Lappeenranta University of Technology
Faculty of Technology Management

Degree Programme in Information Technology

Kimmo Kangas

COST OPTIMISATION OF MOBILE
ADVERTISING CLIENT DATA TRANSFER

The topic was approved by the head of the degegraamme on 15 August 2008.

Examiners: Professor Heikki Kalvidinen
Ahti Muhonen, M.Sc.

Supervisor: Ahti Muhonen, M.Sc.

TIIVISTELMA

Lappeenrannan teknillinen yliopisto
Teknistaloudellinen tiedekunta

Tietotekniikan koulutusohjelma

Kimmo Kangas

Langattoman mainosasiakasohjelman tiedonvalityksekustannusoptimointi

Diplomity6

2009

74 sivua, 28 kuvaa, 10 taulukkoa ja 7 liitetta

Tarkastajat: Professori Heikki Kalvidginen
FM Ahti Muhonen

Hakusanat: kustannusoptimointi, mainonta, matkafpuhXML-optimointi,
valimuistioptimointi

Keywords: cost optimisation, advertising, mobile@ph, XML optimisation, cache

usage optimisation

Langattoman mainosasiakasohjelman aiheuttama t&dloys verkon yli saattaa
kuulostaa epamiellyttavalta monen sovelluskehittéjéielests, jotka harkitsevat
sovelluksen rahoittamista mainosrahalla, koska otigdlityksen aiheuttamat
kustannukset saattavat pelottaa loppukayttajat gmrslluksen kayttdjakunnasta. Tasséa
diplomitydssa rakennettiin simulaatioymparistd nmééimaan todellista asiakas-
palvelin-ratkaisua, jotta voitiin mitata tiedonwiiksen maara erilaisten yhteystyyppien
yli. Tiedonvalityksen optimointiin kokeiltin muuteaa XML-pakkaukseen
erikoistunutta ja muutamaa yleiskayttdista pakkeersstelmada. Myos protokollaa
optimoitiin. Kustannusoptimointia silmallapitaen livduistin kaytt6ad optimoitiin ja
mainosten etukateen latausta paranneltiin kayttm#é@aisia yhteyksia tiedon
lataamiseen. Valitetyn tiedon rakenne ja eri opiimid analysoitiin ja todettiin, etta
valimuistin kayttéa ja etukéteen latausta tulishik&d ja XML-protokollaa pitéisi
muuttaa yhdistamaan raportteja ja pakata joko &gytla WBXML:a tai gzip:ia.

ABSTRACT

Lappeenranta University of Technology
Faculty of Technology Management

Degree Programme in Information Technology

Kimmo Kangas

Cost Optimisation of Mobile Advertising Client Data Transfer

Master’s thesis
2009
74 pages, 28 figures, 10 tables and 7 appendices
Examiners: Professor Heikki Kalviainen
Ahti Muhonen, M.Sc.
Keywords: cost optimisation, advertising, mobileph, XML optimisation, cache

usage optimisation

Data traffic caused by mobile advertising clierftware when it is communicating with
the network server can be a pain point for manylieggmon developers who are
considering advertising-funded application disttibo, since the cost of the data
transfer might scare their users away from usiegabplications. For the thesis project,
a simulation environment was built to mimic the Iredfient-server solution for
measuring the data transfer over varying types asfnections with different usage

scenarios.

For optimising data transfer, a few general-purposmpressors and XML-specific
compressors were tried for compressing the XML daaad a few protocol
optimisations were implemented. For optimising dwst, cache usage was improved
and pre-loading was enhanced to use free connediiolvad the data. The data traffic
structure and the various optimisations were aedlyand it was found that the cache
usage and pre-loading should be enhanced anchthatdtocol should be changed, with

report aggregation and compression using WBXMLzip.g

ACKNOWLEDGEMENTS

| would like to thank Nokia QOyj for giving me thepportunity to finally finish my
studies by finding a subject that was interestind ehallenging enough. | wish to offer
special thanks to my supervisor, Ahti Muhonen,giming me enough time and decision

power to create the thesis independently under goathnce.

Also, | want to thank supervising professor HeiKEkilvidainen, who pushed me to meet
the deadlines by being constantly interested itbik and its progress.

I would like also to apologise to all of my friendsd my brother, whom | have

dismissed recently while trying to finalise thigés. Thanks for being patient!

Special thanks go to my girlfriend, who has supgibnne even when | have had very
difficult times with the thesis, and also when Vvadeen very difficult myself. Thanks,

and my apologies!
Ja lopuksi haluan kiittdé ja muistaa vanhempiaotkg ovat kannustaneet ja tukeneet

minua koko opiskelujeni ajan ala-asteelta tAhangé# asti. llman heitad tama hetki ei

olisi mahdollinen, kiitos!

Kimmo Kangas

TABLE OF CONTENTS

1 INTRODUCTION
1.1. BACKGROUND
1.2. OBJECTIVES AND RESTRICTIONS
1.3. STRUCTURE OF THE THESIS
2 OPTIMISATION OF COST
2.1. RELATED WORK
2.2. COST OF THE ADVERTISING DATA
2.3. OPTIMISATION ALTERNATIVES
3 THE CURRENT IMPLEMENTATION
3.1. SYSTEM OVERVIEW
3.2. HIGH-LEVEL MESSAGE FLOW
3.3. ADVERTISEMENT TARGETING
3.4. TRANSFERRED DATA
3.4.1. ADVERTISEMENT METADATA AND CONTENT DOWNLOAD
3.4.2. REPORT AND PROFILE DATA UPLOAD
3.4.3. PROTOCOL OVERHEAD
3.5. CACHE USAGE
4 DATA OPTIMISATION
4.1. GENERAL-PURPOSE DATA COMPRESSION
4.1.1. THEGNU zIP ALGORITHM
4.1.2. THE BZIP2 ALGORITHM
4.1.3. THE PAQBP ALGORITHM
4.2. XML- SPECIFIC DATA COMPRESSION
4.2.1. THEWAP BINARY XML CONTENT FORMAT
4.2.2. THEXMILL ALGORITHM
4.2.3. THEXMLPPM ALGORITHM
4.3. PROTOCOL OPTIMISATION
4.3.1. REPORT DATA AGGREGATION
4.3.2. REPORTING ON ONLY UNUSED IMPRESSIONS
4.3.3. REMOVAL OF OFFLINE TARGETING CAPABILITIES
4.3.4. OTHER METHODS
5 OPTIMISATION OF CACHE USAGE
5.1. ADVERTISEMENT CACHING

10

11

11
13
13
14
14
15
18
18

19

19
21
21
22
22
23
23
24
24
24
26
26
27

28

28

5.2. ADJUSTING PRELOADING ACCORDING TO CACHE CONTENT

5.3. USE OF FREE CONNECTIONS
5.4. CACHE SIZE

SIMULATOR DESIGN

6.1. OVERVIEW

6.2. CLASS STRUCTURE

6.3. DATA MODELS

6.4. MEASUREMENTS

6.5. COST OPTIMISATIONS

6.5.1. DATA COMPRESSION

6.5.2. PROTOCOL OPTIMISATION

6.5.3. CACHE USAGE OPTIMISATION

6.6. SIMULATION SEQUENCE

6.6.1. FETCHING ADVERTISEMENTS FROM CACHE
6.6.2. FETCHING ADVERTISEMENTS FROM THE SERVER
6.6.3. VERIFICATION OF THE FUNCTIONALITY

USE CASES

7.1. USE CASE DEFINITIONS
7.2. APPLICATIONS

7.3. USER GROUPS

7.4, ADVERTISEMENTS

RESULTS

8.1. ORIGINAL SET-UP

8.2. XML COMPRESSION

8.3. PROTOCOL OPTIMISATION

8.4. CACHE USAGE IMPROVEMENTS

CONCLUSIONS

9.1. FINDINGS
9.2. RECOMMENDED ACTIONS
9.3. RECOMMENDATIONS FOR FUTURE STUDY

REFERENCES

APPENDICES

29
30
31

32

32
33
34
35
35
36
36
37
37
38
39
39

41

41
41
43
44

45

45
46
47
49

55

55
56
57

58

ABBREVIATIONS

2G
3.5G
3G
API
CPC

CPM

CTR
DTD
EXIWG
GPRS

HSDPA

HTTP
MANET

MCC
MMA
MMS
MNC
MSXML
PPM
ROI
SAX
SIM
SMS
Ul
USB

Second generation of telecommunication hardst@medards

Beyond third-generation telecommunication Wware standards

Third generation of telecommunication hardwaa@adards
Application programming interface

Cost per click, a business model where adeestipay when users
click on an advertisement

Cost per mille (cost per thousand impressioaspusiness model
where advertisers pay when users see an advertiseme
Click-through rate, percentage of clicks peavaih advertisements
Document type definition

Efficient XML Interchange Working Group

General Packet Radio Service, a packet-odentebile data service
for 2G cellular systems

High-Speed Downlink Packet Access, a highedg25G mobile data
service

Hypertext Transfer Protocol

Mobile ad hoc network, a network made by cecting the mobile
devices nearby together

Mobile country code
Mobile Marketing Association

Multimedia Messaging Service, an extensiorh®$MS standard
Mobile network code
Microsoft XML core services

Prediction by partial match

Return on investment

Simple API for XML

Subscriber Identity Module

Short Messaging Service

User interface

Universal Serial Bus

wW3C
WAP
WBXML
WCDMA
WLAN
XML
XSD

World Wide Web Consortium
Wireless Application Protocol
WAP Binary XML

Wideband Code Division Access
Wireless Local Area Network
Extensible Markup Language

XML schema definition

1 INTRODUCTION

1.1. Background

The current trend in the Internet world is to pdwviservices free of cost for the end
user. However, since ‘there is no such thing a®e lunch’, the service providers have
had to find alternative ways of monetising theisibess. Advertising has proved to be a
functional solution, at least as judged by the nemmif free services available on the
Internet and the revenue figures of Google, whimionetising its 22 billion dollar
business almost solely by advertising (97% of GesgR008 revenue came from

advertising) [1].

Monetising one’s business through advertising &elaon a content or service publisher
selling the audience to advertisers who in retunpehto make deals with the consumers,
or at least have their brand known to the largdslipuThe value in the advertising
business comes through the number of times an @sbment has been shown (also
known as number of impressions) or through the rarmob clicks an advertisement has
received. The publisher value can be increasedpegifying the publisher’s target
audience in great detail, so that the advertisees valling to pay more for the

advertising space in hopes of increased returmegsiment (ROI). [2]

Consumers’ expectation of having free serviceshanlhternet is becoming extended
also towards services and applications targeteddbile phones, and there even exists
an operator (Blyk [3]) offering advertising-fundesobile subscriptions in some

countries. The mobile phone environment is moreetive to advertisers than is the
mass marketing on the Internet, because an adwesist on the small screen of a
mobile phone has more impact, and mobile phonesnawes personal, making

click-through rates (CTRs) higher since the adsertients can be targeted more

accurately to individual users than is possibléiternet display advertising [2], [4].

However, advertising with rich graphics and intéikaccapabilities in the mobile phone
environment is not that straightforward: the molpif@ne environment today, even with
high-end multimedia phones, is very different frone desktop environment. While
execution performance, memory, battery life, sterapace, and screen sizes are
constantly increasing, the data connection speet casts are still problematic in

targeting of mass markets. [2], [4], [5], [6]

Current pricing models make the advertising datdeqcostly for the user, because
typically data traffic is paid for by amount of msferred data and transferring a hundred
kilobytes of advertising data can cost the end haéfra euro [7]. Pricing models based
on the time the connection is open are used alganlhose cases the need to open and
close the connection for every time data will bansferred degrades the user
experience. Also, since the charging in this masiélased on rates per hour or fraction

thereof, transferring small pieces of data every aad then will become expensive.

Even though third-generation mobile network (3G§ems and flat-rate data contracts
are slowly becoming more commonly available in dewved areas’ metropolises, they
are not yet widely used globally and there ard stiany regions that only have
second-generation (2G) networks [8] in which théadzonnection latencies are huge
and radio bandwidth is limited, with first prioritior calls [9]. The next-generation
(3.5G) High-Speed Downlink Packet Access (HSDPAMwoeks are an attempt to
overcome the latency problems of General PacketoR8drvice (GPRS) by using
shorter transmission time intervals and multiplgxthe data from several users to the
same transmission slots [10], but the capacity @letower is still limited and has to be
shared between the packet data and calls, andierges have shown that sending of

small payloads does not reap the full benefit oféased transmission speed [11], [12].

The slowness and cost combined with the fact thadtrof the time the phone is not
even connected, to save on battery life, give dtbmeg in the mobile phone
environment a challenging playground. To overcohesé problems and to enhance the
user experience through shorter view loading tiraed increased responsiveness, a

client-side program has been developed to handiee sof the advertising logic and

advertisement caching in the mobile phone, helpmgave many roundtrips to the

network server.

While local caching of advertisements in mobile pd® solves problems with bad user
experience, there remains the need to transfet af Idata between the client and the
network server: graphics for the advertisements veitreen resolutions constantly
increasing, advertising metadata needed for tangetie advertisements, report data
related to advertisement impressions and clickd, @ofiling and context information

for the targeting of advertisements.

1.2. Objectives and restrictions

The assumption is that end users are willing teepcthe advertising if the targeting
works properly and the user sees the advertisirggs#svice, or receives free services or
applications [2], but they do not want to pay thdra data costs caused by the
advertising traffic. The purpose of this thesis jpcdb was to build a simulation
environment for testing different usage scenarios iclient—server environment that
behaves like the real-world system and has an itelimnumber of advertising
campaigns available server-side. The simulatorsedufor measuring data traffic over
different connections and for investigating difigrevays of minimising the data

transfer costs paid by the end user.

The assumptions for the simulated environment arf®liows: 1) the data transfer over
the mobile phone network costs the end user marey/2) the user is within range of a
free network (Wireless Local Area Network (WLAN)nlersal Serial Bus (USB)

cable, or Bluetooth) every now and then.

Cost optimisation is considered only from the emséris point of view with purely

technical improvements in the pull delivery modeko standard data connections.
Thus, partnering with operators and other busin@sslel enhancements are not
addressed in this thesis. Push, broadcast, andemadihoc networks (MANETS) are

not considered as a delivery mechanism [5], antheeis the use of the Multimedia

Messaging Service (MMS) or Short Messaging Ser{&S) as a data bearer, because
there are serious privacy issues in associatidgheophone number with the anonymous

profile data collected.

In investigation of the protocol data, only appiica-layer data optimisations [12] are
considered. Dynamic advertisement content selectiad optimisation based on
network qualities are excluded. Because advertisdready provide fine-tuned
compressed image data, changing the compressi@amp#ars to employ more lossy

methods is out of the question.

The chosen methods will be evaluated mainly orbtss of the implementation effort
required and the simulated percentage of cost gayiout also execution performance

and battery consumption are considered, in caseattgesignificantly compromised.

As a conclusion, suggestions will be made on hosvdysstem should be changed in

order to optimise the cost, or what areas shouktumied further.

1.3. Structure of the thesis

The thesis is structured such that related worktaediefinition of costs for mobile data
transfer are described in Chapter 2 and the desigh functionality of the current
client—server system are described and analys€thapter 3. Chapter 4 covers the cost
optimisations that can be made by manipulatingtthasferred data, and Chapter 5

investigates the optimisation and pre-loading atgors for improving cache usage.

The simulator details and optimisations implemerdeel described in Chapter 6, and
Chapter 7 presents the use cases and advertisela@nfor running the simulations.
Detailed results for the simulations run with thmwator are found in Chapter 8, and
summary conclusions and recommended actions andefidtudy are presented in
Chapter 9.

2 OPTIMISATION OF COST

2.1. Related work

There exist many studies related to mobile advedig2] and different technical
solutions for delivering the advertisements to bandset. Many papers [2], [5], [6]
mention the cost and the limited connectivity asbfgm areas, and the common
approach for addressing this is to utilise MANEBadcast, or push delivery [5], [13]
over different bearers (SMS [14], Wireless ApplicatProtocol (WAP) push [15], or
Bluetooth push [16]) to transfer the main paylodthe systems focusing on pull
delivery [6], [17] transfer rich media advertisingntent and do not pay attention to the

cost of the data transfer.

In the context of generic wireless computing, sed{17], [18], [19] have been
completed for predicting future need and pre-logdire content to cache, but the focus
in these is on allowing the applications to workoiifline mode, or on being able to
deliver the data to the user in a timely mannerthigse systems, there is usually data

content loaded that is newer used, which cleanhpisa cost-optimised solution.

There are also studies presenting a system fasingl different bearers on the fly to
save on battery life [20] or to speed up the comiation [21], and much work
currently centres on optimising the content detdeby sending only the necessary data
[18] or by compressing the messages with both 1d82}y and lossless [23], [24]

schema-aware and general-purpose algorithms [25].

2.2. Cost of the advertising data

The cost of the advertisement traffic for the esdrus in direct correlation with the
amount of data transferred. The data transfer eachlrged by byte or by hour, but in
any case less data transfer means less cost. kuthent system, the only limit to the

guantity of data transferred is a pre-defined acmstvalue, which limits the data

transmission per session but does not give anyr gifexlictability to the cost. This
means that for any given session, the cost of &idweg data can be anywhere between

zero and the maximum.

2.3. Optimisation alternatives

In addition to optimising the quantity of data s&rred, the cost can be optimised by
enhancing the cache usage and pre-loading. Wheahartisement has been loaded to
cache, it always should be used to minimise unsacgsata transfers, and when a
fixed-rate data connection is available (WLAN, Bh®th, or USB), it should be used to
fill the cache with advertisements that are predicto be needed before the next

available fixed-rate connection.

10

3 THE CURRENT IMPLEMENTATION

3.1. System overview

Advertising-funded applications on the mobile phane integrated with the advertising
client to provide access to different advertisimgvies provided by the advertising
client. The applications use the advertising apggili;a programming interface (API)
provided by the advertising client to fetch the extigements from the network server or
from the local cache and to return profiling datdhte server. The advertising client is a
middleware component that handles all advertiselgted communication between
mobile phone and network server. The advertisirgiesy follows the flexible client—
server architecture described by Jing et al. [IfNing the advertising client the
possibility of acting as a lightweight advertisisgrver, but also leaving flexibility to

forward the advertisement requests directly tonitgvork server.

The advertising client fetches the advertisemeras fthe network server and caches
them for later serving to applications. This waye responsiveness can be increased
and the power consumption reduced. The main logmaiponents and their
dependencies are illustrated in Figure 1. Thisishieguses on the interactions between
the advertising client and the advertising servemgonents, which occurs via the
Extensible Markup Language (XML) API.

The main responsibilities of the advertising clieaimponent are as follows:
» Serving advertisements to applications.
» Advertisement caching and fetching from the netwswkver.
» Gathering profile information.
» Sending reports to the advertising server (on asgéons and impressions).
» Executing actions.
» Performing targeting based on context (keyword,egaty, publication,

placement, and time).

11

Mobile phone

Application 2 E i
Application 1 Application 3

| —

| |
| | |
: e N !
L o :

Advertising API

- —————

Location Services

Phone Settings and
Configuration

Connectivity

Network server ?f XML API

}'f HTTP API

Advertising Server Content Server

Campaign
Management Ul

T T
rm— - === ! | Y !
| | e T X
Targeting | | | onten !
Engine | | 1 — i
------- mTmm) Ads KTTTmTTTToTooT oo
|
. Reporting and
- ______________________ Billing U
Reports
Figure 1. Overview of system components.
The main responsibilities of the network serversgsbem are as follows:

Serving of advertisements to the advertising client
Targeting based on the user profile.
Advertisement campaign management.
Reporting.

Billing.

12

3.2. High-level message flow

When the application is connected to the networkufadating its content or checking
for updates, the advertising client is informedpte-load a set of advertisements to
cache in order to reduce the latencies in the egpiin’s usage later when the user is
using the application for browsing the content arious views. When the advertising
client is fetching advertisements from the netwsekver, it also sends all the cached

reports to the network server. The high-level mgsd$kbw is presented in Figure 2.

Application Advertising Client Advertising Server Application content server

Fetch the content

Send the cached reports

|
|
T
|
|
|
|
|
»
>
|
|
»
»

|
|
}' Fetch the advertisements
|
|

Display the content

Ask for an ad

|
|
>
»
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

}

Return the ad } }
4 |
| |

Figure 2. High-level message flow.

3.3. Advertisement targeting

Targeting of the advertisements is a major elenretite advertising system; the better
the system can target the advertisements to ubkerbgtter the return on investment [6].
While usage of the local cache increases respamssgeand improves battery life since
data transmission is power-consumptive [20], thehtwy of advertisements also raises
new kinds of problems, such as how to fetch codyettrgeted advertisements in

advance or how to enable real-time targeting wéithed advertisements.

13

The advertisements can be targeted on the badiseotiser profile, which includes
information on elements such as the device, theehonetwork, user behaviour on the
phone (e.g., application usage, call logs, and besviogs), user data (e.g., contacts,
messages, and notes), and demographics. The algilabthe information depends on
the user preferences, and the data will be analgseld summarised in the handset
before being sent to the network server for uséameting advertisements by user

profile.

The context-information-based targeting that i® alspported by the advertising client
includes taking into account the user’s locatioailability (phone profile, calendar,

presence status, etc.), and the current time apdagawell as advertisement context
(where the advertisement will be viewed, also kn@snthe advertisement spot). This
should be taken into account in optimisation of taehe pre-loading and usage, by, for
example, loading a certain number of generic athartents instead of only targeted

ones.

3.4. Transferred data

The transferred data consist of received advergsgmontent (e.g., banner images) and
advertisement metadata (e.g., targeting, placeraedtaction information), reports sent
(e.g., on session, impression, and action) andilimgfinformation, and protocol

overhead.

3.4.1. Advertisement metadata and content download

Downloading the advertisement content is the biggestributor in the overall data
transfer. The current flow of interactions when application is to show an
advertisement is shown in Figure 3. The optimisapoint identified in this flow is the
decision-making point between fetching the adventient from server and from cache.
The choice depends greatly on the contents of dsbecand the incoming advertising
request — i.e., does the cache contain an advesdise with suitable targeting

parameters, or does one have to be fetched fromettveork? The optimisation of cache

14

usage is studied further in Chapter 5. Optimisatbrihe transferred data is covered

before this, in Chapter 4.

Application Advertising Client Advertising Server Content Server

Ask for an ad

Get the ad metadata from server

{OR}
D Get the ad metadata from cache

{if ad fetched from network}

——— Y _____

Returnthead |

I
|
:
| |
| |
| |
D Check the cache for ad content :
|
|
|

{OR} Get the ad content from server

Store the ad content to cache

Y

0

Return the ad E
|

Figure 3. Message flow of advertisement fetching.

3.4.2. Report and profile data upload

The reports are generated on the basis of the @shment displays (impressions) and
user actions (clicks on the advertisement). Whenapplication is started, a session
report will be created automatically (see Figurecéntaining the application start time
and the duration of the application session. Thesiea information is needed for
statistical purposes, since it can be combined wthression and actions reports to
provide a complete picture of how well the adv@rgsworks for a specific application.
This report represents a minor proportion of thalttraffic and thus no optimisation

points there.

15

Application Advertising Client

Create an interface instance

T
|
|
T
|
1

Store the current time

{application is shutting down} ﬁ

, 7 Delete the interface instance

s

Calculate the session time and store the report to cache

SRR

I
|
|
L
|
|
|
|
|
|
|

Figure 4. Message flow of session report creation.

When an advertisement is displayed, an impresgipart will be created (see Figure 5).

The impression report contains the start time &edduration of the impression, which

are used for generation of statistics only. Billofgadvertisers is based on impression
counts, which means that one optimisation poiniccbe in aggregation of the reports,

which is covered in Chapter 4.

Application Advertising Client

Render the ad
Report that the ad is visible

|
|
|
|
i
|
1

T
//Repor‘(that the ad is no longer visible

Calculate the impression time and store the report to cache

i
|
|
}

»l

g
|

{if the view is closed) D Store the current time

|
|
|
|

)

»
1
A
|
|

Figure 5. Message flow of impression report creatio

When an advertisement has been clicked, an actmortrwill be created (see Figure 6).
The action report contains the start time and dhratf the selected action, which are
also used only for statistical purposes. Thesedctel optimised by aggregating the

data, which is another potential optimisation fartaddressed in Chapter 4.

16

Application Advertising Client Phone Services

{if the user has clicked on the ad}

// Report that the ad has been clicked

Show the selection of actions to the user

Execute the selected action

> Store the action report to cache

o m oo |

Y ___

Figure 6. Message flow of action report creation.

The reports will be stored to cache and sent toatiheertising server when the next
advertisement request is sent (see Figure 7), enwliere are old enough reports in the
cache. The reports have to be sent to the servenénform or another because the
advertising business runs on reports and thugriheoptimisation point here is for the

protocol layer.

Advertising Client Advertising Server

{if an ad request is going to be sent to network server}

Get reports from cache

Check for changes in profile data

Send the ad request with profile updates and reports to the network server

T
I
I
I
I
I
I
|
I
I
T
:
: Delete reports from cache
I

I

I

I

Store the current profile to cache

YN

Figure 7. Message flow of report sending.

17

The user profile updates are also sent along vdtlerisement requests, and these are
already analysed and summarised in the handsgindeao optimisation points in this

area.

3.4.3. Protocol overhead

The XML API offered by the advertising server igyw&erbose, and great savings could
be made there. The advertising content is trareslesis-is in compressed binary format

(e.g., JPEG, PNG, or GIF), which is already optedig the creation phase.

Experience has shown that the operator gatewaysfittery or block the transferred
data, therefore the underlying protocols are sete¢b maximise compatibility with
operator gateways and hence, the direct sockelt-tmrections are not considered.
The number of separate Hypertext Transfer Prot@d®dITP) request-response pairs is
already optimised through combination of severa&ntlrequests and reports in one
HTTP request, and HTTP 1.1 pipelining and perststennections [12] are utilised.

3.5. Cache usage

Currently the system loads new advertisements thecavery time an application
refreshes its content. Because the number of aseerénts used is small, the system
works well, since the advertisement content is edckeparately. However, as the
number of advertisements in the system grows, er dénsity of content updates
increases, it becomes apparent that this is nadghieal solution, since advertisements
will be loaded to cache and may never even be showthe user. The cache usage

optimisation is covered in Chapter 5.

18

4 DATA OPTIMISATION

4.1. General-purpose data compression

General-purpose lossless data compressors areaftypltased on either dictionary
usage or arithmetic estimation. Dictionary-baseshme@ssors are in common use, and
their variants include such formats as ZIP [26]ijpgR27], and bzip2 [28]. The
compressors based on arithmetic estimation usbhaye large memory and execution
time requirements but a better compression rat). [Zhe variants of these include
prediction by partial match (PPM) [30] and the PA&)ies [31].

The dictionary compression algorithms have theotsdn the LZ77 algorithm [32],
which works by finding duplicated strings in thetalaOnly the first occurrence of the
string is stored as it is; the second one is onppiater to the previous one, in the form
of a distance-length pair. The scanning for dupdisas based on a sliding window,
which means that for any given position, the altponi has a record of the previons
characters that it can search for duplicates. Afteling a duplicate, the algorithm may
continue by checking whether a longer duplicatelmafound by moving on to the next
character, and it might even ignore the previouplidate to achieve a better
compression ratio. The different variants of thgoathm optimise the finding and
storing of duplicate information in different waged may apply some pre-processing to

the data before scanning for duplicates, to inerélas probability of duplicate strings.

The arithmetic compressors estimate the probahifitg symbol by means of either a
static or dynamic model. Static models can be haseexample, on historical data, or
they can be generated before the compression, hah womputing power is not a
limitation, dynamic models can be used. In thisecdéise model is updated as the file is
being compressed. Dynamic models are often useprddict the next symbol by
assessing previous symbols (i.e., the context)atherithms creating these models are

also referred to as PPM-based methods. [30]

19

The arithmetic encoding algorithm encodes a stredinmput symbols as a single
decimal number. For each symbol, the model contamnallocated range of probability
distribution, thus giving each symbol a unique eubgtween 0 and 1. When encoding
starts, the overall range is allocated to the fiyghbol’s range and then narrowed by the
second symbol’s range, and so forth. For instaiidee model contains two symbols,
‘a’ with a probability of 0.9 and ‘b’ with a probaity of 0.1, the ranges allocated would
be 0.0-0.9 for ‘a’ and 0.9-1.0 for ‘b’. Then, whencoding the sequence ‘aaab’, the
algorithm would first make the range 0.0-0.9 theremt range because of the first
symbol being ‘a’, then allocate the same sub-ranghkin the current range for the

second symbol. The steps in the arithmetic encqaiogess are described in Table 1.

Table 1: Arithmetic encoding process.

Next Lower Upper
symbol limit limit
0 1

a 0 0.9

a 0 0.81

a 0 0.729

b 0.6561 0.729

After the encoding process, we have a range fr@B61 to 0.729 and can pick, for

example, the number 0.7 from that range, whichesgmts uniquely the series ‘aaab’.
[33]

One arithmetic compression and two dictionary-baa&gbrithms were chosen for
compressing the XML data. The dictionary algorith@SU zip and bzip2 were chosen
because of their high performance and wide avéialain different platforms, and the
arithmetic compressor pagq8p was chosen for its cesspn ratio. Summary of the

methods used in selected compressors can be foulgpiendix .

Even though the latest arithmetic compressors dald gompression ratios of up to
24% for already compressed image files, all ofdietionary-based compressors deliver
only a 0-1% ratio [34]. As the arithmetic compress@quire more processing power,
recompressing the image data was not considereactigal option.

20

4.1.1. The GNU zip algorithm

GNU zip is a widely used compression tool that iempénts the DEFLATE algorithm
[35]. It first applies the LZ77 algorithm by scangithe data for duplicate strings and
then stores the duplicate pointers in two sepatafénan trees [36], one containing the

match lengths and the other containing the dis&nce

Huffman trees are used for storing the symbols l®ams of a variable-length code
table, which applies the estimated probability o€uwrrence of each possible value in
relation to the source symbol. The idea is to caspithe data by using fewer bits for

symbols that occur more often and more bits fos¢hthat occur infrequently. [36]

Because of relatively simple processing algoritkime, compression and decompression
is fast [37].

4.1.2. The bzip2 algorithm

The bzip2 compressor implements the Burrows-Whdstak-sorting text compression
algorithm [38] together with Huffman coding to oista@onsiderably better results than
are achieved with gzip, approaching the compressitin of arithmetic compressors.
[28], [29]

The Burrows-Wheeler block-sorting text compressadgorithm applies a reversible
transformation to a block of input text. The tramsfiation does not compress the data
but reorders similar symbols close to each othena&e the content more compressible

with simple compressors such as move-to-front apdizg]
Move-to-front coding [39] takes advantage of simigymbols occurring frequently
within short periods to create a variable-deltasprgation of the data. Finally, bzip2

applies the Huffman coding for the data.

The Burrows-Wheeler transformation is time conswgnmaking the algorithm slower

than gzip, especially when compressing data [37].

21

4.1.3. The paq8p algorithm

The PAQ series of compressors are arithmetic cosspre with a large number of
dynamic models mixed together. These models edtirtiegt next bit by assessing the
previous bits and the result of each predictioarithmetically coded. The predictions
are combined by weighted averaging and the wemletslynamically adjusted to favour
the most accurate models to reduce future predigioors (paqg6). The difference from

the prediction is then recorded for the decompoasaigorithm. [23]

In recent versions in the PAQ series, such as patp@padaptive model weighting is
replaced with neural network mixing of the differ@models. After combination of each

predicted bit, the neural network is trained with help of the correct bit. [31]

4.2. XML-specific data compression

Widely used in exchange of data between physiagdiyributed or loosely coupled
systems, XML uses schemas to standardise datamgyehhut, being human-readable,
it is too verbose for efficient transfer or prodaegsn a limited-bandwidth network. To
address this issue, the World Wide Web ConsortMB() formed the Efficient XML
Interchange Working Group (EXIWG) to specify an XMlnary format [40].

The XML schema can be derived implicitly from th&X document, or explicitly by a
Document Type Definition (DTD) or XML Schema Detion (XSD) file. The file
specifies the structure, element and attributeesymnd the allowed values. With
utilisation of external schema information in coegsion of the file, the element names
do not have to be included in the compressed thles making the compressed files
theoretically smaller. When only the implicit schemnformation is available,
XML-aware compressors should be able to removeagssary whitespace and linefeeds

and to compress the structure definition betten tha generic-purpose compressors do.
The EXIWG work is still ongoing, but in the mobione environment there already

exists a widely used binary format called WAP BynxiML (WBXML) [41], which

was chosen for evaluation in the present projeciddition to the binary representation,

22

two XML compressors — XMill [42] and XMLPPM [43] were chosen, for their good

compression ratio with large XML files [25]. Thesempressors separate the XML
structure information from the data and apply défé general-purpose compressors to
the two. Summary of the methods used in selected Xdipressors can be also found

in Appendix .

4.2.1. The WAP Binary XML content format

When converting an XML file to WBXML, the algorithrenumerates all of the
elements, attributes, and possible values fronXtle schema and generates an integer
value for each of these. After obtaining a uniquenher for each of the elements in
XML, the algorithm just converts the textual XMLg&to their binary equivalents. In
addition to pre-defined names, the compressecctilgains a string table that can be
used to enumerate duplicate string values insidextiL document. To overcome the
limitation of having to have control bits and eleth@numerations in one byte, the

format supports different code pages for enumenzhces. [41]

If the source XML document contains large elememntictures and smaller string
values, the WBXML should be comparable to the lyesteral-purpose compressors,
but it has two qualities that make it worth usingcomputationally limited devices: it
can be encoded and decoded in stream-level progessid it makes the parsing more

efficient since the parser can compare simple nusnbstead of strings.

4.2.2. The XMill algorithm

An XML-specific data compression algorithm that @ejtes the XML structure from
the data, XMill is based on a grouping techniquat tiroups and compresses values
together on the basis of their element types. Kample, where there is a sequence of
multiple report elements in an XML document, eacte @ontaining spot, time, and
duration information, the XML document could berraaged by grouping all spots,
times, and durations together. This usually yidld&€er compression ratios, since each

of these groups contain data items with great anitigs. [42]

After separation of the structure and rearrangifghe values, a general-purpose

compression method is applied. This can be selewitéxda runtime parameter, and four

23

options were considered: no compression (‘-n’),pggz’), bzip2 (default), and
PPM-based compression (‘-P’). These options affieetexecution speed in ascending

order from the firstly mentioned to the last.

4.2.3. The XMLPPM algorithm

XMLPPM is an XML compression algorithm that comtsrtee PPM algorithm for text
compression and an approach to modelling treetsiiedt data called multiplexed

hierarchical modelling [43].

XMLPPM takes a slightly different approach and sjseep the decoding and parsing of
the compressed file by directly encoding the seqeai Simple API for XML (SAX)

events from the XML parser when compressing thecgodocument. It then maintains
four separate models for the PPM compression dfgorione for element and attribute
names, one for element structure, one for attrdyua@d one for strings. Each model
maintains its own state, but the arithmetic encgdsmshared, allowing the encoding

and decoding to proceed incrementally. [43]

4.3. Protocol optimisation

In addition to compressing content and convertingaick to its original form when
decompressing it, another option is to change tb&gpol to optimise the quantity of
data transferred. As the XML sent consists modtiseport data and the XML received
is largely description of the targeting rules thdt be applied in loading advertisements
from cache in offline mode, one option would beaggregate and accept loss of

accuracy in either of these to minimise the transbets.

4.3.1. Report data aggregation

Detailed, itemised reports consume a lot of spadvenviransferred to the network, so by
losing some accuracy and aggregating the data ée$ending we could save
tremendous amounts in data costs. One report frencarrent implementation can be
seen in Figure 8, where all the data values aréligiged and all the rest is just

specifying the structure.

24

<ad-imp id=" srv-53108" creative-id=" srv-53109”

country=" 210" offline=" yes”">
<spot>
<metadata>
<image max-width=" 320" max-height=" 60" />
<publisher id=" noki a” publication=" medi a” />
<channel name=" ringtones”/>
<placement> t op</placement>
</metadata>
</spot>

<start-time> 20090128T015055+0200</start-time>
<duration> 255</duration>
</ad-imp>

Figure 8. Example of report data.

The data of multiple reports could be optimisedgoguping the report details within
common advertisement spot data (advertisement xramce there usually are many
fewer advertisement spots than reports, but, stheedetailed information on each
impression is not even used at the moment, thenigation could go even further by
aggregating the reports through counting only thmlmer of each type of report. This
means that, instead of each report being sent ithdilly, only the number of

impressions and actions for a particular advertesgrm a particular spot would be sent.

The result can be seen in Figure 9.

<spot publisher=" noki a” publication=" nmedi a”
category=" ri ngt ones” placement=" top”>
<adid=* srv-53108">
<ad-imp id=" srv-53109"> 6</ad-imp>
<action-click id=" srv-55798"> 1</action-click>
</ad>
</spot>

Figure 9. Example of aggregated report data.

Within less space than it took to send just oner@sgion report, it is possible to send
several impression and action reports, with thadliantage of losing timestamps and
durations of individual reports. However, since thiding is based on reports, the
benefit of aggregating the report data depend$ierdtration of the offline period (the
time for which the advertising client is not comrnaating with the network server) and

on the amount of delay that is acceptable in ratgrthe reports to the server.

25

4.3.2. Reporting on only unused impressions

With loss of more details from the reports andtstgf of the paradigm toward a more
cost-friendly solution, traffic could be optimiseden further by reporting only unused
impressions and actions. This would result in aiclothat would request an
advertisement for a certain spot and then atteroptagply all of the reserved
impressions in whatever spot the advertisementimeaghown in. If this should fail, the
client would report the number of unused impressitmthe server so that the server
would know to free the impressions for some othient This would entail the server
being unable to respond anymore to the client's@sgion report by indicating that the
advertisement is no longer valid, and the inforovaton the spots in which the
advertisements were actually shown would be lo$soAthe publisher value would
decrease, since the information about which apibica generate the audience would
be lost. The resulting impression reports wouldréguced to quite simple one-line

elements as shown in Figure 10, though the acéparts would remain the same.

<ad-deleted id=" srv-53108" unused=* 8" />

Figure 10. Example of a new impression report.

4.3.3. Removal of offline targeting capabilities

After reduction of the data sent to the minimung dptimisation could go still further

by removing details from the received data. In¢haent implementation, most of the
XML received describes the targeting rules usediétermine when and where the
advertisement can be shown. If the logic for senaavertisements from the cache in
offline mode would be changed to attach the pararadtom advertisement fetching to
the advertisements received, it would not be necgdes receive these over the network
connection. However, this would reduce the verngatidf the cached advertisements,
because the offline algorithm would not have knalgke of where the advertisements
are really allowed to be shown; with this redudedibility, the only possibility allowed

would be one-to-one mapping between cached adesrtists and spots. In view of
overall data optimisation considerations, this doubt bring very good results, since the

same advertisement cannot be shared between diffepplications, but the positive

26

side would be that the server has full control aher serving of advertisements and in

some cases costs could be saved with the curr@htnentation.

4.3.4. Other methods

There are numerous ways of optimising the XML, sashflattening the structure by
increasing the usage of attributes, removing urssssy containers, and using string
formatting instead of XML elements [44], but thome not covered here, since they
would require a complete redesign of the protooal aew implementation on both the

client and the server.

27

5 OPTIMISATION OF CACHE USAGE

5.1. Advertisement caching

In the current implementation, the advertisemerhirgy logic is quite simple and the
effective sharing of the cached advertisementsbeawery limited since the campaigns
are sold for specific applications at a specifindifor a specific number of impressions
(cost per mille (CPM) business model). Howeverthia future, with movement toward

user targeting and performance-based selling oéridements (advertisers paying by
the number of clicks, CPC business model), cackiigbe utilised more and more

effectively as advertisements are targeted motédausers instead of for applications
and advertisement spots. There are three aspeasn&der in improving the cache

usage:

1. If an advertisement has been loaded, take the mdsof it and use all of the
impressions reserved for it every time before rempit (or before it expires).

2. Use free connections to pre-load the advertisententache that will be most
likely to be needed in future.

3. Advertisements that are loaded to cache shoulélmable, not very specifically

targeted (location is also relevant later), anddigposable.

The first element is limited by how well the caclatiertisement parameters match the
request parameters. The second is limited by ttee @mnection parameters for getting
the advertisements into the cache, and the thiichited by cache size and the needs of
the advertisers. The exact parameters limiting eacdage are described in Figure 11.
From these parameters, the advertisement validipgrt time and data connection time,
duration, data limit and speed, are not considenethis thesis. The advertisement

request and advertising client parameters arededu

28

Data Connection

-time
-duration
-cost
-data limit

-speed
Advertisement
«limit» validity
\ -frequency capping
Ad Request \ «download» R -targeting
-time Ad Client e

-ad context «call» 2 _ ——
-cache size
-usercontext | «upload» —
—————————— - -time

Figure 11. Data actors in the system.

5.2. Adjusting pre-loading according to cache conte nt

The current implementation loads new advertisemémtthe cache every time the
application refreshes its content from the netwofthe number of pre-loaded
advertisements is based on estimated user behawabigh in practice means that one
advertisement is loaded for each downloaded itesw¢nstory, catalogue page, e-malil

message, video, song, etc.) that the user might vie

This works well in the current environment, whehe number of active advertising
campaigns for any given application is small, bseauhe server cannot return
guaranteed different advertisements for each afethiequested items; instead, it might
return just one generic advertisement, which is tiiged from cache in all of the views.
However, when the number of advertisements in tlgstesn grows, different

advertisements could be targeted for each of #wagtseparately, thus creating the
possibility of loaded advertisements not being siha@ven once if the user does not

view the item.

This is not an optimal solution for the future, whthe advertisements will be more
targeted and there are plenty of them in the syskecan lead to situations wherein the
cache already contains proper advertisements éafplication’s needs. By changing

the pre-loading logic to first scan through the hmacontents to calculate how many

29

applicable advertisements exist already and thiennfithe blanks from the network
server for the estimated required number of adsamients, it should be possible to
achieve considerable cost savings. Usually adesnésits that are loaded can be shown
to the user more than once, so also the clienverdidement serving algorithm should
be changed to use all of the cached impressiormédebnnecting to the network for
more advertisements.

5.3. Use of free connections

A mobile data connection over cellular networksnist the only way to get the
advertisement data to phones. Many newer phone Isnad® access Wireless LAN
networks, and many users are also connecting figines to desktop computers via
Bluetooth, USB, or infrared connection to transfiata. When these connections are
used, it can be assumed that moving the advertisietia¢a does not add to the cost. It is
possible that in some rare cases the WLAN connedticharged for by the byte, but

those cases are not considered in this work.

When the free connection is available, it can beated and used for downloading
more advertisements to cache from the network serVBe decision on which

advertisements to pre-load could be made inteltigdmy predicting the future need
according to historical data — for example, via soofi the PPM methods [30] — but,
since free connections are not that common in teugéo mass markets (especially in

developing countries), those methods were not atuany further.

The simplest way of utilising the free connectiserid change the advertisement serving
algorithm to obtain fresh advertisements from teemork whenever such a connection
is detected. This way, the cache can be filled wétver advertisements to increase the

probability of being able to use these when onheotonnections are available.
To further improve the algorithm, a parameter caratided for multiplying the number

of advertisements fetched from the server. Sineesrver always returns a certain

percentage of generic, less targeted advertisemgrgsnumber of these returned is

30

greater when the number of advertisements loadedsgrthe server also returns more
generic advertisements in addition to the mostetad) ones. This should decrease the
amount of data that must be transferred when foe@ections are not available, but the
cache size might limit the benefit, since the athon might end up overwriting existing
generic advertisements from the cache with onggted for the relevant application to
keep the cache size under the limit. Changing lieateside algorithm to keep a certain
level of generic advertisements in the cache wassnamlied. The effect of parameter

value on algorithm functionality and cache statéescribed in Table 2.

Table 2: The functionality of the cache algorithm ptimisation parameter.

Parameter Algorithm functionalit y Cache state after pre -loading
value (when a free connection is available)
0 Use cache when possible Cache contains advertisements for estimated
need.
1 Use network when free Cache contains more advertisements for the

connection is available application than the estimated number needed.
A certain proportion of the advertisements
returned are general and can served also to

other applications.

2 Use network when free Cache contains more general advertisements
connection is available to since the server always returns a certain
load twice the estimated percentage of these.
number of
advertisements needed
3 Use network when free Cache contains even more general

advertisements to be shared between all
applications.

connection is available to
load three times the
estimated number of
advertisements needed

5.4. Cache size

The available cache space is the biggest limitatigpre-loading of advertisements. The
basic rule for the cache is that the advertisem&ittsemain there until they expire or
their impressions run out. However, the cache Ba® to be limited, since the phone
environment usually has very limited storage cdjgland no single piece of software
can use all the available space for its own puoBRis leads to situations in which the
advertisements that are shown the most have tceleted before expiry in favour of
pre-loading of advertisements for other applicatiohhe probability of this happening

increases when free connections are used to pdeth@aadvertisements to cache.

31

6 SIMULATOR DESIGN

6.1. Overview

Because the current system requires a complexpsetf-unany components on the
server side and on the client side, a simulator Wai#t in order to measure the
transferred data quantities with ease in the sigecifsage scenarios. The simulator was
built first to mimic the real environment for studg the implementation of the existing
client—server advertising solution, and then enbdnfor testing different methods of

optimising the costs in the simulated usage scesari

The easy-to-use dynamic object-oriented programmamguage Python [45] was
chosen to speed up the development and to allovekqtésting of different
optimisations. The building of the simulator aldl@aed running of the same use cases
over and over again in an environment that hasrdimited number of advertisements
available and where the advertisement content aeduse cases can be adjusted

precisely.

The components in the system are illustrated infeig.2. ‘Test App’ contains all of the
application logic and runs the simulations on tlasi® of the ‘Use Case Data’, ‘Ad
Client’ simulates the client-side software, ‘Ad &' is a server simulator, ‘Ad Engine’
contains the advertisement storage and searchgig, lthe ‘Data Models’ component
contains definitions for different data structutesed by all other components, and ‘Ad

Data’ contains all of the advertisements usedstirg.

The comtypes Python library [46] is used for acresMicrosoft XML Core Services
(MSXML) [47], which is needed for validating therggrated XML against the protocol
schema. This makes the code Windows-dependenthisutan be easily replaced with
some other validation code (e.g., using libxmlI2]]4i8 support for other operating

systems should become necessary.

32

]]]

TestApp | 7 AdClient |~~~ T T 7 Ad Server | Ad Data

Use Case Data

P > Ad Engine

R

ffffffffff 3 Data e it
,,,,,,,,,,,,,,,,,, P Models

Figure 12. Simulator components.

6.2. Class structure

Class dependencies and interface functions arersiowigure 13. The application is

modelled by means of the Model-View-Controller [4fsign pattern, where the Test
class acts as the controller driving the simulaaeldertisement requests toward the
model, which is the client class. The user intexféldl), acting as the view, handles all

viewing and formatting of the results.

On high abstraction level, the functionality of thienulator is directly analogous to the
client-server environment. The most notable diffiees are the sharing of single
advertising engine component and absence of allsdrger side logic beyond the

advertisement loading and serving.
All the classes use common data structure clasmitilefis from ‘Data Models’

component, providing efficient and clean impleméotafor the functionality related to

processing the data elements.

33

Test App Ad Client Ad Engine Ad Server
ul
+printAdinfo()
+printTransferinfo() reqCreator
+printFetchinfo()
+printResponselnfo() T T TrequestXmi() - " ’}
0 \ i +responseXmi() |
client i
Test _ server
+connection()
+adFetch() m
- oadAds
+*maing) +report(+ad Fetch8
+cacheContent() ;
+transferLog() adEngine !
T
! 1
bemmoo] | N¥indAd) Keoodooofooo 0 ‘
+storeAd()
+cleanup()
+resetSession()
T T T T
| | | |
| | | |
Data Models

Figure 13. Simulator class structure.

6.3. Data models

Data model classes were created for wrapping pdesséhat specify the user's and
advertisement spot’s context information, adventieet and report data, and connection

type and speed. All parameters supported by thelator are described in Figure 14.

The user context is specified by device informatioarrent network and Subscriber
Identity Module (SIM) card parameters, such as Mabile Country Code (MCC),

Mobile Network Code (MNC) and cell tower identift@an, and demographics. The
advertisement context is specified by spot pararsetend the advertisement data

contains targeting parameters and information fick-¢o action. Each report has type

and time information and the connection is spedibig type and speed.

34

|
Data Models
userContext adContext adData report connection

-network_type -publisher -image_url -session -none
-network_mcc -publication -image_size -impression -gsm
-network_mnc -category -text -click -wcdma
-network_operator | [-placement -call_text -action -wlan
-network_lac -width -call_number -pc
-network_cell_id -height -url_text -speed
-device_model -count -url_address
-device_version -keywords -start_time
-device_locale -end_time
-device_homecity -cap_total
-sim_mcc -cap_session
-sim_mnc -serve_count
-user_age -session_serve
-user_gender -storage
-user_zip

Figure 14. Simulator data models.

6.4. Measurements

For measuring the simulation results, considerstalstical information gathering logic

was built into the simulator. Advertisement servoaunts are monitored on the server
and at cache level; detailed information on daadfer over different connection types,
broken down by data category, is collected; cackage statistics are updated,;
advertisement requests, reports, and actions eoeded in the online and offline cases;
and all of this is broken down further by usageegaty. Also, for data compression, all
of the various compression results are recordedash simulation run results in a lot of
numbers and many request/response files that camélgsed in detail for assessment

of the optimisation results.

6.5. Cost optimisations

In implementation of the different optimisations fbe simulator, performance was not
considered, and all of the optimisations were adletl by function parameters, making

it easy to run the same simulations with differgptimisation combinations enabled.

35

6.5.1. Data compression

Before application of the various compression atgors, all whitespace was removed
after generation of the XML data. Python aided @sting of the compression
algorithms, by providing built-in implementationrfgzip and bzip2, so applying these

for the XML data was straightforward.

For the rest of the compression algorithms, an Ofemnrce project was taken
(XMLPPM [50], XMill [51] and libwbxml [52]) and thetool was compiled from the
source code. This executable was then called frgthoR, resulting in a sub-optimal
sequence: generate raw XML, remove whitespacegwsasult to file, validate file

against protocol schema, and call external comjanesdgorithm to compress the file.

To obtain the best results with WBXML, a list of XMags, attributes, attribute values,
and commonly used strings had to be extracted ff@rcustom protocol schema. For
easier extraction, the schema was converted to Wifidthe free XML editor XMLPad

[53]. After reading of the DTD and parsing of alements, attributes, and attribute
values, a few known strings were added manuallthéotable in order to make the
WBXML more efficient. These tables were then in@ddn the source code for the

WBXML encoder and decoder, and the custom versigre compiled.

6.5.2. Protocol optimisation

All of the protocol optimisations were implementditectly in the XML generation

phase, and a new version of the protocol schemaconested for verifying that the
generated requests and responses match the opitmigtea, and that all the required
data would be transferred. In addition to automagdfication, the generated traffic

was also inspected manually to verify the logic.

Aggregation of report data was done only while degice was not connected, in order
to maintain the business logic. Adjusting the léngt the aggregation period could
bring great savings, but that was not tested Hére.removal of targeting data coming
in with the response was handled by just commentirtgthe function that writes that

bit of XML data in the server response. Also, thiert side had to be changed to

36

associate the incoming advertisements with theobdggparameters, so that the cache

algorithm could target the advertisements to threeco spots.

6.5.3. Cache usage optimisation

The cache usage optimisations were implementedttiran the offline advertisement

serving and pre-loading algorithms. The optimisatievel and cache size were
controlled by method parameters, thus providingpbssibility of creating nested loops
for getting a matrix of the results. Using the @adptimisations causes longer offline
periods, so the report aggregation should prodetebresults, although the business

impact of this was not considered.

6.6. Simulation sequence

The specified usage scenarios are loaded from abase¢ run by the Test class. The
implementation initialises the random seed to @anguarantee similar simulation runs.
Random numbers are used for generating the iderstifn the XML and for creating
variety for the advertisement requests specifiedthy use cases. Also, different
instances of the random generator were used for Xtheration and for running the

simulations, in order to get exactly the same eath time.

For processing a use case, current connectionrnyst be first defined and set to the
client. Next, the advertisement fetch must be etextwvith user and advertisement
context, and time, defined by the use case. Afferaidvertising client has completed the
processing of the advertisement request (i.e. Bedrclocal cache, requested
advertisements from server simulator, checked tmgeparameters, stored new
advertisements to cache, updated serve countsiapldykd statistical data), the Test
class creates the reports from simulated impressanrd user actions with request
timestamps and random durations. These reportsbeilstored within the local cache
for sending to the server along with the next aisement fetch. Finally, statistical

information is fed to the Ul. The high level exdéont sequence for an advertisement

session is illustrated in Figure 15.

37

,_,
14
2
o
=
S
=3
<

impressions, clicks and session

/// > Define connection, userContext, adContext, time,
/

connection(type)

adFetch(userContext, adContext, time)

report(impressions)

Repeat for all
use cases

report(clicks)

printFetchinfo()

printResponselnfo()

report(session)

connection(none)

printTransferinfo()

Yy __ | ___Y_¥Y_ VvV ¥ __

A, A,

Figure 15. Use case call flow.

6.6.1. Fetching advertisements from cache

When the client does not have a connection, ortlae valid advertisements in the

cache, the call sequence is straightforward, asiseleigure 16.

,_..
2]

128
=X
=
=]

=

adEngine

adFetch(params)

i
|
|
1
|
findAd(cachedAds, params) |
»

»

return(ads)
‘é _____________

]

Figure 16. Fetching of advertisements from cache.

38

6.6.2. Fetching advertisements from the server

When an advertisement needs to be fetched froregher, a few more things must be
done in order to mimic the real environment angdbthe correct request and response
XML created. This sequence is depicted in Figureld7addition to the cache search
case, the server component must be involved anddhertisement must be stored into

cache after it has been received from the server.

test client server reqCreator adEngine

T
I
I
————————» I
I
I

|
> Get user context delta
|

requestXml(contextDelta, params, reports)

adFetch(params)

—— Y]

findAd(serverAds, params)

responseXmi(ads)

JEDEDENEEN AN

return(ads)

|
storeAd(cachedAds, ads)

cléanup(cachedAds)

Clear reports

Store transfer log

N _ |

e _ Y__ Y

Figure 17. Fetching advertisements from server.

6.6.3. Verification of the functionality

For validating the correct functionality of the silator, two approaches were used: 1)
manually checking the input and output parametérsnoadvertisement fetch and the
request and response data generated and 2) vadjdhe generated XML against the
protocol XML schema definitions. Figure 18 shows ttall flow for displaying the

statistics in the UI.

39

,,
o]
(2]
2.

Ic
o
©)
S
=

printResponselnfo()

cacheContent()

Print info

———e e

|

printTransferinfo()

transferLog()

Y _

V

Print info

———_——_Y_ __________¥Y

Figure 18. Ul call flow.

The XML validation was done by calling the MSXML Wdows COM API through the
comtypes Python library, and the XML content wassgd via the file system. The call
flow is described in Figure 19. In validation oktborrectness of the data compression
methods’ functionality, all files were extractedckdo their original form and the result

was compared against the original XML.

client reqCreator comtypes 0.6.0 MSXML 6.0

requestXml()

Write XML to a file
CreateObject('MSXML6.0 DOM')

Create DOM instance

v __ v _ _______]

S

Load DOM from file

T
|
|
|
|
|
|
|
}
| loadDOM(xmlIFile, xsdFile)
L
|
|
|
|
}
|
} Validate against schema
|

|

|

\]VVLA

return(erro
i
K mmmm e e e e mmm e ————— = I

return(xml) } } }
K | | |

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 19. XML validation.

40

7 USE CASES

7.1. Use case definitions

The use cases for running the simulation were ededly describing the weekly
application usage and advertisement exposure amdng these for a one-month period
(four cycles). Each week, some randomness was attdedtain more variety and
unpredictability to the requests:
* User context was randomised.
* The number of times a day was randomly decreasetti@ased by one or zero.
» The time of a request was randomised so that tther @f requests was different
each day.
* The keywords attached to a request were selectetbnay from a selection of
10 keywords.
* The number of impressions randomly decreased ogased by one or zero.
» Time and duration of impressions were randomised.

» Actions were executed randomly with a 10% clicletigh-rate.

The random seed was initialised to one before sauhblation run, to keep the runs the
same. Different application usage patterns weriliged over three user groups, with

all of them accessing the same advertisement detiaeoserver-side.

7.2. Applications

Applications running on mobile devices are begigrtm offer the same functionality as
desktop applications. The Mobile Marketing Assdomt(MMA) categorises mobile
applications into six types: communications, gamms|timedia, productivity, travel,
and utilities [54]. This categorisation was abdedcinto three top-level categories —
media, utilities, and communication — and one appilon was taken to represent each

category.

41

From the simulation point of view, the applicatierconnectivity and advertisement
request types play the most important role; thuse mever-connected and two
occasionally connected or always-connected apitsitwere chosen. To gain variety
in the advertisement requests and to truly test ¢hehing functionality, other

parameters were changed a great deal during thdagion runs. This way, the actual
application type does not matter, since it is gaesto simulate the requests from
multiple applications with the three chosen onesulBing different categories and
placements. Table 3 describes the applicationsechdkeir categories, and placements.

Also, a set of random keywords was used for eaphicgtion’s advertisement requests.

Table 3: Advertisement request parameters.

Application Categories Placements Keywords
E-mail Communications Bottom Food
List Pizza
Idle screen Utilities Bottom Sports
Action
Media News Top News
Music Playlist Local
Video In-game Football
Games Pre-roll Entertainment
Graphics Rock
Applications Global
Ringtones

The advertisement placement in the e-mail appboatias set up in the simulation such
that when the user checks for new e-mail messagesads one, new advertisements
are loaded from the server and shown if the ussractually received new e-mail and

opens the list view or message view.

For the idle screen, the advertisement placemesatseaup in such a way that no new
advertisements are fetched from the server andusee sees an advertisement when
starting to use the phone, if suitable advertisénoam be found in the cache. This
obviously leads to several cache misses, butiiiteresting to compare how different

pre-loading algorithms affect the behaviour of isikeeen advertising.

The media application downloads a new advertisenvdmén updating the media

content from the server. When the media are conduanertisements will be shown.

42

7.3. User groups

For testing of the different optimisations, thregeucases were chosen, representing
active, casual, and inactive users. The user cordigpns were done to represent quite
different usage behaviours, for showing the optatas’ effects in practice for
different users. The active user receives a lot-afail and consumes a lot of media
content over WLAN and Wideband Code Division Acc@S4DMA) connections. The
casual user uses e-mail and consumes some medisV&MA, and the inactive user
just uses media once a week, on weekends. Tablendarises the daily application
usage, where the media download figures indicatentimber of media items (news

items, videos, music items, etc.) downloaded.

Table 4: Application usage for selected user categes.

Active Casual Inactive
Activity per day user user user
E-mail refreshed (weekdays) 10 4 -
E-mail refreshed (weekends) 8 4 -
E-mail received (weekdays) 10 2 -
E-mail received (weekends) 8 2 -
Idle screen activated (weekdays) 60 30 10
Idle screen activated (weekends) 50 15 20
Media downloads over WLAN (weekdays) 14 - -
Media downloads over WLAN (weekends) 21 - -
Media downloads over WCDMA (weekdays) 7 7 -
Media downloads over WCDMA (weekends) - 14 3.5

The selected user categories use the phone’sdders with different frequencies. The
categories are based on a target market segmdnigba other features of the phone
than call and SMS; thus, the ‘inactive’ user alsostimes media content on the mobile

device.

The user’s context information was set to changeloenly from one advertisement
request to the next, for variability in the datatséut it was not used as a targeting
parameter, for simplicity. In the current modeljstassumed that user-context-based
targeting can be done totally server-side because mcation-targeted advertisements
are usually relevant even after the user has méneed his or her previous location.
However, this would be a whole new topic of studyl & covered in references [55]
and [56].

43

7.4. Advertisements

The advertisement data set-up was such that eaehtseément request from the server
component would return a new set of advertisemeat&aling the limitations of the
current system, in the case where separate imaggngadoes not help at all. In
practice, when one is doing display advertisings th not a likely scenario, but it is

optimal for testing the data transfer optimisations

The advertisement data set on the server was setoupclude 28% generic
advertisements without any targeting; 56% adverte#s targeted for specific
categories, keywords, placements, or applicatiamsl 16% following very specific
definitions of the allowed appearance. This disiitn was selected to allow testing of
cache behaviour with the assumed set-up. Adjustroérthe distribution was not
studied. The detailed distribution is shown in Feyao.

The average image size for an advertisement wakildldytes, which is slightly biased

towards the MMA X-Large banner size [57], becaudecatisers generally prefer great-
looking graphics in mobile advertisements. Althougl campaign start and end dates
were included in the data, they were not used.adilertisements included one or two
click-to actions, and the advertisements were échito 10 impressions per user for

targeted advertisements and to 15 for generic &idearents.

@ No targeting

B Targeted to one category

O Targeted to one keyword

6%
0O Targeted to one placement

| Targeted to two applications

6%
? O Targeted to three categories

B Targeted to two keywords

0O Targeted to specific application +
category + keyword combinations

Figure 20. Advertisement data targeting distributian.

44

8 RESULTS

8.1. Original set-up

After the simulations were run for the selected cases, major differences could be
seen in the online usage of different user groupoffline usage, there is a smaller
difference, but the number of cases when no adesnint can be shown (total misses

in Table 5) is about 14% for the ‘inactive’ user.

Table 5: Advertisement request statistics in simuldon runs.

Active Casual Inactive

Ad requests in online mode user user user
Number of requests 1137 417 22
Ads requested, total 4796 1181 88
Ads received, total 4796 1181 88
Received from cache 0 0 0
Received from server 4796 1181 88
Total misses 0 0 0
Impressions 5693 1064 41
Actions 585 113 2
Active Casual Inactive

Ad requests in offline mode user user user
Number of requests 1604 718 360
Ads requested, total 1604 718 360
Ads received, total 1604 718 309
Received from cache 1604 718 309
Received from server 0 0 0
Total misses 0 0 51
Impressions 1571 720 295
Actions 170 67 32
Active Casual Inactive

Cache statistics user user user
Ads fully used 111 15 0
Ads removed otherwise 4585 1063 0
Impressions removed 52470 12045 0

Data transfer for different use cases is preseiméebable 6. Of note here is that the
XML accounts for about 26% of the total transferdata when a lot of content is
loaded over a WLAN connection, but when less canteipaded at once the XML is

up to 39% of the data. This confirms the assumptiaade about the data structure.

45

Table 6: Data transferred in simulation runs.

Active user
Data transfer WCDMA WLAN
Total data 11473790 100.0% 23348337 100.0%
Image data 7271726 63.4% 17327346 74.2%
XML data 4202064 36.6% 6020991 25.8%
Request data 2750475 24.0% 2806935 12.0%
Reports 2303882 20.1% 2323201 10.0%
Profile 87086 0.8% 94402 0.4%
Other 359507 3.1% 389332 1.7%
Response data 1451589 12.7% 3214056 13.8%
Casual user Inactive user
Data transfer WCDMA WCDMA
Total data 8808514 100.0% 717431 100.0%
Image data 6121579 69.5% 440285 61.4%
XML data 2686935 30.5% 277146 38.6%
Request data 1474671 16.7% 190529 26.6%
Reports 1133351 12.9% 172653 24.1%
Profile 66195 0.8% 3880 0.5%
Other 275125 3.1% 13996 2.0%
Response data 1212264 13.8% 86617 12.1%

8.2. XML compression

After removal of all unnecessary indention andfleeels, the XML data size decreased,

on average, 27.1 per cent.

Table 7: XML data after removal of whitespace andihefeeds.

Use case Original XML data XML data after Drop

Active user (WCDMA) 4202064 3091089 1110975 26.4%
Active user (WLAN) 6020991 4359329 1661662 27.6%
Casual user 2686935 1966165 720770 26.8%
Inactive user 277146 200816 76330 27.5%
Average 3296784 2404350 892434 27.1%

When applying other compression methods to the XWHta, we can obtain a
compression ratio of 60% (WBXML) to 78% (pag8p),ttwiXMill-N being a little
behind with 39%. WBXML takes a bit more space simsery report contains the
timestamp and spot details, which are not compdesseall, but the gzip performs
surprisingly well. The effect of compression methadn be seen in Figure 21 and a

complete list of the compression figures can bedom Appendix Il.

46

7 000 000
6 000 000 T
O Original
5000 000 B No whitespace
O XMill-N
al OWBXVL
9 4000 000 H & XMl
a 3 bzip2
; 3000 000 B XMill-z
O Xvill-P
B gzp
2000000 H = XM_PPM
0O pag8p
1000 000 +
o 4
Active user Active user Casual user Inactive user Asrrage
(WCDMVB) (WLAN) (WCDVY) (WCDWVA)

Figure 21. Size of XML data with different compres®n methods applied.

Also, the performance hit of running a large numbgsstatistical models, combined
with neural networks, was noticeable: pag8p toalosds on a decent laptop, whereas
the others took considerably less than a second. cdnfirms the assumption that the

arithmetic compressors are not yet usable in maqibitanes.

8.3. Protocol optimisation

In aggregation of the reports, the total data sieerease from the original with
whitespace removal is in average 40% and when Bggplthe data compression,
WBXML is almost on par with the compression aldumits, and the average drop is
63%, while pag8p yields 72%. This is because adafash amount stored within the
XML structure is less, in comparison to previoussuAlso the differences between
other compression mechanisms are getting smakéthe gzip is keeping the position.
The XML data size after report aggregation and a@sgion can be seen in Figure 22

and a complete list can be found in Appendix Il1.

47

5000 000
4500 000
4000 000 @ No whitespace
3500 000 B Aggregation
0O XVill-N
3000 000 H} 0 Xvill
[| WBXML
o @ bzip2
; | XVill-z
0 XVill-P
m ozip
B2 XMLPPM
0 pag8p

Active user Active user Casual user Inactive user Awerage

(WCDMA) (WLAN) (WCDMA) (WCDMA)

Figure 22. Size of XML data after aggregating repats.

With more detail lost from the reports, the benisfihot that great. Click reports and ad
deletion reports still must be sent, and this #&fany revenue-sharing between publishers.

The effect of report ignoring can be seen in FiggBeand the numbers can be found from

Appendix IV.
5 000 000
4500 000
4000 000 @ No whitespace
W Ignore reports
3500 000 d
0O XVill-N
3000 000 1 O Xvill
8 | WBXVIL
2 @ bzip2
g B XMill-z
0 Xvill-P
m ozip
B XMLPPM
0 pag8p
Active user Active user Casual user Inactive user Average
(WCDVIA) (WLAN) (WCDVIA) (WCDMA)

Figure 23. Size of XML data after ignoring reports.

48

With the targeting data removed from the XML, theaqtity of data transferred falls
and WBXML gets better with reduction of the actdata in the XML, but still pag8p is
better on average, due to the active user's WLAR(fitr, where click reports still
generate some data in the XML. The results canele@ $n Figure 24 and details in
Appendix V. This optimisation works only for the roent implementation because
advertisements are not used from the cache, bteadsthey are loaded from the
network server every time the cache is refresheltleMthe cache usage improvements

are applied, this destroys all the benefits of cagthe advertisements.

5 000 000
4500 000
4000 000 O No whitespace
B Ignore targeti
3500 000 g - ng
O XMill-N
3000 000] o Xvill
8 m XMill-z
? 2500000 H = o bzip2
; | XVill-P
2 000 000 o O gzip
| WBXVIL
1 500 000
B XMLPPM
1 000 000 - O pag8p
-l I]_I]]ln:_lﬁ
0 s
Active user Active user Casual user Inactive user Average
(WCDMA) (WLAN) (WCDMA) (WCDMA)

Figure 24. XML quantities after ignoring of reports and targeting information.

8.4. Cache usage improvements

By changing the caching algorithm to serve all iegsions from cache before going to
the network to fetch more advertisements, substiamiprovement can be seen in the
overall data usage. The increased role of reptatsssto be seen when advertisements
are served from cache, and now the XML actuallyesakore space than the binary
data, so compressing only the XML data gives usigesults for the overall data. The

data transfer breakdown can be seen in Table 8.

49

Table 8: Data transfer after optimisation of cachaisage.

Active user
Data transfer WCDMA WLAN

Bytes Drop Bytes Drop
Total data 737805 92.9% 5361650 75.3%
Image data 279830 96.2% 2363926 86.4%
XML data 457975 85.2% 2997724 31.2%
Request data 417436 79.8% 2664438 -26.5%
Reports 395936 76.9% 2532337 -46.3%
Profile 3960 94.2% 25182 65.7%
Other 17540 93.7% 106919 64.7%
Response data 40539 96.1% 333286 85.2%

Casual user Inactive user

Data transfer WCDMA WCDMA

Bytes Drop Bytes Drop
Total data 1604443 80.2% 184802 71.2%
Image data 762223 87.5% 107701 75.5%
XML data 842220 57.2% 77101 61.6%
Request data 728537 34.4% 59479 57.5%
Reports 669444 20.7% 51746 58.9%
Profile 11169 78.3% 1896 36.8%
Other 47924 77.6% 5837 46.6%
Response data 113683 86.7% 17622 71.0%

The result was somewhat expectable since the askments can be shown around 10
times more than previously and it seems that tl@ged cache algorithm was able to
take full advantage of this. The cache usage statiand number of requests served
from cache can be seen in Table 9. It can be $edrall the advertisements that were
downloaded were used fully, although the numbercathe misses in idle screen
increased. This is because the cache containsdesty in advertisements, thus giving
smaller probability for finding an advertisementrfr cache that can be also shown in

idle screen.

This should work well with report aggregation amgarting only unused impressions
as the algorithm tries to use all impressions foaohe first. However, in comparison of
aggregation and reporting only unused impressionsmcache usage optimisation is
on, the difference should not be that great, siitie content is lost (basically just

advertisement spot information). The savings mawpridg theoretical, though, since the
advertisement deletion reports would also consupaees and the clicks would still be

reported.

50

Table 9: Request and cache usage details with optised cache.

Active Casual Inactive

Ad requests in online mode user user user
Number of requests 1137 417 22
Ads requested, total 4796 1181 88
Ads received, total 4796 1181 88
Received from cache 4279 1033 65
Received from server 517 148 23
Total misses 0 0 0
Impressions 5693 1064 41
Actions 585 113 2
Active Casual Inactive

Ad requests in offline mode user user user
Number of requests 1604 718 360
Ads requested, total 1604 718 360
Ads received, total 1540 602 102
Received from cache 1540 602 102
Received from server 0 0 0
Total misses 64 116 258
Impressions 1508 600 100
Actions 165 59 7
Active Casual Inactive

Cache statistics user user user
Ads fully used 481 132 12
Ads removed otherwise 0 0 0
Impressions removed 0 0 0

The effect of compression methods can be seenguar&i25. When comparing the
XML compression against overall data, the diffeesncan not be almost seen at all
between the best compression ratios. The compigtefl numbers can be found in

Appendix VI.

Comparing against the total data, WBXML gives 338pression ratio, gzip 46% and
pag8p 48% when used only for compressing the XMit paithe data and leaving the
advertisement content as it is. This implies unetgly that the gzip is performing
almost on par with one of the best arithmetic caapors available, when compressing
XML data in this particular domain. The cache usag@rovements achieve cost

savings of 81% and 90% with the top seven compresso

51

Total size

25 000 000

20 000 000

15 000 000

10 000 000

5 000 000

Active user Active user Casual user

(WCDMA) (WLAN) (WCDMA)

@ No whitespace
B Cache usage
0O XVill-N

O WBXMIL

| XVill

@ bzip2

B gzip

0 XvVill-z

| XVill-P

B XMLPPM

0 pag8p

With aggregation of the reports, the effect on PaML is good, but as the amount of
XML content gets smaller in comparison to binaryagahe benefit of compressing the
XML diminishes (shown in Figure 26 and in Appendfiit). The top three compressors

yield around 14% compression ratios, thus givinglteost savings of around 91%

Figure 25. Data transfer with different compressiortechniques and cache usage.

(without compression 89%).

Total size

25 000 000

20 000 000

15 000 000

10 000 000

5 000 000

Active user Active user Casual user

(WCDVA) (WLAN) (WCDVA) (WCDVIA)

@ No whitespace
B Report aggregation|
O XVill-N

O Xvill

B XVill-z

o bzip2

| XVill-P

O gzip

" WBXML

B XMLPPM

O pag8p

Figure 26. Data transfer with cache optimisation ad report aggregation.

52

For the active user, the cost can be optimised éwgher by utilising free WLAN
connection. However, when the WLAN optimisationajgplied, surprisingly also the
data quantity transferred over WCDMA increasessTdan be explained by looking at
the cache statistics in Table 10; when loading dbements for the WLAN case, we
are actually deleting advertisements from the caeitieout utilising them fully as the

cache gets full.

Table 10: Cache statistics when WLAN optimisationsre used.

Cache statistics Active user
Ads fully used 181
Ads removed otherwise 3234
Impressions removed 37055

When the cache size is increased, the WLAN optitimisébenefits start to be visible in
data transfer over a WCDMA connection. This is présd in Figure 27, where the

effect can be seen to ultimately cut the cost afn@y active user.

700 000
600 000 \

o)\

o 400000 \\ —e— Optimisation off
B o o 3 3 —=— Optimisation 1
g \ Optimisation 2
F 300000 \ Optimisation 3
200 000 \
100 000 \\

500 kB cache 550 kB cache 600 kB cache 650 kB cache

Figure 27. Data transfer over WCDMA (active user) vith different optimisations.

No differences in numbers appeared when cachewsizeincreased for the casual and
average user. The reason is that the impressisesvedl for the cache are already few

enough that the size increase does not work tbehefit of advertisement lifetime.

53

The data transferred over WLAN in active user ceap be seen in Figure 28. It
increases linearly when the optimisation level @ases since the algorithm fetches

more data using the WLAN connection.

60 000 000

50 000 000

40 000 000

30 000 000

Total size

20 000 000

10 000 000

Optimisation off ~ Optimisation1 ~ Optimisation2 ~ Optirrisation 3

Figure 28. Data transfer over WLAN (active user) wth different optimisations.

54

9 CONCLUSIONS

9.1. Findings

Implementation of the simulation environment wasightforward using the Python
language, but the client-server system conceives @f functionality around targeting
and request-response handling that required camadibeamount of implementation and
validation effort. Validating the generated protooeessages against XML schema did

not provide good enough quality and most of théclbgd to be verified manually.

Defined use cases yielded enough variety in theedidement requests and the idle
screen advertisement serving was surprisingly sstakwith only 14% cache misses in

the inactive user group and 0% with others.

It was discovered that the XML protocol creates enaverhead than was thought, up to
39%, the majority of that because of the detailentbose reports. When the cache is
used more optimally, the proportion of XML data relation to all data grew even
greater, exceeding 60%. This can be decreased 7féntoving the whitespace and
linefeeds, but the best solution to decrease thatigy of XML data was to change the
protocol to discard details from the reports angregate the data before sending to the

network server. This resulted in additional 40%irsgs.

All of the selected compression methods worked wath the XML data, and, when
compared to overall data, they displayed only muifferences from each other. This
flattened out even more when report aggregation weasl. Surprising result was that
with the data transferred in this environment, tfemeral-purpose compressors were
better than XML-specific ones. Assessing only thlXdata, WBXML resulted in
60%, pag8p in 78% and gzip in 73% compression,ratibthe paqg8p was discovered to
be too slow to be used in real-time communicatiomesource-constrained devices. The
gzip was noted of better compression performanaa tizip2 in this context, and the

top three compressors were paq8p, XMLPPM and gzip.

55

For overall cost savings, the greatest benefit c¢doé found by optimising the
pre-loading algorithm and utilising free connectionBy optimising pre-loading
algorithm and cache searching, all the impressionadvertisements that were loaded
to the local cache could be used completely. Tlheaisage improvements achieved
cost savings of 81%, and 90% with the top sevenpcessors. Cache misses for idle
screen increased slightly, which was expected sitiee probability of having
advertisements with loose targeting decreasedudiml quantity of data transferred
with optimised cache usage, the WBXML was abledbieve 33% compression ratio,

whereas gzip managed 46% and paq8p 48%.

Combining the cache optimisations with report aggt®n, the overall compression
ratio decreased to 14% with WBXML, 13% with gzipdal4% with paq8p, thus giving

total cost savings of around 91%, whereas it wéé 8&hout compression.

Combining the 20% increase in cache capacity withAW connection utilisation in the
active user group, all the required advertisingdatuld be moved without generating
any cost to the end user. It was discovered thsitetrident result can be achieved even
with simple pre-loading enhancements without negdm predict the need for exact
advertisements as long as the system has adveetigenihat are suitable for any use. It
is enough to load about one third of generic ais@ments, if the amount of pre-loaded

advertisements is high enough.

9.2. Recommended actions

Since the reporting currently is very detailed artbose, it should be aggregated
somehow or at least grouped differently in the XNt reduce redundancy. Also,
WBXML should be brought into use, given that impetations already exist and it
even speeds up the parsing. Another good optioridatmel to use gzip, which, though

requiring one extra step of decompressing and cessprg, should be quite fast.

The pre-loading algorithm optimisations should beeg priority, since these have the

biggest impact on the overall data transfer.

56

9.3. Recommendations for future study

This work has been technology-focused, and thelaimouas should be run with real use
cases, real-world application set-up, and actualediding campaigns. Also, the
PPM-based intelligent pre-loading algorithms wolédworth testing with the simulator

when more targeting parameters are brought into use
Further studies could be done also in the areadpfstéing the targeting accuracy in

combination with pre-loading algorithm to determittee optimal balance between

different levels of targeting and cache misses.

57

REFERENCES

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

Google. Financial tables for 2005-2008. http://stee.google.com/fin_data.html,
accessed in May 20009.

Vatanparast, R., "Piercing the Fog of Mobile Adigdng"”, International
Conference on thilanagement of Mobile Business, 2007, ICMB 2@@7 19-19,
9-11 July 2007.

Blyk, About Blyk. http://about.blyk.com/, accessadMay 2009.

Mohamed Yunos, H.; Zeyu Gao, J.; Shim, S., "Wirgladvertising's challenges

and opportunities"Computer vol. 36, no. 5, pp. 30-37, May 2003.

Bulander, R.; Decker, M.; Schiefer, G.; Kolmel, BComparison of Different
Approaches for Mobile AdvertisingThe Second IEEE International Workshop
on Mobile Commerce and Services, 2005, WMCSp@5 174-182, 19-19 July
2005.

Zeyu Gao J.; Ji, A., "SmartMobile-AD: An IntelligerMobile Advertising
System", The 3rd International Conference on Grid and PeivesComputing
Workshops, 2008, GPC Workshops 8. 164-171, 25-28 May 2008.

Elisa Oyj. Price list for ‘Elisa Perusdata’ data bscription.

http://www.elisa.fi/matkaviestinta/index.cfm?0=160, accessed in May 2009.

GSM Association, GSM World Coverage 2008.
http://mww.gsmworld.com/roaming/GSM_WorldPoster28Q&if, accessed in
May 20009.

Chakravorty, R.; Clark, A.; Pratt, I., "Optimizing/eb delivery over wireless
links: design, implementation, and experienc8SEE Journal onSelected Areas
in Communicationsvol. 23, no. 2, pp. 402-416, Feb. 2005.

58

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Tapia, P.; Wellington, D.; Jun Liu; Karimli, Y., f&ctical Considerations of
HSDPA Performance'Vehicular Technology Conference, 2007, VTC-2007, Fal
2007 IEEE 66thpp. 111-115, Sept. 30 2007-Oct. 3 2007.

Jurvansuu, M.; Prokkola, J.; Hanski, M.; Perala,"RSDPA Performance in Live
Networks",|IEEE International Conference on Communication€)720CC '07,pp.
467-471, 24-28 June 2007.

Chakravorty, R.; Banerjee, S.; Rodriguez, P.; Ghéstd, J.; Pratt, I.,
"Performance optimizations for wireless wide-areaworks: comparative study
and experimental evaluationRroceedings of the 10th Annual international
Conference on Mobile Computing and NetworkifRhiladelphia, PA, USA,
September 26 - October 01, 2004), MobiCom '04, ACMw York, NY, 159-
173.

Hristova, N.; O'Hare, G.M.P., "Ad-me: wireless adigng adapted to the user
location, device and emotions'Proceedings of the 37th Annual Hawaii

International Conference oBystem Sciences, 20@p. 10, 5-8 Jan. 2004.

Tripathi, A.K.; Nair, S.K., "Mobile Advertising inCapacitated Wireless
Networks",IEEE Transactions oKnowledge and Data Engineeringol. 18, no.
9, pp. 1284-1296, Sept. 2006.

Aalto, L.; Goéthlin, N.; Korhonen, J.; Ojala, T., ltgtooth and WAP push based
location-aware mobile advertising systerRtpceedings of the 2nd international
Conference on Mobile Systems, Applications, andiGey(Boston, MA, USA,
June 06 - 09, 2004), MobiSys '04, ACM, New York, NM-58.

Sanchez, J.; Cano, J.; Calafate, C. T.; Manzoni;BtueMall: a bluetooth-based
advertisement system for commercial area®tpceedings of the 3rd ACM
Workshop on Performance Monitoring and MeasuremehtHeterogeneous
Wireless and Wired Network§ancouver, British Columbia, Canada, October 31
- 31, 2008), PM2HW2N '08, ACM, New York, NY, 17-22.

59

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Thawani, A.; Gopalan, S.; Sridhar, V.; Ramamrith&m,"Context-aware timely
information delivery in mobile environmentsComputer. J.50, 4 (Jul. 2007),
460-472.

Natchetoi, Y.; Kaufman, V.; Shapiro, A., "Serviceemted architecture for
mobile applications"Proceedings of the 1st international Workshop oftv&oe
Architectures and Mobility(Leipzig, Germany, May 10 - 10, 2008), SAM '08,
ACM, New York, NY, 27-32.

Jing, J.; Helal, A. S.; Elmagarmid, A., "Clientsger computing in mobile
environments"ACM Computing. Survey&l, 2 (Jun. 1999), 117-157.

Rahmati, A. ; Zhong, L., "Context-for-wireless: text-sensitive energy-efficient
wireless data transfer'Proceedings of the 5th international Conference on
Mobile Systems, Applications and Servi€®an Juan, Puerto Rico, June 11 - 13,
2007), MobiSys '07, ACM, New York, NY, 165-178.

Natchetoi, Y.; Huaigu Wu; Yi Zheng, "service-oriedtmobile applications for
ad-hoc networks"|EEE International Conference ddervices Computin@008,
SCC '08vol. 2, pp. 405-412, 7-11 July 2008.

Apte, N.; Deutsch, K.; Jain, R., "Wireless SOAP:timjzations for mobile
wireless web services"Special interest Tracks and Posters of the 14th
international Conference on World Wide Wg&thiba, Japan, May 10 - 14, 2005).
WWW '05. ACM, New York, NY, 1178-1179.

Mahoney, M., "Adaptive weighing of context modelsr flossless data

compression"Florida Technology Technical RepdS-2005-16, 2005.

Kattan, A.; Poli, R., "Evolutionary lossless congsi®n with GP-ZIP" |EEE
Congress orievolutionary Computation, 2008, CEC 20Q0EEE World Congress
on Computational Intelligence), pp. 2468-2472, Jufie 2008.

Augeri, C. J.; Bulutoglu, D. A.; Mullins, B. E.; Bawin, R. O.; Baird, L. C., "An

analysis of XML compression efficiencyProceedings of the 2007 Workshop on

60

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Experimental Computer Scien¢8an Diego, California, June 13 - 14, 2007),
ExpCS '07, ACM, New York, NY, 7.

PKWARE, Inc. ZIP file format specification,
http://mwww.pkware.com/documents/casestudies/APPNOXE, accessed in
May 20009.

Galilly, J.-l.; Adler, M. The gzip home page. hthwwww.gzip.org/, accessed in
May 20009.

Seward, J. The bzip2 home page. http://www.bzip,@cressed in May 2009.

MaximumCompression. Single-file data compression nchenarks.
http://www.maximumcompression.com/data/summary hgf.paccessed in May
20009.

Moffat, A., "Implementing the PPM data compressi@theme”, IEEE

Transactions on Communicatign®l. 38, no. 11, pp. 1917-1921, Nov 1990.

Mahoney, M. The PAQ data compression programs.
http://www.cs.fit.edu/~mmahoney/compression/paglhatcessed in May 2009.

Ziv, J.; Lempel, A., "A universal algorithm for ssential data compression”,
IEEE Transactions omformation Theoryyol. 23, no. 3, pp. 337-343, May 1977.

Witten, I. H.; Neal, R. M.; Cleary, J. G., "Arithtie coding for data
compression"CommunicationsACM 30, vol. 6 (Jun. 1987), 520-540.

MaximumCompression. JPG/JPEG lossless image cosipnes test.

http://www.maximumcompression.com/data/jpg.phpeased in May 2009.

Deutsch, L. P. "DEFLATE compressed data format ifpaton".
http://tools.ietf.org/html/rfc1951, accessed in M2B09.

Huffman, D.A., "A method for the construction of mmum-redundancy codes",
Proceedings of the IREol. 40, no. 9, pp. 1098-1101, Sept. 1952.

61

[37]

[38]

[39]

MaximumCompression. Multiple file data compressiobenchmark.
http://mww.maximumcompression.com/data/summary_pti3#data, accessed in
May 2009.

Burrows, M.; Wheeler, D. J., "A block-sorting losst data compression
algorithm”, Technical Report24, 1994.

Bentley J. L.; Sleator D.D.; Tarjan R.E.; Wei V.KA locally adaptive data

compression schemeCommunications of the AGMol. 29, No. 4, 1986.

[40] W3C. Efficient XML Interchange Working Group.

http://www.w3.org/ XML/EXI/, accessed in May 2009.

[41] W3C. WAP Binary XML Content Format. http://www.w3gdTR/wbxml/,

[42]

[43]

[44]

[45]

[46]

[47]

accessed in May 20009.

Liefke, H.; Suciu, D., "XMill: an efficient comprser for XML data",Proceedings
of the 2000 ACM SIGMOD international Conference Management of Data
(Dallas, Texas, United States, May 15 - 18, 20803MOD '00, ACM, New York,
NY, 153-164.

Cheney, J., "Compressing XML with Multiplexed Hierlaical PPM Models",
Proceedings of the Data Compression Confergidarch 27 - 29, 2001), DCC,
IEEE Computer Society, Washington, DC, 163.

Rodriguez, S. XML optimization.

http://www.arstdesign.com/articles/xmloptimizatioiml, accessed in May 2009.

Python Software Foundation. Python Programming uagg — Official Website.
http://python.org/, accessed in May 2009.

Python Software Foundation. Package Index: comtypes.6.0.
http://pypi.python.org/pypi/comtypes, accessed ayMO009.

Microsoft Corporation. MSXML. http://msdn.micros@im/en-
us/library/ms763742.aspx, accessed in May 2009.

62

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Veillard, D. The XML C parser and toolkit of Gnome.
http://xmlsoft.org/index.html, accessed in May 2009

Reenskaug, T. MVC—XEROX PARC 1978-79.
http://heim.ifi.uio.no/~trygver/2007/MVC_ Originafdf, accessed in May 2009.

Cheney, J. XMLPPM: XML-Conscious PPM Compression.

http://xmlppm.sourceforge.net/, accessed in May9200

SourceForge, Inc. XMill project. xmill: http://sareforge.net/projects/xmill/,
accessed in May 2009.

Aymerick. The WBXML library. http://libwbxml.aymetk.com/, accessed in May
20009.

WMHelp.com. XMLPad 3. http://www.wmhelp.com/xmlpaln, accessed in
May 2009.

Mobile Marketing Association. Mobile Applications.

http://mmaglobal.com/mobileapplications.pdf, acedss May 2009.

Burbey, I.; Martin, T. L., "Predicting future logams using prediction-by-partial-
match", Proceedings of the First ACM international Workshmp Mobile Entity
Localization and Tracking in GPS-Less EnvironmdB&@n Francisco, California,
USA, September 19 - 19, 2008), MELT '08, ACM, Newark, NY, 1-6.

Chen, C.; Lee, C.; Wang, C.; Chung, Y, "PrefetchifigD: a benefit-oriented
approach", Proceedings of the 2006 international Conference \Mireless
Communications and Mobile Computifigancouver, British Columbia, Canada,
July 03 - 06, 2006), IWCMC '06, ACM, New York, NY103-1108.

Mobile Marketing ~ Association. Mobile Advertising @elines.

http://mmaglobal.com/mobileadvertising.pdf, accdsseMay 2009.

63

APPENDIX |. DATA COMPRESSORS

GNU zip bzip2 paqg8p
Type Dictionary Dictionary Arithmetic
Pre- None Burrows-Wheeler None
processor transformation
Duplicate Lz77 Move-to-front None
removal
Predic tion None None Huge amount of
dynamic models
Storing Huffman Huffman tree Arithmetic coding using
tree dynamically trained
neural network
Open gzip bzip2 paq8p
Source
project
WBXML XMill XMLPPM
Type Binary XML Compressed XML Arithmetically encoded
stream of SAX events
Algorithm Change Separate structure Parse XML with SAX
element from content, parser and encode
names to arrange similar events with four
enumerated content together, models: one for
binary apply general- element and attribute
numbers purpose names, one for element
compression structure, one for
attributes, and one for
strings
Open libwbxml XMill XMLPPM
Source

project

APPENDIX Il. RESULTS OF DATA COMPRESSION

Original No whitespace XMill-N WBXML
Active user (WCDMA) 4202064 3091089 1909107 1271800
Active user (WLAN) 6020991 4359329 2562807 1725853
Casual user (WCDMA) 2686935 1966165 1266220 792298
Inactive user (WCDMA) 277146 200816 109997 79321
Average 3296784 2404350 1462033 967318
Average drop 271 % 39.2% 59.8 %
XMill bzip2 XMill-z XMill-P
Active user (WCDMA) 1134845 986781 944585 917429
Active user (WLAN) 1326879 1166022 1095398 1055776
Casual user (WCDMA) 802913 688052 661527 643526
Inactive user (WCDMA) 49625 44482 42059 40239
Average 828566 721334 685892 664243
Average drop 65.5 % 70.0 % 71.5% 72.4%
gzip XMLPPM pag8p
Active user (WCDMA) 891511 819962 735362
Active user (WLAN) 1040185 938318 835879
Casual user (WCDMA) 618416 574053 518166
Inactive user (WCDMA) 41375 36594 31773
Average 647872 592232 530295

Average drop 73.1% 754 % 77.9 %

APPENDIX Ill. RESULTS OF REPORT AGGREGATION

No whitespace Aggregation XMill-N XMill

Active user (WCDMA) 3091089 1593491 1180379 857861

Active user (WLAN) 4359329 2858373 1830059 1039868

Casual user (WCDMA) 1966165 1268375 921990 652684

Inactive user (WCDMA) 200816 87361 58754 36726

Average 2404350 1451900 997796 646785

Average drop 39.6 % 31.3% 55.5 %
WBXML bzip2 XMill-z XMill-P

Active user (WCDMA) 602347 698463 702104 684911

Active user (WLAN) 1054355 869204 846160 816447

Casual user (WCDMA) 479699 534360 532666 519387

Inactive user (WCDMA) 33218 30543 29779 28881

Average 542405 533143 527677 512407

Average drop 62.6 % 63.3 % 63.7 % 64.7 %
gzip XMLPPM paqg8p

Active user (WCDMA) 650853 614291 556436

Active user (WLAN) 795016 727283 650966

Casual user (WCDMA) 495258 466687 421945

Inactive user (WCDMA) 28030 25843 23048

Average 492289 458526 413099

Average drop 66.1 % 68.4 % 71.5 %

APPENDIX IV. RESULTS OF REPORT IGNORING

No whitespace Ignore reports XMill-N XMill
Active user (WCDMA) 3091089 1492212 1110489 817470
Active user (WLAN) 4359329 2750360 1754675 995012
Casual user (WCDMA) 1966165 1185432 865098 618635
Inactive user (WCDMA) 200816 77384 52686 33980
Average 2404350 1376347 945737 616274
Average drop 42.8 % 313% 55.2%
WBXML bzip2 XMill-z ~ XMill-P
Active user (WCDMA) 561570 666556 667670 651758
Active user (WLAN) 1009211 833947 808183 779896
Casual user (WCDMA) 445440 507780 504181 491814
Inactive user (WCDMA) 28594 28097 27463 26664
Average 511204 509095 501874 487533
Average drop 62.9 % 63.0 % 63.5 % 64.6 %
gzip XMLPPM paqg8p
Active user (WCDMA) 621909 590141 534246
Active user (WLAN) 762952 700143 626164
Casual user (WCDMA) 470900 446489 403613
Inactive user (WCDMA) 25770 24132 21611
Average 470383 440226 396409
Average drop 65.8 % 68.0 % 71.2%

APPENDIX V. RESULTS WITHOUT TARGETING DATA

No whitespace Ignore targeting XMill-N XMill

Active user (WCDMA) 3091089 997804 822143 665306

Active user (WLAN) 4359329 1618333 1187430 787159

Casual user (WCDMA) 1966165 768645 631458 503216

Inactive user (WCDMA) 200816 44631 35249 26307

Average 2404350 857353 669070 495497

Average drop 64.3 % 220% 422%
XMill-z bzip2 XMill-P gzip

Active user (WCDMA) 546753 536937 527851 514432

Active user (WLAN) 649143 648399 622032 615986

Casual user (WCDMA) 413122 406103 398376 389479

Inactive user (WCDMA) 21572 21315 20635 20365

Average 407648 403189 392224 385066

Average drop 52.5% 53.0 % 543% 55.1%
WBXML XMLPPM pag8p

Active user (WCDMA) 419781 496688 450359

Active user (WLAN) 721007 579125 520119

Casual user (WCDMA) 329183 375792 340770

Inactive user (WCDMA) 19523 19536 17561

Average 372374 367785 332202

Average drop 56.6 % 57.1% 61.3 %

APPENDIX VI. RESULTS WITH CACHE OPTIMISATION

No whitespace Cache usage XMil-N WBXML
Active user (WCDMA) 10362815 737805 513081 466600
Active user (WLAN) 21686675 5361650 3883271 3580849
Casual user (WCDMA) 8087744 1604443 1216226 1105462
Inactive user (WCDMA) 641101 184802 152445 138558
Average 10194584 1972175 1441256 1322867
Average drop 80.7 % 26.9 % 32.9%
XMill bzip2 gzip XMill-z
Active user (WCDMA) 368673 361668 359614 358736
Active user (WLAN) 2932967 2890828 2874801 2868873
Casual user (WCDMA) 972001 949046 938393 942801
Inactive user (WCDMA) 132108 128786 127124 128100
Average 1101437 1082582 1074983 1074628
Average drop 44.2 % 451 % 455 % 455 %
XMill-P XMLPPM pag8p
Active user (WCDMA) 354257 348824 338317
Active user (WLAN) 2839468 2804439 2736892
Casual user (WCDMA) 934407 919023 898658
Inactive user (WCDMA) 127417 125466 123418
Average 1063887 1049438 1024321
Average drop 46.1 % 46.8 % 48.1 %

APPENDIX VII. RESULTS WITH CACHE AND REPORT

OPTIMISATIONS

No whitespace Report aggregation XMill-N XMill
Active user (WCDMA) 10362815 366735 345826 328677
Active user (WLAN) 21686675 2994313 2818840 2679578
Casual user
(WCDMA) 8087744 997765 942426 896830
Inactive user
(WCDMA) 641101 138040 131265 125624
Average 10194584 1124213 1059589 1007677
Average drop 89.0 % 57% 10.4 %
XMill-z bzip2 XMill-P gzip
Active user (WCDMA) 320189 319570 319073 317257
Active user (WLAN) 2624401 2623758 2616399 2606190
Casual user
(WCDMA) 873190 871577 870022 865016
Inactive user
(WCDMA) 122415 122174 122050 121370
Average 985049 984270 981886 977458
Average drop 12.4 % 12.4% 12.7 % 13.1%
WBXML XMLPPM pag8p
Active user (WCDMA) 313064 315148 311782
Active user (WLAN) 2604090 2590342 2568478
Casual user
(WCDMA) 852502 859534 850400
Inactive user
(WCDMA) 119336 120649 119418
Average 972248 971418 962520
Average drop 13.5% 13.6 % 14.4%

