Digital copy produced with permission of the author.

Julkaisu digitoitu tekijan luvalla.

Lappeenrannan teknillinen korkeakoulu
Lappeenranta University of Technology

Jari Porras

DEVELOPING A DISTRIBUTED
SIMULATION ENVIRONMENT
ON A CLUSTER OF WORKSTATIONS

Tieteellisia julkaisuja
Researcb papers 72

ISBN 978-952-214-755-4  (PDF)



Lappeenrannan teknillinen korkeakoulu
Lappeenranta University of Technology

Jari Porras

DEVELOPING A DISTRIBUTED
SIMULATION ENVIRONMENT
ON A CLUSTER OF WORKSTATIONS

Tieteellisid jutkaisuja
Research papers
72

Thesis for the degree of Doctor of Technology to be
presented  with  due  permission  for public
examination and criticism in the Auditorium in the
Students’  Union  Building  at Lappeenranta
University of Technology, Lappeenranta, Finland
on the 15" of December, 1998, at noon.



ISBN 951-764-270-9
ISSN 0356-8210

Lappeenrannan teknillinen korkeakoulu
Monistamo 1998



Errata

On page | in third paragraph second line reads: equations [Fer94). ...
It should be: equations [Nic93b). ...

On page 2 in fourth paragraph second line reads: Kai90, ...
It should be: Cai90, ...

On page 4 in second paragraph sixth line reads: .., Hut98b, Lin96, Nic93,
It should be: ... Hut98b, Liu96, Nic93,

On page 4 in second paragraph sixth line reads: ... SIMD machines [Aya95) ...
It should be: ... SIMD machines [Aya93) ...

On page 4 in third paragraph seventh line reads: Cle98, ...
It should be: Cle96, ...

On page 5 in third paragraph 17th line reads: [Fuj90]. ...
It should be: [Nic88). ...

On page 10 in second paragraph fourth sentence reads: In the case of homogeneous ...

It should be: In the case of heterogeneous ...

On page 35 in third paragraph third paragraph reads: The use of tthe proposed ...
It should be The use of the proposed ...

On page 43 in reference [Sal93b) reads: European Simulation Symposium, ...
It should be: European Simulation Multiconference, ...

On page 44 in reference [Wag89a) reads: ... Simulation of Queueing: Limitations ...

It should be: ... Simulation of Queueing Networks: Limitations ...

The following references are missing from the bibliography:

(Lub88) Lubachevsky B.: Efficient Distributed Event-Driven Simulations of
Multiple-Loop Networks, Proceedings of the 1988 ACM Sigmetrics

conference, 1988, pp. 12-21.

(Lub89) Lubachevsky B.: Efficient Distributed Event-Driven Simulations of
Multiple-Loop Networks, Communications of the ACM, Jan., 1989, PpP-

111-124.

[Nic88) Nicol D.: Parallel Discrete-Event Simulation of FCES Stochastic Queueing
Networks, Proceedings of ACM SIGPLAN Symposium, 1988, pp. 124-

137.

[Nic93b] Nicol D.: Problem Characteristics and Parallel Simulation, Parallel
Computing: Paradigms and Applications, International Thomson

Computer Press, pp. 418-513.






Preface

The work included into this thesis has been carried out in the Datacommunications
Laboratory, Department of Computer Science, at Lappeenranta University of Technology
during the years 1994-1998.

This thesis was financially supported by the Academy of Finland, Emil Aaltonen Foundation,
Lahja and Lauri Hotinen Foundation, Telecom Finland and Finnish Cultural Foundation,
which are gratefully acknowledged. The scholarship from the Supporting Foundation of
Lappeenranta University of Technology made it possible to finish this thesis.

Several coworkers have aided me to reach this point. Matti Salmi was already doing this
research when I started my own work. As Matti moved to industry Jouni Ikonen joined the
research team. Without their help and the countless fruitful discussions this thesis would not
be ready. Kari Heikkinen gave some valuable comments about the first versions of the
manuscript. Docent Veikko Hara offered guidance on mobile networks.

My supervisor professor Jarmo Harju has always encouraged me to do this work. He took me
into this research project and offered facilities for the research.

Jarc Pornas

Lappeenranta, November 1998



iv



Abstract

Lappeenranta University of Technology
Research Papers 72

Jari Porras
Developing a Distributed Simulation Environment on a Cluster of Workstations
Lappeenranta, 1998

ISBN 951-764-270-9, ISSN 0356-8210 UDK 621.395.38:004.738:004.94

Keywords: Discrete-event simulation, conservative simulation, Chandy-Misra algorithm,
deadlock avoidance, null messages, distributed simulation, message-passing,
critical path, critical time, parallel potential, network of workstations

Simulation has traditionally been used for analyzing the behavior of complex real world
problems. Even though only some features of the problems are considered, simulation time
tends to become quite high even for common simulation problems. Parallel and distributed
simulation is a viable technique for accelerating the simulations. The success of parallel
simulation depends heavily on the combination of the simulation application, algorithm and
environment. In this thesis a conservative, parallel simulation algorithm is applied to the
simulation of a cellular network application in a distributed workstation environment.

This thesis presents a distributed simulation environment, Diworse, which is based on the
use of networked workstations. The distributed environment is considered especially hard for
conservative simulation algorithms due to the high cost of communication. In this thesis,
however, the distributed environment is shown to be a viable alternative if the amount of
communication is kept reasonable. Novel ideas of multiple message simulation and channel
reduction enable efficient use of this environment for the simulation of a cellular network
application.

The distribution of the simulation is based on a modification of the well known Chandy-
Misra deadlock avoidance algorithm with null messages. The basic Chandy-Misra algorithm
is modified by using the null message cancellation and multiple message simulation
techniques. The modifications reduce the amount of null messages and the time required for
their execution, thus reducing the simulation time required. The null message cancellation
technique reduces the processing time of null messages as the arriving null message cancels
other non-processed null messages. The multiple message simulation forms groups of
messages as it simulates several messages before it releases the new created messages. If the
message population in the simulation is sufficient, no additional delay is caused by this
operation.



A new technique for considering the simulation application is also presented. The
performance 1s improved by establishing a neighborhood for the simulation elements. The
neighborhood concept is based on a channel reduction technique, where the properties of the
application exclusively determine which connections are necessary when a certain accuracy
for simulation results is required.

Distributed simulation is also analyzed in order to find out the effect of the different
elements in the implemented simulation environment. This analysis is performed by using
critical path analysis. Critical path analysis allows determination of a lower bound for the
simulation time. In this thesis critical times are computed for sequential and parallel traces.
The analysis based on sequential traces reveals the parallel properties of the application
whereas the analysis based on parallel traces reveals the properties of the environment and
the distribution.
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List of Terms

Term

Agent
Channel time
Connection
Creator
Critical path
Critical time

Event

Logical channel

Logical process

Logical system

Lookahead

Manager

Message

Neighborhood

Non-connected
logical process

- Meaning

Element of Diworse. Contains and executes logical processes (LPs).
Channel time states the time for a channel inside an LP.

Direct logical channel between LPs.

Event ¢, that creates event e; is event e;'s creator.

Shortest path on the event precedence graph.

Cumulative time required on the critical path.

A transaction in the simulation. LPs execute events and the execution
may create new events.

Communication channel between logical processes.

LP, Logical process, models a physical process for the simulation.
Logical processes are executed independently and they interact by
changing events or messages through logical channels.

The physical system is modeled as a logical system for the
simulation. The logical system consists of logical processes and their
interactions.

Ability to predict future events. Necessity for the parallel and
distributed simulation.

Element of Diworse. Controls the start and end of the simulation.
Collects information. Allows monitoring of the simulation.

The simulation event is encapsulated into a message in the
distributed simulation environment when it is transmitted from one
workstation to another. The message is another way to express the
simulation event. In the context of this thesis Message is used as a
synonym for Event.

Neighborhood contains the most important connections for some LP.
Neighborhood is decided according to some criterion. The
neighborhood concept reduces connections in the simulation model
thus reducing synchronization.

A logical process outside the neighborhood of some LP.
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Parallel potential

Physical process
Physical system

Predecessor

Process time

Critical time can be used for calculating the parallel potential of the
application. Parallel potential expresses the parallel properties of the
simulation problem.

PP, Physical process represents a part of the physical system.
Problem to be simulated.

Event €] that is proccssed in some LP before event [4) is event e;’s
2
predecessor.

Expresses the simulation time of a logical process.
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Symbol

Tnm
Tom

Eim

~ Meaning

Timestamp of a null message

Timestamp of a output message

Channel time

Process time

End time of the simulation

Constant lookahead value used in simulation
Timestamp of incoming event

Incoming channel

Outgoing channel

Incoming event
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Chapter 1

Introduction

Mobile communication networks are spreading rapidly all over the world. In Finland the
density of mobile phones has exceeded the 50 % limit. The narrow band of frequencies
available for these networks has forced the operators to use the bandwidth as efficiently as
possible. This has led to small cell sizes and complex power control and handover
procedures. The complexity of cellular systems increases all the time as new services, e.g.
GPRS (General Packet Radio Service) data transmission, are developed. The 3™ generation
wideband networks will increase the complexity even more.

Simulation has been used for decades for the analysis of complex real world problems. It is
suitable in situations where the system is too complex for analytical approach and when the
real system cannot be used for experiments [Kon91]. Therefore, simulation is a suitable
method for modeling current and future cellular systems. Simulation methods can be
categorized into two types:

¢ Continuous time

e Discrete time

In continuous simulation time evolution is typically achieved by numerically integrating
time-dependent  differential equations [Fer94}. In discrete-time simulation the
computational effort occurs at discrete instants in simulation time, called events. Some
efforts to combine these models have been made [Per98]. In this thesis discrete event
simulation is applied to the simulation of a GSM (Global System for Mobile communication)
mobile communication network.

The execution time of a simulation depends heavily on the accuracy and the complexity of
the simulation model used. When the accuracy of the simulation model is increased or more
complex problems are introduced, the model becomes more complex and more
computational resources are needed. The need for resources leads in longer simulation time
if no additional computing resources can be allocated for the simulation. For example,
simulations of communication networks, logical circuits, etc. may require hours, days or
even weeks of CPU time when sequential simulation techniques are used. For real time
network or logic design this is unsatisfactory. Parallel and distributed simulation techniques
seem to provide a promising approach to this problem.

The execution time of a discrete-event simulation can be decreased by using parallel
computing techniques at different levels of computation. One division [Fer94] of these
levels is presented in the following list:



¢ Application level
e Subroutine level
e Component level
e Event level

Application level execution assigns independent replications of the same simulation model
with different input parameters into the available processors. This level of parallel execution
is often referred to as parallel independent replications (PIRS) in the literature [Fuj90,
Lin93, Won96]. The expected gain is quite high as no parallel overhead is introduced at this
level. Unfortunately, this kind of a solution is not sufficient enough if the simulations are
used for example for finding optimal parameters for a problem and earlier results are used as
initial values for the next simulation.

At subroutine level parallel execution is achieved by distributing the subroutines of the
simulation. These subroutines could include random number generation, event processing,
state update, statistics collection, etc. The expected gain is limited as the number of different
subroutines is quite small [Fer94]. In [Dav90, Kau87] this level is referred to as support
function level.

Both component and event level execution utilize the inherent parallelism available in the
physical system modeled. At the component level the emphasis is on the model components
or submodels of the simulation model, whereas at the event level single events are
distributed [Fer94]. Both levels consider the properties of the physical system and therefore
an efficient utilization of the available parallelism is possible. In [Dav90, Kau87] these
levels are called model function level. This thesis concentrates on the distributed discrete
event simulation of the cellular network application at the event level.

During the past years several parallel and distributed simulation algorithms [Cha79b, Jef85,
Kai90, Lub88], environments [Bag95, Cab97, Liu96], languages [Bal89, Fos95], tools
[Ber85, Cub%94, Dia96, Zho97], etc. have been developed in order to help the
implementation process of different applications. Through proper tools the users not familiar
with parallel computing concepts can reduce the run time of their simulations and gain
advantage of recent development. In this thesis another distributed simulation environment is
developed. Novel ideas of multiple message simulation and channel reduction enable
efficient use of this environment for the simulation of a cellular network application.

1.1 Background of the work

Paralle] and distributed simulation have been studied at Lappeenranta University of
Technology since the year 1992. Academy of Finland financed the research project
“Application of Paralle] Computing to the Performance Analysis and Simulation of Mobile
Communication Networks” during the years 1993-1995 and another research project,
“Development of Efficient Methods for the Simulation of Large Communication Systems”
during the year 1996. In the early years the research concentrated on the use of shared
memory multiprocessor computers. Good results (1.5 to 1.9x speedup with 2 processors and
2.5-2.6x speedup with 4 processors) were achieved and reported [Har93b, Har93c, Sal93a,
Sal93b, Har94].



At the beginning of 1995 the research concentrated on the use of networked workstations as
only 2 and 4 processor computers were available. The use of a workstation cluster requires
utilization of a communication network, which complicates the simulation when compared
to a shared memory multiprocessor environment. The transmission delay introduced by the
network slows down the simulation algorithm and can easily dominate the simulation time.
The results of distributed memory workstation cluster work are presented in this thesis.

The amount and type of workstations has changed during the simulation. project. In the
beginning only a heterogeneous environment with various amounts of Sun IPXs, Sun
Classics, Sun Sparcstations and a four processor Sun Sparcstation was available. All these
machines were allocated to different people so equal load could not be guaranteed. The latest
simulation experiments were performed in a group of 9 Sun IPX workstations allocated
solely for the parallel and distributed simulation. This environment allowed stable loads in
each workstation, which resulted in more reliable and steady simulation results.

1.2 Objectives

The objectives for this thesis were set as a change from the shared memory multiprocessor
machine environment to the use of networked workstations was performed. The objectives
were defined as follows:

To study the elements that affect the distributed simulation of a cellular nerwork
application on a cluster of workstations and to improve these elements in order to
achieve as fast simulation as possible.

A distributed workstation environment was implemented for the simulation of cellular
network applications. The implemented environment allowed the study of different elements
from the network components to the algorithmic modifications. Both algorithmic and
structural improvements were developed in order to minimize the effect distribution. Novel
ideas of multiple message simulation and channel reduction together with the known
techniques like null message cancellation and LP clustering enabled efficient use of the
implemented environment for the simulation of a GSM network application. This result was
verified by using the proposed method of critical path analysis based on parallel event traces.

1.3 Related work

The field of parallel and distributed simulation can be divided into several distinct aspects.
Each of these aspects has its own effect on the behavior of the simulation. A lot of work has
been done on these research areas during the last few decades. Some of these areas were
considered during the development of the distributed simulation environment. These are
presented in the following list:

o Parallel architectures

* Synchronization algorithms

e Process scheduling and load balancing

e Performance prediction and analytical studies

» Applications



Synchronization algorithms

In parallel and distributed simulation a lot of work is done ensuring that events are simulated
in correct order, i.e. the causality of events is preserved. The problem arises as the simulation
of the problem parts in different processors proceed independently but the parts may affect
each other. Therefore, a synchronization algorithm between these parts is needed.

Synchronization algorithms can be divided into conservative and optimistic. Conservative
methods use strict synchronization as they allow simulation of only those events that are
absolutely safe, i.e. can be executed without further causality errors. The Chandy-Misra
deadlock avoidance algorithm with null messages [Cha79b] was the first conservative
method developed. The performance of the Chandy-Misra algorithm has since been
improved by several techniques [Fer94, Fuj90, Nic94]:

e Deadlock detection and recovery [Cha81, Mis86]
e Null message cancellation [Mis86, Pre91]

e Conservative time windows [Lub88, Lub89]

e Carrier null message protocol [Cai90, Wo094]

e Appointments [Nic88]

The different improvements to the Chandy-Misra deadlock avoidance algorithm with null
messages have been developed because the original Chandy-Misra algorithm uses a
substantial amount of synchronization messages for deadlock avoidance. In the deadlock
detection and recovery algorithm frequent synchronization messages are avoided by allowing
the deadlock situation and then recovering from it. This method removes unnecessary
synchronization messages but it also introduces overhead due to the deadlock detection.
Null ‘message cancellation reduces the amount of null, i.e. synchronization, messages by
removing obsolete nulls. This method works well if there is a sufficiently large message
population, i.e. messages are not consumed at the same moment they arrive. Conservative
Time Window algorithms increase some synchronization in the asynchronous simulation
algorithms by introducing a time window for the processes in such a way that events within
this window can be safely processed [Fer94]. One such method is Lubachevsky’s Bounded
Lag algorithm [Lub88, Lub89]. The carrier null message protocol increases the information
carried by null messages. The goal of this method is to improve the lookahead ability though
additional information and thus reduce the necessary traffic {Fer94]. Nicol has improved
the lookahead ability of processes by precomputing portions of computation for future events
(Fuj90]. Other studies that have improved the performance of a simulation through
lookahead consideration can be found in [Lin90, Mal95, Nic96, Wag89a, Wag91]. Other
approaches like conditional events [Cha89], Stimulus nulls [Dav90], Eager and Lazy
blocking avoidance [Wag89b, Wag91] have been proposed for different applications.
Overviews on the different conservative methods and their comparisons can be found in
[Fer94, Fuj90, Nic94, Su89]

Optimistic methods allow for the simulation of any event, but when a causality error
happens, events need to be rolled back and a new sequence of events is simulated. The
pioneering work (Time Warp) in optimistic simulation was performed by Jefferson in
[Jef85]. The Time Warp algorithm has since been improved by using different rollback and
annihilation mechanisms. In lazy cancellation, processes do not immediately invalidate rolled



The following subsections present the related work done in these research areas.
Parallel architectures

Architectures used for parallel computing can be divided into several distinct classes
according to various criteria, e.g. control mechanism, memory hierarchy, interconnection
network or processor granularity [Kum94). Various environments have been used for the
research in the area of parallel and distributed simulation. The following subsections classify
the related work into. three different categories:

e Control mechanism: SIMD (Single Imstruction Multiple Data) vs. MIMD
(Multiple Instructions Multiple Data) computers

e Memory hierarchy: shared vs. distributed memory computers

¢ Availability: Multiprocessor supercomputers vs. ordinary PCs or workstations

SIMD and MIMD machines form the core of parallel computers in Flynn's taxonomy
(Dun90). Mainly MIMD type of parallel computers have been used in the parallel and
distributed simulation research because of the asynchronous simulation algorithms.
Especially the use of workstation clusters or networks of workstations (NOWs) [Ana97,
Cab97, Car95, Du97, Mal95, Mey37, Pan97, Pea79, Sch95, Teo%4, Zak97) and
multiprocessor computers [Bou91, Cle96, Dri95, Fer96, Gre94, Hut98b, Lin96, Nic93,
Pha%8, Ron%4, Zen98) has gained a lot of interest. Few experiments with synchronous
simulation algorithms and SIMD machines [Aya95) can be found in the literature.

Both shared and distributed memory systems are widely used in parallel and distributed
simulation. A shared memory environment allows easy and efficient implementation of a
parallel simulation. Fast communication through shared memory makes the environment
usable even for simulations with high communication demands. Even though the achievable
speedups are good, the amount of processors available is in most cases limited to quite a
small number. Examples of work in shared memory environment can be found in [Che98,
Cle98, Har93a, Har93b, Har93c, Har94, Hut98b, Kel96, Kon91, Ron94, Sal93a, Sal93b,
Wag89b]. The distributed memory concept makes the implementation more difficult but the
amount of workstations, i.e. processors, is theoretically unlimited. In practice the usable
number of workstations remains quite low as the interconnection network slows down the
execution. The usability of distributed memory environments can be increased if the amount
of communication through the network can be kept low. Quite recently the number of groups
using networks of workstations has increased. Both homogeneous [Dia%6) and
heterogeneous [Cab97, Du97] systems have been suggested.

The development of multiprocessor PCs and workstations and the popularity of networked
environments has increased the use of ordinary computers [ Ana97, Cab97, Car95, Du97,
Mal95, Mey97, Pan97, Sch95, Zak97] as opposed to the multimillion dollar supercomputers
[ Aya93, Dri95, Fer96, Gre94, Hut98a, Hut98b, Pha98, Nic93, Nic95, Nic96, Zen98) . This
progress will eventually bring parallel and distributed simulation into every day life as
working people usually have access only to ordinary computers. Governments and
companies which can afford supercomputers can still benefit from the research as the results
can be applied to the supercomputers.



back computations as in the original aggressive cancellation. Instead, the lazy cancellation
waits to see if the reexecution of the rolled back events regenerates the same messages
(Fuj90]. Optimistic time windows have the same idea of advancing computations by
moving windows over the simulation time as the conservative time windows had. The goal
of the time window is to limit the optimism to some extent [Fer94]. State saving plays an
important role in the operation of optimistic methods. Different solutions for these problems
have been proposed. State saving solutions and overviews of different optimistic methods
can be found in [Fer94, Fuj90].

Process scheduling and load balancing

Problem partitioning, process scheduling and load balancing between processors play a
significant role in parallel and distributed simulation, as poor partitioning and unbalanced
execution of the problem reduces or even eliminates the advantage of parallel execution.
Especially in distributed environments, e.g. in a network of workstations, where the
communication delay is sufficiently high an imbalance in execution may have a significant
effect on the results. ‘

The goal of problem partitioning is to divide the problem into processes so that the work can
be divided into the processors as equally as possible. Process scheduling makes decisions on
how to distribute the processes among the processing elements in order to achieve some
performance gains [Shi92]. Thus an efficient problem partition is a necessity for efficient
process scheduling. Process scheduling can be performed either statically at compile time or
dynamically at run time. Static scheduling is simple to perform but due to the NP-
completeness of general optimal scheduling and the varying load in processing elements,
only a limited success can be achieved. Dynamic scheduling improves efficiency by
redistributing the processes at run time according to the information gathered from the
processing elements. This redistribution is called load balancing. The goal for the load
balancing strategies is to keep all the processing elements equally loaded. Several
partitioning, scheduling and load balancing strategies for different applications have been
presented in the literature [ Ana97, Ban93, Cab97, Kon91, Nic94, Ree88, Sch95, Zak97].

Performance prediction and analysis

In parallel and distributed simulation the performance depends on several factors. Simulation
algorithms, parallel architectures, applications and their implementation all have their own
effect on the results. Performance prediction can be used before and after the implementation
of the parallel simulator. Both methods have their own advantages.

In some cases it is necessary to know how the parallel simulation of an application would
perform without actually implementing the parallel version. Several methods considering
different aspects have been proposed in the literature. [Cav96]and [Dia96] present several
factors that should be considered when the performance of parallel programs is predicted.
[Dri95) approaches the problem through Amdahl’s law. [Cub94] and [Kom9S6] propose
tools for predicting the performance of some type of systems. All these solutions are either
too general or too dedicated to certain problems to be widely used in parallel and distributed
simulation. The most widely used method in performance prediction and analysis of parallel
and distributed simulation systems is the critical path analysis proposed by Berry and



Jefferson in (Ber85]. It is based on an event trace which presents the events and their
interactions. Critical path analysis has been used to examine the parallel properties of the
application [Ber85, Tay95] and the simulation algorithms [Gun94, Jef91, Sri95].

The critical path analysis method can be used to reveal the properties of the application and
the simulation algorithms. However, as sequential traces are used as a base for the analysis,
some aspects are not considered at all. For example, null messages used for the
synchronization in conservative algorithms have a significant role to the performance when
the simulation is executed in a distributed environment with a high delay communication.
Therefore, in some cases the traces need to be collected from the actual parallel simulation
instead of a sequential simulation. Traces from parallel simulation can also be used for
revealing the effect of architecture and process distribution to the simulation. This thesis
presents a new approach to using a trace from parallel execution for the critical path
computation.

Applications

Parallel and distributed simulation techniques have been used in several different
applications. Queuing networks have been used widely at the development phase of
simulation algorithms [Cai90, Cha79a, Cha79b, Cha81, Cha89, Dav90, DeV90, Lub8s,
Mis86, Nic88, Pre911] as their theory is well known. Other recently used applications contain
manufacturing (Tur98], military problems [Hyb98, Tac98], communication networks
{Hut98a, Hut98b, Pan98, Per98, Pha98, Zen98] and circuit simulation [Che98]. Especially
the simulations of communication networks have increased lately. This is mainly due to the
growing interest in the data and telecommunications field. In this thesis the distributed
simulation environment is designed on the basis of the GSM network application.

my

1.4 Scope of the thesis

In this thesis a distributed simulation environment is implemented on top of a cluster of
workstations. Several aspects affecting the distributed simulation were considered and
improved while implementing the simulation environment. The following assumptions and
limitations have been used:

1. The development of the distributed environment is based on the properties of the GSM
network application. The structures of the environment as well as the algorithmic
improvements have been designed according to this application. Other applications may
not benefit from these structures and algorithms as much as the used application.

2. This thesis concentrates to the use of the conservative Chandy-Misra deadlock avoidance
algorithm with null messages. Algorithmic improvements have been made by reducing
communication. The excessive amount of null messages has been reduced by modifying
the basic Chandy-Misra algorithm [Publication2, Publication4]and by using the null
cancellation technique [Mis86, Pre91].

3. The lookahead value used by the Chandy-Misra algorithm is kept constant at 100 ms.
According to the earlier research [Har93a] this value is as large as possible without a
distorting effect on the application results. Even though many other research projects have



concentrated on the exploitation of maximum lookahead from the simulation applications
it was felt that other aspects affecting the distributed simulation should be considered.
Therefore, this thesis concentrates on the improvement of simulation environment through
structural and algorithmic changes.

. The problem partitioning used in this thesis is simple and no load balancing is
implemented, i.e. static partitioning is used. In the first few experiments the effect of
heterogeneous workstations was noticed in the initial phase of the simulation. Most of the
subsequent simulation experiments were performed in a homogeneous workstation
environment and thus adjusting was not needed. In all the experiments an ordinary 10
Mbit/s Ethernet was used as the interconnecting network.

. Although the distributed environment has been designed according to the GSM network
application, the GSM network has only been used as a simulation application on top of
the implemented environment. GSM specific aspects, like channel utilization, handovers,
power control algorithms, etc., have not been studied more than necessary to ensure the
correct operation of the simulation environment. No GSM specific aspects have been
presented in the publications, except the carrier to interference ratio in Publication 4.



Chapter 2

Distributed Workstation Environment

During the work for this thesis a distributed simulation environment Diworse was
implemented. Diworse is based on the use of networked workstations. Both homogeneous
and heterogeneous workstations can be used, i.e. workstations can be of the same type or of
different type. Experiments have been made in both kinds of environments. The use of a
homogeneous environment is preferable as no differences in computing power need to be
considered. The interconnection network can be of any type. In these experiments only the
results from the Ethernet environment are presented, although some experiments with the
ATM network have been carried out. The following subsections present the elements,
structure and operation of the environment as well as its evolution.

2.1 Logical process concept

For the purposes of parallel simulation, the physical problem needs to be divided into
separate parts. In parallel simulation these parts are called logical processes, i.e. LPs. The
conservative Chandy-Misra algorithm uses the logical system concept proposed for parallel
simulation {Cha79b]. The logical system concept is based on the distribution of a simulation
into two or more independent parts, i.e. logical processes, which can be executed on different
processors. The simulation of events occurs in logical processes independently, but events
may affect other logical processes, and therefore logical processes are connected via logical
channels. All communication between logical processes is performed by interchanging
timestamped events through these channels. Input and output gueues can be attached to
incoming and outgoing channels.

Figure 1. Partitioning of the physical Figure 2. Logical process structure of the
problem into independent parts. physical probtem.



Figure 1 presents a simulation problem that is divided into 8 independent parts. The
partitioning is performed according to the internal properties of the problem. Figure 2
illustrates a logical process structure for the given problem. Each independent part is
modeled as a separate LP and the LPs are connected through channels. In this case the
channels are created between neighboring parts of the problem. Local loop channels
represent delayed actions within a given logical process.

2.2 Elements of Diworse

Diworse is based on the use of networked workstations. In this environment, all logical
processes can be executed in a single workstation or they can be distributed into as many
workstations as there are logical processes. In most cases there are several LPs in each
workstation. In the case of homogeneous workstations, the performance of different
workstations needs to be considered by the user in the initial phase of the simulation as no
load balancing is implemented in the environment so far. Figure 3 presents a distribution of a
simulation problem into workstations. In this distribution only four workstations are used for
the environment, three for the simulation (Agents) and one for the control (Manager).

Figure 3. Division of LPs

Diworse is physically based on the Manager-Agent concept. Agent processes contain the
logical processes of the simulation model, and they take care of the distributed simulation.
The Manager process is used for controlling the start and the end of the simulation as well as
error situations. It does not have any effect on the simulation, it merely synchronizes logical
processes in the beginning of the simulation. All the Agent processes are executed in
separate workstations whereas the Manager process can be executed in a separate
workstation or in the same workstation with one of the Agents. The Manager process and the
Agent processes form the base for the physical communication of the logical simulation
model, since the physical communication happens between separate workstations. In the
Ethernet environment, the interworkstation communication is implemented by using the TCP
(Transmission Control Protocol) and UDP (User Datagram Protocol) protocols. TCP was
found to be the more suitable approach for the distribution because of its reliability.

Both the Manager and Agent processes are based on the same components. All components

of the environment are implemented in such a way that they can be easily modified to fulfill
different requirements. The main components of the environment are based on the logical
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system concept and on the distribution concept. In the following the main components and
their functions are introduced:

Logical process

Logical processes are the main elements of a distributed simulation. They represent both
the simulation application and the distribution. The distributed simulation concept is
implemented through the distributed simulation algorithm to the logical process elements.
Application dependent properties can be implemented on top of this functionality. Logical
processes use logical channels to transfer events in the simulation.

Event

Distributed simulation is based on the execution of events in different logical processes.
The events are transmitted as messages from one LP to another through logical channels.
The receiving LP consumes the incoming events and creates new events according to the
received information. As the events need to be executed in correct order a timestamp is
attached to each event. The distributed simulation algorithm takes care that the events are
simulated in correct order.

Queue

The queue element implements the logical channels of the distributed simulation model.
Different structures, e.g. a binary tree and a linked list, can be defined for different
channels. Queues are used for the communication between logical processes. Incoming
events are placed into the queue by the Scheduler, and they are consumed by the logical
process. For outgoing messages the procedure is the opposite. Null message cancellation
can be easily implemented in the queue class.

Scheduler

The scheduler serves as the communication element of the simulation. For each
workstation participating in the simulation, a single Scheduler is needed. The scheduler
sends and receives messages and directs them into appropriate queues, i.e. logical
processes, according to the sender and receiver information included into the message.
The scheduler also controls the execution of logical processes by using the Round Robin
method, i.e. logical processes are executed by turns inside a workstation.

Socket

Sockets are used for implementing the communication interface between distributed
elements, i.e. different physical processes. Sockets take care of the start and the end of the
communication as well as the transfer of messages between the communicating processes.
Socket elements for different communication environments can be implemented and thus
the Socket element offers a uniform interface to the Schedulers regardless of the
underlying network. In the Ethernet environment both TCP and UDP protocols have been
used.

Figure 4 presents the relations between the main elements of Diworse. The Manager and the
Agents form a single physical process per workstation even if several LPs are run in each
workstation. LPs are gathered together through the Scheduler that transmits the simulation
events from the sender’s output queues to the receiver’s input queues. If LPs are located at
the same Agent it is sufficient to move an event pointer to the receiver LP’s queue. If the LPs
are located at different Agents then a message containing the simulation event needs to be
transmitted through the network. For this purpose the Scheduler uses Sockets.



Process

o)

Scheduler

_/

i [« T,

e

Figure 4, Relation of elements in Diworse

2.3 Layers and classes

Diworse is built by using layers. The simulation application and the physical communication
are separated from the main implementation of the simulation environment. This
arrangement allows modification of different parts without any effect on the other parts. The
layered structure of Diworse is presented in Figure 5. The elements of this structure can be
divided into three distinct layers, i.e. physical network, interface and implementation of the
simulation services, and the simulation application.

Simulation application
Message managers:

Simulation based on the contents of the
received message and state variables

Creation of new messages

Services interface
Specifications of:
Logical processes & state variables
Message contents
Channels &A buffers

e

\i
Implementation of services
Allocation & deallocation of messages
SimLoop algorithm & null messages

Functions for message transmission

4

A »
Distributed Shared ’ Sequenﬁalb

Figure 5. Layered structure of Diworse.

The simulation application level implements the logic of the simulation, i.e. it decides when
to create new messages and what to do with the received messages. New applications can be
easily implemented on top of the service interface by inheriting the properties of the base
classes to the application specific elements. The applications use specifications given by the



interface layer and implement only the functions for the message managers. The simulation
of a message executes exactly those functions which are specified for it in this layer.

The implementation of the simulation services contains functions for the distributed
simulation algorithm and message transmission. The interface to the services contains
specifications (base classes) for the elements, i.e. logical processes, logical channels and
messages, used for the distribution. The distribution environment can be easily changed by
implementing or selecting appropriate message transmission functions.

The implementation of the distributed simulation algorithm can be built to satisfy different
distribution concepts, i.e. sequential, shared memory and distributed memory. The sequential
approach shares the same logical process structure as the distributed and shared memory
environments, but all messages are simulated by using only one logical process and its
message structure. The shared memory environment differs from the distributed environment
only at the message transmission functions. While the shared memory environment moves
messages from one memory place to another the distributed environment sends the message
over the network. The distributed environment can be easily implemented to support several
network concepts, e.g. Ethernet and ATM.

Diworse is based on the object oriented approach. Different elements are defined as separate
classes, The main classes and their main methods are presented in Figure 6. The class
structure of Diworse follows the layered structure of the logical as well as the distributed
system concept presented above. The communication intensive part, i.e. the Scheduler and
the Socket form the base for the Manager and Agent processes. Different communication
networks can be easily used by implementing different network specific Sockets. The logical
process concept is implemented by using the Process, Message and Queue classes. The
Message class corresponds to the events in the logical process concept. The Queue class
implements the logical channels as the Scheduler delivers messages that are put into the
Queue. As the logical process concept uses directed channels, both incoming and outgoing
queues are needed. The operation of the Queue can be implemented by using several, e.g. list
and tree, structures. The application specific part consists of the application specific
processes and messages. The application specific processes contain application specific
functions, e.g. power control and handover procedures in cellular network simulation. The
application specific messages contain the message managers, i.e. methods that take care of
the actual simulation. The message managers process the arriving message and create new
messages according to the received information.

2.4 Setting up the distributed environment

When the simulation application dependent elements have been implemented and compiled
the application can be run on top of Diworse. The configuration of the simulation
environment and the application can be set dynamically. Example | below presents a
dynamic configuration file consisting of two Agents and a Manager.
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Figure 6. Element classes In Diworse
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[GLOBAL)
// Number of sections are given here
NumSections = 5;

// Schedulers i.e. Agents are in these workstations
SchedLst = {

"Schedl”, "sunl.it.lut.fi", 6031,
"Sched2”, "sun2.it.lut.fi", 6032
Y
[Manager]
// Manager host and port
MHost = "sunl.it.lut.fir";
MPort = 6030;
[LP1]
Sched = 1;
NeighLst = {2,3};
[LP2]
Sched = 2;

NeighLst = {1};

[LP3)
Sched = 2;
NeighLst = {1,4};
[LP4]
Sched = 1;

NeighLst = {(3};

Example 1. Configuration file for setting the physical locations of the LPs.

Different aspects of the simulation environment, e.g. the physical locations of simulation
processes, can be set dynamically. The use of dynamic configuring allows changes in
configuration files without the compilation of the code. In Example 1 the configuration file
defines logical process locations, i.e. physical distribution, and connections. In this case the
configuration file defines two Agents and a Manager. The Manager and one of the Agents
are executed at the same workstation (sunl.it.lut.fi). The distributed simulation
consists of four LPs. LPs 1 and 4 are located in Scheduler] whereas LPs 2 and 3 are located
in Scheduler2. Other configuration files can be used for setting up the parameters for the
simulation application. For example in cellular network simulation, these files include
information about locations of base stations, channels used for the communication,
transmission powers, etc.

2.5 Evolution of the environment

The development project started in the beginning of 1995. At that time a shared memory
version of the cellular network simulator was implemented but the lack of suitable
multiprocessor environments restricted the usability of this simulator. Therefore, a change
from a shared memory multiprocessor environment to a distributed workstation environment
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was carried out. Diworse is a result of this evolutionary project. Different aspects of the
distributed environment were studied one at a time and the developed improvements were
implemented into Diworse. The work can be divided into four parts. These parts and their
contents are presented in the following:

Phase 1: Basic operations - year 1995

Several workstations

UDP communication

Each LP a separate process
Basic Chandy-Misra algorithm

In the first phase the general idea of a distributed workstation environment was studied. The
use of several workstations was based on the UDP protocol and each LP was modeled as its
own physical process. This first approach was based on the same basic Chandy-Misra
parallel simulation algorithm that was used in the shared memory version. The cellular
network application was transferred from the shared memory environment to the distributed
environment. Few changes were required as the use of the shared memory environment
allowed pointer transfers. The work consisted mainly of the implementation of known
techniques. The results are presented in Publication 1.

Phase 2: Improvement of communication through algorithmic changes - year 1996

e Improvement of the Chandy-Misra algorithm
e Improvement of the communication by using multicasting

In the second phase the excessive load generated by the basic Chandy-Misra was considered.
Through the improvement of the simulation algorithm the amount of messages was reduced
and the simulation was accelerated. The improved Chandy-Misra algorithm, SimLecp, was
achieved by allowing simulation of several messages in each simulation loop. The
algorithmic improvements were partly based on known techniques, e.g. null message
cancellation, and partly on new ideas, i.e. multiple message simulation. The use of UDP
communication allowed improvement of communication through the multicasting technique.
Through multicasting the amount of messages in the Ethernet network was reduced.
Publication 2 presents the resuits achieved in this phase.

Phase 3: Improvement of communication through structural changes - year 1997

¢ Implementation of the Scheduler element
e Combination of LPs in one workstation into a single physical process
¢ Communication by using TCP

As the communication was improved in the second phase through algorithmic changes, the
structure of the simulation environment became the bottleneck of the simulation. Therefore,
several LPs were combined into one physical process through the Scheduler element. The
use of LP clustering improved the simulation, as single workstations did not need to consider
different physical processes. At the same time the communication method was changed from
the UDP protocol into TCP protocol. Publication 3 presents some of the work done in this
phase.
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Phase 4: Consideration of the application - years 1997-1998

* Reduction of logical channels in the SimLeop algorithm
* Analytical stadies

In phase four the research concentrated on the application specific parts of the simulation
environment. The idea of simulation acceleration through channel reduction was developed
as the simulation model for the GSM network was studied. Although channel reduction can
be applied to any application, the method is highly application dependent as channel
reduction reduces the accuracy of the simulation model. The channel reduction concept
presents a novel approach to speed up parallel simulation. The results of this research are
presented in Publication 4.

The distributed simulation problem was also approached by using analytical methods. The
analytical methods were used to study the parallel properties of the simulation application.
Publication 5 is based on the work done in the shared memory environment and reveals the
properties of the simulation application. Publication 6 extends the analytical examination
into the distributed workstation environment. In this paper a novel idea for analyzing the
effect of distribution in distributed simulation is presented.

2.6 Discussion

Networks of workstations (NOWSs) over a local area network are increasingly being used as a
distributed simulation environment. This type of environment offers a cost-effective platform
for paralle] computing. As the local area networks have not been developed for parallel
processing the communication costs remain quite high. This places severe constraints on
obtaining performance gains from this environment [Pan97]. This thesis presents different
aspects that need to be considered when implementing a distributed simulation environment
on a network of workstations.

The main goal in the use of a distributed environment is to get some performance gains, e.g.
acceleration of the simulation, over the sequential approach. The high communication costs
of the distributed environment tend to make this objective hard to reach. Therefore, careful
consideration should be given to the problem of distribution. The effect of the
communication network on performance can be minimized by providing faster
interconnection networks or by reducing the amount of communication. The first approach
contains the use of new networking solutions, e.g. ATM, FDDI and fast Ethernet, as well as
provision of custom interconnects, e.g. Myrinet [Pan97]. In this thesis the approach for
reducing the slowing effect of communication is based on the second method, namely the
reduction of required communication. This reduction has been achieved with structural and
algorithmic changes.

Structural changes like LP clustering have been used for improving the efficiency of the
simulation [Bou91, Mal95, Sim95]. LP clustering reduces the communication through the
network by moving some of the communication to happen within a cluster of LPs, i.e. within
a single workstation. Unfortunately, it also reduces the achievable parallelism as LPs within
a cluster cannot be executed in parallel. However, LP clustering was successfully used in this
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thesis. Another structural modification could be the merging of several messages into a
single message. This method reduces the communication overhead per message as the
constant communication cost is higher than the additional cost of sending a longer message.
For small messages the merging would not necessarily introduce any additional overheads.
This method works well if the message population is sufficiently high. With low message
population the message merging could introduce additional waiting delay when some LPs
wait for the next event. Message merging is still to be tried out in our distributed simulation
environment. The multicasting technique works like message merging but multicasting
allows the sending .of the same message to multiple receivers with only one physical
message. Moderate results were achieved with this technique.

Algorithmic changes are another way of affecting the communication. The amount of
messages required for the simulation were reduced by using null message cancellation and
multiple message simulation (see results from Publication 2). Both of these methods affect
the amount of synchronization, i.e. null messages. A method considering the application, i.e.
channel reduction, was also developed. Channel reduction is based on a novel idea of LP
neighborhoods. This method reduces LP synchronization thus allowing faster simulation.
Algorithmic improvements are considered more thoroughly in Chapter 3 below.

The efficiency of the distributed simulation environment can also be improved by other
means than reducing communication. Process scheduling and load balancing are important
aspects that should be considered. Good results cannot be achieved if the work is unevenly
divided among the workstations. In this thesis a static scheduling of LPs has been used. It
was felt that the work can be divided equally enough. However, both the analytical approach
and the real simulations (Publication 6) show that in some cases load balancing could
improve the execution.
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Chapter 3

Development of the Simulation Algorithm

In parallel simulation the simulation algorithm plays an important role as the LP
synchronization and the possible deadlock situations need to be solved. Synchronization of
distinct LPs is required in order to preserve the correct simulation. Deadlock situations may
happen if LPs, somehow, start waiting for each other. In this thesis these aspects are included
into the basic Chandy-Misra simulation algorithm used in the first implementation of the
simulation environment. In the Chandy-Misra deadlock avoidance algorithm deadlock
situations are totally avoided by using special synchronization, i.e. null messages. In this
thesis further development of the simulation algorithm has reduced the amount of
synchronization while keeping the algorithm deadlock free. The initial work, i.e.
implementation of the Chandy-Misra algorithm, and the null message cancellation are based
on work done by others. Other modifications, i.e. multiple message simulation in SimLeop
and the neighborhood restriction, have been developed and published by the author of this
thesis. The following subsections present the work done in the development process of the
simulation algorithm.

3.1 Basic Chandy-Misra deadlock avoidance algorithm

The basic Chandy-Misra algorithm uses the logical process structure of the parallel
simulation model. Logical processes are connected by logical channels and they
communicate by interchanging timestamped messages through these channels. The logical
processes maintain a local process time T, for stating the local time of the simulation. They
also maintain a channel time Tq, for each incoming channel. Channel time equals the
smallest timestamp of the messages in the incoming queue attached to the channel or, if the
queue is empty, the timestamp of the message last read from the channel. A logical process
repeatedly searches for the incoming channel with the smallest channel time. If the selected
channel has a message, it is read and processed, otherwise the logical process continues
searching for channels until a message is available. The Chandy-Misra algorithm is presented
in Algorithm 1.

The Chandy-Misra algorithm ensures that messages are simulated in correct order and no
deadlocks occur in the simulation. Chandy and Misra have shown in [Cha79b] that deadlocks
can be avoided by sending a special null message to each output channel after the simulation
of a real message. The null message contains only timing information, i.e. timestamp. The
timestamp of a message reveals how far the simulation has proceeded, i.e. reception of a null
message with a timestamp T, ensures that the logical process which sent the null message,
certainly does not later send any messages with timestamps Top < Tom. The simulation of a

19



received null message does not change the state of the logical process or cause any other
operations than new null message transmissions.

Algorithm 1: Basic Chandy-Misra algorithm
1 T,=0

2 WHILE T, < Ty DO

3 FORALL incoming channels C,

4 ‘Enqueue NewMsgs(InQ)

5 Update channel time T,

6 ENDFOR

7 Select the incoming queue InQ with smallest channel time Ty,
8 IF IsMsg(InQ) THEN

9 Eim = Dequeue NextMsg(InQ)

10 Tp = Tim

11 Simulate(Ei;,)

12 Enqueue NewMsgs(OutQ)

13 FORALL outgoing channels C,y
14 ReleaseMsgsUpTo(T,+T¢)

15 SendNuliMsg(T,+T)

16 ENDFOR

17 ENDIF

18 ENDWHILE

In a conservative simulation a logical process i cannot send a message to another logical
process j until it can be sure that no messages with a smaller timestamp will be sent in the
future. As a result of this some amount of simulated time need to elapse before the message
can be safely transmitted. This amount of time depends on the ability of the process to “look
ahead” into the future {Fuj89]. Chandy and Misra have stated in [Cha79b]that in some
cases it is possible to deduce the histories of messages that will be sent from logical process i
to some other logical process j up to some time ' solely from the histories of messages
received by logical process i up to some earlier time 1. In this case messages sent by logical
process i to logical process j in the interval (z,t") are independent of messages received by
logical process i after t. Thus lookahead ability can be considered as a property of the
simulation model to predict the future events. In this thesis lookahead is implemented by
using the constant timestamp increment .

3.2 Null message cancellation

Null messages are a necessity for the operation of the Chandy-Misra algorithm as they
synchronize the LPs and take care that deadlocks cannot occur. However, these
synchronization messages may have a significant effect on the performance of the Chandy-
Misra algorithm. Especially in the distributed environment an excessive number of null
messages siows down the simulation as the messages need to be transmitted through a
relatively slow transmission network. Null message cancellation [Mis86, Pre91]is one of
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the existing techniques to reduce the effect of null messages. In this thesis null message
cancellation is used with our own improvements, i.e. multiple message simulation and
channel reduction.

Null message cancellation efficiently reduces the amount of null messages in the Chandy-
Misra algorithm (see Publication 2). This method is based on the fact that null messages
contain no other information than a timestamp. Therefore, several subsequent non-simulated
null messages can be reduced into a single null message containing the timestamp of the last
null message. Null message cancellation can be implemented in several ways. The messages
themselves can be canceled, in which case there must be functions which remove obsolete
null messages from the queue structure whenever necessary. Another way to implement the
null cancellation is to have a single variable telling the latest timestamp of all null messages
for each channel. This method does not need to handle queue structures and thus can be
implemented easily. In this thesis null message cancellation is achieved by using the variable
approach.

3.3 SimLoop algorithm

The performance of the Chandy-Misra algorithm can be improved through existing
techniques like null message cancellation. However, null message cancellation affects only
the null messages but not the real messages. In this thesis the simulation of real messages is
accelerated by using the multiple message simulation technique developed by the author.

In the basic Chandy-Misra algorithm the main loop (Algorithm 1: lines 2-18) is traversed for
each message to be simulated. Therefore, the message receive (Algorithm 1: lines 3-6) and
release functions (Algorithm 1: lines 13-16) are performed in each simulation loop. These
functions generate a moderate overhead as only minor changes are expected to happen during
the simulation of a single message. The overhead caused by these functions can be decreased
by allowing the simulation of several messages within a single simulation loop. This multiple
message simulation technique reduces unnecessary channel updates but delays the release of
new messages. Both the null message cancellation and the proposed multiple message
simulation techniques were implemented to our distributed simulation environment Diworse.
These two modifications form an efficient simulation algorithm SimLeop. The SimLeop
algorithm is presented in Algorithm 2.

The main idea in the SimLeop algorithm is that every logical process simulates messages as
long as there are messages available. In each simulation loop new messages are received and
channel times are updated (Algorithm 2: lines 3-6), available messages are simulated
(Algorithm 2: lines 7-16) and the created messages are released (Algorithm 2: lines 17-22).
In the proposed algorithm the multiple message simulation is achieved by an internal loop
within the main loop. The use of an extra channel update (Algorithm 2: line 14) within this
internal loop makes it possible to simulate several messages without a message reception or
transmission. Due to this structure the logical processes can simulate events up to the current
process time plus lookahead before new messages need to be released.
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Algorithm 2: Simlep algorithm

1 T,=0

2 WHILE T, < Tcog DO

3 FORALL incoming channels C;,

4 Enqueue NewMsgs(InQ)

5 Update channel time Ty,

6 ENDFOR

7 DO

8 Select the incoming queue InQ with smallest channel time Ty,
9 IF IsMsg(InQ)

10 Eim = Dequeue NextMsg(InQ)
11 Tp = Tim

12 Simulate(F;y)

13 Enqueue NewMsgs(OutQ)

14 Update channel time Ty, of the InQ
15 ENDIF

16 WHILE MsgAvailable

17 FORALL outgoing channels Coy
18 ReleaseMsgsUpTo(Tp+T4)

19 IF no message released to Cou

20 SendNuliMsg(Couo Tp+Ta)

21 ENDIF

22 ENDFOR

23 ENDWHILE

The simulation process advances by executing the simulation loop, where the logical process
traverses through channels according to the channel time and simulates messages available in
the selected channels. In the beginning of the loop the logical process has a process time T,
and the last message sent by the logical process has a timestamp of current process time plus
lookahead, i.e. T, + T, This message is sent in the end of the previous main loop of the
simulation. If the lookahead is the same for all logical processes then the logical process may
receive messages from other logical processes with timestamps up to the current process time
plus lookahead plus lookahead, i.e. T, + To + Ta. This is two lookaheads greater than the
current process time which means that messages with higher timestamps than the current
process time plus lookahead need to be simulated in the next simulation loop. The restricting
element here is the queue to the logical process itself. The latest timestamp received by the
logical process from itself is the current process time plus lookahead, i.e. T, + Ty Therefore,
the logical process cannot proceed beyond this time and it must release outstanding
messages. These restrictions are illustrated in Figure 7. In optimal conditions, several
messages can be processed within a single simulation loop, which may last as long as the
time of one lookahead.
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Figure 7. Restriction of execution in SimLp.

The SimLeop algorithm allows for the simulation of several messages before any created
messages are released. If this method is compared to the original method where the messages
are released after each simulated message the following aspects should be considered:

¢ synchronization overhead, i.e. number of null messages is reduced

» real messages may be unnecessarily delayed

These aspects have opposite effects to the performance of the simulation. The reduction of
null messages improves the distributed simulation as a smaller amount of messages need to
be transmitted between workstations. Parallel overhead is also reduced as certain functions,
e.g. channe] update, need to be executed less frequently. The negative effect of the SimLeop
algorithm is the additional delay introduced to the created real messages. This delay is
generated during the main simulation loop as the created messages need to wait until all
possible messages are simulated. The introduced delay is meaningless if the population of
simulation messages is sufficient, i.e. LPs have enough work to do while these new messages
are kept at the creator LP. For low message population the delay may affect the simulation as
LPs are waiting for the next message to arrive.

3.4 Neighborhood concept and the reduction of logical channels

Both the basic Chandy-Misra and the SimLeop algorithm are based on the use of a logical
process model. According to the model, an LP has logical channels or connections to all
those LPs that need to communicate with it. The Chandy-Misra parallel simulation algorithm
uses these logical channels for the synchronization of the connected LPs. The
synchronization in the Chandy-Misra algorithm restricts the overall progress of the
simulation as connected LPs must proceed within a certain time limit. When the number of
connected LPs increases the synchronization becomes a major restriction in the simulation.
Therefore, synchronization should be minimized as much as possible. In this thesis the novel
idea of an LP neighborhood is introduced to reduce the synchronization.

The idea of the neighborhood can be seen from Figure 8 and Figure 9. The original
neighborhood of LP3 is presented in Figure 8. This neighborhood contains all connections
from the physical model (see Figure | and Figure 2). Instead of connecting LP3 to all
necessary LPs, LP3 can be connected only to the most significant LPs. When the connections
are reduced to the most important ones, the LP neighborhood presented in Figure 9 is
achieved.
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Figure 8. Original neighborhood of LP3. Figure 9. Reduced neighborhood of LP3.

By establishing a neighborhood for an LP, the number of its connections is reduced. As the
number of logical channels decreases, the synchronization between LPs diminishes and the
simulation proceeds with less constraints. The reduction of the synchronization is due to the
lookahead used in the Chandy-Misra algorithm. The process times of the neighboring LPs
must proceed within a lookahead, whereas the bounds are larger for other LPs. The
neighborhood concept reduces the synchronization in the simulation but the synchronization
to the LPs outside the neighborhood does not entirely disappear. The reason for this is that
new neighborhoods extend the concept of synchronization outside the original neighborhood.
Therefore, all LPs in the model are somewhat synchronized through the neighborhoods, but
the synchronization diminishes as the distance between the LPs increases.

The selection criteria for the neighborhood are important as “direct” logical channels should
be reserved for significant connections only. Several criteria, e.g. the volume and importance
of messages in a logical channel, can be used for the selection. The suitable criteria depend
heavily on the simulation application and it may be hard to select the optimal neighborhood
for an LP based on a single criteria. In some cases the neighbors should be picked up one by
one according to the application specific needs. For example, if only a limited number of
messages is transmitted through a certain logical channel, then the LPs connected through
that channel may have a weak dependency and they should not belong to each others’
neighborhoods. On the other hand these messages may contain necessary information, which
makes the channel vital for the simulation model and therefore those LPs should be included
into each others’ neighborhoods. Similar conclusions can be made for the high volume of
messages. Thus, the connections are highly application dependent and a good knowledge of
the application is needed for the optimal neighborhood selection.

The neighborhood concept reduces the synchronization efficiently by removing connections
between the communicating LPs. Although the connections are removed, the communication
need between LPs may still exist. In order to achieve as correct results as possible, messages
from these non-connected LPs should be taken into account. Since the basic Chandy-Misra
algorithm does not take events from a non-connected LP into account, a method for their
transmission must be implemented. Two separate methods have been studied and are
proposed by the author.
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Message path

The Message path method is based on a closed path from a logical process through other LPs
back to the source LP. Therefore, a non-connected LP may be reached by sending a message
through this closed path. Figure 10 presents a sample network of logical processes and a
possible path through the model. The different shades in this figure represent the division of
LPs into four workstations as can be done in Diworse. In this case there are four
workstations and each of them contains a group of LPs.

-
Wi
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Figure 10. Message path from the transmitting LP to the others.

Message path is a simple method for the delivery of messages to non-connected LP(s) as it
only requires the existing structures of the communication. The transmission path uses the
same logical channels that are implemented for the neighborhood communication. However,
this method is suitable only for those messages that have a small effect to the simulation,
singe all messages in this path are delayed in proportion to the length of the path. The closed
path also causes a non-optimal network usage in the distributed environment as messages
may be delivered several times between the same two workstations. In some cases it might
be hard to find a closed path in the simulation model.

Broadcast messages

The Message path method successfully reduces the connections by using the neighborhood
concept, but the drawback is the delay introduced by the path. The Broadcast messages
method uses the clustered workstation structure of Diworse to reduce the delay between non-
connected LPs. The delay of a message can be reduced by transmitting the message to all
necessary LPs at the same time. This can be done by using a centralized transmission of
messages. A message is delivered to all necessary workstations at the same time and the
workstations then locally deliver the message to the corresponding LPs. Figure 11 presents a
sample network of logical processes and the delivery of a message to all workstations and
LPs. The thick arrows represent the message from one workstation to the others. The thin
lines present the delivery of messages to the local LPs.

The Broadcast message method is more complicated than the Message path method, as
separate queues are needed for the non-connected LPs. As new non-synchronous channels
are added, the Chandy-Misra algorithm has to be modified to take the messages from the
non-connected LPs into account. The implementation of the broadcast messages method can
be done in several ways. The original channels can be divided into synchronous (for
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connected LPs) and non-synchronous (for non-connected LPs) channels, or removed
channels can be replaced by a single non-synchronous channel. In this thesis the latter
approach has been used as it requires only minor changes to the implemented algorithm.

Figure 11. Broadcast messages method.

In the Broadcast messages method the overall delay of a message is smaller than in the case
of message path but the modified algorithm should observe that in some rare cases the event
times need to be corrected. The network usage in a distributed workstation environment is
near optimal as the message is delivered only once to each workstation.

Accuracy of the simulation results

The neighborhood idea is based on the locality of the communication. For example in the
cellular network application a minority of the channels take care of the majority of
communication and thus most of the channels transfer mainly null messages. This disparity
is corrected by cutting down the idle channels. This cutting does not come for free as the
neighborhood is restricted and the synchronization is reduced at the expense of simulation
accuracy. The effect of restrictions on the neighborhood need to be verified in order to
preserve the desired accuracy in the simulation.

The basic Chandy-Misra algorithm and the lookahead property ensure that the simulation
events occur in the correct order and the LPs are synchronized. However, the restriction of
the neighborhood in the simulation model and the proposed communication method between
non-connected LPs may have the result that an additional delay is introduced to the events. In
the Message path method the delay increases as the message advances in the closed path and
the lookahead is added to the event time in each LP. This delay inevitably creates
inaccuracies to the results as events happen too late.

In the Broadcast message method simulation events suffer from a smaller delay but
correction of event times may be needed due to the distance between the LPs, As the distance
between the LPs in the simulation model increases, the dependency of the LPs decreases,
which allows the LPs to proceed within a broader time difference. Therefore, non-connected
LPs may proceed at different pace, as a result of which process times may differ by several
lookaheads and some event times need correction.

Event times need to be adjusted whenever a non-connected LP with smaller process time
sends a broadcast message to an LP that already has passed that time. In this case the
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message time need to be increased to the current process time of the LP, i.e. rollback of
events is not carried out. Even though event times need to be corrected in the Broadcast
message method, the actual effect on the simulation is smaller than the effect of event delay
in the Message path method. The difference of the inaccuracies in these methods increases as
the size of the simulation model is increased.

3.5 Discussion

The performance of the distributed simulation environment can be improved by carefully
considering the different aspects affecting the simulation. The main emphasis in our
algorithmic modifications is on the consideration of the communication delay and its
reduction. Most developments aim at the reduction of transmitted events, thus reducing the
effect of a relatively slow communication network in our distributed simulation environment.

Null message cancellation has a significant role in reducing unnecessary synchronization
messages. Through this technique the number of messages in the simulation was reduced to
one tenth of the original amount (see Publication 2). Simulation time dropped with the same
proportion. The proposed technique of simulating multiple messages in each simulation loop
improved the simulation even more. Through this modification the results became more
insensitive to the simulation load, i.e. the curves became almost linear (see Publication 2).

The simulation was further improved by considering the simulation application, i.e. cellular
network. The proposed neighborhood concept and the reduced communication accelerated
the simulation considerably with only a minor effect on the simulation accuracy. The
Message path method was only slightly slower than the broadcast messages method but the
simillation accuracy of the message path method was notably worse than in the case of
broadcast messages [Por97]. In the broadcast messages method the simulation accuracy
remained good even when the connections were reduced. Algorithmic speedups between 3.8
to 8.7 were achieved when compared to the original model (see Publication 4).
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Chapter 4

Analytical Study of Distributed Simulation

Analytical methods can be used for studying the parallel properties of the simulation model
or the application before actually implementing any parallel code. The critical path analysis
presented by Berry and Jefferson in [Ber85) has been widely used for the analysis of
different synchronization protocols. Supercritical properties of some optimistic algorithms
have been shown by using this method [Gun94, Jef91, Sri95]. The following subsections
present the basic ideas of the critical path analysis, an implementation of the existing ideas
and a novel idea of how to use critical path analysis to reveal the effect of the simulation
environment.

4.1 Critical path analysis

Critical path analysis is an analytical approach for solving the lower bound for the parallel
execution time as several processors execute a problem. Critical path analysis is based on an
event trace from the real simulation of the problem. The obtained trace is transformed into a
directed event graph whose edges are weighted with real times representing computational
and communicational delays. The weights need to be selected in such a way that they
represent the timing characteristics of the execution hardware and the communication
network. When the directed graph has been constructed a critical path algorithm can be
applied to find out the longest weighted path in the graph. This logical path from the first
event to the last event represents the lower bound for the simulation in the given hardware
[Ber85) . This lower bound is valid mainly in the conservative methods as certain variants of
the optimistic Time-Warp method are shown to be supercritical [Gun94, Sri95].

The creation of a directed graph for several processors is limited by two constraints, i.e.
predecessor and creator relationships. These constraints restrict the paralle] execution of
events as the constraints need to be fulfilled before an event can be scheduled for the
execution. The creator relationship represents a situation where an event ¢; causes an event
e2. Thus event ey (creator) naturally needs to be executed before event e,. The predecessor
relationship represents a situation where events ey and e, are scheduled to the same logical
process and the timestamp of event e, is less than the timestamp of event e,. Therefore, event
ey 1s executed before event e». The earliest possible completion time T;, i.e. critical time, for
event ¢; can be calculated by using the critical times of its creator and predecessor as follows:

T, = max{ Tpred(i)  Tereati) } + ATi,

where AT; is the required execution time of event ¢; and Tprea) ANd Tereaqs) are the critical times
of the predecessor and creator respectively. The critical time of the last event in the critical
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path represents the lower bound for the execution time of the conservative simulation. An
example of critical path analysis is presented in Figure 12 and Table 1.

T
5 0 E6 Table 1. The earllest completion times of
\ events In the simulation model.
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Figure 12. An example of a small
simulation model.

Figure 12 presents the logical processes (a, b and c), events (I to 6) and their relations. The
vertical axis shows the timestamps of the events and the horizontal the different LPs. Table |
presents the events, their execution times, creator and predecessor events as well as the
critical timesT; of the events. The critical time of the whole simulation is the maximum of all
critical times, in this case 9 units. The sequential simulation would require 14 units and thus
the achieved speedup is 14/9 = 1.56.

4.2 Revealing parallel properties

The critical time computing requires information about the events, their relations and
execution times. This information can be easily obtained by collecting a trace from the actual
simulation and by measuring the event execution times in a given environment. In this thesis
the critical time calculation is divided into two classes, i.e. sequential and parallel, according
to the method used for trace gathering. The method based on a trace from sequential
simulation has been used by several authors. In this thesis another method that uses a trace
from parallel simulation is proposed. The following subsections present the applicability of
these two approaches.

Sequential event trace method

In this thesis the sequential event trace method has been used for computing the parallel
potential of the application, i.e. the efficiency how well the increased number of processors
can be utilized with the given application and the selected simulation model. A simple
procedure was implemented to do this. This procedure follows the work done by Berry and
Jefferson in [Ber85]. The phases in the procedure to assess the parallel potential of a
simulation model are summarized in Figure 13.
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Figure 13. A simple procedure for calculating the parallel potential of the application.

In the beginning, a real system must be modeled by identifying the logical processes and
events. The decisions made in this phase have a direct impact on the parallel potential of the
model and therefore, the modeling is an iterative process. The second phase of the procedure
consist of the gathering of event traces and the measuring of the event execution times in the
execution environment. In this phase a simple sequential implementation of the simulator is
sufficient. Lin has proposed a method that does not require separate trace collection [Lin92]
but in this work the trace file was produced by a sequential simulation. Although the event
execution times depend on the architecture, it is anticipated that in the broad scale, the
computed parallel potential gives a good insight of the applicability of the model to other
architectures as well. The third phase of the procedure is the computation of the parallel
potential of the simulation application. The produced trace file and the measured event
execution times are needed at this phase. For the computation, the user can specify the
number of real processors (P) and the LP to P mapping algorithm. Three alternatives have
been implemented for the mapping algorithm:

» fixed one-to-one mapping,
¢ fixed user defined mapping and
¢ dynamic mapping.

These mappings are illustrated in Figure 14.

Figure 14. LP to P mappings.
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The fixed one-to-one mapping executes every logical process in its own physical processor.
This alternative produces directly the critical time of the simulation model, i.e. the selected
simulation model cannot be executed faster. This is usually done first for any simulation
model, since the achieved speedup gives quickly a rough estimate of the reasonable number
of processors that should be allocated for the simulation model. Using as many processors as
there are logical processes is rarely reasonable for a large number of logical processes, since
often the model cannot fully utilize the available parallelism.

The next step is to search for a knee point, beyond which adding more processors does not
significantly increase the speedup. In architectures where dynamic mapping of events to
processors is not possible, e.g. distributed environments, the user may want to use the second
alternative, the fixed user defined mapping. In this mapping the user defines which logical
processes are to be executed in a given physical processor. The load should be divided
equally to every physical process in order to get the best result. In all other respects, the third
alternative, dynamic mapping is preferable. Whenever an event becomes eligible for
execution, in dynamic mapping it is simulated by the processor that has been idle for the
longest period.

Usually, only a few computations around the number of processors reported by the fixed one-
to-one mapping is required to find out the suitable number of processors. If the speedup is
still low and enough processors are available, another fixed LP to P mapping, if used, should
be tried first. If the remapping does not help or the fixed user defined mapping is not used, a
reconstruction of the LP structure of the simulation model may help.

Parallel event trace method

The use of the sequential trace in critical path analysis reveals the parallel properties of the
application, the simulation algorithm, the selected simulation model as well as the simulation
environment in environments where the communication cost is insignificant. The distributed
simulation environment differs from the shared memory environment as the communication
network has its own effect on the simulation. The use of the sequential trace is still advisable
for the comparison of different simulation models. However, the use of the sequential trace
in the distributed environment merely illustrates the parallel properties of the application, not
the simulation algorithm or the environment. Therefore, in the distributed simulation
environment the sequential trace is insufficient to capture all the aspects of parallel
simulation. Both algorithmic and environmental properties can be analyzed by running the
application in parallel and obtaining the trace from the parallel run. This requires parallel
implementation of the program but allows the examination of the distributed environment.
This novel idea has been proposed and implemented by the author of this thesis.

Our critical time calculations in the distributed environment were performed by using
simulation traces and event execution times from the actual distributed simulations. Figure
15 presents the proposed procedure that can be used for obtaining critical time results for the
given problem in a distributed environment. The proposed procedure captures application,
algorithm and environment depending aspects.
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Figure 15. The procedure for obtaining the critical time of the application.

In the measurement phase the simulation traces and information concerning event execution
times are gathered. Both the event processing times in a certain environment and network
delays for each event need to be measured as the critical times depend on both of these
aspects. When the traces and measurements are obtained the configuration, i.e. the desired
number of workstations and the LP distribution, can be selected. It should be noticed that the
user defined LP to P mapping need to be used as dynamic mapping is not reasonable in the
distributed environment. The event execution times are updated to the traces according to the
selected configuration. Critical path analysis is then performed by using these updated traces.
Same traces can be used for different configurations by updating the configuration
information to the traces, i.e. changing event execution times and distribution information.
The proposed technique can be used for estimating the behavior of the simulation model with
the given number of processors and LP distribution. The effect of different LP distributions
can also be studied.

4.3 Discussion

Critical path analysis can be used for predicting the performance of the given simulation
application, algorithm, simulation model or environment. If there is sufficient knowledge
about the application’s parailel potential with different simulation models, this analysis can
be performed by using a simple sequential trace. If the properties of the algorithm or the
environment are required, the sequential trace is insufficient and the proposed parallel
technique needs to be used.

The parallel potential of the simulation application has been studied in Publication 5. For
dynamic LP to P mapping the speedup curves show a clear upper bound for the number of
useful processors. However, dynamic mapping is applicable mainly in shared memory
environments. Static mapping corresponds to distributed architectures as LPs cannot be
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dynamically moved from one LP to another due to high communication costs. With static
mapping no clear knee point was found. According to the results, the application and the
selected simulation model seem to have a moderate portion of parallel potential, i.e. a large
number of processors can be utilized quite efficiently.

The effect of the distributed environment to the parallel potential has been studied in
Publication 6. A user defined LP to P mapping was used instead of dynamic mapping. A
knee point, where the network delay starts dominating the simulation, was expected to be
seen in the results. This knee point was found and this proved that the selected application
can be simulated on a distributed environment quite effectively. The achieved results also
revealed that critical path analysis can be used as a fairly accurate performance prediction
method.
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Chapter 5

Conclusions -

Parallel and distributed simulation is an expanding area of research as more and more
complex problems need to be solved within reasonable time limits. A lot of work has been
done during the last few decades in this field. In the 70’s and 80’s the research concentrated
on the development of different parallel simulation methods and algorithms. In the 90’s a
larger portion of research has been dedicated to different applications and tools. This thesis
presents a study that uses an old parallel simulation algorithm [Cha79b} and modifies it to
be used efficiently in a distributed environment. Both existing and new approaches have
been used in this process. The basic Chandy-Misra algorithm, the null message cancellation
method, LP clustering and critical path analysis are examples of existing techniques used in
this thesis. Multiple message simulation, neighborhood reduction and paraliel trace based
critical path analysis are the main ideas developed by the author. Through these methods the
original simulator based on the use of shared memory was successfully implemented to a
distributed environment. The work done in this thesis can be divided into three parts:

* impiementation of the distributed simulation environment
¢ algorithmic improvements

* analysis of the implemented environment and the application

The distributed simulation environment Diworse is based on the use of a network of
workstations. The workstations are used for the simulation in such a way that the
communication through a relatively slow interconnection network is minimized. The
structural changes made the environment viable for parallel and distributed simuiation.
Especially the LP clustering technique and the use of the Scheduler element reduced the
additional overhead caused by the distribution. The poor parallel execution resuits presented
in Publication 1 and Publication 2 were due to the inefficient structure of the simulation
environment in the early stage of the research. This part of the work consists mainly of
known techniques.

The Chandy-Misra parallel simulation aigorithm was modified to be used in the distributed
environment. As the amount of synchronization messages was quite high in this conservative
algorithm, almost all the algorithmic improvements were directed to the minimization of the
communication between the logical processes. The use of tthe proposed multiple message
simulation method and an existing null message cancellation method improved the
performance significantly. Together with structural changes the modified simulation
algorithm achieved some speedup when compared to sequential simulation (see Publication
3). Through the neighborhood concept and careful consideration of the application even
better results were achieved (see Publication 4).
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The simulation application, the algorithm and the implemented environment were analyzed
by using the well-known critical path analysis. The use of sequential event traces in the
analysis showed that the used application has plenty of inherent parallel potential, so good
speedup results can be expected. The effects of the algorithm and the environment were
studied by applying critical path analysis to the same application but this time on a
distributed environment. The proposed method of using parallel trace from the distributed
environment confirmed the good paralle] potential of the application. At the same time the
analysis revealed the effects of the algorithm and the environment. Both algorithmic and
structural modification were quite successful as good speedups were achieved. The effect of
LP distribution to the simulation was also studied. LP distribution seems to have a significant
role as it affects the amount of communication.

Although quite a few aspects were improved during the work, there is still lot to do. Static
partitioning of the problem can be implemented easily but is hardly the best solution to the
LP distribution. Therefore, load balancing techniques need to be considered in the context of
the implemented environment. The effect of different networks, e.g. ATM, is still unclear.
The accuracy of critical path analysis can be further improved and different applications
should be considered in order to reveal the application dependent properties of the devel oped
improvements. Even though a lot may be improved, the developed improvements have
shown that the implemented distributed environment can be used efficiently for the
simulation purposes, at least with the cellular network application.
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Chapter 6

Summary of the Publications

This thesis consists of six publications on parallel and distributed simulation of cellular
networks. The publications concentrate on the aspects of developing a distributed simulation
environment by using a network of workstations. One of the articles has been published in an
annual review publication and five in conference proceedings. Publications 1 - 4 concentrate
on the development of a distributed simulation environment, whereas publications 5 and 6
focus on the analytical modeling of the simulation.

Publication 1 introduces the distributed workstation concept and the first implementation of
the distributed simulation environment. In this implementation no optimizations are
considered. Logical processes are realized as separate physical processes. The
communication is based on the use of UDP connections between workstations. A four -cell
GSM network model is used as an application on top of the simulation environment. The
achieved results indicate that this first implementation of the distributed simulation
environment cannot compete with sequential implementation.

Publication 2 presents improvements developed for the basic Chandy-Misra parallel
simulation algorithm. The improvements are designed for the use of the implemented
distributed workstation environment. The use of null message cancellation improves the
algorithmic performance considerably and the novel idea for allowing simulation of several
messages (SimLeop algorithm) further improves the performance. Logical processes are
realized as separate physical processes and the communication is based on the use of UDP
connections between workstations. Multicasting technique is used for the improvement of
the communication. Due to the poor performance of the basic Chandy-Misra algorithm only
atwo -cell GSM network is used for the experiments and comparisons. The achieved results
indicate that the algorithmic optimizations improve the performance considerably. Although
good improvements are achieved the sequential implementation cannot be beaten unless the
structure of the simulation environment is changed.

Publication 3 concentrates on the parallel simulation of cellular network applications.
Different aspects affecting the simulation of cellular systems are considered. The distributed
simulation environment is used for the simulation of a 27 -cell GSM network application. In
this publication the structure of the environment is improved in such a way that in each
workstation only one physical process is used. Logical processes allocated for the
workstation are implemented inside this process. Communication between workstations is
implemented by using TCP instead of UDP. The achieved results indicate that the distributed
simulation can beat the sequential approach.
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Publication 4 presents a novel idea (LP neighborhood) for reducing the number of logical
channels in the distributed simulation algorithm. By cutting down the amount of logical
channels according to the neighborhood concept, the synchronization between logical
processes can be reduced. The reduced synchronization can be observed as a decreased
number of messages and more independent execution of logical processes. In this paper each
workstation contains only one physical process and the communication between
workstations is implemented by using TCP. A 27 -cell GSM network is used as the
simulation application. The modifications presented in this paper improve the distributed
simulation algorithm 3.8 to 8.7 times according to the offered load and the number of
workstations. After the modifications the distributed simulation performs 1.8 to 3.9 times
faster than the sequential implementation.

Publication 5 introduces a simple procedure for the parallel potential calculation of
applications in shared memory systems. The calculation is based on the well-known concept
of critical time of the simulation. The procedure requires a measurement of the event timings
and a trace from the sequential simulation. Event timings and the trace are fed to a trace-
driven simulator which calculates the critical time for the application. Critical times can then
be used for estimating the necessary amount of processors. Parallel potential is calculated for
a 27 -cell GSM network application. The results of this research give an overview of the
parallel properties of the used GSM application. These simulation experiments were
performed in a 2 -processor Convex machine. The results indicate that only a half of the
maximum number of processors are really needed.

Publication 6 extends critical time calculation to the distributed simulation concept by
introducing a novel idea of using parallel event traces. In addition to the trace and the event
processing, the calculation of the critical times for the distributed environment requires
information about the event delays in the transmission network. Event processing times can
be easily measured from the sequential approach but the trace and network delays need to be
obtained from a distributed simulation. The critical time analysis is used for solving the
behavior of the application as several workstations are used. In this paper the critical time
analysis is performed for a 27 -cell GSM network application. The results indicate that
approximately a half of the maximum number of processors can be used efficiently in a
distributed simulation environment.

Errata

In Publication 1 in Figure 2 there is two arrows between LP1 and LP2 when only one is
required.

In Publication 6 Figure 4 reads: Measured processing times / event in SUN IPX

environments (ms), It should be: Measured processing times / event in SUN IPX
environments ({s).
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