 

Equations of motion can be rewritten as follows:   

 

( ) ( )sin coss ct tω ω+ + = +Mx Dx Kx F F&& & ,  (4.17) 

 

where M is the mass matrix of the rigid rotor, D is the linearized damping matrix of the 

supporting bearing and K is the linearized stiffness matrix of the supporting bearing. x  

is the displacement vector of the rigid rotor and  the solutions for that are sought in the 

form 

 

( ) ( )sin coss ct tω ω= +x x x ,  (4.18) 

 

where sx  and cx  are the vectors representing the response components. By solving the 

first and second time derivative of Equation (4.18) and substituting them into Equation 

(4.17) and identifying ( )sin tω  and ( )cos tω  terms, the following equation can be 

obtained [37]: 
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 (4.19) 

 

This linear system of equations can be solved for given values of ω , and the obtained 

results, ( )s ωx  and ( )c ωx , can be used to calculate the displacement vector x according 

to Equation (4.18). 

 

4.1.2 Comparison between linear and non-linear models 

In the first studied cases, the non-linear bearing model that is used in development of 

the model that accounts the non-idealities is compared to the results presented in [36]. 

The results presented in [36] are computed by solving the Reynolds equation and using 

the short bearings assumption. When carrying out the integration of the pressure 

equation the circumferential boundary condition was the Reynolds boundary condition 

in [36]. Furthermore, in the axial direction the boundary condition was that pressure is 

zero on both sides of the bearing. Secondly, the results obtained from linear model are 

compared with the non-linear bearing model in different operation conditions. In this 

section, linear model is solved using Matlab code while non-linear model is calculated 

using ADAMS software.  

 

The physical parameters of the system are similar to the example that is presented in 

[36]. In the studied case, L/D-ratio is 0.25 which justifies the use of the short bearing 

theory. 

 

Table 2. Parameters of the simulated system 

Properties of rigid rotor Bearing properties 
Mass 22.680 kg (5.0986 Lbs) Inner diameter 50.8 mm (2.0 in) 

Unbalance mass configurations Length 12.7 mm (0.5 in) 

Radial clearance 0.0508 mm (0.002 in) 
ue =25 mm, um =2.880 g (0.1oz-in) 

ue =25 mm, um =5.761 g (0.2oz-in) 

ue =25 mm, um =14.402 g (0.5oz-in) 

ue =25 mm, um =28.803 g (1.0oz-in) 

Viscosity of the oil 6.8948E-3 Pas (1.0E-6 Reyns) 
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In the first comparison, seven different cases are studied including three cases without 

unbalance using rotational velocities of 4000 rpm, 10000 rpm and 12000 rpm and four 

cases with different unbalance configurations as described in Table 2. In the unbalance 

cases, the used rotational velocity is 4000 rpm. The comparison with the linear model is 

performed using the latter 4 cases with different unbalances. The displacement results 

are given in units [inch] instead of [mm] that are otherwise used in this study. The units 

are changed to simplify the comparison to [36]. Results for the first three studied cases 

are presented in Figures 20 and 22. 

 

 
Figure 20. Results from non-linear model with rotational velocity 4000 rpm, no 

unbalance. 
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Figure 21. Results from non-linear model with rotational velocity 10000 rpm, no 

unbalance. 

 

 

Figure 22. Results from non-linear model with rotational velocity 12000 rpm, no 

unbalance. 

 

The results shown in Figures 20 - 22 agree with the results presented in [36]. The results 

of the non-linear model without unbalance presented in [36] are shown in Appendix E. 

As the equilibrium positions coincident in two different results, the load carrying 

capacity of the bearing calculated using different models agree. Further, the vibrations 

of the rotor before reaching the equilibrium position are similar. Accordingly, the 
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damping calculated using the two models are the same. As can be seen in Figure 22, the 

journal whirls around the equilibrium position when rotational velocity is 12000 rpm 

even when no external forces acting to the journal. This phenomenon is called oil-whirl, 

that is, self-excitation in journal bearing. The frequency analysis shows that the whirling 

frequency is 95.2 Hz, that is, 5713 rpm, which is the same whirling frequency that is 

reported in [37]. The whirling frequency is often referred to as half-whirling frequency 

as it is close to the half rotational velocity. The results of frequency analysis of journal 

displacement components are shown in Figure 23. 

 

Frequency [Hz]

X
[in

]
Y

[in
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0.0 100.0 200.0 300.0 400.0
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0.001
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0.001

0.002

 

Figure 23. FFT of displacement components at rotational velocity 12000 rpm, no 

unbalance. 

 

Figure 24 shows the results based on the non-linear model with four different 

unbalances. Additionally the same system is computed using the linearized model. Also 

these results are shown in Figure 24. 
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Figure 24. Results based on (a) non-linear model and (b) linear model with unbalances. 

 

As can be seen in Figure 24 (a), the orbits agree with the one presented in [36]. The 

results of the non-linear and the linear model with different unbalances presented in [36] 

are shown in Appendix F. The similar displacement amplitudes of the rotor can be 

interpreted in such that the stiffness and damping of the bearing computed by different 

models agrees. Furthermore, the similar shapes of the orbits, particularly with high 

unbalance, are due to comparable non-linear behavior of different models. 

 

As can be seen in Figure 24 (a), the shapes of orbits are nearly elliptical for small 

unbalance while they become more complicated with large unbalance. It is noteworthy 

that the orbit size does not increase linearly with respect to the unbalance as the linear 

theory predicts. FFT-analysis of responses with unbalancing force shows that the rotor 

oscillates around its equilibrium position with synchronous (1X) vibration amplitude 

when unbalance is small. In cases of large unbalance (0.5 and 1.0), the superharmonic 

(2X) vibration components become visible in FFT-analysis. This is due to non-linear 

behavior of the bearing which introduces the non-elliptical orbit with large amplitudes. 

 

When comparing the results from the linear model, Figure 24 (b), with the results of 

linear model presented in [36] again the results agree. However, a small difference in 

the amplitudes of the responses can be noticed. Since the exact numerical values of 

results are not presented in [36], it is cumbersome to analyse accurately the source of 
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the discrepancy. One explanation could be that in reference [36], an erroneous equation 

for computing the damping coefficients of the bearing was used. In reference [36] the 

equation to calculate damping coefficient described in Equation (4.9) is multiplied by 

angular velocity ω  that is not correct. 

 

When comparing Figure 24 (a) with (b), the difference between results from the non-

linear and the linear model can be seen clearly. In the case of small unbalance the orbit 

shapes are similar. However, in cases of larger unbalance (unbalance 0.5) the linear 

theory predicts an overly large response. 

 

As explained in the beginning of this chapter the non-linear behavior should be 

considered in some cases. Accordingly, as shown with the results from linear and non-

linear bearing models, the linear model predicts incorrect results if the operation takes 

place in non-linear regime. When designing rotor-bearing systems, the main interest is 

in locations of critical speeds and system instability threshold. These focuses of interest 

can be addressed by the linear analysis. However, there are several situations such as 

large vibration amplitudes of the rotor and operation near and beyond the instability 

threshold when the non-linear model should be used. It is noteworthy that excitation 

forces produced by non-idealities of the bearing, such as the waviness of the shaft 

journal, can lead to large vibration amplitudes of the rotor. If, for example, the 

translational movement of the rotor needs to be investigated in an accurate manner, the 

linear theory may not produce a satisfactory result. As explained in the examples, the 

journal orbit tends to increase when unbalance increases. The linear theory predicts the 

output (response) to increase linearly relative to input (force) which is not according to 

nature. For example, the case of large unbalance configuration (unbalance = 0.5) the 

linear model predicts the orbit to be outside of the bearing bushing which is not 

physically possible. It was also seen that, in some cases, the non-linear behavior of the 

bearing may excite the rotor vibration even if there is no non-idealities present in the 

system. Near the instability threshold the bearing starts to generate sub-harmonic 

excitation, whose frequency is about half of the whirling frequency of the rotor. In the 

case of large unbalance, the non-linear behavior of the oil film may also introduce a 

superharmonic (2X) vibration component. The computation of the non-linear model that 

was used in examples of rigid rotor takes about 8 seconds in the simulation of 1 second 
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with 1 ms time step. For this reason, it can be concluded that the non-linear bearing 

model is not computationally expensive enough to justify the use of linear model.  

 

The aim in this study is to introduce a method to take into account the excitations that 

take place due to waviness of the shaft journal. It is meaningful to use non-linear model 

as basis for the model development to reduce the number of uncertainties acting in the 

simulation model. By linearizing the bearing model, an additional simplification as well 

as uncertainty would be added to the simulation model. The bearing model used in this 

study can describe non-linear behavior of oil film forces and can therefore be used to 

simulate various situations in a rotor-bearing system.  

 

4.2 A Simulation Model of a Roll Tube Supported by Plain Journal Bearings 

Traditionally, the calculation of rotor dynamics is covered mainly by computing natural 

frequencies and stability of the rotor systems [7]. The responses of rotor systems can be 

also calculated using multibody simulation approach which is a general procedure for 

dynamic analysis of mechanical systems. The traditional methods are usually based on 

certain simulation models that are derived with simplifying assumptions. Such 

assumptions lead to models that may operate only on restricted conditions such as under 

the assumption of constant rotational velocity. Simplified models may not take into 

account non-idealities in the system that can excite the system natural frequencies and, 

accordingly, affect the natural frequency of the system. Such features are for example 

bearing clearance and waviness in shaft journal and in bearing bushing. Multibody 

simulation have been previously found out to be an effective tool for simulating 

dynamics of different rotor systems [6], [7], [8] and [9]. 

 

The rotor system under investigation consists of a roll tube supported by two journal 

bearings. The simulation model of the rotor-bearing system includes the flexible roll 

tube, detailed non-linear model of journal bearings and description of the support of the 

roll. The parameters of the real structure are reproduced in the simulation model of the 

system as accurately as possible. This is achieved by measuring the non-idealities of the 

real structure and introducing them into the simulation model. In order to validate the 

proposed journal bearing model, the simulated results are compared with the 
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measurements obtained from the real structure. The MBS-model of the test rig is shown 

in Figure 25. 

 

 

Figure 25. The simulation model of the test rig. 

 

4.2.1 Multibody Dynamics 

Mathematically, a body consists of an infinite number of particles while the inertial 

properties of the body consist of the properties of its particles. In multibody systems, the 

bodies interact with each other through joints. Mathematically, the joints are described 

by constraints between bodies. These constraints are simple to formulate when 

employing the body coordinate system. The body coordinate is fixed to the body and 

therefore the description of a particle in the body coordinate system remains constant 

when the body is assumed to be rigid. For this reason, the utilisation of the body 

coordinate system simplifies the description of the constraints. 

 

Equations of Motion of Rigid Body Systems 

When describing the dynamics of a body, the particles of the body are described in the 

global coordinate system. The global or inertial frame of reference coordinates are fixed 

and do not move with the body. The description of a rigid body in a three dimensional 

space, as in Figure 26, can be defined with six coordinates. Three coordinates define the 

location and another three coordinates define the orientation of the body. 
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Figure 26. A rigid body in a three dimensional space. 

 

The position of the arbitrary particle pi of body i in the global coordinate system can be 

defined as following [38]: 

 

 i i i i= +r R A u          (4.20) 

 

where iR  is the position vector from the origin of the global coordinate system to the 

origin of the local coordinate system, iA  is the rotational matrix, that describes the 

orientation of the local coordinate system with respect to the global coordinate system 

and iu  is the position vector of the particle pi in the local coordinate system. Although 

there are a number of ways to describe the rotation matrix iA , the description based on 

the Euler angles is frequently used [40]. 

 

It is important to note that the rotational matrix iA  includes non-linear terms, which 

enables a description of large rotations. In the multibody analysis, generalized 

coordinates are variables that are used to describe the position of particles in the system. 
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In a three dimensional space, the location and orientation of a body can be described 

with a vector of generalized coordinates as follows: 

 

 1 2 3

Ti i i i i i iR R R φ θ ψ⎡ ⎤= ⎣ ⎦q       (4.21) 

 

where 1 2 3, andi i iR R R  define the location of the origin of the local coordinate system of 

body i and iii ψθφ and,  Euler angles that are used in the description of the rotational 

matrix. 

 

The generalized coordinates are not typically independent. In multibody systems, the 

joints (i.e. constraints) form interaction between the coordinates. For this reason, 

movement in one body can cause movement in other bodies. The interactions between 

the different bodies can be expressed by using constraint equations. For the complete 

system, the generalized coordinates can be written as follows: 

 

 [ ] T
nqqqq K321=q        (4.22) 

 

in which n is the number of generalized coordinates. A part of the components of the 

vector q can be coupled with constraints. In dynamic analysis, the number of constraint 

equations nc must be smaller than the number of generalized coordinates n. The 

constraint equations can be expressed in the general form as: 

 

 ( ) 0,21 =tqqq nLC        (4.23) 

 

in which 1 2( ) ( ) ( )
c

T

nC C C⎡ ⎤= ⎣ ⎦C q q qL are the independent constraint equations. In 

Equation (4.23), the constraints are dependent of time and coordinates. 

 

The constraints can be introduced to the equation of motion employing the augmented 

formulation with Lagrange multipliers. In this case, the equation of motion is a set of 

differential algebraic equations. Typically, the equations are solved through the use of 

the numerical integration approach of ordinary differential equations. To this end, the 

equation of motion is written as follows: 



 

 

84

 
 
 

 ⎥
⎦

⎤
⎢
⎣

⎡ +
=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

c

ve
T

Q
QQ

λ
q

C
CM

q

q &&

0
       (4.24) 

 

where matrix M  is a matrix that consists of mass matrices of all the bodies in the 

system, eQ  is the generalized force vector of non-conservative forces, vQ  is the 

quadratic velocity vector and qC  is the matrix,  which is formed from constraints and is 

called a Jacobian matrix. cQ  is a vector that is comprised by differentiating the 

constraint equations twice with respect to time. With the equation of motion, the 

acceleration of the generalized coordinates q&&  and Lagrange multipliers λ  can be 

solved. The detailed derivation of the equations is given by Shabana in References [38] 

and [39]. 

 

4.2.2 Flexible Roll Tube 

Flexibility in multibody dynamics can be modelled using a number of approaches. A 

rotor experiences large rotational displacements while deformations within the rotor 

usually remain small. For this reason, the multibody simulation approach with the 

floating frame of reference formulation is used to model the flexibility of the roll tube 

[39]. 
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Figure 27. Global position of an arbitrary particle, pi. 

 
In the floating frame of reference approach, the global position of an arbitrary particle 

of the flexible body i, as depicted in Figure 27, can be defined as follows: 

 

( )i
f

i
o

iii
P uuARr ++=                                                     (4.25)    

                         

where iR  is the position vector from the origin of the global coordinate system to the 

origin of the reference coordinate system, i
ou  is the position vector that defines the 

undeformed position of the particle, and i
fu  is the position vector that defines the 

deformed position of the particle. In Equation (4.25), vectors i
ou  and i

fu  are defined 

within the reference coordinate system that describe large translations and rotations of 

the flexible body.  Due to the use of the reference coordinate system, the conventional 

finite element approach can be employed in the description of the vector i
fu . It is 

noteworthy, however, that finite element models usually consist of a large number of 

nodal degrees of freedom, which makes it computationally expensive to define the 

deformations in the time domain analyses. This drawback can be overcome using the 

component mode synthesis [41] together with the floating frame of reference 
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formulation. In the component mode synthesis, the deformation vector can be described 

using vibration modes and modal coordinates instead of nodal coordinates. As a 

consequence, the dimensionality of the original finite element model (i.e. degrees of 

freedom) can be reduced without a significant loss of accuracy [39]. Using the 

component mode synthesis, the deformation of the flexible body can be described as 

follows:  

 
iii

f pΦu =                                                                                                    (4.26)    

                                                                                                

 where iΦ  is the modal transformation matrix whose columns are the vibration modes 

and ip  is the modal coordinates associated with the deformation modes.  

 

In this study, the deformation modes defined in Equation (4.26) are calculated by 

employing the Craig-Bampton method with the orthonormalization procedure [42], 

which yields the orthogonal Craig-Bampton modes. The Craig-Bampton method results 

in two sets of modes that are non-orthogonal constraint modes and orthogonal fixed 

interface normal modes. The constraint modes can be obtained from a static equilibrium 

analysis while the fixed interface normal modes can be obtained by solving an 

eigenvalue analysis. Due to the use of static analysis, the constraint modes are not 

orthogonal, feature of which leads to non-diagonal forms of general stiffness and mass 

matrixes.  In this study, the orthonormalization procedure is applied to the Craig-

Bampton modes in order to enforce modes to be orthogonal. 

 

In this study, the roll tube is modelled in a commercial finite element code (ANSYS) 

using eight-node brick-shaped solid elements with rotational degrees of freedom 

(SOLID 73). Figure 28 shows the coordinate system, parameters and mesh of the FE 

model. The finite element mesh of the roll is fine, as can be seen in Figure 28. The 

thickness of the shell of the roll tube is based on measurements carried out on the real 

structure. The finite element mesh is as dense as the grid used in the measurements. It is 

important to note that the modes and frequencies needed in the floating frame of 

reference approach are solved using the lumped mass approach, which may not lead to 

an exact representation of inertia of the element. However, the use of a fine finite 
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element mesh makes it possible to obtain an acceptable approximation for inertia 

properties of the flexible body. 

 

x

y

z

Drive 
side

Tending 
side

Material properties:

8744Number of nodes
5536Number of elements

5000 mmTotal length of the rotor

322.5 mmDiameter of the shell
4000 mmLength of the shell

Dimensions of the rotor:
0.3Poisson’s ratio
7801 kg/m3Mass Density
2.107·1011 N/m2Young’s Modulus

 
Figure 28. FE-model of the roll. 

 

In the measurements, the thickness of the shell of the roll varied between 17.86 and 

19.59 mm with the average value being 18.72 mm. Since the shell thickness is not 

constant, the roll has a non-ideal mass and stiffness distribution. The non-ideal mass 

distribution causes unbalance excitations, and the non-ideal stiffness distribution can 

cause a weight resonance in which the variation in bending stiffness, together with 

gravity, excites the symmetrical modes. This resonance condition occurs when the 

rotational velocity is one half of the frequency of the symmetrical mode. The details of 

the modelling of the variation in the thickness of the shell of the roll tube are described 

in [7] and [43]. 

 

Table 3 shows the inertia tensor, selected modes and their frequencies. The mass of the 

roll is 791 kg and the centre of mass relative to the coordinate system shown in Figure 

28 is located [mm] at the point (-0.010, -0.053, 2499.705). The non-ideality of the roll 

can be seen from the inertia properties and the natural frequencies of the orthogonal 

bending mode pairs of the roll. The location of the centre of the mass is not on the 

neutral axis and the products of inertia are not equal to zero. It is noteworthy that the 
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frequencies of the orthogonal bending mode pairs are not equal as they would be in the 

case of an ideal roll. 

 

Table 3. The inertia tensor and selected mode pairs of the roll. 

NATURAL FREQUENCIES OF SELECTED MODE PAIRS 

Bending mode 

pair 
1 2 3 4 5 

Freq. [Hz] 
77.8 / 

77.9 

200.0 / 

200.2 

279.6 / 

279.7 

348.5 / 

348.7 

523.3 / 

523.5 

Inertia tensor [kgm2] (defined in the coordinate system shown in Figure 28) 

6649.988 0.005 0.024
6650.008 0.070

. . 14.525

xx xy xz

yy yz

zz

I I I
I I

symm I symm

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

I  

 

Comparison with the Experimental Modal Analysis 

The experimental modal analysis was performed to measure natural frequencies of the 

test roll [44]. The modal analysis was done by using lifting belts and spring set between 

the belts and the hoist crane. The frequencies of the measured rigid body modes were 

close to zero. 

 

The incorrect damping ratios for modes 2,3 and 6 are due to the hoisting belts that 

increased the damping in the vertical direction. For this reason, the lower damping 

values are used for each mode pair in the simulation model [7]. The results of the 

experimental modal analysis are shown in Table 4. 

 

Table 4. The results of the experimental modal analysis of the roll [7]. 

Mode Frequency [Hz] Damping ratio [%] Comments 

1 78.048 0.018  

2 78.285 0.138 Damping incorrect 

3 196.67 0.035 Damping incorrect 

4 196.93 0.016  

5 270.27 0.023  

6 270.35 0.034 Damping incorrect 
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A good agreement is obtained between measured and simulated natural frequencies of 

the roll as can be seen when comparing results in Table 3 with Table 4. 

 

4.2.3 Support of the Roll 

The support of the roll is a modified pedestal of a balancing machine. The support 

rollers of the balancing machine have been replaced with bearing housings. In the 

simulation model, the support is modelled using one flexible body and two rigid bodies. 

These bodies are connected by spring-damper forces and constraints. The support 

assembly and the properties of the flexible frame body are shown in Figure 29. The 

frame body is an assembly of a base body made of cast iron and steel bodies, which are 

bolted to the base body. The flexibility of the frame body is modelled using the same 

approach as is employed in the roll. A total of 20 vibration modes of the frame body are 

selected for the dynamic simulation, while the bandwidth of the selected modes varies 

between 226 Hz and 6234 Hz. The total weight of the pedestal assembly is 127 kg. The 

journal bearing is modelled as a force between the bearing housing and the rotor. The 

bearing force is computed on the basis of the proposed non-linear journal bearing model 

that accounts waviness. 

 

To shed a light on the support properties, the following stiffness coefficients and 

damping ratios are determined using the simulation model of the pedestal: 

- Vertical stiffness 262 MN/m (Y-direction in global coordinate system) 

- Horizontal stiffness 63 MN/m (X-direction in global coordinate system) 

- Horizontal and vertical damping ratios 2 %. 

The above stiffness values are obtained by measuring the displacements caused by the 

load. The damping ratios are determined by simulating the force impulse and using the 

logarithmic decrement, as explained in [45]. The horizontal stiffness is dominated by a 

piezo sensor, the stiffness of which is stated to be 70 MN/m. The piezo sensor, that is, 

the spring element, is modelled between the cast iron frame body and the steel base 

plate, as can be seen in Figure 29. 
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Figure 29. The pedestal structure of the test rig. 

 

4.2.4 Journal Bearing 

The bearing used in the test rig is a plain hydrodynamic journal bearing, the dimensions 

of which are shown in Table 5. The bearing L/D-ratio is 0.33. Figure 30 depicts the 

pressure distribution that the rotation of the journal generates in the bearing. The 

proposed model of the journal bearing omits the oil feed groove; however, since the 

groove is located in the upper part of the bearing, the pressure around the groove can be 

assumed to be low. Therefore, the error caused by this simplification is not significant 

considering the dynamics or load carrying capacity of the bearing. The oil feed in the 

test bearing is obtained by one axially aligned groove, the length and width of which are 

35 mm and 6 mm, respectively. 

 

Table 5. The parameters of the journal bearing. 

Inner diameter 150 mm 

Outer diameter 170 mm 

Length 50 mm 

Radial clearance 0.075 mm 

Used lubricant Shell Tellus T ISO VG 32
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Figure 30. The hydrodynamic pressure generated by rotation of the journal in the 

journal bearing, and the location of the oil feed in the test bearing. 

 

4.2.5 Shaft Journal Waviness 

The shaft journal of the bearing always has some waviness due to manufacturing 

tolerances. In the bearing model, waviness is obtained from measurements. The 

waviness of the shaft journal is measured in three cross-sections; in the middle of the 

sliding surface and 20 mm in both directions from the middle. 

 

The proposed bearing model assumes that the thickness of the oil film remains constant 

along the axial direction. For this reason, the shape of the shaft journal is assumed to be 

constant along the axial direction. Accordingly, a weighted mean is computed from the 

three measured cross-sectional shapes. The weighting coefficients are obtained based on 

the assumption that the shape of the cross-section is the most dominating in the axial 

position in which the hydrodynamic pressure is largest, that is, in the middle of the 

bearing. The weighting factors are evaluated based on the pressure distribution of the 

short journal bearing in the axial direction, and they can be written as follows: 
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where Z  is the axial coordinate and L the length of the bearing. The weighting factors 

can be computed using the following expression [33]: 
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where fi is obtained by computing Equation (4.27) using axial coordinate iZ  of the 

measured cross-section. The weighted means can be computed as 

 

 332211 RRRR λλλλ ++=        (4.29) 

 

The weighted means of the waviness components and their phase angles are shown in 

Table 6 for the drive side and tending side of the roll, respectively. 

 

Table 6. The weighted means of the waviness components and their phase angles of the 

shaft journal. 

Amplitude [µm] Phase angle [rad] Waviness 

order Drive side Tending side Drive side Tending side

2 5.21 5.53 5.02 5.72 

3 1.19 1.53 4.60 1.49 

4 1.07 1.57 5.05 4.63 

5 0.21 0.33 5.24 1.54 

 

As can be seen in Table 6, the amplitude of the 5th-order waviness component is small. 

Based on Table 6, it can be assumed that higher components become even smaller and 

consequently less important in terms of the rotor system simulation. Therefore, only 2nd-

, 3rd- and 4th-order components are considered in this study. Figure 31 shows the 
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exaggerated profiles of shaft journals in drive side and tending side. Waviness 

amplitudes are multiplied by factor 300 to visualise the shape. 

 

 

Figure 31. A graphical presentation of exaggerated waviness of the shaft journal. 

 

4.2.6 Bearing Bushing Waviness 

The waviness of bearing bushing was not measured from bearings used in the test rig. 

However, this non-ideality is always present in real assemblies due to manufacturing 

errors. For this reason also the effect of the bushing waviness to the results is studied by 

simulation runs that will be explained in Chapter 4.2.9.  
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4.2.7 Temperature and Viscosity of the Lubricants 

The viscosity of the lubricant is highly dependent on the operating temperature. 

Accordingly, the dynamic behaviour of the bearing depends on the viscosity of the oil. 

In the measurements, the oil temperature rose as the rotational velocity of the rotor 

increased. At the beginning of measurements, the temperature of the oil was 30 °C, 

while at the end, it was close to 70 °C as can be seen in Figure 32. Figure 32 illustrates 

the oil temperature measured during experimental testing and is plotted versus the 

rotational velocity of the rotor. The oil temperature was measured from the return flow, 

in which case it can be assumed to be close to the average temperature of the oil inside 

the bearing. In the simulations, the oil temperature is recorded by computing the oil 

viscosity according to the DIN standard 31654 T2 as follows [3]: 
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=
o

      (4.30) 

 

where 30.18 10 Pasxη
−= ⋅ , ρ is the density of the lubricant, T is the temperature of the 

lubricant and VG is the viscosity grade of the lubricant. In this study, the viscosity grade 

is 32 and the density of the lubricant 3900 kg/mρ = . In the simulations, the temperature 

of the lubricant is calculated from the measurement results using a curve fitting method. 

In this way, the oil temperature at different rotational velocities is set at the same value 

in the simulations and measurements. 
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Figure 32. Temperature of the lubricant during measurements. 

 

4.2.8 Measurements of the Rotor System 

The measurement equipment comprises a PC-based data acquisition system, two laser 

sensors with amplifiers, a connection panel and a guide bar in which the sensors have 

been installed. The displacement of the roll is measured in the middle of the roll in the 

vertical and horizontal directions with two laser sensors as shown in Figure 33 where 

the locations of the measurement points are illustrated. The angular velocity of the rotor 

is obtained from a pulse sensor. The measurement equipment in the test rig is similar to 

that used in the active damping tests performed on the same structure [46]. 
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Figure 33. The locations [mm] of the measurement points. 

 

4.2.9 Verification of the Model of the Rotor-Bearing System 

In this chapter, the simulation results are compared with measurements performed on 

the real structure. The horizontal and vertical throw is measured from the middle of the 

rotor. In the comparison the half-critical rotational velocity region is studied. The results 

are plotted using amplitude vs. rotational velocity charts and spectrum maps. 

 

Results of the Half-Critical Speed 

The variable shell thickness and waviness of the shaft journal are included in the 

simulation model of the rotor system; therefore, two non-idealities influence the half-

critical speed region of the rotor system. Additionally, as described in Chapter 3.2 the 

waviness of bearing bushing was included in the bearing model to emphasize its effect 

on response. Even if the third non-ideality does not excite the system it will have some 

effect on system response. To study the half-critical speed region, seven different cases 

are simulated. The first three cases studied the effect of non-ideal shaft journal and 

stiffness variation of rotor shell to dynamic responses. Using two simulations the effect 

of bearing bushing waviness on dynamic responses are considered. Additionally, two 

simulations are performed to study the effect of unbalance mass on the response at half-

critical speed region. The first five simulation cases are described in Table 7. In cases 4 

and 5 only the second order waviness component was considered to the bearing 

bushing. The cases used to study the effect of unbalance are described in the end of this 

chapter. 

 



 

 

97

 
 
 

Table 7. Five cases on half-critical survey. 

Case Shaft journal Shell of the rotor 2bR  [µm] 2bψ  

1 Waviness included Ideal 0 0 

2 Ideal Variable thickness 0 0 

3 Waviness included Variable thickness 0 0 

4 Waviness included Variable thickness 2 / 2π

5 Waviness included Variable thickness 2 π  

 

Figure 34 shows the amplitudes of the twice-running-speed response in the middle of 

the roll with respect to the rotational velocity for the cases 1-3 compared with the 

measured results. Figure 35 shows the amplitudes of twice-running-speed response in 

the middle of the roll for cases 4-5 compared with the measured results. Figure 36 

shows the spectrum maps in the middle of the roll. The spectrum maps are obtained 

using case three which includes both measured non-idealities. 

 

 
Figure 34. The amplitudes of the twice-running-speed response in the middle, (a) 

horizontal, (b) vertical. 

 

The agreement of twice-running-speed response is good between measured and 

simulated results. The amplitude of the twice-running-speed response is slightly larger 

in the test rotor than in the simulation model, as can be seen in Figure 34. The 

difference is small enough that it may be caused by a number of possible reasons. For 
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example the measurement of the waviness of the shaft journal has an accuracy of 1µm 

and the largest waviness component was 5.5µm. For this reason, even 20% error is 

possible in the measurements of shaft journal waviness component. The phase angles of 

the waviness components effects to response as well. Depending on the phase in 

between the shaft journal waviness and the stiffness variation of the shell, they may 

emphasize each other in terms of excitation or, on the other hand, they may attenuate 

each other in terms of excitation. Furthermore, as can be seen from Figure 34 the shaft 

journal waviness affects strongly to the response amplitude. 

 

However, the difference may be partly caused by the journal bearing model in which the 

oil viscosity influences the stiffness and damping characteristics of the bearings. 

Therefore, the difference may be due to inaccuracies in the approximations of the oil 

viscosity. It must also be noted that the film thickness of the bearing may change during 

the operation of the bearing. The hydrodynamic pressure can cause elastic deformations 

in the bearing housing, which is not accounted for in the proposed model. As a result, 

the gap between the shaft journal and the bearing ring may differ from that used in the 

model. LaBouff and Booker [47] have studied the effects of an elastic bearing housing 

in the case of a dynamically loaded journal bearing. Their results showed that when the 

elasticity of the housing is included, the bearing eccentricity ratio and minimum film 

thickness as well as the peak pressures inside the bearing are modified. Prakash and 

Peeken [15] conclude that the elastic deformation of the bearing ring decreases the 

effects of roughness. In this case, the clearance of the bearing may change because of 

the high oil pressure acting in the bearing. Moreover, thermal expansion is one 

uncertainty that may change the bearing gap. The nominal radial clearance of the 

bearing is 75 µm, which is a small dimension considering the other dimensions of the 

system. The above-mentioned uncertainties may most probably change the amplitudes 

of the twice-running-speed response of the rotor-bearing system with the amount of 

difference between measured and simulated results. 

 

The waviness of the shaft journal influences the vibrations of the system in the half-

critical speed region. The waviness in the shaft journal leads to a vibration amplitude 

that is considerably larger than that caused by variations in the stiffness of the rotor, 

which can be seen when comparing cases 1 and 2 in Figure 34. Based on this result it 
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can be concluded that the shaft journal waviness is the most significant non-ideality of 

the rotor system with journal bearings when considering the vibrations in half-critical 

speed regime. 

 

 

Figure 35. The amplitudes of the twice-running-speed response in the middle for 

additional simulation cases, (a) horizontal, (b) vertical. 

 

As can be seen in Figure 35 the waviness error of bearing bushing affects significantly 

the twice-running-speed response. The used waviness error in simulation cases four and 

five can be considered to be inside the manufacturing tolerances and therefore its 

presence in test bearing is possible. It can also be concluded that this uncertainty of the 

model alone can explain the small difference between measured and simulated results in 

Figure 34. 

 

The shapes of the simulated response curves are similar to the measured ones. Both 

results also show the cross-coupling between the vertical and the horizontal amplitudes. 

The peak amplitudes and rotational velocities at which they occur are presented in Table 

8. 
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Table 8. Peak amplitudes in half-critical survey. 

 Measured Case1 Case2 Case3 Case4 Case5 

Horizontal 

peak [µm] 

66.0 at 

16.0Hz 

52.8 at 

15.6Hz 

4.2 at 

15.6Hz 

57.1 at 

15.6Hz 

63.7 at 

15.8Hz 

61.9 at 

15.8Hz 

Vertical 

peak [µm] 

81.6 at 

17.4Hz 

68.7 at 

16.8Hz 

4.9 at 

16.6Hz 

71.8 at 

16.8Hz 

78.2 at 

16.8Hz 

60.1 at 

16.6Hz 

 

It can be seen in Table 8 that the highest amplitudes of the twice-running-speed 

responses were reached at different velocities for different directions. This difference is 

mainly due to different stiffness characteristics of the supporting structure in the vertical 

and horizontal directions. The stiffness of the support was not measured, although based 

on FE-model of the support the horizontal stiffness of the structure was remarkably 

lower than in vertical direction. In the measurements the difference between velocities 

where the highest vibration amplitudes were seen was a bit larger than in simulations. 

This difference between simulation and measurement results is likely to be result from 

inaccurate stiffness of the supporting structure in the simulation model. 

 

The simulated spectrum maps in the middle of the rotor can be seen in Figure 36. All 

the modelled excitations can be seen in the map in Figure 36. 
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Figure 36.Simulated spectrum maps of the throw in the middle of the roll, (a) horizontal 

(b) vertical. 
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As was stated before in Chapter 4.1 the unbalance of the rotor may affect the vibration 

amplitude of twice rotating velocity due to oil film non-linearity. In the following, 

results based on measurements and simulations of roll with two different unbalance 

configurations are presented. The first configuration is named UB0 and it refers to 

balanced test roll. In the second configuration, called UB1, three unbalance masses were 

added to the roll. Figure 37 presents the unbalance masses in configuration UB1. 
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Figure 37. Mass point locations in the measurements of configuration UB1. 

 

The amplitudes of twice rotating velocity response from the measurements and 

simulations are presented in Figure 38 from the measurements and simulations. The 

simulation model included the same non-idealities as case 3 in Table 7. 
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Figure 38. The amplitudes of the twice-running-speed response in the middle for 

simulation configurations UB0 and UB1, (a) horizontal, (b) vertical. 

 

It can be seen in Figure 38 that the unbalance configuration had an effect on the 

amplitudes of twice-running-speed response in measurements as well as in simulation. 

The difference between simulated responses of UB0 and UB1 are in magnitude similar 

to the ones from measurements. This can be interpreted such that the effect of unbalance 

to twice-running-speed response is similar between measurements and simulation. 

However, in the simulations the unbalance masses decreased the amplitudes in both 

directions but in the measurements the amplitudes increased in horizontal direction and 

decreased in vertical direction. The same comparison was performed also with 

simulation model as case 1 in Table 7 and the results were similar as both directions 

decreased in simulations when unbalance masses according the configuration UB1 were 

added. 
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5 CONCLUSIONS 

In this thesis, the theory of modelling of the hydrodynamic plain journal bearing was 

studied. Two models for the short journal bearing and two models for the long journal 

bearing were examined. The computation of linear dynamic coefficients for journal 

bearings was presented. Four bearing models were compared with respect to the load 

carrying capacity. The dynamic properties of the models were compared by means of 

linearized stiffness and damping coefficients that were calculated for each model. In 

reality, the journal bearing has always some non-idealities. The waviness of the shaft 

journal is one of the non-idealities of a rotor-bearing system that can cause 

superharmonic vibrations. This study introduced a method for modelling the waviness 

in shaft journals in the case of a hydrodynamic journal bearing support. One of the 

presented bearing models, introduced by Vance [17], was chosen for further 

development to describe the waviness in the shaft journal. The proposed journal bearing 

model is based on the short bearing solution of the Reynolds equation and the bearing 

model accounts for the waviness of the shaft journal in the bearing by employing the 

Fourier cosine series. This complicates the integration of the pressure equations of the 

bearing, making it necessary to use a numerical integration procedure in the solution of 

the equation. While numerical integration is used, it is possible to apply variable 

integration boundaries as a consequence of which only the positive pressure region is 

accounted for. The method can be adapted to situations where the length and boundaries 

of positive pressure region varies. Additionally, a method to take into account waviness 

in bearing bushing was presented. Even if the non-ideal bearing bushing does not excite 

the vibrations of rotor-bearing system, based on simulations it was found to have 

influence to system response. 

 

The proposed bearing model was implemented in commercial multibody dynamics 

software. The implemented model was firstly used to verify the model of ideal bearing 

with results obtained from literature by means of simple model of rigid rotor with one 

journal bearing. Furthermore, the simple model was used to emphasize the differences 

in responses calculated with linear and non-linear bearing models. It was summarized 

that the linear model can be used in many situations but, on the other hand, gives 

unrealistic results in certain cases. The multibody approach gives the possibility of 
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describing the non-idealities of rotor-bearing systems in such a way that the coupling 

between the non-ideal bearing assembly and non-ideal rotor is accounted for. In the 

introduced simulation approach, the proposed model was employed in order to describe 

a non-ideal rotor-bearing system. The rotor system examined consists of a roll tube, 

journal bearings and support of the roll. The ideal tube roll was used to emphasise the 

vibrations excited by the non-ideal bearing assembly exclusively. Based on the 

simulation results, it can be concluded that the vibrations due to non-idealities in 

bearings are significantly larger than the excitations due to a non-ideal roll. The 

simulation results also showed that the bearing assembly has a significant effect on 

vibrations of rotor-bearing systems. Based on the simulation results, presence of 

waviness in bearing bushing was discovered to have an effect on system response. In 

conclusion, the coupled simulation which can take both non-ideal bearings and non-

ideal rotors into account should be used when the vibration analysis is performed. 

 

The simulation results for the rotor system were verified using measurement results 

obtained from the existing structure. A comparison between the simulated and measured 

results showed that the proposed model accurately predicts the dynamic behaviour of 

the rotor-bearing system. The displacement amplitude of the twice-running-speed 

vibration component agrees well with the measured one. There are some discrepancies 

between the simulated and measured results in the case of the displacements of the 

twice-running speed response. However, this can be explained by, for example, the 

presence of bearing bushing waviness. There are also some other uncertainties that may 

have an effect on response amplitudes of error tolerance of a few percent. The actual 

stiffness variation of the rotor may be different than the modelled one. The real roll 

probably has other non-idealities than the variation in the shell thickness, such as welds 

and uneven distribution of the modulus of elasticity. The changes in shape in the 

bearing gap caused by thermal expansion and elastic deformation in the bearing bushing 

should be accounted for in the bearing model in order to obtain more accurate results. 

However, the proposed method for modelling the waviness in shaft journals in journal 

bearings provides reliable response curves for the rotor system studied. 
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5.1 Suggestions for Future Studies 

In this study, the effect of shaft journal waviness on rotor superharmonic vibration was 

considered to be significant in the analyses of the rotor-bearing system. The proposed 

bearing model is able to capture the dynamic behaviour of the bearing. However, some 

inaccuracies were discovered in the comparison between simulated and measured 

results. In order to develop a more accurate model of the hydrodynamic bearing, the 

elasticity of the bearing bushing should be included in order to capture the effects of 

high pressure into the bearing geometry. The temperature expansion of the different 

bodies in the bearing assembly is a characteristic that should also be taken into account. 

Additionally, the viscosity of the lubricant was considered to be dependent on 

temperature only. However, in order to obtain a more accurate description of lubricant 

viscosity, the viscosity’s dependence of current pressure might be taken into the 

consideration. 

 

Multibody dynamics simulation is a flexible and general approach to the analysis of 

rotor systems. However, as in all simulations, the level for the necessary accuracy is 

difficult to determine. A detailed simulation model may become too expensive to 

compute, and therefore, it may not serve its purpose efficiently enough. In bearing 

modelling, an accurate description of the pressure field can be obtained using the 

solution of the Reynolds equation, for example, by means of FEM, in which case 

additionally the formal non-idealities of the bearing could be included. This approach, 

however, leads to expensive computation. On the other hand, the non-idealities in the 

bearing affect the system response and they should be included in the simulation model. 

In this study, an efficient method to include shape non-idealities in the bearing was 

introduced. However, there are some uncertainties that need to be considered in the 

future. Therefore, the model should be verified more with experimental data, obtained 

from a test rig specifically designed for measurements of bearing performance. 

 

In the future, as the demands on the performance of rotating machinery increase, the 

tools for design should develop as well. Detailed simulation of complex systems offers 

an efficient tool for analysing systems in detail. As the computing capacity of 

computers increases, detailed simulations can be computed more efficiently. 

Mathematical modelling has interested scientists for quite a while and therefore several 
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theories about the modelling of components of mechatronic machines are available. The 

multibody dynamics approach gives an opportunity to employ the developed methods 

and to analyse the coupled components as whole machines. A good example of such 

simulation application is the studied rotor-bearing system. 
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Appendix A  Stiffness coefficients when L/D = 0.25.     1(2) 
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Figure A.1. KYY according to bearing models when L/D = 0.25. 
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Figure A. 2. KXY according to bearing models when L/D = 0.25. 
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Appendix A Stiffness coefficients when L/D = 0.25.    2(2) 
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Figure A. 3. KYX according to bearing models when L/D = 0.25. 
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Appendix B Stiffness coefficients when L/D = 1.0.    1 (2) 
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Figure A. 4. KYY according to bearing models when L/D = 1.0. 
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Figure A. 5. KXY according to bearing models when L/D = 1.0. 
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Appendix B Stiffness coefficients when L/D = 1.0.    2(2) 
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Figure A. 6. KYX according to bearing models when L/D = 1.0. 
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Appendix C Damping coefficients when L/D = 0.25.    1(2) 
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Figure A. 7. DYY according to bearing models when L/D = 0.25. 
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Figure A. 8. DXY according to bearing models when L/D = 0.25. 
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Appendix C  Damping coefficients when L/D = 0.25.    2(2) 
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Figure A. 9. DYX according to bearing models when L/D = 0.25. 
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Appendix D Damping coefficients when L/D = 1.0.    1(2) 
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Figure A. 10. DYY according to bearing models when L/D = 1.0. 
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Figure A. 11. DXY according to bearing models when L/D = 1.0. 
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Appendix D Damping coefficients when L/D = 1.0.    2(2) 
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Figure A. 12. DYX according to bearing models when L/D = 1.0. 
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Appendix E Results from non-linear model without unbalance presented 

in [36].        1(2) 
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Appendix E Results from non-linear model without unbalance presented 

in [36].        2(2) 
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Appendix F Results from non-linear and linear model with unbalance 

presented in [36].       1(1) 
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