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Abstract

The basic goal of this study is to extend old and propose new ways to generate knapsack sets
suitable for use in public key cryptography. The knapsack problem and its cryptographic use
are reviewed in the introductory chapter. Terminology is based on common cryptographic
vocabulary. For example, solving the knapsack problem (which is here a subset sum problem)
is termed decipherment.

Chapter 1 also reviews the most famous knapsack cryptosystem, the Merkle-Hellman
system. It is based on a superincreasing knapsack and uses modular multiplication as a
trapdoor tramnsformation. The insecurity caused by these two properties exemplifies the
two general categories of attacks against knapsack systems. These categories provide the
motivation for Chapters 2 and 4. Chapter 2 discusses the density of a knapsack and the
dangers of having a low density.

Chapter 3 interrupts for a while the more abstract treatment by showing examples of
small injective knapsacks and extrapolating conjectures on some characteristics of knapsacks
of larger size, especially their density and number.

The most common trapdoor technique, modular multiplication, is likely to cause inse-
curity, but as argued in Chapter 4, it is difficult to find any other simple trapdoor tech-
niques. This discussion also provides a basis for the introduction of various categories of
non-injectivity in Chapter 5.

Besides general ideas of non-injectivity of knapsack systems, Chapter 5 introduces and
evaluates several ways to construct such systems, most notably the “exceptional blocks” in
superincreasing knapsacks and the usage of “too small” a modulus in the modular multipli-
cation as a trapdoor technique.

The author believes that non-injectivity is the most promising direction for development
of knapsack cryptosystems.

Chapter 6 modifies two well known knapsack schemes, the Merkle-Hellman multiplicative
trapdoor knapsack and the Graham-Shamir knapsack. The main interest is in aspects other
than non-injectivity, although that is also exploited. In the end of the chapter, constructions
proposed by Desmedt et. al. are presented to serve as a comparison for the developments of
the subsequent three chapters.

Chapter 7 provides a general framework for the iterative construction of injective knap-
sacks from smaller knapsacks, together with a simple example, the “three elements” system.
In Chapters 8 and 9 the general framework is put into practice in two different ways.

Modularly injective small knapsacks are used in Chapter 9 to construct a large knapsack,
which is called the congruential knapsack. The addends of a subset sum can be found by
decrementing the sum iteratively by using each of the small knapsacks and their moduli
in turn. The construction is also generalized to the non-injective case, which can lead to
especially good results in the density, without complicating the deciphering process too
much.

Chapter 9 presents three related ways to realize the general framework of Chapter 7.
The main idea is to join iteratively small knapsacks, each element of which would satisfy the
superincreasing condition. As a whole, none of these systems need become superincreasing,
though the development of density is not better than that. The new knapsack systems are
injective but they can be deciphered with the same searching method as the non-injective
knapsacks with the “exceptional blocks” in Chapter 5.

The final Chapter 10 first reviews the Chor-Rivest knapsack system, which has withstood
all cryptanalytic attacks. A couple of modifications to the use of this system are presented
in order to further increase the security or make the construction easier. The latter goal
is attempted by reducing the size of the Chor-Rivest knapsack embedded in the modified
system.

Keywords: knapsack problem, public key cryptography
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Integers can be hidden by adding them together. However there are also col-
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months. Perhaps the plunge was not very deep, but it still required encour-
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1 Imntroduction

This is a cryptographically oriented study of the knapsack problem, or actually
of the knapsack itself. We are namely not interested in solving the knapsack
problem. Instead we would like to create easily solvable knapsacks that look
very difficult to those who do not know our secret parameters.

We base our vocabulary on the cryptographic concepts, although many
issues could be presented with more common algebraic terms. Thus we will
speak of a message that is enciphered with a key to get a cryptotext that is
sent to a receiver who then deciphers it in order to recover the message. We
hardly enter the world of more complicated cryptographic protocols.

Various parts of this study differ considerably in their degree of exactness.
The question is usually about randomness being only approximate. An arbi-
trary knapsack system is not suitable for cryptographic use, but it is difficult
to know how much a special choice restricts the randomness of certain param-
eters. This is quite typical in the field of cryptography, and especially in this
subfield dealing with a public enciphering key. Also here the most rigorous
parts of the study are those, that are not likely to contribute very much to
practical cryptosystems.

This study presents some new concepts and results that have their own
mathematical value, regardless of whether they turn out applicable in prac-
tice. These issues may have been overlooked by the mainstream of the cryp-
tographical research of knapsacks, partly because the knapsack cryptosystems
first looked very promising, and after the main systems were broken, the minor
details were no more interesting.

We explicate the goals of this study in the end of this chapter, in Section
1.5. We start by describing the knapsack problem and its relation to public
key cryptography in Section 1.1. As an example we review in Section 1.2 the
“original” knapsack cryptosystem that was introduced by Merkle and Hellman
in 1978.

In Section 1.3 we see how the concept of knapsack has been generalized.
These examples will also give an impression of what there is beyond the limits
of our present investigation. Some terminology and notations for this study
will be defined in Section 1.4. »

1.1 Knapsack problem and public key cryptography

The knapsack problem is either one of the following tasks that take as an
input a finite set A of positive integers and an integer s.

¢ Decision problem: Decide whether s is a sum of some elements of A.

o Searching problem: Given that s is a sum of some elements of A,
determine those elements.

Both of these problems are NP-complete (see [30] for proof, for the notion
of NP-completeness see also [15]). This means that it is extremely unlikely
that either of the problems can be solved in any reasonable time, if the set A



is large (say, over 150 elements) and consists of large arbitrary integers (say,
9150 5 1045),

A sum of some elements of A is referred to as a sum instance of the set A.
Suppose that for a particular set A there is a feasible method for solving the
searching problem with any sum instance. Suppose further that a person
not knowing this method cannot distinguish the problem from an arbitrary
knapsack problem. Such persons can of course easily generate sum instances
of A but given one they are faced with the general NP-complete searching
problem. This situation can be directly applied in public key cryptography in
the following way.

The person knowing the feasible method publishes the set A as his public
key. Other parties can encrypt their messages to him by computing sum in-
stances: They first cut their binary message into blocks that have as many bits
as A has elements. For each block they compute the sum of those elements of
A that correspond to 1’s in the block. The owner of the public key is able to
carry out the decryption, i.e. find out the addends and hence the bits. As long
as he keeps the method secret, this task is too difficult to anyone else, as we
assumed above.

The method that transforms the public key to the feasible decryption
method is generally called a trapdoor, which is of course a very basic no-
tion in public key cryptosystems. Usually one starts from an easy problem
and transforms it somehow to a problem that is considered difficult (in its
general form). The transformed problem is then used as the public key and
the inverse transformation is the trapdoor. For further information on general
public key issues we refer the reader to [3], [12], [29], [31] or [34].

1.2 The Merkle-Hellman knapsack cryptosystem

There are several ways of creating a trapdoor to the knapsack problem. The
first and most famous one was introduced by Merkle and Hellman in [24].

Suppose that a sequence of positive integers ay,ag,4a3,...,a, satisfies
ajy1 > Yl ,ai, when j =1,2,...,n — 1. Such a sequence is called super-
increasing. The knapsack searching problems associated with the set A =
{ai,...,a,} are easy to solve: Given a sum instance, we subtract from it all
those a; that we can, trying always the largest one that has not yet been tried.
Eventually we reach 0 and know the addends.

We transform the superincreasing sequence to another sequence by, ..., b,
by multiplying each a; by an integer w and reducing the product modulo
another integer m (> 1) b = wa; (mod m) and 0 < b < m. Usually
the multiplied sequence is not superincreasing, and the searching problems
associated with the set B = {b;,...,58,} look difficult. So the new sequence,
or the set B is taken as the public key.

In order to get always back to the original easy searching problems, that
is, to have a proper trapdoor, we choose the secret parameters m and w in the
following way.

Choosing the multiplier w relatively prime to m provides us with an inverse
u = w”!, that is, with a solution of uw = 1 (mod m). This means that the



corresponding sum instances s, of A and s, of B not only satisfy the congruence
sp = ws, (mod m) but also usy = s, (mod m).

Assume we have chosen the modulus m to be larger than the sum of all
the a;. Then the least non-negative remainder of us, modulo m is not only
congruent to but equals 3,. This means that by solving the easy searching
problem with A and us, (mod m) we get a solution to the seemingly difficult
problem with B and s.

We state as a lemma the idea behind the choice of m and w.

Lemma 1.1 Assume that m, w, x and y are such integers that 0 < z,y < m
and gcd(w, m) = 1. Then the following equivalences hold:

wr=wy(modm) & z=y(modm) & =y O

The cryptosystem with public key {by,...,b,} and secret trapdoor infor-
mation u and m is called the basic Merkle-Hellman cryptosystem.

A similar modular multiplication that transformed A to B can be applied
to B. It will produce a third set C, where the easy superincreasing structure
of A is obviously even more scrambled than in B. The searching problem can
of course be solved as before if one knows both of the multipliers and moduli.
When two or more modular multiplications are applied to a superincreasing
sequence the result is called an iterated Merkle-Hellman knapsack cryptosys-
tem.

The Merkle-Hellman knapsack system has been broken both in its basic
and iterated form. Two main approaches can be distinguished here, as also in
cryptanalysis of any knapsack systems:

1. A trapdoor can be found. The trapdoor need not be the original one,
it suffices to find any such pair of integers I/ and M that the sequence
Ub; (mod M) is superincreasing (in some order).

This attack against the basic system was emerging in the early 80’s and it
was completed by Shamir in [36]. A more general method was presented
by Salomaa in [32]. Both methods can be found also in [31].

2. The searching problem concerning a sum instance can be solved di-
rectly, without referring to any trapdoor. This was done by Lagarias
and Odlyzko in [17] both for the basic and the iterated system by ex-
ploiting the fact that some of the numbers in these systems are very large
in proportion to n, that is, the set has low density.

A mixed approach was developed by Brickell in [4] for the iterated system:
First a partial superincreasing sequence is recovered from the public key. This
can then be used for solving the searching problems.

Although we will avoid the superincreasing property in our constructions,
we will use modular multiplication as a trapdoor technique. The main idea
behind the attacks against modularly multiplied systems will be mentioned in
Section 4.2. Reviews of these and other attacks can be found in [5], [6], [11]
and [27).

The low density attack can be applied to any knapsack cryptosystems and
hence a short account on it will be given in Section 2.2.

3



Example. Choose a superincreasing knapsack
A ={3,11,17,32,73, 155,304,616, 1298,2847, 5595, 11211}.

The sum of the elements of A is 22162 and thus we may choose a modulus
m = 22501 (which is a prime) and a multiplier w = 12495. Multiplying
elements of A by w and taking the remainders modulo m gives the set B =

{14984,2439,9906,17323,12095,1639,18312,1578,17790,21685,21419,12720}

= {1578, 1639, 2439, 9906, 12095, 12720, 14984, 17323, 17790, 18312, 21419, 21685}

The sets A and B are shown in the graph on the left with the corresponding

elements above each other. The elements of B are shown in increasing order
on the right. The lines in that graph depict more generally how the modular
multiplication distributes the elements.

We chose 1000 random integers w from the range 11000,...,22000 and
multiplied the elements of A by each w modulo m. For each w we sorted the
resulting set B,. At each ¢ = 1,...,12 the lower line shows a lower bound for
95% of the 1’th elements in the ordered sets B,,. Similarly, at each ¢ there are
only 50 of the i’th elements above the upper line. What we want to show is

that the elements are roughly evenly dispersed in the range 1,...,m.
m 4 X = a L= b'v .. .
15000} 15000
10000 . x 10000
5000 x 5000
X 1
S %X
12 345 % 78 9101112 1 2 345 6 7 8 9101112

The maximal element of B is almost twice as large as that of A. If we now
want to iterate the Merkle-Hellman construction we need a modulus larger than
the sum of B, which is 151890. Assume we choose a modulus m’ = 152077
and a multiplier w’ = 74865. We get a new knapsack with 129673 as the
largest element. The sum of the new knapsack is as large as 1055868, A third
modular multiplication would cause some elements to become nearly this large.

1.3 A variety of knapsack cryptosystems

The knapsack problem could of course be considered in any semigroup: Assume
that G is a semigroup with respect to the binary operation ¢, and the knapsack
A = {ay,...,a,} is a finite nonempty subset of G. The knapsack (searching)
problem associated with the set A is now:



Given an element s € (7, determine such indices 1;,12,...,1,

(if they exist) that s =a;, @ ai, ® - D a;,.
We have no need to require that the indices in the solution are distinct. Gen-
erally each element of A may have taken part more than once in the operation
that gives s, which means that the solution is not determined by a subset of A.
Furthermore, if the operation & is not commutative, then the order of the el-
ements is significant and this must be taken into account also in the possible
cryptographic usage (in coding messages to sequences of indices).

Multiplication of integers offers the simplest example of an easily solvable
knapsack problem that does not deal with addition of integers. Assuming that
the elements of A are relatively prime integers (and none equals 1) we can
easily solve any subset product p of A: An element a of A is present in p if
and only if a divides p. This multiplicative knapsack also offers the possibility
of letting each element appear more than once in the operation.

In their seminal article [24] Merkle and Hellman also showed a way to
transform the multiplicative knapsack to an additive trapdoor knapsack. We
will review their method in Section 6.1.

We mention here a variety of additive knapsack problems, which do not
involve subset sums of integers. The references show how to construct the
cryptographic trapdoors.

¢ The knapsack is multidimensional, that is, its elements are vectors. En-
cryption means componentwise addition of a subset of these vectors. See
for example [20] and [25]. In both of these systems the public key con-
tains a modulus that is used to reduce the components of the sum.

o The knapsack elements belong to a finite field GF(p*), which means that
they are polynomials over integers modulo p with degree at most & — 1.
Encryption is similar to addition of vectors modulo p. See [8].

e The knapsack consists of a few integers only. Sum instances are formed
by adding these integers with multiplicities that can be fairly large inte-
gers. See (23] and [14]. Also in these systems the sum is reduced modulo
an integer.

¢ The knapsack consists of disjoint sets of integers. One element from each
set is used to form a sum instance. See [37].

We will restrict ourselves to such systems where

1. the knapsack consists of positive integers,

2. instances for the searching problem are formed additively (possibly with
modular reduction) and

3. every sum instance is a subset sum.

We will omit the third requirement for a moment when presenting an en-
cryption scheme in Section 2.4 and a modification in Section 6.1 (p. 46) and
also when reviewing a specific system in Chapter 10. The checksum knapsack
technique proposed in Section 5.3 can be viewed as a deviation from the first
requirement.



1.4 Definitions and notations

We now define some more vocabulary that will be used in this study. Some
concepts were introduced already before but they are defined here again. Some
further definitions will be given in Section 5.1.

The basic concept is that of a knapsack. We want to manipulate it as a
set, but on the other hand we want to keep it in order. The former need is
stronger and so we define a knapsack as a finite nonempty set of positive
integers. We denote knapsacks with capital letters A, B, ... and their elements
with corresponding small letters with subscipts: The knapsack A containing n

elements is thus A = {ay,4as,...,an}.
If not stated otherwise, when indexing the elements of a knapsack we as-
sume that they appear in increasing order: min(A) = a; < ¢ < ... < ap =

max({A). This means that we may consider a knapsack also as a vector or
sequence of integers. In this ordered interpretation we always assume that
the elements are distinct.

The number of elements in a knapsack A is denoted by JA| and called the
size of A. A subset sum of A means the sum of elements of some subset of
A. Empty set as a subset gives the sum of no elements, which is defined to
be 0. A sum instance of a knapsack can be a subset sum, but also a more
general sum of elements.

When referring to subset sums we use the word different to indicate that
their addends are not the same, and the word distinct to indicate that their
values are not the same, or in other words they do not coincide. A knapsack
is said to be injective if all its subset sums are distinct.

The vector interpretation of A provides another way to express the subset
sums: they are of the form S-A, where S is a binary vector of the same size as
A and - denotes the scalar product of vectors.

Instead of the phrase “to solve the searching problem” we use the verb
to decipher and the nouns decipherment or decryption. Deciphering a
knapsack A thus refers to solving the addends of either a given or any sum
instance of A, depending on the context. The decipherment of a knapsack is
said to be easy if the knapsack belongs to a class where the decipherment time
for any subset sum of any of the knapsacks is bounded by a low degree polyno-
mial of the knapsack size. The time is commonly measured in terms of basic
arithmetic operations required by the decryption algorithm. If a knapsack is
easy to decipher we often simply say that the knapsack is easy. A knapsack
is difficult if we do not know a polynomial time algorithm to decipher it (or
actually the whole class that it represents).

With the sum of a knapsack A we mean the sum of all its elements and
denote it by s4. The density of a knapsack A is defined as

Al
A) = ————
p(A) log, max(A)
provided that A 5 {1}.
A knapsack A = {a;,a,...,a,} is superincreasing if its elements satisfy
the condition a; > Z;;‘l a; fori=2,...,n.



Assume m is an integer greater than 1. Integers in the range 0,...,m —1
represent the elements of the ring Z,, (= Z/mZ) and they are called modular
integers modulo m. Thus an integer @ becomes a modular integer when
we compute its least non-negative remainder modulo m. This remainder is
denoted by a (mod m). It is also called a residual and it is obtained by
reducing ¢ modulo m.

Operations on knapsacks

Assume that A and B are knapsacks.

1. f AN B =@, w and d are integers, w > 0, d > — min(A), we define the
knapsacks wA, A+ d and AU B as follows:

¢ wA is obtained from A by multiplying each element of A by w.
¢ A+ d is obtained from A by adding d to each element of A.
e AU B is the set theoretic union of A and B.

2. Assume that the integers m and w satisfy m > max(A) and ged{w, m) =
1. Let d be any integer.

The knapsacks wA (mod m) and A + d (mod m) are defined to consist
of the least positive remainders modulo m of the elements of wA and
A+d.

If m > s4 we say that the knapsack wA (mod m) is obtained by strong
modular multiplication from A and m is a strong modulus (for A).

Remark. The requirement of positive remainders in the definition differs
from non-negative remainders only in case a + d = 0 (mod m) for some a € A.
In this case A + d (mod m) is defined to contain m, and not 0. We see that
all the newly defined sets consist of positive integers, which means that they
indeed are knapsacks.

All the operations except the union can be interpreted as transformations
where an element z of the knapsack A is mapped to wz, z +d, or to a remain-
der of these modulo m. It is clear that all these mappings are one-to-one. In
the modular cases this can be seen with Lemma 1.1. Since there is a corre-
spondence between the elements of the original and the transformed knapsack,
there is also a correspondence between their subsets. This gives a meaning to
the frequent expression corresponding subset sums.

1.5 Problems

Desmedt, Vandewalle and Govaerts define in {10] the class of cryptographically
useless knapsacks as those knapsacks that cannot be obtained from a certain
class of easy knapsacks by strong modular multiplication (this class will be
mentioned in Section 6.3). They show that the useless class is not empty.
Obviously most of the really difficult knapsacks belong to that class. The
cryptographically oriented research of the knapsack problem should then try



to reduce the useless class by providing both larger classes of easy knapsacks
and other types of trapdoor transformations.

The literature on knapsack cryptosystems does not however show much op-
timism concerning the possibilities of these systems. When mentioning knap-
sack system in [3, pp. 27-28) as one of the best known candidates for public-key
cryptosystem, Brassard wrote the following: “One of them, Merkle and Hell-
man’s so-called knapsack cryptosystem was eventually broken. Although there
still are unbroken variations on the original scheme, it does not seem advisable
to trust on them.”

Most of the authors seem to make a similar cautious statement that almost
all knapsacks systems have been broken and give the one and same example
of an unbroken system. For example Odlyzko wrote in [27): “While most
knapsack systems have been broken, there are a few that so far have resisted all
attacks. One of the most attractive of these is the Chor-Rivest cryptosystem,
which involves a combination of number theory ideas and knapsacks.”

The fact that the knapsack problem is NP-complete does not necessarily
help, because this concept only deals with the worst case complexity. It may
be that almost all knapsack problems turn out to be easy after all. It seems
unlikely that the most difficult knapsacks could ever be used as public keys,
because the requirement of a practical trapdoor would mean that the problem
is not genuinely difficult.

Although Odlyzko gave his article [27] the pessimistic title ‘The rise and
fall of knapsack cryptosystems’, he wrote also: “The search for secure knap-
sacks continues, both because of the attractively high speed that knapsack
systems offer, and because of the desire to have a wide variety of cryptosys-
tems available.” We hope to contribute to this search. And regardless of the
pessimism expressed above, we try to do this in the very elementary case of
additive integer knapsacks and their subset sums. We investigate the following
problems in this thesis.

1. How to construct a knapsack that is
¢ injective,
o dense or at least not superinceasing and

¢ easy to decipher?

2. Are there other simple trapdoor techniques than the strong modular
multiplication?

3. What could non-injective knapsacks offer to public-key cryptography?

4. Since the Chor-Rivest knapsacks of sufficient size are not very easy to
construct and use, could we make use of smaller ones in connection with
simpler knapsacks of other type?

5. What kind of insight could experiments with small knapsacks offer con-
cerning the following questions?

e What is the maximal density of an injective knapsack of given size?



¢ What is the number of injective knapsacks of given size and density?

¢ Given the number of elements and the density, what is the smallest
possible sum of an injective knapsack?

We will present a couple of new constructions and modify some old knap-
sack cryptosystems. The development of density is satisfactory in one of the
constructions (Chapter 8.1), quite poor in the others (Chapter 9) and intol-
erable in one of the modifications (Section 6.1) — even if it improves the old
system.

We believe that non-injectivity is the most promising direction for devel-
opment of knapsack cryptosystems. In addition to theoretical and general
considerations we will take explicit steps in this direction with one of the new
constructions (Section 8.3). Non-injectivity will also provide our only answers
to the question concerning new trapdoor transformations.

We will also present a couple of modifications to the use of the Chor-Rivest
knapsack system. The treatment of the last question will be heuristic. We
cannot present any general answers yet.

2 About the density

2.1 Two bounds for the density

For a knapsack A of size n there are 2" subset sums. If A is injective, these
must be all distinct, which means that the largest of them must be at least
2" —1 (the smallest is 0). Hence s4 > 2" — 1. On the other hand, denoting
a = max(A), we have s, < T3 (e —4) = na — 3n(n — 1). Hence the largest
element of an injective knapsack satisfies

a>disy+in-1) =212 -1 +in-1).

For large knapsacks this is not very accurate as a lower bound, because an
injective knapsack cannot contain many elements from the beginning of the
sequence a,a—1,a—2,a-3,.... Thus we may as well make the bound some-
what more inaccurate by dropping the asymptotically small terms. It turns
out that their value is positive as soon as n > 3 and we have then a > %2".
This also gives an upper bound for density as stated in the following lemma.

Lemma 2.1 An injective knapsack A with [A] = n satisfies s4 > 2" — 1. If
further n > 3, then
2"
max(A) > — and p(A) < S o
n n —log,n
Suppose A = {1,2,4,...,2" '}, Then s4 = 2" — 1. It is clear that A is
the only injective knapsack of size n that has 2™ — 1 as its sum. This knapsack
A is also the densest possible superincreasing knapsack with n elements. Its
density is denoted by py(n). Thus

n n 1

pa(n)

=log22"“_n—l n-1



Even for a dense injective knapsack A the density cannot differ very much
from the highest superincreasing density p;(]A]). We see namely from Lemma
2.1 that the upper bound for the density of an injective knapsack tends to 1
as the knapsack size grows. Also p,(n) — 1 as n — oo. The following table
shows the upper bound py(n) of the lemma for some knapsack sizes n together
with pz(n).

n | p2(n) | ps(n)
10 | 11111 | 1.497
20 | 1.0526 | 1.276
50 | 1.0204 | 1.127
100 | 1.0101 | 1.071
150 | 1.0067 | 1.051
200 | 1.0050 | 1.040
250 | 1.0040 | 1.033

Lower bounds for the density of the densest knapsack of given size can be
computed from the following lemma. Using {1} as the initial knapsack A, gives
only the superincreasing density p,. To exceed p, generally we need first find
at least one knapsack that does this. The smallest possible is A = {3,5,6, 7},
which has a = { = 0.875. In Chapter 3 we will see more examples.

The lemma also shows that the number of injective knapsacks grows very
fast with the size. The construction of Ay in the lemma is a special case of the

method of Desmedt et al., cited in Section 6.3.

max(Ap)

Lemma 2.2 Let Ao be an injective knapsack of size n. Denote a = ST

Construct the knapsacks 4;, : = 1,...,k by defining
A; = 24,_,U{b}, whereb; isodd, 1< b <2max(Ai).

(i) A is an injective knapsack with n + k elements.

n+k
n+k—1+log,a

(i) p(Ag) = , which is higher than p,(n + k), if & < L.

(iii) For each knapsack Ag there are ak2knt+k(:-3)/2 different knapsacks Ay.

(iv) If Ap is easy to decipher, then the same is true of A;.

Proof. Decryption of a subset sum s of Ay follows the construction of the
knapsack in the reverse order: repeat the following steps for ¢ = k, k—1,..., L.

If s is even, then b; is not in the.sum; compute s := %s.
Otherwise b; is in the sum and s — b; is even.
In this case compute s := 3{s — b;).

After these k steps we know which of the elements b; were in the sum and the
remaining value of s is a sum instance of the initial knapsack A,. This proves
the injectivity. If Ay is easy to decipher then the same is true for A;.

10



The knapsacks A; satisfy max(4;) = a2 for i = 0,1,..., k. Using
1 = k we get the density. On the other hand we see that at the construction
step ¢ there are max(A;.;) = a2"~%* alternatives for b;. Every alternative
leads to a different result in the end. Hence the number of different knapsacks
Ay 1s
ﬁazn-2+i = alc2lcn+lc(lc-3)/2‘
1=1

a

Remark. The construction of the lemma gives disjoint collections of new
knapsacks for every different initial knapsack Ag of the same size.

2.2 When is the density “low”?

We will describe briefly the idea of the low density attack proposed by Lagarias
and Odlyzko in [17]. The improved algorithm of [9] has the same principle. As
a result of these attacks it seems that densities below 0.95 must be considered
low in the sense that they cause insecurity. We will also discuss the possibility
of higher densities being more secure.

Assume that the knapsack is A = {a;,a2,...,a,} and we are given also an
integer s that is known to be a subset sum of A. Thus

n
3 = E €idg,
i=1

where each ¢; is 0 or 1. The task is to find the e;.
Define the n+1-dimensional vectors b;

b, =(0,0,0,...,1,a;)
b 0,0,0,...,0,~s)

The set L consisting of all linear combinations of the b; with integer coefficients
is a lattice spanned by the b;. Thus

L={C151+...+Cn+1zn+l IC,EZ} (1)

Since the vectors b; are linearly independent in R™*!, all of them are needed
to span L. Any collection of n + 1 vectors that span L is called a basis of L.
What makes the lattice L interesting is that the vector

E= (e, ... n,0)

belongs to it and is likely to be the shortest non-zero vector of the lattice if
the density of A is low. The first statement is trivial and the conditions for
the second one have been the subject of elaborate study for example in (17,

(13], [9] and [33].

11



If the vector é indeed is the shortest or even among the shortest vectors in
the lattice, then the cryptanalyst has good chances of success, that is finding
¢. There are namely polynomial time algorithms that find short vectors in
lattices. Actually these algorithms produce such bases for the lattice that
all the vectors in them are relatively short. They are called basis reduction
algorithms. The most popular algorithm has been that of Lenstra, Lenstra
and Lovasz [18], but more powerful modifications of it have emerged recently
in e.g. [33].

According to [9] the exact complexity of finding short vectors is not known,
it may be very hard in worst cases but easy on average. Indeed, none of the
current algorithms are quaranteed to find the shortest vector, but Odlyzko
writes in [27]: “Thus, in judging the security of knapsack cryptosystems, it is
probably prudent to assume that shortest nonzero vectors in lattices can be
found efficiently.”

Let us turn to the probability that é is the shortest vector in the lattice
L. Before citing the rigorous results we will try to make it intuitively under-
standable why the vector ¢ is likely to be among the shortest ones when the
knapsack has low density. First note that the Euclidean norm ||é]] of € is at
most /1, and it is likely to be about m, because approximately one half
of the e; are expected to be 1's and the rest 0’s.

Assume Z = (Zy,...,Zn41) € L. If .4 is not 0, then it is likely to be
quite large in comparison to /7, like the last components of the bi. Actually
this could be guaranteed by choosing the last components of the b; to be Na;
with N > \/n (instead of N = 1) as suggested in [9].

Suppose then that Z # ¢é, but z,,; = 0 and the length of Z is near the
length of é&. Then the nonzero components of  have small absolute values.
They cannot however all be +1, if the knapsack A is injective, because now

i;t,»a,» = 0. (2)
i=1

The lower the density of the knapsack, the less likely become this kind of
dependencies among the elements a; with coeflicients near 0.

As an example assume that A is a superincreasing knapsack in which the
minimal “marginal” d of the superincreasing construction is fairly large. More
formally we define this d as the smallest of the differences a; — Z:;-;‘l a;, for
t=1,...,n. Herei =1 gives a; — 0, hence also d > q,.

Denote by S the ordered set of all nonzero subset sums of A. The set S is
sparse in the sense that its successive members differ by at least d. The set 5
is also a knapsack and we will next consider its subset sums.

Suppose a vector ¥ € L satisfies (2) and is short: ||Z]| =~ ||é]] < V7.
Then each component of ¥ is at most /n (and z,4; = 0). Such a vector &
corresponds to an equation of two different subset sums of the set S. each
having at most 1/ addends. To see this move all negative addends of the sum
in (2) to the right hand side of the equation. Then split the sums on both
sides to (as few as possible) such sums in which each element of A appears at
most once. These are subset sums of 4 and thus elements of S, and there are
obviously at most \/n of them on each side.

12



Since the gaps in the set S are large, it may well happen that no two subset
sums of S with fairly small number of addends coincide. This conclusion is of
course only heuristic, but it would mean that there are no dependencies (2)
with small ||Z||. Notice that non-existence of such dependencies in a superin-
creasing knapsack A does not imply that there would not be any in a knapsack
that is obtained from A by strong modular multiplication(s).

Critical densities

Let us assume for the next sentence that ||é]| < \/71_/2 The result of Lagarias
and Odlyzko in [17] says that for almost all knapsacks with density lower
than the critical value 0.645, é will be the shortest non-zero vector in the
corresponding lattice.

Since € corresponds to the subset sum s of A, the vector ¢’ = (1—e¢),..., 1~
€n,0) corresponds to the subset sum s, ~ s. One of the vectors é and ¢’ has a
length at most \/n_/2 Thus constructing two lattices, one for the subset sum s
and one for s4 — 3, we know that we have one lattice where there is a nonzero
vector with length at most \/n_/2 And by the result cited above we know that
almost surely that vector is the shortest nonzero vector in the lattice, provided
that p(A) < 0.645.

In [9] the lattice (1) has been replaced by another, that reduces the effect of
the small dependencies (2). As a result the critical density is improved to the
value 0.9408 and this applies regardless of the (nonzero) length of the vector
¢. This means that we need construct only one lattice, and if p(A) < 0.9408,
then almost surely é will be the shortest nonzero vector in the lattice.

Are there “safe” densities?

The empirical tests in [33] indicate that it is not only low density that makes the
knapsack vulnerable. With the improved lattice mentioned above and various
efficient basis reduction algorithms it was possible to decipher also knapsacks
with very high density. This phenomenon was not explained, but it was men-
tioned that “The hardest subset sum problems turn out to be those that have
a density that is slightly larger than 1, i.e. a density about 1 + ‘—°§2—,(12[—22.” This
density is closer to the upper bound for injective density (Lemma 2.1) than to
p2(n). The experiments concerned knapsacks of sizes 42, 50 and 58. The best
algorithm solved nearly all of the problems. Even at the mentioned density
with n = 58 it failed only in 5 cases out of 20.

We will next try to support heuristically the claim that there are many
small dependencies (2) if the knapsack is dense. This would then support the
belief in security of such a knapsack against the low density attack, at least in
the original form of Lagarias and Odlyzko [17]. In the improved lattice of [9)
the small dependencies correspond to slightly longer vectors than in the lattice

(1).
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Consider the knapsack A = {1,2,4,...,2""'}. There are several short
vectors in the associated lattice (1) regardless of the subset sum involved. For
example the n+1-dimensional vectors

o(t,u) = (0,...,0,2,1,...,1,-1,0,...,0,0).
e e’

t u

belong to L for t,u > 0 and t + u < n — 2. The length of o(t,u) is Vu +5.

Assuming n > 11 we have ||o(t,u)|| < \/;z—/_é when 0 < u < nf/2 -5 and
0<t<n—-u-2.
Summing Z,E’:!OZJ'G(n —u — 1) and estimating downwards we get that there
are at least 3n? — Tn + 22 such vectors 9(t,u) whose length is smaller than
If n > 100 we know that there are more than 3072 vectors shorter than
n/2. Several hundreds of these vectors are even much shorter than \/;175
s an intuitive generalization it would seem that there are fewer but still
many short vectors also in lattices corresponding to other knapsacks that have
approximately the same density as A, which is p;(n). We expect to see fewer
short vectors because the subset sums of such knapsacks are spread over a
wider interval and do not necessarily form a sequence of successive integers as
in case of A.

2.3 Decryption by lowering the density?

We know now that almost all knapsacks of density lower than some critical
limit p. can be deciphered by the lattice reduction approach, provided that the
. lattice reduction algorithms are efficient enough. Furthermore we have seen
that these algorithms are considered quite efficient.

Assume A is a knapsack and s is a subset sum of A. Choose such a constant
w that the density of the knapsack wA is below p.. Use the low density
approach to decipher the knapsack wA with subset sum ws.

Alternatively choose such a constant d that the density of the knapsack
A +d is below p.. Using the low density attack try to decipher the knapsack
A + d with a candidate subset sum s + hd for A = 1,2,...,n. If a solution
is found, check whether it also gives the subset sum s for A. If not, continue
until this condition is met. This will eventually happen, because s + hd is the
corresponding subset sum of A + d, if there are h addends in s.

Question. Does this mean that we have found an algorithm for the general
knapsack problem, that would run in polynomial time if only the lattice re-
duction algorithm did the same? The multiplication approach namely seems
to require the same time as the lattice reduction and the addition approach at
most n times this.

Of course it is only almost all low density knapsacks that the lattice ap-
proach will decipher and the phrase ‘almost all’ refers to all such knapsacks

of size n where the elements are chosen randomly from the interval [1,2%/¢¢].
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Among these there are proportionally very few knapsacks where the elements
either have a large common factor or are clustered near 2%/#<. Obviously the
low density algorithms do not work so well for these knapsacks. Otherwise
there really would be chances to decipher any knapsack by multiplying or by
adding a huge constant. Seeing this from the other side, it is not difficult to
imagine that constructions (like those in Chapter 9) where dense knapsacks
are joined together after multiplications and /or additions, could possess some
immunity against the low density attack, even if they lead to knapsacks with
not very high density.
A little less imagination is needed for the following conclusion.

Proposition. Increasing the density of a knapsack by subtracting a large
integer is not likely to increase the security against the low density attack.

A more optimistic view of this is of course, that even when an increase
of density is possible by subtraction, we perhaps need not do it. Then we
maintain the injectivity and need not guess {or request from the sender) the
number of addends in the subset sums that we have to decipher.

Subtraction can however be helpful in (partially) concealing some vulner-
able structure of the knapsack as for example in the system of Section 8.1.

2.4 An attempt to avoid the low density attacks

The lattice basis reduction must be carried out separately for every sum in-
stance that we want to decipher with the low density approach. In addition
the reduction algorithms do not always find the shortest vectors even if the
lattice were good for all sum instances in the sense that there are no small
dependencies in the equation (2).

In the following system encryption is chained in order to exploit the above
difficulties of the low density attack.

Assume that the public key consists of a knapsack A of size n and a
collection of functions fy,..., f,, that map n-dimensional binary vectors to
n-dimensional vectors with integer components. The f; can be for example
permutations.

To encipher a message choose random vectors é;,...,¢é, € {0,1}" with
roughly n/2 ones in each.

Denote the binary message vector by &..;. Regard also the set A as a
vector. Compute and send the following sum instances. Notice that they are
not necessarily subset sums, and there may also be negative addends if the f,
produce negative components.

sy = € -A
32 = (&+ filér))- A
33 = (&a+ files) + fa(ér)) - A

o= (Eg1 + 1(8) + FalEos) + oot fil1)) - A
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Legal decryption starts from the subset sum s;. After & is found, f1(&)-A
is subtracted from s;. The result is &, - A, from which &; can be found. Then
(f1(82) + f2(&1)) - A is subtracted from s3 and the decryption continues in the
obvious way.

Also the enemy must know all &;,...,¢, in order to find the vector & ,,. He
cannot even verify his guess without knowing the other vectors. If he proceeds
in the same order as the legal decryption he may get stuck to a difficult subset
sum before reaching é,,,. It is not likely that decryption of any &;- A could be
aided by some knowledge from s;,. The main reason for this is that s, is a
sum instance which is likely to be very difficult to decipher. This applies also
to the lattice approach because the special vector (the é) in the corresponding
lattice is usually not binary and thus not very short. On the other hand, even
knowledge of the addends of s;,, and their multiplicities may not reveal &.,.

A disadvantage of this method is that the enciphered message requires r+1
times more space than one subset sum. But the chaining can be continued for
any number of message vectors and no new extra space is required. For example
if €., i1s a second message vector, the next sum will be

Sev2 = (Erpz + [ilErr) + f2(&) + ...+ fo(&2)) - A

Further message vectors can be enciphered accordingly. If this kind of chaining
really helps against the low density attack then it can be advantageous to
create the message vectors in a special way. Suppose the bits of each block
of the original message are spread over the whole chain of message vectors. If
the cryptanalysis fails at some point of the chain then only fragments of the
message have been disclosed. Which kind of partial disclosure can be tolerated
best is a more general information theoretic question and lies outside the scope
of this study. It must be noted also, that the whole idea of chaining is by no
means restricted to knapsack cryptosystems.

3 Small injective knapsacks

The first table summarizes our results concerning the search for the densest
injective knapsacks of a given small size.

n | A = the densest found knapsacks of size n 9—’;7"%2 p(A)
T 1 =
21 {12} 1 2
31 {1,2,4) (2,3,4} | 1 1.5
41{3,5,6,7} 0.875 | 1.4248
51 {3,6,11,12,13} {6,9,11,12,13} | 0.8125 | 1.3512
61 {11,17,20,22,23,24} 0.75 1.3086
7| {20,31,37, 40,42, 43, 44} 0.6875 | 1.2822
8 | {39,59,70,77,78,79,81, 84} 0.6563 | 1.2515
9] {76,115,135,149,152,154,155,156,163} 0.6367 | 1.2247
10 | {148,227,266,286,297, 304, 305,306,308,311} | 0.6074 | 1.2076
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For each n = 1,...,10 the table gives the densest injective knapsack of
size n, that we found. The third column relates its largest element to 2"~!,
which represents the densest superincreasing knapsack of size n. The density
is computed in the last column. For the sizes n = 1,...,7 the search was
exhaustive and thus the results are exact. For these values all the knapsacks
of the highest density are given.

Injective knapsacks of size 8

The next table deals with injective knapsacks {a;,...,as} that have a density
at least p,(6). The number of injective knapsacks with ag as their largest
element is given in the second column. The next column ‘%}’-’ relates this
number to the number of all knapsacks of size 6 with ag as their largest element.
The unit is 1073, The fourth column gives the maximal difference between the
two largest elements. The column ‘ave’ is the average size of the elements.
The last column s,,;, contains the smallest of the sums of the knapsacks.

max

ag inj =L /10 ave Qg—ds Smin

24 1 0.03 19.50 1 117

25 11 0.26 18.48 3 93
26 41 0.77  18.52 3 91
27 52 0.79  19.62 5 94
28| 264 3.28 19.14 8 87

29 ] 246 2.51  20.19 7 90
301 530 448  20.66 11 93
31 715 5.05 21.16 11 93
3212275 1339 2030 16 63

There is a clear change in the data when ag = 32. In this row there are also
many other knapsacks than the superincreasing one, that have ¢ — a; = 16
and a sum smaller than 90. Out of the 2275 knapsacks 1024 can be constructed
starting from A4, = {1} and using Lemma 2.2. Similarly we can construct 26
knapsacks of the row as = 26 from the two densest 5-element knapsacks, 13
from each. The row ag = 28 inherits 98 knapsacks from the densest 4-element
knapsack.

The largest sum for the knapsacks in the i’th row is 117 + 6(¢ — 1). Only
one knapsack in each row has this sum, and that knapsack equals A + 7 -1
where A is the only knapsack with ag = 24. For this A also all the other shifted
knapsacks A + d are injective, when d is positive.

The maximal @, in each row is 11 + ¢ — 1, but in most rows there are also
a couple of other cases than the shifted knapsacks. The minimal a; is 1 for
other rows except the first two.
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The 11 knapsacks with ag = 25 are

{11, 18, 19, 20, 22, 25}
{11, 17, 21, 22, 23, "}
3, 6, 12, 23, 24, "}
9 " " N, "}

Y

Y
" " "
12, 15, 7, ", "}
" " " " " }
Y Y ) Y
" " " " " }

3
" " " "
153 ) 3 y }
" " "
12, 21, , , }
Ui " " "
18, ) 3 3 }

" " " 14 " }
) ’ ’ )

o o o, o, o o o A e,
—_ —
N — AN O WO

Here " indicates that the element is the same as above. It can be seen that
these knapsacks are really dense in the sense that half of the elements are
packed together at the top. The two first and two last knapsacks have the
special property that all their positive shifts are injective.

It seems that when we are dealing with integers, there are always special
cases to expect. Now we could say that there are relatively few knapsacks in
the row as = 27 and many in the row ag = 28. As a consequence the other
data do not show any clear tendency, either. To investigate the distribution of
elements we should go for larger knapsack sizes, but already the size 7 means
quite an effort. We will discuss a sample of knapsacks of size 10, but we first
need to describe how we have been looking for them.

Search for knapsacks

In order to find an injective knapsack of size n with a as the largest element
we used the following algorithm.

1. Choose randomly an element a’ satisfying a — 10 < a’ < a. Set
A:={d,a}, S:={0,d,ad+a}, D:={a-d d}

2. Choose randomly an element z € {1,...,a -1} \ D.
I [Su(z+95)|=2]5], set
A= AU {z}, S:=SU(z+S),

D:=[DU{z}u(D+z)u(D-2)] N{1,...,a=1}.

otherwise,

If [A| < n -1, restart from step 1.

If [A| = n - 1, try again with step 2, at most a couple of times
(we used a limit of 3).

4. If |[Al <n goto 2.
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At every stage A is an injective knapsack, S contains its subset sums, and
D is a set of such integers that cannot be introduced into A without loosing
injectivity.

The claim concerning D is clear at step 1. To see why no elements from
(D+z)U(D~-=z)] N{l,...,a=1} can be introduced into AU {z}, consider
adé& D. Itisin D because there are such subset sums s; and s; of A that
s1+d = s5. Now s; 4+ and s; +x are subset sums of the knapsack AU{z} and
the answer can be seen from the equations s, + x +d = s3 and 3, +d = s3 + .
If we do not restrict the set D to the range 1,...,a~1, we get the set D, of
Notation 7.1. See also Theorem 7.2.

A sample of knapsacks of size 10

We used the above algorithm for n = 10 starting from a = 500 and decre-
menting a one by one. We proceeded until a = 315 where it took over 19500
rounds (step 1) to find a knapsack. The next 30000 rounds did not produce a
knapsack with a = 314, but we found two of them, two with a = 312 and one
with a = 311 by shifting down the previous knapsacks (for a = 311 the shift
was —9).

Our sample of knapsacks with a = 315,...,500 is not completely repre-
sentative, because in each knapsack at least one element must be in the range
a~—10,...,a—1. The reason to choose such a strategy was that otherwise the
algorithm was very slow.

When a = 491, ..., 500 the present algorithm finds a knapsack in 3.5 rounds
on average. If we require that no elements are in the range a — 10,...,a - 1,
we need some 600 rounds to find a knapsack for these a. This means that such
knapsacks are very rare among all knapsacks already at such large values of a.
Below a = 412 we have not yet found any knapsacks satisfying the alternative
requirement. When a = 421,...,430, it seems to require at least 25 000 rounds
to find one such knapsack.

On the above grounds we believe that our sample represents average be-
haviour of dense knapsacks of size 10. The whole sample of 186 knapsacks is
depicted in the first figure below. For every knapsack a dot is plotted for o
against + = 1,...,10. For each ¢ we computed the average and joined them
with a line in the figure.
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The average size of elements in these knapsacks is clearly very large. It
turned out that the average is between 0.864 a; and 0.913 a0 in every case.

For each @ we recorded the amount of rounds needed to find the knap-
sack. We then computed the average of 15 of these numbers around each
a=322,...,493 and plotted them against a = 5. By using such an abscissa
we want to suggest that the figure tells also something general about the diffi-
culty of finding injective knapsack and hence also about the number of them,
when the maximal element is a2"~!.
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Conjectures

The above empirical results and some others together with daring intuition
lead us to following conjectures concerning dense injective knapsacks. Denote
by Max(n) the largest element in the densest injective knapsacks of size n.

¢ Max(n + 1) < 2Max(n). Notice that by Lemma 2.2 we have ‘ <.
Actually, we believe that %’é@ — 0 as n — oo,

¢ There are injective knapsacks A of size n with max({A) = Max(n) + d, for
all d =1,2,..., and the number of these knapsacks grows exponentially
in d.

¢ In a relatively dense knapsack A of size n

- %’% is not very large.

~ several of the largest elements are relatively close to one another.
For example out of the 330 knapsacks of size 10 with a;5 < 500 that
we know, 320 satisfy 2209

~ 54> 7 max(A).

- usually %} < 0.6. For example 326 of our dense knapsacks of size
10 satisfy 0.26 < %0- < 0.40. This ratio gives the probability that
an arbitrary integer between 0 and s, is a subset sum of A.
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4 About the trapdoor

4.1 Why strong modular multiplication?

The most common trapdoor, the inverse of strong modular multiplication,
enables easy deciphering by the following principle:

The sum instance of a difficult knapsack is transformed back to an (3)
equivalent sum instance of an easy knapsack.

As the cryptanalytic attacks show, this property is not necessary for decryp-
tion. Also the intended decryption algorithm may have a different principle.
An example of a trapdoor technique for which the above property does not
hold, is a sequence of strong modular multiplications applied iteratively to an
initial knapsack, which only needs to be injective. Decryption of a subset sum
of the final knapsack is carried out by setting up a system of linear modu-
lar equations according to the intermediate knapsacks and the multipliers and
moduli. (The system is due to Shamir. Details can be found in {30, p. 216].)
Also the Merkle-Hellman multiplicative trapdoor knapsack is different because
the trapdoor does not lead to an easy additive knapsack (see Section 6.1).

We will now assume that the property (3) holds for the trapdoor technique
and we will investigate what kind of further conditions lead to the strong
modular multiplication.

Although the trapdoor means a way from the difficult knapsack to an easy
one, it will be more convenient to use the term trapdoor transformation for
the transformation that converts the easy knapsack to an apparently difficult
one.

Suppose that the easy knapsack is A = {a,,...,a,} and that the trapdoor
transformation does not change the number of elements. Then the difficult
knapsack will be

B= {f(al)v-" vf(aﬂ)}

for some integer-valued function f that is defined over some subset of the
natural numbers that contains at least the set A. Clearly f restricted to the
elements of 4 must be one-to-one.

According to (3) such an inverting operation g is required that

9> fla)) =3 a 4)

i€s ies
for all those subsets S of {1,...,n} that correspond to messages.
Suppose that C' = {¢;,...,ca} is an arbitrary injective knapsack and define

f(ai) = ¢;. The function ¢ can then be defined by equation (4). This kind of
definition is not of much use in practice. The following requirements for f are
natural:

o The rule how to compute f(a) depends only on a few parameters that
do not depend on a.
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o Some of the parameters may depend on the whole of A, but there must
also be space for some randomness.

¢ The rule can be applied to any integer, at least in the range 1, ..., max(A).

The last requirement may be the most disputable of these.

It must be added that with a separate permutation we can always take care
of all desired changes of order among the elements of knapsack B when it is
published as a public key.

Symmetry. We assume now that the pair of transformations f and g is
symmetric in the sense of equation (4). That is, f takes subset sums of the
easy knapsack to corresponding subset sums of the difficult knapsack:

fOa) =3 fla).
i€s i€s
Let us use this for subsets with two elements and assume even more: the rule
f(a +b) = f(a) + f(b) holds for any pair a,b € {1,...,max(A)}, a # b.
Applying the rule successively we get for any a, 3 € a < max(A), that

fla) = fla=1) + f(1) = fa=2) + f(D+ f(1) = -~

= f(2) + (a=2)f(1) = f(L)a+ f(2) - 2f(1).
Suppose now that max(A) > 7 and denote w = f(1) and d = f(2) — 2f(1).
We have w-7T+d = f(7) = f(3)+ f(4) = w-3 +d+w-4 +d, which givesd = 0.
We also have f(2) = 2f(1) = w-2.
Our assumptions have led to a multiplicative rule for f, that is, f(a) = wa.
The required one-to-oneness of f implies that w # 0. The transformation
g(c) = w=lc will then satisfy (4).

Fixed number of addends. Suppose that the subset sums must always
contain the same amount, say h addends. If A > 2 we have no reason to
assume f(a+ b) = f(a) + f(b) which finally led to the multiplicative rule for
f. 1f there are other reasons why we have f(a) = wa + d, then d need not be
0. The equation (4) is satisfied by g(s) = w™!(s — hd). If d # 0 this g is not
the inverse of f.

Modularity. The above derivations did not assume that the integers would
not be modular with respect to some modulus m > max(A). This would mean
that instead of every ‘=" we would have ‘= (mod m)’. If m is not a prime
then the requirement w # 0 (mod m) is not enough for the inverse w™! to
exist. Instead we must have ged(w,m) = 1.

Multiplication is useless as a trapdoor technique without a modulus, be-
cause computation of a few greatest common divisors would reveal the multi-
plier.

Although the sum instances of B are computed without reducing them,
they must be distinct modulo m. Otherwise unique decryption would be im-
possible. This is because the result of the transformation g is modular but
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it must also be a valid (non-modular) sum instance of A. This requires that
every sum instance s of A equals s (mod m). Sufficient and necessary for this
is that m is greater than the sum of A. Thus we are led to strong modular
multiplication.

4.2 Sources of insecurity
Development of density

Assume that we have a knapsack A, which is not very small. Denote ¢ =
max(A), and choose an m > a and an integer w, relatively prime to m. Denote
B = wA (mod m).

When 1 < £ < m — 1, the modular product wz (mod m) obtains all the
values from the range 1,...,m—1. If we choose A randomly, then the elements
of B are uniformly distributed over the range 1,...,m—1. Such a distribution
means that for any given B we expect the elements to be approximately evenly
dispersed between 1 and m~1.

Assume now that w is so large that changing the value of z with a few units
changes the integer k in wz (mod m) = wz — km. For example w > m/2 will
satisfy this. This assumption means that the relative position of z between 1
and a has practically nothing to do with the position of wz (mod m) between
1 and m— 1.

As Lemma 2.2 shows, there is a vast choice for the knapsack A, even if it has
to be injective, relatively dense and easy to decipher. Since the integers m and
w are chosen independently of the construction system of A, we expect that
the elements of B are distributed as if A were a random knapsack. This means
that we expect to find the same number of elements of B in every subrange
of 1,...,m — 1 of fixed length. Especially we expect that some elements of B
are also near m. Under a truly uniform distribution the probability, that all
elements of B are below am, is approximately a/f! (0 < a < 1).

We summarize this discussion as a lemma.

Lemma 4.1 Assume A is a knapsack, not very small, m > max(A4) and
w is a relatively large integer that satisfies w < m and ged(w,m) = 1. If
B = wA (mod m) then the elements of B are likely to be evenly dispersed
in the range 1,...,m — 1. Especially max(B) is likely to be very near m, in
proportion, a

If we want to construct a reasonably dense knapsack A of practical size
n, then there appears to be no reason to choose the largest element a, very
much larger than the second largest element a,_,. The assumption ;'#‘f: <3
leaves enough alternatives for a, also in superincreasing construction. All
the examples of dense knapsacks in Chapter 3 satisfy this assumption with 3
replaced by 2. The assumption implies that s4 > % max(A).

Suppose m is a strong modulus for A. Then the above discussion implies
that modular multiplication of A is very likely to result in a knapsack B that
satisfies max(B) 2 3m > max(A4).

Actually we only used the two largest elements of A to bound the modulus,
and thus we may conclude the following.
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Lemma 4.2 The density of the knapsack resulting from modular multiplica-
tion is likely to be lower than the original density, if the modulus exceeds the
sumn of the two largest elements of the original knapsack. O

Remark. The following conjecture seems plausible.

Assume we have two injective knapsacks A; and A; of the same size n. For
i = 1,2 transform A; with strong modular multiplication to a knapsack B;.
If A, is superincreasing, p(A;) = pa(n) < p(A,), then we are likely to have
p(B2) < p(By1) < p(Ay).

Inherent dangers in modular multiplication?

Assume that we know a knapsack B = {b;,...,b,} and the fact that it has

been obtained by modular multiplication from an unknown knapsack A. Let

B = wA (mod m) and u be the inverse of w modulo m. Then there are such

integers k; that a; = ub; - k;m for 1 = 1,...,n, and hence
k‘" _ a;

u
il ol e %)
If m is a strong modulus for A, it is very large in comparison to almost all
of the a;. The values of b; typically are of the same order of magnitude as
m. Hence the quotient ;% is very small for most values of 7, and is likely
to be such for all the i. Consequently almost all of the quotients fl are close
to one another. This is a very exceptional situation, and in case where A4 is
superincreasing it was just this that made cryptanalysis possible. According to
[5] also all the other knapsack cryptosystems that are based on strong modular
multiplication(s) can be broken with this approach, using the techniques of
simultaneous diophantine approximation.

In the next chapter we introduce weak forms of injectivity where non-strong
modular multiplication can be used as a trapdoor transformation. When the
modulus is somewhat smaller than the sum of the knapsack it may be more
difficult to exploit the equation (5), especially if already the easy knapsack A
is only injective in some weak sense. It lies however outside the scope of the
present study to answer the question, whether there is something inherently
insecure in modular multiplication as a trapdoor transformation of all kinds of
easy knapsacks. Notice that according to Lemma 4.2 modular multiplication
is almost always likely to make the knapsack somewhat more vulnerable to the
low density attacks.

5 What if the knapsack is not injective 7

We introduce some simple modifications of the concept of injectivity in Sec-
tion 5.1. One of them is stronger than injectivity, but the others are weaker.
They still allow unique decipherment in situations that are restricted accord-
ingly. A simple example of such controllable non-injectivity is given in Sec-
tion 5.2. In Section 5.3 we discuss what can be done if the knapsack is non-
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injective in a way that cannot be controlled in this manner. Sections 5.4 and
5.5 deal with two special cases.

5.1 Weak forms of injectivity

From now on the term injectivity will have both the concrete meaning of some
knapsack being injective and an abstract meaning, which may have different
concretizations depending on the attributes attached to it. The abstract mean-
ing makes it possible to discuss what kind of injectivity a knapsack possesses,
not only whether the knapsack is injective or not.

Definition 5.1 Assume A is a knapsack and 1 < h < |A|.

(1) If for all fixed values of k&, 1 < k < |A|, the subset sums of A that have
k addends are distinct, then A is said to be fix-injective.

(ii) If the subset sums of A that have at most A addends are distinct, then
A is h-injective.

(itt) If for all fixed values of k&, 1 <k < h, the subset sums of A that have &k
addends are distinct, then A is fix-h-injective.

(iv) If the subset sums of A are distinct modulo an integer m > 1, then A is
injective modulo m.

(v) If the subset sums of A satisfy the conditions of (i), (ii} or (iii) medulo
an integer m > 1, then A is X-injective modulo m, where X is the
corresponding attribute of injectivity from these definitions.

Definition 5.2 If m is an integer greater than the sum of the A largest ele-
ments of a knapsack A then m is an h-modulus for A. If m is an A-modulus
for A and w is relatively prime to m then the knapsack wA (mod m) is obtained
by h-modular multiplication from A.

Remark. If h = [A|, then h-injectivity is equivalent to injectivity as defined
in Section 1.4 and an h-modulus is the same as a strong modulus. Hence
dealing with (fix-)h-injectivity and h-moduli in the sequel will cover also the
case of (fix-)injectivity and strong moduli.

All knapsacks are 1-injective.

The following theorem depicts obvious relationships between the new concepts.

Theorem 5.3 Assume A is a knapsack, 1 <h”" <A <h<|A|, m>1 and
m'is an h'-modulus for A. The following implications hold between properties
of A. From the alternatives in (i) and (iii) take either the upper or the lower
ones at the same time. The statement (ii) is valid also with ‘modulo m’ added
to each property.
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-injective

(i) b h injective modulo m = .

(i)  h-injective = h'-injective = fix-h'-injective = fix-h"-injective

"
-injective = }-injective modulo m’

fix- A"

(i) ﬁx-h}

]

The lemma expresses simply that a characterization of injectivity of a knapsack
remains valid under the following changes.

¢ Removal of modularity.
¢ Addition of the attribute ‘fix’.
¢ Decrease of the value of an attribute ‘h’.

e Introduction of modularity with the attribute ‘h’ adjusted to a value
satisfied by the modulus.

An example of a useful knapsack that is (only) fix-h-injective modulo an
integer is the Chor-Rivest system that will be discussed in Chapter 10. There
will be one further kind of injectivity mentioned in Theorem 9.7. It strength-
ens the concept of fix-injectivity by requiring that whenever two subsets of the
knapsack correspond to the same sum, then the numbers of elements in these
subsets are not congruent modulo an integer.

The first one of the following two simple lemmas can be deduced by con-
sidering the subset sums s4 — s instead of s. The second lemma expresses the
fact that if some subset sums are to be distinct modulo m, then their total
number cannot exceed m.

Lemma 5.4 If Ais an h-injective khapsack then all the subset sums of A with
at least |A| — h addends are distinct.
If Ais a fix-h-injective knapsack then for all fixed values of k, |A] — b <
k < |A], the subset sums of A that have k addends are distinct. [}
b
Lemma 5.5 If a knapsack of size n is h-injective modulo m then m > ¥~ (':)
=0
Especially if the knapsack is injective, then m > 2™, a

The cryptographic usage of knapsacks that possess some weak form of
injectivity is obvious. We need to restrict the messages to such bit sequences
that contain at most A ones, or a fixed number of ones, or the number of ones
must be both fixed and at most A.

In Chapter 4 we discussed trapdoor transformations of knapsacks to other
knapsacks and were confined to multiplication and addition, possibly with

26



respect to a modulus. The next theorem and its corollary present these oper-
ations from the viewpoint of injectivity. The theorem is a direct consequence
of the following lemma.

Lemma 5.6 Assume that A is a knapsack, 1 < h < [A],m > 1, ged(w,m) =1
and d is any integer.

Let s; and s; be two subset sums of A with at most A addends in each.
Assume either that

(i) m is an h-modulus for A and s; # s;, or
(il) s, # s, (mod m).

Then the subset sums of wA (mod m) corresponding to s; and s, are distinct,
also modulo m.

If the number of addends in s, is the same as in s,, then the subset sums
of wA + d (mod m) corresponding to s; and s, are distinct, also modulo m.

Proof. The assumption (i) implies (ii). Thus we can assume only (ii). Let
s$1 = Ya; and s, = ¥ a;. Since w is relatively prime to m, the condition

Y a; # ¥ a; (mod m) implies
Ywea = wre, Fwyra; =¥ wae, (mod m).
If the number of addends in s, and s, is k we also have
Y(wa;+d)= wla+kdFwTa;+kd = T (wa; +d) (mod m).

We see that the claimed subset sums are distinct modulo m and hence also
distinct as integers. a

Theorem 5.7 Let A be a knapsack, 1 < h < |A] and m > 1. Assume A is
X-h-injective modulo m, where X stands either for nothing or ‘fix’.

If ged(w, m) = 1 then also wA (mod m) is X-h-injective modulo m. If
further d is any integer, then wA + d (mod m) is fix-h-injective modulo m. O

Taking into account Theorem 5.3 it is easy to see that Theorem 5.7 implies
the following corollary. For the first statement it suffices to consider a very large
modulus and discard it in the end. A more simple case of the second statement
would have h” = A’ = h. Now these three integers appear in accordance with
Theorem 5.3.

Corollary 5.8 Let A be a knapsack, 1 < h < |A[|. Assume A is X-h-injective,
where X stands either for nothing or ‘fix’".

(i) f w > 0 then also wA is X-h-injective. If further d and ' are such
integers that wmin(A)+ d > 0 and &’ — wmax(A) > 0 then wA + d and
d’ — wA are fix-h-injective knapsacks.
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(i1) Suppose 1l < A’ < |A]. Let m be an h'-modulus for A and ged(w,m) = 1.
Denote A" = min(h, &’). Then wA (mod m) is X-h”-injective modulo m.
If d is any integer then wA + d (mod m) is a fix-h”-injective knapsack
modulo m, a

As a summary of these results note that multiplication preserves all kinds
of injectivities, but if it is done with respect to an h-modulus then h appears
as an attribute of the injectivity — if there was not already a smaller number.
Secondly, if a constant is added then the attribute ‘ix’ must be given to the
injectivity if it was not there already.

Remark. Theorem 5.7 does not follow from the claim (ii) of the corollary,
because there are knapsacks that are h- or fix-h-injective modulo an m which
is not an h-modulus.

For example let A = {2,3,4}. Write the subset sums of A as a sequence
S =(0; 2,3,4; 5,6,7; 9) where the semicolons distinguish sums with different
number of addends. Now S {mod 8) = (0; 2,3,4; 5,6,7; 1). We see that A is
3-injective modulo 8 (i.e. injective modulo 8), although 8 is only a 2-modulus
for A.

On the other hand § (mod 3) = (0; 2,0,1; 2,0,1; 0) which shows that A
is fix-injective modulo 3, although 3 is not even a 1-modulus for A.

Recall that A + d (mod m) was defined to consist of positive remainders.
Fix-injectivity is a reasonable concept also for such knapsacks that are al-
lowed to contain a zero. For example the subset sums of B = {0,2,3,4} are
(0; 0,2,3,4; 2,3,4,5,6,7; 5,6,7,9; 9) and we see that B would be fix-injective
under such an extended definition. It is clear that the second statement of
Theorem 5.7 would remain valid also in case of non-negative remainders.

5.2 Weakening the superincrease

The following definition and theorem express the obvious way to modify su-
perincrease to produce h-injective knapsacks. The idea is simply to choose
new elements that exceed the sum of h previous elements.

Definition 5.9 Assumeh > 1landn > h+2. A knapsack A = {a;,a,,...,a,}
is h-increasing if {a;,...,a54;} is a superincreasing knapsack and the ele-
ments ax42, ..., a, satisfy

a; > i a;. (6)

J=t=h

Theorem 5.10 An h-increasing knapsack is h-injective and all subset sums
with at most h addends are easy to decipher. a

Remark. When transforming an h-increasing knapsack to a public key by
modular multiplication, it of course suffices to use an h-modulus.
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Example. The densest possible 4-increasing knapsack of size 8 is
A =1{1,2,4,8,16,31,60,116}.

This is 4-injective by the theorem but not 5-injective, because 14+2+4+8+16 =
31. The sum of the 4 largest elements of A is 223. Thus 225 is a 4-modulus.
Since ged(151,225) = 1 we know that

1514 (mod 223) = {151,77, 154,83, 166, 181,60, 191}

is 4-injective. In this case the knapsack is also injective. 0

It is especially easy to use an A-injective knapsack in cryptography when A =
[2], as we can see with the aid of the following lemma.

Lemma 5.11 Let A be a knapsack and denote n = |A]. Assume that A is
[2]-injective. Then

(i) All subset sums of A that have at least |3} addends are distinct.

(ii) An integer can have at most two different representations as a subset
sum of A.

(iii) If two different subset sums of A coincide then one has fewer addends

than [2] and the other has more addends than [2].

(iv) A is fix-injective.

Proof. Lemma 5.4 directly implies (i), because [2] 4+ [2] = n. Since [§] <
[21, (i) implies (ii) and (iii). Finally (iii) implies (iv). Q

Cryptographic usage of an [3]-injective knapsack, which is not injective, re-
quires one extra bit of information in addition to each subset sum. Namely
one must know whether there are more than [’5‘] addends in the subset sum s
or not. If there are more, then one deciphers s, — s (where there are at most
[2] addends) and complements the resulting bits. Of course the sender may
already do this complementation, but the same extra bit of information is still

needed.

A large [§]~increasing knapsack does not differ very much from a super-
increasing knapsack, at least if density is concerned. For example the densest
possible 50-increasing knapsack of size 100 has the largest element 6.338 - 10%.
This differs from 2% only by 1.38 - 10'S.

5.3 More general non-injectivity

We saw in Sections 5.1 and 5.2 that the knapsack need not be injective if the
cryptosystem always produces the same and/or sufficiently small number of
addends in the subset sums. Such non-injective knapsacks can be denser than
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the injective ones, but there is still the requirement of injectivity at least for
some fixed numbers of addends. What happens if even this does not hold?

Suppose there is a checksum that is computed from the message and sent
along with the enciphered message. If the function used for the checksum
is injective then the validity of decipherment may always be checked. If it
is a one-way function then the security of the cryptosystem is not affected.
Although there are no one-way functions in the sense that their inversion
would be impossible, there are functions that are very hard to invert, For
example general knapsacks are considered suitable for one-way functions in
(2, p. 17]. We cannot be sure of the injectivity of an arbitrary knapsack, but
the probability is very small, that we first have a wrong decipherment of the
message and then a wrong confirmation of it from the checksum knapsack.

We need not generate and publish another knapsack, since we already have
our trapdoor knapsack. With some prescribed transformation the sender can
change it to another knapsack and generate the checksum. The transformation
can be a common one or it may depend on a few small parameters that are
published together with the knapsack. An easy transformation that seems
likely to change any trapdoor knapsack to a genuinely difficult knapsack is the
reversing of the order of digits in the knapsack elements. If our public key is
not very dense we may request that a couple of digits are dropped from each
element.

If we have bad luck, the knapsack checksum is easier to cryptanalyse than
the original cryptotext. Since using the general knapsack checksum already
admits a small chance of wrong decipherment, we may change the system a
little to avoid at least the worst luck. Assume that the transformation of our
enciphering knapsack depends on the message and can produce a very large
number of different checksum knapsacks. It seems that the cryptanalyst of the
checksum must try with a great part of these before he finds a solution that
satisfies also the subset sum of the enciphering knapsack. Direct cryptanalysis
of the latter is likely to be easier.

A simple way to modify the checksum is to add the binary value of the
message to it, either as such or after some transformation.

Notice that usage of a fixed checksum knapsack together with an enci-
phering knapsack amounts to a two-dimensional knapsack, that is, a knapsack
where the elements are pairs of integers.

Example. In a system with a checksum we need not tell the number of ad-
dends even if that is the requirement for unique decipherment. This can be
seen as follows. The number of 1’s in random binary messages is distributed
almost normally. If the message has length 200 bits then the standard devia-
tion is about 7 and with 95% probability the number of 1's in the message is
100 £ 14. Thus, with this probability we need do at most 29 trials with the
number of addends before we find one that leads to a solution. G

It may happen that no uncertainty is allowed in cryptographic usage of non-
injective knapsacks. This can be achieved with the following algorithm (or a
protocol) that may request new messages from the sender.
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1. Given a subset sum, find all possible decipherments.
If there is only one, it is the correct decipherment.
Otherwise:

If also a checksum was given for the subset sum,

2. compute the checksum for all the decipherments.
If only one decipherment is confirmed, then that is correct.
Otherwise:

3. Request either
an entirely new message to substitute the old one and con-
tinue from 1. (This may be reasonable especially if the re-
dundancy of the messages allows to express the same things in
different ways.)

or

a new checksum for a given permutation of the original mes-
sage bits. This can be produced either with the enciphering
key or the checksum key. Continue from 2.

If there was no checksum,

4. request one (with some prescribed technique) and go to 2.

It is also possible to ask only for some bits of the checksum in phase 4, and
iterate between phases 2 and 4 until all uncertainty has been resolved. If this
does not eventually succeed then an analog of phase 3 must be performed.

To be able to use this algorithm we need special kind of non-injectivity.
The next definition suggests a name for it. Notice that unlike the concepts of
Section 5.1 the new property cannot so naturally be classified as a “weak form
of injectivity”.

Definition 5.12 We call a knapsack temperate if it is easy to decipher
completely, that is, to find all possible decipherments of any given subset
sum of it.

Remark. The easiness in the definition refers to existence of a polynomial
time algorithm which also tells explicitly when all the decipherments have been
found. Actually, in our examples the question of temperateness is fairly trivial
in principle. We would prefer however, that we can bound in advance and to
a practical level the number of trials needed to find the decipherments.

A more involved analysis may motivate the notion of h-temperate knap-
sacks in analogy with h-injectivity, but we will not need it. The notion of
fix-temperate (or fix-h-temperate) knapsacks, however, is not very interesting
theoretically. If we have a reasonable bound for the number of decipherments
for each number (or at most k) of addends, then summing these bounds from
1 to n (or h) still gives a reasonable bound. For a fix-injective knapsack this
bound is n, but in more general cases the bound may be impracticable. Be-
cause of this and also for simplicity we will often assume that the number of
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addends i1s known.

We give here three examples of knapsack constructions, where the temper-
ateness appears at different stages. The first example deals with a trapdoor
transformation. The second method can be applied equally well to an initial
easy knapsack as to a transformed knapsack. In the third case a non-injective
easy knapsack is constructed. Sections 5.4 and 5.5 discuss two further exam-
ples.

Different shift for different parts of the knapsack

Apply f(a) = wa + d to one half of the elements of the knapsack and f(a) =
wa 4+ d’ to the rest (use a modulus if w # 1). Suppose that the number of
addends in a subset sum s is known to be h. Then the extra effort caused by
this transformation in deciphering s amounts to guessing such an z, 0 <1 < h
that

§—1id—~ (h=1)d

1s a subset sum for the knapsack wA.

A similar analysis as in the above example will give bounds for the prob-
ability that at least one decipherment is found, if only some values of ¢ near
h/2 are tried.

Random elements

Insertion of a few new elements in the superincreasing or other injective struc-
tures increases density and possibly perturbs the construction system of the
knapsack enough so that specialized attacks do not succeed so easily. If there
are k exceptional elements, then generally all the 2¥ combinations of these
must be checked to find all the decipherments of a subset sum. To find one
decipherment may be considerably easier, as will be seen in the special case of
the next section. In any case, if the messages are uniformly distributed then
the average number of trials needed for the first decipherment is at most 2%~!.

“Too weak” increase

Suppose h > 3 and we have an (hA—1)-increasing knapsack and a subset sum
where the number of addends is at most A.

Suppose that we have been able to decipher the sum without any ambiguity
down to an index ¢ and the remaining subset sum is s. That is, we know that
3 is a subset sum of {ay,...,a;}. If 1 < h then this knapsack is superincreasing
and the rest will be clear. Assume that i > h.

The matter with a; is uncertain only if s > a; and s is still the original sum
(i.e. there may still be h addends). Then we must try with and without ¢;, but
after that there is no more ambiguity. To see this denote A’ = {a;,..., a1}

1. Suppose we try with a;. This means that we try to decipher s’ = s — q;
with the knapsack A’. We know that if &' is a subset sum of A’ then
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there are at most h — 1 addends and the deciphering process will proceed
without any ambiguity, because A’ is (h—1)-injective. Hence we may
always subtract such an element that exceeds the remaining sum. If we
do not get to 0 in the end, then s — a; was not a subset sum of A"

2. Trying without a; means an attempt to decipher s with the knapsack A’.
We show that in this case we must proceed by subtracting a;_,. After
this the situation is analogous to 1.

Suppose first that : = A + 1. Then

$2a;>a;1+a_s+ ...+ a;
Saiiy+...+a; +ay

and we see that s cannot be a subset sum of A’ \ {a;_}.

Suppose then that : > A+ 1. Since h > 3 we have a;_y > aj_p + Gicho1
and thus

82 a; > ai-1+ai—a+ ...+ Gicnpr
>aieg+ .+ g+ Gion Faionoy.

We know that if 5 is a subset sum of A’ there are at most A addends.
We see from the last inequality that a;_; must be one of them.

We conclude that for subset sums with at most h addends we may have
at most two decipherments when the knapsack is (h—1)-increasing and h > 3.
Furthermore at most two trials are needed to find them. This result is not valid
for h = 2. For example {1,2,3,4,5} is a l-increasing knapsack. Since 1 + 4 =
2 4 3 = 5 we see that a subset sum can have more than two decipherments
with at most 2 addends.

It is obvious that further modifications can be made.

Example. The table shows the construction of a 4-increasing knapsack A =
{ay,...,a10}. Here s; gives the sum that the next element a;4+1 must exceed.
The value d; is the amount by which this happens: a;;, = s; + d;. Notice that
the construction is not 5-increasing after the initial superincrease (up to as).

i1 2 3 4 5 6 1 8 9 10
a; |5 7 14 31 60 115 223 433 847 1631
s |5 12 26 57 112 220 429 831 1618 3134
{2 2 5 3 3 3 4 6 13

The knapsack A is known to be 4-injective, but it turns out to be even 5-
injective. It is not 6-injective because 847 + 433 + 223 + 115 +60 + 5 =
1631 + 31 + 14 + 7. In addition to this there is only one pair of subset sums
contradicting with 6-injectivity: 433 +223+115+60+14+7 = 847+5. In the
first pair of sums all elements are involved, the latter pair does not contain 31
and 1631. Adding 31, 1631 and 31 + 1631 to both sides of the latter equation,
we get three more pairs of coinciding subset sums. It turns out that all the
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other subset sums are distinct. This means that the number of different values
of the subset sums is 1019.

If we transform A with 4-modular multiplication to 2345 - A (mod 3137),
we obtain an injective knapsack, although Corollary 5.8 guarantees only 4-
injectivity. Notice that 3137 is not even a 5-modulus. Another injective knap-
sack, and just a little more difficult to find, is 1234 - A (mod 1723), where
1723 is only a 1-modulus. The use of too small a modulus will be discussed in
Section 5.5.

5.4 Exceptional blocks in superincreasing structure

We will now modify the superincreasing construction in a way where we do
not know about injectivity but the knapsack will be temperate. In Chapter
9 we present some injective constructions, where decryption can be based on
the same idea.

Definition 5.13 Assume we have a knapsack Ay that is easy to decipher.
Choose an integer k > 1 and such a set X of k elements that

¢ each of them is greater than s,4, and
e X is an injective knapsack,

e Ay U X is not superincreasing.

Construct the knapsack A = AoU X U A, by choosing the elements of A; with
the superincreasing principle. The set X is called an exceptional block,
or x-block in the knapsack A, and the elements of X are exceptional, or
x-elements.

Decryption

Assume 3, is a subset sum of A. [t is easy to find out which elements of A,
are present in the sum. Subtract these from s, and denote the result by s. If s
is smaller than any of the x-elements, we can proceed in the way appropriate
to the nature of A,. If s is bigger than the smallest of the x-elements, we
know that some of them are in the sum, but not necessarily which. We cannot
but subtract some of the x-elements until what remains is smaller than any of
them. If we cannot decipher the remaining sum according to Ao, we must try
with other subtrahends. Since we did not assume any specific structure in the
x-block to guide our choice, it is clear that k¥ must not be very large.

The search for all decipherments of s can be organized in the following way.

1. Since k is not very large, we may compute all the 2* subset sums of X.
Sort these in increasing order and denote the resulting sequence by
to,...,tk_,. Keep also record of the corresponding subsets of X. All
this can be done in advance.

2. For a given subset sum s of AgU X, let p be the smallest index for which
s—t, < 54, and g the largest index for which s —t, > 0. Fori =p,...,q
find a decipherment of s — ¢; according to Ay, if there 1s one.
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By the choice of p and ¢ we have 0 < s—t¢; < 34, fort=p,...,qand only
for these. We need never scan all the sums tg,...,fx_;. At least the smallest
and the largest sum exclude one another. In general each sum excludes many
others (if £ > 1). For a discussion denote by .S; the subset corresponding to
the sum ¢,.

Let p <71 <j<q IS C Sjandze S;\S, then t; + 2 < t; and thus
$—1t; > s—t;+c >0+ 54, which contradicts the choice of p. Hence S; ¢ 5.
Since t; < t; we also know that 5; 2 5;. We conclude that none of the sets
Spy. .., S, is a subset of another in the collection.

Consider generally a set X of k elements. Let T be such a collection of
subsets of X that no set in I' includes another set in I'. This condition is
satisfied for example if all sets in T" have the same number of elements. The
maximal size of such a special collection I' is the maximal value of (,’:), h =
0,1,...,k. The maximum is attained when h = {k/2| or A = [k/2]. According
to [38, p. 302 ([kl;z}) is also the maximal size of all collections T

We performed experiments with £ = 9 and k& = 10 by constructing as large
collections [ as possible. We started with a random subset and excluded all
its subsets and supersets. Among the remaining subsets we chose the next
element of I' and went on until there were no subsets available. Let us call
these collections locally maximal. Our experiments indicate that on average
the size of locally maximal I is considerably smaller than the claimed global
maximum. For n = 10, the claimed maximum is 252, and during the 5512
rounds the average size was about 90.6, and there was none found with more
than 157 elements. The distribution of the size looks approximately normal,
the standard deviation was about 18.4. For n = 9 the results were very simi-
lar, over 11000 rounds gave an average of 50.2 and a standard deviation of 11.6.

In the next lemma a special assumption on the set X helps to bound the
average number of trials needed in the deciphering process. In the proof we
will not make use of the fact that the x-block is injective, but this is a natural
assumption for practical purposes.

Lemma 5.14 Suppose we have constructed a knapsack with an x-block of k
elements. Assume that

(i) all the messages have an equal probability to occur,

(ii) when there are j x-elements present in a subset sum s of A, we cannot
subtract more than j of the x-elements from s before it becomes smaller
than any of the remaining x-elements.

Then the average number of trials needed to find all decipherments of a subset

sum 1s at most
1 (2%
Iy = '2"; k )

and the average number of trials needed to find one decipherment is at most
1 1

Ye = §Ik+ 5
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Proof. The second assumption means that in case of j exceptional addends we
need at most (’;) trials to find all decipherments. By the first assumption the
average number of trials needed to find one decipherment is at most %(f) +1,
when there are j exceptional addends.

By the first assumption the probability that there are j exceptional addends
in the subset sum is 5 (7).

When ignoring the values within brackets, the following calculation gives
the claimed upper bound =z, for the average number of trials needed for all
decipherments. If we take the bracketed parts into account, we get the claimed

upper bound y; for the average number of trials needed for one decipherment.

e | _ i probability that j | [average] number of trials (7
(we] | addends occur needed for [one] decipherment

1 &k 1 & [k 1 {2k 1
=2kl+1)§0(j) [+2_kﬁ]§(])] = 2k[+\)(k) [“"5]'

The formula for the sum of squared binomial coefficients can be found in stan-
dard mathematical handbooks. a

=0

The table shows values of z; and y, given by the lemma for small values of k.
For the meaning of z}, see below. We have also included the maximal number

of trials (Ucl;ﬂ)‘
Eome A we ()
1 1.00 1.00 1.00 1
2 1.50 1.50 1.25 2
3 2.50 2.50 1.38 3
4 4.38 488 2.25 6
5 7.88 8.66  3.97 10
6 1444 1645 7.23 20
7 2681 29.88 1341 35
8 5027 57.02 25.14 70
9 9496 105.70 47.48 126
10 18043 203.22 90.21 252

About assumption (ii) of the lemma

The second assumption of the lemma may look difficult to satisfy. Notice that
if the k x-elements are for example part of a superincreasing sequence, we can
decipher them with one trial but they do not satisfy the requirement.

The assumption is satisfied only if the k elements are of nearly equal size.
The exact meaning of this nearness depends also on the sum of the preceding
elements and the distance from this sum to the smallest x-element.

For example the knapsack 4 = {1,2,4,8,16; 33,37,38} with x-block X =
{33,37,38} satisfies the assumption. It suffices to show for j = 1,2 that j + 1
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exceptional addends cannot be tried if there are only j in a subset sum of
A. Subset sums with one addend from X range form 33 to 69. The minimal
subset sum of X with two addends is 70, which proves the claim for j = 1.
For j = 2 we note that the maximal subset sum of A with two exceptional
addends is 106, whereas the three elements of X give 108 together.

From the treatment of ; = 1 we see that changing 33 to 32, or 38 to 39
in X would contradict the assumption. Notice also that in any case A is not
injective: 37 =33 +4 (=32+4 +1).

How does the result of the lemma change, if the x-elements do not sat-
isfy the second assumption? The elements are then not close enough to one
another. Think about a couple of very big elements that (at least together)
exceed the sum of many smaller elements. If the big elements are present in a
sum with j exceptional addends, we will be trying the decipherment also with
more than j subtrahends. This means that there are more combinations than
(f) that we have to try in the worst case.

On the other hand, if the big elements are absent from the sum, we cannot
try all the (*) combinations of j subtrahends when reducing the sum.

IntuitiVe{y it seems that these effects cancel each other to a certain extent.
But it is doubtful whether it happens completely. We will next compute a
more rigorous estimate.

Suppose the assumption (it} of the lemma is changed to be

When there are j x-elements present in a subset sum s of A, we
cannot subtract more than j + 1 of the x-elements from s before it
becomes smaller than any of the remaining x-elements.

The formula (7) for z, in the proof will now give the following upper bound
for the average number of trials needed for all decipherments:

A T B o A 1 &k
Ty = = + = — .

CEtE Y (y) (j ¥ 1> tw X (1)
The first term corresponds to 0 exceptional addends, where the new assumption
causes no extra effort. In the first sum term the maximal number of trials
needed to find j addends has been changed to be at most (Jil) This exceeds
the actual number at least by k—j, because in case of the correct decipherment
we can only try with j addends, not 7 + L.

When j = [k/2],...,k — 1, we have (j) > J:_l). It is possible that we
can only try with 7 addends for each of these ; and thus the estimate for the
maximal number of trials must remain (;‘) in the second sum. This applies of
course also for 7 = k.

Instead of attempting to simplify the formula we include the values of x},
in the table above. We see that even for & = 10 the new assumption does not
increase the enciphering effort very much. For & <3 there is no change.

About the density

Suppose there is an x-block in an injective knapsack A of size n. Then p(A)
can exceed py{n) only if the block constitutes the largest elements of the knap-
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sack. This follows from Lemma 2.1 and our assumption of continuing with
superincrease after the block.

Suppose we only need to decipher subset sums with at most h addends
(h = n/2). If there are at least h + 1 elements in the knapsack after joining
the x-block, we may continue with new elements exceeding only the sum of
h previous elements. This would not increase the average number of trials
needed for decipherment.

If we weaken the superincrease in this way already before the x-block, the
averages may grow a little, especially if also the x-elements only exceed the
sum of h previous elements. This is because it is more difficult to satisfy the
assumption (i1) of the lemma. On the other hand, growth of the averages may
be inhibited by the fact that the smaller number of allowed addends may rule
out some combinations.

Several x-blocks

There may be several x-blocks in a knapsack. Deciphering a subset sum then
requires a number of trials that is expected to be roughly the product of the
averages connected with the individual blocks. If we want to insert 20 x-
elements in a knapsack, then computing according to the table we see that
two blocks of ten would require about 8.4 times more effort (2}, = 32553
trials) than four blocks of five (z¥ a 3856). For a single block of 20 the effort
would be about 34-fold (2,9 = 131461).

5.5 “Too small” a modulus

Let A be an injective knapsack of size n. Assume that 1 < k<n, misa
k-modulus for A and w is relatively prime to m. Denote B = wA (mod m).

We know that the knapsack B is k-injective, but it is possible that B is
fix-h-injective or h-injective for a value of h that is larger than k. This may be
difficult to show, if n is large enough for cryptographic use. We will investigate
how much extra effort the possibly missing h-injectivity causes. Basically the
treatment will be restricted to a fixed number of addends. Normally we are
interested in cases where h is near n/2. This is not necessary here.

Suppose that s, is a subset sum of B with h addends (1 < h < n), and s,
is the corresponding subset sum of A. Denote s = w™'sy (mod m). We have
ss = s (mod m) and thus s, = s + tm for some t = 0,1,.... In the search
for ¢t we cannot but try decipherment of s + um for all such values u, that
Smin < s+t um < S0, where 3., is the smallest and s,,,, the largest possible
subset sum of A with & addends.

Denote by z the number of possible values for u. If A is easy to decipher,
then all decipherments with h addends of s, can be found in time that is z
times the maximal time required to decipher a subset sum of A.

If we know s and m, we can compute the number z exactly. More generally,
z can be bounded by knowledge of h, k and A only. Firstly A = simaz = Smin
depends only on h and A. If we compute [£] we obtain either z or z+ 1. If
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we replace m here by the sum of the k largest elements of A we get an upper
bound for z. Unless k is very small, this is a reasonably tight bound, because
we may assume that m is not a (k+1)-modulus.

A derivation based on even dispersion

We will now derive an estimate for z under the assumptions that the knapsack
A is not very small and that its elements are approximately evenly dispersed
between a; = min(A) and a, = max(A). Let h = an.

Assumption of an even dispersion implies that the ith element of A is
approximately f(1) = a, +,:4';—1,(an—al), t =1,...,n. Hence the average of the
h smallest elements is approximately the same as the value of the function f in
the middle of 1 and A, which is f(’Jzi) = f(9n+§)‘ Similarly the average of the
h largest elements is approximately f(ﬁ:'l-'g—iﬂ) = f(n-2n+1). Multiplying
these averages by h and subtracting the results gives

1 -ajn

A= cm(

— (an — a)) = ol — a)nla, — ar),

where the approximation is justified because n is not very small.
Let k = fn. The sum of the k largest elements is approximately

my = kf("""_._.:zt_liﬂ) =fnf(n - §n+ %) = ﬂn(al + "—:‘%_:"T:i(an —al)).

Since n is fairly large and # < 1 we do not make a large error when ignoring
-% in the numerator and -1 in the nominator. Hence

miw (a4 (1= 2)(an - o)

and
A ol — ajn{a, — ay)

M Bn (o + (1~ 2)(an - ar))

Denoting v = 22 we can write this in the following form.
1

A _ali-a-1) _2(-a-1
me - B(1+(1-(v-1)) BRy-Br-1)

We state the result as a lemma.

Theorem 5.15 Assume that the elements of an injective knapsack A are ap-
proximately evenly dispersed between min(A) and max(A). Transform A with
k-modular multiplication to a knapsack B.

Let A > k. The maximal number of trials needed to find all decipherments
with b addends of a subset sum of B is approximately

_20(1-a)(y - 1)

AP = B =BG )
h
where o = o 8= - and vy = :?:((:)) o
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Properties of the function z. When considering z = z(e, 3,7) as a func-
tion of continuous variables o € (0,1), § € (0,1) and v € (1, 00), it is easy to
see that

¢ if only « varies then z is symmetric with respect to & = 0.5 and obtains
its maximal value at this point.

¢ the partial derivative of z with respect to f is negative, whence z is a
decreasing function of f.

¢ the partial derivative of z with respect to v is positive, whence z is an
increasing function of 4. If 4 grows to infinity then z tends to %’7%1{7%1

e if # > a, then z < 1. This can be seen by setting § = o. This gives
z < 1lify>1- 2 which is always true.

The following table shows the cryptographically interesting part of the func-
tion z(e, 3,v). Notice that if n = 200, the value # = 0.005 means 1-modular
multiplication. It seems that even such an extreme case can be handled when
the number of addends is also known. Such a modulus has the advantage of
having hardly any effect on the density of the knapsack.

z(e, B,7) a=0.5 a= {8;
g\ T1oo 3 5 oo 00
0.005 | 25.03 33.39 40.08 50.13 48.12
0.01 (1253 16.72 20.08 25.13 24.12
0.02 6.28 8.39 10.08 12.63 12.12
0.03 420 5.61 6.75 8.46 8.12
0.05 253 339 408 5.13 4.92
0.07 1.82 244 294 3.70 3.55
0.10 128 1.72 2.08 263 2.53
0.15 087 1.17 142 1.80 1.73
0.20 0.66 0.89 109 1.39 1.33
0.30 045 062 0.76 0.98 0.94

Remark 1. The values in the table estimate the number of trials needed to
decipher completely a subset sum of B, when the number of addends is fixed
and near 1|B|. The exact number of required trials can always be computed
in practical situations (for a given subset sum and number of addends, or an
exact general bound). In general all these trials do not lead to a decipherment
with the knapsack A. Furthermore all the succesful decipherments with A do
not necessarily correspond to the subset sum of B. And finally, among the
otherwise correct decipherments there may be such that do not have the right
number of addends.

Especially if our system has such parameters § and 7 that z(0.5,3,v) < 1,
then we expect to need only one trial to find a unique decipherment of every
subset sum of B, where we know the number of addends. This means that the
exact computations are likely to show that B is fix-injective.
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Remark 2. If we want to find an estimate for the effort needed when the
number of addends (k) is allowed to vary, we must determine the corresponding
range A = S;uz — Smin between the minimal and maximal subset sum of A. If
there is no restriction on h, this will give us A = s4. As in the derivation of
the lemma we have now s4 = in(a; + a,) and

a y+1
me B2y = B(y - 1))

For a comparison we compute the ratio

=: Z'(8,7).

- Z(By) _ v +1
) z(a, ﬁ,7) 20(1 - a)(7 - 1)

Actually r is the ratio of the two intervals (A’s), which explains why it does
not depend on 8. For a fixed v the ratio r has its minimum at a = 1. For a
fixed a the ratio is a decreasing function of v and tends to ;7 1’_0 as y — oo.

If all messages are equally likely to occur then almost all OI them contain a
number of ones that is between 0.4n and 0.6n (recall that n is not very small).
Thus, when the number of addends is given, the number of trials needed for
decipherment is almost always bounded by z{«a, 8,%), where 0.4 < o < 0.6.
Assuming that v > 2, we obtain the largest r by plugging in « = 0.4 and
v = 2. This gives r = 6.25. This is a factor that estimates the extra effort
caused by not knowing the number of addends, which is allowed to vary from
0 to n.

What if the elements are not evenly dispersed?

There are two contradicting goals to pursue when k-modular multiplication
is used: a small number of trials needed for decipherment and a high density
of the transformed knapsack B. A small k requires many trials but gives a
higher density. If we want to reduce the number of trials we may also try to
distribute the elements of the initial knapsack A in some way different from
evennes. Let us assume in the sequel that the number of addends in subset
sums is fixed to h, which is near n/2 (for simplicity).

1. Consider first the superincreasing knapsacks and their simple modifica-
tions (as in Sections 5.2 or 5.4). Their elements are approximately exponen-
tially dispersed. When h, the number of addends, is not very near n, the range
Smaz — Smin Detween the smallest and largest sum is very near s,,,,. On the
other hand this is already near the sum of all elements, s4. If we divide such
a range by a k-modulus we get a result that is quite near 1. As we will see
next, the ratio may be smaller than 2 already for a I-modulus.

If we use 1-modular multiplication for the knapsack A = {1,2,4,...,2"7!},
we can decipher all subset sums of the resulting knapsack B with two trials.
This is because 4 < 2, when the modulus m satisfies m > 277!, In most cases
two decipherments will be found according to A, if m is not much larger than
2"~1 As we already mentioned in Remark 1, it may well happen that only one
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of these carries over to B. Notice that the knapsack B without the element
corresponding to 2*~! is injective.

We conclude that for superincreasing knapsacks it does not make much
difference either in the number of trials or the density, whether we use a 1-
modulus or a strong modulus. Of course the (possible) lack of injectivity is an
essential difference, but we doubt that the modulus is still too large to hide a
superincreasing structure from the attacks that are based on equation (5) on
page 24.

2. Ifall the elements of A are of the same order of magnitude and the modulus
1s not much larger either, then most of the quotients 7% in equation (5) are
not very small. This would obviously cause difficulties for the cryptanalyst.

Elements of nearly equal size would mean a small value of ¥, and as we
infer from Theorem 5.15, this would be advantageous also for the number of
trials needed for decryption.

Knapsacks with small values of v (e.g. near 2) can be obtained especially
with the congruential construction of Section 8.1. The elements can also be
distributed approximately evenly, or in the way that will be described next.

3. Let us now return to reducing the number of trials by distibuting the ele-
ments suitably. We can make A smaller by concentrating most of the elements
in the middle of ¢; = min(A) and a, = max(A). The number of trials will
then be smaller than in Theorem 5.15, at least for k = 1. For larger k the
k-modulus my can be smaller than with even dispersion. This increases the
quotient ;“: but it may still not exceed the value in the lemma. Actually, a
rough estimate with an extreme concentration gives A & a, —a; (all the other
elements being almost equal) and my = an + (k — 1)1(a; + a,), whence

_é_~ A, = ay _ -1
me  an+i(k=D(a +a) v+ ik=D(1+7)

This is smaller than 1 for all values k > 1 and v > 1.

4. Suppose then that the knapsack elements are concentrated near max(A)
This seems to be typical for dense injective knapsacks. As an example consider
A = {156,248,296,319, 328, 329, 334, 339, 342, 350}. Choosing a small k for a
k-modulus is critical for the development of density. If there are only a few
very small elements then it may happen that the range A will not be very
large in comparison to max(A). In the example A = 347 < max(A), when
= n/2 = 5. For other values of i we get a smaller A (which is a general
property of A). Hence for any given number of addends we need only one trial
to decipher a knapsack, which is obtained from A by 1-modular multiplication.
Especially these knapsacks are fix-injective.
We transformed the knapsack A using the 1-moduli m = 351,...,361 and
all possible multipliers w = [m/2],...,m —1. None of the resulting knapsacks
were injective, not even 4-injective.
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We conclude this chapter by summarizing the study of temperate knapsacks
in three questions, that deserve further research.

1. What is the effort required for complete decipherment, when the number
of addends is either given, arbitrary or within some limits?

What is the bound for the number of trials a priori, i.e. when no
subset sum is given?

Can decipherment be essentially easier for some subset sums, and
if so, what is the average number of trials needed?

2. What is the probability that only one (acceptable) decipherment is found
(even if several trials must be made)?

3. What other ways are there to construct temperate knapsacks?

6 Modifications of some proposed knapsack
systems

Almost all proposed knapsack cryptosystems have been injective. All injective
systems can be generalized by using some weak form of injectivity. If no
assumptions of the construction or the trapdoor transformation can be relaxed
to achieve this, then adding a constant to the elements of the public key will
do it.

In this chapter non-injectivity will only be in a subsidiary role and in later
chapters even more so. We will present here three well-known knapsack con-
structions and modify slightly two of them, in Sections 6.1 and 6.2. The third
system in Section 6.3 is actually an outline of several construction algorithms.
We present it here because Chapters 7-9 can be viewed as generalizations of
it.

6.1 Merkle-Hellman multiplicative knapsack

Merkle and Hellman presented in [24] the following algorithm to generate mul-
tiplicative trapdoor knapsacks. The result is a ‘normal’, i.e. additive knapsack
A with n elements. Only using the trapdoor will lead to a multiplicative
knapsack.

1. Choose n relatively prime numbers py,p,,...,p,, greater than 1. These
numbers form a multiplicative knapsack that is easy to decipher: for each
¢ the element p; is present in a subset product = if and only if p, | .

2. Choose a prime ¢ that is greater than the product of all the p;.

3. Choose a primitive root b modulo ¢, that is, a generator of the multi-
plicative group of the finite field GF(q).

43



4. Compute the discrete logarithms of the p; to base b in the finite field
G F(q), and denote these by a;. Thus the a; are integers that satisfy

pi = 0% (mod g), I<a;<g-2
Denote A = {ay,az,...,8n}-

Assume we have a subset sum s = J_a; of A, Then

B o= b = Hb“’ = Hpj (mod ¢).

Since ¢ > I, pi, this shows that the smallest positive remainder of & mod-
ulo ¢ equals [T p;, i.e. the product of those p; that correspond to the g; in the
subset sum. Deciphering the product then solves also the subset sum problem.

Considering the way how injectivity of A is implied by the calculation
above, we see that A is also injective modulo ¢g—1. This follows from the fact
that b* = b (mod ¢) if and only if z = y (mod ¢-1).

The cryptosystem can be broken both by finding the trapdoor information
and by the low density attack, as shown by Odlyzko in [26]. If n = 100 and the
p; are the n smallest primes, then ¢ must be greater than 27° which means that
the density becomes very low, about —;—% If we know that there are at most h
addends in the sum instances, it suffices to take ¢ larger than the product of
the h largest primes among the p;. In the above case of n = 100 the value 50
for A would mean that ¢ > 2%%, This is an improvement but it still leads to
an insecure density.

We may try to improve the density further by using the non-injective ap-
proach of “too small” a modulus. We may compute the number of trials needed
to decipher a subset sum with & addends in the same way as in Section 5.5.
The number is [L(Tmaz — Tmin)], where m is the modulus, 7,4, and 7., are
the largest and the smallest product of the p; with h factors.

Suppose that p; are the n smallest primes in increasing order, n is not very
small, and A is relatively near n/2. Then 7,4, — ®pmin will be approximately
Tmaz = [Limn—ps Pi- Suppose that 1 < &k < h and m is slightly larger than
1Tz n—k41 Pis 1.e. the product of the k largest numbers p;. Then the number of
trials required for decipherment is at most but nearly H:‘:’""_Hlp;. This is a
product of h — k primes, which are not among the very smallest ones. Thus
the number is small only if £ is A — 1, or perhaps ~ — 2. Since we need a
temperate knapsack, we cannot improve the density very much in comparison
to an h-injective knapsack. For example if » = 100 and & = 50, we have 233
trials for k = 49 and 55687 for k = 48.

A modified construction

Assume that py,pq,...,p are t distinct primes, ¢ > 1. Assume that the ¢-
dimensional vectors & = (e;,...,ex), ¢ = 1,...,n, consist of non-negative
integers. If the vectors é; are distinct, we may consider theset £ = {éy,...,&,}
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as a t-dimensional additive knapsack and apply to it all the other suitable
terminology we have in use. For i = 1,...,n denote

t
— €iy
T = HPJ‘ .
=1

If the set E possesses some of the injectivity properties of Definition 5.1 (i)-
(iii) then the set R = {ry,...,r.} has the corresponding properties when
considered as a multiplicative knapsack. If furthermore it is easy to decipher
the (relevant) subset sums of E, then the same is true of the corresponding
subset products of R. We may namely easily factor each such product, and
presenting the multiplicities of py,...,p; in the factorization as a vector gives
the corresponding subset sum of E.

Now we can construct a trapdoor knapsack A as in the algorithm above
by starting from phase 2 (using the r; instead of the p;). If we can do with an
h-injective or fix-h-injective knapsack then it suffices to choose ¢ larger than
the product of the & largest numbers among the r;. Doing so we must require
that E is h-injective or fix-h-injective correspondingly.

The Merkle-Hellman system uses h = ¢ = n and

é{‘:(ov"'»ovivov""o)v

that 1s, r; = p; for + = 1,...,n. A different choice of the set E may give
trapdoor knapsacks with higher densities. No substantial improvement is to
be expected, however, as we will see next.

If we want to keep the density as high as possible, we should only use
the smallest primes and also small values for the components of the &. This
leaves a very limited set of numbers r; at our disposal. This would mean that
Odlyzko’s attack would find the trapdoor. Sufficient for this is namely that
one knows several of the numbers r;, and that ¢ is not too large.

As an example consider the case n = 100, h = 50. As it will be seen we
can take t = 90. Let py,pz,...,pso be the first 90 primes in increasing order
(Poo = 463).

We do not construct the vectors &; explicitly. Instead choose the values
T1y...,7r17 as the following powers of the 7 smallest primes.

z'A]1234567891011121314151617
r,']8 32 64 128 3 9 81 5 25 7 49 11 121 13 169 17 289

The exponents of 2 form the set {3,5,6,7}, which is an injective knapsack. The
exponents of 3 form the superincreasing knapsack {1,2,4}. For all the other
primes included in the table there are only the exponents 1 and 2. Until now
we have used the primes py,...,ps. For1 = 18,...,100 set r; = p;,_;¢. Clearly
the set {ry,..., 7100} is a multiplicative knapsack, whose all subset products
are distinct and also easy to decipher.
Since r5; = pg = 179, among the 50 largest of the r; there is only the
number 289 from the table above. Thus the lower bound for ¢ will be 289 -
10, = 289 - 12, =~ 2% Using such a g for phases 3 and 4 of the
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construction algorithm gives us a 50-injective knapsack with density at most
0.2415.

We might think of generating a temperate multiplicative trapdoor knapsack
by allowing the knapsack F to be temperate. An upper bound for the density
of such a knapsack can be computed by assuming that the numbers r; are taken
tobe 2,3,4,...,n+1. Even in such an extreme (and not very temperate) case
the prime ¢ becomes considerably larger than 2"~! — also if it only exceeds
the product of the [2] largest of the r;. This shows that knapsacks based on
the multiplicative trapdoor scheme cannot be secure, at least without further
modifications.

More general sum instances

Although we only deal with subset sums in this thesis we note the following
generalization of the original multiplicative trapdoor scheme. Some of the
elements of A can appear in sum instances with multiplicities higher than 1
and we still have unique and easy decipherment if ¢ is sufficiently large. For
example if ¢ is chosen larger than the square of the product of all the p; then
we may decipher every ternary vector T’ € {0,1,2}" from the product T- A. By
restrictions similar to A-injectivity we may obtain somewhat more reasonable
size for . The reason why this kind of a modification could be useful is that
the special vector é searched by the low density attacks (cf. p. 11) is not so
short when several components of é are greater than }. It seems however that
the density is still too low for this approach to offer any security.

6.2 Graham-Shamir knapsack

The following construction can be found in [35].
1. Construct a superincreasing knapsack A.

2. Represent each element of A in binary form. Assume that the longest
sequence is t bits long.

3. Catenate zeros in front of each of these binary sequences so that they
become t + 1 bits long.

4. Catenate arbitrary binary sequences in front of these. Denote the result-
ing set of integers by A.

The knapsack 4 is easy to decipher, because taking only the ¢ + 1 lowest order
bits of a subset sum gives a subset sum of the superincreasing knapsack. Notice
that if s4 < 2¢, then the length t suffices in phase 3 (and in decryption). The
knapsack A is finally transformed into an arbitrary looking knapsack B by the
normal strong modular multiplication.

The attack by Adleman in [1] showed that strong modular multiplication
fails to hide the superincreasing structure. The knapsack is insecure also be-
cause of its fairly low density. To get an impression of this, assume that the
knapsack size is n and the bit sequences of phase 4 are randomly chosen from
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0,...,2" — 1, where r is not very small. Then the elements of A are nearly
evenly dispersed between 2'*! and 2'*"*! with the exception of a few cases
where the sequence is 0. The average size of the elements will be at least 27!
and hence the sum of A is at least n2*". Since A is superincreasing, we have
t > n, and the sum of A is at least n2**". This is an estimate for the largest
element of the knapsack B, whence

n

—_—. 8
n+r4logyn (8)

p(B) =
If n < 135 this formula does not give for any r > 0 a density higher than 0.95
(cf. the critical densities on p. 13). For n = 200 and r = 3 the formula gives
0.949.

If we let A be any injective knapsack, we may get a B that is resistant
against the Adleman’s attack. However the problem of density cannot be
remedied in this way, because we must now choose the ¢ in phase 2 so that
2! > s4. Since always s4 = 2" — |, we have again t > n.

A deterministic modification

We may try to avoid the decrease of density by choosing the highest order
bits so that the modular multiplication yields a result of moderate size. This
means giving up the advantages of randomness, but the extra bits may still
be useful in hiding some structures that may be vulnerable if only a modular
multiplication is performed. For example the congruential knapsacks of Section
8.1 may benefit from this technique.

In the following algorithm the highest order bits are joined as extra bits
to elements of a knapsack A, giving a knapsack A, which is transformed to a
public key B. The original Graham-Shamir scheme is actually only modified
by exploiting [%}-injectivity. Assume for simplicity that n is even, and not
very small.

n

1. Construct an %-injective knapsack A = {a;,...,an} that is easy to deci-

pher.

2. Compute such a t that 2 is greater than the sum of the % largest elements
of A.

3. Choose an v > 1, a modulus m > 3n2"**~% and a multiplier w that is
relatively prime to m and not very small.

4. For each a; € A find the number v;, 0 < v; < 2" — 1 that gives the
smallest remainder of w(v;2' + a;) modulo m, and denote this remainder
by b;. Denote a; = v;2° + a;.

5. 1f m is an Z-modulus for the knapsack A = {&,...,d,}, use B =
{b1,...,bn} as the public key. Otherwise go back to phase 3 and choose
another w. If this does not appear to help (in a few rounds) choose a
larger m.
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In the construction 2+ a; means that we first catenate zeros in front of the
binary representation of a; so that it becomes a t-bit-long sequence &;. Then
we put a 1 in front of &; as the (¢+1)th bit. In & = v;2' + a; we multiply this
bit by an r-bit number v;, which means catenation of the bits of v; in front
of &;. For each ¢ we have chosen the v; so that wa; (mod m) is the smallest
possible.

As in the original Graham-Shamir knapsack, it is easy to decipher all subset
sums of A with at most 2 addends, because the ¢ lowest order bits in these
sums give the corresponding subset sums of A. If the knapsack B is accepted
in phase 5, then it was obtained from A by 2-modular multiplication in phase
4. Hence 2-injectivity and the ease of decipherment is guaranteed for B. It
remains to discuss the density.

Density. Let us first explain the choice of m. If the numbers v; were chosen
randomly, we would expect to get at most n(3-2"+¢=3 — 2!-%) 4+ 2! as the sum
of the 2 largest elements &; = v;2' + a; of A. The first term is % times the
average of the numbers v2', v = 277! .., 2" — 1. According to phase 2 the
second term 2' is an upper bound for the sum of the 2 largest elements of A.

The numbers v; are not random, however. Instead v; depends on q;. If
the knapsack A were random, then the distribution of the components in the
vectors (vy,...,v,) would also be random. It seems very unlikely that the
injectivity and easiness of A would cause considerable deviation from this ran-
domness. Notice that already a small change in a; changes v;, because w was
assumed not to be very small.

Since n is not very small we have n(3 - 27+¢"3 — 2¢-2) 4 2¢ < 3n27+¢-3 and
we expect that numbers larger than this will qualify as 2-moduli for A. Trying
with another w before increasing m is just to avoid bad luck in this respect.

Let us now turn to the density of B. For an estimate assume w2' (mod m)
is not very small in comparison to m. We have chosen each b; from a set of 2"
residuals of the form vz + y (mod m), where v varies from 0 to 2" — 1 and z is
not very small. Since such residuals are approximately uniformly distributed
between 1 and m ~ 1, we expect to have b; ~ %. Since m = 3n2"+*73| the
density of the knapsack is

N n _ n
- log,(3n27+-32-7) 7 ¢ — 3 4 log, 3n’

p(B)

We see that the special choice of the r highest order bits allows us to completely
eliminate their effect on the density.

Suppose now that the initial knapsack A is relatively dense, p(A) = py(n),
and its elements are approximately evenly dispersed in the range 1,...,2""!.
Then the sum of the 2 largest elements of A is approximately 3n2"~*. Now ¢
must satisfy 2 > 3n2""* and hence t & n — 4 + log, 3n. This gives

n n n

~ ~

B}y =~ = R~ .
o(B) t~-3+log,3n n-T+4+2log,3n  n—3.83+2log,n

This is an increasing function of n and approaches 1 as n grows. But for
example n = 200 gives only 0.946. Although we now have an A with even
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dispersion, the result is only slightly lower than 0.949, which we computed for
the original Graham-Shamir knapsack from equation (8), with n = 200 and
r=3J.

If we assume also here that A is superincreasing, we can estimate ¢ with n
and the last calculation gives

n n

B) ~ = ,
p(B) n—3+log,3n n-—1415+log,n

and we get 0.970 for n = 200.

For further improvement of the density we must use some non-injective
technique. As we already noted, the elements of A are approximately evenly
dispersed. Hence we may use the estimate of Theorem 5.15 for the approach
with “too small” a modulus. Notice that although our modification cancels
the effect of the amount of the extra bits, they still cause the need of a large
modulus. In comparison to an evenly dispersed initial knapsack A this effect
lies completely in the additional zeros that are required in the construction.
This is also the reason why the modification does not improve the density very
much.

A “disconnecting” modification

If the initial knapsack A is not superincreasing (and not even near it), there
may be nothing special to hide in its highest order bits. On the other hand,
insertion of zeros in the middle of the elements of A may help hiding their
structure, together with the subsequent modular multiplication. These zeros
cause a similar decrease in density as the zeros in the Graham-Shamir scheme
when applied to a non-superincreasing knapsack. There are no obvious ways
to compensate this effect, except the use of “too small” a modulus. We will
evaluate this approach after presenting the algorithm. Assume again that n is
even and not very small.

1. Construct an Z-injective knapsack A = {a;,...,a,} that is easy to deci-
pher.

2. Choose such a p > | that none or not very many of the a; satisfy a, < 2*.
Denote by d; the integer consisting of the p lowest order bits of a; and
by ¢; the integer consisting of the remaining bits. Thus a; = 27 + d;,
L =1,...,n.

3. Compute the smallest ¢ such that 27¥7 is greater than the sum of the
g largest integers among dj,...,d,. Compute d; = ¢;2P*? + d;, which
means insertion of g zero bits between the p’th and (p+1)th bit of a;.

4. Transform the knapsack A = {&;,...,d,} to a public key B by t-modular

multiplication, where t = 3.
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Decryption. Assume we have a subset sum ¥ b; of B with at most % ad-
dends. Inverting the modular multiplication gives the corresponding subset
sum § = ¥ @, of A. Denote by & the integer consisting of the p + ¢ lowest
order bits of 3 and by v the integer consisting of the remaining bits. Thus
§ =42P*7 + 4. On the other hand § = 2°*9 Y ¢; + L d; and by the choice of
q we know that 3" d; does not interfere with bits higher than p + ¢ — 1. Thus
§=%djandy =Y ¢,and s = 422 + 6§ = 2? " ¢; + L d;. That is, s is the
subset sum of A that corresponds to ¥ b;.

Density when the modulus is “too small”. Let us first show that ¢ is
at most [log, n] — | and usually equals this number or this minus 1. Usually
the p lowest order bits of the elements of an easy knapsack have no specific
structure. Hence the % largest elements d; are approximately evenly dispersed
between 2P~! and 2P — 1. Their sum is roughly 3n27~% and in any case it is
smaller than n2P=1. Now 27*? must be larger than the sum.

Using the upper bound we get 2P*9 > n2P~! whence ¢ > log,n — 1. This
shows that g never needs to be larger than [log,n] — 1. On the other hand,
using the average we get 29t? > 3n27~3, which gives

qg>log,n +1log,3 -3 = log,n—14.

In some cases this allows ¢ = [log, n] - 2.

Suppose again that the initial knapsack A is relatively dense, p(A) = p3(n),
and its elements are approximately evenly dispersed in the range 1,...,2""!.
Since we are interested in fairly small values of & we can approximate a k-
modulus m for A by k27!, For all : we have @, < 2%, so that m2? will be a
k-modulus for A. The k-modular multiplication gives a knapsack B with

max(B) & 2k2*" & 3n27%2"" = 3nk2"t

and hence

n
p(B) =~ n—2.415 + log, nk’

For n = 200 this gives a density higher than (.95 as long as k¥ < 40. Theorem
5.15 implies that for so large values of k¥ we need a very moderate number
of trials to decipher subset sums, where the number of addends is known. In
some cases we may be even able to show that the knapsack B is fix-injective
as suggested in Remark 1 after the theorem.

6.3 Constructions proposed by Desmedt et al.

Desmedt, Vandewalle and Govaerts define in {10] two classes of knapsacks
where it is easy to decipher one bit of the message. The class EH consists of
such knapsacks where one element exceeds the sum of all the others. The class
ED consists of such knapsacks where all elements except one are divisible by
an integer d > 1. In both cases the presence of the special element in a subset
sum can be directly checked and so the bit corresponding to this element can
be easily deciphered.
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As we mentioned in Section 1.5, Desmedt et al. showed that there are
knapsacks that cannot be obtained by strong modular multiplication from any
of the knapsacks in a certain class. This class is EH U ED U ES where ES
stands for Graham-Shamir knapsacks (before strong modular multiplication).

The following algorithm is presented in [10] for construction of public en-
ciphering keys:

1. Start from a knapsack A that is easy to decipher, e.g. a superincreasing
or a Graham-Shamir knapsack.

2. Transform A to A’ with strong modular multiplication or some other
secret transformation.

If the size of A’ is sufficient then stop and use A’ as the public key.

3. Igtroduce such a number a and transform A’ to such an A, that A” =
AU {a} is injective and easy to decipher. Two examples of this step
follow the ideas of EH and ED:

(i) Set A := A’ and choose a so that it exceeds the sum of A’.

(ii) Choose an integer d > 1 and set A := dA’, choose a so that it is
not divisible by d.

4. Set A:= A” and go to step 2.

If strong modular multiplication is used in step 2, the density of the result-
ing knapsack will be very low, regardless of which of the methods (i) and (ii)
is used in 3. To see this write the knapsacks of phases 2 and 3 with a subscript
J indicating the round.

Strong modular multiplication causes an approximately even dispersion of
the elements of A7, at least if A’ is not very small any more. This means that
sar R 31A}|max(A}). As soon as |A%] > 6, this means that sS4 is at least
3 max(A}).

The modulus in step 2 during the (+1)th round will be at least 6 max(A’).
Namely, after method (i) it is at least o + sa, 2 3+ 3) max(A}) and after
method (ii) at least 2s4 2 2 3max(A}).

Thus, the maximal element increases with a factor at least 6 as new ele-
ments are introduced. This means that the density will eventually sink well
below 1.

Chapter 7 generalizes the above algorithm and Chapters 9 and 8 can be
seen as generalizations of the methods (i) and (i1). Lemma 2.2 is a special case
of the above algorithm, when identity transformation A’ := A is used in phase
2 and d = 2 in (ii) of phase 3.
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7 Construction of injective knapsacks from
smaller knapsacks

With random experiments we can fairly easily find injective knapsacks with
up to, say 12 or 13 elements. Knapsacks of such sizes can also be deciphered
easily by precomputed tables of all their subset sums.

In Section 7.1 we discuss conditions on obtaining easily decipherable knap-
sacks by iteratively joining small knapsacks to a large knapsack. The idea
generalizes the algorithm of Desmedt et al. [10] that was reviewed in Section
6.3. In that algorithm new elements are iteratively joined to the large knap-
sack. We will present two types of realizations of our idea, but neither one
gives anything new when applied to the restricted situation of that algorithm.
One simple example of the realizations is presented in Section 7.2, and the
more complicated situations will be studied in Chapters 8 and 9.

7.1 A general framework

Assume that we have a collection of small injective knapsacks B;,1 = 1,2,...,r.
Suppose also that A, is an injective knapsack that is easy to decipher. It
may have been generated by superincrease or with some of the constructions
presented in Chapter 6 and in this case it can also be quite large. On the other
hand it could be like one of the B;.
The idea is to construct a large knapsack A,4) in the following way:

Aiqr = filA) U gi( Bi), t=1,...,7, (9)

where for example f;(A;) means the knapsack resulting from application of the
integer function f; to each element of A;. The functions f; and g¢; should be
such that the knapsack A;,, is injective and easy to decipher. This should be
possible to deduce from the corresponding properties of A; and the fact that
B; i1s small.

Concerning the functions f; and g¢; it is quite obvious that we can do more
complicated things only with the small knapsack B; and not with A;, which is
typically quite large already when 1 is 4 or 5.

Thus, when deciphering a subset sum of A, we should first be able to
decide, which elements from ¢;(B;) are involved in it. Then, after subtracting
these, we obtain a subset sum of f;(A;), where we must be able to go back
to A; and its constituents. That is, similar requirements concern f; as the
trapdoor transformation f that we discussed in Section 4.1.

Let us now state a general property concerning the injectivity of the union
of two injective knapsacks. The same idea was present already in the search
algorithm on page 18. We first introduce a new notation.

Notation 7.1 Denote by D, the set of all positive pairwise differences of
subset sums of a knapsack A.
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Since 0 is a subset sum, the set D4 contains especially all the subset sums
of A, except 0.

Theorem 7.2 Assume that A and B are injective knapsacks. For the union
AU B to be injective it is sufficient and necessary that D4 N Dg = §.

Proof. Assume first that Dy N Dg = §. Take two coinciding subset sums of
AU B, and denote them by T, and T,. For i = 1,2 denote by ¥,, and T,
those parts of 3; which stem from the sets A and B correspondingly. Thus

iatlie= L= =Lt e (10)
Without restriction we may assume that 3,4, > 5,4. We then have
Tia— o= o~ i (11)

where both sides are non-negative. They cannot be positive, because this
would contradict our assumption that Dy N Dg = §. Thus ), = ;4 and
18 = 25, which by injectivity of the knapsacks A and B gives that the
sums 3_; and 3_, have the same addends. This proves injectivity of AU B,

Assume then that AU B is injective. A common element in the sets D,
and Dg would give us an equation (11) with both sides positive. This would
lead to an equation {10) with coinciding but different subset sums of AU B,
which would be a contradiction. Thus D4 N Dg = 8. ]

Example. Let A = {9,20,26} and B = {13,18,23}. The subset sums of A
and B are

Sa4 = {0,9,20,26,29,35,46,55} and Sp = {0,13,18,23,31,36,41, 54}

and hence
Dy = {3,6,9,11,15,17,20,26,29,35,37,46,55}
D = {5,8,10,13,18,23,28 31,36,41,54)
Since Dy N Dp = § we know that AU B is injective. 0

There are two basic ways to provide injectivity for the union. The first is
based on considerations of the magnitude of the elements. The second method
deals with residuals of the elements with respect to some modulus. If we
choose one method to prove injectivity, it is difficult to imagine that we could
use some other method to decipher. This does not mean that we could not
change the method for different z in the equation (9).
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Magnitude

If the knapsack A is large it is not practical or even possible to write down
the set D,. Since our basic goal is to construct relatively dense knapsacks,
we must have p(A) at least about py(JA|). In such a knapsack already the
subset sums form quite a dense set in the sense that there are not large gaps
between successive members of the set. It is obviously very difficult to find
gaps between successive members of Dy, except at the high end of this set.
For example the two largest elements of D4 are s4— min(A) and s4.

By deductions concerning magnitude we mean that we are only able to
restrict the subset sums of a knapsack and their differences inside or outside
one single interval. In our case of joining two knapsacks A and B we thus need
such an interval [d,, d,] that

DA - {d],dg] and DB N {d], dz] = @ (12)

The minimal d; obviously equals s4. Note that we may interchange the names
of A and B if needed — A is not necessarily a large knapsack and B a small
one.

Case 1. Assume first that dy = 1. This means that all elements of Dg are
greater than s, which, on the other hand is greater than 214l — 2,

Suppose A is the small knapsack to be joined to the large knapsack B.
What was said above about the gaps implies now that to satisfy min(Dg) > s4
we must in practice have a common factor d > s4 in the elements of B. Since
iB is an injective knapsack we know that max(B) is about 2/4l times larger
than the injectivity of B would need. This effect determines the development
of density, because the small knapsack A is joined below the elements of B.
Multiplication by 2" where r is the number of new elements amounts to roughly
a similar development as with superincrease.

Suppose then that A is the large knapsack. If B is small enough we can
satisfy min(Dg) > s4 without a common factor d > s4 in B. In any case the
elements of B must be larger than s4 and differ from each other by amounts
that are larger than s4. If there is not a common factor it seems that these
gaps must amount to at least such growth of max(B) that corresponds to
superincrease. The elements of B need not superincrease however, for an
example see Section 7.2. If there is a common factor, the development is
similar to the case where B is the larger knapsack.

Case 2. Assume now that d; > 1. With the same arguments as above we
deduce that A is (at least roughly) the same as d; times another knapsack.
What this implies to the density depends on how great a part of Dp lies below
dy. If the whole of Dg is there, then d; > s and we have a similar result
as above. This is the consequence also if the whole knapsack B lies above d,,
even if some small differences of it were below d;.

If there are some elements of B below d,, then d; must be larger than their
sum and again, joining these small new elements cause superincreasing growth
proportional to their number. The rest of B will do the same for their part.
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Residuals

If residuals with respect to some modulus m are used to ensure injectivity and
enable decipherment of AU B, then these deductions cannot allow very much
freedom to the residuals of the larger knapsack, suppose it is A. Instead the
residuals must be used to distinguish and decipher that part of a subset sum
that stems from elements of B. Some elements of A not being 0 modulo m
would restrict considerably the possible values for residuals that are used for
this partial decipherment. Decryption would then have to happen with respect
to some divisor of m. This divisor will then divide all the elements of A.

We may thus assume that A has been obtained from another knapsack by
multipying it by m. In order to distinguish all subset sums of B modulo m
we must have m > 218!, Multiplication by such an m means that the largest
element of the knapsack grows as if we had joined the |B new elements in the
superincreasing fashion.

Other principles?

We do not know any general method, not based on residuals, of inserting
new elements between the elements of an existing knapsack, so that the new
knapsack would be injective. We can introduce new elements to the Merkle-
Hellman trapdoor knapsack if the modulus is large enough to allow insertion
of new primes in the multiplicative knapsack. But this method only works
for this type of knapsacks. As it was discussed above, deductions based on
magnitude seem to be too complicated if they interfere with the inside of the
set D4 of a large knapsack A.

7.2 “Three elements”

As a simple construction of type (9) based on magnitude we present the fol-
lowing lemma. It can be used to construct non-superincreasing knapsacks of
any size (> 2) by taking the initial set A for example one of the following: @,
{1} or {1,2}. The empty set is not a knapsack but that does not matter in
the construction. Naturally s = 0.

Theorem 7.3 Assume A is an injective knapsack that is easy to decipher.
Choose such integers a, b and ¢ that

a > 2sy4, b>a+sy, c> b+ sy, a+b>c+ sy
Then AU {a,b, ¢} is injective, easy to decipher and not superincreasing.

Proof. To prove the injectivity assume that s is a subset sum of the new
knapsack. The following table shows all the different cases concerning the
presence of the new elements in the sum. Using the defining inequalities we
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see that the intervals in which s then belongs are disjoint (the last column).

present s lies within the interval

none [0, s4]

a [a,a+s4] C (2s4,a+34)

b [b, b434] C  (a+s4,b+s4)

¢ [e, c+sa) C  (btsa,ctsal

a,b [a+b,a+b+s4] C  (c+s4,a+b+sy)

a,c [at+ec,a+ctsa) C  (at+b+sa,atc+sy)
b,c [b+c, b+e+s4) C  (a+ctsa,bt+e+sy]

a, b, ¢ [a+b+c, a+btc+sa] C  (b+c+2s4,a+b+o+sa)

Reading the middle column from bottom up we see an obvious algorithm for
first judging which of the new elements are present in the sum and then sub-
tracting them.

Since a < b < ¢, but ¢ < a + b~ s4, we see that the knapsack is not
superincreasing. o

Remark. We could only require for a that a > s,, but from the other
inequalities it follows that a > 2s4.

Joining three new elements to A in the superincreasing fashion would re-
quire the third new element to be greater than 4s4. Now the construction
requires that ¢ > 4s,4 which means that the density of the new knapsack is
comparable to the superincreasing construction. However, the sum of the new
knapsack is now greater than 10s4 which is more than 8s4, which is a lower
bound for the fourth new element in the superincreasing continuation of A.

Example. Supposing that s4 = 99 we can take a = 200, b = 300, ¢ = 400.

8 Constructions based on residuals

8.1 Congruential knapsacks

Lemma 8.1 Assume A and B are knapsacks that are injective modulo the
integers my4 and m 4 respectively. Then the knapsack mgA U B is injective
modulo m 4mpg.

Proof. Assume that two subset sums J°, and ", of mA U B are congruent
modulo mymp. Fori = 1,2 denote by m ¥, and ¥ ;5 those parts of _, which
stem from the sets mA and B correspondingly. We thus have

mpliatiig = mMpiaatlas (mod mymp).

This gives
Lig = 2Lap (mod mp),

which implies by modular injectivity of B that the addends in 5,5 and 3.5
are the same. Hence 715 = ¥ ,5 and we have

mpya=mpyqa (mod mampg),
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which gives
Lia =T34 (mod my),

and by modular injectivity of A we have that also the addends in 3,4 and
24 are the same. u]

Theorem 8.2 Assume that the knapsack B = {b;,..., b} is injective modulo
an integer m., Assume also that the modular subset sums are easy to decipher.

If the knapsack A is injective and easy to decipher then the same is true
of the knapsack mA U B’, where B’ = {#,,...,8:} and 3, = b; (mod m),
1=1,...,k

Proof. From Theorem 5.3 (iii) we know that A is injective modulo s4 + 1.
Clearly B’ is injective modulo m. We can infer the injectivity of mA U B’ by
applying Lemma 8.1 with m4 = s4 + 1 and mpg = m, together with Theorem
5.3 (i).

Without using the lemma we could see the injectivity from the following
algorithm which clearly always gives a unique decipherment. Furthermore the
algorithm shows that it is easy to find the decipherment. Given a subset sum
sof mAU B

1. Find the subset of B giving a sum congruent to s module m.
2. Subtract the corresponding elements of B’ from s.

3. Divide the result by m and decipher according to A. 0

Definition 8.3 Following the idea of Section 7.1 perform the construction of
the theorem iteratively with an initial knapsack A, and the knapsacks B;, B!
and Ay = miA;U B, i=1,...,r. The result is

A,H=m,(m,-,(...m2(m,A,UB;)UB; )uB;,,>UB; (13)

and it is called a congruential knapsack. In addition to this notation we
denote in the sequel A = A,,,, n = |A]

Modular decipherment of an integer s refers to finding such subsets of
a knapsack that the subset sums are congruent to s modulo a given integer.

Applying Lemma 8.1 inductively we obtain the following theorem.

Theorem 8.4 If A; = @, then the knapsack A,4 in (13) is injective modulo
the product my---m,.

Constructing the modular knapsacks B;

Random search can be efficient only if the knapsack size k is not very large.
Even then it can be difficult to find injective knapsacks modulo an m that does
not exceed 2% very much. Recall that a knapsack of size k can be injective
modulo m only if m > 2%, Suppose we have already found one knapsack.
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Then we can use modular multiplication to produce new modularly injective
knapsacks according to Theorem 5.7. Usually this gives a different knapsack
for each multiplier, which means that there is a good choice of knapsacks.

If random search has not produced any knapsacks that are injective modulo
m, one can always use an injective knapsack for which m is a strong modulus.
The basic superincreasing knapsack B = {1,2,4,...,2¢"!} will always be such,
and if m > 2%, also some other superincreasing knapsacks are possible. We
computed the number of these as a function of m — 2% and plotted it in the
log-log figure below.
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Notice that if the modulus is 2% and B is used, the result is the same as
when applying & times Lemma 2.2.

One can also try with such injective knapsacks, whose sum exceeds the
modulus, but then the modular injectivity must be checked. This will obviously
succeed considerably more often than purely random search, but is not possible
if k is very large.

Distributing the elements

Suppose that we always insert the elements of B! between m, min(A;) and
m; max(A;). Choosing a ¥ congruent to a b € B; modulo m amounts to
adding the decimal part of ;i— to one of the integers min(A;),...,max(A4;) — 1.
We see that there are max(A;) — min(A;) choices.

Denote § = max(A;) — min(A,). Then the number of choices for each
element of B; equals § for i =1 and m_ym;_y---m§ for 1 =2,...,r.

The relative position of every new b-element remains the same in all sub-
sequent knapsacks A;. Together with the degrees of freedom that every &
has, this suggests that we can distribute the elements of the final knapsack in
roughly any way we want, with the exception of the elements stemming from
A

Density

Assume that Ay is an injective knapsack of size n) and that max(A4,) < a2™.
As we saw in Chapter 3, a can easily be for example 0.4, when n, > 5. Denote
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ki = |B:] and m; = (1 +¢;)2% fori = 1,...,r. Suppose the £ are small
non-negative numbers, for example around 0.05.
Suppose we never insert the elements of B! above m; max(A,). Then

max(A) =Tmy:-m, max(Al) S o™ H(l + E.’)
=1
and the density of A is

n n

T Z 1 T ’ (14)
n+logya+ i log,(1 + &) n+log,a+ o5 Lis &

p(A) 2

where the last inequality follows from

In(1 + ) z
log,(1 = el < D > 1.
og:(1 +7) In2  ~ In2 *
If we want to achieve a certain density p we must choose the parameters so

that

Se <2t —n) - Ina (15)
=1 P
For example p = pz(n) = =25 requires ¥ ¢; < 0.223 when o is 0.4, regardless
of n. It can be seen that p; can only be achieved if & < 0.5.

For fixed densities larger than 1 the requirement becomes more and more
strict as n grows. For densities below 1 the effect is opposite. For the density
0.95, with & = 0.4 the bound is 1.61 when n = 100, but only 8.21 when

n = 200.

The trapdoor transformation

When we perform a k-modular multiplication on the knapsack A to obtain a
knapsack A’, we usually suffer a loss of density, unless £ = 1. Assume that
we use a modulus m = xmax(A). Then the knapsack A’ is likely to satisfy
max(A’) = k max(A) and we obtain the density

n

A =
p(4) n+logy ka + 5 T &

For a specific density p we must now have

ZE;S]DQ(%—H)—-]DK&. (16)

i=1

It is not likely that we could achieve the density p, if we use k > 1. This
follows from the fact that the second largest element in the dense knapsack
Ay is relatively near the largest element. In all dense injective knapsacks with
a < 0.4 that we know of, a 2-modulus would have x > 12, To achieve p,
would require o < 951 = 0.3. We do not know any injective knapsacks that
would be this dense. As we mentioned in the end of Chapter 3, we believe that

there are such knapsacks. The congruential knapsack would obviously benefit
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if such knapsacks were found, although for small & their A-moduli would most
likely be quite near k max(A).

Suppose a = 0.4. Setting 3_¢; ~ 0 in (16) shows that it is possible to
achieve the density 1 if the modulus is at most 6.8 times max(A). This estimate
does not depend on n.

If we want to use an [}]-modulus for a knapsack A where the elements are

approximately evenly dispersed, we have x ~ 2 and

n

p(A) = — - . (17
(4) n+l°gzig-+n,laz.'=15i

For example when n = 200, o = 0.4 and T_&; = | this gives the (hopefully)
non-critical density of 0.969.

8.2 Obvious attacks and countermeasures

As such the congruential knapsack reveals its structure quite easily. Assume
that we have the patience to compute all the pairwise greatest common di-
visors. Let m be the largest of these. Then compute the greatest common
divisor of m with each element (if not known already).

The elements will fall (at least roughly) into r» + 1 disjoint sets where the
gcd with m in the ith set is of the form mymiyy - mpyy, 1= 1,007+ 1,
where m,,y =1 and mym,---m, = m.

The first set will be a candidate for the initial knapsack A, times m. For
t=2,...,r+ | the ith set will be a candidate for m;m;,---m,1B/_,. This
division and the value of r may differ slightly from the original ones. We can
try to adjust the division by moving some elements to sets with higher indices
¢ (assuming that they accidentally have too large common divisors with m).
This may be necessary if in some sets there are far too many elements for
modular injectivity.

We may always consider a couple of elements separately, in the spirit of
random elements of page 32. Even more extra elements can be handled if we
use the temperate approach of the next section.

It seems that we can discover a congruential structure that enables deci-
pherment, even if it does not coincide with the original one. It also seems that
the search for m and the subsequent classification can be conducted so that
one does not need to compute all the pairwise ged’s.

If a constant has been subtracted from each element, the above analysis
of the knapsack structure becomes only slightly more difficult. Choose one
element and subtract it from all the other elements. If it happened to stem
from the initial knapsack, then the greatest common divisor method will yield
the same result as above. If it did not, then trying with other elements will
gradually lead to better classification as often as the element is “nearer” to
the iitial knapsack.

If the subtrahend remains unknown it may be impossible to use the congru-
ences for decipherment. However, the discovered large divisors of the original
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elements pose quite a lot of restrictions on the subtrahend. It may also be re-
vealing to know that the elements of the knapsacks B; have not been very large.

Suppose now that the congruential knapsack A has been multiplied mod-
ularly to give A’ = wA (mod m). The elements of A’ are of the form d} =
wa; + u;m, where all the u, are likely to be different if w is not very small
in comparison to m. The factorizations of the a! are likely to be completely
different from those of the a; and this is true also for the differences a; — d.

Attacks exploiting the fact that many of the quotients -7+ are very small
{cf. p. 24) are likely to have difficulties if none of the a; are much smaller than
the others. This can be achieved for example by always inserting the elements
of B/ between m,; min{A;) and m; max(A;). Furthermore the modulus m and
hence the elements a} can be relatively small, if m is a k-modulus with a fairly
small k. Such a non-injective knapsack can be kept very temperate, again with
a suitable dispersion of elements.

As we have seen the modularly multiplied congruential knapsack can still
have a fairly high density, at least if the modulus is allowed to be “too small”.
To achieve high densities, the sum ¥_7_,¢; has to be very near zero. The
smaller it must be, the fewer alternatives there are for the moduli m;. This
is the case also when r grows. There are two effects that cause this. Firstly
the bound of §_ &, must be shared with more moduli. Secondly, the knapsack
sizes k; become smaller, and with them decreases also the number of integers
in the ranges [2% ... (1 + ¢;)2%]. For example ¢ = 0.0005 would leave only
m = 1024 for k = 10, whereas for k = 20 there are still 525 alternatives.

Further countermeasures. After the first one or two rounds of the con-
struction algorithm the number of choices for the new elements is large enough
also for other purposes than providing a suitable dispersion. They can be cho-
sen to have large common factors with several of the previous moduli. This can
make it more difficult to find small enough sets with the same greatest com-
mon divisor, even if this approach somehow were possible in the modularly
multiplied knapsack.

For this end it may be wise to choose the moduli so that they are not primes
and several of them have common factors. This can be achieved by using fairly
large moduli and hence also large knapsacks. As we mentioned above, this also
gives more variety for the moduli without decreasing the density. On the other
hand, there are fewer moduli when the knapsacks are larger.

A different trapdoor. We can obviously scramble the congruential struc-
ture quite thoroughly by using the “disconnecting” modification of the Graham-
Shamir knapsack (see p. 49). The problem of density can be cured with a small
k-modulus. We will need some non-injectivity also here, but the versatility of
the congruential knapsack offers also an additional remedy.
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Recall that in this modification we insert ¢ zeros after the p lowest order
bits in the elements of a knapsack A. Usually we have ¢ = [log,n] — 1 or this
minus 1. When 128 < n < 256, this is 7 or 6. Because of the large number of
alternatives for the new elements it should be possible to choose all or almost
all of them so that there are 5 or 6 zeros in the high end of the p lowest order
bits in the final knapsack A. This means that the sum of the [5] largest of
the p-bit numbers is determined by those numbers stemming from the initial
knapsack A,. If |A,| < 10, then it suffices to take ¢ = 3, or with bad luck
g = 4. A smaller value of ¢ means that we can use a k-modulus with a larger
k without decreasing the density too much.

8.3 A temperate modification

In general, if z extra elements are inserted in an injective knapsack, a complete
decipherment requires 2° trials, We will show how the effort can be consid-
erably smaller than this, when we insert the x elements in knapsacks B; of a
congruential knapsack, one in each. Let us first investigate the situation from
the viewpoint of one knapsack B = B; of size k, k > 1.

Assume we have such an m that 2¥=! < m < 2F. Construct a knapsack
By of size k — 1 that is injective modulo m and easy to decipher modularly.
Choose a positive integer A not congruent modulo m to any element of Bj.
Denote B = By U {f}. The knapsack B is not injective modulo m, but every
integer has at most two modular decipherments according to B (i.e. modulo
m). For : = 0,1,2 denote by D, the number of integers between 0 and m — 1
that have i modular decipherments. We have

Do+ D+ Dy=m and D)+2D, =2
Taking into account that all the D; are non-negative we can deduce

Dl =2k—2D2

¥ - m < D, < 2k} { .
ms Uy S and Dy = m+ Dy — 2*

The upper bound of D, would occur, if all subset sums with 3 were congruent
to those without 3 (a case which we have not wittnessed). The lower bound
occurs, when there are m modularly distinct subset sums. According to our
experiments the lower bound can usually be achieved, but not always. The
knapsack B = {4,5,11} is an example of this. It is injective modulo 14, but
there are never more than 13 modularly distinct subset sums of BU {#}. The
value 13 is reached only when # = 6 or 8.

The ratio p; = % gives the probability that a given integer has  modular
decipherments. If the integer is known to be congruent to a subset sum of B,
then the probability of ¢ decipherments is ¢; = #2i= for i = 1,2, and 0 for

’ D+ D,
1= 0.
The expected number of modular decipherments of an arbitrary integer is
T=1p+2p; = l(D +2D _Z (18)
=1pi+2p = —(D 2) = —,
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which is independent of the choice of B. The expected number of modular
decipherments of a subset sum of B is

D, 2D, 2k

= = . 19
D1+D2+D1+D2 m — Dq (19)

&

This shows the obvious fact that we should minimize Dq, or D;, when con-
structing B.

If k is not too large, we can compute the subset sums of B, and choose such
an element § that Dy is as small as possible. As a result of these computations
we will have a table of the modular subset sums. which can be used during the
deciphering process.

If k is large, we do not know how to adjust the value of A. The decipher-
ment(s) of an integer s can be found by attempting to decipher both s and
s = f according to By.

An average for D,

Consider all possible knapsacks By, and assume that the extra elements 3
generate random collections of 2~! modular integers when added to the subset
sums of By.

Denote u = 2¥-! and let 0 < j < u. The equation D, = j means that
J of the new sums coincide modularly with the old ones. By the assumption
of randomness the probability of this, P(D; = j), can be computed in the
following way.

Suppose we have m slots and among them a fixed subset of u slots. We
allocate u tokens to the slots randomly, at most one in each. The probability
that the fixed subset gets exactly j of the tokens is the same as P(D, = j).

Thus we can write ( )( )

using the convention that (:) = 0 if y > z. The probability is 0, when
u—j >m—u, that is, when j < 2u — m. This is the same bound for D; as
before.

The average of D, can now be computed directly from the hypergeometric

distribution. We get,
R u? 22k-2
D‘Z = e— =
m m

Our assumption on the randomness may be true only approximately because
the modular subset sums of B, are not totally randomly distributed. Their
distribution is however more random than that of the non-modular subset
sums. We believe that D, gives a good impression of what happens on average,
when we construct the knapsack B without making any adjustments of the
extra element f.
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The average deciphering effort

We already computed the average number of modular decipherments according
to the knapsack B. The average is 7 for arbitrary integers and w for subset
sums. Always = > w and the two are equal if D, is at its (a priori) minimum.

Suppose now that we have a generalized congruential knapsack A as in
equation (13), but with the r knapsacks B; being like B above. Denote the
decipherment parameters of B; by 7; and w;.

Consider the deciphering process of an arbitrary integer. We can proceed
as in the proof of Theorem 8.2, but occasionally the process is divided into two
branches, and sometimes a branch must be cut off because the B; in question
provides no decipherment.

If we have z branches to decipher with the knapsack B;, then we expect
to get mir decipherments and thus we give 7z branches to decipher with the
next knapsack B;_,. We infer that the initial knapsack A, is expected to get
[T7., m: branches to be processed. The probability, that an arbitrary integer in
the range 0 to s4, is a subset sum of the dense knapsack Ay, can be as low as
0.5 (cf. Chapter 3). So we expect that Ay will cut off several of the branches.
Actually, there can be some cutting off already before we come back to A,.
This will happen if we only forward such branches that belong to the range
of the next knapsack A;. Our experiments show that this indeed reduces the
effort, but has an effect only quite near the end.

What was said above applies to an arbitrary integer that we try to decipher.
Of course it may turn out that there is no decipherment at all. On the other
hand, we only have the trivial upper bound 27 for the number of decipherments.
Intuitively it seems that the modular non-injectivity of the B; only leads to
moderate non-injectivity of A. .

Consider now a subset sum of A. We know that for every knapsack B;
at least one of the branches that it gets corresponds to a subset sum. That
is, the number of decipherments for this branch is expected to be w. It is
difficult to infer the nature of the other branches. Supposing that they all
correspond to subset sums, we get similarly as above, that the average number
of decipherments before A, equals [T}, wi.

In any case we know that for a subset sum of A there are on average between
[1i-, = and [}, w; partial decipherments that must be completed with A,.

Connections to the density

The main motivation of non-injectivity is to increase density. The formula (14)
is valid also when some or all of the ¢, are negative. This gives a possibility to
relate the density and the number of decipherments.

Consider again the knapsack B and its parameters. The choice of m implies
that m = (1 +5)2*, where —0.5 < ¢ < 0. Using this representation for m gives

1
1+¢

o=
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and

_ when D; = 2F —m = —2%¢  (the minimum)
w= l+ﬁ- WheDDQZDZZ% ’

We see especially that for an average knapsack B the parameter w is somewhat
larger than 1.333. If we have for example 10 knapsacks with w = 1.4 we know
that on average there are no more than 29 decipherments.

Assume in the sequel that we deal either with the minimal or average case
of D;. Denote w by &, when it corresponds to D,.

If the absolute values of the e; are not very small, the latter inequality
in (14) gives too pessimistic estimates. To avoid this let us use the original

estimate
n

A) > .
SR T S AN TR Y
To increase the density we should have 3 log,(1 + ¢;) as far below zero as

possible. On the other hand we should have either HTJ-IT or [T(1 + 34}7) as
small as possible. Since

1
log, I 1+e ~ > logy(1 + &),

&

we see that the density estimate is in one-to-one correspondence to the ex-
pected number of decipherments, under the assumption that either the knap-
sacks B; are chosen with minimal D,, or we are deciphering random integers.

It is easy to see by using a Lagrange multiplier that in case of [J(1 + 5+sz)
the best result is obtained, if all the ¢, are equal. In practice the ¢, (if not 0)

must be at least slightly different, if we do not want that all the moduli m;,

and’the knapsack sizes k; = | B;| are the same.
Assume now that e; = ¢ for all i. We should choose £ and r so as to
minimize both 3" log,(1 + ¢;) and the bound &™ = (1 + ﬁ) . Fixing a value

s =rlog,(1 +¢) gives e = 27 — 1. As a function of r we have

= () = G==r) . e
O = = r> —s.
427 — 1 §-9-lr) 4

The bound for r follows from the condition ¢ > —0.5. The function appears
to be increasing for all negative s, which we induced from plots of & against
r. We do not enter into any further details, but illustrate the situation with
an example.

Example. Suppose we do not want to cause extra ambiguity by too small a
modulus and hence take an %-modulus.

Suppose we have an initial knapsack A, with 11 elements and the parameter
a = 0.4. Construct a generalized congruential knapsack A with 200 approxi-
mately evenly dispersed elements. A computation analogous to the inequality

(17) gives for the transformed knapsack A’

N 200
T 204.907 + 0, log,(1 + €4)

p(A)

65



which is actually an approximate lower bound. If 3" log(l + &;) = -6, the
formula gives 1.00550, which is slightly larger than p,(200) = 32 = 1.00503.

Suppose we construct r knapsacks B; of the same size k = {g with respect
to moduli m; =~ (1 + ¢)2¥, where rlog,(1 + ¢) = —6. The following table
lists the possible values of r and gives 7™ and &" as if all the m; were exactly
(1 +¢€)2~

r k £ " w"
7 27 -0.4480 64 68
9 21 -0.3700 64 95

21 9 =0.1797 64 2066
27 7 -0.1428 64 11041
63 3 -0.0639 64 3.2-10°

The values do not change radically if we attempt more modest densities.
For example the density 1 with r = 27 gives ¢ = -0.1183, 7" = 30 and
@" = 8132, On the other hand, the density 1 + [—052;"-/3 cited on page 13 is
1.03322 for n = 200. To achieve this we need 3_log,(1 + ¢;) = ~11.34, which
gives 7" = 2587. Notice that now the values 7 and 9 are not possible for r.

For large k, like 21, we cannot minimize D, and thus we may have to cope
with &7, but as we see, it is not very large then. For small k¥ we can optimize,
and it seems to be also necessary because then & can be prohibitively large.
Notice however that very small values of k can cause difficulties, because the
modulus must be an integer. For example when k = 3, there is no modulus
m near (1 + £)2* = (1 — 0.0639)8. The nearest integer is 7 which would give
e =-0.125 and 7" = 4503.

9 Constructions based on magnitude

We present in Sections 9.1 and 9.2 two different ways to realize the idea of
Section 7.1. Section 9.3 slightly generalizes the latter construction. All these
methods will typically produce non-superincreasing knapsacks. According to
the discussion in Section 7.1, these constructions cannot however lead to good
results in density.

The presentation is oriented towards proving injectivity and does not refer
to the ease of decipherment, All the systems are however of type AU B where
the elements of B are larger than s,. If B is not very large and A is easy
to decipher, then according to Lemma 5.14 and the discussion after it the
decipherment is possible with a reasonable number of trials.

9.1 Union of a multiplied and a shifted knapsack

We will construct from two injective knapsacks A and B a new injective knap-
sack of the form wAU (d+ B). We will start with a new notation and a couple
of simple lemmas.

Notation 9.1 Concerning a knapsack A denote by A; the largest difference
between two subset sums where the number of addends differ by ¢ (i =

0,1,...,1A].

66



Example. For the knapsack {5,7,10,13, 14} we have the following A;

0 1 2 3 4 5
Aj]15 25 32 39 44 49

Notice that As equals the sum of the knapsack.

Lemma 9.2 (i) If |[A| = 2k, then A, is obtained when the sum of the & — (3]
smallest elements is subtracted from the sum of & + |3) largest elements.

If JAl = 2k + 1, then A, is obtained when the sum of the k — |5) smallest
elements is subtracted from the sum of k& + [5] largest elements.

(ii) H |A] > 3, then Ay > max(A) and A;<iAy, fori=2,...,]A]

Proof. (i) Assume 0 < i < |A| and let 3, and 5°, be two subset sums in
which the number of addends differ by the amount i. Denote

A=3-2s
and apply the following obvious principles to maximize A.

- We may remove all common addends from the sums without changing

A.

- In case 1 > 0: If T, contains more addends than ¥, then moving :
addends from ¥, to ¥, increases A.

- If there are two elements which do not appear in either of the sums, then
A may be increased by introducing the larger one to 5", and the smaller
one to §_,.

- If an element not appearing in either of the sums is larger than some
addend in 3°, then interchanging these elements will increase A, and the
same works if the element is smaller than some addend in ¥,.

- If there is a pair of elements the larger of which appears in 3, and the
smaller one in 3, we can increase A by interchanging those elements
between the sums.

To see that the result is as claimed, we only need the following two ob-
servations. Since [%J + ['5'] = 1, the numbers of addends in the claimed sums
differ by the amount required. Furthermore, in both cases the maximal possi-
ble amount of knapsack elements are involved in the claimed sums (1e. all, or
all but one).

(ii) Assume |A| > 3. Then A, equals max(A) plus a positive difference of two
sums,

If © = 2,...,|A|, then A; equals A;_, plus one element of A. Thus A
1s obtained by adding i ~ 1 elements to A;. Since A; > max(A), we get
A¢ < 1A 0
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Lemma 9.3 Let A be a fix-injective knapsack. Choose an integer d > A,.
Then

(i) both the knapsacks d + A and d — A are injective and

(ii) the difference between two subset sums of d + A is either smaller than
Ag or greater than d — A,

Proof. The following treatment concerns either one of the two knapsacks d+ A.
Take two subset sums ¥, and ¥,. For 1 = 1,2 let k; be the number of
addends in the sum 5,. Then ¥, = k;d £ T}, where ¥_! is the corresponding
subset sum of A.
If ky = k;, we have

|1 -T2 = 1E1 -3 | < Do

From the equation we see that if the sums ¥, and ¥, coincide then so do the
sums "7 and ¥, which by the assumption on A implies that the addends are
the same.

Suppose now that |ky — k;| =1 > 1.

T~ el = (ki = ka)d £ (T - )| >
>k~ kold— | T =S4 2 id = Ay > i(d — Ay),

where the last inequality follows from Lemma 9.2 (ii). Since d > A, we see
that the sums ¥, and ¥, cannot coincide in the case |k; — k2| > 1. The proof
of injectivity is thus complete. From the derived inequalities we see that also
the claim (ii) is true. o

The following theorem is a direct consequence of Theorem 7.2 and corre-
sponds to the situation of equation (12), with d, = 64 and d; = s4. It will be
used in the next theorem in the special case when all the elements of B are
greater than s4.

Theorem 9.4 Assume that A and B are injective knapsacks. Denote 64 =
min(D 4), that is, the minimum of all positive differences between two subset
sums of A. Assume that any two subset sums of B differ from each other an
amount that is either smaller than 64 or greater than s4. Then the knapsack
AU B is injective. 0

Theorem 9.5 Assume that A and B are injective knapsacks, and denote 6, =
min{D4). Use the notation Ay and A, for B. Choose such integers w and d
that

why > Ay and d> A + wsy.

Then the knapsacks
wAU(d+ B) and wAU(d- B)

are injective.
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Proof. Firstly, s,4 = wss and min(Dy4) = wd,. Secondly, the knapsack
d £ B is injective by Lemma 9.3 (i). From Lemma 9.3 (ii) it follows that the
difference between two subset sums of d+ B is either smaller than A, or greater
than d— A,. By assumptions we now know that this difference is either smaller
than wé, or greater than ws,. Thus the knapsacks wA and d + B satisfy the
conditions of the Theorem 9.4 and the claim follows. G

Example. Let A = {3,5,6,7} and B = {5,7,10,13,14}. Now s4 = 21 and
64 =1and for B we have Ag =15 and A; = 25 as in a previous example.

The values w = 16 and d = 362 satisfy wé, > Ay and d > Ay + ws,, and
hence the knapsacks

wAU (d + B)
wAU (d - B)

{48,80, 96,112,367, 369, 372, 375, 376}
{48,80,96, 112, 357, 355, 352, 349, 348

are injective. Since w and d were the smallest possible, these are the densest
knapsacks that can be constructed from A and B in this way and order. The
densities are 1.0521 and 1.0660, and both are lower than p2(9) = 1.125 although
A and B have high densities.

If we try in the other order, and again with the smallest possible parameters
we get the injective knapsacks

6BU(305+ A) = {30,42,60,78,84,308.310,311,312)
6B U (305 — A) {30,42, 60,78, 84,302, 300, 299, 298},

which are slightly denser than the previous ones.

9.2 Union of a knapsack and its sum times another
knapsack

We construct from two injective knapsacks A and B a new injective knapsack
of the form AU B’, where B is roughly the same as s, B.

Theorem 9.6 Assume A and B are injective knapsacks. Choose a positive
integer r and put a = s4 + r. Then define B = {§,..., big} with

f:ab{+d{, i:l,...,lBl,

where d; are such integers that ZLBJ‘ |dil < r. Then the knapsack AU B is
injective,

Proof. Assume that two subset sums 3, and Y7 of AU B’ coincide. For
i = 1,2 denote by ¥, 4 and ¥;5 those parts of T, which stem from the sets A
and B’ correspondingly. We thus have

ZM +le' = Zx = 22 = 224 +Z?B’

and hence
Tia=Toa = Cap - Dipe = labi+ d) - S(aby +4,). (20)
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We will show that the subset sums 3 b; and T_b; of B coincide. Assume
the contrary: 3_b; # 3_b;. The absolute value of the RHS of 20 is

o(Th-T8) - (Sd-Ta)2
S0 ST S ST

1B}
a—Z]dk]>sA+r—r=s,4.
k=1
This is a contradiction because the absolute value of the LHS of (20) is at most
SA-

We conclude that 3~ b; = 3_ b;. This means, by injectivity of B, that these
sums have the same addends. Hence also the sums 3,5 and 3,5 have the
same addends and (20) is an equation of zeros. From ¥, 4 — ;4 = 0 we finally
deduce by injectivity of A that all the addends in the sums ¥, and T_; are the
same. This proves the injectivity of AU B’. )

Remark 1. If the knapsack B is superincreasing with #; > 2b; (and all the
d; = 0) then the theorem only means superincreasing continuation of A. The
integers d; could not help very much in this respect. The idea is of course
that B is not superincreasing and the main purpose of the d;’s is to hide the
multiplier a from being a common factor of the b..

Remark 2. Some, but not all, instances of the “three elements” system of
Section 7.2 can be considered as a special cases of this. For example A U B’
is a “three elements” system, when s4 = 9 and B’ = {20,30,40}. We get this
system now by choosing B = {2,3,4},r =l and d, = dy = d3 = 0.

Consider then the “three elements” system {10} U {21,32,43}. If it is to
be of the form A U B’ according to the theorem, we must have A = {10} and
B’ = {21,32,43}. Otherwise the smallest element of B’ would not exceed the
sum of A. Let us now try to find an injective knapsack B = {b,, by, b3} for the
construction. This requires that by > 4, and we must have such integers r, a
and ds that

r21, a=10+r, |ds]<r and aby+ds=43.

Since b3 > 4 and ¢ > 11 we must have d; < 0. Taking into account that
a > 10 + |ds] we have

aby +ds > (10 + |d3])bs — |d3] > 40 + |da](b5 — 1) > 43,

which is a contradiction.

Remark 3. The condition 2@1 |dy] < r in the theorem cannot be improved
by letting for example ZLB:’, |di| < r. To show this take A = {1,2} and r = 1,
which means that a = s4 +r = 4. Now let B = {1} and take d; = —1. Then
B' = {41-1} = {3}, but AUB' = {1,2,3} is not injective.
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Example. Take A = {3,5,6,7} and B = {2,3,4}. Choose r = 3, and
dy =1,d; =0,ds = —1. Since s4 = 21, we have a = s4 + r = 24 and

B'= {24241, 24340, 24-4 — 1} = {49,72,95}.
The resulting knapsack
A= AUB ={3,56,7,49,72,95}

is injective by the theorem, but its density is not very high: p(A) = 1.065 <
1.167 = po(7).

9.3 Residuals “rescuing” the injectivity

When looking for (small) dense knapsacks we may find a knapsack that is
nearly injective. Suppose that the knapsack is fix-injective. Then the injectiv-
ity may be “rescued” using Lemma 9.3. The following theorem generalizes the
lemma with the construction of Theorem 9.6. Notice that B can be “rescued”
also alone, because the theorems 9.6 and 9.7 remain valid, if we allow A to be
the empty set, and use s, = 0.

Theorem 9.7 Assume that a knapsack B and an integer m satisfy the fol-
lowing condition: Whenever two different subsets of B correspond to the same
sum, then the numbers of elements in these subsets are not congruent modulo
m.

Assume that A is injective and all its elements are divisible by m.

Choose a positive integer r and put a = s4 + 7. Choose an integer ¢ such
that, ged(e,m) = 1. Define B’ = {b1,...,big)} by choosing such integers d,
that

|B|
Z]dk]<r and b = ab; + d; = ¢ (mod m), i=1,...,|B|

k=1
Then the knapsack A U B’ is injective.

Proof. The proof is identical to the proof of Theorem 9.6 up to the conclusion
Y bi = L b;. If we can now deduce that these sums have the same addends
then the proof is completed in the same way as before, when the coinciding
sums )y and 3, turned out to have the same addends.

Assume on the contrary that the two sums correspond to different subsets
of B. By assumption the sums have such numbers of addends, say k, and ko,
that ky # &, (mod m). The same is then true of the sums 3,5 and 2B

Now for the sums 3,5 and 3,5 we have

g = Z(ab; +di) = kic (mod m) and T ,p = ke (mod m)
and
ZlB’ ’2231 = (kl - kQ)C ;—é 0 (mod m),
because k; — k; # (mod m) and ged(¢,m) = 1.
Since the elements of A are congruent to 0 modulo m, we now have that

the sums 3=, and ¥, are not congruent modulo m. This is a contradiction
because we assumed that these sums coincide. a
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Remark. Suppose B is fix-injective. If B is dense then no element equals
the sum of all the others. Consequently m = {B| - 2 is a possible value for
the modulus in the theorem. Namely all sums with 1 or {B| — 1 addends are
different, as we just said, and the same is of course true for sums with 0 and
{B| - 2 as well as with 2 and |B| addends.

The modulus m is essentially the “price we have to pay” in making the
knapsack injective. Firstly, starting from a general A we have to multiply it
by m, which means that instead of s4 we have ms,. On the other hand the
larger m is, the more space the integers d; may need to satisfy the congruences.
Allowing this space means an increase in 7.

Both these effects enlarge the value of a, which is the multiplier of B and
directly affects the density.

Example. The knapsack B = {1,2,3,5} satisfies the requirements of the
theorem for m = 2. This can be seen by computing all the 16 sums. Four of
them appear twice, but each time one of them has an even number of addends
and the other an odd number. Use A = @, s4 = 0 and ¢ = | in the theorem.
The multiplier @ = 2 will not do, because it would lead to 3 |di] = 4. With
a = 3 we get the injective knapsacks {3,6 +1,9,15}.

The knapsacks

By = {2,5,8,14,24,43,44,45} and B, = {1,22,38,45,48,50,51,52}

are quite dense, obviously denser than any injective knapsack of this size. To
use the theorem, B, requires that m > 4, but B, will do with m = 2.

Assuming A = @ and m = 4 it turns out that the smallest multiplier a for
By is 9 when ¢ = | and 10 when ¢ = 3. The smaller modulus m = 2 for B,
allows us to take a = 7 when ¢ = 1. In all of these cases the transformation
results in a density below 1.

10 Chor-Rivest system and modified usages

Chor and Rivest presented in [7] a knapsack cryptosystem that is based on
arithmetics in finite fields. A modular reduction of the sum can be carried out
during encryption, but the trapdoor is not based on modular multiplication.
Instead there is some similarity to the Merkle-Helman multiplicative trapdoor
knapsack. Also here the knapsack consists of logarithms of a multiplicative
knapsack, but now the elements are chosen in a special way from a large
finite field. Lenstra [19] proposes a cryptosystem that uses this multiplicative
knapsack and avoids the laborious computation of discrete logarithms. We will
not consider this system here.

The Chor-Rivest knapsack is generally not injective. It is fix-h-injective
modulo ¢* — 1, where the value % in practical systems is approximately %
times the knapsack size q.

To our knowledge the Chor-Rivest system has not been broken. After
noting that their low density attack does not threaten the security of the
Chor-Rivest system asymptotically Coster et al. write in [9, p. 124]: “On the
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other hand, for moderate sizes of the problem (such as a challenge version of
the Chor-Rivest knapsack with n = 103 that was constructed by B. Chor)
solutions can be found with nonnegligible probability. Thus to obtain secure
cryptosystems, one has to use very large values of the basic parameters, which
makes this system less attractive.”

We review the system in Section 10.1. In Section 10.2 we present some
modified ways how the system could be used either to increase security or to
avoid the difficulty of constructing very large knapsacks.

We have investigated the Chor-Rivest knapsack from an algebraic point of
view in [16]. Those results may have some significance in deeper analysis of the
security of the cryptosystem, but in the present study we do not need them.

10.1 Chor-Rivest system

We first recall some basic facts about the finite fields. For more details we
refer the reader to [21] or to the more concise treatment of [22].

If pis a prime and m a positive integer, we will denote with Fym the finite
field that has p™ elements. The cryptosystem is based on a field extension
between two fields F, C F,», where g is a power of a prime and h > 2. The
number h is the degree of the extension and F,» is defined as the smallest field
containing both F; and the formal root z of an irreducible polynomial f(z) of
degree h from the polynomial ring F,[z].

The elements of Fyx are represented as polynomials from F,[z] of degree
at most A — 1. Addition and multiplication are carried out between these
polynomials and the remainder modulo f(z) is the result. This means that
only polynomial calculations need to be performed, the coefficients being from
the base field F,. However, if ¢ = p™ and m > 1, the field F, must first be
constructed similarly with respect to the prime field F,, which is simply the
set {0,1,...,p — 1} with modulo p arithmetic.

In the cryptosystem the number ¢ will be the size of the knapsack and h
gives the fixed number of addends in the sum instances. According to Chor and
Rivest, ¢" could be for example 19724, or even 256%°. Discrete logarithms must
be computed of ¢ members of the extended field. This is the most laborious
part of the whole cryptosystem. For the Pohlig-Hellman algorithm [28] to
work efficiently it is advantageous if the largest divisor of ¢* — 1 is not very
large. This is why also the degree of the field extension A should have suitable
divisors (for example, if d | h, then ¢% — 1 is a divisor of ¢* - 1).

Construction of the knapsack

Suppose the field setting (i.e. ¢ and k) has already been chosen. We proceed
by choosing an element t from Fyn that is of degree h over F, i.e. a root of
an irreducible polynomial of degree h from F,[z]. Then we choose another
element g that is primitive, i.e. a generator of the multiplicative group o
(which is always cyclic).

Since all the non-zero elements in F,» are powers of g, we can use g as
a base for the logarithm. We now choose an integer d, 0 < d < ¢* - 2 and
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compute the knapsack
A= {log(t+k)+d|keF},

where the elements have been reduced modulo ¢* — 1.

Notice that the initial definition of a knapsack is slightly extended, since
zero may occur as a member of A. This does not affect decipherability because
the number of addends in sum instances will always be h.

Encryption

The public key consists of the integers ¢ and h and the elements of A in some
permuted order. To simplify the notation we do not pay attention to this
permutation.

To encrypt a message it must first be transformed into blocks of ¢ bits that
contain exactly h 1's. For each block the elements of A corresponding to the
1's are added and reduced modulo ¢* — 1.

Decryption

The decryption algorithm requires that the arithmetic of the field F;» has been
constructed by using just that irreducible polynomial f(z) € F,[z] that has ¢
as its root.

Suppose we are given an integer s that is a sum of h elements of A. The A
addends or actually the corresponding elements of F;, will be found as roots of a
polynomial. Suppose we have already eliminated the effect of d by subtracting
h-d (mod ¢* - 1).

We compute g° € Fi». As a polynomial of F,[z] ¢° has at most h —1 roots.
We now add to it the zero of Fys in the form z* — r(z), where r(x) has been
computed in advance by reducing z* modulo f(z).

As a result we get a polynomial o(z) € F,[z] that is of degree h. Since we
only added a zero we have o(x) = g’ in Fu.

For some elements k; € F,

A
s=) log(t+ k).

=1
Since the polynomial representation of t as an element of Fyu is ¢ = x, we have

h
o(z) = ¢’ = 1z + k) € Ffal.

=1
We find the roots —k; of this polynomial by simply computing its value at the
points £ € F,. Knowing these roots amounts to knowing which elements of A
were added to form s.

It is possible to modify the encryption algorithm to allow repeated addends.

In this case we may find fewer than h elements k; from the roots and need to
divide o(x) repeatedly by each x + k; until we also find the multiplicities.
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Density

When we construct a Chor-Rivest system in the field setting Fyn, we get a
knapsack of size ¢ where the largest element is a¢® with 0 < a < 1. If ¢* is not
very small, « is generally very near 1. Thus the density of a real size knapsack
is slightly more than

p(q, k)

The figure below depicts the curves p(q, k) = C, for various constant values of
C. In addition there are two other curves where C is a function of the knapsack
size q. In the first curve C = p,(q), whence this curve delimits those pairs (q, k)
for which the density is higher than the highest superincreasing density. In the
last curve (' is the upper bound from Lemma 2.1 for the density of an injective
knapsack. Since p{(q, k) is a lower bound for the density of the Chor-Rivest
knapsack with parameters ¢ and k, we know that below the last curve there
are no injective Chor-Rivest knapsacks.

For the proposed parameters ¢ = 197 and h = 24 the density of the knap-
sack is at least

__q
hlog, ¢’

197
log, 197

and for a knapsack of size 197 the injective upper bound is 1.0-4().
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10.2 Modified usages of the Chor-Rivest knapsack

We will not try to modify the Chor-Rivest system itself. Instead we use it as
a part of other knapsack constructions.

Additional trapdoors

Although the trapdoor is difficult to find from a Chor-Rivest knapsack it is in
principle possible by an extremely lucky guess. If we apply some additional
trapdoor transformation to the knapsack then the task will most likely require
two extremely lucky guesses.

75



Strong modular multiplication is actually the only general trapdoor tech-
nique that is applicable to any given knapsack. In case of a Chor-Rivest
knapsack it does not appear to be vulnerable in the way it is with the superin-
creasing knapsack, because there is no easy structure to be looked for behind
the multiplied knapsack.

The problem with strong modular multiplication is that it will decrease
the density, even if the initial knapsack is dense (actually, especially in this
case). If we have a Chor-Rivest knapsack A with parameters ¢ and A we may
perform an h-modular multiplication. The new density will be above but near
q/ log,(hq*), which is not so much worse than before if h is not very large in
proportion to ¢. For the proposed parameters ¢ = 197 and A = 24 this formula
gives 1.0506, whereas the original density was at least 1.077. The new density
is still above the upper bound for the density of an injective knapsack.

Since A is fix-h-injective modulo ¢" — 1 we might think of an additional
trapdoor multiplication where the modulus is just ¢* — 1. This will indeed work:
if ged(w, ¢* = 1) = 1, we can transform every subset sum of wA (mod ¢ -1
with A addends to the corresponding sum of A. The only problem here is that
wA (mod ¢* — 1) is just another Chor-Rivest knapsack. To show this assume
that

A= {log(t+k)+d|keF}

where the base for the logarithm is g. Denote b = g*"", where w™! is the
inverse of w modulo ¢* — 1. We have now w = (log b)~! and

wA = {88 wd ke Fy}  (modg" - 1).
On the other hand 11—"0—5 is the logarithm of r to base b. Thus we see that

wA (mod ¢* — 1) is a Chor-Rivest knapsack with the same element ¢ as in A
but with g*~" instead of g and wd (mod ¢* — 1) instead of d.

Usage of Chor-Rivest as a part of a larger knapsack

We may try to exploit the high density of a Chor-Rivest knapsack by taking
it as a starting point of the iterative constructions proposed in Section 7.1. In
this way we may avoid the effort of constructing large Chor-Rivest knapsacks.

There is a difficulty in this approach and it is the fact that we can decipher
a Chor-Rivest knapsack with parameters ¢ and h only when there are exactly
h addends in its subset sums. We sketch an attempt to solve this problem by
using superincreasing construction as a simple example of the ideas of Section
7.1

Assume A, is a Chor-Rivest knapsack with |A;] = ¢ and the required
number of addends is h. Now extend A, to a larger knapsack A by joining new
elements in the superincreasing fashion. The first new element will be greater
than the sum of A, etc.

Choose an upper bound k for the number of addends in subset sums. As-
sume further that the number is always given together with the subset sums.
Use k-modular multiplication as a trapdoor transformation.
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Decryption starts in the normal way with the superincreasing part of A.
After this, if there are still more than % addends to resolve from the Chor-
Rivest knapsack A,, then the decipherment has failed and a new somewhat
modified message must be requested from the sender.

If there are exactly h addends left, they can be found in the normal way
from the knapsack A;. If there are fewer, say ¢ addends left, then h—¢ elements
of A, are added to the sum and the resulting sum instance is deciphered in
the normal way. Here we need the fact that decipherment succeeds also when
the same addend occurs more than once.

By choosing a sufficiently small ¥ we can make the probability of failure
arbitrarily low. Indeed, if £ = A then the probability is 0.

Suppose we want there to be on average Sk addends from A, in subset
sums of A that have k addends. Assuming that all of these subset sums occur
with the same probability, we must have j = Eq—" The uniform distribution
namely implies that the number of addendrs—[from each part of the knapsack is
proportional to the size of that part. The value of 4 must be somewhat smaller
than 1 to ensure that decipherment succeeds at least in half of the cases. This
means that k is slightly smaller than %IAI, which is typically }|A|.

1

We would like to have the number of addends near }|A| to protect the

knapsack system against low density attacks. This would require an increase

of k and consequently of the ratio g. But this would cause the density of

Ay to become lower, because it is approximately %@;. Also the trapdoor
multiplication decreases the density the more, the larger k is.

Parallel use of Chor-Rivest and another knapsack

The number of addends in sum instances of the Chor-Rivest system is fairly
small when compared to the knapsack size. The number of addends is the same
as the squared length of the special vector é searched by the lattice reduction
attacks. The shorter the vector é is known to be the higher is the critical
density below which knapsacks become insecure against these attacks.

One possible remedy was suggested already by Chor and Rivest in [7],
and that is to produce sum instances where some elements occur with higher
multiplicities than 1. This increases the length of & considerably although the
sum of its components is still A. Another approach to increase the length of é
is outlined in the following.

Assume A is a Chor-Rivest knapsack with parameters ¢ and h. That is,
|A| = ¢ and the required number of addends is h. We assume also that & is
about { or slightly less, as it is in the cases (g, k) = (197,24) and (¢,h) =
(256,25) proposed in (7). Assume B is an injective trapdoor knapsack with
|B| = ¢. Let the messages correspond to subsets S C {1,...,¢} and assume
that every subset is equally likely to occur.

Suppose |S| > 1. Compute the corresponding subset sum of A and denote
it by s. Now choose randomly such a subset §' C S that |§'] = |S| — &.
Then compute the subset sum of B corresponding to S’ and denote it by s’. If
|S] < 4 then use the complement of S instead (and inform the recipient about
this).
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The legal decryption consists of deciphering first the sum instance s’ of B
and subtracting the corresponding elements of A from s and deciphering the
resulting sum instance of h elements of the Chor-Rivest system A.

An enemy willing to decipher the sum instance s directly faces the following
difficulties

¢ The number of addends in the sum instance s is at least  and on average
does not exceed this value very much. The number is not known.

o Even if the enemy knew the secret key of A the sum instance cannot be
deciphered in the normal way.

o There may be several possible decipherments of s, because A is not nec-
essarily injective.

If the enemy wants to use the information of s' he basicly first faces one
knapsack problem where the number of addends is unknown and not very
small; it is 3 or near above this value. After getting to know the addends of s’
he knows |S’| bits of the message and also that among the remaining ¢ — |5'|
bits there are exactly A 1's. If redundancy does not help in finding those the
only way is to solve the normal Chor-Rivest knapsack problem.

That the two knapsack problems with s and s are related may be a weak-
ness. If the h extra elements in the sum s are not enough to confuse the
relation, then the sum s’ could be enciphered according to B.

This system is an example of computing a generalized sum instance (not
necessarily even a subset sum) of the Chor-Rivest system and then telling in
an enciphered form how to obtain a decipherable subset sum.
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