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The Lord is my shepherd, I shall not be in want.
He makes me lie down in green pastures,

he leads me beside quiet walters,

he restores my soul.

He guides me in paths of

righteousness

Jor his name’s sake.

Even though I walk

through the valley of the shadow of death,

I will fear no evil,

Jor you are with me; your rod and your staf],
they comfort me.

You prepare a table before me

in the presence of my enemies.
You anoint my head with oil;

my cup overflows.

Surely goodness and love will
Jollow me

all the days of my life,

and [ will dwell in the house of the
Lord

for ever.

Psalm 23
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Abstract

This thesis deals with distance transforms which are a fundamental issue in image processing
and computer vision. In this thesis, two new distance transforms for gray-level images are
presented. As a new application for distance transforms, they are applied to gray-level image
compression.

The new distance transforms are both new extensions of the well-known distance transform
algorithm developed by Rosenfeld, Pfaltz and Lay. With some modification their algorithm
which calculates a distance transform on binary images with a chosen kernel has been made
to calculate a chessboard-like distance transform with integer numbers (DTOCS) and a
real-value distance transform (EDTOCS) on gray-level images.

Both distance transforms, the DTOCS and EDTOCS, require only two passes over the gray-
level image and are extremely simple to implement. Only two image buflers are needed: The
original gray-level image and the binary image which defines the region(s) of calculation.
No other image buflers are needed even if more than one iteration round is performed.
For large neighborhoods and complicated images the two-pass distance algorithm has to be
applied to the image more than once, typically 3-10 times. Different types of kernels can be
adopted. It is important to notice that no other existing transform calculates the same kind
of distance map as the DTOCS. All the other gray-weighted distance function, GRAYMAT
etc. algorithms find the minimum path joining two points by the smallest sum of gray levels
or weighting the distance values directly by the gray levels in some manner. The DTOCS
does not weight them that way. The DTOCS gives a weighted version of the chessboard
distance map. The weights are not constant, but gray-value differences of the original image.
The diflerence between the DTOCS map and other distance transforms for gray-level images
is shown. The difference between the DTOCS and EDTOCS is that the EDTOCS calculates
these gray-level differences in a diflerent way. It propagates local Euclidean distances inside
a kernel. Analytical derivations of some results concerning the DTOCS and the EDTOCS
are presented.

Commonly distance transforms are used for feature extraction in pattern recognition and
learning. Their usc in image compression is very rare. This thesis introduces a new appli-
cation area for distance transforms. Three new image compression algorithms based on the
DTOCS and one based on the EDTOCS are presented. Control points, i.e. points that are
considered fundamental for the reconstruction of the image, are selected from the gray-level
image using the DTOCS and the EDTOCS. The first group of methods select the maxi-
mas of the distance image to new control points and the second group of methods compare
the DTOCS distance to binary image chessboard distance. The eflect of applying threshold
masks of different sizes along the threshold boundaries is studied. The time complexity of the
compression algorithms is analyzed both analytically and experimentally. It is shown that
the time complexity of the algorithms is independent of the number of control points, i.e.
the compression ratio. Also 8 new morphological image decompression scheme is presented,
the 8 kernels’ method.

Several decompressed images are presented. The best results are obtained using the Delaunay
triangulation. The obtained image quality equals that of the DCT images with a 4 x 4



normalization matrix.

Keywords: Distance transforms, geodesic distance, gray-level distance transforms, raster
scanning, image compression, surface interpolation, feature extraction, mathematical mor-
phology, computer vision, machine vision



List of symbols

Symbol Explanation
Ap scalars
z,y,a,bh Points in R" or 2"
X,Y,Z Euclidean or digital sets under study
B structuring element
BS symmetric set of B with respect to origin
R Euclidean space of dimension n
" Digital space of dimension n
BcZz Z contains B
z€X point z belongs to set X
Xe complement of X
Az homothetic of X with scaling factor A
XUY set union, i.e. set of points belonging to X or Y
XxXnYy set intersection
XeB Dilation
XehB Erosion
axX boundary of set X
X\Y set difference
d(z,y) distance between z and y
Ni(p) the 4 horizontal and vertical ncighbors of pixel p
Na(p) the 8 ncighbors of pixel p

In publications 1,2 and 3, a denotes a new curvature constant which controls the amount in
which the curvature of the original image is taken into account when calculating the DTOCS
(Distance Transform on Curved Space).

In publications 2 and 3, ¢ denotes a predefined threshold, i.e. the difference between the
curved distance (DTOCS) and direct distance (distance if the image was binary).



Chapter 1

Introduction

Vision is clearly the most intriguing sense of living animals. It allows humans to perceive and
understand the world in an accurate and effortless way. Computer vision aims to duplicate
the effect of human vision by electronically perceiving and understanding an image. Giving
computers the ability to see is not an easy task. We live in a three-dimensional world, and
when computers try to analyze objects in three-dimensional space, available visual sensors,
e.g. TV cameras, usually give two-dimensional images, and this projection to a lower number
of dimensions incurs an enormous loss of information. Dynamic scenes such as those to which
we are accustomed, with moving objects or a moving camera, make computer vision even
more complicated.

Mathematical morphology is a particular disciplinein the field of image processing, which has
been applied to analyse the structure of materials in various disciplines such as mineralogy,
petrography, angiography, cytology, etc. It was born in 1964 when Matheron started to
investigate the relationships between the geometry of porous media and their permeabilities,
and Serra started to quantify the petrography of iron ores in order to predict their milling
properties. This initial research led to the formation of team at the Paris School of Mines at
Fontainebleau, the Centre de Morphologie Mathématique, which combined theoretical work
with the design of practical applications.

Morphological image processing has grown from a specialized imaging discipline to a major
area of study within image processing wordwide in recent years. Growth has been substantial
in both theory and application. This recent expansion of interest is evidenced in part by the
large number of journal and conference papers presented over the past few years, but it is
also reflected in the many industrial applications that have emerged and are currently being
developed. These applications range over the entire imaging spectrum, including character
recognition, medical imaging, microscopy, inspection, metallurgy, and robot vision, to name
a few. Morphology has become a necessary tool for those engineers involved in imaging
applications.

All perception processes have one very important common feature, which was observed dur-
ing the emergence of pattern recognition: patterns forming a class can be gradually deformed
without abruptly losing the class membership. This statement refers to all perceptual and
sensory pattern classes: images, sounds, odors, etc. It is important to note that this is



not the feature of the natural pattern classes only but also the man-made patterns. Thus,
some of the most important man-made patterns, handwritten characters of all languages,
possess this relative deformation stability. The early introduction and the critical role in
pattern recognition of the terms "similarity” and "dissimilarity” can be attributed to the
abowve observation. The above phenomenon is a sufficient argument in favor of adopting the
mathematical concept of distance function as basic in a formal pattern recognition model.
Indeed, the concept of distance, or dissimilarity measure, has always played a critical role in
pattern recognition. To verify this, it is enough to scan any textbook on the subject. [Gol92]

Albert Einstein believed "that the history of scientific development has shown that of all
thin kable theoretical structures a single one has at each stage of advance proved superior to
all the others”. He also believed that this chosen system is "the simplest possible system
of thought which will bind together the observed facts” [Fre79]. In information processing
fields, which do not deal directly with "the observed data” and thus, of necessity, must be
more "abstract” than the natural sciences, this characterization can be slightly rephrased:
the model that combines maximal flexibility and universality in its present and future ap-
plications with the simplest analytical structure must be preferable. [Gol92]

The past experience of pattern recognition suggests that at present, and in the foreseeable
future, there is no tool for pattern learning model more flexible and universal and yet simpler
than the concept of distance between two patterns. [Gol92]

In image processing, the concept of distance is most conveniently calculated using mathe-
matical morphology. It provides the simplest and most flexible tools for performing distance
calculations. This thesis presents two new distance transforms for gray-level images. Previ-
ously presented distance transforms weight the distance values by the gray values themselves.
The new transforms presented in this thesis do not. Thercfore, the transforms can be used
in calculating minimal distances between points along a curved surface. Furthermore, some
basic research is done in applying them to gray-level image compression. The time com-
plexity of the new compression algorithms is analyzed both analytically and experimentally.
It is shown that the time complexity of the algorithms is independent of the number of
control points, i.e. the compression ratio. Regarding the criteria for choosing a compression
technique, the algorithms presented in this thesis could best be used in applications where
a rapid flashing image is made more accurate as time goes by. The decompressed image is
enhanced iteratively and this can be done only for those parts of the image that the user
requires, i.e. independent of the other areas. These methods could be applied to transferring
time-varying images over a communications channel. It satisfies to send only some data of
those arcas that have changed compared to the previous image frame. This is due to the
local nature of the operations of mathematical morphology and Delaunay triangulation.

The aims of this thesis can be summarized as follows:

1. to present two new and fast distance transforms for gray-level images, the Distance
Transform on Curved Space (DTOCS) which is an integer transform, and the Euclidean
Distance Transform on Curved Space (EDTOCS) which is a real number transform.

2. to present, as a new application for distance transforms, image compression algorithms
for gray-level images based on the DTOCS and the EDTOCS. The distance transforms
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are used in finding control points, i.e. points that are considered fundamental for the
reconstruction of the image, in the original gray-level image.

In this thesis, all the concepts are presented in discrete framework. This thesis begins with
a list of publications, contents and a list of symbols used in this thesis. Chapter 1 is an
introduction to the field of image analysis presenting the aim, scope and motivation of this
thesis. Chapter 2 presents a brief introduction to the mathematical background of this the-
sis. It presents the basic operations of mathematical morphology and a definition for the
skeleton based on successive erosions. Distance transforms for binary and gray-level images
and arc also covered. This chapter presents the Rosenfeld-Plaltz-Lay algorithm, which is the
forefather of the DTOCS and the EDTOCS. A list of other distance transform types and
techniques for calculating them are presented. Also the GRAYMAT and the gray-weighted
distance transform are presented, to which the DTOCS is compared in Publication 6. Delau-
nay triangulation is presented, which is used in the decompression of the compression part of
this thesis. Chapter 3 deals with DTOCS and EDTOCS applied to image compression. The
definitions of the DTOCS and EDTOCS are given. An overview on existing compression
methods is given. Four compression algorithms are presented with several test images. The
time complexity of the new compression algorithms is derived both analytically and exper-
imentally. Chapter 4 is a discussion on the methods presented in this thesis and possible
future research topics. Summary of the publications with contributions by the author and
errata are found in Chapter 5. Chapter 6 presents an Appendix with decompressed images.
The publications are found in Chapter 7.
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Chapter 2

Mathematical Background

2.1 Mathematical Morphology

In the following, some some basic concepts of mathematical morphology are defined. Let Z*
be the set of k-tuples of integers. k is a positive integer, the dimension of the set.

Definition 2.1. Let B C Z*. The symmetric set BY is the set

B’ ={-z|z€ B) (2.1)

Definition 2.2. Let B C Z*. The translated set B, where the set B is translated by
z € Z*, is defined by

B, ={z+y|y€ B} (2:2)

Definition 2.3. Let A C Z* and the structuring element B C Z*. Dilation is denoted by
A ® B and is defined by

A@B={a+bla€ A b€ B} (2.3)

Definition 2.4. Let A C Z* and the structuring element B C Z*. Erosion of A by B is
denoted by A © B and is defined by

A©B={z€Z"|B,C A) (2.4)

Definition 2.5. Let A C Z* and the structuring element B C Z*. Opening of A by B is
denoted by A o B and is defined by
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AoB=(A©B)®B (2.5)

Definition 2.6. Let A C Z* and the structuring element B C Z*. Closing of A by B is
denoted by A e B and is dcfined by

AeB=(A®B)oB (2.6)

Definition 2.7. Let A C Z* and the structuring element B C Z*. Skeleton SK(A) of a set
A is defined as follows:

Sa(A) = ((A©nB)\(A&nB))oB, n=0,1,2,...N 2.7)

SK(A) = UN_,Sn(A) (2.8)

where N = maz{n|(A & nB) # 0}. Set difference is denoted by \. nB
B B®..& B, n=1,2,... 5,(A) denotes the nth skeleton subset of A.

n times
According to [Vin91b] several types of skeletons, or medial axes, exist. Also a considerable
number of different skeleton algorithms based on morphological thinnigs, local maxima of
distance functions [Ser88], and contours have been published. [Vin91b)

Several generalizations of the medial axis transform for gray-level images have been pre-
sented, including the Spatial Piecewisc Approximation by Neighborhoods, SPAN, [Ahu78]
[WanT79), the gray-weighted medial axis, GRAYMAT, [Lev70), the gradient medial axis,
GRADMAT, [WanT79] and the min-max medial axis transform, MMMAT, [Nak78].
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2.2 Distance Transforms

Let Z* be the set of k-tuples of integers. k is a p. <itive integer, the dimension of the image.
An image is a function fr : Z*¥ — R, where R it ‘he set of real numbers. A discrete image
is a function fy : Z¥ — N, where N is the set of positive integers. fr and fy are called
gray-level images. If N = {0,1} the image fy is a binary image.

2.2.1 Binary Images

Definition 2.8. Let A C 2% Let z € A and y € A. Function d4(z,y) is called a distance
function if it satifies the following three criteria:

i Symmetricity : da(z,y) = daly, z) (2.9)
Posilive defintleness : da(z,y) =0 & z=y (2.10)
Triangle inequality : da(z,z) < da(z,y)+dsly,z) (2.11)

Let Ny(e) denote the set of 4 diagonal and horizontal neighbors of pixel e. Let Ng(e) denote
the set of 8 neighbors of pixel e. Let us define a 3 x 3 square kernel I, K = Ng(e) U {e} =
{a,b,c,d,e, f,g,h, k}. Table 2.1.(a) presents this kernel, called the chessboard kernel, and
Table 2.1.(b) the city-block kernel, in which the diagonal corner points {a,c, g, ¥} are omitted.

a{bjc

diel|f dielf
g{hik h
(@ ®)

Table 2.1. (a) The 3 x 3 chessboard kernel used in the Rosenfeld-Pfaltz-Lay algorithm. (b)
The city-block kernel used in the Rosenfeld-Pfaltz-Lay algorithm,

There are several types of distance functions. A distance function with an algorithm to
calculate it is called a distance transform. Among the distance functions are the following:

Euclidean. Let Z? be the sct of 2-tuples of integers. Let A C Z%. z = (z,,z;) € A and
v = (v1,¥2) € A. The Euclidean distance between z and y is

da(z,y) = /(21 = )2 + (22 — 12)? (2.12)

Danielsson [Dan80] proposed an algorithm for the vector Euclidean distance transform, which
allows the generation of distance maps with no significant errors for binary images. This
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sequential algorithm uses four passes of a 3 x 3 kernel over the image; the sum of two squares
must be computed for each of the nine kernel-pixels; and it needs two extra images of the
same size as the original one to store intermediate results. Ye [Ye88] presented a version
of the Daniclsson’s Euclidean distance transform which produces a distance map in which
each pixel is a vector of two integer components. A parallel Euclidean distance transform
algorithm that always gives correct results has been published in [Yam84]. This algorithms
also uses a 3 x 3 kernel; the sum of two squares must be computed for each kernel-pixel;
and it needs two extra images to store intermediate results: the signed number of steps to
the nearest feature pixel. The number of iterations is proportional to the longest distance
in the image. In [Rag90] a refined version is presented to generate completely error-free
Euclidean distance maps. Vincent [Vin91c] presented an algorithm which produces an error-
free Euclidean distance map. His method uses chains in encoding the objects boundaries
and propagates these structures in the image using rewriting rules.

The Euclidean distance transform has been also extended to arbitrary dimensions [Rag93). In
[Rag93) some raster scanning, sequential algorithms, are proposed. In [Sai94] fast sequential
algorthms for n-dimensional Euclidean distance transform are presented which are faster
than the one presented in [Yam84]. Mullikin [Mul92] presented vector distance transform
algorithms which are derived from the Danielsson’s and Ye's algorithms for anisotropically
sampled images.

In [Bor91}, a new algorithm for the extraction of local maxima from the Euclidean distance
map is presented. Reconstruction of the shape from the local maxima is achieved using a
reverse Euclidean distance transform. The resulting shape is exactly the original one, but
the distance values are different from the original distance transform.

Chessboard.Let Z? be the set of 2-tuples of integers. Let A C Z%. £ = (z1,72) € A and
v = (y1,¥2) € A. The Chessboard distance [Bar77) and [Bor84] is defined by the following
formula:

da(z,y) = maz{|z) = 1|, |22 - yal) (2.13)

The chessboard distance transform tends to give too small values compared to the Euclidean
distance transform.

City Block. Let Z? be the set of 2-tuples of integers. Let A C 2% z = (z1,72) € 4 and
y = (y1,y2) € A. The city block distance is defined as:

da(z,y) = |21 — wil + |22 = yal (2.14)

It is the simplest and fastest of all distances. It is, however, also the worst approximation of
the Euclidean distance and tends to give too big values compared to the Euclidean distance
transform. It is, among other places, found in [Bar77]. As for all algorithms described by
the mask, the computation can be either parallel [Bor84], or sequential [Ros66b}.

16



Other distance distances include the octagonal distance which uses both the city block
and the chessboard distance. Presentation of it, and a parallel algorithm for computing it
are found in [Ros68]. Other octagonal algorithms are also described in [Ros68]. Chamfer
?istances and algorithms for their calculation are found in [Ros82),[Bor83), (Bor84] and
Bor86).

NAPNARPRANS 272127272 4131234
volvell|v2] V3 o112 3f271]213
2 1T]ol 172 2]1j0]1]2 271jo]1]2
NAR AN ANA 2f1 112 3t21ri27s3
V81v5 |2 V3|8 2122272 4131213714
(a) (b) (<)

Table 2.2. (a) The Euclidean distance for each pixel from the center point. (b) The
chessboard distance for each pixel from the center point. (c) The city-block distance for
each pixel from the center point.

Digital distance transforms that use only a small image neighborhood at a time are based
on the idea of approximating global distances by propagating local distances, i.e. distances
between neighboring pixels. This propagation can be done either parallelly or sequentially.
Sequential distance transforms for a set A C Z? were first published in 1966 [Ros66b],
and parallel ones in 1968 [Ros68]. The sequential algorithms are further divided to raster-
scanning and contour-processing algorithms [Rag92a).

In the Rosenfeld-Pfaltz-Lay algorithm, [Ros66b], [Lay84], [Ser88], it is assumed that the
input image is a binary image or a binarized version of a gray level one. It gives the distance
image, whose maximum is always in the middle of a homogenious region. It gives the distance
function of a set A C Z? after two iterations. The algorithm is initialized by assigning the
value 0 to all points of A® and the value max, i.e. the maximal representative value of the
memory, to all points of A. These points holding the value max are denoted by a,b, ..., k
and the changed values a°,b",..., k",

The following formulas are for the chessboard kernel of Table 2.1 (a).
1st iteration: The first application of this sequential algorithm proceeds in the "direct

video order” (rowwise from left to right, and from top to bottom) substituting the middle
point e with new e according to the following formula:

e* = minle, 1 + min(a",b",c", d)] (2.15)

2nd iteration: The second iteration is applied in the "inverse video order” (rowwise from
right to left, and from bottom to top) substituting the middle point e® with new e* according
to the following formula:

e* = minle’, 1 + min(f°, 9", k", k")) (2.16)
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The Rosenfeld-Pfaltz-Lay algorithm produces a chessboard distance function of Table 2.2.(b)
when the chessboard kernel of Table 2.1.(a) is used. Similarly, it produces a city-block
distance function of Table 2.2.(c) when the city-block kernel of Table 2.1.(b) is used. From
the distance function image gencrated by the above algorithm it is easy to derive a skeleton

[Ser88].

Definition 2.9. Let A C Z* and the structuring element B C Z* nB =
B®B®..®B, n=12,.. Forecach z € A, the distance transform of A with respect
Nt pussiarmmmmmsemet’

n times

to B by successive erosions is denoted by d[A, B](z) and is defined by

d[A, B)(z) = {3’" fn]z€A6(n-1)5) : ,’:;3 (2.17)

In [Wan88) it is proved that the city block distance function can be calculated either using
successive erosions, see Definition 2.9., or using the Rosenfeld-Pfaltz-Lay algorithm.

In early papers about distance transforms, [Ros66b], [Ros68], no attempt was made to opti-
mize the local distances used in the distance transform. This optimization was accomplished
for a3 x 3 neighborhood in [Bor83] and [Bor84). Naturally, the the approximation to the
Euclidean distance transform becomes better the larger the size of the neighborhood that
is used in the algorithm is. The values for the mask coefficients for diflerent neighborhood
sizes for both the sequential and parallel algorithms are derived in [Bor86]. In many digi-
tal image processing applications real-valued pixels are undesirable. A thorough analysis of
integer approximations for different ncighborhood sizes is found in [Bor86). Verwer [Ver9l]
presented optimal mask coefficients for local distances in two and three dimensions. Integer
approximations for the local distances were developed for neighborhoos sizes of three and
five.

The distance function can also be obtained by chains and loops, also called contour processing
and ordered propagation, as presented in [V1i88),[Vin91a],[Rag92a] and [Rag92b]. Contour
processed distance transforms in its basic form have been suggested by Piper and Granum
[Pip87). Verwer et al. [Ver89) used bucket sorting to process the propagation front in
perfect order. A simple method for achieving approximately ordered propagation as well as
algorithms for Euclidean distance mapping was suggested by Ragnemalm [Rag90] [Rag92a].

Vincent [Vin9la) presented simple algorithms based on queues of pixels, which are more
general than those based on chains and loops.

Geodesic distance

The new distance transforms presented in this thesis are derived [rom the following definition
of geodesic distance.

Definition 2.10. Pixels p € Z? and ¢ € Z? are 8-connected if ¢ € Ns(p). A discrete 8-path
from pixel r = (T, yo) to pixel s = (2, yn) is a sequence of pixels (TayYo)s (21,91 )y - (Tns Yn)
where (z;,y;) is 8-connected to (zi_y,¥ic1), 1 = 1,2,...,n.
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Definition 2.11. Let A C Z? and r € 4 and y € A. Let’s denote by P4(z,y) the set of
discrete 8-paths in A linking r and y. The number §4(z,y) is defined as follows: 64(z,y) is
the minimum of the lengths of the paths v of P4(z,y), if such paths exist and +oo if not.
Mathematically, it can be expressed by [Pre91}:

_fmin L(7),7 € Palz,y) , if Pu(z,y)#0
balz,y) = {+co , othervise ' (2.18)

where L£(7) is the length of the path 4. The length of the path £(«) is the sum of distances
between 8-connected pixels along a discrete 8-path. Here, 64(x,y) is called the geodesic
distance from z to y with respect to A. The distance 64(z,y) satisfies the three properties of
a distance function: scparability, symmetry and triangle inequality. 64(z,y) can take infinite
values especially if £ and y belong to two different connected components of A. It should be
noted that a geodesic path of minimal length between two points z and y is not necessary
unique when A is not simply connected. [Pre91] [Sko89]

2.2.2 Gray-Level Images

Rutovitz [Rut68] proposed an algorithm for obtaining a gray-weighted distance function,
in which gray-value is identified with a concept of "height” and gray-weighted distance is
defined in such a way that it is less along paths with low gray-value pixels. In his method, he
proposed only two iterations. The time complexity of his algorithm is of the order of O(n?)
for an n x n image. Rosenfeld [Ros69] presented a parallel version of this algorithm.

The algorithm of Rutovitz proceeds as follows. The first iteration is performed on the
original image and it procecds rowwise from left to right and from up to bottom, calculating
the new value F*(e). The second iteration is performed on a copy of the original image and
it proceeds rowwise from right to left and from bottom to up, calculating the new value
F*(e).

The final distance map is obtained by taking the minimum of the transformed original image
and the transformed copy image pixel by pixel. The 3x3 kernel of Table 2.1.(a) is used. F*(e)
denotes the new point at cach iteration step, i.e. the transformed point, and G(a),G(b),...
denote the gray values of the original gray-level image at the kernel points. § is a parameter
for which0 < 8 < 1.

1st iteration:
The first iteration proceeds in the direct video order, i.e. rowwise from left to right and from

top to bottom, calculating the new value

F*(e) = BG(e) + min(G(a), G(b), G(c), G(d)) (2.19)

2nd iteration: ‘
The second iteration proceeds in the inverse video order, i.e. rowwise from right to left and

from bottom to top, calculating the new value
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F*(e) = BG(e) + min(G(f),G(g),G(h), G(k)) (2.20)

Fall-distance [Rut78] [Vos79] is another modification of distance, in which the only permitted
paths from the reference set are those with falling, i.e. strictly decreasing, gray values. The
set of points reached by such strictly decreasing paths is known as the fall-set of the reference
set. In [Rut78] a sequential two-pass algorithm is used to calculate the fall-distance.

Another generalization, the GRAYMAT [Lev70] defines the gray-weighted distance between
two points as the smallest sum of gray levels along any path joining the points. The algorithm
is obtained by a suitable generalization of the algorithms that have been used in the black-
and-white case, e.g. Rosenfeld and Pfaltz [Ros66b), Montanari [Mon68]. The same algorithm
is also presented in [Pip87)] and is used as the first stage of a cost algorithm in [Ver90]

Let A C Z° Let z € A and let G(z) be the original gray-level image. The 3 x 3 kernel K
of Table 2.1.(a) is applied to the calculation, but also a 5 x 5 or city-block kernel of Table

2.1.(b) could be applied with appropriate modifications to the Eq. (2.22.) and Eq. (2.23.).
The distance between the center point e € K and other kernel points € Ng(e) C K is

e, z) = Q(f-);—c(ﬁd(e,z) (2.21)

where d(e,z) =1 if z € Ny(e) and d(e,z) = V2 if z € (Ng(c) \ Nu(e))

Each pixel of the image B(z) has a high constant value, i.e. the maximal representative
number of the memory, and the boundary points of A have a value 0. The pixels of the
image are considered sequentially in the following way.

18t iteration: The first iteration proceeds rowwise form left to right, and form top to bot-
tom.

B*(e) = min(B(e), B(a) + (e, a), B(b) + t(e, b), B(c) + t(e,c), B(d) + t(e,d))  (2.22)

2nd iteration: The sccond iteration proceeds rowwise from right to left, and from bottom
to top.

B*(e) = min(B(e), B(f) + t(e, f), B(g) + t(e, g), B(k) + t(e, k), B(k) + t(e, k))  (2.23)

The above algorithm presented in [Lev70) has a time complexity of the order of O(n?) for
an n x n image. The gray-weighted medial axis (GRAYMAT) is defined as the set of points
whose gray-weighted distances to the set of 0's are local maxima.

In [Pre91] two new distance transforms are defined, namely the topographical distance, which
is defined using a function called the connection cost, and the differential distance transform,
which is defined using the deviation cost function.
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2.3 Delaunay Triangulation

Surface representation and reconstruction are important problems in a variety of disciplines
including geograplic data processing, computer vision, computer graphics, and computer
aided design.

Let us consider S, a set of points in a plane. The points of S are connected to each other to
form triangles. The triangles are not overlapping with each other. Each point belongs to at
least one triangle. T is a Delaunay triangulaton of S if the circle connecting all vertices of
any of its triangles does not contain any other point of S in its interior.

Figure 2.1. The Voronoi tessclation (solid line) and the Delaunay triangulation (dashed
line). [Lee80]

The use of the city-block distance and the Euclidean distance in Delaunay triangulation
is discussed in [Che85] and [Che86). Lee presented a recursive algorithm to construct the
Delaunay triangulation using the Euclidcan distance [Lee80]. The Delaunay triangulation
in both two and three dimensions has been used by different authors as the basis for con-
structing object-centered surface descriptions [Bar77] [Boi84] [Boi88] (Flo89] [Bru91] [Flo92].
Triangle-based representations are invariant under translations and rotations. They adapt to
the variable density of the data distribution, and they can be easily updated. In particular,
among all possible triangulations, the Delaunay triangulation is considered the most appro-
priate for surface approximation, hecause of the equilateral shape of its triangles [Bab76].

[Raj94)
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Chapter 3

Image Compression

3.1 Overview on Existing Compression Methods

In recent years, there has been a dramatically increasing demand for handling images in
digital form. Owing to performance improvements and significant reductions in the cost of
image scanners, photographs, printed text, and other media can now be easily converted
into digital form. Direct acquisition of digital images is also becoming more common as
sensors and associated electronics improve; the usc of satellite imaging, e.g. LANDSAT,
in remote sensing of the earth and the advent of electronic still-cameras in the consumer
market are good examples. In addition, many different imaging modalities in medicine,
such as computed tomography (CT) or magnetic resonance imaging (MRI), generate images
directly in digital form. Computer-generated images are also becoming a major source of

digital data. [Rab91]

However, there is one problem with digital images, namely, the large number of bits required
to represent them. Fortunately, digital images, in their canonical representation, generally
contain a significant amount of redundancy. Image compression aims at taking advantage
of this redundancy to reduce the number of bits required to represent an image. This can
result in significant savings in the memory needed for image storage or in the channel capac-
ity required for image transmission. Several excellent review articles on image compression
have been published in the literature [Kun87], [Jai81], [Net80]. There have also been several
special journal issues dedicated to image coding and visual communications [Hsi89], [Hsi87],
[Net85). A few books arec solely devoted to the subject [Net88], [Cla85], [Jay84], and nu-
merousg textbooks on image processing also contain detailed coverage of image compression

[Lim90], [Jai89], [Gon87], [Ros82). [Rab9l]

The need for image compression becomes apparent when one computes the number of bits
per image resulting from typical sampling rates and quantization schemes. For example,
consider the amount of storage required for the following types of images [Rab91]:

¢ a low-resolution, TV quality, color video image: 512 x 512 pixels/color, 8 bits/pixel,
and 3 colors = =~ 6 x 10° bits,
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® a 24 x36 mm (33-mm) ncgative photograph scanned at 12um: 3000 x 2000 pixels/color,
8 bits/pixel, and 3 colors => = 144 x 10° bits,

® a 14 x 17 -inch radiograph scanned at 70pm: 5000 x 6000 pixels, 12 bits/pixel =
2 360 x 10° bits,

e a LANDSAT Thematic Mapper scene (used in remote sensing): approximately 6000 x
6000 pixels/spectral band, 8 bits/pixel, and 6 nonthermal spectral bands = =~ 1.7 x 10°
bits.

Obviously, the storage of even a few images could pose a problem. As another example of
the need for image compression, cousider the transmission of a low-resolution 512 x 512 x 8
bits/pixel x3-color vidco image over telephone lines. Using a 9600 baud (bits/s) modem,
the transmission would take approximately 11 minutes for just a single image, which is
unacceptable for most applications. [Rab91]

Let Ng denote the number of bits in the original image and N¢ the number of bits in the
com pressed image. The compression ratio R is defined as follows [Rab91]:

Ng
= 1
N¢ (3-1)

In general, thiree types of redundancy in digital images can be identified [Rab91]:

e spatial redundancy, which is due to the correlation or dependence between neighboring
pixel values,

e spectral redundancy, which is due to the correlation between different color planes, e.g.
in an RGB color image, or spectral bands, e.g. aerial photographs in remote sensing,

e temporal redundancy, which is due to the correlation between different frames in a
sequence of images.

The compression methods can be categorized into two groups: lossless and lossy. In loss-
less compression, also known as bif-prescrving or reversible compression, the reconstructed
image after compression is numerically identical to the original image on a pixel-by-pixel ba-
sis. Obviously, lossless compression is ideally desired since no information is compromised.
However, only a modest amount of compression is possible.

In lossy compression, also known as irreversible compression, the reconstructed image con-
tains degradations relative to the original. As a result, much higher compression can be
achieved as compared to lossless compression. In general, more compression is obtained
at the expense of more distortion. It is important to note that these degradations may or
may not be visually apparent. In fact, the term visually lossless has often been used to
characterize lossy compression schemes that result in no visible loss under normal viewing
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conditions. Unfortunately, the definition of visually lossless is quite subjective and extreme
caution should be taken in its interpretation. [Rab91)

A comprehensive list of factors that can affect the choice of a lossy compression algorithm
is presented in [Rab91).

Among the first generation spatial methods are Pulse-Code Modulation (PCM) [Rob62),
Predictive Coding [Kun85), Differential Pulse-Code Modulation (DPCM) [Hab71), [Mus79),
[Net77), [Lim78], Delta Modulation [Kun85}, Interpolative Coding [Rab91) and Bit-Plane
Coding [IEE80) [Kun85).

The basic motivation behind transform coding is to pack the relevant information into a
small number of coefficients. The inverse transform recovers the original image. Most com-
monly used transformations are linear transformations implemented with fast algorithms for
computational efficiency. [Kun85) [Kun87] [Rab91) Among the first generation transform
methods are the Karhunen-Loéve transform [Pra78) [Rab91), the Fourier, Hadamard, Haar,
sine, cosine, and slant transforms [Lee84), [Nga84), [Vet84), [Vet85), [Gon88), [Ara88], [Fei90).

Hybrid methods combine predictive coding and transform coding having the advantages of
hardware simplicity (DPCM) and robust performances (transform coding). [Kun85), [Bay90).

The second generation methods can be divided into two groups. The first group is character-
ized by the use of local operators. Pyramidal coding [Bur83) and anisotropic nonstationary
predictive coding [Wil83] [Knu83) are the main examples of this group of methods. [Kun87)
The second group methods attempt to describe an image in terms of contour and texture,
Directional decomposition-based coding [Iko85] and segmentation-based coding [Koc83] are
two major examples of this second group of methods.

A recently introduced image compression method is based on the linear wavelet theory. With
this method is possible to obtain both time and space resolution at the same time giving
better compression ratios than classical methods [DeV92) [Sri93).

In [Wan81) the min-max-Medial Axis Transform is used for image compression giving 1.0
and 2.5 bits per pixel for noisy chromosome images. Such rates are comparable with those
typically obtained in interpolative and transform coding schemes.
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3.2 The New Compression Algorithms

The existing distance transforms for gray-level images presented in [Rut68] and {Lev70] find
the minimum path joining two points by the smallest sum of gray levels or weighting the
distance values directly by the gray levels in some manner. Because the distance values do
not depend on gray value differences, but the values themselves, they cannot be used in
compression algorithms, in which the obtained distance values for the gray-level image are
compared to the corresponding binary image values. This is useful in finding the changes in
the curvature of the gray-level image and using this information in the placement of control,
or dominant points. In addition to this, the new transforms can be used in feature extraction
in cases where conventional methods based on binarizing the gray-level images would give
no distinction between the pattern classes. This thesis presents two new distance transforms
in which the distance values are weighted by the gray value differences of the original image.

Definition 3.1 Let X C Z2. Let B C Z? be the structuring element. Let the external
boundary of X be denoted by 8X and be defined by X = (X@® B)\ X. X C XC. [Gia88]

In the definitions below we will use the following notation. € X and y € 3X. Let ¥x(z,y)
be the set of digital 8-paths in (X UX) linking z and y. Let v € ¥x(z,y) and let v have
n pixels. Let a; € v and a;4, € 7 be two adjacent pixels in the path 7. Let Gx(a;) denote
the gray value of the pixel a;.

The Distance Transform on Curved Space (DTOCS) is defined as follows.

Definition 3.2. Let the distance between a; and aiy; be dx(ai, aiyy) = |Gx(a:)—Gx(ain)|+
1,7 =1,2,...,n— 1. The length of the path v is defined by A(y) = Liz) dx(ai, aiy1). The
DT OCS distance image is defined by

Fx(z) = min(A(7),7 € ¥x(z,y)), y € OX, ¥x(z,y)#P (3.2)

Fox(y)=0 (3.3)

The Euclidean Distance Transform on Curved Space (EDTOCS) is defined as follows.

Definition 3.3. Let the distance between a; and a4y be dx{ai,aiy1) =
VG(a) = Gla)P+1, i = 1,2.un — 1, if ain € N(a).  dx(aiain)
\/(g(a;) —G(ain))?+2,i =1,2,...,n—1, il aiyy € (Ns(a:) \ Nu{a;)). The length of the
path v is A(y) = =% dx(a;, aiy1). The EDTOCS distance image is defined by

fx(.‘t) = mln(A(7)v7 € ‘I’X(Ivy))v yE€ aX» ‘I’X(I, y) # ) (3'4)

Fox(y)=0 (3.5)
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The DTOCS is used in gray-level image compression in Publications 1,2,3 and 4. The
EDTOCS is used in image compression in Publication 5.

Let us make the following definitions for the compression algorithms. The algorithms use
the DTOCS both in one and two dimensions. Let the distance function generated by the
DTOCS when a = 0 on image G be dg and the distance function generated by DTOCS when
a =1 be Dg correspondingly. Let G be the original gray-level image and F be a binary
image which determines the region or regions of calculation and contains control points.
rnd(G) is an operation which picks a random number of points from the image G. Edge(G)
is an operation which produces an edge image from G.

Let’s define a square, kernel X' = {ky, k3,..., k,}. Then, 17}" denotes a point in the kernel
area when the kernel is placed on the image F', j = 1,...,n. Denote R = {r;} the boundary
curve with m points in which | Dg — dg |> €. rF refers to the ith point in the curve R in
the image I. Let M = {m,} be the set of points which hold local maximas of the distance
map generated by the DTOCS at each iteration step. C = {¢), ¢3,...}, i.e. the set of already
picked control points. At the initialization of the algorithms the initial size of C is set to N.
That value is normally 5 — 10. As the algorithms proceed, N is increased at each iteration
phase.

DTOCS denotes performing the DTOCS equations with @ = 1 once, which are found in
Publications 1,2,3,4 and 6. DTOCS-alg denotes calculating DTOCS with a =0 and a = 1
and comparing the two distance maps pixel by pixel.

The following image compression algorithms are presented in the publications of this thesis.
Algorithm 1 is introduced in Publications 1 and 4. Algorithm 2 is introduced in Publication
3. Algorithm 3 is introduced in Publication 2 and algorithm 4 in Publication 5.

Algorithm 1 calculates the DTOCS with @ = 0 and @ = 1 and compares the obtained
two distance images pixel by pixel. A curve is formed in those pixels where the difference
between the two pixels is bigger than a predetermined threshold. The curve is handled so
that DTOCS is calculated in one dimension and a new control point is put in positions where
the difference between the two DTOCS distances is bigger than the predetermined threshold.
This procedure is repeated until no curves are found. Algorithm 2 equals the algorithm 1
except that the curves are handled in a different way. Square masks of different sizes are
adopted. A new control point is put in a position where the difference between the two
DTOCS distances is bigger than the predetermined threshold and where at the same time
there are no previously put control points in the mask area. The basic idea in algorithm 3 is
to calculate DTOCS and select the maximas of the obtained distance function as new control
points, thereby removing them from the area of calculation. The algorithm is initialized by
picking randomly a few points from an edge image of the original image. The algorithm 4 is
the same as algorithm 3 except that the EDTOCS is uscd instead of the DTOCS.

Algorithm 1:

1. begin Algorithm 1
2. Set e.
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3 Set N.

4 for i =1 to N begin
5. C + rnd(G)

6. ¢~ 0

7 endfor

8 F\C + macrint

9. repeat DTOCS-alg
10. until | Dg —dg |> ¢
11. if {r;} # 0 then begin
12. r{)’ 0
13. Cerf
14. endif

15. else Huffman end.
16. for i =1 to m begin
17. if | D.(2) — d,(i} |> ¢ begin
18. rFeo0

19. Cerf

20. endif

21. endfor

22. goto 9.

23. end

Algorithm 2:

1. begin Algorithm 2

2 Set .

3 Set V.

4, for i=1 to N begin

5. C ~ rnd(G)

6 ci—0

7 endfor

8. F\ C ~ mazint

9. repeat DTOCS-alg

10. until | Dg —dg |> ¢
11. if {r;} # 0 then begin
12. r{; 0

13. Ce—rf

14. endif

15. else lfuffman end.

16. for: =1 tom begin
17. place K to rf

18. if | D, (i) — d,(i) |> e and FX ¢ C and not (F* = F} = ... = FX) then begin
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19. rf —0

20. C —rf
21. endif

22. endfor

23. goto 9.

24, end

Algorithm 3:

1. begin Algorithm 3

2 F = Edge(G)

3 F=FebnB

4. Set N

5. for i=1 to N begin
6 C — rnd(F)

7 a0

8. endfor

9, F\ C ~ mazint
10. repeat DTOCS

11. Vs: C —m,
12. until {m,} =0

13. end

Algorithm 4:

1. begin Algorithm 4

2. F = Edge(G)

3 F=Fonb

4. Set N

5. for i=1 to N begin
6 C ~ rnd(F)

7 C; & 0

8. endfor

9. F\ C « mazreal
10, repeat EDTOCS
1. Vs: C e« m,
12. until {m,} =9

13. end
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The control point image is Huffman-coded both for the relative position of points from each
other and for their gray values. The signal-to-noise ratio (SNR) is given by the following
equation:

S10 BN (r0s 1N F(i k)2
SNR = ~10lagior 3 3 LEELJ0 D)

1=0 k=0

(3.6)

where f(j, k) and f(j, k) are the original and reconstructed pixel values, respectively.

The decompression is performed using the 8 kernels’s method described in [Vep91], [Toi93a]
and [Toi93b] or using Delaunay triangulation. The gray value of each point inside a Delaunay
triangle is given by the equation:

p=dapa +dpps(! — da — dp)pc, (3.7

where p4, ps pc and denote the gray values of the 3 triangle points and d4, dp and 1-d4—dp
denote the normalized Euclidean distances from the pixel to the triangle corner points, i.e.
the control points. The new pixel value p is rounded to the nearest integer.

3.3 Test Results of the New Algorithms

All the figures which are referred to in this chapter are found in Chapter 6: Appendix.
Figure 6.1 shows the original Leena image of size 512 x 512 x 8 bits. Figure 6.2 depicts an
image which has been compressed using algorithm 2 and decompressed using the 8 kernels’
method. In this image, the control points were allowed only to be in even positions resulting
in a substantially low kB value for positional information, 1.89 kB. See Table 3.1. Figure 6.3
is compressed using algorithm 1 and decompressed using Delaunay triangulation among the
control points. In this image, the control points are free to take both even and odd positions
yielding a high value for positional information, 8.08 kB. Visually this image looks better
than the previous one, which is also confirmed by the corresponding signal-to-noise ratios. If
the control points are forced to be only in even positions of the image buffer, a compression
ratio of 1:26 is achieved with 6.83 KB for positional information and 2.98 kB for gray values.
Figure 6.4 depicts an image which has been compressed using the Discrete Cosine Transform
(DCT) and Huffman coding. A normalization matrix of size 4 x 4 is used. Figure 6.5 shows
a DCT image with an 8 x 8 normalization matrix and a compression ratio 1:19. In Figure
6.6 the ratiois 1 : 30.
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Name Ratio Points Pos Value SNR

kB kB dB
Fig. 6.2 1:18 11100 1.89 12.56 22.49
Fig. 6.3 | 1:17/1:26 | 11495 | 8.08/6.83 7.19/2.98 | 25.05
Fig. 6.4 1:16 26.51
Fig. 6.5 1:19 29.77
Fig. 6.6 1:30 27.9
ble 3.1. The obtained data for the Leena im-

age.
Figure 6.7 shows the original peppers image of size 512 x 512 x 8 bits. Figure 6.8 depicts
an image which is compressed using the algorithm 1 and decompressed using the 8 kernels’
method. In Figure 6.9, the same control point image is decompressed using Delaunay trian-
gulation. In both Figure 6.7 and 6.8 the control points are allowed to to take both even and
odd positions. Figure 6.10 depicts an image which has been compressed using the Discrete
Cosine Transform (DCT) and Huffman coding. A normalization matrix of size 4 x 4 is used.
Figure 6.11 shows a DCT image with a 8 x 8 normalization matrix. Figures 6.12 - 6.16 illus-
trate the same methods for the goldhill image and Figures 6.17 - 6.21 for the airplane image.
Figure 6.22 shows the same Delaunay decompressed image as Fig. 6.3 with a compression
ratio of 1 : 26 with even positions of the control points. It can be compared to a DCT image
with a 4 x 4 normalization matrix in Fig. 6.23 and to the standard JPEG DCT image in
Fig. 6.24, which has a signal-to-noise ratio 34.69 dB. They both have a compression ratio
1:16. Figure 6.25 shows a JPEG DCT image with a ratio 1 : 26. Figures 6.26 and 6.27
depict the airplane image.

Name | Ratio | Points | Pos | Value | SNR
kB kB dB

Fig. 6.8 1:16 | 11258 | 8.04 | 8.08 | 24.63
Fig. 6.9 1:16 | 11258 | 8.04 | 8.08 | 27.19

Fig. 6.10 | 1:17 26.82
Fig. 6.11 | 1:19 29.46
Table 3.2. The obtained data for the peppers

image.
Name | Ratio | Points | Pos | Value | SNR
kB | kB dB

Fig. 6.13 | 1:15 | 11258 | 8.04 | 8.08 | 24.51
Fig. 6.14 | 1:16 | 11671 | 8.21 | 7.47 | 25.32

Fig. 6.15 | 1:16 17.06
Fig. 6.16 | 1:19 28.78
Table 3.3. The obtained data for the goldhil
image.
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IName | Ratio | Points | Pos | Value | SNR
kB kB dB

Fig. 6.18 ] 1:17 | 10736 | 7.20 | 8.00 | 22.21
Fig. 6.19 1 1:17 | 10736 | 7.20 | 8.00 | 24.68

Fig. 6.20 | 1:16 26.60
Fig. 6.21 | 1:18 28.02
le 3.4. The obtained data for the airplane
image.

To conclude, features of the proposed compression methods can be summarized as follows:

1. The best compression results are achieved using the algorithms 1 and 2 described
above.

2. The 8 kernels’ decompression method gives the best results with algorithm 2.

3. The Dclaunay triangulation decompression scheme gives the best results with algorithm
1. This is due to the fact that a sparse distribution of control points given by algorithm
2 and decompressed by Delaunay triangulation will results in a "mosaic look”.

4. The overall performance of the proposed methods is of the same category as the DCT
method with a 4 x 4 normalization matrix. In rather smooth areas where the pixel
values clhiange slowly these methods give better results than the DCT method with
a 4 x 4 normalization matrix. This is clearly visible in the smooth areas of the test
images. See images 6.22, 6.23, 8.26 and 6.27. In areas with rapid change, i.e. high
frequency areas and edges, the DCT method is better.

5. The JPEG DCT method gives a somewhat better reconstruction quality than the
methods presented in this thesis, specially near the edges. See figures 6.24 and 6.25.

The limitations and restrictions of these compression algorithms can be summarized as fol-
lows:

e The compression algorithms presented in this thesis are not suitable for noisy images,
because noise points will results in false distance values for DTOCS and thereby devi-
ating the positions of necarby control points from their optimum.

o Images with only a few gray levels are problematic. For thin edges which are 1-2 pixels
wide, the results are rather poor because the nearest control point in some direction
may be far away on the opposite side of a smooth region. Therefore, for such images,
the algorithms must be modified so that adequate thickness for the edges is achieved.
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3.4 Complexity of the New Algorithms

Let Ng denote the number pixels in the gray-level image. b, d, ¢ and f denote constant
scalars. Let other definitions be as in Chapter 3.2. An upper bound for the time complexity
of algorithm 1 can be derived as follows.

Algorithm 1:
Lines: | Time

2: o(1)

3 o(1)

4-T: O(2N) = O(N)

8: O(Ng - N)

9-10: | O(max(aNg,aNg,aNg)) = O(Ng)
11-14: | O(3a)

15: Huffman is left out

16-21: | O(3am) = ) am)

Let a be a repetition counter, a scalar. Since m = bNg and N < Ng, it follows that an
upper bound for the total number of execution steps is then

O(mazx(1,1,N,Ng — N, N¢,3,abNg)) = O(Ng) (3.8)

Algorithm 2:

Lines: | Time

2: o)

3 o(1)

4-T: O(2N) = O(N)

8: O(Ng - N)

9-10: | O(mazx(aNg,aNg,aNg)) = O(Ng)

11-14: § O(3a)

15 Huffman is lcft out

16-21: | O(4am2n = O(am)

Let a be a repetition counter, a scalar. Since am = abNg, and N < Ng, it follows that an
upper bound for the total number of execution steps is then

O(maz(1,1, N, Ng — N, Ng,3,abNg)) = O(Ng) (3.9)

Algorithm 3:
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Lines: | Time

2: O(N¢)

3: O(Ng)

4: o)

5-8: O(N) operations

9. (NG - )

10-12: | O(maz(aNg,aNg,aeNg,dNg)) = O(Ng)

Let a be a repetition counter, a scalar. It follows that

O(max(Ng,Ng,1,N,Ng — N, Ng)) = O(Ng) (3.10)
Algorithm 4:
Lines: | Time
2: O(Ng)
3: O(Ng)
t o
5-8: O(N) operations
9: O(Ng — N)
10-12: | O(mazx(aNg,aNg,aeNg,dNg)) = O(Ng)
Let a be a repetition counter, a scalar. It follows that
O(maz(NG,NG,l,N, NG—N,NG)) = O(NG) (3.11)

The CPU time tests for the compression algorithms were run on a SUN 5 RISC workstation
using the UNIX time command. Table 3.5 shows the CPU time of compression algorithms 1
and 2 versus threshold and number of control points. The tests point out that the CPU time
of these algorithms is about constant. The compression ratio, i.e. the number of control
points, does not have much effect on the CPU time. Table 3.6 shows the CPU times of
algorithms 3 and 4 versus distance constant and number of control points. Again, the CPU
times remain about constant.

Name Threshold | Image size | Number of control points { CPU time in sec.
Algorithm 1 20 512x512 15940 0.49
Algorithm 1 30 512x512 10266 0.40
Algorithm 1 40 512x512 7036 0.49
Algorithm 1 50 512x512 5215 0.41
Algorithm 1 60 512x512 3968 0.44
Algorithm 2 20 512x512 13013 0.51
Algorithm2 | 30 512x512 9090 0.40
Algorithm 2 40 512x512 6919 0.48
Algorithm 2 50 512x512 5321 0.41
Algorithm 2 60 512x512 4440 0.43

Table 3.5. CPU times for the compression algorithms 1 and 2.
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Name Dist.const. | Image size | Number of control points | CPU time in sec.
Algorithm 3 30 512x512 12619 0.46
Algorithm 3 40 512x512 11722 0.44
Algorithm 3 50 512x512 11186 0.39
Algorithm 3 60 512x512 10743 0.42
Algorithm 3 80 512x512 9738 0.46
Algorithm 3 100 512x512 8501 0.43
Algorithm 3 120 512x512 7157 0.42
Algorithm 4 100 512x512 13377 0.50
Algorithm 4 110 512x512 11623 0.50
Algorithm 4 120 512x512 10018 0.52
Algorithm 4 130 512x512 8281 0.47
Algorithm 4 140 512x512 6066 0.44

ble 3.8. CPU times for the compression algorithms 3 and 4.
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Chapter 4

Discussion

In this thesis, two new distance transforms for gray-level images are presented. As a new
application for distance transforms, the new transforms are applied to grey-level image com-
pression.

The new distance transforms are both new extensions of the well-known distance transform
algorithm developed by Rosenfeld, Pfaltz and Lay. With a little modification their algorithm,
which calculates a distance transform on binary images with a chosen kernel, has been made
to calculate a chessboard-like distance transform with integer numbers (DTOCS) and a
weighted real number distance transform (EDTOCS) on gray-level images. Both distance
transforms, the DTOCS and EDTOCS, require only two passes over the gray-level image
and are extremely simple to implement. Only two image buffers are needed: The original
gray-level image and the binary image which defines the region(s) of calculation. No other
image buffers arc needed even if more than one iteration round is performed. For large
neighborhoods and complicated images the two-pass distance algorithms have to be applied
to the image more than once, typically some 3-10 times. Diflerent types of kernels can be
adopted. It is important to notice that no other existing transform calculates the same
kind of distance map as the DTOCS and EDTOCS do. The difference between the DTOCS
map and the distance transform for the GRAYMAT [Lev70] and the gray-weighted distance
transform [Rut68] is shown. The EDTOCS differs from the DTOCS by calculating the
propagating weights inside a given kernel in a different way. The EDTOCS propagates
local Euclidean subdistances, whereas in the DTOCS the propagating distances are local
chessboard distances added to intcger gray value differences. The time complexity of both
the DTOCS and EDTOCS is O(N), where N is the number of pixels of the gray-level image.

The DTOCS and EDTOCS fulfill the basic requirements for morphological algorithms pre-
sented in [Vin9la]. These requirements are speed, accuracy and flexibility.

The DTOCS and EDTOCS algorithms can easily be applied to 5 x 5 and 7 x 7 kernels. Now
the minimal paths have to be calculated first before the DTOCS and EDTOCS algorithms
can be applied. This is because, contrary to binary cases, the minimal distances from the
points which are farther away from pixel p than Ng(p) are not known in forehand. The
DTOCS and EDTOCS algorithms can easily be converted to 3-pass and 4-pass versions.
Some preliminary tests were made with a 4-pass DTOCS algorithm with the kernels presented
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in [Pip87], but the results were not better than those obtained with a 2-pass algorithm
presented in this thesis. The sequential two-pass algorithms of DTOCS and EDTOCS can
quite easily be converted to parallel versions in the same manner as presented by Borgefors
[Bor86]. This remains to be done in the future, as well as a thorough analysis of 3- and
4-pass versions of the algorithms.

Commonly distance transforms are used for feature extraction in pattern recognition and
learning. Their use in image compression is very rare. In this thesis, as a new application
area, the DTOCS and EDTOCS were applied to image compression. Four compression
algorithms are presented and the results are compared to conventional DCT images and
JPEG images. It is quite obvious that the biggest problems of the compression algorithms
lie near the edges of the images. To improve the quality of the reconstructed images it would
be better to have more control points along the curve segments and to have more paralle]
control] point curves at the edges. This should be done somehow independent of the number
of curve segments and control points at the smooth areas. Otherwise the total number of
points will be too high from the compression ratio point of view.

As shown both analytically and expcrimentally in this thesis, the time complexity of the new
compression algorithms is independent of the number of control points, i.e. the compression
ratio. It is approximately O(N), where NV is the number of pixels in the gray-level image.

Regarding the criteria for choosing a compression technique, the algorithms presented in this
thesis could best be used in applications where a rapid flashing image is made more accurate
as timne goes by. First, a modest number of control points is sent just to make the subject
of the image visible to the viewer, and more control points are sent as soon as possible so
that the decompressed image is enhanced iteratively. These methods could be applied to
transferring time-varying images over a communications channel. It satisfies to send only
control points of those arcas that have changed compared to the previous image frame. Also,
some applications require that an image undergoes the compression-decompression cycle
many times. For example, an image may be compressed and transmitted to a destination
where it is decompressed and viewed. An operator may alter a small portion of the image
and then compress the whole image and send it to another destination where this process
is further repeated. In such applications, it is essential that the repeated compression and
decompression of the unaltered portions does not result in any additional degradation beyond
the first stage of compression. With the methods presented in this thesis it is possible to
alter portions of the image of arbitrary size so that the above mentioned cycle only affects
that portion and does not result in any degradation in other parts of the image.

Furthermore, the new transforms can be used in feature extraction in cases where conven-
tional methods based on binarizing the gray-level images would give no distinction between
the pattern classes.

To conclude, the contributions of this thesis can be summarized as follows:

¢ topresent a new and fast intcger distance transform for gray-level images (the DTOCS),
and a new and fast real number distance transform for gray-level images (the EDTOCS)

e to present, as a new application for gray-level distance transforms, image compression
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algorithms for gray-level images based on the DTOCS and the EDTOCS.
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Chapter 5

Summary of the Publications

This thesis consists of six publications, two articles in an international journal and four
conference papers.

Publication 1 presents a new image compression scheme based on the Distance Transform
on Curved Space (DTOCS). In this method, the curved distance produced by the DTOCS
is compared to the dircct chessboard distance obtained by considering the set X in which
the calculation is performed a binary image. In regions where the difference between the
distances excceds a predefined threshold, a boundary curve is formed. Along the curve,
a one-dimensions! DTOCS is calculated and compared to direct distance. Again, if the
difference between the distances exceeds the threshold, a control point is put on the curve.
Also a new surfacc interpolation scheme is presented in this paper. It uses 8 kernels, or 8
structuring elements, corresponding to the 8 directions on the image plane.

Publication 1 is based on paper Pekka J. Toivanen: "Fast Surface Model Generation Using
Distance Function on Curved Space”, which was accepted for publication in SPIE/SPSE's
Symposium on Electronic Imaging Science & Technology, San Jose, USA, 24 February - 1
March 1991. Paper number in advance program is 1451-27. The author of this thesis wrote
the extended abstract and made the tests based on which it was accepted. The mathematical
formulation of the skeleton defined by the DTOCS was developed and written by the author
of this thesis. The algorithm to calculate the DTOCS was developed together with Dr. Ari
Vepsalainen. The computer program to calculate the DTOCS was written by the author of
this thesis. The compression algorithm which utilizes the DTOCS was developed together
with Dr. Ari Vepsalainen.

Publication 2 presents a new distance transform, called the Distance Transform on Curved
Space (DTOCS) and a sequential two-pass algorithm to calculate it. The introduced trans-
form is used to sclect control points, i.e. points that are considered fundamental for the
reconstruction of the image, from a given gray-level image. The new distance transform
requires a gray-level image and a binary image to determine the region in which the distance
calculation is performed. The maximas in the distance image are directly selected as new
control points and the new distance image is calculated for the set from which the control
points have been excluded. This paper also introduces a parameter a which controls the

41



amount in which the curvature is taken into account in the two-pass algorithm. The im-
ages in this paper are decompressed using a method which applies 8 neighboring points and
calculates first the MD-skeleton among the control points and then triangulates among the
control and MD-skeleton points. The value given to the new point is the weighted mean of
the three triangel points, i.e. 1 control point and 2 MD-skeleton points.

Publication 3 deals with the selection of control points on the threshold boundaries in the
image. This paper introduces neighborhood masks of different sizes moving along the bound-
ary curves given by the difference between the DTOCS and the binary image chessboard
distance. The idea is to avoid control point boundaries being too ncar each other. The size
of thie mask needed to achieve this goal is dependent on the image. Specially at low numbers
of control points, i.c. at high compression ratios, the improvement is clear compared to the
method presented in Publication 2. The signal-to-noise ratios are better than in Publication
2 and also visually the images look better.

Publication 4 presents the same image compression algorithim as Publication 1 and intro-
duces smoothing to the original gray-level images before comression. The smoothing is done
with a 5 x 5 averaging kernel. The signal-to-noisc ratios are compared between images with
smoothing and without it. Also the advantages of smoothing are discussed with example
images. The obtained control point iiages are decompressed using the 8 kernel’s method
introduced in Publication 1, which uses 8 kerncls, or structuring elements, corresponding to
the 8 directions in the image planc.

Publication 5 presents a new distance transform for gray-level images, called the Euclidean
Distance Transform on Curved Space (EDTOCS). It calculates a weighted real number dis-
tance map for an arbitrary gray-level image of arbitrary size. Every pixel holds a value
corresponding to the length of the shortest discrete 8-path to the nearest point in the back-
ground. The area in which the transform is performed can consist of several disjoint regions.
Some analytical results are derived regarding the behaviour of the parameter a. Proofs for
two theorems are given. The EDTOCS is also applied to image compression using a similar
algorithm to the one presented in Publication 2. The results were approximately of the same
quality as in Publication 2.

Publication 6 presents a new distance transforms for gray-level images. It is called the
Distance Transform on Curved Space (DTOCS) and it performs the distance calculation
with integer numbers and gives a distance map, in which the value of every pixel is the
length of the shortest path to the ncarest background pixcl. Along this path, each subpath
between adjacent pixels is calculated as the gray-levcl diflerence between the pixels + 1. The
area in which the transform is calculated may consist of several disjoint regions.

Analytical results for DTOCS arc derived regarding the behaviour of the curvature parameter
a in the algorithm formulas. The eflect of applying kernels of different shapes and sizes are
discussed. Furthermore, the convergence properties of the transform are analyzed. The
convergence analysis is performed on a real world image of diflcrent sizes showing that the
transform algorithm converges to the correct distance map with respect to its definition.
The computational complexity of the transform is dicussed.

12



Errata

In Publications 1, 2 and 3 Definition 2 says: ...The DTOCS -skeleton of an Euclidean set
X : B*=}... It should be: ...The DTOCS -skeleton of an Euclidean set X € R*1...

In Publications 1,2 and 3 Definition 3 says: SK(X) = USn(X). It should be: SK(X) =
UN0Sn(X).

In Publication 1 on page 289 it says:
da = a|F(e) — F*(a)|

db = a|F(e) — F(b))
dc = a|F(e) — F*(c)|
dd = o|F(c) - F*(d)|
df = a|F(e)— F*([)|
dg = a|F(e) - F*(g)|
dh = a|F(c) — F*(h)|
dk = o|F(e) — F*(k)|
It should be:

da = o|G(e) — G*(a)|
db = a|G(e) — G*(b)|
de = a|G(e) — G*(c)|
dd = a|G(e) — G*(d)|

df = a|G(e) - G*(/)|
dg = a|G(e) -~ G*(g)|
dh = a|G(e) ~ G~(h)|
dk = a|G(e) - G*(k)|,

where G(a), G(b), ... denote the pixels in the kernel area in the original gray-level image G(z).
This notational correction applies also to Publication 3 on pages 2.2 - 6.2 and 2.2 - 6.3
and to Publication 4 on page 477.

In Publication 2 it says at the end of page 879 and beginning of page 880: The value given
to the new point is the weighted mean of the 3 triangle points (i.e. control points). It should
be: The value given to the new point is the weighted mean of the 3 triangle points (i.e. 1
control point and 2 MD-skeleton points).

In Publication 4 it says starting from the end of page 482: It gives visually better images
than Delaunay triangulation, as shown in Vepsaldinen and Toivanen (1991). It should be:
The obtaincd images are approximately of the same quality as Delaunay triangulated images.
Some parts are better, specially edges and regions of high frequency texture, and some parts
are worse, typically regions of low frequencies.

In Publication 5 in the proof of Proposition 1 it says:

min[ay/(G(e) ~ G(a))® + 2 + ... and minfa\/(G(e) — G(a))? + 1 + ...).
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It should be:
min[a\/(G'(c) ~G(a))*+ 2+ ... and min[a\/(G(e) -Gla)+1+4....

In the same proof it says:

Since 255 is the maxint, and maxint + 1 = 0, it follows that ...

It should be: Since every term has maxint added to the square root, it has no effect in the
order of magnitude of the terms, and can thercfore be omitted from the equations.

In Publication 5 in the Abstract it says:
It gives the minimum of all the possible exact Euclidean distances for every point measured

from the background.
It should be: It gives the minimum of all the possible piecewise Euclidean distances of the

discrete 8-paths for every point measured from the background.

In Publication 5 on page 984 it says:

1) It gives the exact Buclidean distance transform over the gray-value image.

It should be: 1) It gives a weighted distance transform over the gray-value image, in which
every minimal path is a discrete 8-path and is piecewise Euclidean.
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Figure 6.1. The original Leena
image of zize 512x512x8 bils

Fipure 6.3. Delaunay decom-
pressed image. Compression ratio
1117 or 1:26 with even positions.

Figure 6.5. DCT image. 8 x &
matrix. Compression ratio 1:19,

Figure 6.2. 8 kernels’ methad.
Compression ratio 1118,

Figure 6.4. DCT image, 4 =4
matrix, Compression ratio 116,

Figure 6.6. DOT image, 3 =3
matrix. Compression ratio 1:30.



Figure 6.7. The original pepper-

ITrafEe

Figure 6.9, Delannay decom-
pressed image. Compression ratio
1:16

Figure 6.11. DCT image, 8 = 3

matrix. Compression ratio 119

Fipure 6.8. 8 kernels’ method.
Compression ratio 1:16,

Figure 6.10. DCT image. 4 = 4
matrix. Compression ratio 1:17,



ipure 6.12. The original Gold-
hill image

Figure 6.14. Delaunay decom-
pressed image. Compression ralio
L:16.

Figure 6.16. DCT image. 8 x 8
matrix. Compression ralio 1:18,

Figure 6.13. § kernels’ method,
Compression ralio 1:16.

Figure 8.15. DCT image. £ = 4
matrix. Compression ralio 1:16.
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Figure 6.17. The original air-
lane image

R

Figure 6.18. Delaunay decom-
pressed image. Compression ratio
L1 7

Figure 6.21. DCT image. § x §
matrix. Compression ratio 1118,

Figure 6.18. 3 kernels” method.
Compression ralio 117,

Figure 6.20. DCT image, 4 =4
matrix. Compression ratio |16



Figure 6.22. Delaunay decompressed im-
age.  Compression ralio 1:17 or 126 with
verl posilions.

Figure 6.23. DOT image. 4 = 4 matrix,
Compression ralio 1:16,

Figure 6.24. JPEG T jmage. Compres-  Figure 6.25. JPEG DOT image. Compres-
slom ratio 1:16. sion ratio 1:36.



Figure 6.26. Delaunay decompressed im-  Figure 6.27. DCT image. 4 = 4 malrix.
age. Compression ratio 1:07. Compression ratio 1:16.
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