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This master’s thesis is focused on the active magnetic bearings control,

specifically the robust control. As carrying out of such kind of control used

mixed H2/H∞ controller.  So  the  goal  of  this  work  is  to  design  it  using  Robust

Control Toolbox™ in MATLAB and compare it performance and robustness

with H∞ robust  controller  characteristics.  But  only  one  degree-of-freedom

controller considered.
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Nomenclature
di input disturbance

do output disturbance

e error

F closed-loop transfer function/closed-loop transfer function matrix

G plant transfer function/plant transfer function matrix

Gp perturbed plant transfer function/perturbed plant transfer function

matrix

I unity matrix

K transfer function of controller/transfer function of controller matrix

L loop transfer function/ loop transfer function matrix

Lp, perturbed loop transfer function/ perturbed loop transfer function

matrix

n measurement noise

P transfer function of generalized plant/transfer function of generalized

plant matrix

r reference signal (scalar, vector)

S sensitivity transfer function/ sensitivity transfer function matrix

T complementary sensitivity transfer function

u control signal

v measured signals (scalar, vector)

w input signals (scalar, vector)

wI, WI input uncertainty weighting function/ input uncertainty weighting

function matrix

wp, Wp output weighting function/ output weighting function matrix

wu, Wu control signal weighting function/ control signal weighting function

matrix

wx, Wx state variables weighting function/ state variables weighting function

matrix

x space coordinates, vector of displacements or state variables in state-
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space representation

y vector of outputs in state-space representation or vector of

measurements

ym measured vector of outputs in state-space representation or vector of

measurements

z vector of outputs optimized by h - norm

z2 vector of outputs optimized by h2 - norm
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1 Introduction

From ancient times, people have sought to achieve perfection in everything. In

all its endeavors. Ever since the wheel had been invented, one of the greatest

inventions of mankind, and other rotating machines, people started to invent a

different ways to reduce the shaft friction to reduce energy loss. The lowest

friction - it is it’s absence. Thus, for these purposes, levitation was used.

Levitation (from Latin  levitas  "lightness")  is  the  process  by  which  an  object  is

suspended against gravity, in a stable position, without physical contact. For

levitation on Earth, first, a force is required directed vertically upwards and

equal to the gravitational force; second, for any small displacement of the

levitating object, a returning force should appear to stabilize it. The magnetic

forces were used to keep the levitation stable as much as possible. So, levitation

used to maintain the shaft in the air. This method is implemented in the rotating

machinery in the form of magnetic bearings. For the rotor position control two

types of magnetic bearings, radial and axial, are applied.

Fig. 1: Radial (1) and axial (2) active magnetic bearings (http://www.s2m.fr/E/2-

technology/magnetic-bearings-technology.html.)

Along with the development of magnetic bearings, problem of controlling the

shaft position became relevant.

1

2
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The control theory is full of different automatic control methods. The most

widely  used  methods  were  based  on  a  comparison  of  the  obtained  results  with

the initial data, reference values, and the so-called system with feedback. Below

are the modern methods of control:

• Adaptive control uses on-line identification of the process parameters,

or modification of controller gains, hence providing robustness of the

system (Besekersky 2004).

• A Hierarchical control system is a type of control system in which a set

of devices and governing software is arranged in a hierarchical tree.

When the links in the tree are implemented by a computer network, then

that hierarchical control system is also a form of Networked control

system (Besekersky 2004).

• Intelligent control use various AI computing approaches like neural

networks, Bayesian probability, fuzzy logic, machine learning,

evolutionary computation and genetic algorithms to control a dynamic

system (Miroshnik 2000).

• Optimal control is  a  particular  control  technique  in  which  the  control

signal optimizes a certain "cost index": for example, in the case of a

satellite, the jet thrusts needed to bring it to desired trajectory that

consume the least amount of fuel (Besekersky 2004).

• Robust control deals explicitly with uncertainty in its approach to

controller design. Controllers designed using robust control methods tend

to be able to cope with small differences between the true system and the

nominal model used for design. Robust methods aim to achieve robust

performance and/or stability in the presence of small modeling errors

(Besekersky 2004, Miroshnik 2000).
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• Stochastic control deals  with  control  design  with  uncertainty  in  the

model. In typical stochastic control problems, it is assumed that there

exist random noise and disturbances in the model and the controller, and

the control design must take into account these random deviations

(Besekersky 2004).

In  this  thesis  a  method  a  robust  control  will  be  considered  for  axial  AMB

system. Robust control - a set of methods of control theory, the aim of which is a

synthesis  of  the  controller,  which  ensures  good  control  quality  (e.g.,  stability),

when  the  plant  is  different  from  predicted  model  or  its  mathematical  model  is

unknown. Systems possessing the property of robustness are called robust

systems. In this work, for the implementation of robust control mixed H∞/H2

controller was chosen to be designed and compared with H∞ controller that was

designed as well.
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2 Theoretical background of robust control

The main objective of the synthesis of robust control systems is to find control

law, which preserves the system’s output variables and the error signals in the

specified permissible limits despite the presence of an uncertainty in the

controlled system. Uncertainties may take any form, but the most significant are

noise, nonlinearity and inaccuracy in the knowledge of the transfer function of

the plant.

Consequently a definition of robust control could be stated as:

“Design a controller such that some level of performance of the controlled

system is guaranteed irrespective of changes in the plant dynamics within a

predefined class.” (Damen 2002).

2.1 Reasons for robust control

Modern control techniques allow engineers to optimize control systems for cost

and performance. However, the optimal control does not always correctly

responds to changes in the system or the environment. Robust control theory

provides set of methods for measuring performance changes in control system

with changing the parameters of the system. Application of those methods is

important in developing of reliable embedded systems. The purpose is to obtain

the system which is:

• insensitive to variations of parameters (uncertainties);

• able to maintain its stability and performance (Rollins 1999)

"Robust control refers to the control of unknown plants with unknown dynamics

subject to unknown disturbances" (Rollins 1999). Obviously, the key question of

robust control systems is uncertainty and how the control system can deal with
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this issue. Figure 2.1 shows the simple control loop. Uncertainty is shown

entering the system in three places:

• at the input of the plant as the disturbance (di);

• at the output of the plant as the disturbance (do);

• and the measuring noise (n).

In practice there is difference between the true perturbed plant G’ and the plant

model G. It is caused by a number of different sources (perturbations). This

work, in case of active magnetic bearings, is focused on uncertainties in

parameters of the system, input and output disturbances.

uer y
id od

n
my

K G

Fig. 2.1:  Closed-loop control system with uncertainty.

In the robust control problem formulation, the objective is to keep the transfer

functions between disturbances and chosen outputs small. In this work it will be

guaranteed by H∞ and H2 norms. To this end have been introduced special

sensitivity functions:

• Input-to-plant loop transfer function KGLI = ;

• Input sensitivity 1)1( −+= II LS ;

• Input complementary sensitivity 1)1( −+= III LLT ;

• Output-to-plant loop transfer function GKL =o ,
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• Output sensitivity 1
oo )1( −+= LS ;

• Output complementary sensitivity 1
ooo )1( −+= LLT .

It is important to understand that the designer of control system have a little

control over the uncertainty in the plant. The designer creates a system of control

that  is  based  on  a  model  plant.  However,  the  control  completes  over  the  real

system, not on the model of that system (Rollins 1999).

2.2 Robust control approaches

The goal of robust design is a synthesis of the controller, which would satisfy the
criterion of robustness. Since 50-ies of the XX century, a set of procedures and
algorithms were developed to solve the problem of robust synthesis. Robust
control system can combine features of both classical control, and adaptive and
fuzzy.

Table 1. Controller synthesis methods.

Technology
name Preference Drawback

H - synthesis

• Works both with stability and
with sensitivity of the system;

• Closed loop is always stable;
• One-pass algorithm for direct

synthesis;

• Requires special attention to the
parametric robustness of the
plant;

H2 – synthesis

• Works both with stability and
with sensitivity of the system;

• Closed loop is always stable;
• The exact formation of the

transfer function of controller;

• A large number of iterations;

• LQG –
synthesis

• Uses available information about
the noise;

• Not guaranteed stability;
• Requires an exact model of the

object;
• Large number of iterations;

• LQR –
synthesis

• Guaranteed robust stability,
• Inertialless regulator.

• Need feedback on the entire state
vector;

• Requires an exact model of the
object;

• Large number of iterations;

 – synthesis • Works with a wide class of
uncertainties. • High order controller.
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Table 1 lists the basic technologies of synthesis of robust control systems.

Actually H2 (LQG,  LQR) controllers  are  not  robust  control  methods,  and  as  in

this work is designed mixed H∞/H2 controller their properties are considered

below.

H-infinity ("H ") methods are used in control theory to synthesize controllers

achieving robust performance or stabilization. To use H  methods, a control

designer expresses the control problem as a mathematical optimization problem

and then finds the controller that meets the requirements. H  techniques have the

advantage over classical control techniques in that they are readily applicable to

problems involving multivariable systems with cross-coupling between

channels; disadvantages of H  techniques include the level of mathematical

understanding needed to apply them successfully and the need for a reasonably

good model of the system to be controlled.

It is well accepted that H2 norm is a good measure for system performance. H2

performance is useful to deal with stochastic aspects especially, such as

measurement noise and random disturbance. However, the H2 control design is

based on the assumption that the system is exactly modeled, which is impractical

(Zhao 2006).

LQG (linear quadratic Gaussian) controller is simply a combination of

Kalman filter with a linear-quadratic regulator (LQR). The principle of the

separation assures that they can be designed and calculated independently. LQG

control applies to both linear time-invariant systems as well as linear time-

varying systems. Application of linear time-invariant systems is well known.

Application to linear time-varying systems enables design of linear feedback

controllers for non-linear uncertain systems (Athuts 1971).

LQR (Linear quadratic regulator) in  theory  one  of  the  best  types  of  controls,

using quadratic functional quality. The problem, in which the dynamical system

described by linear differential equations, while the quality is a quadratic
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functional, called the problem of linear-quadratic control. One of the main

results in the theory is that the solution is provided by the linear-quadratic

regulator (LQR), a feedback controller. The LQR is an important part of the

solution to the LQG problem. Like the LQR problem itself the LQG problem is

one of the most fundamental problems in control theory (Kwakernaak 1972).

2.3 Measures of robustness

Within the context of controller design, nominal properties concern the

characteristics of the system when the model of the controlled process is

assumed to duplicate real process behavior. On the other hand, robustness

properties refer to those of a system in the presence of process-model

perturbations.

In the first place in the designing of the control system is to provide the system

stability and desired level of performance. Thus, the conditions of nominal

stability and nominal performance should be satisfied. However, before applying

the controller to real system, it is necessary to design it on a model of the system

under conditions of robust stability and robust performance (Thang 2002).

2.3.1 Robust Stability

Here considered the uncertain feedback system in Figure 2.3  with

multiplicative uncertainty of magnitude )( ωjwI .

Iw I∆

K G

PGIu∆u

er y

Fig. 2.3: Feedback system with multiplicative uncertainty.

And it has new loop transfer function with uncertainty:
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,)1( ILIwLIIwGKKPGPL ∆+=∆+== ωω ∀≤∆ ,1)( jI (2.3)

To simplify  the  process  of  deriving  the  robust  stability  condition  was  assumed

that nominal closed-loop system is stable and also the loop transfer function PL

is stable too. According to the Nyquist stability condition the PL should not

encircle the point -1, PL∀ .

Fig. 2.4: Nyquist plot of PL  for robust stability.

As can be seen in the figure 2.4 the distance from the point -1 to the centre of the

circles with radius LwI  is PL . For robust stability none of the circles should

cover  -1, consequently:

ω∀+<⇔ ,1I LLwRS (2.4)

ωω ∀<⇔∀<
+

⇔ ,1,1
1 I

I Tw
L
Lw (2.5)

1I <
∞⇔ Tw

def

(2.6)
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Thus, obtained the robust stability requirement for the system with multiplicative

uncertainty:

ω∀<⇔ ,/1 IwTRS (2.7)

The graphical derivation of robust stability was considered above (Skogestad

2005). Also condition for robust stability could be defined as follow:

The system is stable for all uncertainties which satisfy the norm bound 1≤∆
∞

if

and only if  the nominal closed-loop transfer function F  is stable and

1≤
∞

F (2.8)

So, keeping in mind conditions of this theorem, the robust stability of the system

under consideration is guaranteed (Toivonen).

2.3.2 Robust performance.

Iw I∆

Pw ŷ
K G

Fig. 2.5: Diagram for robust performance with multiplicative uncertainty.

To achieve the robust performance the conditions of nominal performance

ωω ∀+<⇔∀<⇔ ,1,1 PP LwSwNP (2.9)

must be satisfied, but for all possible plants, thus we get the conditions:
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PPP ,,1 SSwRP
def

∀∀<⇔ ω (2.10)

PPP ,,1 LLw ∀∀+<⇔ ω (2.11)

Fig. 2.6: Nyquist plot illustration of robust performance condition PP 1 Lw +< .

For guarantee robust performance required that all possible )(P ωjL  should not

cross the circle with radius )(P ωjw  centred on -1. The distance between

centres  of  two discs  which  are  located  on  -1  and )( ωjL  is L+1 , thus, the

robust performance condition becomes:

ω∀+<+⇔ ,1IP LLwwRP (2.12)

ω∀<+++⇔ −− ,1)1()1( 1
I

1
P LLwLw (2.13)

or

( ) 1max IP <+⇔ TwSwRP ω (2.14)



18

Summarizing all the above-said about nominal performance, robust stability and

robust performance we get:

ω∀<⇔ ,1PSwNP (2.15)

ω∀<⇔ ,1ITwRS (2.16)

ω∀<+⇔ ,1IP TwSwRP (2.17)

From  this  can  be  seen  that  for robust performance must be satisfied robust

stability and nominal performance conditions and that if there is robust

performance it follows nominal performance and robust stability.

2.4 Mixed H2/H∞

The mixed performance and robustness of the control problems has been the

object of much attention today. These various objective problems rarely

encompass single synthesis criterion. While some tracking and robustness are

best captured by the H∞ criterion, noise insensitivity and energy optimization is

more naturally expressed in H2 terms. In this work the mixed H2 /H∞ is designed

for SISO linear time invariant system of axial AMB system as shown in the

figure 2.7. It is multi-objective state feedback synthesis, which considers:

§ H∞ performance (convenient to enforce robustness to model

uncertainty and to express frequency-domain specifications such as

bandwidth, low-frequency gain and roll-off);

§ H2 performance (useful to handle stochastic aspects such as

measurement noise and random disturbance);

§ Pole placement constraint (desirable to enforce some minimum decay

rate or closed-loop damping via regional pole assignment).
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w ∞z

u v

2z z

K

P

Fig. 2.7: General control configuration.

Where u  - the control variables, v  - the measured variables, w  - the external

signals (disturbances, commands...), z  - output signal. P  is generalized plant:
















=

22212

12111

21

DDC
DDC
BBA

P
s

(2.20)

Generalized plant P includes the plant model G, the interconnection structure,

and the designer specified weighting functions. Where 011 =D , 022 =D ,









=D

0
12 and [ ]I021 =D . These are the typical assumptions made in H2 and

H∞ problems. State-space realization of the plant:

u
u
u

u

yy DxCy
DwDxCz
DwDxCz

BwBAxx

+=

++=
++=

++=

∞

222122

12111

21&

(2.18)
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Taken separately, our three design objectives have the following formulation:

H∞ performance: let T is the transfer function from w  to ∞z . And the closed-

loop RMS value of T does not exceed γ  if and only if there exists a symmetric

matrix ∞X  such that:

0

0
)(

)()()(

2
11121

111

121122

>

<
















−+
−

++++

∞

∞

∞∞∞

X

IDXKDC
DIB

KDCXBKBAXXKBA

γ

TT

TT

H2 performance: the closed-loop H2 norm of T2 does not exceed γ  if and only

if there exists two symmetric matrices 2X  and Q  such that:

2

2
T

2222

2222

T
1

1
T

2222

)Trace(

0
)(

)(

0
)()(

v<

<







+

+

<








−
+++

Q

XKCX
XKCQ

IB
BKBAXXKBA

Pole placement performance: the main reason of seeking pole clustering in

specific region of the left half plane is to control the transient behavior of a

linear system, as it is related to the location of poles. The closed-loop poles lie in

the region { }zMMzLD T: ++∈= z , where { } ,
mji,1 ≤≤

== ij
T λLL

{ }
mji,1 ≤≤

== ij
T µMM , if and only if there exists a symmetric matrix polX

satisfying:

[ ]
0

0)()(

pol

mji,12polijpolijpol2ijpolij

>

<+++++
≤≤

X

KBAXXXKBAX Tµµµλ
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System illustrated in the figure.2.7 also described by set of equations:

















=








=








u
w

PP
PP

u
w

P
v
z

)()(
)()(

)(
2221

1211

ss
ss

s , (2.18)

vKu )(s= . (2.19)

The transfer function from w  to z :

wKPz ),(lF= , (2.21)

where

21
1

221211 )()( PKPIKPPKP, −−+=lF . (2.22)

Exactly, the minimization of the H2 and H∞ norms of ),( KPFl is the objective

of H2 and H∞ control respectively.

In general the H2 optimization problem is to find a stabilizing controller K which

minimizes

∫
∞

∞−

= ;)()(
2
1)(

2
ωωω

π
djFjFsF T ),( KPFF = (2.23)

In general the H optimization problem is to find all stabilizing controllers K

which minimize

)).)(((max)( ωσ
ω

jFF ll KP,KP, =
∞

(2.24)

 In the subsequent development of H  technology, it became clear that the two

approaches of optimization H2 and H  relate more than it seemed. The robust H2
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performance problem is more complex, as it mixes two different system norms;

the H2-norm associated with performance, and the H  norm  associated  with

robustness. This leads to a mixed H2/H problem, for which special solution

methods have been developed.
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3 AMB application

3.1 Introducing the AMB system

The idea of contactless support has been interesting mankind for centuries. The

first  thing  that  comes  to  mind  is  to  use  a  magnetic  field.  However,  it  is  not  so

simple. There are a lot of laws complicate the application of magnetic field for

these purposes in nature. The most famous is the Earnshaw theorem, which

states that an object in the passive magnetic field may be in some stable position

only when the material of object is diamagnetic or superconducting. This fact

limits the engineering application of passive fields, as well as the majority of

machines made from ferromagnetic. Nevertheless, the passive field of permanent

magnets can be used to maintain the object with multiple degrees of freedom,

but only if at least one degree of freedom is controlled by other means.

An active magnetic bearing system is a collection of electromagnets used to

suspend an object and stabilization of the system is performed by feedback

control. The system consists of a floating mechanical rotor and electromagnets

that provide the controlled dynamic force and thus allowing the suspended

object to move in its predefined functionality. Due to this contactless operation,

AMB system has many advantages for high-speed, high-temperature and clean-

environment applications. Moreover, adjustable stiffness and damping

characteristics also make the AMB suitable for elimination of vibration in the

system. Although the system is complex, the advantages it offers in some cases

outweigh the design complexity.

The AMB rotor system has 6 degrees of freedom. Figure 3.1 illustrates the

principle of active magnetic bearings in one coordinate system. Electromagnets

from opposite sides pull the rotor and the total force is the sum of these

electromagnets forces. The interaction of the ferromagnetic rotor and

electromagnets is unstable. Therefore, it is necessary to control the position of

the rotor by controlling the currents in electromagnets winding. Rotor position
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can be defined with position sensor or evaluated from the winding currents. In

the studied application 5 degrees of freedom of the rotor are controlled by four

radial and one axial bearing. And the sixth degree of freedom controlled by the

motor.

Fig. 3.1:  Cross section of an active magnetic bearing.

To prevent the eddy currents in the radial  bearings the rotor consists of a solid

core and the external part is made of laminated steel. The winding of an

electromagnet is made of regular copper wire. The axial bearings are separate

magnets manufactured from solid iron.

Application areas of magnetic bearings are still steadily expanding because of

these practically useful features. A few of the AMB applications that receive

huge attentions from many research groups around the world are the flywheel

energy and storage device, turbo molecular pump, compressor , Left Ventricle

Assist Device (LVAD) and artificial heart. For the LVAD and artificial hearts

applications particularly, the present of any debris or dust resulted from any

mechanical contact is strictly unacceptable since these particles can block up the

circulating blood that definitely will cause more injurious effects to human.
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3.2 Dynamic model of AMB rotor system

The suitable AMB rotor system model is necessary to find the exact controller.

A system model of axial AMBs consists of the following elements:

• state space model of the rotor;

• actuator (electromagnets and amplifiers) model;

It is an uncertain system model with one input, one output (SISO) and three

states. At the input of this system the control current is fed. As the output of the

system it has the position of the rotor, determined by sensors. It is provided,

taking into account the parameters uncertainties, in state-space representation:





+=
+=

,DuCxy
Bu,Axx&

(3.1)

where

,
0
0

6.566
,

065,879,262
9,26200

006.566
















=















−
= BA (3.2)

]0[],010[ == D (3.3)

In particular considered model has following uncertainties:

• bwω  - uncertainty in actuator bandwidth, which is based on the

actuator saturation;

• xi ,kk  - uncertainty in current and position stiffnesies;

• m  - uncertainty in mass;

• sennon  - 5% nonlinearity in position sensors.
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Table 2 represents the properties of considered uncertainties in the model of the

system.

Table 2.   Properties of uncertainties.

Parameter

Property
bwω ik xk m sennon

Nominal value 567 213 1.07·106 46.2 1

Range or

Variability
[536.742 596.379] [-10 10]% [-20 20]% [-2 2]% [-5 5]%

The uncertain axial AMB system model is provided by Jastrzebski (2007).
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4 Design of mixed H∞/H2 controller
In robust control theory, H2 performance and H  performance are two important

specifications. H  performance is convenient to enforce robustness to model

uncertainty; H2 performance is useful to handle stochastic aspects such as

measurement noise and capture the control cost. In time-domain aspects,

satisfactory time response and closed-loop damping can often be achieved by

enforcing the closed-loop poles into specialized pole placement region.

Combining them together to form so-called mixed H2/H  design  with  pole

placement allows for more flexible and accurate specification of closed-loop

behavior (Chen 2006). Linear matrix inequalities technique is often considered

for this kind of multi-objective synthesis.

4.1 Control specifications

The analysis of sensitivity functions gives quantitative information about how

sensitive the nominal model is to uncertainties of the plant parameters or

external disturbances.

4.1.1 Design schemes

Mixed-sensitivity is the name given to transfer function shaping problems in

which the sensitivity function 1
o )1( −+= GKS  is shaped along with one or more

other closed-loop transfer functions such as KS or the complementary sensitivity

function To.

Sensitivity functions which should be shaped depend on our objectives. The

main objective in AMB system control is to reject a disturbance d entering at the

rotor shaft. Hence, to this problem it makes sense to shape the closed-loop

transfer functions S and KS.  There  are  two  types  of  these  schemes:  with

reference signal as the input to the plant (Figure 4.7) and with disturbance signal

as the input of the plant (Figure 4.6).
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dw = ∞z

u v

2z

y

0=r

eW

uW

K

G

Fig. 4.6: S/KS mixed sensitivity optimization in standard form (regulation).

S/KS scheme where external input is a reference command r used in tracking

problem. The error signals are SwWeWzz eee ===∞  and

KSwWuWzz uuu2 === .

rw = ∞z

u v

2z

+-
y

P
eW

uW

K

G

Fig. 4.7: S/KS mixed sensitivity optimization in standard form (tracking).

This work also considers other schemes, such as:

• S/T (where the sensitivity function S  is shaped by H -norm and T by H2-

norm)(Figure 4.8);

• S/KS/KS (where one of the KS sensitivity functions are shaped by H -

normand second by H2-norm) (Figure 4.9);

• S/KS/T (where the sensitivity function S  and the sensitivity function KS

are shaped by H -norm and T by H2-norm) (Figure 4.10);
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• S/T/KS (where the sensitivity function S and  the  complementary

sensitivity function T are shaped by H -norm and KS by H2-norm)

(Figure 4.11);

Another useful mixed sensitivity optimization problem is to find a stabilizing

controller which minimizes

∞









TW
SW

y

e (4.5)

T transfer function shaping is desirable for tracking problems and noise

attenuation. It is also important for robust stability with respect to multiplicative

perturbations at the plant output. The S/T mixed sensitivity minimization

problem in the standard control configuration is presented below

rw =

∞z

u v

2z

y

eW

yW

K

G

Fig. 4.8: S/T mixed sensitivity optimization in standard form.

All configurations mentioned above are used in standard mixed-sensitivity H

optimization problems. But they also will be considered as the possible solutions

of active magnetic bearing control problem.

It is known that the control cost can be more properly adjusted through H2 norm

(Pal 2001). In accordance with this deduction H2 performance on controller

output u at the design stage was added. The objective of this configuration

(Figure 4.9) is to minimize
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∞









KSW
SW

u1

e  and [ ]
22 KSWu (4.6)

 The weighting function 2uW  is used to compromise between the control effort

and the disturbance rejection performance.

dw = ∞z

u
v

2zy

0=r

eW

1uW

2uW

K

G

Fig. 4.9: S/KS - KS mixed sensitivity optimization.

Also S/KS  – T (Figure 4.10) and S/T – KS (Figure 4.11) mixed sensitivity

configurations are under consideration. In former one objective is to minimize

output sensitivity and control signal transfer functions by H – norm and output

complementary sensitivity transfer function by H2 – norm. In latter one the KS

and T sensitivities are related to 2z  and ∞z outputs respectively. Recall that the

H  optimization responsible more for robustness of the system and H2 - for

performance.
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dw =
∞z

u v

2z
y

0=r

eW

yW
uW

K

G

Fig. 4.10: S/KS - T mixed sensitivity optimization.

dw = ∞z

u v

2z
y

0=r

eW

uW
yW

K

G

Fig. 4.11: S/T - KS mixed sensitivity optimization.

All this alternatives were used for controller designing and corresponding

algorithms were written. The preliminary results were compared and according

them the scheme depicted in the Figure 4.9 was found the most convenient.

4.1.2 Weighting functions

Performance weighting function.

The  problem  is  to  regulate  the  output  y  of  the  nominal  plant  to  follow  some

given reference signal w and to reject the disturbance d by designing a controller

K.

To improve the performance (to minimize the steady-state error) of the plant the

following form of weighting function was suggested (Skogestad 2005):
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ee

ee
e

/
ω
ω

⋅+
+

=
As

MsW  . (4.1)

It can be seen that at low frequencies 1)( −ωjwe  is  equal to 1≤eA , is equal to

1≥eM at high frequencies and the asymptote crosses 1 at the frequency eω ,

which is approximately the bandwidth requirement.

eω
Fig. 4.1:  Inverse of performance weight.

uer yGK
ez

eW

Fig. 4.2:  Feedback system with output sensitivity weighting function.

By choosing an appropriate weighting function We the frequency response of S

and the performance of the controlled system can be optimized, if the controller

is designed such that the condition

1)()(e <ss TjTj eSeW ωω (4.2)

is holds.
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Control signal weighting function

Practically, an actuator always has amplitude and rate limit constraints. Hence, it

is important to use a suitable weighting function to represent these constraints. In

the case of KS sensitivity the same weighting function is considered as in

performance optimization problem. Recall KS the transfer function between d

and the control signals. So it is important to include KS to  limit  the  size  and

bandwidth of the controller and hence the control energy used. The KS is also

important for robust stability.

uu

uu
u

/
ω
ω

⋅+
+

=
As

MsW (4.3)

But in previous problem the low-pass filter is needed, while here is high-pass

filter to decrease the effect of external disturbances on control signal.

eω

Fig. 4.3:  Inverse of control signal weight.
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uer y
GK

uW

uz

Fig. 4.4:  Feedback system with output complementary sensitivity weighting function.

Also  it  would  be  considered  the  unity  weighting  function  just  to  limit  the

magnitude of control signal, to keep it small of saving energy reason.

Complementary sensitivity weighting function

Optimizing system in case of complementary sensitivity T is good for tracking

and reducing noise attenuation. Form of its weight as in two previous cases:

yy

yy
y

/
ω
ω

⋅+

+
=

As
Ms

W (4.4)

It is also a high-pass filter like KS.

uer y
K

yW

yz

G

Fig. 4.5: Standard configuration of complementary sensitivity function T and weighting

function.
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To  minimize  error  from  r  to  e,  or  to  suppress  effect  from  interference  w,  the

small sensitivity function S is better; while to keep object controlled robust

stable, the small complementary function T is better. Therefore, there is an

inevitable conflict between functions S and T. A compromise approach should

be adopted. The ideal solution is to find the controller to separate S and T

frequency domains, but it is hard to obtain this kind of controller.

As our problem is the multi-objective design problem the mixed sensitivity

control would be the most relevant.

4.2 Design procedure

The multi-objective design requirement can be formulated in the LMIs (Linear

Matrix Inequality) framework and the controller is obtained by solving a family

of LMIs (Skogestad 2005).

General mixed H2/H  control with pole placement scheme has multi-channel

form as shown in Figure 4.12. P is a linear time invariant generalized plant;

dw = is vector representing the disturbances or other exogenous input signals;

z  is the controlled output associated with H  performance and z2 is the

controlled output associated with H2 performance; u is the control input while y

is the measured output.

w ∞z

u y

2z z

Fig. 4.12:  Multi-objective synthesis.
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The state-space description of above system can be written as:

uDxCy
uDwDxCz
uDwDxCz

uBwBAxx

yy +=

++=
++=

++=

∞

222122

12111

21&

(4.7)

The goal is to compute an output-feedback controller K(s) in the form of

yDCu
yBA

KK

KK

+=
+=

(4.8)

such that the closed-loop system meets mixed H2/H   specifications and pole

placement constraint. This standard LMI problem is readily solved with LMI

optimization software. An efficient algorithm for this problem is available in

hinfmix() function of the LMI control toolbox for Matlab.

[gopt,h2opt,K] = hinfmix(P,r,obj,region) (4.9)

This function performs multi-objective output-feedback synthesis. hinfmix

intend to compute an LTI controller K that minimizes the mixed H2/H  criterion

2

22
2 TT βα +
∞∞ (4.10)

subject to

• 0γ<
∞∞T ;

• 022 ν<T ;

• The closed-loop poles lie in some prescribed LMI region;



37

where ∞T  and 2T  denote the closed-loop transfer functions from  to z  and z2,

respectively (Balas 2009).

The function hinfmix returns guaranteed H2 and H  performances h2opt and gopt

as well as the matrix K of the LMI-optimal controller.

The input parameters of this function are generalized plant P; three-entry vector

r, which defines sizes of output z2, output y and control signal u; the four-entry

vector ],,,[ 00 βαγ v=obj  specifies the H2/H  constraints and trade-off criterion

(Petkov 2005).

Designing process of such controller consists of two main steps. The first one is

to generate a suitable generalized plant, in other words to choose appropriate

scheme, with weighting functions for each case mentioned in previous chapter.

To achieve desirable characteristics, such as steady-state error, small magnitude

of control signal, robustness, required performance, the correct weighting

functions parameters should be selected on the second step.

In AMB system control the most important aim is to reject the output

disturbances; in this context it is reasonable to use standard mixed-sensitivity

framework (S/KS):

y

d

0=r } z
uK G eW

uW

Fig. 4.13:  Mixed-sensitivity output disturbance rejection.

Shaping the output sensitivity transfer function S and transfer function KS by

weights eW  and uW  respectively, the inverse multiplicative uncertainty and

additive uncertainty are also being optimized.
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The H2 performance is considered for the controller output u (Figure 4.14):

y

d

0=r

} ∞z

uK G

eW

1uW

2uW
2z

Fig. 4.14: Mixed-sensitivity output disturbance rejection with other constraints.

Using 2uW  weight  the  high-pass  filter  could  be  done,  and  it  will  attenuate  the

high frequency influence from reference signal to control signal. So the desirable

design scheme was achieved.

The generalized plant represented in the Figure 4.14 in mixed controller

optimization problem used in form depicted in the Figure 4.12 and has two

inputs and four outputs. The inputs are:

w : exogenous disturbance at the output of the plant;

u : control signal from controller;

The outputs are:

1∞z : weighted by (4.11) and perturbed output of the plant (position of the

rotor) (to H );

2∞z : control signal (control current) (to H );

2z : control signal (control current) (to H2);

)(yu :not weighted, perturbed output of the plant (to controller).



39

After the generalized plant is constructed, the weighting functions should be

tuned. It was done iteratively using hinfmix() in case when ]1100[=obj .

Output sensitivity weight was fitted in such way to ensure the reduction of low-

frequency disturbances 1000 times and unity amplification at high frequencies.

11.0
11001.0

101011
101110

42

21

e +
+

=
⋅⋅+
⋅+

=
−

−

s
s

s
sW  . (4.11)

Control signal weight optimized by H -norm minimization was selected as the

unity (4.12), to guarantee the robustness. But for H2 optimization the high-pass

filter is evaluated (4.13).

110
100
100 0

u1 ==
+
+

=
s
sW  , (4.12)
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u2 105
1052500

10510
105)104.0/(
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⋅⋅+

⋅+⋅
=

−

s
s

s
sW  . (4.13)

But the relevant results were not achieved immediately. Initially was used

standard weighting functions and further configured during the controller

designing process.

When the parameters of weights are captured generalized plant could be

generated and used as the input argument of function hinfmix() (4.9). At first the

quadratic H performance subject to the pole placement constraint was

computed by

gopt = hinfmix(P,[1 1 1],[0 0 1 0]); (4.14)
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Fig. 4.14: Selected weights.

This algorithm yielded gopt = 9.06. Suchwise the main aim is to keep this value

as small as possible because of the disturbance rejection. gopt specifies the peak

value  of  the  output  sensitivity  and  complementary  output  sensitivity

amplification.

Next the best H2 performance h2opt subject to goptT <
∞∞  was computed by

[gopt,h2opt,K]=hinfmix(P,[1 1 1],[9.06 0 0 1]); (4.14)

But this determination became infeasible; it means that used function could not

calculate the sufficient for required constraints controller. For this reason the

gopt was increased iteratively to gopt = 10. At that point feasible solution h2opt

= 887 was obtained.
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 The computed controller is

+⋅+⋅++
+⋅+⋅+

= 394556

39455

1029102387068
101191013743.274

ssss
sssK

(4.12)

1112210

1312210

101716101562101828
105731102232102711

⋅+⋅+⋅+
⋅+⋅+⋅+

ss
ss

.

The algorithm generating this controller is given in Appendix 1.

4.3 Results

To evaluate the features of the computed controller and closed-loop system it

controls it is convenient to plot some responses and make simulations.

Fig. 4.15: Generated controller’s singular value plot.

It can be seen in the Figure 4.15 that we succeeded in high-pass filtering the

control signal, as the transfer function related to control signal is KS, where S

has unity value at frequency 1370 rad/s (Figure 4.16).
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Singular value plot (Figure 4.16) proves that we got tasks defined before:

• Low-pass filter for output disturbances (output sensitivity);

• High-pass filter for noise attenuation in control signal and measuring

output.

• Closed-loop system is stable.

Fig. 4.16: Singular value plot of controller, closed-loop output sensitivity and complementary

output sensitivity.

Poles and zeros of the closed-loop system with computed multi-objective

controller are all located in left half plane, that arguing about stability of the

system. All zeros and poles can be seen in the Figure 4.17, except one zero
5105 ⋅=z .
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Fig. 4.17: Zeros and poles of closed-loop system.

Control signal makes a huge rise when the unity step signal fed on the input as a

reference signal or on the output of the plant as the exogenous disturbance on the

shaft. It goes without saying, that it is not good for the control system. So the

saturation with limits [1;-1] was used to scale down this peak.

4.3.1 Simulation

For descriptive reasons simulation model of closed-loop system was created

using Simulink, including Robust Control Toolbox™ blocks.

Fig. 4.18: Simulation with nominal model.
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Fig. 4.19: Closed-loop nominal system step responses on the output of the plant (exogenous

disturbance): with saturation (red) and without (blue).

Fig. 4.20: Closed-loop uncertain system step responses.

Figure 4.20 illustrates the system behavior when some parameters have the

uncertainties. For the one-degree-of-freedom controller designing results are

satisfactory. But there is one more very important objective – the robustness of
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the system to uncertainties. To check this feature the simulation with uncertainty

model of axial bearings was done. Scheme for this simulation is the same as for

nominal, but the special block from Simulink Robust Toolbox was used to

import uncertain system model (Jastrzebski 2007). It is called USS System. The

corresponding plots are shown in the Figure 4.20.

4.3.2 Robust stability check

Robust stability of the closed-loop uncertain system could be checked with the

function robuststab():

[stabmarg,desgtabu,report,info] = robuststab(sys) (4.13)

It returns the structure stabmarg with the following fields

Table 3. Stabmarg fields description.

Field Description

LowerBound

Lower bound on stability margin, positive scalar. If greater than 1,

then the uncertain system is guaranteed stable for all values of the

modeled uncertainty. If the nominal value of the uncertain system

is unstable, then stabmarg. UpperBound and stabmarg.

LowerBound will be infinite.

UpperBound

Upper bound on stability margin, positive scalar. If less than 1, the

uncertain system is not stable for all values of the modeled

uncertainty.

DestabilizingFrequency

The critical value of frequency at which instability occurs, with

uncertain elements closest to their nominal values. At a particular

value of uncertain elements, the poles migrate across the stability

boundary (imaginary-axis in continuous-time systems, unit-disk in

discrete-time systems) at the frequency given by

DestabilizingFrequency (Balas 2009).

 If  the  robust  stability  margin  exceeds  1,  the  uncertain  system  is  stable  for  all

values of its modeled uncertainty.  And inversely, if stability robustness margin
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is less than 1, the certain allowable values of the uncertain elements, within their

specified ranges, lead to instability (Balas 2009). And so we get

423.5236
5937.2
9046.9

=
=
=

cyingFrequenDestubiliz
LowerBound
UpperBound

(4.14)

Structure of values of uncertain elements which cause instability:

2587.1
4642.38

101158.7
1180.218

2160.271
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=
=

⋅−=

=
=

senon
m
k
k
ω

(4.15)

Stability robustness margins are greater than 1, hence the uncertain system is

robustly stable to modeled uncertainty.  The third output argument report gives

some description of robustness analysis results:

• It can tolerate up to 259% of the modeled uncertainty.

• A destabilizing combination of 990% of the modeled uncertainty

exists, causing instability at 424 rad/s.

Also it gives the information about sensitivity with respect to uncertain element:

• 'Wbw' is 3%.  Increasing 'Wbw' by 25% leads to a 1% decrease in

the margin.

• 'ki' is 44%.  Increasing 'ki' by 25% leads to an 11% decrease in the

margin.

• 'kx' is 33%.  Increasing 'kx' by 25% leads to an 8% decrease in the

margin.
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• 'm' is 2%.  Increasing 'm' by 25% leads to a 1% decrease in the

margin.

• 'sennon' is 17%.  Increasing 'sennon' by 25% leads to a 4% decrease

in the margin.

So we can make a conclusion that obtained system is stable for parameters

uncertainties and exogenous disturbances.

Functions robuststab() and robustperf() (used in the next chapter for robust

performance analysis) also provides µ -analysis, in which the stability margin

should not be greater than 1 to guarantee the robust stability (Skogestag).

Fig. 4.21: µ  plot of robust stability margin.

As shown in the Figure 4.21 the µ  bound is less than 1 that verifies the closed-

loop uncertain system robust stability for prescribed parameters uncertainties.

4.3.3 Robust performance check

The performance of the nominally stable system could degrade for some values

of uncertain parameters. Upon this fact it is reasonable to define the robust
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performance margins. With this end in view it is convenient to use the function

robustperf()  from Robust Control Toolbox™ :

[perfmarg,perfmargunc,report] = robustperf(sys) (4.16)

It returns the structure perfmarg with the following fields

Table 4. Perfmarg fields description.

Field Description

LowerBound Lower bound on robust performance margin, positive scalar.

UpperBound Upper bound on robust performance margin, positive scalar.

CriticalFrequency

The value of frequency at which the performance degradation

curve crosses the y=1/x curve. See "Generalized Robustness

Analysis" in the online documentation (Balas 2009).

And for uncertain system model of AMBs we get:

423.5236
3573.0
3683.0

=
=
=

equencyCriticalFr
LowerBound
UpperBound

(4.17)

The margin 0.3683 means that for all values of uncertain elements which are less

than 0.3683 normalized units away from their nominal values, the input/output

gain remains less than 2.82.7151/0.3683 ≈= . equencyCriticalFr  is a Frequency

at which the minimum robust performance margin occurs.

Structure of values of uncertain elements which cause critical influence on

performance robustness:
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 As for the robust stability here is the information from the function argument

report about robust performance (margin is 0.3683):

• A model uncertainty exists of size 35.7% resulting in a performance

margin of 2.8 at 424 rad/sec.

Sensitivity with respect to uncertain element is:

• 'Wbw' is 2%.  Increasing 'Wbw' by 25% leads to a 1% decrease in

the margin.

• 'ki' is 8%.  Increasing 'ki' by 25% leads to a 2% decrease in the

margin.

• 'kx' is 2%.  Increasing 'kx' by 25% leads to a 1% decrease in the

margin.

• 'm' is 1%.  Increasing 'm' by 25% leads to a 0% decrease in the

margin.

• 'sennon' is 2%.  Increasing 'sennon' by 25% leads to a 1% decrease in

the margin.

The structured singular value ( µ ) is the reciprocal of the performance margin.
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Fig. 4.22: µ  plot of robust performance bound.

Figure 4.22 shows that the achieved robust performance is not as good as it

required for AMB rotor system, the better results can be achieved by adding a

second degree of freedom for the controller.

Summarizing it could be said that 1DOF mixed H2/H robust controller have

been designed. Obtained controller is stable and has good performance, but if we

want to evaluate it is necessary to compare it to any other controller. For

example, mixed controller compared to the H controller in the next chapter.

4.4 Comparison of mixed H2/H and H controllers

As a part of the work the H  robust controller was designed to be compared with

mixed  controller.  This  was  done  to  assess  the  relevance  of  the  work  and  to

determine the direction of future work in this area. The algorithm of computing

H  controller is represented in the Appendix 2.

The comparative characteristics of robustness of the systems are represented in

Table 5. Controllers were compared in two cases: when the output sensitivities

transfer functions have equal bandwidths ( (rad/s)80b =ω ) and equal peaks (8.3

dB). Such a decision was made according to the fact that it is impossible to get

the identical output sensitivities.



51

Table 5.  Comparative characteristics

Robust stability Robust performanceParameter

Controller Upper bound Lower
bound Upper bound Lower

bound

H2/H 9.9046 2.5937 0.3683 0.3573
Equal bandwidths

( (rad/s)80b =ω ) H 8.6025 2.5433 0.4133 0.4019

H2/H 9.9046 2.5937 0.3683 0.3573
Equal peaks
 (8.3 dB).

H 10 2.2210 0.3052 0.3083

By reference to derived data, can be drawn the conclusions that the closed-loop

system with mixed controller has a higher stability margins than the system with

H  controller in equal bandwidth condition, that implies more robust system. It

is quite good, but the performance margins are better in H  case. The situation is

opposite in equal peaks condition. But the degradation in robust stability

margins is not so significant as the improvement of performance margins.

Numerically, stability margins are 1% lower, as the performance margins are

18% greater.

There  are  also  advantages  of  mixed  controller  in  the  reference  signal  noise

attenuation (Figure 4.24), tracking (Figure 4.24) and control signal high

frequency noise filtering (Figure 4.23). This can be seen in the figures below.
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Fig. 4.23: Singular value plots of mixed (blue) and H  (green) controllers.

Fig. 4.24: Singular value plots of the output complementary sensitivities of closed-loop systems

controlled by H2/H  (blue) controller and H (green).

As a result the one-degree-of-freedom mixed H2/H  robust  controller  was

designed. The robustness of the AMB system controlled by such controller is

guarantied. The overshoots of signal and position are too high for real system.

But inspite of that the controller has only one DOF the axial bearing system

model controlled by it has satisfactory robust characteristics. By adding the

second degree of freedom to obtained controller the time domain characteristics

can be met.

Frequency (rad/s)

Frequency (rad/s)
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5 Conclusions

A lot of control methods are available at the present time to control the objects

of all kinds.  Hence there are also many design techniques for their

implementation. In this work the object is the model of axial active magnetic

bearings. Robust control method was considered to achieve the formulated

problems including the improvement of the system robustness, performance,

stability, output disturbance rejection and noise attenuation.

To implement the controller with which the closed-loop system will satisfy the

requirements the mixed H2/H optimization was chosen in this thesis. This way

the outputs norms of generalized plant are minimized by H2 and H  norms. To

shape the required transfer functions, as output sensitivity ( 1
o )( −+= GKIS ),

complementary output sensitivity ( 1
o )( −+= GKIGKT ), from reference signal to

control signal ( 1)( −+= GKIKR ) the weighting functions in form of low-pass

and high-pass filtering were used. The generalized plant was generated in such a

way to minimize the second norm of weighted R and  the  infinity  norms  of

weighted R and S. The design process was realized using Robust Control

Toolbox TM of the MATLAB. Especially to compute the controller used function

hinfmix(). Therefore the required mixed H2/H controller has been designed.

To see the relevance of this direction of working controller was compared with

H  optimization approach. The comparison results are not allowing adjudicating

upon the indisputable dominance of mixed controller but it has better properties

than simple H .
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1uW

2uW 2z

+

2K

1K +

refT

Fig. 5.1: Two degree-of-freedom controller scheme ( refT - reference model).

One degree-of-freedom controller configuration was considered. Even that way

the derived closed-loop system has quite good performance and stability

characteristics. Deficiencies of system can be disposed by appending the second

degree-of-freedom to controller. The principle of a 2DOF control scheme is to

use a feedback controller (K2) to achieve the internal and robust stability,

disturbance rejection, etc.,  and  to  design  another  controller  (K1) on the feed

forward path to satisfy the tracking requirement, which minimizes the difference

between the output of the system and reference signal. The structure of such

control is shown in the Figure 5.1. For the future such controller properties can

be investigated more detailed and trying this optimization for radial bearings as

well.
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6 Appendix I, 1

Mixed H2/H  controller computation algorithm.

clear all; load plants.mat; clc;
%% Input parameters: output weighting function Wp
Gnom = Puss_pu_ax.nominal; % Nominal plant model
Gunc = Puss_pu_ax; % Uncertain plant model

% S = (I+GK)^-1 - weghting function We for Hinf optimization
Ke0 = 1e-4;      Ke8 = 1e0;          we = 11e2;
We  = tf([1/Ke8 we],[1 we*Ke0]);
% R = K(I+GK)^-1 - weghting function Wu1 for Hinf optimization
Ku10 = 1e0;      Ku18 = 1e0;         wu1 = 1e2;
Wu1 = tf([1/Ku18 wu1],[1 wu1*Ku10]);

% R = K(I+GK)^-1 - weghting function Wu2 for H2 optimization
Ku20 = 1e0;      Ku28 = 0.4e-3;         wu2 = 5e5;
Wu2 = tf([1/Ku28 wu2],[1 wu2*Ku20]);

%% Generalized plant P with weighting functions

systemnames      = 'Gnom We Wu1 Wu2';
inputvar         = '[r;u]';
outputvar        = '[We;Wu1;Wu2;r-Gnom]';
input_to_Gnom    = '[u]';
input_to_Wu1     = '[u]';
input_to_Wu2     = '[u]';
input_to_We      = '[r-Gnom]';
sysoutname       = 'P';
cleanupsysic     = 'yes';
sysic;
P1 = ltisys(P.a,P.b,P.c,P.d);

%% Mixed H2/Hinf Controller design
[Gnompt,h2opt,Kmxd] = hinfmix(P1,[1 1 1],[10 0 0 1]);

%% Some transformations
[a,b,c,d] = ltiss(Kmxd); Kssmxd = ss(a,b,c,d);

% Nominal model
% Sensitivity functions of plant-controller feedback loop
loops = loopsens(Gnom*Kssmxd,1);
% Closed-loop state-space model
CL    = feedback(Gnom*Kssmxd,1);
% Closed-loop LTI model
CLt   = ltisys(CL.a,CL.b,CL.c,CL.d);
% Closed-loop with control signal as output
Fu    = feedback(Kssmxd,Gnom);

% Model with uncertainties
% Sensitivity functions of plant-controller feedback loop
lpus = loopsens(Puss_pu_ax*Kssmxd,1);
% Closed-loop state-space model
CLus    = feedback(Puss_pu_ax*Kssmxd,1);
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% Closed-loop LTI model
CLtus   = ltisys(CL.a,CL.b,CL.c,CL.d);
% Closed-loop with control signal as output
Fuus    = feedback(Kssmxd,Puss_pu_ax);

% Zeros and poles of the nominal model
Ps = pole(CL);
Zs = zero(CL);
Zs1 = Zs(2:5);

%% Responses
figure(1); sigma(1/We,loops.So,loops.To); grid on; hold on;
figure(1); Legend('Weight S','Output sensitivity','Output
complementary sensitivity','Location','SouthWest');

figure(2); step(loops.So,CL,Fu); grid on; hold on
figure(2); legend('Output sensitivity','Closed loop','Control
signal');

figure(3);impulse(loops.So,loops.To); grid on; hold on
figure(3);Legend('Output sensitivity','Output complementary
sensitivity');

figure(4); plot(Ps,'*r'); hold on; grid on;
           plot(Zs1,'ob');
title('Zeros and poles of the system');

figure(5); sigma(1/We,lpus.So,lpus.To); grid on; hold on;
figure(5); Legend('Weight S','Output sensitivity','Output
complementary sensitivity','Location','SouthWest');

figure(6); step(lpus.So,CLus,Fuus); grid on; hold on
figure(6); legend('Output sensitivity','Closed loop','Control
signal');
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H  controller computation algorithm.

clear all; load plants.mat; clc;
%% Input parameters: output weighting function We
Go = Puss_pu_ax.nominal; % Nominal plant model

% S = (I+GK)^-1 - weghting function We
Ke0 = 1.144e-4;      Ke8 = 1e0;          we = 9.6e2;
We  = tf([1/Ke8 we],[1 we*Ke0]);

% R = K(I+GK)^-1 - weghting function Wu1 for Hinf optimization
Ku0 = 1e0;      Ku8 = 1e-3;         wu = 6e6;
Wu = tf([1/Ku8 wu],[1 wu*Ku0]);

%% H8 mixed-sensitivity synthesis (S/T)
clc;
[K,CL,gam,INFO]=mixsyn(Go,We,Wu,[],'display','on');
%% Some transformations

% Sensitivity functions of plant-controller feedback loop
loops = loopsens(Go*K,1);
% Closed-loop state-space model
CL    = feedback(Go*K,1);
% Closed-loop LTI model
CLt   = ltisys(CL.a,CL.b,CL.c,CL.d);
% Closed-loop with control signal as output
Fu    = feedback(K,Go);

%% Responses
figure(1); sigma(1/We,loops.So,loops.To); grid on; hold on;
figure(1); Legend('Weight S','Output sensitivity','Output
complementary sensitivity','Location','SouthWest');

figure(2); step(loops.So,CL,Fu); grid on; hold on
figure(2); legend('Output sensitivity','Closed loop','Control
signal');

figure(3);impulse(loops.So,loops.To); grid on; hold on
figure(3);Legend('Output sensitivity','Output complementary
sensitivity');

figure(4);plot(spol(CLt),'+b'); grid on;
title('Poles of the system');
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H  and mixed H2/H  controller comparison computation algorithm.

clear all; clc; close all; load plants.mat;
%% Mode selection: 1 - Equal bandwidth; 2 - Equal peaks
disp(sprintf('\nBecause of the fact, that the output
sensitivities in Hinf \nand H2/Hinf optimizations can not be
equal at a time we \nshould choose what would be equal:\n'));
        disp('1) Equal bandwidth');
        disp('2) Equal peaks');
 choice=input('choice: ');

%% Output and control signal weighting functions for Hinf/H2
optimization.
Gnom = Puss_pu_ax.nominal;
% ax_plant; % Given plant
Gunc = Puss_pu_ax;

% S = (I+GK)^-1 - weghting function We
Ke0 = 1e-4;      Ke8 = 1e0;          we = 11e2;
Wemxd  = tf([1/Ke8 we],[1 we*Ke0]);

% R = K(I+GK)^-1 - weghting function Wu1 for Hinf optimization
Ku10 = 1e0;      Ku18 = 1e0;         wu1 = 1e2;
Wumxd1 = tf([1/Ku18 wu1],[1 wu1*Ku10]);

% R = K(I+GK)^-1 - weghting function Wu2 for H2 optimization
Ku20 = 1e0;      Ku28 = 0.4e-3;         wu2 = 5e5;
Wumxd2 = tf([1/Ku28 wu2],[1 wu2*Ku20]);

%% Output and control signal weighting functions for Hinf
optimization.

% S = (I+GK)^-1 - weghting function We
if choice == 1
% Bandwidths and low frequency gain are equal

    Le0 = 1.144e-4;      Le8 = 1.279e0;          we = 9.62e2;
else
% Peaks and low frequency gain are equal

    Le0 = 2.91838e-4;       Le8 = 1.279e0;          we = 1e2;
end

Weinf  = tf([1/Le8 we],[1 we*Le0]);

% R = K(I+GK)^-1 - weghting function Wu1 for Hinf optimization
Lu0 = 1e0;      Lu8 = 1e0;         wu = 1e2;
Wuinf = tf([1/Lu8 wu],[1 wu*Lu0]);
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%% Generalized plant P for Hinf/H2 optimization.
clc;
systemnames      = 'Gnom Wemxd Wumxd1 Wumxd2';
inputvar         = '[r;u]';
outputvar        = '[Wemxd;Wumxd1;Wumxd2;r-Gnom]';
input_to_Gnom    = '[u]';
input_to_Wumxd1  = '[u]';
input_to_Wumxd2  = '[u]';
input_to_Wemxd   = '[r-Gnom]';
sysoutname       = 'P';
cleanupsysic     = 'yes';
sysic;
P1 = ltisys(P.a,P.b,P.c,P.d);

%% Mixed H2/Hinf Controller design
[Gnompt,h2opt,Kmxd] = hinfmix(P1,[1 1 1],[10 0 0 1]);

%% H8 mixed-sensitivity synthesis (S/R)
[Kinf,CL,gam,INFO]=mixsyn(Gnom,Weinf,Wuinf,[],'display','on');

%% Some transformations
disp(sprintf('\nPress any key to see the responses\n'));
pause ;
clc;
disp(sprintf('\nSelect the plant\n'));
        disp('1) Nominal');
        disp('2) Uncertaint');
plant=input('choice: ');
if plant == 2
     Gnom = Gunc;
end
[a,b,c,d] = ltiss(Kmxd); Kssmxd = ss(a,b,c,d);

% Hinf                                  % Hinf/H2
% Sensitivity functions of plant-controller feedback loop
lpinf  = loopsens(Gnom*Kinf,1);         lpmxd  =
loopsens(Gnom*Kssmxd,1);
% Closed-loop state-space model
CLinf  = feedback(Gnom*Kinf,1);         CLmxd  =
feedback(Gnom*Kssmxd,1);
% Closed-loop with control signal as output
Fuinf  = feedback(Kinf,Gnom);           Fumxd  =
feedback(Kssmxd,Gnom);

OutputSens_Mxd   = lpmxd.So;
OutputSens_Hinf  = lpinf.So;
COutputSens_Mxd  = lpmxd.To;
COutputSens_Hinf = lpinf.To;
% Poles
PLmxd = spol(CLtmxd);
PLinf = spol(CLtinf);
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%% Responses
figure(1);
sigma(OutputSens_Mxd,OutputSens_Hinf,COutputSens_Mxd,COutputSens
_Hinf,Kssmxd,Kinf);  grid on; hold on;
figure(1); Legend('Output sensitivity(mixed)','Output
sensitivity(Hinf)','Output complementary
sensitivity(mixed)','Output complementary
sensitivity(Hinf)','Kssmxd','Kinf','location','SouthWest');

figure(2); step(OutputSens_Mxd,OutputSens_Hinf,Fumxd,Fuinf,0:1e-
6:0.04); grid on; hold on
figure(2); legend('Output sensitivity(mixed)','Output
sensitivity(Hinf)','Output complementary
sensitivity(mixed)','Output complementary
sensitivity(Hinf)','Location','NorthEast');

figure(3);impulse(OutputSens_Mxd,OutputSens_Hinf,0:1e-6:0.04);
grid on; hold on
figure(3);Legend('Output sensitivity(mixed)','Output
sensitivity(Hinf)','Output complementary
sensitivity(mixed)','Output complementary
sensitivity(Hinf)','Location','SouthEast');

figure(4); subplot(2,1,1), plot(PLmxd,'+b'); grid on;
title('Hinf/H2 optimized closed-loop system poles');
figure(4); subplot(2,1,2), plot(PLinf,'*g'); grid on;
title('Hinf optimized closed-loop system poles');


