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Electricity spot prices have always been a demanding data set for time series anal-
ysis, mostly because of the non-storability of electricity. This feature, making electric
power unlike the other commodities, causes outstanding price spikes. Moreover, the last
several years in financial world seem to show that ’spiky’ behaviour of time series is no
longer an exception, but rather a regular phenomenon. The purpose of this paper is to
seek patterns and relations within electricity price outliers and verify how they affect
the overall statistics of the data. For the study techniques like classical Box-Jenkins
approach, series DFT smoothing and GARCH models are used. The results obtained
for two geographically different price series show that patterns in outliers’ occurrence
are not straightforward. Additionally, there seems to be no rule that would predict the
appearance of a spike from volatility, while the reverse effect is quite prominent. It is
concluded that spikes cannot be predicted based only on the price series; probably some
geographical and meteorological variables need to be included in modeling.
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1 Introduction

Electricity spot prices have always been a demanding data set for time series analysis.
One of the main features that differentiate electricity from other stocks and commodities
traded on stock exchanges is that it cannot be stored in warehouses. Therefore, most
of techniques for stock management do not apply to power exchange. The limits on
delivery emerge from supply grid capacity constraints. If transmission is not limiting
electricity trading, the electricity delivery takes place normally and prices are reasonably
stable. If there appears a congestion in some region, and thereby the marginal congestion
cost becomes active (see Hadsell and Shawky [13]), electricity is supplied only to those
consumers who pay more. The other crucial feature of electricity prices is their high
overall volatility. These issues have been widely studied for years.

Nowadays there are plenty of methods for price and price return forecasting; one of
the most common ways to do that is the classical time series approach. These kinds
of analyses are very important in every branch of industry including electricity pricing.
Different corporations try to find models explaining electricity price behaviour. Since it
is hard to perfectly represent a given phenomenon in a way that it would be faultless with
predictions, every modeling process consists of attempts to find a compromise between
proper representation of historical data and reasonable forecasting ability. One could
ask why to try any forecasting at all, if it is so difficult to do it properly. In fact, the
answer is not straightforward. But the more attempts we make to predict something,
the higher the probability that we will succeed some day. Training time series give more
practice in considering different approaches of modeling.

In case of electricity prices, many researchers try to focus on sources of the high
variability of prices. Hinz [10] stated that prediction of sudden and significant changes
in electricity prices may be formed based on proper statistical analysis and forecasting of
electricity demand. Different papers cover various forecasting approaches and methods’
comparison. For example Conejo et al. [11] show that time series analysis outperforms
neural networks and wavelet techniques in generating day-ahead predictions. There have
also been studies carried out on specific features like mean-reversion of electricity prices
(see Huisman et al. [15]). Moreover, methods like regime-switching models are being
estimated more and more often (see Karakatsani and Bunn [18], Kanamura and Ohashi
[17]). It is also discussed that the transition probabilities in reality are not constant in
the model within the whole time horizon. One of the most important issues in electricity
price analysis and forecasting is to be able to predict occurrence of spikes. Kanamura
and Ohashi [16] proposed a structural model, which is able to predict spikes up to some
level as resulting mostly from demand seasonality.

So far nobody has succeeded in creating a perfect tool for electricity price prediction,
since there is a high level of randomness in these kinds of series. However, some patterns
can be identified. Therefore, the purpose of this study is to investigate two electricity
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price time series: New England Pool (NEPool) and Otahuhu (one of New Zealand Nodes).
Both data sets were found on the Internet. The original series were different in time
horizon. However, for the purpose of this study, exactly the same scope was taken for
the analysis. The approach taken in this study employs not only techniques of signal
smoothing and classical time series procedures, but also performs an extensive spike
investigation. We try to find dependencies and patterns within the outliers’ occurrence
by verifying their autocorrelation and correlation with price volatility changes. On the
other hand, an analysis of the data with removed outliers is also carried out. This paper
can act as a basis for building a dual model of electricity spot prices suggested by Ptak
et al. [19].

The structure of this Thesis is as follows. The next section briefly goes through the
theoretical background for the problem: specificity of electricity price data, classical Box-
Jenkins time series approach and definitions of example heteroscedastic models. Section
3 covers statistical analysis of electricity price and price return series for both original
and DFT-smoothed data. Section 4 moves on to investigation of outliers specifically.
Finally, section 5 concludes and gives proposals for future work.

2 Theoretical background

2.1 New England and New Zealand electricity markets

New England and New Zealand electricity markets are of a slightly different charac-
ter. NEPool is a not-for-profit company stating the hour-ahead and day-ahead system
prices for regional electricity trading. Their role is to state the prices such that electric
power supply and demand match. The New Zealand market works as a combination
of state-owned, trust-owned and public companies. "The main participants are seven
generator/retailers who trade at 244 nodes across the transmission grid. The generators
offer their plant at grid injection points and retailers bid for electricity offtake at grid
exit points" [22]. The data sets are also different from geographical point of view. New
England is a part of continent with ocean shore just on one side of the region. New
Zealand is an island country surrounded by seas and, therefore, exposed more to oceanic
weather changes.

One of the crucial aspects in the New Zealand grid is that most of electricity produc-
tion takes place in the South of the country (for the Southern Island electricity supply
grid see Figure 2), whereas the highest demand is mostly in the inhabited and developed
regions in the North (for the Northern Island grid see Figure 1).

Figure 3 presents a map of New England Pool with an example day-ahead price
situation on the market. The print screen comes from the NEPool web page [20], where
the data is refreshed every 5 minutes.
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Figure 1: Northern New Zealand supply grid [21].
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Figure 2: Southern New Zealand supply grid [21].
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Figure 3: NEPool map with example day ahead prices [20].

The data set analyzed in this study comes from Otahuhu – a Node from Auckland
region in the very north of the New Zealand Northern Island.

2.2 Classical time series approach

2.2.1 Basic models - ARMA

A time series is a sequence of observations based on a regular timely basis, e.g. hourly,
daily, monthly, annually, etc. The classical time series analysis (see Box et al. [6]),
partially utilized in this study, covers fitting autoregressive (AR) and moving average
(MA) models. Basically, it considers analyzing the data to find dependencies between
current and historical observations. These models can also be extended by associated
heteroscedastic models. The first proposed ones were: autoregressive conditional het-
eroscedasticity known as ARCH (see Engle [2]) and generalized autoregressive conditional
heteroscedasticity, namely GARCH (see Bollerslev [3]). A wide overview of modern vari-
ations of these models was made by Tsay [12].

The most common models are autoregressive (AR) and moving average (MA). The
former represents a current observation in terms of lagged past realizations of a given
process. An autoregressive model of order r, i.e. AR(r), is introduced by the following
definition:

• xt = C + φ1xt−1 + φ2xt−2 + . . .+ φnxt−r + ut

• ut ∼ N(0, σ2) – white noise
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The moving average models, on the other hand, state that a given observation is not
related to the previous process realizations but to the historical values of process noise. A
moving average model of order m, i.e. MA(m), is introduced by the following definition:

• xt = C + ψ1ut−1 + ψ2ut−2 + . . .+ ψnut−m + ut

• ut ∼ N(0, σ2)

However, the AR and MAmodels may also be combined together to create the autore-
gressive moving average models (ARMA(r,m)), which join the properties of previously
presented ones.

• xt = C + φ1xt−1 + φ2xt−2 + . . .+ φnxt−r + ψ1ut−1 + ψ2ut−2 + . . .+ ψnut−m + ut

• ut ∼ N(0, σ2)

The main assumption for this approach is that the residuals of models mentioned above
are white noise – normally distributed random numbers. Therefore, the r lags of series
observations and m lags of white noise are complete to fit a model such that its residuals
are purely random. Moreover, both AR(r) and MA(m) are special cases of ARMA(r,m)
model, i.e. ARMA(r, 0) and ARMA(0,m) respectively.

2.2.2 Preparing Box-Jenkins models

Each attempt to fit an ARMA model to a given series consists of a full set of pre-analysis
and fitting steps. There are certain requirements concerning the data, such that they
make it possible to find a reasonable and well working ARMA model.

The first prerequisite is that the series is stationary, i.e. the mean value and standard
deviation remain constant in the series over time. There are certain statistical tests
making it possible to verify hypotheses whether a series is stationary or has a unit root.
If data appear to be non-stationary, the easiest way is to create an integrated series (a
series of differences). Basically, the matter is to eliminate trend from the data. There also
happens to exist strong seasonality in the observations, which is why seasonal differencing
might be necessary.

If the series is stationary, the next step is to analyze the autocorrelation function
(ACF) and partial autocorrelation function (PACF) of the series. Based on that a
decision is made to choose a proper order of ARMA (r,m) model.

Then the process moves to parameter estimation for the chosen model. Finally, a
forecast is prepared. However, ARMA models need to be monitored in an on-going
manner so that amendments can be carried out, if necessary.

2.3 ARCH/GARCH modeling

Not all time series can be explained by ARMA models. Sometimes they reveal some
non-stationarity in terms of volatility, i.e. the series variance is not constant and it
depends on its historical values.
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An autoregressive conditional heteroscedasticity (ARCH) model (see Engle [2]) rep-
resents the variance of the current error term as a function of the previous time period
error terms’ variances. ARCH simply describes the error variance by the square of a
previous period’s error. These types of models are widely used for time series that have
a feature of so-called variance clustering, which means noticeable periods of higher and
lower disturbances in the series. In general, an ARCH(q) model is represented as follows:

• ut = σtzt

• σ2
t = K + α1u

2
t−1 + . . .+ αqu

2
t−q,

where ut is the corresponding ARMA(r,m) model residual series, zt ∼ N(0, 1) and σ2
t

are the variance estimates for time points t.
The model is a generalized autoregressive conditional heteroscedasticity (GARCH)

(see Bollerslev [3]), if an autoregressive moving average model (ARMA-type model) is
stated to represent the error variance. In that case, the GARCH(p, q) model (where p
stands for the order of the GARCH terms σ2

t and q stands for the order of the ARCH
terms ut) is given by:

• ut = σtzt

• σ2
t = K + α1u

2
t−1 + . . .+ αqu

2
t−q + β1σ

2
t−1 + . . .+ βqσ

2
t−p

The models presented above are the most popular ones for explaining heteroscedastic-
ity in time series. Usually, GARCH(1, 1) is sufficient as a compromise between simplicity
of a model and its satisfactory fit to the empirical data. One of the best arguments sup-
porting this choice is Albert Einstein’s statement that the model should be "as simple
as possible – but not more simple than that".

3 Statistical analysis of NEPool and Otahuhu data

The purpose of this section is to investigate the general statistical features of the given
two series: New England Pool and Otahuhu (a node of New Zealand) electricity prices.

3.1 General information and basic statistics

The original data set consists of 2551 daily observations of NEPool electricity prices (7
days a week) from 03 Jan 2001 to 28 Dec 2007. The New Zealand set covers a longer
period with every half an hour observations, but we use only day average prices for the
same time interval as NEPool. Moreover, there were 4 days missing within this period for
Otahuhu, therefore, the lacking values were replaced by linearly interpolated magnitudes.
We also raise some doubts about quality of some observations, since the prices vary from
0.01 to over 500 New Zealand dollars. To avoid values close to zero the Otahuhu data
are increased by 10. This operation does not change the overall character of the series.
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According to the financial theory, we analyze both the prices and price logarithmic
returns. The return series are created as follows:

rt = ln
Pt

Pt−1
(1)

where

• rt is return for moment t,

• Pt is the asset’s price at moment t

• Pt−1 is the price at moment t− 1.

Moreover, the character of equation (1) supports our decision about adding a constant
series to Otahuhu data. If there was for example a jump between prices from 0.01 to 10
dollars, the log-return (log( 10

0.01) = log(1000) ≈ 6.91) would not be naturally higher than
between values like 10.01 and 20 dollars (log( 20

10.01) = log(1.998) ≈ 0.692). Therefore,
without such a regularization term it would be ten times as high.

The first information on a time series usually comes after following a graphical rep-
resentation. Therefore, we plot both prices and returns for NEPool in Figure 4 and for
Otahuhu in Figure 5.
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Figure 4: NEPool electricity prices and price log-returns.
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Figure 5: Otahuhu electricity prices and price log-returns.

Values of the most important distribution parameters are collected in Table 1. The
NEPool prices vary from 15.8538 to 311.7500, while the Otahuhu data – from 10.01 to
560.22. This shows a huge spread of magnitudes over the given 7 years. On the other
hand, the returns seem to be of a relatively small range when compared to the prices,
but this is a result of logarithmic operation.

Table 1: Basic statistics for NEPool and Otahuhu electricity prices and price log-returns.

NEPool prices NEPool returns Otahuhu prices Otahuhu returns
count 2551 2550 2551 2550
mean 64.3845 1.0134 ·10−4 67.1442 3.6908 ·10−4

std 23.5171 0.1235 41.7196 0.2686
max 311.75 1.0901 560.22 1.3725
min 15.8538 -0.7911 10.01 -1.4543

3.2 Normality

The next step is to verify the type of distribution for both series. In finance it is often
the case that the data are required to have normal distribution. Therefore, let us in-
vestigate the NEPool’s and Otahuhu’s character. As before, we start from a graphical
representation, but now we plot normalized histograms of both series against theoretical
normal probability density functions (PDF) (see Figure 6 and 7).

10



50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

NEPool prices histogram

−0.5 0 0.5 1
0

1

2

3

4

NEPool price returns histogram

Figure 6: Normalized histograms for NEPool electricity prices (left panel) and price
log-returns (right panel).
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Figure 7: Normalized histograms for Otahuhu electricity prices (left panel) and price
log-returns (right panel).

Secondly, we compute two most common parameters used for comparing a given
probability distribution with the normal one – skewness and kurtosis. The results can
be found in Table 2. Knowing that the model values should be 0 for skewness and
3 for kurtosis, we can easily see that neither prices nor log-returns follow the normal
distribution.

The last step is to perform a formal statistical test for verifying normality of a given
distribution. Here we choose the Lilliefors test with statistic calculated as follows:

L = max
x
|scdf(x)− cdf(x)|

where scdf is the empirical cumulative density function (CDF) estimated from the sample
and cdf is the normal CDF with mean and standard deviation equal to the mean and
standard deviation of the sample. In Table 2 the result can be seen – the null hypothesis
was rejected for both series with 5% significance level.
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Table 2: Basic statistics for NEPool and Otahuhu electricity prices and price log-returns.

NEPool prices NEPool returns Otahuhu prices Otahuhu returns
skewness 1.5561 0.1985 3.7735 -0.1318
kurtosis 9.5035 11.1252 29.0714 8.4626

Lilliefors test H0 rejected rejected rejected rejected

Summarizing this subsection, we may state that neither given NEPool and Otahuhu
prices nor their returns follow the normal distribution.

3.3 Inner dependencies

Here we move to an analysis of other features of the data. Figures 4 and 5 show that the
series are not stationary, which simply means that neither their mean values nor their
standard deviations remain constant over time. Therefore, we should perform a formal
test.

Let us assume that we have a process

yt = φyt−1 + ut (2)

where yt and ut are the given time series and model residuals respectively. Then the
Dickey-Fuller [1] (DF) test examines the null hypothesis φ = 1 (the process has a unit
root, i.e. its current realization appears to be an infinite sum of past disturbances with
some starting value y0; see Brooks [8]) versus the one-side alternative φ < 1 (the process
is stationary). The test statistics look as follows

DF =
1− φ̂

ŜE(1− φ̂)
(3)

and follow a non-standard distribution, critical values of which were derived from exper-
imental simulations.

A similar test is the Phillips-Perron [5] test. However, this one relaxes assumptions
about lack of autocorrelation in the error term. Its critical values are the same as for
Dickey-Fuller [1] test.

Even though the presented tests work well in obvious cases, there has been some
criticism of them. A problem appears when the process has the φ value close to the
non-stationarity boundary, i.e. φ = 0.95. Such a process is by definition still stationary
for DF and PP tests. It has been proven that these tests often do not distinguish whether
φ = 1 or φ = 0.95, especially if the sample is of a small size. Therefore, a different test
was developed with the opposite null hypothesis. The Kwiatkowski-Phillips-Schmidt-
Shin [6] test (KPSS) states H0 : yt ∼ I(0) against H1 : yt ∼ I(1). Its statistics looks as
follows

KPSS =

n∑
i=1

Ŝ2
i

n2ŝ2
(4)
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where n is the sample size, Ŝ2
i =

i∑
j=1

ψj (sum of residuals ψt from original series regressed

on trend and constant) and s2 is a sample long-run variance.
The confirmatory analysis (DF/PP joint with KPSS) gives a better view on whether

obtained stationarity/non-stationarity results are robust (see Brooks [8]). The most
desirable outcomes are when H0 is rejected by DF/PP and accepted by KPSS or exactly
opposite – accepted by DF/PP and rejected by KPSS. If H0 is accepted or rejected in
both tests simultaneously, the results are conflicting and one cannot say unequivocally
which one is right.

Table 3 collects outputs from all test for all price and return series with 5% sig-
nificance level. We obtain one conflict – for NEPool prices. Otherwise, the series are
stationary.

Table 3: H0 decisions of DF, PP and KPSS tests for NEPool and Otahuhu prices and
price returns.

DF PP KPSS
NEPool prices rejected rejected rejected
NEPool returns rejected rejected accepted
Otahuhu prices rejected rejected accepted
Otahuhu returns rejected rejected accepted

In econometrics stationarity is one of the most important conditions for time series
modeling. Therefore, bearing in mind the graphical representation of the prices and the
conflict we obtained, the analyses cover the log-returns series in parallel.

Now we move to plotting autocorrelation functions (ACF) and partial autocorrela-
tion functions (PACF) for both series. As we can see in Figure 8, the ACF of NEPool
prices seems to die out slowly, whereas the PACF plot reveals a very significant spike
at lag 1. These two facts lead us to use an ARMA(1,0) model for the process estima-
tion. Analogically, we plot ACF and PACF for Otahuhu prices and discover a similar
characteristic (see Figure 9). ARMA(1,0) model would be relevant here as well.

Figure 10 demonstrates the ACF and PACF plots for the NEPool price returns.
When compared to the prices’ PACF, there are no spikes comparably springing aside at
any lag for neither ACF nor PACF of the returns. However, there are still a few above
the significance level and these are, in particular, the second lags for both functions.

Plots of ACF and PACF for Otahuhu returns in Figure 11 show the most significant
values at first spikes for both functions. Thus, ARMA(1,1) models could be applicable
for NEPool and New Zealand returns.
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Figure 8: ACF and PACF for NEPool electricity prices.
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Figure 9: ACF and PACF for Otahuhu electricity prices.
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Figure 10: ACF and PACF for NEPool electricity price returns.
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Figure 11: ACF and PACF for Otahuhu electricity price returns.
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Moreover, plots of returns in Figures 4 and 5 demonstrate so-called variance cluster-
ing. Thus, we can separate periods of higher and lower level of disturbances. Therefore,
the last step in this subsection is to test for an ARCH/GARCH effect in both series.
Here we use Engle’s test with statistics T (R2), where T represents the number of squared
residuals considered in the regression and R2 is the sample multiple correlation coeffi-
cient. The test rejected the null hypothesis in both cases, which means there exists
heteroscedasticity in price and return series for both regions.

This subsection showed very important results from modeling point of view. One
can expect that for estimation of given processes ARMA and ARCH/GARCH type of
models are needed.

3.4 Discrete Fourier transform smoothing

It is a really rare situation that a time series is not noisy. This is why different techniques
of smoothing signals have been developed. The one chosen for this study is discrete
Fourier transform, which was widely described by Bracewell [7]. The general idea is
based on transforming a sequence of complex numbers into another by the following
formula:

Xk =
N−1∑
n=0

xne
− 2πi

N
kn k = 0, . . . , N − 1 (5)

where e
2πi
N is a primitive N -th root of unity, Xk is the transformed series and xn is the

original sequence. The easiest way to interpret this equation is that computed numbers
Xk stand for the amplitude and phase of sinusoidal components of the original series.
An inverse operator (inverse discrete Fourier transform) is

xn =
1
N

N−1∑
k=0

Xke
2πi
N

kn n = 0, . . . , N − 1 (6)

which restores the sum of sinusoidal components.
The general idea is to verify which of the frequencies are most significant in the

process description. Then the smoothed signal is reconstructed with use of only the
most crucial components. In numerical methods, a fast Fourier transform algorithm is
employed to obtain the DFT representation.

The first step is to compute and plot the DFT representation of NEPool and Otahuhu
prices. Since Xk is a sequence of complex numbers, we plot and analyze norm of the
numbers understood as the classical complex number module

|X| =
√

(Re(X))2 + (Im(X))2.

Figure 12 presents norms of FFT for NEPool and Otahuhu data series, respectively.

16



50 100 150 200 250 300
0

1

2

3

4

5

6

7
x 10

4 Norm of Fast Fourier Transform for NEPool prices

100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
4 Norm of Fast Fourier Transform for Otahuhu prices

Figure 12: Norm of FFT for NEPool (left panel) and Otahuhu (right panel) prices.

The magnitudes of components decrease gradually, however, we need to decide which
interval to choose for further analysis. Here the 60th element seems to be a boundary
of significance for NEPool and 30th for Otahuhu. One could think that for Otahuhu
also components like 365th and 730th should be included, but after the reconstruction
process they just create a high frequency wave on the main signal. Therefore, in Xk we
replace all not crucial components by zeros. Then the IDFT can be computed to retrieve
the main signal from the original data. The results of this operation for New England
and Otahuhu series are presented in Figure 13 and Figure 14.
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Figure 13: NEPool prices smoothed by FFT against original data.
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Figure 14: Otahuhu prices smoothed by FFT against original data.

For both data sets the smoothed paths clearly follow the primary series; they do not,
however, explain numerous spikes.

Next we verify how the smoothing influenced the price returns, see Figures 15 and
16 for NEPool and Otahuhu respectively.
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Figure 15: Returns of NEPool prices smoothed by FFT against original data.
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Figure 16: Returns of Otahuhu prices smoothed by FFT against original data.

As we can see, returns of the smoothed prices do not explain much of the original
log-return series. Moreover, the fairly regular look of the smoothed returns wave may
indicate significant autocorrelation of the process. ACFs and PACFs for both smoothed
prices and returns are plotted in Figures 17, 18 and 19, 20 for NEPool and Otahuhu
respectively.
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Figure 17: ACF and PACF for smoothed NEPool prices.

19



0 50 100 150 200
−1

−0.5

0

0.5

1
ACF for returns of smoothed NEPool prices

0 10 20 30 40 50
−1

−0.5

0

0.5

1
PACF for returns of smoothed NEPool prices

Figure 18: ACF and PACF for returns of smoothed NEPool prices.
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Figure 19: ACF and PACF for smoothed Otahuhu prices.
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Figure 20: ACF and PACF for returns of smoothed Otahuhu prices.

The plots could lead to a conclusion that smoothing of the prices results in revealing
high autocorrelation and seasonality from the original series, but this is only an effect of
a phase nature of Fourier transform. Moreover, DFT does not eliminate ARCH/GARCH
effect from the price series. As the Engle’s test states, there still remains heteroscedas-
ticity in the processes.

3.5 Week days analysis

Since the data set consists of daily prices, it gives an interesting base for dummy analysis.
It is well known that electricity demand is highly dependant on days of week. On the
other hand, demand is a crucial factor steering prices. Therefore, how are prices related
to week days? Figures 21 and 22 present simple plots of original and DFT smoothed
prices for separated week days – from Monday to Sunday – for NEPool and Otahuhu
respectively. The general path of the process seems to be of a similar character for all
week days.
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Figure 21: NEPool electricity original (blue) and DFT smoothed (red) prices split with
respect to days of the week.
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Figure 22: Otahuhu electricity original (blue) and DFT smoothed (red) prices split with
respect to days of the week.

Now let us compare the mean values of prices for different week days over the whole
period. Results collected in Table 4 show that for NEPool Wednesdays have in average
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the lowest prices, while Sundays get the highest. On the other hand, the Otahuhu prices
are on average the lowest on Mondays and the highest on Saturdays. Moreover, the New
Zealand series have relatively higher volatility than NEPool, while having comparable
mean values.

Table 4: Basic statistics for NEPool and Otahuhu electricity prices split with respect to
days of the week.

NEPool mean NEPool st dev Otahuhu mean Otahuhu st dev
Monday 64.7422 23.3647 57.8311 30.3384
Tuesday 64.1553 26.4285 66.3546 35.9977

Wednesday 63.1298 22.4910 68.6161 43.7648
Thursday 63.9913 21.0027 68.6207 44.1576
Friday 64.7699 23.2371 70.3705 47.9148

Saturday 64.7821 23.8649 73.1128 50.5082
Sunday 65.1243 24.0286 65.0864 33.7501

The differences between days are relatively small and standard deviations remain
similar within NEPool and Otahuhu data. A graphical representation of the mean values
together with upper and lower limits is included in Figure 23 for NEPool (left panel)
and for Otahuhu (right panel).
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Figure 23: NEPool and Otahuhu electricity prices averages with lower and upper limits
split with respect to days of the week.

Analogically, an analysis of price log-returns can be carried out. Figure 24 presents
seven NEPool series of weekly data with regard to week-days. We can see that Mondays
have the highest volatility, Saturdays and Sundays present the most uniform realizations
of the returns with the lowest magnitudes of disturbances, while days from Tuesday to
Friday are moderately volatile, but reveal most visible spikes in the series.
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Figure 24: NEPool electricity price returns split with respect to days of the week.

We present an analogical plot for Otahuhu in Figure 25. Notice that all 7 series look
comparably volatile in the left halves of the plots. In the second half of the analysed
period we can distinguish Mondays and Tuesdays as days with higher disturbances and
the remaining ones as with lower returns.
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Figure 25: Otahuhu electricity price returns split with respect to days of the week.

The basic statistics of the NEPool series collected in Table 5 lead us to the conclusion
that negative returns occurring fromMonday toWednesday may be a reason for averagely
lowest prices on Wednesdays. On the other hand, mostly positive returns on the other
days create the highest prices on Sundays. For Otahuhu, the average negative returns
of Mondays and Sundays work on the lowest prices on Mondays, while the other 5 days

26



with positive mean values of returns relate to the highest prices on Saturdays.

Table 5: Basic statistics for NEPool electricity price returns split with respect to days
of the week.

NEPool mean NEPool st dev Otahuhu mean Otahuhu st dev
Monday -0.0020 0.1575 -0.1288 0.2617
Tuesday -0.0154 0.1414 0.1422 0.2996

Wednesday -0.0090 0.1045 0.0194 0.2363
Thursday 0.0212 0.1357 0.0011 0.2423
Friday 0.0039 0.1272 0.0245 0.2346

Saturday -0.0040 0.0965 0.0301 0.2537
Sunday 0.0058 0.0807 -0.086 0.2601

Similarly to prices, we collect the mean values with upper and lower limits in Figure
26 for the NEPool returns (left panel) and for Otahuhu returns (right panel).
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Figure 26: NEPool and Otahuhu electricity price returns average with lower and upper
limits split with respect to days of the week.

Finally, we plot the autocorrelation functions of all split NEPool series: 7 for prices
(Figure 27, left panel) and 7 for returns (Figure 27, right panel). An interesting obser-
vation is that even though prices show a high autocorrelation with respect to days of the
week, the returns seem to be uncorrelated from this point of view. Simply, log-returns of
Mondays do not explain the other Mondays results, Tuesdays do not explain Tuesdays
etc. Otahuhu weekly ACFs reveal similar features (see Figure 28).

The formal statistical test of Lilliefors shows that the series repartition by week days
does not lead to normally distributed data. For NEPool only the Sunday returns and
for Otahuhu Wednesday and Saturday returns have the null hypothesis accepted.

Finally, we verify existence of ARCH/GARCH effect in all 28 series. As before, we
use the Engle’s test for this purpose. As a result with 5% significance level we obtain
that all the week day price series reveal heteroscedasticity.
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Figure 27: ACFs for NEPool electricity prices (left panel) and price returns (right panel)
split with respect to days of the week.
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Figure 28: ACFs for Otahuhu electricity prices (left panel) and price returns (right panel)
split with respect to weekdays.
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4 Analysis of outliers

In this section we analyze the NEPool and Otahuhu figures from a slightly different point
of view – not modeling them as a time series, but studying the magnitudes and frequency
of so-called spikes.

An outlier (in this paper called also a spike or jump) can be interpreted in many ways.
Intuitively, it is just a visible outlier when compared to values in its neighborhood. For
the purpose of this study, we define a spike as a process realization which exceeds the
mean value (µ) in a specified window W by more than doubled standard deviation (σ)
of the window. In particular, if x(i) is a price in moment i and W is the window size,
then we compare value of x(i) with its neighborhoods parameters: µ + 2σ and µ − 2σ,
considering W

2 observations on the left from price x(i) and W
2 observations on the right.

We will, however, carry out the analysis from two points of view: the original series and
the smoothed one.

4.1 Spikes with respect to original price series

Here we compare each spot price with parameters computed for specified windows within
the original data. For each chosen window size we construct a vector of spikes magni-
tudes. An outlier is calculated as a difference between the price and local (window)
mean value; all elements not accepted as spikes are equalized to zero. For each window
size we analyze a total number of spikes, average magnitudes of spikes and their average
frequency.

Since the original sample is of size 2551, we choose window sizes as 700, 600, 500,
400, 300, 200 and 100. The obtained NEPool and Otahuhu spike vectors are presented
in Figures 29 and 30. It is worth mentioning that the original New England and New
Zealand series have both visible upward and downward spikes. We can see a visibly
similar character of the spikes distribution, even though the width of windows chosen for
analysis range from 100 to 700. Moreover, the spikes seem to reveal clustering – we can
distinguish between periods of higher and lower frequency of spikes occurrence. Thus it
could be worth to review price series with removed spikes.

The first intuitive verification of spikes inner dependencies is calculating the ACF
and PACF for them. Any significant values at lags 7 or 30 would indicate on seasonality.
However, the outliers appear not to reveal this feature. The most significant values are
at lags 1-4, rather due to the character of spike vector definition, i.e. that non-spikes are
equal to zero and they make most of the values.
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Figure 29: NEPool spike vectors for different window sizes.
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Figure 30: Otahuhu spike vectors for different window sizes.
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The basic statistics for the NEPool and Otahuhu spike vectors are collected in Tables
6 and 7 respectively.

Table 6: Basic statistics of NEPool spike vectors for different window sizes.
window count mean value frequency (per 100 days)
700 85 57.4704 4.5921
600 92 55.2749 4.7155
500 83 55.8887 4.0468
400 90 53.0616 4.1841
300 76 54.6654 3.3763
200 86 49.8506 3.6580
100 69 47.9029 2.8152

Table 7: Basic statistics of Otahuhu spike vectors for different window sizes.
window count mean value frequency (per 100 days)
700 99 208.4502 3.8808
600 91 229.6558 3.5672
500 98 208.8678 3.8416
400 91 205.4020 3.5672
300 77 222.9197 3.0184
200 52 272.3904 2.0384
100 49 214.6862 1.9208

A promising observation is that despite different window sizes chosen, the average mag-
nitudes of spikes are comparable. Also their frequency calculated per 100 days is of the
same order. This can mean that it may possible to predict at least spikes occurrences
and magnitudes.

Now let us analyze the price series with spikes subtracted from them. In Figures 31
and 32, such series are presented for NEPool and Otahuhu respectively. We can see that
the prices without spikes are more stationary than with them. Table 8 collects decisions
for H0 of DF, PP and KPSS tests. Moreover, we can notice that formal results are
ambiguous in verifying price stationarity for all window sizes. On the other hand, all
return series are clearly stationary (DF/PP H0 rejected for all and KPSS H0 accepted
for all).
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Figure 31: NEPool price series with removed spikes.

Table 8: H0 decisions of DF, PP and KPSS tests for NEPool and Otahuhu prices with
spikes removed.

NEPool Otahuhu
DF PP KPSS DF PP KPSS

W = 700 rejected rejected rejected rejected rejected rejected
W = 600 rejected rejected rejected rejected rejected rejected
W = 500 rejected rejected rejected rejected rejected rejected
W = 400 rejected rejected rejected rejected rejected rejected
W = 300 rejected rejected rejected rejected rejected rejected
W = 200 rejected rejected rejected rejected rejected accepted
W = 100 rejected rejected rejected rejected rejected accepted

Unfortunately, in spite of clustering character of the spikes, clustering in prices is
not completely eliminated. The Engle’s test still indicates that all created series reveal
heteroscedasticity. Finally, we can see that especially in Otahuhu case, the smallest
windows do not eliminate much of the highest spikes.
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Figure 32: Otahuhu price series with removed spikes.

For prices with outliers removed, we can study the returns as well. In this case we
are mostly interested in the shape of histograms and the fact how close the returns are
to be accepted as normally distributed. Therefore, let us plot the NEPool new returns
histograms for different window sizes (see Figure 33) against histogram of the original
New England price returns (Figure 33, bottom right panel).
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Figure 33: Histograms of NEPool price returns series with removed spikes against original
returns.

We can see, that all histograms look alike, which means that removing spikes did
not change much of the data character. Similarly, we plot the histograms for Otahuhu
data as presented in Figure 34, with the original returns’ histogram for comparison in
the bottom right panel.
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Figure 34: Histograms of Otahuhu price returns series with removed spikes against orig-
inal returns.

To sum up we can conclude that Otahuhu as well as NEPool returns remain compa-
rable for different window size. However, their shapes are far from normal distribution.

4.2 Spikes with respect to price series smoothed by DFT

As we saw in the previous section, considering spikes as outliers with regard to the original
price series did not give any positive results neither for NEPool nor for Otahuhu. Another
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way to distinguish outliers is to compare the prices with smoothed ones. Here we process
similarly to the previous analysis with the same window sizes but now comparing each
price x(i) with values µs + 2σs and µs − 2σs, where µs is the mean value and σs is the
standard deviation of smoothed series in a given window.

Figure 35 presents spikes obtained for New England data and Figure 36 – for New
Zealand.
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Figure 35: NEPool spike vectors for different window sizes.
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Figure 36: Otahuhu spike vectors for different window sizes.

Analogically, we can observe clustering character of the spikes for both cases, which
again means that removing spikes from original series may change the overall nature of
the data. However, firstly, we compute the basic statistics for NEPool (Table 9) and
Otahuhu (Table 10). The values are comparable for different window sizes. For the
smallest width (100), however, for both series we notice the lowest mean values (for
Otahuhu almost twice lower than for window size 200) and highest standard deviations
(for Otahuhu more than 1.6 times higher when compared to the other windows).
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Table 9: Basic statistics of NEPool spike vectors for different window sizes.
window count mean value frequency (per 100 days)
700 224 48.8817 8.7809
600 225 49.1919 8.8201
500 216 49.0352 8.4673
400 213 47.2891 8.3497
300 218 44.2099 8.5457
200 242 41.7792 9.4865
100 323 37.7015 12.6617

Table 10: Basic statistics of Otahuhu spike vectors for different window sizes.
window count mean value frequency (per 100 days)
700 142 126.1144 5.5664
600 134 126.9550 5.2528
500 128 137.2787 5.0176
400 137 124.7104 5.3704
300 133 109.5491 5.2136
200 132 100.8475 5.1744
100 234 54.0570 9.1729

Next, we plot the new series with spikes removed; see Figure 37 for NEPool and
Figure 38 for Otahuhu. Similarly, we can see that the smallest window eliminates more
volatility from the prices. This, however, does not clear away ARCH effect in neither
series. The Engle’s test rejects the null hypothesis which means that in spite of removing
spikes, there is still some heteroscedasticity in the prices and returns.

Moreover, we again obtain conflicting results when it comes to assessing stationar-
ity (see Table 11). Lack of unit root is confirmed only for the smallest window sizes.
However, all tests give unambiguous results for return series – they are stationary for all
window sizes.

Table 11: H0 decisions of DF, PP and KPSS tests for NEPool and Otahuhu prices with
spikes removed.

NEPool Otahuhu
DF PP KPSS DF PP KPSS

W = 700 rejected rejected rejected rejected rejected rejected
W = 600 rejected rejected rejected rejected rejected rejected
W = 500 rejected rejected rejected rejected rejected rejected
W = 400 rejected rejected rejected rejected rejected rejected
W = 300 rejected rejected rejected rejected rejected accepted
W = 200 rejected rejected rejected rejected rejected accepted
W = 100 accepted accepted rejected rejected rejected accepted
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Figure 37: NEPool price series with removed spikes.
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Figure 38: Otahuhu price series with removed spikes.

Finally, we again verify what influence can be observed on the prices when we remove
spikes from the series. Plots of histograms compared to the original returns histograms
are presented in Figures 39 and 40 for NEPool and Otahuhu respectively.
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An effect of removing spikes is mostly visible for the smallest window sizes. The
general shape of histograms becomes much closer to theoretical normal PDFs only for
NEPool series. On the other hand, they gain a significant concentration of zero or close
to zero values.
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Figure 39: Histograms of NEPool price returns series with removed spikes against original
returns.
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Figure 40: Histograms of Otahuhu price returns series with removed spikes against orig-
inal returns.
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4.3 Outliers in return series

Not only prices have spikes. The return series reveal considerable outliers as well. There-
fore, we analyze them in this section. In this case we do not perform any smoothing,
thus analysis of spikes can be performed only with respect to the original return series.
However, there is still an option of doing it either from the all data point of view or by
window analysis analogical to the one from previous section.

An outlier is defined in the same way as in the price analysis. A return r(i) is
considered a spike if its magnitude crosses either µ+2σ or µ−2σ, where µ is mean value
of returns (whole series or in a given window) and σ stands for the returns standard
deviation.

Let us start from the general viewpoint, which means specifying spikes with respect
to the whole time horizon. In upper panel of Figure 41 we plot the NEPool return series
with red lines meaning the µ± 2σ outlier acceptance/rejection boundaries. The bottom
panel shows obtained spike vector with 1st of each January and July marked on the X
axis.
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Figure 41: NEPool price returns with outlier acceptance/rejection boundaries.

We can see that similarly to price spikes, return outliers show a clearly clustering
character. Figure 42 presents analogical plots for Otahuhu series. These ones also do
not appear uniformly within the time horizon.
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Figure 42: Otahuhu price returns with outlier acceptance/rejection boundaries.

Moreover, one can say that some of the spike clusters look analogical in both se-
ries, however, with half year shift between the data sets. This is easily explainable by
geographical difference between the regions. I.e. spikes appearing in NEPool returns
around the 1st of July 2002 would correspond to similarly looking outliers in Otahuhu
data around 1st of January 2002. In the same way NEPool spikes after 01-07-2002 and
around 01-07-2006 look alike Otahuhu ones after 01-01-2003 and after 01-01-2007 respec-
tively. We conclude that it results from price and return volatility typically higher in
summer months. There is also a year with higher density of spikes for both series: from
Jan 2003 to Jan 2004 for New England and from Jul 2003 to Jul 2004 for New Zealand.

Table 12 collects basic statistics for both spike vectors. We notice that Otahuhu
return series could be considered as the more spiky one. It not only has more outliers,
but they are of higher absolute magnitudes and higher standard deviation. The NEPool
return spikes make around 5.12% of all observations, whereas the New Zealand vector
reaches more than 6.78% of all data.
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Table 12: Basic statistics for NEPool and Otahuhu return spike vectors.
NEPool return spikes Otahuhu return spikes

count 132 173
percent of all 5.1765% 6.7843%

mean 0.0154 -0.0247
st dev 0.4003 0.8218

Considering the overall character of outliers occurrence, we investigate possible sea-
sonality in it. Therefore, we plot ACFs and PACFs for NEPool (Figure 43) and Otahuhu
(Figure 44) spike vectors. The results do not show any significant values at lags which
could contain seasonality, i.e. 7th or 30th.
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Figure 43: ACF (upper panel) and PACF (bottom panel) of spike vector for NEPool
returns.

Even though we do not find any seasonal patterns in the spikes, we can take one
more step in the analysis. Similarly to prices, outliers are removed from the return
series. However, in this case we replace each of them by a normally distributed number
with mean and standard deviation equal to the original returns’ parameters. Figures 45
and 46 present obtained new return series together with new autocorrelation and partial
autocorrelation functions.
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Figure 44: ACF (upper panel) and PACF (bottom panel) of spike vector for Otahuhu
returns.
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Figure 45: NEPool returns with spikes removed and their ACF and PACF.
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On the other hand we can see that removing outliers from Otahuhu returns slightly
emphasized significance of both ACF and PACF values at every 7th lag, which indicates
that there exist some weekly patterns. This feature is not visible for NEPool.
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Figure 46: Otahuhu returns with spikes removed and their ACF and PACF.

Finally, we investigate distribution of returns without spikes. Figure 48 presents
normalized histograms for both modified return series against theoretical normal PDFs.
Even though the formal normality test still rejects the null hypothesis (see Table 13),
we can see that especially NEPool histogram is much closer to normal distribution when
compared to Figure 6.
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Figure 47: Histograms for NEPool (left panel) and Otahuhu (right panel) returns with
spikes removed.

Table 13 presents also values for skewness and kurtosis of modified returns, which
again shows improvement with respect to the original series (see Table 2). Since, in
particular for NEPool, the parameters are reasonably close to the model ones (0 for
skewness and 3 for kurtosis) we perform one more formal normality test. Jarque-Bera
test verifies two-sided goodness of fit with its statistic

JB =
n

6

(
s2 +

(k − 3)2

4

)
(7)

where n is the sample size, s – the sample skewness and k – the sample kurtosis. The
values of test statistic come from Chi-square distribution with 2 degrees of freedom.

Table 13: Normality statistics for NEPool and Otahuhu price returns with spikes re-
moved.

NEPool Otahuhu
skewness 0.0146 -0.0449
kurtosis 3.3608 4.4885

Lilliefors test H0 rejected rejected
Jarque-Bera test H0 rejected rejected

After this analysis we may conclude that highlighting spikes in returns themselves
had a more positive effect from normality point of view, than eliminating spikes from
prices.

4.4 Predictability of spikes based on seasons and price volatility

4.4.1 Outliers vs. year seasons

For this part of work only the highest spikes from both series are chosen. The aim of
this analysis is to investigate whether it is possible to find some characteristics of spikes
based on the year seasons when they occur.
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Analysis of NEPool 21 highest outliers shows that more than half of them appeared
in summer time. The rest occurred in either spring/fall or winter. In Figure 48 the
chosen values are presented with 10 time steps backwards and 10 time steps ahead. It
is difficult to split the magnitudes with respect to seasons. However, difference between
the highest and lowest summer spike is significantly smaller than in case of two other
season groups. Therefore, it can be stated that summer outliers in New England are
more frequent but less volatile in magnitudes.
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Figure 48: NEPool price 21 highest spikes split by season of occurrence.

We can also analyze observations around the spikes. Table 14 presents the chosen 21
NEPool outliers (column 1), difference between prices 10 time steps to the right and 10
time steps to the left from the given spike (column 2) and, finally, calculated difference
as a percentage value of the outlier (column 3). It appears that the maximal positive
and negative differences are of the same order – roughly 26.8% and -26.4%. On the other
hand, the average value for positive differences is 13.2% while the negative one reaches
only approximately -9.29%.

In case of New Zealand data the analysis of 34 highest outliers gives a slightly different
outcome when compared to NEPool. Summer spikes appear to be the least frequent,
though also have the smallest spread of magnitudes. Moreover, most winter spikes are
within a similar range as summer ones. Outliers occurring in spring and fall show the
highest disturbances and volatility; they are often preceded or followed by other spikes
within distance of 10 observations backwards or ahead (see Figure 49).
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Table 14: NEPool 21 highest spikes split with respect to season of occurrence.
spring/fall spikes difference between +/- 10 obs difference as percent of spike

130.0000 -9.3289 7.1761
311.7500 22.2064 7.1231
106.7500 8.6557 8.1084
116.7600 -1.0900 0.9335

winter spikes difference between +/- 10 obs difference as percent of spike
53.1030 -2.8800 5.4234
146.2000 24.6800 16.8810
156.9048 6.6971 4.2683
139.5300 -23.6800 16.9713
175.9701 -27.6300 15.7015

summer spikes difference between +/- 10 obs difference as percent of spike
110.2951 -15.1800 13.7631
107.5000 -28.3812 26.4011
90.9204 -2.5709 2.8277
123.0858 -0.5300 0.4306
130.8000 -11.9261 9.1179
79.5300 10.4160 13.0969
96.6669 11.1000 11.4827
96.0000 11.0000 11.4583
141.0000 31.6484 22.4457
177.1800 -6.1300 3.4598
106.5300 10.9974 10.3233
89.5066 23.9900 26.8025
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Figure 49: Otahuhu price 34 highest spikes split by season of occurrence.

Analogically to Table 14, Table 15 presents outcome of spikes’ neighborhood analysis.
Similarly to NEPool, Otahuhu differences between prices 10 days before and after a spike
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occurrence are in 50 percent positive and in 50 percent negative. The level of maximal
positive and negative differences are of similar order as well. Moreover, the average
values for them are very close for Otahuhu (9.35% and -9.6%) while being comparable
with NEPool results as well.

Table 15: Otahuhu 34 highest spikes split with respect to season of occurrence.
spring/fall spikes difference between +/- 10 obs difference as percent of spike

112.1900 -7.0400 6.2751
166.8100 13.7600 8.2489
143.6900 11.4100 7.9407
560.2200 13.5100 2.4116
465.8800 60.6400 13.0162
387.4500 -9.8400 2.5397
106.0700 -12.4000 11.6904
93.4000 -33.3100 35.6638
42.9400 -5.1900 12.0866
208.1100 26.7700 12.8634
82.3200 8.4400 10.2527
90.7600 -1.5100 1.6637

winter spikes difference between +/- 10 obs difference as percent of spike
263.9200 2.7000 1.0230
279.8400 70.1200 25.0572
92.3900 -6.3100 6.8297
60.2900 -4.8700 8.0776
119.5100 2.4000 2.0082
97.5400 2.9300 3.0039
40.4500 -5.1100 12.6329
93.5900 -5.5000 5.8767
84.6500 8.2600 9.7578
82.9400 -0.0500 0.0603
51.2600 8.7200 17.0113
49.4300 -12.0000 24.2768
100.0300 -3.0200 3.0191
95.8300 -1.1200 1.1687

summer spikes difference between +/- 10 obs difference as percent of spike
100.3600 25.0600 24.9701
111.8900 3.7700 3.3694
71.8300 -2.5700 3.5779
123.0500 6.3900 5.1930
123.0100 3.4100 2.7721
94.0500 -7.2500 7.7087
160.9400 -32.1500 19.9764
81.9300 8.1700 9.9719

Presented groups of spike neighborhoods can also be averaged over the seasons so
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that it is possible to compare their general shape. For these results see Figures 50 and
51 for NEPool and Otahuhu respectively.
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Figure 50: Average values for NEPool 21 highest outliers and their neighborhood.
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Figure 51: Average values for Otahuhu 34 highest outliers and their neighborhood.

The analysis shows that there are both common and distinct features in spikes and
their neighborhood in both price series, when split by year seasons. Differences between
seasons when the outliers occur may stem from geographical differences between the
regions. New Zealand is a country surrounded by seas, thus the weather in spring
and fall in that area might be more suddenly changing and causing sudden jumps of
electricity demand and, therefore, prices. This, however, would require verification with
meteorological data.
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4.4.2 Outliers vs. price volatility

While comparing Figures 4 and 5 with Figures 29 and 30 we may notice that each time
a spike appears, price volatility increases around the given spike time point. Therefore,
we might be interested in a brief analysis whether a spike occurrence is usually preceded
by increase in variance. If so, it would mean that it could be somehow possible to expect
a spike when the price volatility is rising.

As it was verified in Section 3.3 both price series reveal heteroscedasticity, i.e. not
constant variance over the time horizon. The ACF/PACF analysis suggested fitting
ARMA(1,0) models to both price series. Combining this fact with heteroscedasticity we
get the following approach for modeling:

1. fit ARMA(1, 0) models

2. find residuals for the models

3. estimate conditional sigmas for the series

Let us perform the first step. We obtain the regression coefficients (φ1, C)ne =
(0.9117, 5.6925) and (φ1, C)ot = (0.8321, 11.2907) for NEPool and Otahuhu respectively.
The second stage leads us to a general view of the models’ residuals. Figures 52 and 53
present the original data series plotted against fitted ARMA(1, 0) models together with
residuals.
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Figure 52: NEPool prices against ARMA(1, 0) fit (upper panel) and model residuals
(bottom panel).
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Figure 53: Otahuhu prices against ARMA(1, 0) fit (upper panel) and model residuals
(bottom panel).

We can notice clear heteroscedasticity in the residuals. Therefore, as mentioned be-
fore, we fit GARCHmodels. Consistent with simplicity approach, we choose GARCH(1, 1)
for both cases. The obtained estimates are presented in Table 16.

Table 16: GARCH estimates for NEPool and Otahuhu ARMA(1,0) residuals.
NEPool estimates Otahuhu estimates

K 8.8250 3.2981
α1 0.4285 0.1400
β1 0.5621 0.8573

Now we are interested in comparison of the series variance estimates with spike
occurrence. From the Matlab garchfit procedure we obtain estimates for the volatility
in prices. Having those as series, we may plot them against the spikes presented in
Figures 29 and 30 (Section 4.1). For the analysis we choose the outliers obtained for the
smallest window size. Results are plotted in Figures 54 and 55 for NEPool and Otahuhu
respectively. Indeed, there is an increase in variance visible around most of the spikes for
both series. However, only for some cases there happens an increase of volatility before
the outlier occurs.
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Figure 54: NEPool outliers against price variance estimates.
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Figure 55: Otahuhu outliers against price variance estimates.

Since graphical comparison of spikes and variance estimates shows clear relation
between them, correlation investigation may provide more information in this matter.
Correlation coefficient between NEPool spikes and variance series equals 0.3096 which is
accepted as significant. However, if we calculate the correlation between the spike series
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and lagged (1 lag) volatility estimates, the coefficient rises up to 0.4696. Similarly, for
Otahuhu series correlation we obtain coefficient equal to 0.2349, which is also significant,
but when proceeding with the same lagging operation the number increases up to 0.3144
for 1 lag and 0.3276 for 2 lags. This simply means that it is more probable that variance
will increase after the spike than before. On the other hand, some general conclusion
can be made:

• If a high spike occurs, the variance will jump and then gradually come back to its
previous level.

• If a spike occurs after a long stable period, there will appear a similar (in magni-
tude) spike within 3-6 days after the first one.

• If variance rises twice or more, there will most probably either be a long period
with persistently high variance or a spike will appear.

4.5 What do electricity suppliers really earn on spikes?

We mentioned before that the last several years in financial world seem to show that
’spiky’ behaviour of time series is no longer an exception, but rather a regular phe-
nomenon. Therefore, we might suppose that e.g. in electricity branch of industry outliers
make a significantly high income for the suppliers.

Within the original data set we do not have any information about the real sales of
electricity within either of analysed regions. Thus we simply calculate the revenues as
integral of the series. Figure 56 presents plots of NEPool revenues cumulated within the
7 years of time horizon based on both all prices and the spikes only. It appears that
the revenues calculated only from spiky time points made nearly 10% of income from
3 Jan 2001 to 28 Dec 2007. Of course, these revenues are just intuitive numbers not
including electricity production expenses or the real sales. Most likely the percentage
relation between the outlier and total income would be even higher, since we know that
jumps in prices appear when there is a congestion and the supply is maximal possible.

For comparison, we also choose the month with the highest outlier in the NEPool
data set, i.e. January 2004, and calculate the cumulated revenues from this period only.
It appears that within one month spikes made almost up to 50% of total income.
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Figure 56: NEPool total cumulative revenues (upper panel) and total revenues from
outliers only.
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Figure 57: NEPool revenues from 1-31 Jan 2004: total (second upper panel) and spike
only (bottom panel).

This short analysis is just of a visualizing character with some basic assumptions made
for calculations, but we can clearly see how important studying outliers in electricity spot
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prices is. They make a very significant percent of total revenues and, if electric power
producers and suppliers are able to predict them, they could also predict some level of
that uncertain part of their income.

5 Conclusion and future work

In this study an extensive analysis of two electricity price time series (NEPool and
Otahuhu) was performed. Both series contain daily data and cover exactly the same
period, from 03 Jan 2001 to 28 Dec 2007. The data sets seem to reveal significantly
different characters, which perhaps stems from their different geographical origins.

The analysis started from basic statistical investigation of both electricity prices
and price logarithmic returns. Then it went through investigation of series normality
and internal dependencies. Since the data series reveal both non-normality and het-
eroscedasticity, price smoothing was employed. However, the mentioned features still
remain significant in the smoothed data. Moreover, data split by week days keep the
characteristics as well.

The most crucial part of the study covered analysis of outliers in both price and
return series. The idea was to separate those observations, whose magnitudes signifi-
cantly differ from their neighborhood. There were different window sizes defined, within
which the data was averaged. Then each observation of the series was compared with its
surrounding windows’ means and standard deviations. The outliers were defined with
respect to the original as well as the smoothed data. It appears that spikes are of cluster-
ing character, but removing them from the series does not eliminate heteroscedasticity
from prices and does not lead to obtaining normality in the data. Similar results were
obtained for return outliers. Even though NEPool returns without spikes became much
closer to normally distributed, statistical tests still rejected the normality hypotheses.
Moreover, the Otahuhu return series with outliers removed still remained as heavy-tailed
distributed.

The final step of outlier analysis moved on to verify whether they were predictable
based on year seasons of occurrence or change in volatility before they appear. When
it comes to seasons, NEPool and Otahuhu series reveal different characteristics, which
most probably stems from different geographical locations of the regions. Regarding the
analysis of outliers with respect to series volatility, it appears that in most cases spikes
are not preceded by increase in price variance. However, there is always increase of
volatility after the jump occurs.

We come to a conclusion that being able to forecast spikes might be of very high desire
among electricity producers and suppliers. The results of this study show that outliers
may not be possible to be predicted based only on the price series. It is very likely that
some geographical and meteorological aspects need to be considered as well, especially
for the time points when the outliers appeared. Moreover, analysis of demand-supply
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relations should be investigated, since spikes appear when there is an issue of supply grid
constraints.

It has been concluded by Escribano et al. [9] that electricity prices seen to act in two
separate regimes: with and without congestions in the supply grid. Therefore, as Ptak et
al. [19] proposed, a dual model may be an example solution for electricity price modeling.
Within such, one part would be explaining regular behaviour of prices and returns when
there are no delivery constraints within the supply grid. The second part could stand
for expressing the price behaviour in case of congestions. The analysis presented in this
thesis gives a decent basis for development of the dual model.
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