
Lappeenranta University of Technology

Faculty of Technology Management

Degree Programme in Information Technology

Kimmo Kangas

COST OPTIMISATION OF MOBILE

ADVERTISING CLIENT DATA TRANSFER

The topic was approved by the head of the degree programme on 15 August 2008.

Examiners: Professor Heikki Kälviäinen

 Ahti Muhonen, M.Sc.

Supervisor: Ahti Muhonen, M.Sc.

 ii

TIIVISTELMÄ

Lappeenrannan teknillinen yliopisto

Teknistaloudellinen tiedekunta

Tietotekniikan koulutusohjelma

Kimmo Kangas

Langattoman mainosasiakasohjelman tiedonvälityksen kustannusoptimointi

Diplomityö

2009

74 sivua, 28 kuvaa, 10 taulukkoa ja 7 liitettä

Tarkastajat: Professori Heikki Kälviäinen

 FM Ahti Muhonen

Hakusanat: kustannusoptimointi, mainonta, matkapuhelin, XML-optimointi,

välimuistioptimointi

Keywords: cost optimisation, advertising, mobile phone, XML optimisation, cache

usage optimisation

Langattoman mainosasiakasohjelman aiheuttama tiedonvälitys verkon yli saattaa

kuulostaa epämiellyttävältä monen sovelluskehittäjän mielestä, jotka harkitsevat

sovelluksen rahoittamista mainosrahalla, koska tiedonvälityksen aiheuttamat

kustannukset saattavat pelottaa loppukäyttäjät pois sovelluksen käyttäjäkunnasta. Tässä

diplomityössä rakennettiin simulaatioympäristö mallintamaan todellista asiakas-

palvelin-ratkaisua, jotta voitiin mitata tiedonvälityksen määrä erilaisten yhteystyyppien

yli. Tiedonvälityksen optimointiin kokeiltiin muutamaa XML-pakkaukseen

erikoistunutta ja muutamaa yleiskäyttöistä pakkausmenetelmää. Myös protokollaa

optimoitiin. Kustannusoptimointia silmälläpitäen välimuistin käyttöä optimoitiin ja

mainosten etukäteen latausta paranneltiin käyttämään ilmaisia yhteyksiä tiedon

lataamiseen. Välitetyn tiedon rakenne ja eri optimoinnit analysoitiin ja todettiin, että

välimuistin käyttöä ja etukäteen latausta tulisi kehittää ja XML-protokollaa pitäisi

muuttaa yhdistämään raportteja ja pakata joko käyttämällä WBXML:a tai gzip:iä.

 iii

ABSTRACT

Lappeenranta University of Technology

Faculty of Technology Management

Degree Programme in Information Technology

Kimmo Kangas

Cost Optimisation of Mobile Advertising Client Data Transfer

Master’s thesis

2009

74 pages, 28 figures, 10 tables and 7 appendices

Examiners: Professor Heikki Kälviäinen

 Ahti Muhonen, M.Sc.

Keywords: cost optimisation, advertising, mobile phone, XML optimisation, cache

usage optimisation

Data traffic caused by mobile advertising client software when it is communicating with

the network server can be a pain point for many application developers who are

considering advertising-funded application distribution, since the cost of the data

transfer might scare their users away from using the applications. For the thesis project,

a simulation environment was built to mimic the real client-server solution for

measuring the data transfer over varying types of connections with different usage

scenarios.

For optimising data transfer, a few general-purpose compressors and XML-specific

compressors were tried for compressing the XML data, and a few protocol

optimisations were implemented. For optimising the cost, cache usage was improved

and pre-loading was enhanced to use free connections to load the data. The data traffic

structure and the various optimisations were analysed, and it was found that the cache

usage and pre-loading should be enhanced and that the protocol should be changed, with

report aggregation and compression using WBXML or gzip.

 iv

ACKNOWLEDGEMENTS

I would like to thank Nokia Oyj for giving me the opportunity to finally finish my

studies by finding a subject that was interesting and challenging enough. I wish to offer

special thanks to my supervisor, Ahti Muhonen, for giving me enough time and decision

power to create the thesis independently under good guidance.

Also, I want to thank supervising professor Heikki Kälviäinen, who pushed me to meet

the deadlines by being constantly interested in the work and its progress.

I would like also to apologise to all of my friends and my brother, whom I have

dismissed recently while trying to finalise this thesis. Thanks for being patient!

Special thanks go to my girlfriend, who has supported me even when I have had very

difficult times with the thesis, and also when I have been very difficult myself. Thanks,

and my apologies!

Ja lopuksi haluan kiittää ja muistaa vanhempiani, jotka ovat kannustaneet ja tukeneet

minua koko opiskelujeni ajan ala-asteelta tähän päivään asti. Ilman heitä tämä hetki ei

olisi mahdollinen, kiitos!

Kimmo Kangas

 1

TABLE OF CONTENTS

1 INTRODUCTION 5

1.1. BACKGROUND 5

1.2. OBJECTIVES AND RESTRICTIONS 7

1.3. STRUCTURE OF THE THESIS 8

2 OPTIMISATION OF COST 9

2.1. RELATED WORK 9

2.2. COST OF THE ADVERTISING DATA 9

2.3. OPTIMISATION ALTERNATIVES 10

3 THE CURRENT IMPLEMENTATION 11

3.1. SYSTEM OVERVIEW 11

3.2. HIGH-LEVEL MESSAGE FLOW 13

3.3. ADVERTISEMENT TARGETING 13

3.4. TRANSFERRED DATA 14

3.4.1. ADVERTISEMENT METADATA AND CONTENT DOWNLOAD 14

3.4.2. REPORT AND PROFILE DATA UPLOAD 15

3.4.3. PROTOCOL OVERHEAD 18

3.5. CACHE USAGE 18

4 DATA OPTIMISATION 19

4.1. GENERAL-PURPOSE DATA COMPRESSION 19

4.1.1. THE GNU ZIP ALGORITHM 21

4.1.2. THE BZIP2 ALGORITHM 21

4.1.3. THE PAQ8P ALGORITHM 22

4.2. XML- SPECIFIC DATA COMPRESSION 22

4.2.1. THE WAP BINARY XML CONTENT FORMAT 23

4.2.2. THE XM ILL ALGORITHM 23

4.2.3. THE XMLPPM ALGORITHM 24

4.3. PROTOCOL OPTIMISATION 24

4.3.1. REPORT DATA AGGREGATION 24

4.3.2. REPORTING ON ONLY UNUSED IMPRESSIONS 26

4.3.3. REMOVAL OF OFFLINE TARGETING CAPABILITIES 26

4.3.4. OTHER METHODS 27

5 OPTIMISATION OF CACHE USAGE 28

5.1. ADVERTISEMENT CACHING 28

 2

5.2. ADJUSTING PRE-LOADING ACCORDING TO CACHE CONTENT 29

5.3. USE OF FREE CONNECTIONS 30

5.4. CACHE SIZE 31

6 SIMULATOR DESIGN 32

6.1. OVERVIEW 32

6.2. CLASS STRUCTURE 33

6.3. DATA MODELS 34

6.4. MEASUREMENTS 35

6.5. COST OPTIMISATIONS 35

6.5.1. DATA COMPRESSION 36

6.5.2. PROTOCOL OPTIMISATION 36

6.5.3. CACHE USAGE OPTIMISATION 37

6.6. SIMULATION SEQUENCE 37

6.6.1. FETCHING ADVERTISEMENTS FROM CACHE 38

6.6.2. FETCHING ADVERTISEMENTS FROM THE SERVER 39

6.6.3. VERIFICATION OF THE FUNCTIONALITY 39

7 USE CASES 41

7.1. USE CASE DEFINITIONS 41

7.2. APPLICATIONS 41

7.3. USER GROUPS 43

7.4. ADVERTISEMENTS 44

8 RESULTS 45

8.1. ORIGINAL SET-UP 45

8.2. XML COMPRESSION 46

8.3. PROTOCOL OPTIMISATION 47

8.4. CACHE USAGE IMPROVEMENTS 49

9 CONCLUSIONS 55

9.1. FINDINGS 55

9.2. RECOMMENDED ACTIONS 56

9.3. RECOMMENDATIONS FOR FUTURE STUDY 57

REFERENCES 58

APPENDICES

 3

ABBREVIATIONS

2G Second generation of telecommunication hardware standards

3.5G Beyond third-generation telecommunication hardware standards

3G Third generation of telecommunication hardware standards

API Application programming interface

CPC Cost per click, a business model where advertisers pay when users

click on an advertisement

CPM Cost per mille (cost per thousand impressions), a business model

where advertisers pay when users see an advertisement

CTR Click-through rate, percentage of clicks per shown advertisements

DTD Document type definition

EXIWG Efficient XML Interchange Working Group

GPRS General Packet Radio Service, a packet-oriented mobile data service

for 2G cellular systems

HSDPA High-Speed Downlink Packet Access, a high speed 3.5G mobile data

service

HTTP Hypertext Transfer Protocol

MANET Mobile ad hoc network, a network made by connecting the mobile

devices nearby together

MCC Mobile country code

MMA Mobile Marketing Association

MMS Multimedia Messaging Service, an extension to the SMS standard

MNC Mobile network code

MSXML Microsoft XML core services

PPM Prediction by partial match

ROI Return on investment

SAX Simple API for XML

SIM Subscriber Identity Module

SMS Short Messaging Service

UI User interface

USB Universal Serial Bus

 4

W3C World Wide Web Consortium

WAP Wireless Application Protocol

WBXML WAP Binary XML

WCDMA Wideband Code Division Access

WLAN Wireless Local Area Network

XML Extensible Markup Language

XSD XML schema definition

 5

1 INTRODUCTION

1.1. Background

The current trend in the Internet world is to provide services free of cost for the end

user. However, since ‘there is no such thing as a free lunch’, the service providers have

had to find alternative ways of monetising their business. Advertising has proved to be a

functional solution, at least as judged by the number of free services available on the

Internet and the revenue figures of Google, which is monetising its 22 billion dollar

business almost solely by advertising (97% of Google’s 2008 revenue came from

advertising) [1].

Monetising one’s business through advertising is based on a content or service publisher

selling the audience to advertisers who in return hope to make deals with the consumers,

or at least have their brand known to the larger public. The value in the advertising

business comes through the number of times an advertisement has been shown (also

known as number of impressions) or through the number of clicks an advertisement has

received. The publisher value can be increased by specifying the publisher’s target

audience in great detail, so that the advertisers are willing to pay more for the

advertising space in hopes of increased return on investment (ROI). [2]

Consumers’ expectation of having free services on the Internet is becoming extended

also towards services and applications targeted to mobile phones, and there even exists

an operator (Blyk [3]) offering advertising-funded mobile subscriptions in some

countries. The mobile phone environment is more attractive to advertisers than is the

mass marketing on the Internet, because an advertisement on the small screen of a

mobile phone has more impact, and mobile phones are more personal, making

click-through rates (CTRs) higher since the advertisements can be targeted more

accurately to individual users than is possible with Internet display advertising [2], [4].

 6

However, advertising with rich graphics and interactive capabilities in the mobile phone

environment is not that straightforward: the mobile phone environment today, even with

high-end multimedia phones, is very different from the desktop environment. While

execution performance, memory, battery life, storage space, and screen sizes are

constantly increasing, the data connection speed and costs are still problematic in

targeting of mass markets. [2], [4], [5], [6]

Current pricing models make the advertising data quite costly for the user, because

typically data traffic is paid for by amount of transferred data and transferring a hundred

kilobytes of advertising data can cost the end user half a euro [7]. Pricing models based

on the time the connection is open are used also, but in those cases the need to open and

close the connection for every time data will be transferred degrades the user

experience. Also, since the charging in this model is based on rates per hour or fraction

thereof, transferring small pieces of data every now and then will become expensive.

Even though third-generation mobile network (3G) access and flat-rate data contracts

are slowly becoming more commonly available in developed areas’ metropolises, they

are not yet widely used globally and there are still many regions that only have

second-generation (2G) networks [8] in which the data connection latencies are huge

and radio bandwidth is limited, with first priority for calls [9]. The next-generation

(3.5G) High-Speed Downlink Packet Access (HSDPA) networks are an attempt to

overcome the latency problems of General Packet Radio Service (GPRS) by using

shorter transmission time intervals and multiplexing the data from several users to the

same transmission slots [10], but the capacity of a cell tower is still limited and has to be

shared between the packet data and calls, and experiments have shown that sending of

small payloads does not reap the full benefit of increased transmission speed [11], [12].

The slowness and cost combined with the fact that most of the time the phone is not

even connected, to save on battery life, give advertising in the mobile phone

environment a challenging playground. To overcome these problems and to enhance the

user experience through shorter view loading times and increased responsiveness, a

client-side program has been developed to handle some of the advertising logic and

 7

advertisement caching in the mobile phone, helping to save many roundtrips to the

network server.

While local caching of advertisements in mobile phones solves problems with bad user

experience, there remains the need to transfer a lot of data between the client and the

network server: graphics for the advertisements with screen resolutions constantly

increasing, advertising metadata needed for targeting the advertisements, report data

related to advertisement impressions and clicks, and profiling and context information

for the targeting of advertisements.

1.2. Objectives and restrictions

The assumption is that end users are willing to accept the advertising if the targeting

works properly and the user sees the advertising as a service, or receives free services or

applications [2], but they do not want to pay the extra data costs caused by the

advertising traffic. The purpose of this thesis project was to build a simulation

environment for testing different usage scenarios in a client–server environment that

behaves like the real-world system and has an unlimited number of advertising

campaigns available server-side. The simulator is used for measuring data traffic over

different connections and for investigating different ways of minimising the data

transfer costs paid by the end user.

The assumptions for the simulated environment are as follows: 1) the data transfer over

the mobile phone network costs the end user money, and 2) the user is within range of a

free network (Wireless Local Area Network (WLAN), Universal Serial Bus (USB)

cable, or Bluetooth) every now and then.

Cost optimisation is considered only from the end user’s point of view with purely

technical improvements in the pull delivery model over standard data connections.

Thus, partnering with operators and other business model enhancements are not

addressed in this thesis. Push, broadcast, and mobile ad hoc networks (MANETs) are

not considered as a delivery mechanism [5], and neither is the use of the Multimedia

 8

Messaging Service (MMS) or Short Messaging Service (SMS) as a data bearer, because

there are serious privacy issues in association of the phone number with the anonymous

profile data collected.

In investigation of the protocol data, only application-layer data optimisations [12] are

considered. Dynamic advertisement content selection and optimisation based on

network qualities are excluded. Because advertisers already provide fine-tuned

compressed image data, changing the compression parameters to employ more lossy

methods is out of the question.

The chosen methods will be evaluated mainly on the basis of the implementation effort

required and the simulated percentage of cost savings, but also execution performance

and battery consumption are considered, in case they are significantly compromised.

As a conclusion, suggestions will be made on how the system should be changed in

order to optimise the cost, or what areas should be studied further.

1.3. Structure of the thesis

The thesis is structured such that related work and the definition of costs for mobile data

transfer are described in Chapter 2 and the design and functionality of the current

client–server system are described and analysed in Chapter 3. Chapter 4 covers the cost

optimisations that can be made by manipulating the transferred data, and Chapter 5

investigates the optimisation and pre-loading algorithms for improving cache usage.

The simulator details and optimisations implemented are described in Chapter 6, and

Chapter 7 presents the use cases and advertisement data for running the simulations.

Detailed results for the simulations run with the simulator are found in Chapter 8, and

summary conclusions and recommended actions and future study are presented in

Chapter 9.

 9

2 OPTIMISATION OF COST

2.1. Related work

There exist many studies related to mobile advertising [2] and different technical

solutions for delivering the advertisements to the handset. Many papers [2], [5], [6]

mention the cost and the limited connectivity as problem areas, and the common

approach for addressing this is to utilise MANETs, broadcast, or push delivery [5], [13]

over different bearers (SMS [14], Wireless Application Protocol (WAP) push [15], or

Bluetooth push [16]) to transfer the main payload. The systems focusing on pull

delivery [6], [17] transfer rich media advertising content and do not pay attention to the

cost of the data transfer.

In the context of generic wireless computing, studies [17], [18], [19] have been

completed for predicting future need and pre-loading the content to cache, but the focus

in these is on allowing the applications to work in offline mode, or on being able to

deliver the data to the user in a timely manner. In these systems, there is usually data

content loaded that is newer used, which clearly is not a cost-optimised solution.

There are also studies presenting a system for utilising different bearers on the fly to

save on battery life [20] or to speed up the communication [21], and much work

currently centres on optimising the content delivered by sending only the necessary data

[18] or by compressing the messages with both lossy [22] and lossless [23], [24]

schema-aware and general-purpose algorithms [25].

2.2. Cost of the advertising data

The cost of the advertisement traffic for the end user is in direct correlation with the

amount of data transferred. The data transfer can be charged by byte or by hour, but in

any case less data transfer means less cost. In the current system, the only limit to the

quantity of data transferred is a pre-defined constant value, which limits the data

 10

transmission per session but does not give any other predictability to the cost. This

means that for any given session, the cost of advertising data can be anywhere between

zero and the maximum.

2.3. Optimisation alternatives

In addition to optimising the quantity of data transferred, the cost can be optimised by

enhancing the cache usage and pre-loading. When an advertisement has been loaded to

cache, it always should be used to minimise unnecessary data transfers, and when a

fixed-rate data connection is available (WLAN, Bluetooth, or USB), it should be used to

fill the cache with advertisements that are predicted to be needed before the next

available fixed-rate connection.

 11

3 THE CURRENT IMPLEMENTATION

3.1. System overview

Advertising-funded applications on the mobile phone are integrated with the advertising

client to provide access to different advertising services provided by the advertising

client. The applications use the advertising application programming interface (API)

provided by the advertising client to fetch the advertisements from the network server or

from the local cache and to return profiling data to the server. The advertising client is a

middleware component that handles all advertising-related communication between

mobile phone and network server. The advertising system follows the flexible client–

server architecture described by Jing et al. [19], giving the advertising client the

possibility of acting as a lightweight advertising server, but also leaving flexibility to

forward the advertisement requests directly to the network server.

The advertising client fetches the advertisements from the network server and caches

them for later serving to applications. This way, the responsiveness can be increased

and the power consumption reduced. The main logical components and their

dependencies are illustrated in Figure 1. This thesis focuses on the interactions between

the advertising client and the advertising server components, which occurs via the

Extensible Markup Language (XML) API.

The main responsibilities of the advertising client component are as follows:

• Serving advertisements to applications.

• Advertisement caching and fetching from the network server.

• Gathering profile information.

• Sending reports to the advertising server (on user actions and impressions).

• Executing actions.

• Performing targeting based on context (keyword, category, publication,

placement, and time).

 12

Mobile phone

Advertising Client

Application 1

Application 2

Advertising API

Ad

cache

Report

cache

Profile

cache

Location Services

Phone Settings and

Configuration

Network server

Advertising Server

Reporting and

Billing UI

Campaign

Management UI

Targeting

Engine

Reports

Ads

User

Profiles

Connectivity

XML API

Application 3

Content Server

HTTP API

Ad

Content

Content

cache

Figure 1. Overview of system components.

The main responsibilities of the network server subsystem are as follows:

• Serving of advertisements to the advertising client.

• Targeting based on the user profile.

• Advertisement campaign management.

• Reporting.

• Billing.

 13

3.2. High-level message flow

When the application is connected to the network for updating its content or checking

for updates, the advertising client is informed to pre-load a set of advertisements to

cache in order to reduce the latencies in the application’s usage later when the user is

using the application for browsing the content or various views. When the advertising

client is fetching advertisements from the network server, it also sends all the cached

reports to the network server. The high-level message flow is presented in Figure 2.

Figure 2. High-level message flow.

3.3. Advertisement targeting

Targeting of the advertisements is a major element in the advertising system; the better

the system can target the advertisements to users, the better the return on investment [6].

While usage of the local cache increases responsiveness and improves battery life since

data transmission is power-consumptive [20], the caching of advertisements also raises

new kinds of problems, such as how to fetch correctly targeted advertisements in

advance or how to enable real-time targeting with cached advertisements.

 14

The advertisements can be targeted on the basis of the user profile, which includes

information on elements such as the device, the home network, user behaviour on the

phone (e.g., application usage, call logs, and browser logs), user data (e.g., contacts,

messages, and notes), and demographics. The availability of the information depends on

the user preferences, and the data will be analysed and summarised in the handset

before being sent to the network server for use in targeting advertisements by user

profile.

The context-information-based targeting that is also supported by the advertising client

includes taking into account the user’s location, availability (phone profile, calendar,

presence status, etc.), and the current time and day, as well as advertisement context

(where the advertisement will be viewed, also known as the advertisement spot). This

should be taken into account in optimisation of the cache pre-loading and usage, by, for

example, loading a certain number of generic advertisements instead of only targeted

ones.

3.4. Transferred data

The transferred data consist of received advertisement content (e.g., banner images) and

advertisement metadata (e.g., targeting, placement, and action information), reports sent

(e.g., on session, impression, and action) and profiling information, and protocol

overhead.

3.4.1. Advertisement metadata and content download

Downloading the advertisement content is the biggest contributor in the overall data

transfer. The current flow of interactions when an application is to show an

advertisement is shown in Figure 3. The optimisation point identified in this flow is the

decision-making point between fetching the advertisement from server and from cache.

The choice depends greatly on the contents of the cache and the incoming advertising

request – i.e., does the cache contain an advertisement with suitable targeting

parameters, or does one have to be fetched from the network? The optimisation of cache

 15

usage is studied further in Chapter 5. Optimisation of the transferred data is covered

before this, in Chapter 4.

Figure 3. Message flow of advertisement fetching.

3.4.2. Report and profile data upload

The reports are generated on the basis of the advertisement displays (impressions) and

user actions (clicks on the advertisement). When the application is started, a session

report will be created automatically (see Figure 4), containing the application start time

and the duration of the application session. The session information is needed for

statistical purposes, since it can be combined with impression and actions reports to

provide a complete picture of how well the advertising works for a specific application.

This report represents a minor proportion of the total traffic and thus no optimisation

points there.

 16

Figure 4. Message flow of session report creation.

When an advertisement is displayed, an impression report will be created (see Figure 5).

The impression report contains the start time and the duration of the impression, which

are used for generation of statistics only. Billing of advertisers is based on impression

counts, which means that one optimisation point could be in aggregation of the reports,

which is covered in Chapter 4.

Figure 5. Message flow of impression report creation.

When an advertisement has been clicked, an action report will be created (see Figure 6).

The action report contains the start time and duration of the selected action, which are

also used only for statistical purposes. These could be optimised by aggregating the

data, which is another potential optimisation further addressed in Chapter 4.

 17

Figure 6. Message flow of action report creation.

The reports will be stored to cache and sent to the advertising server when the next

advertisement request is sent (see Figure 7), or when there are old enough reports in the

cache. The reports have to be sent to the server in one form or another because the

advertising business runs on reports and thus, the only optimisation point here is for the

protocol layer.

Figure 7. Message flow of report sending.

 18

The user profile updates are also sent along with advertisement requests, and these are

already analysed and summarised in the handset, leaving no optimisation points in this

area.

3.4.3. Protocol overhead

The XML API offered by the advertising server is very verbose, and great savings could

be made there. The advertising content is transferred as-is in compressed binary format

(e.g., JPEG, PNG, or GIF), which is already optimised in the creation phase.

Experience has shown that the operator gateways may filter or block the transferred

data, therefore the underlying protocols are selected to maximise compatibility with

operator gateways and hence, the direct socket-level connections are not considered.

The number of separate Hypertext Transfer Protocol (HTTP) request-response pairs is

already optimised through combination of several client requests and reports in one

HTTP request, and HTTP 1.1 pipelining and persistent connections [12] are utilised.

3.5. Cache usage

Currently the system loads new advertisements to cache every time an application

refreshes its content. Because the number of advertisements used is small, the system

works well, since the advertisement content is cached separately. However, as the

number of advertisements in the system grows, or the density of content updates

increases, it becomes apparent that this is not the optimal solution, since advertisements

will be loaded to cache and may never even be shown to the user. The cache usage

optimisation is covered in Chapter 5.

 19

4 DATA OPTIMISATION

4.1. General-purpose data compression

General-purpose lossless data compressors are typically based on either dictionary

usage or arithmetic estimation. Dictionary-based compressors are in common use, and

their variants include such formats as ZIP [26], gzip [27], and bzip2 [28]. The

compressors based on arithmetic estimation usually have large memory and execution

time requirements but a better compression ratio [29]. The variants of these include

prediction by partial match (PPM) [30] and the PAQ series [31].

The dictionary compression algorithms have their roots in the LZ77 algorithm [32],

which works by finding duplicated strings in the data. Only the first occurrence of the

string is stored as it is; the second one is only a pointer to the previous one, in the form

of a distance-length pair. The scanning for duplicates is based on a sliding window,

which means that for any given position, the algorithm has a record of the previous n

characters that it can search for duplicates. After finding a duplicate, the algorithm may

continue by checking whether a longer duplicate can be found by moving on to the next

character, and it might even ignore the previous duplicate to achieve a better

compression ratio. The different variants of the algorithm optimise the finding and

storing of duplicate information in different ways and may apply some pre-processing to

the data before scanning for duplicates, to increase the probability of duplicate strings.

The arithmetic compressors estimate the probability of a symbol by means of either a

static or dynamic model. Static models can be based, for example, on historical data, or

they can be generated before the compression, but when computing power is not a

limitation, dynamic models can be used. In this case, the model is updated as the file is

being compressed. Dynamic models are often used to predict the next symbol by

assessing previous symbols (i.e., the context); the algorithms creating these models are

also referred to as PPM-based methods. [30]

 20

The arithmetic encoding algorithm encodes a stream of input symbols as a single

decimal number. For each symbol, the model contains an allocated range of probability

distribution, thus giving each symbol a unique range between 0 and 1. When encoding

starts, the overall range is allocated to the first symbol’s range and then narrowed by the

second symbol’s range, and so forth. For instance, if the model contains two symbols,

‘a’ with a probability of 0.9 and ‘b’ with a probability of 0.1, the ranges allocated would

be 0.0–0.9 for ‘a’ and 0.9–1.0 for ‘b’. Then, when encoding the sequence ‘aaab’, the

algorithm would first make the range 0.0–0.9 the current range because of the first

symbol being ‘a’, then allocate the same sub-range within the current range for the

second symbol. The steps in the arithmetic encoding process are described in Table 1.

Table 1: Arithmetic encoding process.

Next
symbol

Lower
limit

Upper
limit

 0 1
a 0 0.9
a 0 0.81
a 0 0.729
b 0.6561 0.729

After the encoding process, we have a range from 0.6561 to 0.729 and can pick, for

example, the number 0.7 from that range, which represents uniquely the series ‘aaab’.

[33]

One arithmetic compression and two dictionary-based algorithms were chosen for

compressing the XML data. The dictionary algorithms GNU zip and bzip2 were chosen

because of their high performance and wide availability on different platforms, and the

arithmetic compressor paq8p was chosen for its compression ratio. Summary of the

methods used in selected compressors can be found in Appendix I.

Even though the latest arithmetic compressors can yield compression ratios of up to

24% for already compressed image files, all of the dictionary-based compressors deliver

only a 0–1% ratio [34]. As the arithmetic compressors require more processing power,

recompressing the image data was not considered a practical option.

 21

4.1.1. The GNU zip algorithm

GNU zip is a widely used compression tool that implements the DEFLATE algorithm

[35]. It first applies the LZ77 algorithm by scanning the data for duplicate strings and

then stores the duplicate pointers in two separate Huffman trees [36], one containing the

match lengths and the other containing the distances.

Huffman trees are used for storing the symbols by means of a variable-length code

table, which applies the estimated probability of occurrence of each possible value in

relation to the source symbol. The idea is to compress the data by using fewer bits for

symbols that occur more often and more bits for those that occur infrequently. [36]

Because of relatively simple processing algorithm, the compression and decompression

is fast [37].

4.1.2. The bzip2 algorithm

The bzip2 compressor implements the Burrows-Wheeler block-sorting text compression

algorithm [38] together with Huffman coding to obtain considerably better results than

are achieved with gzip, approaching the compression ratio of arithmetic compressors.

[28], [29]

The Burrows-Wheeler block-sorting text compression algorithm applies a reversible

transformation to a block of input text. The transformation does not compress the data

but reorders similar symbols close to each other to make the content more compressible

with simple compressors such as move-to-front coding. [38]

Move-to-front coding [39] takes advantage of similar symbols occurring frequently

within short periods to create a variable-delta presentation of the data. Finally, bzip2

applies the Huffman coding for the data.

The Burrows-Wheeler transformation is time consuming, making the algorithm slower

than gzip, especially when compressing data [37].

 22

4.1.3. The paq8p algorithm

The PAQ series of compressors are arithmetic compressors with a large number of

dynamic models mixed together. These models estimate the next bit by assessing the

previous bits and the result of each prediction is arithmetically coded. The predictions

are combined by weighted averaging and the weights are dynamically adjusted to favour

the most accurate models to reduce future prediction errors (paq6). The difference from

the prediction is then recorded for the decompression algorithm. [23]

In recent versions in the PAQ series, such as paq8p, the adaptive model weighting is

replaced with neural network mixing of the different models. After combination of each

predicted bit, the neural network is trained with the help of the correct bit. [31]

4.2. XML-specific data compression

Widely used in exchange of data between physically distributed or loosely coupled

systems, XML uses schemas to standardise data exchange, but, being human-readable,

it is too verbose for efficient transfer or processing in a limited-bandwidth network. To

address this issue, the World Wide Web Consortium (W3C) formed the Efficient XML

Interchange Working Group (EXIWG) to specify an XML binary format [40].

The XML schema can be derived implicitly from the XML document, or explicitly by a

Document Type Definition (DTD) or XML Schema Definition (XSD) file. The file

specifies the structure, element and attributes types, and the allowed values. With

utilisation of external schema information in compression of the file, the element names

do not have to be included in the compressed file, thus making the compressed files

theoretically smaller. When only the implicit schema information is available,

XML-aware compressors should be able to remove unnecessary whitespace and linefeeds

and to compress the structure definition better than the generic-purpose compressors do.

The EXIWG work is still ongoing, but in the mobile phone environment there already

exists a widely used binary format called WAP Binary XML (WBXML) [41], which

was chosen for evaluation in the present project. In addition to the binary representation,

 23

two XML compressors – XMill [42] and XMLPPM [43] – were chosen, for their good

compression ratio with large XML files [25]. These compressors separate the XML

structure information from the data and apply different general-purpose compressors to

the two. Summary of the methods used in selected XML compressors can be also found

in Appendix I.

4.2.1. The WAP Binary XML content format

When converting an XML file to WBXML, the algorithm enumerates all of the

elements, attributes, and possible values from the XML schema and generates an integer

value for each of these. After obtaining a unique number for each of the elements in

XML, the algorithm just converts the textual XML tags to their binary equivalents. In

addition to pre-defined names, the compressed file contains a string table that can be

used to enumerate duplicate string values inside the XML document. To overcome the

limitation of having to have control bits and element enumerations in one byte, the

format supports different code pages for enumerated values. [41]

If the source XML document contains large element structures and smaller string

values, the WBXML should be comparable to the best general-purpose compressors,

but it has two qualities that make it worth using in computationally limited devices: it

can be encoded and decoded in stream-level processing, and it makes the parsing more

efficient since the parser can compare simple numbers instead of strings.

4.2.2. The XMill algorithm

An XML-specific data compression algorithm that separates the XML structure from

the data, XMill is based on a grouping technique that groups and compresses values

together on the basis of their element types. For example, where there is a sequence of

multiple report elements in an XML document, each one containing spot, time, and

duration information, the XML document could be rearranged by grouping all spots,

times, and durations together. This usually yields better compression ratios, since each

of these groups contain data items with great similarities. [42]

After separation of the structure and rearranging of the values, a general-purpose

compression method is applied. This can be selected with a runtime parameter, and four

 24

options were considered: no compression (‘-n’), gzip (‘-z’), bzip2 (default), and

PPM-based compression (‘-P’). These options affect the execution speed in ascending

order from the firstly mentioned to the last.

4.2.3. The XMLPPM algorithm

XMLPPM is an XML compression algorithm that combines the PPM algorithm for text

compression and an approach to modelling tree-structured data called multiplexed

hierarchical modelling [43].

XMLPPM takes a slightly different approach and speeds up the decoding and parsing of

the compressed file by directly encoding the sequence of Simple API for XML (SAX)

events from the XML parser when compressing the source document. It then maintains

four separate models for the PPM compression algorithm: one for element and attribute

names, one for element structure, one for attributes, and one for strings. Each model

maintains its own state, but the arithmetic encoding is shared, allowing the encoding

and decoding to proceed incrementally. [43]

4.3. Protocol optimisation

In addition to compressing content and converting it back to its original form when

decompressing it, another option is to change the protocol to optimise the quantity of

data transferred. As the XML sent consists mostly of report data and the XML received

is largely description of the targeting rules that will be applied in loading advertisements

from cache in offline mode, one option would be to aggregate and accept loss of

accuracy in either of these to minimise the transfer costs.

4.3.1. Report data aggregation

Detailed, itemised reports consume a lot of space when transferred to the network, so by

losing some accuracy and aggregating the data before sending we could save

tremendous amounts in data costs. One report from the current implementation can be

seen in Figure 8, where all the data values are highlighted and all the rest is just

specifying the structure.

 25

<ad-imp id=“ srv-53108” creative-id=“ srv-53109”
 country=“ 210” offline=“ yes”>
 <spot>
 <metadata>
 <image max-width=“ 320” max-height=“ 60” />
 <publisher id=“ nokia” publication=“ media” />
 <channel name=“ ringtones” />
 <placement> top</placement>
 </metadata>
 </spot>
 <start-time> 20090128T015055+0200</start-time>
 <duration> 255</duration>
</ad-imp>

Figure 8. Example of report data.

The data of multiple reports could be optimised by grouping the report details within

common advertisement spot data (advertisement context) since there usually are many

fewer advertisement spots than reports, but, since the detailed information on each

impression is not even used at the moment, the optimisation could go even further by

aggregating the reports through counting only the number of each type of report. This

means that, instead of each report being sent individually, only the number of

impressions and actions for a particular advertisement in a particular spot would be sent.

The result can be seen in Figure 9.

<spot publisher=“ nokia” publication=“ media”
 category=“ ringtones” placement=“ top”>
 <ad id=“ srv-53108”>
 <ad-imp id=“ srv-53109”> 6</ad-imp>
 <action-click id=“ srv-55798”> 1</action-click>
 </ad>
</spot>

Figure 9. Example of aggregated report data.

Within less space than it took to send just one impression report, it is possible to send

several impression and action reports, with the disadvantage of losing timestamps and

durations of individual reports. However, since the billing is based on reports, the

benefit of aggregating the report data depends on the duration of the offline period (the

time for which the advertising client is not communicating with the network server) and

on the amount of delay that is acceptable in returning the reports to the server.

 26

4.3.2. Reporting on only unused impressions

With loss of more details from the reports and shifting of the paradigm toward a more

cost-friendly solution, traffic could be optimised even further by reporting only unused

impressions and actions. This would result in a logic that would request an

advertisement for a certain spot and then attempt to apply all of the reserved

impressions in whatever spot the advertisement may be shown in. If this should fail, the

client would report the number of unused impressions to the server so that the server

would know to free the impressions for some other client. This would entail the server

being unable to respond anymore to the client’s impression report by indicating that the

advertisement is no longer valid, and the information on the spots in which the

advertisements were actually shown would be lost. Also, the publisher value would

decrease, since the information about which applications generate the audience would

be lost. The resulting impression reports would be reduced to quite simple one-line

elements as shown in Figure 10, though the action reports would remain the same.

<ad-deleted id=“ srv-53108” unused=“ 8” />

Figure 10. Example of a new impression report.

4.3.3. Removal of offline targeting capabilities

After reduction of the data sent to the minimum, the optimisation could go still further

by removing details from the received data. In the current implementation, most of the

XML received describes the targeting rules used to determine when and where the

advertisement can be shown. If the logic for serving advertisements from the cache in

offline mode would be changed to attach the parameters from advertisement fetching to

the advertisements received, it would not be necessary to receive these over the network

connection. However, this would reduce the versatility of the cached advertisements,

because the offline algorithm would not have knowledge of where the advertisements

are really allowed to be shown; with this reduced flexibility, the only possibility allowed

would be one-to-one mapping between cached advertisements and spots. In view of

overall data optimisation considerations, this could not bring very good results, since the

same advertisement cannot be shared between different applications, but the positive

 27

side would be that the server has full control over the serving of advertisements and in

some cases costs could be saved with the current implementation.

4.3.4. Other methods

There are numerous ways of optimising the XML, such as flattening the structure by

increasing the usage of attributes, removing unnecessary containers, and using string

formatting instead of XML elements [44], but those are not covered here, since they

would require a complete redesign of the protocol and new implementation on both the

client and the server.

 28

5 OPTIMISATION OF CACHE USAGE

5.1. Advertisement caching

In the current implementation, the advertisement caching logic is quite simple and the

effective sharing of the cached advertisements can be very limited since the campaigns

are sold for specific applications at a specific time for a specific number of impressions

(cost per mille (CPM) business model). However, in the future, with movement toward

user targeting and performance-based selling of advertisements (advertisers paying by

the number of clicks, CPC business model), caching will be utilised more and more

effectively as advertisements are targeted more to the users instead of for applications

and advertisement spots. There are three aspects to consider in improving the cache

usage:

1. If an advertisement has been loaded, take the most out of it and use all of the

impressions reserved for it every time before removing it (or before it expires).

2. Use free connections to pre-load the advertisements to cache that will be most

likely to be needed in future.

3. Advertisements that are loaded to cache should be reusable, not very specifically

targeted (location is also relevant later), and not disposable.

The first element is limited by how well the cached advertisement parameters match the

request parameters. The second is limited by the data connection parameters for getting

the advertisements into the cache, and the third is limited by cache size and the needs of

the advertisers. The exact parameters limiting cache usage are described in Figure 11.

From these parameters, the advertisement validity, report time and data connection time,

duration, data limit and speed, are not considered in this thesis. The advertisement

request and advertising client parameters are included.

 29

Figure 11. Data actors in the system.

5.2. Adjusting pre-loading according to cache conte nt

The current implementation loads new advertisements to the cache every time the

application refreshes its content from the network. The number of pre-loaded

advertisements is based on estimated user behaviour, which in practice means that one

advertisement is loaded for each downloaded item (news story, catalogue page, e-mail

message, video, song, etc.) that the user might view.

This works well in the current environment, where the number of active advertising

campaigns for any given application is small, because the server cannot return

guaranteed different advertisements for each of these requested items; instead, it might

return just one generic advertisement, which is then used from cache in all of the views.

However, when the number of advertisements in the system grows, different

advertisements could be targeted for each of the items separately, thus creating the

possibility of loaded advertisements not being shown even once if the user does not

view the item.

This is not an optimal solution for the future, when the advertisements will be more

targeted and there are plenty of them in the system. It can lead to situations wherein the

cache already contains proper advertisements for the application’s needs. By changing

the pre-loading logic to first scan through the cache contents to calculate how many

 30

applicable advertisements exist already and then fill in the blanks from the network

server for the estimated required number of advertisements, it should be possible to

achieve considerable cost savings. Usually advertisements that are loaded can be shown

to the user more than once, so also the client’s advertisement serving algorithm should

be changed to use all of the cached impressions before connecting to the network for

more advertisements.

5.3. Use of free connections

A mobile data connection over cellular networks is not the only way to get the

advertisement data to phones. Many newer phone models can access Wireless LAN

networks, and many users are also connecting their phones to desktop computers via

Bluetooth, USB, or infrared connection to transfer data. When these connections are

used, it can be assumed that moving the advertisement data does not add to the cost. It is

possible that in some rare cases the WLAN connection is charged for by the byte, but

those cases are not considered in this work.

When the free connection is available, it can be detected and used for downloading

more advertisements to cache from the network server. The decision on which

advertisements to pre-load could be made intelligently by predicting the future need

according to historical data – for example, via some of the PPM methods [30] – but,

since free connections are not that common in targeting to mass markets (especially in

developing countries), those methods were not studied any further.

The simplest way of utilising the free connection is to change the advertisement serving

algorithm to obtain fresh advertisements from the network whenever such a connection

is detected. This way, the cache can be filled with newer advertisements to increase the

probability of being able to use these when only other connections are available.

To further improve the algorithm, a parameter can be added for multiplying the number

of advertisements fetched from the server. Since the server always returns a certain

percentage of generic, less targeted advertisements, the number of these returned is

 31

greater when the number of advertisements loaded grows; the server also returns more

generic advertisements in addition to the most targeted ones. This should decrease the

amount of data that must be transferred when free connections are not available, but the

cache size might limit the benefit, since the algorithm might end up overwriting existing

generic advertisements from the cache with ones targeted for the relevant application to

keep the cache size under the limit. Changing the client-side algorithm to keep a certain

level of generic advertisements in the cache was not studied. The effect of parameter

value on algorithm functionality and cache state is described in Table 2.

Table 2: The functionality of the cache algorithm optimisation parameter.

Parameter
value

Algorithm functionalit y Cache state after pre -loading
(when a free connection is available)

0 Use cache when possible Cache contains advertisements for estimated
need.

1 Use network when free
connection is available

Cache contains more advertisements for the
application than the estimated number needed.
A certain proportion of the advertisements
returned are general and can served also to
other applications.

2 Use network when free
connection is available to
load twice the estimated
number of
advertisements needed

Cache contains more general advertisements
since the server always returns a certain
percentage of these.

3 Use network when free
connection is available to
load three times the
estimated number of
advertisements needed

Cache contains even more general
advertisements to be shared between all
applications.

5.4. Cache size

The available cache space is the biggest limitation in pre-loading of advertisements. The

basic rule for the cache is that the advertisements will remain there until they expire or

their impressions run out. However, the cache size has to be limited, since the phone

environment usually has very limited storage capability and no single piece of software

can use all the available space for its own purposes. This leads to situations in which the

advertisements that are shown the most have to be deleted before expiry in favour of

pre-loading of advertisements for other applications. The probability of this happening

increases when free connections are used to pre-load the advertisements to cache.

 32

6 SIMULATOR DESIGN

6.1. Overview

Because the current system requires a complex set-up of many components on the

server side and on the client side, a simulator was built in order to measure the

transferred data quantities with ease in the specified usage scenarios. The simulator was

built first to mimic the real environment for studying the implementation of the existing

client–server advertising solution, and then enhanced for testing different methods of

optimising the costs in the simulated usage scenarios.

The easy-to-use dynamic object-oriented programming language Python [45] was

chosen to speed up the development and to allow quick testing of different

optimisations. The building of the simulator also allowed running of the same use cases

over and over again in an environment that has an unlimited number of advertisements

available and where the advertisement content and the use cases can be adjusted

precisely.

The components in the system are illustrated in Figure 12. ‘Test App’ contains all of the

application logic and runs the simulations on the basis of the ‘Use Case Data’, ‘Ad

Client’ simulates the client-side software, ‘Ad Server’ is a server simulator, ‘Ad Engine’

contains the advertisement storage and searching logic, the ‘Data Models’ component

contains definitions for different data structures used by all other components, and ‘Ad

Data’ contains all of the advertisements used in testing.

The comtypes Python library [46] is used for accessing Microsoft XML Core Services

(MSXML) [47], which is needed for validating the generated XML against the protocol

schema. This makes the code Windows-dependent, but this can be easily replaced with

some other validation code (e.g., using libxml2 [48]) if support for other operating

systems should become necessary.

 33

Figure 12. Simulator components.

6.2. Class structure

Class dependencies and interface functions are shown in Figure 13. The application is

modelled by means of the Model-View-Controller [49] design pattern, where the Test

class acts as the controller driving the simulated advertisement requests toward the

model, which is the client class. The user interface (UI), acting as the view, handles all

viewing and formatting of the results.

On high abstraction level, the functionality of the simulator is directly analogous to the

client-server environment. The most notable differences are the sharing of single

advertising engine component and absence of all the server side logic beyond the

advertisement loading and serving.

All the classes use common data structure class definitions from ‘Data Models’

component, providing efficient and clean implementation for the functionality related to

processing the data elements.

 34

Figure 13. Simulator class structure.

6.3. Data models

Data model classes were created for wrapping parameters that specify the user’s and

advertisement spot’s context information, advertisement and report data, and connection

type and speed. All parameters supported by the simulator are described in Figure 14.

The user context is specified by device information, current network and Subscriber

Identity Module (SIM) card parameters, such as the Mobile Country Code (MCC),

Mobile Network Code (MNC) and cell tower identification, and demographics. The

advertisement context is specified by spot parameters and the advertisement data

contains targeting parameters and information for click-to action. Each report has type

and time information and the connection is specified by type and speed.

 35

Figure 14. Simulator data models.

6.4. Measurements

For measuring the simulation results, considerable statistical information gathering logic

was built into the simulator. Advertisement serving counts are monitored on the server

and at cache level; detailed information on data transfer over different connection types,

broken down by data category, is collected; cache usage statistics are updated;

advertisement requests, reports, and actions are recorded in the online and offline cases;

and all of this is broken down further by usage category. Also, for data compression, all

of the various compression results are recorded, so each simulation run results in a lot of

numbers and many request/response files that can be analysed in detail for assessment

of the optimisation results.

6.5. Cost optimisations

In implementation of the different optimisations for the simulator, performance was not

considered, and all of the optimisations were controlled by function parameters, making

it easy to run the same simulations with different optimisation combinations enabled.

 36

6.5.1. Data compression

Before application of the various compression algorithms, all whitespace was removed

after generation of the XML data. Python aided in testing of the compression

algorithms, by providing built-in implementation for gzip and bzip2, so applying these

for the XML data was straightforward.

For the rest of the compression algorithms, an Open Source project was taken

(XMLPPM [50], XMill [51] and libwbxml [52]) and the tool was compiled from the

source code. This executable was then called from Python, resulting in a sub-optimal

sequence: generate raw XML, remove whitespace, write result to file, validate file

against protocol schema, and call external compression algorithm to compress the file.

To obtain the best results with WBXML, a list of XML tags, attributes, attribute values,

and commonly used strings had to be extracted from the custom protocol schema. For

easier extraction, the schema was converted to DTD with the free XML editor XMLPad

[53]. After reading of the DTD and parsing of all elements, attributes, and attribute

values, a few known strings were added manually to the table in order to make the

WBXML more efficient. These tables were then included in the source code for the

WBXML encoder and decoder, and the custom versions were compiled.

6.5.2. Protocol optimisation

All of the protocol optimisations were implemented directly in the XML generation

phase, and a new version of the protocol schema was created for verifying that the

generated requests and responses match the optimisation idea, and that all the required

data would be transferred. In addition to automatic verification, the generated traffic

was also inspected manually to verify the logic.

Aggregation of report data was done only while the device was not connected, in order

to maintain the business logic. Adjusting the length of the aggregation period could

bring great savings, but that was not tested here. The removal of targeting data coming

in with the response was handled by just commenting out the function that writes that

bit of XML data in the server response. Also, the client side had to be changed to

 37

associate the incoming advertisements with the outgoing parameters, so that the cache

algorithm could target the advertisements to the correct spots.

6.5.3. Cache usage optimisation

The cache usage optimisations were implemented directly in the offline advertisement

serving and pre-loading algorithms. The optimisation level and cache size were

controlled by method parameters, thus providing the possibility of creating nested loops

for getting a matrix of the results. Using the cache optimisations causes longer offline

periods, so the report aggregation should produce better results, although the business

impact of this was not considered.

6.6. Simulation sequence

The specified usage scenarios are loaded from a database run by the Test class. The

implementation initialises the random seed to one to guarantee similar simulation runs.

Random numbers are used for generating the identifiers in the XML and for creating

variety for the advertisement requests specified by the use cases. Also, different

instances of the random generator were used for XML generation and for running the

simulations, in order to get exactly the same runs each time.

For processing a use case, current connection type must be first defined and set to the

client. Next, the advertisement fetch must be executed with user and advertisement

context, and time, defined by the use case. After the advertising client has completed the

processing of the advertisement request (i.e. searched local cache, requested

advertisements from server simulator, checked targeting parameters, stored new

advertisements to cache, updated serve counts and displayed statistical data), the Test

class creates the reports from simulated impressions and user actions with request

timestamps and random durations. These reports will be stored within the local cache

for sending to the server along with the next advertisement fetch. Finally, statistical

information is fed to the UI. The high level execution sequence for an advertisement

session is illustrated in Figure 15.

 38

test

Define connection, userContext, adContext, time, impressions, clicks and session

client

connection(type)

adFetch(userContext, adContext, time)

UI

printFetchInfo()

printResponseInfo()

printTransferInfo()

Repeat for all

use cases

connection(none)

report(impressions)

report(clicks)

report(session)

Figure 15. Use case call flow.

6.6.1. Fetching advertisements from cache

When the client does not have a connection, or there are valid advertisements in the

cache, the call sequence is straightforward, as seen in Figure 16.

test client

adFetch(params)

adEngine

findAd(cachedAds, params)

return(ads)

Figure 16. Fetching of advertisements from cache.

 39

6.6.2. Fetching advertisements from the server

When an advertisement needs to be fetched from the server, a few more things must be

done in order to mimic the real environment and to get the correct request and response

XML created. This sequence is depicted in Figure 17. In addition to the cache search

case, the server component must be involved and the advertisement must be stored into

cache after it has been received from the server.

Figure 17. Fetching advertisements from server.

6.6.3. Verification of the functionality

For validating the correct functionality of the simulator, two approaches were used: 1)

manually checking the input and output parameters of an advertisement fetch and the

request and response data generated and 2) validating the generated XML against the

protocol XML schema definitions. Figure 18 shows the call flow for displaying the

statistics in the UI.

 40

Figure 18. UI call flow.

The XML validation was done by calling the MSXML Windows COM API through the

comtypes Python library, and the XML content was passed via the file system. The call

flow is described in Figure 19. In validation of the correctness of the data compression

methods’ functionality, all files were extracted back to their original form and the result

was compared against the original XML.

client reqCreator

requestXml()

comtypes 0.6.0 MSXML 6.0

CreateObject('MSXML6.0 DOM')

Create DOM instance

loadDOM(xmlFile, xsdFile)

Load DOM from file

Validate against schema

return(error)

return(xml)

Write XML to a file

Figure 19. XML validation.

 41

7 USE CASES

7.1. Use case definitions

The use cases for running the simulation were created by describing the weekly

application usage and advertisement exposure and running these for a one-month period

(four cycles). Each week, some randomness was added to obtain more variety and

unpredictability to the requests:

• User context was randomised.

• The number of times a day was randomly decreased or increased by one or zero.

• The time of a request was randomised so that the order of requests was different

each day.

• The keywords attached to a request were selected randomly from a selection of

10 keywords.

• The number of impressions randomly decreased or increased by one or zero.

• Time and duration of impressions were randomised.

• Actions were executed randomly with a 10% click-through-rate.

The random seed was initialised to one before each simulation run, to keep the runs the

same. Different application usage patterns were distributed over three user groups, with

all of them accessing the same advertisement data on the server-side.

7.2. Applications

Applications running on mobile devices are beginning to offer the same functionality as

desktop applications. The Mobile Marketing Association (MMA) categorises mobile

applications into six types: communications, games, multimedia, productivity, travel,

and utilities [54]. This categorisation was abstracted into three top-level categories –

media, utilities, and communication – and one application was taken to represent each

category.

 42

From the simulation point of view, the application’s connectivity and advertisement

request types play the most important role; thus, one never-connected and two

occasionally connected or always-connected applications were chosen. To gain variety

in the advertisement requests and to truly test the caching functionality, other

parameters were changed a great deal during the simulation runs. This way, the actual

application type does not matter, since it is possible to simulate the requests from

multiple applications with the three chosen ones by using different categories and

placements. Table 3 describes the applications chosen, their categories, and placements.

Also, a set of random keywords was used for each application’s advertisement requests.

Table 3: Advertisement request parameters.

Application Categories Placements Keywords
E-mail Communications Bottom Food
 List Pizza
Idle screen Utilities Bottom Sports
 Action
Media News Top News
 Music Playlist Local
 Video In-game Football
 Games Pre-roll Entertainment
 Graphics Rock
 Applications Global
 Ringtones

The advertisement placement in the e-mail application was set up in the simulation such

that when the user checks for new e-mail messages or reads one, new advertisements

are loaded from the server and shown if the user has actually received new e-mail and

opens the list view or message view.

For the idle screen, the advertisement placement was set up in such a way that no new

advertisements are fetched from the server and the user sees an advertisement when

starting to use the phone, if suitable advertisement can be found in the cache. This

obviously leads to several cache misses, but it is interesting to compare how different

pre-loading algorithms affect the behaviour of idle screen advertising.

The media application downloads a new advertisement when updating the media

content from the server. When the media are consumed, advertisements will be shown.

 43

7.3. User groups

For testing of the different optimisations, three user cases were chosen, representing

active, casual, and inactive users. The user configurations were done to represent quite

different usage behaviours, for showing the optimisations’ effects in practice for

different users. The active user receives a lot of e-mail and consumes a lot of media

content over WLAN and Wideband Code Division Access (WCDMA) connections. The

casual user uses e-mail and consumes some media over WCDMA, and the inactive user

just uses media once a week, on weekends. Table 4 summarises the daily application

usage, where the media download figures indicate the number of media items (news

items, videos, music items, etc.) downloaded.

Table 4: Application usage for selected user categories.

Activity per day
Active

user
Casual

user
Inactive

user
E-mail refreshed (weekdays) 10 4 -
E-mail refreshed (weekends) 8 4 -
E-mail received (weekdays) 10 2 -
E-mail received (weekends) 8 2 -
Idle screen activated (weekdays) 60 30 10
Idle screen activated (weekends) 50 15 20
Media downloads over WLAN (weekdays) 14 - -
Media downloads over WLAN (weekends) 21 - -
Media downloads over WCDMA (weekdays) 7 7 -
Media downloads over WCDMA (weekends) - 14 3.5

The selected user categories use the phone’s idle screen with different frequencies. The

categories are based on a target market segment that uses other features of the phone

than call and SMS; thus, the ‘inactive’ user also consumes media content on the mobile

device.

The user’s context information was set to change randomly from one advertisement

request to the next, for variability in the data sent, but it was not used as a targeting

parameter, for simplicity. In the current model, it is assumed that user-context-based

targeting can be done totally server-side because even location-targeted advertisements

are usually relevant even after the user has moved from his or her previous location.

However, this would be a whole new topic of study and is covered in references [55]

and [56].

 44

7.4. Advertisements

The advertisement data set-up was such that each advertisement request from the server

component would return a new set of advertisements, revealing the limitations of the

current system, in the case where separate image caching does not help at all. In

practice, when one is doing display advertising, this is not a likely scenario, but it is

optimal for testing the data transfer optimisations.

The advertisement data set on the server was set up to include 28% generic

advertisements without any targeting; 56% advertisements targeted for specific

categories, keywords, placements, or applications; and 16% following very specific

definitions of the allowed appearance. This distribution was selected to allow testing of

cache behaviour with the assumed set-up. Adjustment of the distribution was not

studied. The detailed distribution is shown in Figure 20.

The average image size for an advertisement was 5.1 kilobytes, which is slightly biased

towards the MMA X-Large banner size [57], because advertisers generally prefer great-

looking graphics in mobile advertisements. Although the campaign start and end dates

were included in the data, they were not used. All advertisements included one or two

click-to actions, and the advertisements were limited to 10 impressions per user for

targeted advertisements and to 15 for generic advertisements.

28%

16%

12%

12%

6%

6%

4%

16%

No targeting

Targeted to one category

Targeted to one keyword

Targeted to one placement

Targeted to two applications

Targeted to three categories

Targeted to two keywords

Targeted to specific application +
category + keyword combinations

Figure 20. Advertisement data targeting distribution.

 45

8 RESULTS

8.1. Original set-up

After the simulations were run for the selected use cases, major differences could be

seen in the online usage of different user groups. In offline usage, there is a smaller

difference, but the number of cases when no advertisement can be shown (total misses

in Table 5) is about 14% for the ‘inactive’ user.

Table 5: Advertisement request statistics in simulation runs.

Ad requests in online mode
Active

user
Casual

user
Inactive

user
 Number of requests 1137 417 22
 Ads requested, total 4796 1181 88
 Ads received, total 4796 1181 88
 Received from cache 0 0 0
 Received from server 4796 1181 88
 Total misses 0 0 0
 Impressions 5693 1064 41
 Actions 585 113 2

Ad requests in offline mode
Active

user
Casual

user
Inactive

user
 Number of requests 1604 718 360
 Ads requested, total 1604 718 360
 Ads received, total 1604 718 309
 Received from cache 1604 718 309
 Received from server 0 0 0
 Total misses 0 0 51
 Impressions 1571 720 295
 Actions 170 67 32

Cache statistics
Active

user
Casual

user
Inactive

user
 Ads fully used 111 15 0
 Ads removed otherwise 4585 1063 0
 Impressions removed 52470 12045 0

Data transfer for different use cases is presented in Table 6. Of note here is that the

XML accounts for about 26% of the total transferred data when a lot of content is

loaded over a WLAN connection, but when less content is loaded at once the XML is

up to 39% of the data. This confirms the assumption made about the data structure.

 46

Table 6: Data transferred in simulation runs.

 Active user
Data transfer WCDMA WLAN
 Total data 11473790 100.0% 23348337 100.0%
 Image data 7271726 63.4% 17327346 74.2%
 XML data 4202064 36.6% 6020991 25.8%
 Request data 2750475 24.0% 2806935 12.0%
 Reports 2303882 20.1% 2323201 10.0%
 Profile 87086 0.8% 94402 0.4%
 Other 359507 3.1% 389332 1.7%
 Response data 1451589 12.7% 3214056 13.8%

 Casual user Inactive user
Data transfer WCDMA WCDMA
 Total data 8808514 100.0% 717431 100.0%
 Image data 6121579 69.5% 440285 61.4%
 XML data 2686935 30.5% 277146 38.6%
 Request data 1474671 16.7% 190529 26.6%
 Reports 1133351 12.9% 172653 24.1%
 Profile 66195 0.8% 3880 0.5%
 Other 275125 3.1% 13996 2.0%
 Response data 1212264 13.8% 86617 12.1%

8.2. XML compression

After removal of all unnecessary indention and linefeeds, the XML data size decreased,

on average, 27.1 per cent.

Table 7: XML data after removal of whitespace and linefeeds.

Use case Original XML data XML data after Drop
Active user (WCDMA) 4202064 3091089 1110975 26.4%
Active user (WLAN) 6020991 4359329 1661662 27.6%
Casual user 2686935 1966165 720770 26.8%
Inactive user 277146 200816 76330 27.5%
Average 3296784 2404350 892434 27.1%

When applying other compression methods to the XML data, we can obtain a

compression ratio of 60% (WBXML) to 78% (paq8p), with XMill-N being a little

behind with 39%. WBXML takes a bit more space since every report contains the

timestamp and spot details, which are not compressed at all, but the gzip performs

surprisingly well. The effect of compression methods can be seen in Figure 21 and a

complete list of the compression figures can be found in Appendix II.

 47

0

1 000 000

2 000 000

3 000 000

4 000 000

5 000 000

6 000 000

7 000 000

Active user
(WCDMA)

Active user
(WLAN)

Casual user
(WCDMA)

Inactive user
(WCDMA)

Average

X
M

L
si

ze
 .

Original

No whitespace

XMill-N

WBXML

XMill

bzip2

XMill-z

XMill-P

gzip

XMLPPM

paq8p

Figure 21. Size of XML data with different compression methods applied.

Also, the performance hit of running a large number of statistical models, combined

with neural networks, was noticeable: paq8p took seconds on a decent laptop, whereas

the others took considerably less than a second. This confirms the assumption that the

arithmetic compressors are not yet usable in mobile phones.

8.3. Protocol optimisation

In aggregation of the reports, the total data size decrease from the original with

whitespace removal is in average 40% and when applying the data compression,

WBXML is almost on par with the compression algorithms, and the average drop is

63%, while paq8p yields 72%. This is because actual data amount stored within the

XML structure is less, in comparison to previous runs. Also the differences between

other compression mechanisms are getting smaller, yet the gzip is keeping the position.

The XML data size after report aggregation and compression can be seen in Figure 22

and a complete list can be found in Appendix III.

 48

0

500 000

1 000 000

1 500 000

2 000 000

2 500 000

3 000 000

3 500 000

4 000 000

4 500 000

5 000 000

Active user
(WCDMA)

Active user
(WLAN)

Casual user
(WCDMA)

Inactive user
(WCDMA)

Average

X
M

L
si

ze

.

No whitespace

Aggregation

XMill-N

XMill

WBXML

bzip2

XMill-z

XMill-P

gzip

XMLPPM

paq8p

Figure 22. Size of XML data after aggregating reports.

With more detail lost from the reports, the benefit is not that great. Click reports and ad

deletion reports still must be sent, and this affects any revenue-sharing between publishers.

The effect of report ignoring can be seen in Figure 23 and the numbers can be found from

Appendix IV.

0

500 000

1 000 000

1 500 000

2 000 000

2 500 000

3 000 000

3 500 000

4 000 000

4 500 000

5 000 000

Active user
(WCDMA)

Active user
(WLAN)

Casual user
(WCDMA)

Inactive user
(WCDMA)

Average

X
M

L
si

ze

.

No whitespace

Ignore reports

XMill-N

XMill

WBXML

bzip2

XMill-z

XMill-P

gzip

XMLPPM

paq8p

Figure 23. Size of XML data after ignoring reports.

 49

With the targeting data removed from the XML, the quantity of data transferred falls

and WBXML gets better with reduction of the actual data in the XML, but still paq8p is

better on average, due to the active user’s WLAN traffic, where click reports still

generate some data in the XML. The results can be seen in Figure 24 and details in

Appendix V. This optimisation works only for the current implementation because

advertisements are not used from the cache, but instead they are loaded from the

network server every time the cache is refreshed. When the cache usage improvements

are applied, this destroys all the benefits of caching the advertisements.

0

500 000

1 000 000

1 500 000

2 000 000

2 500 000

3 000 000

3 500 000

4 000 000

4 500 000

5 000 000

Active user
(WCDMA)

Active user
(WLAN)

Casual user
(WCDMA)

Inactive user
(WCDMA)

Average

X
M

L
si

ze

.

No whitespace

Ignore targeting

XMill-N

XMill

XMill-z

bzip2

XMill-P

gzip

WBXML

XMLPPM

paq8p

Figure 24. XML quantities after ignoring of reports and targeting information.

8.4. Cache usage improvements

By changing the caching algorithm to serve all impressions from cache before going to

the network to fetch more advertisements, substantial improvement can be seen in the

overall data usage. The increased role of reports starts to be seen when advertisements

are served from cache, and now the XML actually takes more space than the binary

data, so compressing only the XML data gives us good results for the overall data. The

data transfer breakdown can be seen in Table 8.

 50

Table 8: Data transfer after optimisation of cache usage.

 Active user
Data transfer WCDMA WLAN
 Bytes Drop Bytes Drop
 Total data 737805 92.9% 5361650 75.3%
 Image data 279830 96.2% 2363926 86.4%
 XML data 457975 85.2% 2997724 31.2%
 Request data 417436 79.8% 2664438 -26.5%
 Reports 395936 76.9% 2532337 -46.3%
 Profile 3960 94.2% 25182 65.7%
 Other 17540 93.7% 106919 64.7%
 Response data 40539 96.1% 333286 85.2%

 Casual user Inactive user
Data transfer WCDMA WCDMA
 Bytes Drop Bytes Drop
 Total data 1604443 80.2% 184802 71.2%
 Image data 762223 87.5% 107701 75.5%
 XML data 842220 57.2% 77101 61.6%
 Request data 728537 34.4% 59479 57.5%
 Reports 669444 20.7% 51746 58.9%
 Profile 11169 78.3% 1896 36.8%
 Other 47924 77.6% 5837 46.6%
 Response data 113683 86.7% 17622 71.0%

The result was somewhat expectable since the advertisements can be shown around 10

times more than previously and it seems that the changed cache algorithm was able to

take full advantage of this. The cache usage statistics and number of requests served

from cache can be seen in Table 9. It can be seen that all the advertisements that were

downloaded were used fully, although the number of cache misses in idle screen

increased. This is because the cache contains less variety in advertisements, thus giving

smaller probability for finding an advertisement from cache that can be also shown in

idle screen.

This should work well with report aggregation and reporting only unused impressions

as the algorithm tries to use all impressions from cache first. However, in comparison of

aggregation and reporting only unused impressions when cache usage optimisation is

on, the difference should not be that great, since little content is lost (basically just

advertisement spot information). The savings may be only theoretical, though, since the

advertisement deletion reports would also consume space and the clicks would still be

reported.

 51

Table 9: Request and cache usage details with optimised cache.

Ad requests in online mode
Active

user
Casual

user
Inactive

user
 Number of requests 1137 417 22
 Ads requested, total 4796 1181 88
 Ads received, total 4796 1181 88
 Received from cache 4279 1033 65
 Received from server 517 148 23
 Total misses 0 0 0
 Impressions 5693 1064 41
 Actions 585 113 2

Ad requests in offline mode
Active

user
Casual

user
Inactive

user
 Number of requests 1604 718 360
 Ads requested, total 1604 718 360
 Ads received, total 1540 602 102
 Received from cache 1540 602 102
 Received from server 0 0 0
 Total misses 64 116 258
 Impressions 1508 600 100
 Actions 165 59 7

Cache statistics
Active

user
Casual

user
Inactive

user
 Ads fully used 481 132 12
 Ads removed otherwise 0 0 0
 Impressions removed 0 0 0

The effect of compression methods can be seen in Figure 25. When comparing the

XML compression against overall data, the differences can not be almost seen at all

between the best compression ratios. The complete list of numbers can be found in

Appendix VI.

Comparing against the total data, WBXML gives 33% compression ratio, gzip 46% and

paq8p 48% when used only for compressing the XML part of the data and leaving the

advertisement content as it is. This implies unexpectedly that the gzip is performing

almost on par with one of the best arithmetic compressors available, when compressing

XML data in this particular domain. The cache usage improvements achieve cost

savings of 81% and 90% with the top seven compressors.

 52

0

5 000 000

10 000 000

15 000 000

20 000 000

25 000 000

Active user
(WCDMA)

Active user
(WLAN)

Casual user
(WCDMA)

Inactive user
(WCDMA)

Average

T
ot

al
 s

iz
e

 .

No whitespace

Cache usage

XMill-N

WBXML

XMill

bzip2

gzip

XMill-z

XMill-P

XMLPPM

paq8p

Figure 25. Data transfer with different compression techniques and cache usage.

With aggregation of the reports, the effect on raw XML is good, but as the amount of

XML content gets smaller in comparison to binary data, the benefit of compressing the

XML diminishes (shown in Figure 26 and in Appendix VII). The top three compressors

yield around 14% compression ratios, thus giving total cost savings of around 91%

(without compression 89%).

0

5 000 000

10 000 000

15 000 000

20 000 000

25 000 000

Active user
(WCDMA)

Active user
(WLAN)

Casual user
(WCDMA)

Inactive user
(WCDMA)

Average

T
ot

al
 s

iz
e

 .

No whitespace

Report aggregation

XMill-N

XMill

XMill-z

bzip2

XMill-P

gzip

WBXML

XMLPPM

paq8p

Figure 26. Data transfer with cache optimisation and report aggregation.

 53

For the active user, the cost can be optimised even further by utilising free WLAN

connection. However, when the WLAN optimisation is applied, surprisingly also the

data quantity transferred over WCDMA increases. This can be explained by looking at

the cache statistics in Table 10; when loading advertisements for the WLAN case, we

are actually deleting advertisements from the cache without utilising them fully as the

cache gets full.

Table 10: Cache statistics when WLAN optimisations are used.

Cache statistics Active user
 Ads fully used 181
 Ads removed otherwise 3234
 Impressions removed 37055

When the cache size is increased, the WLAN optimisation benefits start to be visible in

data transfer over a WCDMA connection. This is presented in Figure 27, where the

effect can be seen to ultimately cut the cost away from active user.

0

100 000

200 000

300 000

400 000

500 000

600 000

700 000

500 kB cache 550 kB cache 600 kB cache 650 kB cache

T
ot

al
 s

iz
e

 . Optimisation off

Optimisation 1

Optimisation 2

Optimisation 3

Figure 27. Data transfer over WCDMA (active user) with different optimisations.

No differences in numbers appeared when cache size was increased for the casual and

average user. The reason is that the impressions reserved for the cache are already few

enough that the size increase does not work to the benefit of advertisement lifetime.

 54

The data transferred over WLAN in active user case can be seen in Figure 28. It

increases linearly when the optimisation level increases since the algorithm fetches

more data using the WLAN connection.

0

10 000 000

20 000 000

30 000 000

40 000 000

50 000 000

60 000 000

Optimisation off Optimisation 1 Optimisation 2 Optimisation 3

T
ot

al
 s

iz
e

 .

Figure 28. Data transfer over WLAN (active user) with different optimisations.

 55

9 CONCLUSIONS

9.1. Findings

Implementation of the simulation environment was straightforward using the Python

language, but the client-server system conceives a lot of functionality around targeting

and request-response handling that required considerable amount of implementation and

validation effort. Validating the generated protocol messages against XML schema did

not provide good enough quality and most of the logic had to be verified manually.

Defined use cases yielded enough variety in the advertisement requests and the idle

screen advertisement serving was surprisingly successful with only 14% cache misses in

the inactive user group and 0% with others.

It was discovered that the XML protocol creates more overhead than was thought, up to

39%, the majority of that because of the detailed, verbose reports. When the cache is

used more optimally, the proportion of XML data in relation to all data grew even

greater, exceeding 60%. This can be decreased 27% by removing the whitespace and

linefeeds, but the best solution to decrease the quantity of XML data was to change the

protocol to discard details from the reports and aggregate the data before sending to the

network server. This resulted in additional 40% savings.

All of the selected compression methods worked well with the XML data, and, when

compared to overall data, they displayed only minor differences from each other. This

flattened out even more when report aggregation was used. Surprising result was that

with the data transferred in this environment, the general-purpose compressors were

better than XML-specific ones. Assessing only the XML data, WBXML resulted in

60%, paq8p in 78% and gzip in 73% compression ratio, but the paq8p was discovered to

be too slow to be used in real-time communication on resource-constrained devices. The

gzip was noted of better compression performance than bzip2 in this context, and the

top three compressors were paq8p, XMLPPM and gzip.

 56

For overall cost savings, the greatest benefit could be found by optimising the

pre-loading algorithm and utilising free connections. By optimising pre-loading

algorithm and cache searching, all the impressions for advertisements that were loaded

to the local cache could be used completely. The cache usage improvements achieved

cost savings of 81%, and 90% with the top seven compressors. Cache misses for idle

screen increased slightly, which was expected since the probability of having

advertisements with loose targeting decreased. Including quantity of data transferred

with optimised cache usage, the WBXML was able to achieve 33% compression ratio,

whereas gzip managed 46% and paq8p 48%.

Combining the cache optimisations with report aggregation, the overall compression

ratio decreased to 14% with WBXML, 13% with gzip, and 14% with paq8p, thus giving

total cost savings of around 91%, whereas it was 89% without compression.

Combining the 20% increase in cache capacity with WLAN connection utilisation in the

active user group, all the required advertising data could be moved without generating

any cost to the end user. It was discovered that this evident result can be achieved even

with simple pre-loading enhancements without needing to predict the need for exact

advertisements as long as the system has advertisements that are suitable for any use. It

is enough to load about one third of generic advertisements, if the amount of pre-loaded

advertisements is high enough.

9.2. Recommended actions

Since the reporting currently is very detailed and verbose, it should be aggregated

somehow or at least grouped differently in the XML to reduce redundancy. Also,

WBXML should be brought into use, given that implementations already exist and it

even speeds up the parsing. Another good option would be to use gzip, which, though

requiring one extra step of decompressing and compressing, should be quite fast.

The pre-loading algorithm optimisations should be given priority, since these have the

biggest impact on the overall data transfer.

 57

9.3. Recommendations for future study

This work has been technology-focused, and the simulations should be run with real use

cases, real-world application set-up, and actual advertising campaigns. Also, the

PPM-based intelligent pre-loading algorithms would be worth testing with the simulator

when more targeting parameters are brought into use.

Further studies could be done also in the area of adjusting the targeting accuracy in

combination with pre-loading algorithm to determine the optimal balance between

different levels of targeting and cache misses.

 58

REFERENCES

[1] Google. Financial tables for 2005–2008. http://investor.google.com/fin_data.html,

accessed in May 2009.

[2] Vatanparast, R., "Piercing the Fog of Mobile Advertising", International

Conference on the Management of Mobile Business, 2007, ICMB 2007, pp. 19-19,

9-11 July 2007.

[3] Blyk, About Blyk. http://about.blyk.com/, accessed in May 2009.

[4] Mohamed Yunos, H.; Zeyu Gao, J.; Shim, S., "Wireless advertising's challenges

and opportunities", Computer, vol. 36, no. 5, pp. 30-37, May 2003.

[5] Bulander, R.; Decker, M.; Schiefer, G.; Kolmel, B., "Comparison of Different

Approaches for Mobile Advertising", The Second IEEE International Workshop

on Mobile Commerce and Services, 2005, WMCS '05, pp. 174-182, 19-19 July

2005.

[6] Zeyu Gao J.; Ji, A., "SmartMobile-AD: An Intelligent Mobile Advertising

System", The 3rd International Conference on Grid and Pervasive Computing

Workshops, 2008, GPC Workshops '08, pp. 164-171, 25-28 May 2008.

[7] Elisa Oyj. Price list for ‘Elisa Perusdata’ data subscription.

http://www.elisa.fi/matkaviestinta/index.cfm?o=199.60, accessed in May 2009.

[8] GSM Association, GSM World Coverage 2008.

http://www.gsmworld.com/roaming/GSM_WorldPoster2008A.pdf, accessed in

May 2009.

[9] Chakravorty, R.; Clark, A.; Pratt, I., "Optimizing Web delivery over wireless

links: design, implementation, and experiences", IEEE Journal on Selected Areas

in Communications, vol. 23, no. 2, pp. 402-416, Feb. 2005.

 59

[10] Tapia, P.; Wellington, D.; Jun Liu; Karimli, Y., "Practical Considerations of

HSDPA Performance", Vehicular Technology Conference, 2007, VTC-2007 Fall,

2007 IEEE 66th, pp. 111-115, Sept. 30 2007-Oct. 3 2007.

[11] Jurvansuu, M.; Prokkola, J.; Hanski, M.; Perala, P., "HSDPA Performance in Live

Networks", IEEE International Conference on Communications, 2007, ICC '07, pp.

467-471, 24-28 June 2007.

[12] Chakravorty, R.; Banerjee, S.; Rodriguez, P.; Chesterfield, J.; Pratt, I.,

"Performance optimizations for wireless wide-area networks: comparative study

and experimental evaluation", Proceedings of the 10th Annual international

Conference on Mobile Computing and Networking (Philadelphia, PA, USA,

September 26 - October 01, 2004), MobiCom '04, ACM, New York, NY, 159-

173.

[13] Hristova, N.; O'Hare, G.M.P., "Ad-me: wireless advertising adapted to the user

location, device and emotions", Proceedings of the 37th Annual Hawaii

International Conference on System Sciences, 2004, pp. 10, 5-8 Jan. 2004.

[14] Tripathi, A.K.; Nair, S.K., "Mobile Advertising in Capacitated Wireless

Networks", IEEE Transactions on Knowledge and Data Engineering, vol. 18, no.

9, pp. 1284-1296, Sept. 2006.

[15] Aalto, L.; Göthlin, N.; Korhonen, J.; Ojala, T., "Bluetooth and WAP push based

location-aware mobile advertising system", Proceedings of the 2nd international

Conference on Mobile Systems, Applications, and Services (Boston, MA, USA,

June 06 - 09, 2004), MobiSys '04, ACM, New York, NY, 49-58.

[16] Sánchez, J.; Cano, J.; Calafate, C. T.; Manzoni, P., "BlueMall: a bluetooth-based

advertisement system for commercial areas", Proceedings of the 3rd ACM

Workshop on Performance Monitoring and Measurement of Heterogeneous

Wireless and Wired Networks (Vancouver, British Columbia, Canada, October 31

- 31, 2008), PM2HW2N '08, ACM, New York, NY, 17-22.

 60

[17] Thawani, A.; Gopalan, S.; Sridhar, V.; Ramamritham, K., "Context-aware timely

information delivery in mobile environments", Computer. J. 50, 4 (Jul. 2007),

460-472.

[18] Natchetoi, Y.; Kaufman, V.; Shapiro, A., "Service-oriented architecture for

mobile applications", Proceedings of the 1st international Workshop on Software

Architectures and Mobility (Leipzig, Germany, May 10 - 10, 2008), SAM '08,

ACM, New York, NY, 27-32.

[19] Jing, J.; Helal, A. S.; Elmagarmid, A., "Client-server computing in mobile

environments", ACM Computing. Surveys 31, 2 (Jun. 1999), 117-157.

[20] Rahmati, A. ; Zhong, L., "Context-for-wireless: context-sensitive energy-efficient

wireless data transfer", Proceedings of the 5th international Conference on

Mobile Systems, Applications and Services (San Juan, Puerto Rico, June 11 - 13,

2007), MobiSys '07, ACM, New York, NY, 165-178.

[21] Natchetoi, Y.; Huaigu Wu; Yi Zheng, "service-oriented mobile applications for

ad-hoc networks", IEEE International Conference on Services Computing, 2008,

SCC '08, vol. 2, pp. 405-412, 7-11 July 2008.

[22] Apte, N.; Deutsch, K.; Jain, R., "Wireless SOAP: optimizations for mobile

wireless web services", Special interest Tracks and Posters of the 14th

international Conference on World Wide Web (Chiba, Japan, May 10 - 14, 2005).

WWW '05. ACM, New York, NY, 1178-1179.

[23] Mahoney, M., "Adaptive weighing of context models for lossless data

compression", Florida Technology Technical Report CS-2005-16, 2005.

[24] Kattan, A.; Poli, R., "Evolutionary lossless compression with GP-ZIP", IEEE

Congress on Evolutionary Computation, 2008, CEC 2008, (IEEE World Congress

on Computational Intelligence), pp. 2468-2472, 1-6 June 2008.

[25] Augeri, C. J.; Bulutoglu, D. A.; Mullins, B. E.; Baldwin, R. O.; Baird, L. C., "An

analysis of XML compression efficiency", Proceedings of the 2007 Workshop on

 61

Experimental Computer Science (San Diego, California, June 13 - 14, 2007),

ExpCS '07, ACM, New York, NY, 7.

[26] PKWARE, Inc. ZIP file format specification,

http://www.pkware.com/documents/casestudies/APPNOTE.TXT, accessed in

May 2009.

[27] Gailly, J.–l.; Adler, M. The gzip home page. http://www.gzip.org/, accessed in

May 2009.

[28] Seward, J. The bzip2 home page. http://www.bzip.org/, accessed in May 2009.

[29] MaximumCompression. Single-file data compression benchmarks.

http://www.maximumcompression.com/data/summary_sf.php, accessed in May

2009.

[30] Moffat, A., "Implementing the PPM data compression scheme", IEEE

Transactions on Communications, vol. 38, no. 11, pp. 1917-1921, Nov 1990.

[31] Mahoney, M. The PAQ data compression programs.

http://www.cs.fit.edu/~mmahoney/compression/paq.html, accessed in May 2009.

[32] Ziv, J.; Lempel, A., "A universal algorithm for sequential data compression",

IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337-343, May 1977.

[33] Witten, I. H.; Neal, R. M.; Cleary, J. G., "Arithmetic coding for data

compression", Communications, ACM 30, vol. 6 (Jun. 1987), 520-540.

[34] MaximumCompression. JPG/JPEG lossless image compression test.

http://www.maximumcompression.com/data/jpg.php, accessed in May 2009.

[35] Deutsch, L. P. "DEFLATE compressed data format specification".

http://tools.ietf.org/html/rfc1951, accessed in May 2009.

[36] Huffman, D.A., "A method for the construction of minimum-redundancy codes",

Proceedings of the IRE, vol. 40, no. 9, pp. 1098-1101, Sept. 1952.

 62

[37] MaximumCompression. Multiple file data compression benchmark.

http://www.maximumcompression.com/data/summary_mf3.php#data, accessed in

May 2009.

[38] Burrows, M.; Wheeler, D. J., "A block-sorting lossless data compression

algorithm", Technical Report 124, 1994.

[39] Bentley J. L.; Sleator D.D.; Tarjan R.E.; Wei V.K., "A locally adaptive data

compression scheme", Communications of the ACM-Vol. 29, No. 4, 1986.

[40] W3C. Efficient XML Interchange Working Group.

http://www.w3.org/XML/EXI/, accessed in May 2009.

[41] W3C. WAP Binary XML Content Format. http://www.w3.org/TR/wbxml/,

accessed in May 2009.

[42] Liefke, H.; Suciu, D., "XMill: an efficient compressor for XML data", Proceedings

of the 2000 ACM SIGMOD international Conference on Management of Data

(Dallas, Texas, United States, May 15 - 18, 2000), SIGMOD '00, ACM, New York,

NY, 153-164.

[43] Cheney, J., "Compressing XML with Multiplexed Hierarchical PPM Models",

Proceedings of the Data Compression Conference (March 27 - 29, 2001), DCC,

IEEE Computer Society, Washington, DC, 163.

[44] Rodriguez, S. XML optimization.

http://www.arstdesign.com/articles/xmloptimization.html, accessed in May 2009.

[45] Python Software Foundation. Python Programming Language – Official Website.

http://python.org/, accessed in May 2009.

[46] Python Software Foundation. Package Index: comtypes 0.6.0.

http://pypi.python.org/pypi/comtypes, accessed in May 2009.

[47] Microsoft Corporation. MSXML. http://msdn.microsoft.com/en-

us/library/ms763742.aspx, accessed in May 2009.

 63

[48] Veillard, D. The XML C parser and toolkit of Gnome.

http://xmlsoft.org/index.html, accessed in May 2009.

[49] Reenskaug, T. MVC—XEROX PARC 1978-79.

http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf, accessed in May 2009.

[50] Cheney, J. XMLPPM: XML-Conscious PPM Compression.

http://xmlppm.sourceforge.net/, accessed in May 2009.

[51] SourceForge, Inc. XMill project. xmill: http://sourceforge.net/projects/xmill/,

accessed in May 2009.

[52] Aymerick. The WBXML library. http://libwbxml.aymerick.com/, accessed in May

2009.

[53] WMHelp.com. XMLPad 3. http://www.wmhelp.com/xmlpad3.htm, accessed in

May 2009.

[54] Mobile Marketing Association. Mobile Applications.

http://mmaglobal.com/mobileapplications.pdf, accessed in May 2009.

[55] Burbey, I.; Martin, T. L., "Predicting future locations using prediction-by-partial-

match", Proceedings of the First ACM international Workshop on Mobile Entity

Localization and Tracking in GPS-Less Environments (San Francisco, California,

USA, September 19 - 19, 2008), MELT '08, ACM, New York, NY, 1-6.

[56] Chen, C.; Lee, C.; Wang, C.; Chung, Y, "Prefetching LDD: a benefit-oriented

approach", Proceedings of the 2006 international Conference on Wireless

Communications and Mobile Computing (Vancouver, British Columbia, Canada,

July 03 - 06, 2006), IWCMC '06, ACM, New York, NY, 1103-1108.

[57] Mobile Marketing Association. Mobile Advertising Guidelines.

http://mmaglobal.com/mobileadvertising.pdf, accessed in May 2009.

APPENDIX I. DATA COMPRESSORS

 GNU zip bzip2 paq8p

Type Dictionary Dictionary Arithmetic

Pre-
processor

None Burrows-Wheeler
transformation

None

Duplicate
removal

LZ77 Move-to-front None

Predic tion None None Huge amount of
dynamic models

Storing Huffman
tree

Huffman tree Arithmetic coding using
dynamically trained
neural network

Open
Source
project

gzip bzip2 paq8p

 WBXML XMill XMLPPM

Type Binary XML Compressed XML Arithmetically encoded
stream of SAX events

Algorithm Change
element
names to
enumerated
binary
numbers

Separate structure
from content,
arrange similar
content together,
apply general-
purpose
compression

Parse XML with SAX
parser and encode
events with four
models: one for
element and attribute
names, one for element
structure, one for
attributes, and one for
strings

Open
Source
project

libwbxml XMill XMLPPM

APPENDIX II. RESULTS OF DATA COMPRESSION

 Original No whitespace XMill-N WBXML
Active user (WCDMA) 4202064 3091089 1909107 1271800
Active user (WLAN) 6020991 4359329 2562807 1725853
Casual user (WCDMA) 2686935 1966165 1266220 792298
Inactive user (WCDMA) 277146 200816 109997 79321
Average 3296784 2404350 1462033 967318
Average drop 27.1 % 39.2 % 59.8 %

 XMill bzip2 XMill-z XMill-P
Active user (WCDMA) 1134845 986781 944585 917429
Active user (WLAN) 1326879 1166022 1095398 1055776
Casual user (WCDMA) 802913 688052 661527 643526
Inactive user (WCDMA) 49625 44482 42059 40239
Average 828566 721334 685892 664243
Average drop 65.5 % 70.0 % 71.5 % 72.4 %

 gzip XMLPPM paq8p
Active user (WCDMA) 891511 819962 735362
Active user (WLAN) 1040185 938318 835879
Casual user (WCDMA) 618416 574053 518166
Inactive user (WCDMA) 41375 36594 31773
Average 647872 592232 530295
Average drop 73.1 % 75.4 % 77.9 %

APPENDIX III. RESULTS OF REPORT AGGREGATION

 No whitespace Aggregation XMill-N XMill
Active user (WCDMA) 3091089 1593491 1180379 857861
Active user (WLAN) 4359329 2858373 1830059 1039868
Casual user (WCDMA) 1966165 1268375 921990 652684
Inactive user (WCDMA) 200816 87361 58754 36726
Average 2404350 1451900 997796 646785
Average drop 39.6 % 31.3 % 55.5 %

 WBXML bzip2 XMill-z XMill-P
Active user (WCDMA) 602347 698463 702104 684911
Active user (WLAN) 1054355 869204 846160 816447
Casual user (WCDMA) 479699 534360 532666 519387
Inactive user (WCDMA) 33218 30543 29779 28881
Average 542405 533143 527677 512407
Average drop 62.6 % 63.3 % 63.7 % 64.7 %

 gzip XMLPPM paq8p
Active user (WCDMA) 650853 614291 556436
Active user (WLAN) 795016 727283 650966
Casual user (WCDMA) 495258 466687 421945
Inactive user (WCDMA) 28030 25843 23048
Average 492289 458526 413099
Average drop 66.1 % 68.4 % 71.5 %

APPENDIX IV. RESULTS OF REPORT IGNORING

 No whitespace Ignore reports XMill-N XMill
Active user (WCDMA) 3091089 1492212 1110489 817470
Active user (WLAN) 4359329 2750360 1754675 995012
Casual user (WCDMA) 1966165 1185432 865098 618635
Inactive user (WCDMA) 200816 77384 52686 33980
Average 2404350 1376347 945737 616274
Average drop 42.8 % 31.3 % 55.2 %

 WBXML bzip2 XMill-z XMill-P
Active user (WCDMA) 561570 666556 667670 651758
Active user (WLAN) 1009211 833947 808183 779896
Casual user (WCDMA) 445440 507780 504181 491814
Inactive user (WCDMA) 28594 28097 27463 26664
Average 511204 509095 501874 487533
Average drop 62.9 % 63.0 % 63.5 % 64.6 %

 gzip XMLPPM paq8p
Active user (WCDMA) 621909 590141 534246
Active user (WLAN) 762952 700143 626164
Casual user (WCDMA) 470900 446489 403613
Inactive user (WCDMA) 25770 24132 21611
Average 470383 440226 396409
Average drop 65.8 % 68.0 % 71.2 %

APPENDIX V. RESULTS WITHOUT TARGETING DATA

 No whitespace Ignore targeting XMill-N XMill
Active user (WCDMA) 3091089 997804 822143 665306
Active user (WLAN) 4359329 1618333 1187430 787159
Casual user (WCDMA) 1966165 768645 631458 503216
Inactive user (WCDMA) 200816 44631 35249 26307
Average 2404350 857353 669070 495497
Average drop 64.3 % 22.0 % 42.2 %

 XMill-z bzip2 XMill-P gzip
Active user (WCDMA) 546753 536937 527851 514432
Active user (WLAN) 649143 648399 622032 615986
Casual user (WCDMA) 413122 406103 398376 389479
Inactive user (WCDMA) 21572 21315 20635 20365
Average 407648 403189 392224 385066
Average drop 52.5 % 53.0 % 54.3 % 55.1 %

 WBXML XMLPPM paq8p
Active user (WCDMA) 419781 496688 450359
Active user (WLAN) 721007 579125 520119
Casual user (WCDMA) 329183 375792 340770
Inactive user (WCDMA) 19523 19536 17561
Average 372374 367785 332202
Average drop 56.6 % 57.1 % 61.3 %

APPENDIX VI. RESULTS WITH CACHE OPTIMISATION

 No whitespace Cache usage XMill-N WBXML
Active user (WCDMA) 10362815 737805 513081 466600
Active user (WLAN) 21686675 5361650 3883271 3580849
Casual user (WCDMA) 8087744 1604443 1216226 1105462
Inactive user (WCDMA) 641101 184802 152445 138558
Average 10194584 1972175 1441256 1322867
Average drop 80.7 % 26.9 % 32.9 %

 XMill bzip2 gzip XMill-z
Active user (WCDMA) 368673 361668 359614 358736
Active user (WLAN) 2932967 2890828 2874801 2868873
Casual user (WCDMA) 972001 949046 938393 942801
Inactive user (WCDMA) 132108 128786 127124 128100
Average 1101437 1082582 1074983 1074628
Average drop 44.2 % 45.1 % 45.5 % 45.5 %

 XMill-P XMLPPM paq8p
Active user (WCDMA) 354257 348824 338317
Active user (WLAN) 2839468 2804439 2736892
Casual user (WCDMA) 934407 919023 898658
Inactive user (WCDMA) 127417 125466 123418
Average 1063887 1049438 1024321
Average drop 46.1 % 46.8 % 48.1 %

APPENDIX VII. RESULTS WITH CACHE AND REPORT

OPTIMISATIONS

 No whitespace Report aggregation XMill-N XMill
Active user (WCDMA) 10362815 366735 345826 328677
Active user (WLAN) 21686675 2994313 2818840 2679578
Casual user
(WCDMA) 8087744 997765 942426 896830
Inactive user
(WCDMA) 641101 138040 131265 125624
Average 10194584 1124213 1059589 1007677
Average drop 89.0 % 5.7 % 10.4 %

 XMill-z bzip2 XMill-P gzip
Active user (WCDMA) 320189 319570 319073 317257
Active user (WLAN) 2624401 2623758 2616399 2606190
Casual user
(WCDMA) 873190 871577 870022 865016
Inactive user
(WCDMA) 122415 122174 122050 121370
Average 985049 984270 981886 977458
Average drop 12.4 % 12.4 % 12.7 % 13.1 %

 WBXML XMLPPM paq8p
Active user (WCDMA) 313064 315148 311782
Active user (WLAN) 2604090 2590342 2568478
Casual user
(WCDMA) 852502 859534 850400
Inactive user
(WCDMA) 119336 120649 119418
Average 972248 971418 962520
Average drop 13.5 % 13.6 % 14.4 %

