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The identifiability of the parameters of a heat exchanger model without phase change was
studied in this Master’s thesis using synthetically made data. A fast, two-step Markov
chain Monte Carlo method (MCMC) was tested with a couple of case studies and a heat
exchanger model. The two-step MCMC-method worked well and decreased the compu-
tation time compared to the traditional MCMC-method.

The effect of measurement accuracy of certain control variables to the identifiability of
parameters was also studied. The accuracy used did not seem to have a remarkable effect
to the identifiability of parameters.

The use of the posterior distribution of parameters in different heat exchanger geome-
tries was studied. It would be computationally most efficient to use the same posterior
distribution among different geometries in the optimisation of heat exchanger networks.
According to the results, this was possible in the case when the frontal surface areas were
the same among different geometries. In the other cases the same posterior distribution
can be used for optimisation too, but that will give a wider predictive distribution as a
result.

For condensing surface heat exchangers the numerical stability of the simulation model
was studied. As a result, a stable algorithm was developed.
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Tässä diplomityössä tutkittiin lauhduttamattoman lämmönvaihtimen mallin parametrien
määräytymistä synteetttisesti luodulla aineistolla. Parametrien posteriorijakauman sel-
vittäminen tunnetusta aineistosta on inversio-ongelma, joka ratkaistiin Bayesin kaavan
avulla. Työssä testattiin nopeaa kaksivaiheista Markov chain Monte Carlo -menetelmää
(MCMC) ensin muutamalla testiesimerkillä ja sitten lämmönvaihdinyhtälöllä. Epäsuora
kaksivaiheinen menetelmä osoittautui toimivaksi ja nopeutti laskentaa perinteiseen suo-
raan MCMC-menetelmään verrattuna.

Lisäksi tässä työssä tutkittiin kontrollimuuttujien mittausepätarkkuuden vaikutusta mallin
parametrien määräytymiseen. Kontrollimuuttujien kohtuullisella mittausepätarkkuudella
ei näyttänyt olevan havaittavaa vaikutusta mallin parametrien määräytymiseen.

Tässä työssä tutkittiin myös saman posteriorijakauman käyttökelpoisuutta erilaisilla läm-
mönvaihtimilla. Saman posteriorijakauman käyttö eri lämmönvaihtimilla olisi laskennan
kannalta edullista yritettäessä optimoida lämmönvaihtimista muodostuvaa verkostoa. Saa-
tujen tulosten mukaan samaa posteriorijakaumaa voidaan käyttää eri lämmönvaihdinten
ennustejakauman laskemiseen sellaisenaan, kun lämmönvaihdinten otsapinta-ala on sa-
ma. Muutoin saatu ennustejakauma on leveämpi kuin oikeallaposteriorijakaumalla las-
kettu ennustejakauma olisi.

Lauhduttavan lämmönvaihtimen osalta tutkittiin mallin numeriikkaa. Malli saatiin toimi-
maan stabiilisti ja sitä voitiin käyttää toisessa diplomityössä.
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NOTATIONS

A pre-exponential factor in Arrhenius law [mol/dm3s]

A heat surface area [m2]

Aduct area of the cross-section of the duct [m2]

Aslots frontal surface area [m2]

cp specific heat capacity [J/kgK]

C constant of Nusselt number (parameter) [-]

dhydr case specific hydraulic diameter [m]

E activation energy in Arrhenius law [J/mol]

f model function [-]

f̃ partial model function [-]

F correction factor for the cross-flow heat exchanger [-]

g observation function [-]

G set of geometry variables [-]

h specific enthalpy of the moist air [J/kg]

k correction factor for the flow rate [-]

k rate constant of the reaction [mol/dm3s]

k thermal conductivity [W/mK]

kwall thermal conductivity of the wall [W/mK]

l height of the slot or length of the plate [m]

m constant of Nusselt number (parameter) [-]

m mass [kg]

M molar mass [kg/mol]

n number of moles [mol]

n constant of Nusselt number (parameter) [-]

npass number of passes in combined heat exchanger unit [-]

Nslots number of cold slots in heat exchanger [-]

Nu Nusselt number [-]

p pressure [Pa]

patm atmospheric pressure [Pa]

pbar pressure in bars [bar]

pd dynamic pressure [Pa]

ps static pressure [Pa]

psat saturation pressure of water vapour [Pa]

ptot total pressure [Pa]

∆p pressure difference between inside and outside of the duct [Pa]
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p(θ) prior distribution [-]

p(θ|y) posterior distribution (also the notationπ(θ) is used) [-]

p(y) normalising factor [-]

p(y|θ) likelihood density function [-]

Pr Prandlt number [-]

qm mass flow [kg/s]

qV volume flow [m3/s]

Q energy [J]

r0 heat of vaporisation at 0 °C [J/kg]

R ideal gas constant [J/Kmol]

Rh heat capacity flow ratio [-]

Re Reynold’s number [-]

s vector of the state variables [-]

swall thickness of the wall [m]

t time [s]

T temperature [°C] / [K]

TC temperature in Celsius degrees [°C]

Tdew dew point of the moist air [°C]

Tdry dry bulk temperature [°C]

TK temperature in Kelvins [K]

Twet wet bulk temperature [°C]

∆T∞ temperature difference between the hot and the cold mixed

layers

[°C]

∆Tlm logarithmic mean temperature difference between the hot

and the cold side

[°C]

U overall heat transfer coefficient [W/m2K]

v velocity [m/s]

V volume [m3]

w width of the slot [m]

x vector of the control variables [-]

x mass fraction [-]

x̃ set of model variables [-]

x̃ molar fraction [-]

xwall thickness coordinate of the wall [m]

y vector of observations [-]

Zh number of transfer units [-]
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Greek alphabet

α convective heat transfer coefficient [W/m2K]

αk overall heat transfers coefficient from the condensate to the

cold flow

[W/m2K]

αw convective heat transfer coefficient of condensate (water)[W/m2K]

αcond convective heat transfer coefficient during a simultaneous

mass transfer

[W/m2K]

βi regression coefficients [-]

ǫ noise vector or the error vector of observations [-]

θ vector of the unknown model parameters [-]

θ̃ vector of “pseudo” parameters [-]

θ̂ parameter estimate [-]

Θ theta-function [°C]

Θh Θ-function of enthalpy [°C]

Θω Θ-function of moisture content [°C]

µ dynamic viscosity of the the fluid [Ns/m2]

ξ auxiliary variable in the calculation ofF [-]

ξ̃ auxiliary variable in the calculation ofFnpass
in one pass [-]

ρ density [kg/m3 ]

σ standard deviation (of measurement error) [-]

φ interaction term of the compounds [-]

Φ heat rate [W]

Φ′′ heat flux [W/m2]

ω moisture content of the air [kg/kg]

ωcond moisture content of saturated air [kg/kg]

Indexes

a incoming cell boundary according to hot flow

b outgoing cell boundary according to hot flow

c cold, value of the property on cold side

cond condense

da dry air

duct duct, in the (ventilation) duct

h hot, value of the property on hot side

he heat exchanger, in heat exchanger
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i inlet, incoming, value of the property in the inlet

ma moist air

o outlet, outgoing, value of the property in the outlet

surf surface, at the surface

w water

wall wall, in the wall

wv water vapour

∞ at infinity, in mixed layer

Abbreviations

MCMC Markov chain Monte Carlo

SS Sum of Squares

std standard deviation
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1 Introduction

Heat exchangers are widely used in paper mills for heat recovery to decrease the costs of

paper making. In paper mills different kinds of heat exchangers can be coupled together

in many ways so that they produce a network of heat exchangers. It can be optimised

to produce maximal heat recovery by minimal costs. If the reliability of the optimisation

result is the aim of the study, some statistical analysis hasto be done. This has to be started

by studying the unit processes. The effects of accuracy of material property modelling on

heat flow has been studied earlier by Liikola [1]. His work concentrated on traditional

sensitivity analysis and even some Bayesian analysis was done. Markov chain Monte

Carlo (MCMC) methods are a very efficient way to study the distributions of all model

parameters, compared to traditional sensitivity analysis.

The scope of this study will be one heat exchanger unit. It will be modelled mathemat-

ically, the parameter estimation will be done by MCMC methods. Models will be “tra-

ditional” phenomenological engineering models rather than more detailed FEM-models.

The posterior distribution of the parameters in heat exchanger model is estimated. Solving

the model is numerically slow, so some methods to decrease the computation times are

needed and these will be tested here. Measurements needed instatistical analysis are very

difficult to get in our case. For that reason synthetically made data is used in analysis.

Sampling will be studied from the point of view of the measurement sample size and the

size of error in response.

The optimisation of a network of heat exchangers can be done,for example, by changing

the geometries and the number of heat exchanger units in the network. If the results of

the optimisation are to be statistically estimated, the posterior distributions of model pa-

rameters can be used in optimisation. It will be studied whether the posterior distribution

of model parameters generated with one geometry can be used with another geometry,

because that would be computationally the lightest way.

There is an error in the measurement of control variables — actually the case with all

measurements and models. Combining units together will increase this error if measure-

ments are not taken between units but measurements are basedon the calculated values

from previous unit and the measurement error there. The effect of an error in control

variables to posterior distribution will be studied. Finally the numerics of the condensing

heat exchanger model will be improved.
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2 Heat Exchangers

Large heat exchangers are used in industry for heat recoveryto save primary energy used

in the process. Small heat exchangers are used at homes as radiators or in ventilation.

Applications considered here are typical for paper machinedryer section air systems.

A heat exchanger is an apparatus which transfers energy fromhot flow to cold flow. Flows

can be separated, for example, by a tube or a plate. Fluids used in the thesis are air

and water. There is always some water vapour in the air. Thus air is called moist air.

Fluids can change phase inside the heat exchanger. Here it would mean that water vapour

might condensate or water might evaporate. Evaporating heat exchangers are not used is

conventional heat recovery systems in paper machine dryer section. For that reason phase

change means hereafter always condensation, not evaporation.

If no phase change happens inside the heat exchanger — condensation of the fluid — the

heat exchanger is called hereafternoncondensing heat exchangeror heat exchanger with-

out phase change. If the phase change — condensation of the water vapour — happens

inside the heat exchanger, the heat exchanger is called hereaftercondensing surface heat

exchangeror heat exchanger with phase change. If fluids on the both side are water, then

the heat exchanger is noncondensing. Such a case will not be considered here, but the

flows will be moist air in the both sides or moist air in the hot side side and water in the

cold side.

Flows can be parallel, counter-current or crossing ones andthe heat exchangers are called

parallel-flow, counter-flow and cross-flow heat exchanger, respectively. The cross-flow

plate heat exchanger will be modelled, because for practical reasons the cross-flow is most

often the only possibility in paper mills. An illustration of a cross-flow heat exchanger is

represented in Figure 1.

The geometry of the heat exchangerGhe is thought from the point of view of the particle

in the fluid, where the coordinate system is Lagrangian (moving rather than static). The

width of the slot between the plates is small compared to the length of the sides of the

plate. For this reason the distance between the platesw is called the width of the slot and

the measure along the side of the platel is called the height of the slot. Similarly, the side

of the plate perpendicular to flow is always called the heightof the plate on both the hot

and the cold side. Thus the information about the side of the flow has to be always given

when the term height of the plate is used. A hot slot on both ends of the heat exchanger

8
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Figure 1: An illustration of a cross-flow plate heat exchanger.

is assumed. For that reason the total surface area of a heat exchangerA is two times the

amount of cold slotsNslots multiplied by the area of one plate.

Characteristic measure or hydraulic diameterdhydr is four times the area of cross section

of one slot divided by the circumference of the cross sectionof the slot. So for a tube it is

the diameter of the tube and for a plate heat exchanger it is obtained by

dhydr =
4wl

2(w + l)
(1)

and is about two times the width of the slot between the platesbecause usually the height

of the slot is much more than the width of the slot. The cross-sectional area of the slots in

a heat exchanger on the hot or the cold side is also called a frontal surface,Aslots.

A fluid is coming to the heat exchanger and passing it along a duct or a pipe. The geometry

of the ductGduct includes the cross-sectional area of the ductAduct. It is calculated as a

product of the lengths of the sides in a square duct and for a round duct by circumference

measure.

In the following subsections the model without phase changeand the model where con-

densation happens on the surface are described starting from the basics of heat transfer.

More information about this topic can be found, for example,in [2] or [3].
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2.1 Fundamentals of heat transfer

The conservation of energy is the first law of thermodynamics. It is used later in sec-

tion 2.3. According to the second law of thermodynamics entropy is increasing. It is a

reason for the phenomena that heat always transfers from hotto cold. There are three

mechanisms of heat transfer: conduction, convection and radiation. In this study the ra-

diation can be neglected because in process temperatures the effect of the radiation is not

remarkable.

Conduction happens inside a material. It is caused by thermal random movement of

molecules and atoms (diffusion). According to the Fourier’s law heat fluxΦ′′ is propor-

tional to temperature gradient. The Fourier’s law in one dimensional form for a wall made

of homogeneous material is

Φ′′

wall = −kwall
dT

dxwall

, (2)

where

Φ′′

wall is the perpendicular heat flux of the wall inside the wall [W/m2],

kwall is the thermal conductivity of the wall [W/mK],

T is the temperature [°C] / [K],

xwall is the thickness coordinate of the wall [m].

Convection combines microscopic diffusion and macroscopic motion of the fluid where

energy is transferred by the flow of the fluid [2, p. 6]. Heat transfer from a fluid to a

solid material or the other way around is also called convection. Free convection always

exists if the surface temperature of a solid material is different from the temperature of

the fluid. It can be enforced by external means (enforced convection). Hereafter enforced

convection is assumed because that is more efficient and usedmechanism in process heat

exchangers. When the fluid is enforced to flow along a surface,the velocity is zero at the

surface and it increases when we go further from the surface.The layer starting from the

surface and ending at the mixed layer where no change in the velocity happens anymore

is called velocity boundary layer. When the temperatures ofthe fluid and surface of the

solid material are not the same, there will be a thermal boundary layer near the surface.

The temperature in the fluid near the surface is the same as on the surface. In the boundary

layer the temperature will increase or decrease gradually until it reaches the temperature

of the mixed layer. Convection happens from hot surface to cold fluid in the boundary
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layer according to the Newton’s law of cooling

Φ′′ = α(Tsurf − T∞), (3)

where

Φ′′ is the heat flux [W/m2],

α is the convective heat transfer coefficient [W/m2K],

Tsurf is the temperature at the wall surface [°C],

T∞ is the temperature in the mixed layer [°C].

2.2 Heat transfer through a wall

In heat transfer through a wall from fluid to fluid convection happens on the both sides

of the wall and conduction in the wall as can be seen in Figure 2. In a steady state

situation the temperature gradient inside the wall is linear. In that case the one dimensional

Fourier’s law (2) can be expressed as

Φ′′

wall = −kwall
∆Twall

swall
, (4)

where∆Twall is the temperature difference in the wall andswall is the thickness of the

wall.

If convection is included, it will make the situation a little bit more complicated. The

fluid is receiving or releasing heat depending on the side of the wall. When the fluid is

flowing along the wall, the temperature of the fluid is changing as well as the surface

temperature of the wall in different places of the surface. Next, heat transfer through a

wall in one point of the intersection of the wall will be studied. If we combine convection

and conduction at one point on the wall, we will obtain the following equation for heat

flux

Φ′′ = U(Th∞
− Tc∞) = U∆T∞, (5)

where

U is the overall heat transfer coefficient [W/m2K],
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Th∞
is the temperature of hot flow in the mixed layer [°C],

Tc∞ is the temperature of cold flow in the mixed layer [°C],

∆T∞ is the temperature difference between the hot and the cold

mixed layers [°C].

Thi

Tho

Tco

Tci

Th∞

Tc∞

Thsurf

Tcsurf

Boundary layer

Boundary layer

︷︸︸︷

︸︷︷︸

Φ′′ = U(Th∞
− Tc∞)

vhvc

swall

Figure 2: Transfer of heat through the wall

The overall heat transfer coefficient combines conduction and convection resistances be-

tween fluids in the following way

1

U
=

1

αh
+

swall

kwall
+

1

αc
, (6)

whereαh is the convective heat transfer coefficient on the hot side and αc is the convective

heat transfer coefficient on the cold side [2, pp. 80-85]. Thewall has a minor effect on

the overall heat transfer coefficient and thus the central term on the right hand side of the

equation can be neglected.

The convective heat transfer coefficientα for fluid can be solved from the definition of

the Nusselt number

Nu =
αdhydr

k
, (7)

where

12



Nu is the Nusselt number [-],

dhydr is the case specific hydraulic diameter [m],

k is the thermal conductivity of the fluid [W/mK].

Nusselt number describes thermal gradient in a boundary layer. There are several empir-

ical correlations for Nusselt number in literature. We use the Dittus–Boelter correlation

here for turbulent flow in circular tubes [2, p. 496]. The equation for this situation is

Nu = CRemPrn, (8)

where

C, m andn are the experimental constants for the Nusselt number [-],

Re is the Reynold’s number [-],

Pr is the Prandlt number [-].

Reynold’s number is a measure of turbulence in the flow. Its definition is

Re =
vρdhydr

µ
, (9)

where

v is the velocity of the fluid [m/s]

ρ is the density of the fluid [kg/m3],

µ is the dynamic viscosity of the the fluid [Ns/m2].

Prandtl number describes dimensionless viscosity of the fluid. Its definition is

Pr =
cpµ

k
, (10)

wherecp is the specific heat capacity of the fluid.

2.3 Model of the heat exchanger without phase change

A heat exchanger can be constructed of tubes or plates. We derive the model for a cross-

flow plate heat exchanger.
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The heat flux can be written as

Φ′′ =
Φ

A
, (11)

whereΦ is the heat rate andA is the heat surface area.

The heat rate is obtained by integrating equation (5) with respect to the surface area

Φ =

∫

A

dΦ =

∫

A

U∆T∞dA . (12)

We obtain

Φ = UA∆Tlm, (13)

where∆Tlm is the logarithmic mean temperature difference between thehot and the cold

side. For the counterflow heat exchanger we get

∆Tlm =
∆T2 − ∆T1

ln ∆T2

∆T1

=
(Tho

− Tci) − (Thi
− Tco)

ln
(Tho−Tci

)

(Thi
−Tco )

, (14)

where

Thi
is the temperature of hot inlet flow [°C],

Tci is the temperature of cold inlet flow [°C],

Tho
is the temperature of hot outlet flow [°C],

Tco is the temperature of cold outlet flow [°C].

Logarithmic mean temperature difference combines local temperature differences in dif-

ferent places over the heat exchanger. Derivation of logarithmic mean temperature differ-

ence is given in [2, pp. 646-649].

For a cross-flow heat exchanger the heat rate is written as

Φ = FUA∆Tlm. (15)

HereF is thecorrection factorwhich corrects∆Tlm for the cross-flow heat exchanger.
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The formula for the factor is

F =







(1 + 0.9ξ2)−0.15 ξ ≤ 2√
πξ

ξ − 0.0625
− 1

ξ
ξ > 2

, (16)

whereξ is the auxiliary variable in the calculation ofF , see [4, Ca 7].

For a one pass heat exchanger the variableξ can be calculated by the equation

ξ = Zh

(

0.6
√

Rh +
0.8Rh

1 + Rh

)

, (17)

whereZh is the number of transfer units andRh is the heat capacity flow ratio.

When combining heat exchanger units for multi-pass mixed cold flow and unmixed hot

flow the expression forξ becomes

ξ̃ =
√

Rh
Zh

npass

, (18)

whereξ̃ is the auxiliary variable in the calculation ofFnpass
in one pass andnpass is the

number of passes in combined heat exchanger unit [4, Ca 9].

In a multipass case, the correction factor is calculated by formula

Fnpass
=

1

npass

F1 +
npass − 1

npass

F∞ (19)

using the variablẽξ in equation (16) instead of the variableξ for the factorF1. The factor

F∞ is calculated as

F∞ = (1 + 0.63ξ̃2)−0.24. (20)

Equation (18) was used instead of equation (17) also for one pass heat exchanger because

the results did not differ a lot. Actually in this thesis onlyone pass heat exchangers were

used.
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The number of transfer units or dimensionless conductance is denoted by the equation

Zh =
UA

qmh
cph

, (21)

whereqmh
is the mass flow of the hot fluid andcph

is the specific heat capacity of the hot

inlet flow. Heat capacity flow ratio is denoted by the equation

Rh =
qmh

cph

qmc
cpc

, (22)

whereqmc
is the mass flow of the cold fluid andcpc

is the specific heat capacity of the

cold inlet flow.

The overall heat transfer coefficientU also varies along the heat exchanger with the

change of temperature due to changing values of material properties as will be explained

later in Section 3.2.3. Therefore it is important to use the global correlation in equation (8)

instead of a local one.

In equation (15) there are three unknowns: the heat rateΦ, the outlet temperatureTho
on

the hot side and the outlet temperatureTco on the cold side. To solve the unknowns the

heat exchanger has to be studied along the flows of the fluids onboth sides. Here we need

the law of energy conservation. When cold air passes throughthe heat exchanger it is

warmed up. It receives all the energy which is passed throughthe wall from the hot side,

because we assume that the unit is perfectly insulated and ina steady state situation the

wall cannot reserve any energy. The amount of energy received by the fluid is proportional

to the temperature difference between the outlet and the inlet. In general the amount of

energy needed to heat any material is

Q = mcp∆T, (23)

where

Q is the energy [J],

m is the mass [kg],

∆T is the temperature difference [°C].

The heating power is obtained by dividing equation (23) withunit time∆t. Thus the heat
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rate on the cold side is denoted by the equation

Φ = qmc
cpc

(Tco − Tci). (24)

In the same way, a hot fluid is loosing heat energy with the samepower as a cold fluid is

receiving that. So the equation for heat rate on the hot side is

Φ = qmh
cph

(Thi
− Tho

). (25)

By combining equations (24), (25) and (15) we will obtain thefollowing model for the

cross-flow heat exchanger:







Φ = qmh
cph

(Thi
− Tho

),

Φ = qmc
cpc

(Tco − Tci),

Φ = FUA∆Tlm.

(26)

For a given heat exchanger, the independent known variablesareThi
andTci . The outlet

temperaturesTho
andTco are the state variables to be computed by solving the system

in equation (26). Note that (26) forms a nonlinear pair of equations. It has to be solved

numerically.

Themechanical dimensioning problemis an optimisation problem where we try to min-

imise areaA and maximise heat rateΦ, while keeping the outlet temperatures inside the

required boundary conditions. Regardless of whether we aredealing with a mechanical

dimensioning problem or an existing heat exchanger,Φ is always the most interesting

variable from the practical point of view.

2.4 Model of the condensing surface heat exchanger

The heat of vaporisation and thus the energy released in the condensation of water vapour

is much more than energy released from water vapour alone in the typical temperature

change for heat exchangers. The amount of the energy released in the condensation can
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exceed the amount of the energy received in the temperature change of moist air. If there

occurs a phase change in the heat exchanger, the results of the model without phase change

are no more valid. Condensation starts when the surface temperatureTsurf drops below

the dew pointTdew. As far as this does not happen it is safe to use the model without

phase change.1

The condensing surface model is more demanding than the model without phase change

because the mass transfer of the condensate has to be taken into account in addition to

heat transfer. For a condensing case a model derived by Soininen [5] will be used. It is

based on the mechanical dimensioning problem, where the area A is not known because

the heat exchanger does not yet exist. His model solves the area, which is needed to heat

the cold fluid to the desired temperature, when the incoming temperatures are known.

The incoming temperaturesThi
andTci and the outgoing cold temperatureTco are given

while areaA and hot outgoing temperatureTco are unknowns. The model is consisting

of a group of differential equations. The model and the main idea to implement that as a

computer program will be described here. For more details see [5].

Figure 3 illustrates the heat and the mass balances of an elementdA on the condensing

surface of the heat exchanger. Hot air and condensate are flowing downwards on the right

hand side of the surface and cold fluid upwards on the left sideof the surface. Dashed

line in the condensate separates new condensate formed in the studied area element and

old condensate flowing downwards.

Similarly as in equation (6), the overall heat transfers coefficient can be defined as

1

αk

= +
1

αc

+
swall

kwall

+
1

αw

, (27)

whereαk is the overall heat transfers coefficient from the condensate to the cold flow

andαw is the convective heat transfer coefficient of the condensate (water). The wall and

condensate has a minor effect on the overall heat transfer coefficient and can be neglected,

thusαk ≈ αc.

1In a cross-flow heat exchanger there is always a temperature profile in the outlets as can be seen in
Figure 6 for reasons described in page 27. Because the solution of the model without phase change is mean
temperature of the outlet, there has to be some safety marginals for surface temperature not to drop below
dew point.
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(h + dh,ω + dω)

(h,ω)

Tcond

Tcond + dTcondTh

Th + dTh

qmh

qmc

qmw

qmw + dqmw

dΦdΦcdA

Figure 3: An illustration of the heat and mass balance on the condensing surface. New
condensatedqmw

is formed on the surface elementdA on the right hand side of dashed
line in condensate. Arrows indicate the direction of the flow.

Let us examine the the volume element on the right hand side ofthe dashed line in the

condensate in Figure 3. The heat balance for the volume element can be written by

dΦ + qmh
dh + cpw

Tconddqmw
= 0, (28)

where

qmh
is the mass flow of the hot air [kg/s],

h is the specific enthalpy of the moist air [J/kg],

cpw
is the specific heat capacity of the condensate (water) [J/kgK],

Tcond is the temperature of the condensated water [°C],

qmw
is the mass flow of the condensate (water) [kg/s].

The mass balance for the volume element can be written by

dqmw
+ qmh

dω = 0, (29)
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whereω is the moisture content of the air.

The differential for the enthalpy of the moist air in the volume element is given by

dh = (cpda
+ ωcpwv

)dTh + (r0 + cpwv
Th)dω, (30)

where

cpda
is the specific heat capacity of dry air [J/kgK],

cpwv
is the specific heat capacity of water vapour [J/kgK],

Th is the temperature of the moist air in the hot side [°C],

r0 is the heat of vaporisation at 0 °C [2501 J/kg].

Substituting equation (29) and equation (30) in equation (28) yields

dΦ = −qmh
(cpda

+ ωcpwv
)dTh + (r0 + cpwv

Th − cpw
Tcond)dqmw

. (31)

The first term on the right hand side of equation (31) is given by

− qmh
(cpda

+ ωcpwv
)dTh = αcond(Th − Tcond)dA, (32)

whereαcond is the convective heat transfer coefficient during a simultaneous mass transfer.

The differential for the mass flow of the condensate is obtained by

dqmw
=

αcond

cpda
+ ωcondcpwv

(ω − ωcond)dA, (33)

whereωcond is the moisture content of saturated air. When substitutingequation (33) in

equation (31) we obtain

dΦ =
αcond

cpda
+ ωcondcpwv

[(cpda
+ ωcondcpwv

)(Th − Tcond)

+(r0 + cpwv
Th − cpw

Tcond)(ω − ωcond)]dA

= αcond

[
h − hcond

cpda
+ ωcondcpwv

− ω − ωcond

cpda
+ ωcondcpwv

cpw
Th

]

dA

. (34)

wherehcond is the specific enthalpy of the condensate.
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Equation for theΘ-function is

Θ = Θh − Θω, (35)

whereΘh is theΘ-function of enthalpy andΘω is theΘ-function of moisture content.

The equation for theΘh-function is given as

Θh =
h − hcond

cpda
+ ωcondcpwv

(36)

and for theΘω-function reads as

Θω =
ω − ωcond

cpda
+ ωcondcpwv

cpw
Tcond. (37)

Substituting equations (36) and (37) in equation (34) yields

dΦ = αcond(Θh − Θω)dA = αcondΘdA. (38)

Equations (33) and (38) holds true under the assumption

dh

dω
=

h − hcond

ω − ωcond

. (39)

For the the volume element between the heat surface and the dashed line in the condensate

in Figure 3 the heat balance is

dΦc = dΦ − qmw
cpw

dTcond, (40)

whereΦc is the heat rate on the cold side.

Finally we examine the volume element on the supply side of the heat exchanger. As in

equation (24) for the model without phase change the heat balance for condensing surface

model in the volume element is

dΦc = qmc
cpc

dTc, (41)
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whereTc is the temperature of the fluid in the cold side. As in equation(13) for the heat

exchanger model without phase change the heat balance for condensing surface model in

the volume element is

dΦc = αk(Tcond − Tc)dA. (42)

To be able to solve the temperature of the condensateTcond we combine equations from

equation (38) to equation (42). If we then divide the result with αconddA we will obtain

αk

αcond
(Tcond − Tc) = Θ − qmw

cpw

αcond

dTcond

dA
. (43)

The last term of equation (43) is usually of minor magnitude and thus often the last term

can be neglected [5, p. 878]. Doing so we end up shorter equation:

αk

αcond
(Tcond − Tc) = Θ. (44)

According to Soininen, there is more than one way of creatinga computer program for

analysing the process and the area of the heating surface [5,p. 879]. The one used here is

the same as in his article. Soininen discretised the differential equations described above

and formed a group of difference equations.

We examine a countercurrent heat exchanger, where hot air isflowing downwards and

cold fluid upwards. The heat exchanger is divided intoN cells according to Figure 4.

There is no phase change on the cold side, thus the heat rate onthe cold sideΦc can

be calculated as in (24). The discretisation is designed so that the areas of the cells are

varying but the heat rates∆Φc through the cells are equal among all cells and thus also the

temperature difference∆Tc of a cell on the cold side can be calculated. Indicesa andb

are for boundaries of the cell according to the flow directionof the hot side as in Figure 4.

The computation starts from the uppermost cell. For the coldside all incoming and outgo-

ing flow values are known in every cell. For the uppermost cellthat is also true for the hot

incoming air but not for the outgoing air. The edgea of the uppermost cell is set to point

where the condensation starts. There is no condensate coming in before that. There can

be dry, noncondensing surface before the condensation starts but it can be solved using

the model without phase change. The temperature of the condensateTcond at the point

where the condensation starts can be solved from equation (44).
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(ha,ωa)

(hb,ωb)

qmwa

qmwb

Tconda

Tcondb

Tco

Tci

Tca

Tcb

Tho

Thi

qmh

qmc

qmw

∆Φ∆Φc

∆Φc

∆Φc

∆Φc

∆A1

∆A2

∆A3

∆An

...

A = Σ∆Ai

Figure 4: An illustration of the condensing surface model. Arrows indicate the direction
of the flow. Red arrow is hot air and blue arrow is cold air. Bluewedge is condensed
water.

As stated in [5, p. 881], when for a certain section, the values ofha, ωa, qmwa, Tconda
and

Tcaat the boundarya are known, the five unknown quantities∆Φ, ∆A, ∆Tcond, ∆h and

∆ω (see Figure 4) can be solved from a group of the five equations:







∆Φ = qmh
(∆h − cpw

(Tconda
− ∆Tcond)∆ω) ,

∆Φ = αcondΘ̄∆A,

∆Φc = ∆Φ + qmwacpw
∆Tcond = qmc

cpc
∆Tc,

∆Φc = αk(Tconda
− ∆Tcond/2 − Tci + ∆Tc/2)∆A,

∆qmw
= qmh

∆ω =
αcond

2

(
ωa − ωconda

cpda
+ ωconda

cpwv

+
ωa − ∆ω − ωcondb

cpda
+ ωcondb

cpwv

)

∆A,

(45)

whereΘ̄ is the mean value of theΘ-function at cell boundariesa andb.

Soininen did not reduce the difference equation group. However, as in the heat exchanger

model (26) without phase change the system can be reduced further. So we arrive at a

system of three equations, from which the three unknowns canbe solved.

The outgoing values for the cell can be approximated by solving the system (45) and

adding the results to inlet values for the cell. Once the outgoing values are calculated

the incoming values for the next cell are got by substitutingthe outgoing values for the

incoming ones. Then the process is repeated for every cell. At the end the value for the

heat exchanger area can be calculated as a sum of the areas of the cells.
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If the cold fluid is heated above the dew point of the hot air so that the surface temperature

is above the dew point, the upper part of the heat exchanger will be noncondensing. The

dry area can be solved by equation (13) so thatΦ is the heat rate through the dry part.

That can be solved by

Φdry =
αcondThi

+ αkTco − (αcond + αk)Tdew
αcond

qmh
cpma

+ αk

qmccpc

, (46)

where

Φdry is the heat rate of the dry part [W],

Tdew is the dew point of the moist air [°C],

cpma
is the specific heat capacity of moist air [J/kgK].

The dew point temperature can be calculated by

pwv = ω
ps

ω + 0.62197
(47)

and

Tdew = 99.64 + 329.64
ln(pwv)

11.78 + ln(pwv)
, (48)

wherepwv is the water vapour pressure andps is the static pressure.

To summarise, the condensing case leads to a system where a nonlinear system of equa-

tions for three unknowns has to be solved at each discretisation step. The effect of the

number of discretisation steps to the accuracy of the resultwill be studied in Section 7.3.

This mechanical dimensioning problem where the area is unknown can be changed to the

problem of existing heat exchanger and known area. That is done by solving the con-

densing surface model again and again and varying the cold outlet fluid temperature until

the calculated area of the solution reaches the desired area. In the problem of existing

heat exchanger three unknown state variables areTho
, Tco andωh. The last of those is not

usually measured directly, but calculated with the wet bulktemperature as described later

in Section 3.2.2.
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3 Model variables

Most of the variables in equation (26) are calculated by measured variables, which will be

discussed in Section 3.1. Model variables calculated with directly measured variables will

be discussed in Section 3.2. Only the temperatures in equation (26) are measured directly.

They can be given either in Kelvins or in Celsius degrees because we are dealing with

temperature differences. In Appendix 1 the formulas for material properties will be given

either in Kelvins or Celsius degrees depending on the equation. Later the temperature will

always be given in Celsius degrees if not mentioned otherwise.

3.1 Measured variables

In this section we will discuss the measured or observed variables when the fluid is air.

Then the measured variables are the dry bulb temperatureTdry, the wet bulb temperature

Twet, atmospheric pressurepatm, dynamic pressurepd of the flow and the pressure dif-

ference∆p between the inside and the outside of the ventilation duct. All measurements

are done on both sides of the heat exchanger, on the cold and onthe hot side. The atmo-

spheric pressure simply is assumed to be the same everywhere. A typical example of the

measurements in the moist air cross-flow heat exchanger is given in Figure 5.

TdryTdry

Tdry

Tdry

TwetTwet

Twet

Twet

pd

pd

∆p ∆p

∆p

∆p

patmGhe

hot flow

cold flow

Figure 5: Measurements in moist air cross-flow heat exchanger.
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The area and the other geometry information of the heat exchanger is received from the

manufacturer. The area of the ventilation duct, which is used in the calculation of mass

flow, is measured and rounded to the nearest manufactured standard value or reasonable

value.

Sometimes the pressure difference between the inside and the outside of the ventilation

duct can be called the static pressure. Here the static pressure is denoted byps and it is

the sum of the atmospheric pressure and the pressure difference between the inside and

the outside of the duct,ps = ∆p + patm. It is equal to the pressure inside the ventilation

duct. The usage of the word total pressure instead of static pressure is avoided because it

can be confused with the total pressure in Bernoulli equation, ptot = ps + pd.

The model variables are divided into calculated and measured variables because later in

Section 6.4 also the error variance of the independent control variables will be consid-

ered. There the error will be added to the originally measured variables. Assumptions

about error levels are based on the measurement accuracy. That will be studied next more

carefully.

3.1.1 Measuring and measurement inaccuracy

There are several sources of errors in the measuring process. On site measurement error

is larger than the error in laboratory conditions. Manufacturers give information about

the error of a measuring instrument in laboratory conditions. The form of informing the

measurement error has not been standardised in any way. Usually the result of laboratory

measurement is compared to a result, which has been measuredwith a more accurate

instrument. The measuring instrument will be accepted if the result is within error limits.

Such a procedure implies univariate measurement error [6].However, all measurement

errors in thesis are considered as Gaussian and homoscedastic even thought in practice

they are mostly heteroscedastic.

All measurements are done on both the cold and the hot side of the heat exchanger. The

measurements can be done either before the inlet or after theoutlet or both. The mea-

surements are usually not made on-line and in practice measuring one unit takes approx-

imately half an hour. All measurements are done on one side ofthe unit at a time. It is

possible that circumstances vary a bit between the measurements, which is one possible

source of error. Lot of measuring information and the error approximations in the next

pages are based on [7].
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Dry bulb temperatures are measured at only one point on each four sides of the heat

exchanger (hot and cold, inlet and outlet). The temperaturemeasurements are done by

PT100-sensors, which are based on the fact that electric resistance is a function of tem-

perature. The accuracy of thermometers is usually near 0.1°C at 0°C and the error is

heteroscedastic — increasing with temperature. The standard deviation (std) of the strict

error in the thermometer alone is assumed to beσ = 0.025°C.

The temperatures are measured at one depth inside the ventilation duct from one hole,

which is in the middle of the wall of a square ventilation duct. In the outlet, after the

heat exchanger, the fluid has a temperature profile that can beseen in Figure 6. The

temperature profile is formed because on one side of the heat exchanger hot air is facing

the coldest possible air all the time. On the other side the cold air is heated before it

reaches hot air. In one paper mill, for example, some temperatures in the outlet profiles

were measured. The measured values for one heat exchanger outlet profile were 46.8°C,

48.4°C and 52.3°C. The internal temperature difference of the temperature profile in one

outlet was approximately 4°C. The temperature values in equation (26) are mean values.

30

40

50

T [°C] 60

70

80

cold outlet

cold inlet

hot inlet
hot outlet

Figure 6: Temperature profiles inside the cross-flow heat exchanger. The upper surface is
the hot side and the lower surface is the cold side.

The sensors are short and do not reach the centre of the duct. They can point in different

directions if the measurement is repeated and thus they willmeasure a different point of

the temperature profile. Temperature profile can change depending on the flow conditions.

Especially, in the outlets this can be one main source of error in addition to instrument

error. It takes some time for the sensor to reach the temperature of the fluid as can be seen

in the solid lines of Figure 7. If the reading is read too soon,it will cause a systematic

error. If the measuring was repeated, there would be some extra random error, too. That
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would be caused in addition to normal random error because itwould be impossible to

read the reading exactly at the same time as previously. So the real measurement error

will be much larger than the error caused by the thermometer alone. For the error in dry

bulb temperaturesσ = 0.25°C has been used as a standard deviation.

T

a

b

t

Figure 7: Readings from the sensors during the dry bulb temperature measurements. La-
bel a points to case where the sensor is colder than the target of the measurement in the
beginning of the measurement process. Labelb points to case where the sensor is warmer
than the target of the measurement in the beginning of the measurement process. The
correct dry bulb temperature is measured in the area where the readings are stabilised.

Wet bulb temperature is measured at the same time as dry bulb temperature with a similar

sensor. In the wet bulb temperature measurement the sensor is covered with a cloth rinsed

in clean water. When water starts to evaporate from the cloth, it cools down the sensor

compared to the sensor which is measuring the dry bulb temperature. The drier the air

is, the larger is the difference between the dry and the wet bulb temperatures. When the

cloth becomes dry enough, the sensor which is measuring the wet bulb temperature starts

to warm up until it reaches the temperature of the dry sensor.

If the wet cloth is colder than the wet bulb temperature, the temperature of the sensor

measuring the wet bulb temperature will increase until it reaches the dry bulb temperature.

One tries to read the wet bulb temperature at the moment when the temperature is stable.

That can be seen as a flat part in Figure 8. If the air is very dry and hot and the velocity

of the flow is high, the reading can be very difficult, because flat part is very short. If the

wet cloth is warmer than the wet bulb temperature, first the sensor starts to cool down and

then to warm up. One tries to read the temperature in the inflection point. Measurement

error is larger in the first case and it is larger than the measurement error of the dry bulb

temperature in all cases. The error in measuring the wet bulbtemperature is the function

of the flow rate and the humidity. Standard deviationσ = 0.5°C is used here as a value

for the error in the wet bulb temperatures.
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Figure 8: Readings from the sensors during the dry and wet bulb temperature measure-
ments. The solid line represents the dry bulb temperature and the dashed line represents
the wet bulb temperature. Labela points to cases where the sensor is colder than the
target of the measurement in the beginning of the measurement process. Labelb points to
cases where the sensor is warmer than the target of the measurement in the beginning of
the measurement process. The correct wet bulb temperature is measured in the flat area
of the figure.

The same pressure gauge is used to measure both the dynamic pressure and the pressure

difference between the inside and the outside of the ventilation duct. The values for the

pressure difference and the dynamic pressure are usually some hundreds of Pascals or less.

The pressure difference is measured from one point in every side of the heat exchanger.

For example, the Macnehelic gauge of Dwyer Instruments has an error below±2% of the

full scale. Standard deviationσ = 1 Pascals is used here as a value for the error in the

pressure difference.

The dynamic pressure is measured through a Pitot static-tube. That is put through the wall

of the ventilation duct so that the tip of the tube is pointingtowards the incoming fluid

flow. The dynamic pressure is the pressure difference between the pressure caused by the

flow of fluid in the tip of the Pitot tube and the pressure insidethe duct in a calm, sheltered

place. Unlike other measurements dynamic pressure is measured at several points of the

cross section of the ventilation duct, so that the measurement points form a grid [8].

The dynamic pressure is usually measured at the inlets only.In practice the error of the

dynamic pressure should always exceed the error of the pressure difference between the
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inside and the outside of the duct if they are measured with the same pressure gauge. In

the same way, the error of wet bulb temperature is always larger than the error of the dry

bulb temperature. Standard deviationσ = 2.5 Pascals is used here as a value for the error

in the dynamic pressure.

The atmospheric pressure measurements are usually got fromthe nearest weather station

or airport. One has to make an altitude correction, because the atmospheric pressures are

announced in the sea level. The error of the barometer is lessthan 50 Pascals. However,

the normal atmospheric pressure, 101325 Pascals, is often assumed without making any

measurements. In that case the error in the atmospheric pressure can exceed 1000 Pascals

depending on the weather. In Nauvo, Finland, for example, the atmospheric pressure

was measured twice an hour for a year and the standard deviation was over 1000 Pascals

[9]. Standard deviationσ = 1000 Pascals is used here as a value for the error in the

atmospheric pressure measurements. In Table 2 there are collected all measurement errors

used in thesis.

Table 2: Standard deviationsσ of the measurement errors used in the thesis.

Model variable Symbol Std of error
Dry bulb temperature Tdry 0.25
Wet bulb temperature Twet 0.5
Pressure difference betwen inside and outside of the duct∆p 1
Dynamic pressure of the fluid pd 2.5
Atmospheric pressure patm 1000

3.2 Calculated variables

The mass flow and the specific heat capacity in equation (26) are calculated with observ-

able variables represented in Section 3.1. The moisture content of the air,ω, is needed in

the calculation of mass flow and specific heat capacity. The moisture content of the air is

also used in the calculation of other material properties than specific heat capacity. Ma-

terial properties are then used in the calculation of the total heat transfer coefficient. For

this reason the calculation of the mass flow and moisture content are presented in more

details in this section.
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3.2.1 Mass flow

The mass flow of air in equations (26) and (45) is the mass flow ofdry air because it is

independent of condensation. To calculate the mass flow of dry air the density of moist

air is needed. It can be solved by the ideal gas law

psV = nRTK, (49)

where

V is the volume of the gas [m3],

n is the number of moles of gas [mol],

R is the ideal gas constant [J/Kmol],

TK is the temperature in Kelvins [K].

If we substituteV = m/ρ andn = m/M in equation (49) and solve the density from it,

we will obtain

ρma =
psMma

RTK
, (50)

whereρma is the density of the moist air andMma is the molar mass of the moist air.

Molar massMma of moist air can be solved from the equation

1

Mma
=

xda

Mda
+

xwv

Mwv
, (51)

where

xda is the mass fraction of the dry air [-],

xwv is the mass fraction of the water vapour [-],

Mda is the molar mass of the dry air [kg/mol],

Mwv is the molar mass of the water vapour [kg/mol].

Mass fractions are solved as

xda = 1 − xwv =
mda

mda + mwv

=
1

1 + ω
, (52)

wheremda is the mass of the dry air andmwv is the mass of the water vapour.
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The flow rate of the fluid is also needed in the calculation of the mass flow. The measure-

ment of the fluid flow in a ventilation duct with a velocity areamethod using Pitot static

tubes is given next. The reference for that is in [8]. The dynamic pressure is related to the

flow rate according to the law of Bernoulli

pd =
1

2
ρv2. (53)

The dynamic pressure is measured in several grid points in the ventilation duct which

transports the fluid to heat exchanger and forward from it. From those measurements we

can solve the flow rates

vductma
=

√
2pd

ρma

, (54)

wherevductma
is the velocity of the moist air in the ventilation duct.

The mean flow rate can be calculated by

v̄ductma
=

1

n

n∑

i=1

vductmai, (55)

wherev̄ductma
is the mean velocity of the moist air in the ventilation duct and vductmai is

the velocity of the moist air at pointi in the ventilation duct.

The volume flow for the moist air can be calculated by

qVma
= kAductv̄ductma

, (56)

where

qVma
is the volume flow of the moist air [m3/s],

k is the correction factor for the flow rate [-],

Aduct is the area of the cross-section of the duct [m2].

The factork takes into account the number of the measurement points for the dynamic

pressure in the duct and the geometry of the duct. In this thesis the value one was used

for the factork.
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We obtain the mass flowqmma
of the moist air by

qmma
= qVma

ρma. (57)

Finally the mass flow of the dry air, which is used in the model,is obtained from the mass

flow of the moist air by

qmda
=

qmma

1 + ω
, (58)

whereqmda
is the mass flow of the dry air.

At this point it is good to note that the velocity of the fluid inthe duct in equation (55) is

not usually the same as the velocity of the fluid in the heat exchanger in equation (9). The

volume flow in the heat exchanger is, however, the same as in the ventilation duct. Thus

the velocity in the heat exchanger can be solved from

vheAslots = v̄ductma
Aduct, (59)

wherevhe is the velocity of the fluid in the heat exchanger andAslots is the frontal surface

area.

3.2.2 Moisture content of the air

The absolute water content or moisture contentω is a function of static pressure and dry

and wet bulb temperature. Moist air is considered as a mixture of completely dry air and

water vapour as an ideal gas mixture. Moisture content is given as a ratio of mass fractions

of the water vapour and dry air (kg/kg here). It can be calculated as

ω =
mwv

mda
=

1.0048(Twet − Tdry) + ωcond(2501 − 2.3237Twet)

2501 + 1.86Tdry − 4.19Twet
. (60)

The constants for the equation as well as the equations for the moist air in this section

are taken from [10, p. 299] and the physics behind the equations is explained in [11, pp.

613,621].
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The moisture content of saturated air can be calculated by the equation

ωcond = 0.62197
psat

ps − psat

, (61)

wherepsat is the saturation pressure of water vapour.

The saturation pressure of the water vapour can be estimated, for instance, by the formula

psat = exp

(

11.78
Twet − 99.64

Twet + 230

)

. (62)

3.2.3 Material properties

The physical properties of fluids are called material properties. Here in the modelling of

the heat exchanger we need specific heat capacity, thermal conductivity, dynamic viscos-

ity and density. For water, the calculation of material properties is easier than for air. For

moist air the dry air and the water vapour are handled separately and somehow combined

after that. The water vapour content always affects the material properties of air. In the

context of material properties the word “correlation” in the literature means the fitting

of a material property to temperature, pressure and moisture content. There are several

alternative correlations for material properties presented in literature. The density of the

air was already presented in equation (50). The rest of the correlations for the material

properties used here are presented in Appendix 1.

The temperature is changing inside the heat exchanger and the values of material prop-

erties are changing accordingly. The most proper way of taking this into account in the

calculation of the overall heat transfer coefficient would be integrating the values for ma-

terial properties through the whole heat exchanger. The arithmetic mean of the material

properties at the inlet and the outlet is easier to calculate. However, temperatures at the

inlets for the calculation of material properties inside the whole heat exchanger was used.
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3.3 General form of a model

In general, a model can be written in the form

s = f(x, θ), (63)

where

s is the vector of the state variables [-],

f is the model function [-],

x is the vector of the control variables [-],

θ is the vector of the unknown model parameters [-],

y = g(s), (64)

wherey is the vector of observations andg is the observation function.

In the heat exchanger model without phase change the independent, measured or known,

control variables are

x = (Ghe, Gduct; Tweth , Twetc , pdh
, pdc

, Tdryh
, Tdryc

; ∆ph, ∆pc, patm)T ,

where the geometry variablesG are the most controllable variables, but can be considered

as constants once the geometry is fixed. That is actually donehereafter. The following

six variables — the temperatures and the dynamic pressures —can be considered more

controllable (active) variables than the last three (passive) control variables. This would

be the case if we had laboratory circumstances. In paper mills, however, none of the vari-

ables are conrollable in that sense due to circumstances. Flow values, moisture contents

and other process technical dimensioning variables are calculated based on the measured

independent variables as described in the previous sections.

For the unknown parameters we choose

θ =









C

m

nh

nc









,
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the constants in equation (8). Note that all the other model parameters — the constants of

the material property correlations, for instance — are treated as known and fixed values.

Only the above parametersθ are used to calibrate the model against real measurements.

The state variables are

y = s =

(

Tho

Tco

)

.
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4 Inverse problems and the Bayesian inference

Parameter estimation and finding the confidence limits for parameters with given mea-

surements is a typical example of an inversion problem. For areference to inverse prob-

lems see [12]. By taking the measurement noise into account,we can write the general

form of a model as

y = f(x, θ) + ǫ, (65)

whereǫ is the noise vector or the error vector of observations.

Given the datay andx we should be capable of estimating the parametersθ by the Bayes

formula, the probability distribution of the parameters:

π(θ) = p(θ|y) =
p(y|θ)p(θ)

p(y)
=

p(y|θ)p(θ)
∫

p(y|θ)p(θ)dθ
, (66)

where

p(θ|y) is the posterior distribution (also the notationπ(θ) is used) [-],

p(θ) is the prior distribution [-],

p(y|θ) is the likelihood density function [-],

p(y) is the normalising factor [-].

If we assume that noise in the model in equation (65) is independent and identically

distributed (i.i.d.) Gaussian noiseǫ ∼ N(0, σ2I), the likelihood function becomes

p(y|θ) = Ce−
1

2σ2 SS, (67)

whereC is a constant,σ2 is the error variance and where theSS-function

SS =
n∑

i=1

(yi − f(xi, θ))
2 = ||y − f(x, θ)||22 (68)

includes the model as a squared sum of the residuals.

Integrating the normalising factor in the denominator, even numerically, is often a difficult

task. In the next section we discuss the Metropolis–Hastings algorithm — a practical way
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of solving the posterior distribution without a need for integration.

4.1 The Metropolis–Hastings algorithm

The Markov Chain Monte Carlo method (MCMC) is a process whichcombines the

Markovian property to the Monte Carlo method. The Markovianproperty means that the

next point in the random process only depends on the previousone and no other points.

The Monte Carlo methods refer to random sampling.

The Metropolis–Hastings algorithm (MH) is MCMC-method which can numerically solve

the posterior distribution in the Bayes formula. It is an algorithm, where a move towards

a better parameter estimate is always accepted, as in any optimisation method. But unlike

in optimisation methods usually, a step towards a worse direction is also accepted with

some probability.2 The Metropolis–Hastings algorithm is represented in Algorithm 1. For

reference see [13, p. 270].

Algorithm 1 The Metropolis–Hastings algorithm

1. Seti = 1 and choose a starting pointθi

2. Generate the candidateθ∗ from the proposal distributionq(θ∗|θi)

3. Choose

θi+1 =

{
θ∗ with probability α(θi, θ

∗),
θi with probability 1 − α(θi, θ

∗),

where

α(θi, θ
∗) = min

{

1,
p(θ∗|y)

p(θi|y)

}

MH
3

= min

{

1,
p(θ∗|y)q(θi|θ∗)
p(θi|y)q(θ∗|θi)

}

(69)

4. Seti = i + 1 and go to 2

A good starting point for the algorithm, the maximum likelihood estimatêθ, is achieved,

for example, by minimising the sum of the squares of the residuals in the model. We

set i = 1 andθ1 = θ̂ and setθ1 as the first value in the chain. Then we choose a new

candidateθ∗ from the proposal distribution, usually centred atθi, thus near it. In step three

2In simulating annealing, for example, a step towards worse direction is also accepted but the probability
of accepting bad movements is decreasing, approaching zeroduring the optimisation.

3The version were the proposal distribution is symmetric is called the Metropolis algorithm. Hastings
included an asymmetric proposal distribution. We assume a symmetric proposal hereafter.
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we compare the posterior value of the new candidate and the posterior value of the last

accepted value in the chain. If we are going upwards, we accept the candidate and add

it as the last value to the chain. If we are going downwards (the candidate is worse than

the last value in the chain), then we chooseu ∼ U(0, 1) from the uniform distribution

and acceptθ∗ if u ≤ α(θi, θ
∗). If θ∗ is accepted, it is added as the last value to the chain.

Otherwiseθi is added as the last valueθi+1 to the chain. Then we go back to step 2 and

repeat the algorithm until the chain is long enough. It can beshown that if the MCMC

run is properly done and the chain is long enough it convergesto the posterior distribution

given in equation (66). The statistical parameters for the posterior distribution can be

calculated from the chain.

In the adaptive version of the Metropolis–Hastings (AM) theproposal distribution is

adapted to the posterior distribution by the covariance matrix of the chain [14]. A new

proposal closer to the rejected one can also be tried [15]. This is called delayed rejection.

A combination of them is called DRAM [16] and the usage of the mentioned transforma-

tions can be found in [17] or [18].

4.2 Indirect method for MCMC

Because solving the model by the equation system (26) is quite slow, a new approach was

tested to decrease the computation time. That is an indirecttwo-stepmethod where the

MCMC run is divided into two phases.

If we assume the additive Gaussian error model in equation (65), the variance scaled

SS-function is calculated with the direct MCMC method by

SS(θ) =
n∑

i=1

(
yi − f(xi, θ)

σ

)2

, (70)

wheren is the number of observations andxi refers to theith measurement (independent)

andyi refers to theith response or observation (dependent).

In the two-step method we use scalar “pseudo parameter”θ̃. In fact it is a scalar variable

of the model, which hides all the real parameters behind itself in the model. The two-step
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method can be used if the model can be described by the formula

y = f(x, θ̃) + ǫ = f(x, f̃(x̃, θ)) + ǫ. (71)

wheref̃ is the partial model function and̃x is the set of model variables.

The first step of indirect MCMC method is represented in Algorithm 2. First we take one

observation or measurement. Then normal MCMC run is done with that observation to

obtain the posterior distribution (=chain) for the pseudo parameter. We go through every

observation to obtain the corresponding posterior distributions for the pseudo parameters.

Algorithm 2 The first step of the indirect MCMC method

FORi = 1 TO n

Run MCMC atith measurement by using variance scaledSS-function

SSi(θ̃i) =

(

yi − f(xi, θ̃i)

σ

)2

(72)

to obtainn chains for posterior distributionsp(θ̃i|yi).

END

Next we use the posterior distributions of pseudo parameters θ̃i produced in the previous

step as a data for step two. How that is done, can be seen in Algorithm 3. Performing

steps one and two should yield the same posterior distributionp(θ|y) as the direct method

gives. The size of the sample from the posterior distribution (from chain) in step two

needs to be large enough and the inner sum needs to be scaled bythe size of the sample

from the chain.

Algorithm 3 The second step of the indirect MCMC method

Run MCMC by using the variance scaledSS-function

SS(θ) =
n∑

i=1





m∑

j=1

(

θ̃ij − f̃(x̃i, θ)

σi

)2

/m



 , (73)

wherem is the size of the samplẽθ from the posterior distributionp(θ̃i|yi) of step
one andσi is the variance calculated from that distribution.
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When implementing theSS-function in a computer the variances in equation (73) could

be calculated by chain outside theSS-function because their values are independent of

the parameter values and do not change. Scaling the size of the sample in the posterior

distributionp(θ̃i|yi) outside theSS-function does not make calculation any faster. Squar-

ing the residuals leaves a central mixed term−2θ̃ijf̃(x̃i , θ), which cannot be calculated

outside theSS-function.

This method should be faster than the direct method if the model requires the usage of

a root solver, an ode solver or some slow numerical method andstep two is only some

algebraic equations. The chains in the first step of the indirect method can be much shorter

than a chain in the direct method, because the chain is mixed better in a case of just one

parameter. In the first step of indirect method the adaptation of the proposal distribution

can be done in every step because the calculation of the covariance matrix is an easy task

with just one parameter.
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5 Tests for the two-step indirect method

The normal direct and the new indirect method with three fastand simple toy examples,

one nonlinear and two linear cases, will be compared in the following sections. It is espe-

cially important to use the same data in the comparisons if the number of the observations

or the sample size of the data is small. The only difference inthe comparisons should

then be caused by the random character of the MCMC method.

5.1 Case study 1: Linear plane

The first case is a linear regression model

yi = β0 + β1xi1 + β2xi2 + · · · + βnxin + ǫi, (74)

whereβ stands for regression coefficient. Model can be written in a matrix form as









y1

y2

...

ym









=









1 x11 x12 · · · x1n

1 x21 x22 · · · x2n

...
...

...
. . .

...

1 xm1 xm2 · · · xmn

















β0

β1

...

βn









+









ǫ1

ǫ2

...

ǫm









. (75)

By using the pseudo parameterθ̃i the model becomes

yi = θ̃i + ǫi, θ̃i = β0 +
n∑

j=1

βjxij, i = 1, . . . , n. (76)

In the indirect MCMC runs the pseudo parameterθ̃i is sampled in every measurementxi

as in Algorithm 2 to obtain the posterior distributions for the responsesyi. There is no

need for a second step, because we now have the posterior distributions for the responses.

We can directly solve the overdetermined equation group, equation (75), by minimising

the least squares or by solving the normal equations to obtain the posterior distributions

for the real parametersθ (hereβi).
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While synthesising the data, values[(−1,−1)T, (1,−1)T, (−1, 1)T, (1, 1)T]T for x and

[1, 1, 1]T for β were used. The four first elements in the first column of the error vector

ǫ1 ∼ N(0, 12) multiplied by the square root of the error varianceσ = 0.52 was added to

the exact solution of the model. The noise vectorǫ1 is given in Table 4. The marginal

distributions for the five direct runs versus the five indirect runs for the parametersβi are

shown in Figure 9, as well as the predictive distributions calculated atx = [1, 1]T. It can

be seen that the results of the direct and the indirect methodcannot be distinguished.

0
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0.4 1.4
β0

0

1

0.7 1.7
β1

0

1

0.1 1.1
β2

0

0.5

1.9 3.6y

Figure 9: The marginal posterior distributions for the parametersβi and the predictive
distributions for the responsey at x = [1, 1]T. The red distributions are produced by the
direct method and black distributions by the indirect method.

5.2 Case study 2: Slope of line

In the previous section we used only the first step of the indirect method. Next we will

test the second step of the indirect method by using MCMC. Themodel for the second

test case is

yi = θxi + ǫi, (77)

wherex andy are vectors ofn points in the one dimensional space andθ is one scalar.

Thus the MCMC run corresponds to fitting the data to a straightline passing the origo
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and determining the posterior distribution for the slope. First y was calculated atx =

[50, 100, 150, 200] with θ = b = 1. Then the data was generated by adding noise to the

exact solution of the model from the first four elements of thenoise vectorǫ1 ∼ N(0, 12)

multiplied by the square root of the error varianceσ = 0.52 as in case 1. In the first step

four MCMC runs were done by going through the elements ofx one by one. So basically

the posterior distributions for the pseudo parametersθ̃i = bi (the slopes for the four lines)

were estimated. In each run there where one measurement (thecontrol variable and the

corresponding response) and one parameter. The model in equation (77) was substituted

in place of the model in equation (72). In the second step the posterior distributions of

the slopes of all the lines were put together to produce a realmodel parameterθ = b. As

in the first step, the same model was used but now it was substituted in the place of the

model in equation (73). Thus heref = f̃ in equation (71). The posterior distributions of

the slope from the five normal MCMC runs and the five indirect MCMC runs produced

by the two-step method are shown in Figure 10. There are some differences among the

runs but the posterior distributions do not differ between the methods as it can be seen.

b
0.994 1.004

100

200

Figure 10: The marginal posterior distributions for the slope of the line. The red dis-
tributions are produced by the direct method and the black distributions by the indirect
method.

5.3 Case study 3: Arrhenius law

The nonlinear test case was an analytical solution of the differential equation in reaction

kinetics. The usage of the analytical solution is faster than the usage of the numerical

solver and in that sense more ideal as a test case. The equation for the analytical solution
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is

y = e−kt, (78)

wherek is the rate constant of the reaction andt is the time.

The Arrhenius law states that the rate of the kinetic reaction depends on temperature in

the following way

k = Ae
−E

RTK , (79)

where

TK is the temperature in Kelvins [K],

R is the ideal gas constant [J/Kmol],

A is the pre-exponential factor in Arrhenius law [mol/dm3s],

E is the activation energy in Arrhenius law [J/mol].

There are plotted reaction curves for different temperatures in Figure 11(a). It can be seen

that the amount of the substrate is decreasing when time is passing. The decreasing is

faster with higher temperatures.
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(a) Reaction kinetics at different tempera-
tures.

k

0

0.1

0.3

(b) Samples from MCMC chains

Figure 11: Data for the first step (a) and for the second step (b) of the indirect method in
case 3.

Synthetic data was generated at five different temperatures, TC = [10, 20, 30, 40, 50]T°C,

by using parameter valuesA = 106 andE = 4 ·104. The first five elements from the error

vectorǫ1 ∼ N(0, 12) of Table 4 multiplied by the square root of the error variancelevel

σ2 = 0.012 were added to the exact solution of the model. Only one measurement for

each temperature was done (dots in figure⇒ n = 5). The substrate consentrationyi was

measured at the temperatureTi when four time units had passed from the beginning of the
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process. In this nonlinear case the pseudo parameter isθ̃ = k, the real model parameter

is θ = [A, E]T, control variables arex = [t, T ]T and x̃ = T . In the first step five

separate MCMC runs were done by samplingki at corresponding temperaturesTi so that

equation (78) is substituted in the place of the model in equation (72). The samples from

the chains for different temperatures are shown in Figure 11(b).

After that the chains̃θi from the first step were used as data for the second step. There

equation (79) gives the model in equation (73). The predictive distribution for the central

temperatureTC = 30°Cwas calculated. The comparisons of the direct and the indirect

two-step methods are plotted in Figure 12. Again, we see thatthe results agree with both

methods.
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Figure 12: The posterior distribution and the marginal posterior distributions for param-
etersA andE in the Arrhenius law. The distribution for the responsey is calculated
at TC = 30°C. The red distributions are produced by the direct method and the black
distributions by the indirect method.
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6 Statistical analysis of the heat exchanger model with-

out phase change

The model given by the equation (26) was implemented by the Octave software so that

all code could also be run in MATLAB. Some parts of the model were also implemented

as Octave binary files by C++ to improve the performance of thecode. The root founding

routinefsolve was used to solve the model. The Octavefsolve cannot pass parame-

ters to a model like the MATLABfsolve can. Global variables were used for passing

the values of parameters. The values of the parameters were saved to global variables

before a call tofsolve and they were read from the global variables in the model. The

DRAM toolbox [19] was used for MCMC runs.

In the heat exchanger model without phase change the parameter vectorθ is given by

equation (8), so thatθ1 = C, θ2 = m, θ3 = nh andθ4 = nc, wherenh andnc are the

powers of the Prandtl number for the hot and the cold side, respectively.

The predictive distributions represented here are obtained by solving the model with a

sample from the posterior distribution of the parameters. In what follows, the black colour

denotes distributions produced by the indirect two-step method and the red colour denotes

distributions produced by the traditional MCMC method.

6.1 Comparison of the direct and indirect methods

There are 6 or 7 measured control variables in the model, depending on whether the atmo-

spheric pressure is considered controllable or not. The rest are the dry bulb temperatures,

wet bulb temperatures and dynamic pressures for both the hotand the cold side. Thus

the total factorial design of the two level per control variable would yield at least26 + 1

measurements, 65 altogether, if the central point was included. For practical reasons this

is too much. The measurements can be taken in different circumstances, so that the con-

trol variables are different, but still not necessary desirable. The number of measurements

should be minimised because there is no online measuring andthe circumstances for mak-

ing the measurements are quite demanding and thus the measuring is expensive. There are

no laboratories available for testing heat exchangers either. Considering all this, the data

for a heat exchanger was generated by using eight measurements from the full factorial

design and the central point, even though in practice it might be impossible to completely
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manage the control variables.

The dynamic pressurespdh
andpdc

and the hot incoming dry bulb temperatureTdryh
had

all possible two level combinations. The rest of the variables were combined but not with

all possible combinations. Atmospheric pressure is not considered as a control variable

here. The range for the control variables was nearly the sameas the one typically used

in the process technical dimensioning of heat exchangers. The measurement points for

the control variables are given in Table 3 starting from the second column and ending in

the seventh column. The value for the atmospheric pressure was 101325 Pascals and zero

Pascals for the pressure difference between the inside and the outside of the ventilation

duct in the hot and the cold side for every measurement.

Table 3: Measurement points. Columns 2-7 are values of the control variables. The mois-
ture contentω andρv are process technical dimensioning variables according towhich
the factorisation is done.

Control variables Dimensioning variables
Sample Tdryh

Tdryc
Tweth Twetc pdh

pdc
ωh ωc ρvh ρvc

1 82.0 31.5 42.6 23.4 69.7 81.6 0.039 0.015 11.0 12.1
2 79.0 35.0 45.1 25.7 58.0 56.1 0.050 0.017 10.1 10.0
3 79.0 35.0 40.2 21.1 81.4 56.1 0.033 0.010 12.0 10.0
4 79.0 28.0 40.2 25.7 58.0 107.2 0.033 0.020 10.1 14.0
5 79.0 28.0 45.1 21.1 81.4 107.2 0.050 0.013 11.9 14.0
6 85.0 28.0 45.1 21.1 58.0 56.1 0.047 0.013 10.0 10.1
7 85.0 28.0 40.2 25.7 81.4 56.1 0.030 0.020 11.9 10.1
8 85.0 35.0 40.2 21.1 58.0 107.2 0.030 0.010 10.0 13.9
9 85.0 35.0 45.1 25.7 81.4 107.2 0.047 0.017 11.9 13.8

The values for the wet bulb temperatures were calculated backwards from the moisture

contents when the dry bulb temperatures were known. Actually, the moisture content is

used as a process technical dimensioning variable instead of the wet bulb temperature. At

the hot side the moisture contentω was varying from 0.03 kg/kg to 0.05 kg/kg and in the

cold side from 0.01 kg/kg to 0.02 kg/kg. For the hot side this is less than in the literature

[10, p. 302] but it was used here to ensure that the heat exchanger was not going to con-

densate. After that the dynamic pressures were similarly calculated backwards fromρvhe,

the multiplication of density and flow rate in heat exchanger. ρvhe is a process technical

dimensioning variable rather than a dynamic pressure. The values for the process techni-

cal dimensioning variablesω andρvhe used in the measurements as well as the mass flows

are given in Table 3.
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The data was made synthetically by adding noise from the normal distribution to the

results of the model as in equations (65) and (71). First the model was solved in nine

measuring points, thus exact values for the heat rateΦ and the outlet temperaturesTho

andTcowere obtained. Then data was generated by adding noise from the noise vector

ǫ1 ∼ N(0, 1) to Tho
and from the noise vectorǫ2 ∼ N(0, 1) to Tco multiplied by the error

std levelσ = 0.25. The error vectors for generating the synthetic data are given in Table 4.

It was confirmed that the indirect method worked with other noise vectors, too.

Table 4: Exact results of the heat exchanger model at the measurement points of the
control variables from Table 3. Noise vectorsǫ1 andǫ2 and the corresponding synthetic
datay generated by multiplying the noise vectors by the standard deviation of the error
σ = 0.25 and adding the result to the outlet temperatures. Dew point of the hot side and
the temperature marginal, marg= Tsurf − Tdew, before condensation starts. Convective
and overall heat transfer coefficients.

Sample Φ Tho
Tco ǫ1 ǫ2 y1 y2 Tdew marg αh αc U

1 343 72.6 47.9 −0.1 −0.7 72.6 47.7 36.2 15.6 48 47 23.9
2 264 71.1 50.3 1.2 −0.3 71.4 50.2 40.3 11.8 45 41 21.4
3 279 71.9 51.2 −1.1 0.8 71.7 51.4 33.0 18.3 51 41 22.7
4 356 68.3 42.7 −0.7 −1.1 68.1 42.4 33.0 16.9 45 53 24.3
5 382 69.4 43.8 1.0 1.1 69.6 44.1 40.3 8.6 52 53 26.1
6 342 74.7 47.6 0.5 0.2 74.8 47.7 39.4 10.8 45 41 21.4
7 363 75.7 48.7 −0.6 2.0 75.6 49.2 31.6 17.6 51 41 22.7
8 346 74.5 49.5 −0.7 −1.1 74.3 49.2 31.6 24.8 45 53 24.1
9 373 75.5 50.6 −0.2 −0.6 75.5 50.4 39.4 16.1 52 53 26.1

For the heat exchanger model the “pseudo” parameter isθ̃i = Ui and the real model

parameters areθ = [C, m, nh, nc] from equation (8) of the Nusselt number. The measured

control variables arẽx = x = [Tdryh
, Tdryc

, patm, ∆ph, ∆pc, Tweth , Twetc , pdh
, pdc

]T.

The pairwise comparisons of the parameters in the posteriordistribution for the normal

direct MCMC method and the indirect two-step method are shown in Figure 13. It is dif-

ficult to see the possible differences from that figure. For that reason the marginal distri-

butions for the parameters from the three normal direct MCMCruns and the nine indirect

two-step runs are plotted in Figure 14. In Figure 15 there areplotted predictive marginal

distributions for responses in the central sample point number one in Table 3. There

does not seem to be remarkable differences in the methods. For that reason the indirect

two-step method have been used hereafter with the heat exchanger models. The indirect

two-step method sped up the computation compared to the traditional direct method.
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Figure 13: Pairwise comparisons of the heat exchanger parameters. The red distributions
are produced by the direct method and the black distributions by the indirect method.

6.2 Effect of measurement sample size, design of experiments and

error variance

Measurement sample size has an effect on the identifiabilityof the parameters. There

has to be at least as many measurements as there are parameters in the model if we want

the parameters to be identified at all. Here it means that we should have at least five

measurements. Random effects can have a large effect on the results if the data is sampled

only in few points. The smaller the size of the sample is the larger the probability that

measurements of individual samples are differ from each other.

The more measurements there are the better the parameters should be identified. That

can be seen in Figure 16. There are distributions for nine sample points given in Ta-

ble 3 and distributions for full factorial design of the 65 sample points described in Sec-

tion 6.1.There were no remarkable difference on the statistical parameters of the error

vectors between 65 and nine sample points. The variances of the parameters in the poste-

rior distribution are smaller for 65 sample points than for nine sample points. Therefore

the distributions in Figure 16 are better identified for 65 sample points. This can be ex-

pected by theSS-function residuals: the sums of the residuals for large samples are larger

than for small samples while the error variance remains the same. Then the likelihood of
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Figure 14: Marginal posterior distributions for the heat exchanger parameters. The red
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method. Vertical lines stand for literature values.
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Figure 15: Distributions for the responses at sample point one from Table 3. The red
distributions are produced by the direct method and the black distributions by the indirect
method.

being accepted with the same value of parameters becomes smaller for larger sample sizes

in equation (67).

Nine sample points will be used in thesis hereafter mostly for reasons described in section

6.1 but also for technical reasons4. Once the number of samples is fixed, the identifiability

can be increased only by choosing more optimal samples. Choosing the sample size and

the places of measurements is called design of experiments.In general, full or fractional

4The calculation of distributions with the faster indirect method for 65 sample points in Figure 16 took
eight hours while the calculation of distribution for nine sample points took approximately one hour.
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Figure 16: Posterior distributions for parameters and corresponding distributions for re-
sponse. The black distributions are generated with nine sample points and the magenta
distributions with 65 sample points. Vertical lines stand for literature values.

factorial design is better for identifying the parameters than randomly chosen points. Us-

ing D-optimality criteria or optimising the place of the sample points using the identifi-
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ability of the posterior distribution directly as an objective function could possibly yield

to even better identifiability of the parameters. The lattermethod was actually tested here

by the evolutionary algorithm. Indeed, the identifiabilitymeasure (the sum of standard

deviations of parameters) was decreasing. However, the identifiability of the parameters

in the sample points generated by that method were not studied more strictly.

Here the error variance of the outlet temperatures was assumed to beσ2 = 0.252 including

both the errors in thermometer (small) and the circumstances (large). If the error variance

of the outlet temperatures is assumed to be caused by the thermometer alone, the reason-

able error variance might beσ2 = 0.0252. The comparison of the posterior distributions

of parameters and predictive distributions can be seen in Figure 17. The data is generated

by the error variance levelsσ2 = 0.252 andσ2 = 0.0252 using the same error vectors. It

can be seen that for a smaller error variance the identifiability of the parameters is clearly

better than for a larger error variance.

The values for the four constants in the Dittus–Boelter correlation areC = 0.023, m = 0.8,

nh = 0.3 andnc = 0.4 in literature. The same values were used here in the generation of

the data. The median values calculated for the parameters from the posterior distribution

were different from those. The reason for that can be the skewdistribution due to the

small size of the sample. The values were, however, inside the two sided 95 % confidence

or credibility intervals of marginal distributions as can be seen in Table 5. There are me-

dians and two sided 95 % credibility intervals of marginal distributions for the parameters

and the corresponding predictive distributions at the firstsample point of Table 3 with a

large error variance and a small error variance. There are also given limits and medians

with a large error variance so that the error vectorsǫ1 andǫ2 in Table 4 were interchanged

and the order of the elements was reversed when the data was synthesised.

The widths of the predictive distributions for hot outlet temperatures were approximately

half of the widths for cold outlet temperatures. Ratio for standard deviations of predictive

temperature distributions in hot outlet and in cold outlet in the central design point was

1.7 for all cases described above. However, ratios for standard deviations of the noise in

the synthetic hot and cold outlet data did not remain the sameamong cases.

It can be seen that the range for constantm, the power of Reynolds number, was much

more than the range for constantn, the power of Prandtl number. It is expected because

the Prandtl number for air was only a little less than one (≈ 0.7) with used dimensioning

while the values for the Reynold’s number were thousands. Ifwater has been used as

a fluid, constantn would not probability has been varying so much because the Prandtl
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Figure 17: Posterior distribution for parameters and marginal distributions for prediction.
The black distributions are generated with error levelσ2 = 0.25 and the cyan distributions
with error levelσ2 = 0.025. Vertical lines stand for literature values.

number for water is approximately 10.
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Table 5: Credibility intervals and medians of posterior distributions for parametersC, m,
nh andnc in the Dittus–Boelter correlation and the corresponding predictive distributions
at the first point in Table 3. The values given in the literature (the first column) were
used in the synthetisation of the data.θ0.025 andθ0.975 are the 2.5 % and 97.5 % fractiles,
respectively. The median isθ0.5. The error variance in the large noise column isσ2 =
0.252. The error variance in the small noise column is one tenth of that. The reverse noise
uses the same error vectors as large noise but the error vectors were interchanged and
reversed.

Large noise Small noise Reverse noise
θ Literature θ0.025 θ0.5 θ0.975 θ0.025 θ0.5 θ0.975 θ0.025 θ0.5 θ0.975

C 0.023 0.003 0.019 0.110 0.017 0.021 0.025 0.012 0.068 0.360
m 0.8 0.63 0.79 0.95 0.79 0.81 0.82 0.57 0.72 0.87
nh 0.3 −2.1 −0.2 1.6 0.0 0.2 0.4 −2.5 0.4 2.8
nc 0.4 −3.1 −1.0 1.3 0.0 0.2 0.4 −0.3 2.0 4.3
y Literature y0.025 y0.5 y0.975 y0.025 y0.5 y0.975 y0.025 y0.5 y0.975

Φ 343 338 343 349 342 343 344 338 342 348
Tho

72.6 72.4 72.6 72.7 72.6 72.6 72.6 72.5 72.6 72.7
Tco 47.9 47.6 47.9 48.1 47.8 47.9 47.9 47.6 47.8 48.1

6.3 Usability of the same posterior distribution among different

geometries of the heat exchanger

Is it possible to change the geometry of the heat exchanger and to calculate predictive

distribution by using the chain of parameter values produced with another geometry? The

need for that might emerge, for example, in the optimisationof the geometry if predictive

distributions were used [20, pp. 49-67]. Using the same chain in different geometries

would be much faster compared to running MCMC inside the optimiser for each geom-

etry separately. Three geometries were created for testing: A, B and C. The design of

experiments was the same for all geometries and is given in Table 3. Geometries are de-

scribed in Table 6. Here all marginal distributions generated with geometry A are drawn

with a solid line, all marginal distributions generated with geometry B are drawn with

a dotted line and all marginal distributions generated withgeometry C are drawn with a

dashed line.

In the first test case geometries A and B were used. The heat surface areas were different

but not the frontal surface areas. Thus the flow rate in the heat exchanger and the overall

heat transfer coefficientU did not change. An MCMC run with the geometry A was made

and the posterior distribution got from that is denoted hereafter as chain A. Similarly, the
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Table 6: Heat exchanger geometries A, B and C for test cases.U , the overall heat transfer
coefficient, andA, the surface area, are the same for the whole geometry. The rest of
the dimensions are given for both the hot and the cold sides separately. The lengths are
meters and the areas are square meters.

Geometry A B C
Surface areaA 388 487.5 742.5
U for 1. sample point 23.9 23.9 15.3
Side Hot Cold Hot Cold Hot Cold
Cross-sectional area 3.16 1.69 3.16 1.69 6 2.48
Duct area 3 1.5 3 1.5 3 1.5
Height of the plate 2 1 2.5 1.25 3 1.25
Width of the slot 0.016 0.017 0.016 0.017 0.02 0.02
Number of slots 98 97 79 78 100 99
Hydraulic diameter 0.032 0.034 0.032 0.034 0.040 0.039

posterior distribution produced with the geometry B is denoted hereafter as chain B. The

predictive distributions for geometry A was calculated by using chain A and B separately.

Then the predictive distributions for geometry B were calculated by using chain B and A,

separately as before. The predictive distributions did notdiffer as can be seen in Figure 18.

0

0.1

0.2

Φ 346340 0

0.1

0.2

Φ398 406

Figure 18: Marginal distributions for the responses. The solid line is generated with chain
A and the dotted line is with chain B. The figure on the left is for geometry A and the
figure on the right for geometry B.

In the second test case also the frontal surface areas were different (⇒ differentU). The

predictive distributions were calculated as described before but now for geometries A and

C. There are differences between the predictive distributions in Figure 19. The predic-

tive distributions have a larger standard deviation when generated with a wrong chain

compared to one generated with a correct one.
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Figure 19: Marginal posterior distributions for the responses. The solid line is generated
with chain A and the dashed line with chain C. Figures on the left hand side are for
geometry A and figures on the right hand side for geometry C.

6.4 Error in measured variables

In this section an error in the control variablesx is assumed so that they are not con-

sidered strictly given as usually. Actually all the measurements have an error, also the

control variablesx. It has been assumed that the measurement error is Gaussian and there
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is no systematic error. Thus the mean of the measurement error is zero and the strict

measurement is the mean of the distribution of the measurements.

In an MCMC run the measurement distribution of the control variables can be taken into

account by including thex variables to a parameter vector in addition to real parame-

ters. Those extra parameters are callederror-in-x parameters here. Then we give a prior

varianceσ2
x and a prior meanµx from the normal distribution to thex parameters. The

prior µx for an error-in-x parameter is the value of the corresponding strict control vari-

ablex. The priorσ2
x for an error-in-x parameter is the variance of the estimated error in

the value of the corresponding control variablex. In the MCMC run the value for the

control variablex is picked from the corresponding error-in-x parameter instead of using

the strict control variablex in the calculation of the model in theSS-function. How the

Metropolis–Hastings algorithm takes the priors into account, can bee seen, for example,

in [17, p. 17].

If we assume that there is an error in the measurement of the control variable, we should

get wider distributions for the model parameters compared to the case where we assume

a strict control variablex. This was tested with the linear test case, see equation (77).

The error variance ofx (σ2
x = 22) was set to be sixteen times the error variance ofy

(σ2
y = 0.52). It can be seen in Figure 20 that the distribution is broaderin the unstrict case

compared to the strict case.

b
0.98 1.02

100

200

Figure 20: Comparison of the posterior distributions of theslopes for strict and error-in-x
case in linear test case 2. The red distributions are generated assuming a strict measure-
ment. The blue distributions are generated assuming an error in the measurement of thex
variable. All distributions are produced by the direct method.
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For nonlinear Arrhenius case in equation (78) the error varianceσ2
T = 1°C in the measure-

ment of the temperature was used. The predictive distribution were generated by using

only the real parameters of the chain. The error-in-x parameter was replaced by the strict,

or the prior meanµT value of temperature in the calculation of the prediction. The pre-

dictive distributions were calculated at the central sample point. The unstrict predictive

distributions for response at 30°C were wider as can be seen in Figure 21.

0.59 0.62
y

30

60

Figure 21: Marginal posterior distributions of responses in nonlinear test case (Arrhenius
law) at 30 °C. The red distributions are produced by a chain wherex was assumed to be
a strict measurement. The blue distributions are produced by a chain where an error in
the measurement of thex was assumed. All distributions are produced with the direct
method.

Finally, an MCMC run with the heat exchanger model was done byusing unstrict control

variables. For simplicity, control variables were considered unstrict only in the second

step of the indirect method. The same chains from the first step were used as data for

making the comparison of the strict and error-in-x cases more reliable. The standard de-

viations described in Table 2 were squared to get the prior error varianceσ2
x in the control

variables and in the three measured but not controllable variables (patm, ∆ph and∆pc).

The values given in Table 3 were used for priorµx. For patm 101325 Pascals was used

and for∆ph and∆pc zero Pascals were used as priorµx.

Every measurement of one control variable propagates one error-in-x parameter. Thus the

use of the nine sample points given in Table 3 and all six control variables and the three

measured but not controllable variables as error inx parameters propagated 81 error inx

parameters in addition to the four real parameters, 85 parameters altogether. Even that is

still a simplification. In reality the dynamic pressure is measured in several grid points as
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described in Section 3.1.1. If we had had the grid of six measurement points on both the

hot and the cold side, it would have led to 175 parameters altogether.

The predictive distributions were generated by using the model parameters only. Error-in-

x parameters were replaced by the strict, or the prior meanµx values of the corresponding

measured variables in the calculation of prediction. In Figure 22 there is a comparison of

the predictive distributions generated with unstrict posterior distributions and with strict

posterior distributions. The predictive distributions generated with unstrict posterior dis-

tributions are little wider than distributions generated with strict posterior distributions

but the difference is not remarkable.
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Figure 22: Marginal distributions for responses. The blackdistributions are produced by
a chain wherex was assumed to be a strict measurement. The green distributions are
produced by a chain where there were assumed to be an error in the measurement of the
x. Both chains were produced with the indirect method.
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7 Numerics of the condensing surface model

The purpose here was to improve an earlier version of the condensing surface model. All

material properties were treated as constants here unlike in the case of the heat exchanger

model without phase change. Thus the convective heat transfer coefficients were also

constants. On the cold side water is used as a fluid here in the examples. Moisture content

of the hot air was 0.164 kg water vapour / 1 kg dry air and dew point temperature was

61°C. The values used in the example case are given in Table 7.

Table 7: Numerical values used in the condensing surface heat exchanger

Model variable Air Water
Inlet temperature [°C] 68 10
Mass flow [kg/s] 30 20
Convective heat transfer coefficient [W/m2K] 45 6000

The model for the condensing heat exchanger described in Section 2.4 is a mechanical

dimensioning problem model, which means that the heat surface area is not known but the

incoming temperatures are known as well as the outgoing coldtemperature. The model

can be transformed by a numerical trick from a mechanical dimensioning problem model

to a model where the area is known and the outgoing cold temperature is unknown. There

is a connection between the cold outgoing temperature and the area in both directions.

Changing from the mechanical dimensioning problem model tothe case where a heat

exchanger exists (and the area is known) becomes a root founding task in one dimension

as can be seen in Figure 23. There the areaA of the heat exchanger is plotted as a function

of the cold output temperatureTco .

Some nongradient based methods were tested, such as bisection, secant, regula falsi and

the Muller method, to solve the root in Figure 23. In the Muller method [21, pp. 52-53]

the value of the model is solved at three points (blue squares) and the parabola (blue line)

in the figure is fitted to those points to estimate the function. The value of the function

at the root of the parabola is calculated. That becomes the new point (red square) to fit

the parabola when one point is dropped away in the next iteration of the algorithm. For

the secant method a secant line is used instead of the parabola to estimate the function.

The existingfsolve-solver could not be used becausefsolve cannot be called inside

fsolve at least in Octave.

The model cannot be solved if cold water should be heated too much. In that case the

local incoming cold temperature inside the heat exchanger exceeds the local outgoing hot
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Figure 23: Root founding = converting a mechanical dimensioning problem model to an
existing area model

temperature at the place where the heat exchanger starts to condensate in the calculation of

the dry area in equation (13). Then the logarithmic mean temperature difference obtains

an imaginary value. This problem did not occur if the cold fluid was air. How much the

cold water can be heated depends on the circumstances. Thereare plotted areas versus

cold outgoing temperatures with different hot incoming temperatures in Figure 24. It can

be seen that the area needed to heat the cold fluid to a certain temperature starts to increase

rapidly after the dew point. Above the dew point condensation does not happend, heat

exchanger is less effective and more area is needed to achieve the desired temperature.

7.1 Effect of the initial guess

Function solverfsolve needs to get at least a function for root finding and starting

point as parameters. When the constant values were used as initial guesses, or starting

values for the function solverfsolve in the first cell, the solver could not converge to

a correct solution in all circumstances. The solver does notnecessarily converge even

if the solution exists. Having the starting guess near the root leads to convergence more

probably.

An “intelligent” adaptive method to estimate the initial guess for the differences in dif-

ference equation (45) was used. The basic idea is to estimatethe solution for the whole

heat exchanger and then divide the estimate by the number of the cells. For example, the
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Figure 24: Area vs. cold outgoing temperature with different incoming hot temperatures.
For the lower incoming temperatures the inflection is more rapid. The vertical line is the
dew point.

difference of the heat rate on the cold side∆Φc in one cell can be calculated exactly by

dividing the heat rate on the cold side∆Φc by the number of the cells. For the area this

kind of estimation is impossible because actually we shouldsolve the area but we cannot

know it beforehand. But our initial guess for∆A should, of course, be an estimate for the

total area divided by the number of the cells. For the temperature difference of the con-

densate∆Tcond the calculation of the estimate is more difficult. The initial value for the

temperature of the condensate can be calculated by equation(44) but the outgoing value

cannot be known. It should not drop below the temperature of the incoming cold fluid.

Thus their difference divided by the number of the cells can be used as the initial guess.

For the enthalpy difference∆h the heat rate on the cold side divided by the hot mass flow

and that divided by the number of the cells gave a considerably good estimate everywhere.

With the calculation of the initial guess for the differencein the moisture content∆ω the

situation is somehow similar to the∆Tcondbecause we know the incoming value for the

moisture content but we do not know the outcoming value. If wealso assume here that

the outgoing hot temperature reaches the value for the incoming cold temperature, we can

calculate the moisture content at that temperature, subtract it from the incoming one and

divide the result with the number of the cells.

Once the first cell was solved, the solution obtained by difference equation (45) was used

as an initial guess for cell two. Similarly, the solution of the previous cell was used as an

initial guess in the next cell hereafter.
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7.2 Retrial of the solution in the case of the fail of the convergence

Octavefsolve uses FORTRAN 77 MINPACK subroutine hybrd. It returns an info

argument, which reveals the success of the convergence of the solution. The solver could

not converge to the correct solution with initial starting guess when the outgoing cold

temperature exceeded 60°C, which can be seen in Figure 25 as adrop in the function. It

can also be seen, that the solver did not converge after a successful start in the following

cells. The problem was solved by repeatedly starting the solver randomly near the initial

guess or the solution from the previous step to get the correct function in Figure 25.
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Figure 25: Failure to achieve a correct solution with a constant starting guess and one
trial. In the upper solution an adaptive starting guess and aretrial of the solution are used.

7.3 Effect of the number of cells

A trade off exists between accuracy and time consumption. Both are increasing by the

number of cells. The effect of the number of cells to the relative accuracy of the area

at different outgoing temperatures is represented in Figure 26. The areas calculated with

different cell numbers are compared to a case where the modelis divided into thousand

cells. That is considered “a true area” in the calculation ofthe percentage error and

calculated areas for smaller cell numbers are considered. It can be seen that the absolute

percentage error is increasing when the number of cells is decreasing.

With the low outgoing cold temperatures the number of cells does not remarkably affect

the accuracy. The highest absolute percentage error is at the dew point.

64



Similar figures were produced with different incoming hot temperatures. The shapes of

the error curves looked similar to the ones in Figure 26. By comparing the figures it was

noticed that the nearer the incoming hot temperature was to the dew point the higher the

percentage error of the area was.
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Figure 26: Effect of the number of cells to the relative accuracy of the area [%] at different
outgoing temperaturesTco [°C]. Different lines are done with different cell numbers.The
vertical line is the dew point.
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8 Conclusions

The identification of parameters in the heat exchanger modelwithout phase change was

studied by MCMC methods. The Nusselt number, which is used inthe calculation of

the overall heat transfer coefficient, can be calculated by the Dittus–Boelter correlation,

for example. The confidence limits for the constants (parameters) in the Dittus–Boelter

correlation were found. There are combinations of parameter values bounded by the error

so that especially the values forn — power of the Prandtl number — in the cold and

the hot side can vary remarkably and even be negative. Naturally, nonphysical parameter

values can be avoided using proper priors. The constantC can never be negative. It

seemed that predicting the hot outlet temperature is less strict than predicting the cold

outlet temperature.

The estimation of the right level of the error variance is crucial for the correct results when

we use synthetic data. The pattern of the posterior distribution of the parameters can be

affected by the level of the error variance only little but the width of the distributions

can be chosen in advance. As we could see, we can get the results we want by choosing

the correct level of the error variance when we make the data.That holds true also for

the predictive distributions which can be used for the optimisation of heat exchanger net-

works. At least repeated pilot measurements should be takenfor estimating the level of

the error variance. Only real data can reveal the error caused by the model. As far as we

are playing with synthetic data the results are only as good as our comprehension about

the measurement error.

There is no convergence proof about the indirect two-step MCMC method. However, it

seemed to work quite well here. The results did not differ compared to traditional method

and it sped up the computation with the heat exchanger model.The performance analysis

should be done in some other environment because part of the code, like the vectorised

code, is executed in MATLAB and Octave as a compiled code while part of the code is

still interpreted. When used with other models it might be good to compare the results of

the indirect method to the traditional method. There is still a need for making the two-

step method more automatic. The results of the second step depend on the data, which is

a sample from the chains made in the first step. The results from the second step varied

a little depending on how the sample was taken from chains of the first step. That should

be studied more.

The new indirect method can be used, for example, in the design of experiments if we
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try to maximise the identifiability of the MCMC chains. If a discrete sample space for

measurements is used, we can run the first step in every samplepoint, save the chains and

then combine these chains as needed in the second step. It is also possible to compute

the first step in parallel. If it is possible to solve the modelwithout the second step as in

the first linear test case, it improves mixing of chains. We can produce one chain in every

measurement point as in case one, because the chains in one dimensional parameter space

are usually mixed better than in a multidimensional parameter space. Thus the multidi-

mensional parameter space is changed to a one dimensional parameter space during the

MCMC run and then back to the multidimensional parameter space to get the posterior

distributions of the parameters by solving the model.

The use of same parameter posterior distribution with different geometries in the case of

same process technical dimensioning is limited to geometries where heat exchangers have

the same frontal surface areas. If we want to make other changes in the geometry when

optimising the geometry using the posterior, we have to be more careful. It has to be taken

into account that the predictive distributions produced with a wrong chain are wider than

the distributions produced with a correct one and the means are not the same. The safest

way is to produce an own chain for every geometry. The use of one chain in different

geometries should be studied more.

It is not recommended to use error in the control variables inthe same way as is done here

if the measurement errors are below the described levels. Taking the error in the control

variables into account is too demanding considering the benefit.

Our implementation of the condensing surface model could beused for the optimisation in

[20]. In general, there is a need to find a pseudo parameter in condensing surface model,

which hides all real parameters behind itself in order of theindirect method to be used.

In the condensing surface model also the wet bulb temperature on the hot side has to be

added to the measured response vector and respectively it has to be taken into account in

theSS-function.
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Appendix 1. Material properties used in this thesis

The following equations for material properties were used here. Liikola [1] collected

them from the literature and used them in his Master’s thesis

Thermal conductivity for dry air is obtained by

kda = 2.646
√

TK/
(
1 +

(
245.4 · 10−12/TK

)
/TK

)
· 10−3, (1-1)

wherekda is the thermal conductivity of dry air [1, p.39] andTK is the temperature in

Kelvins. Thermal conductivity for water vapour is obtainedby

kwv =

(
6.471

√
TK

1 + (1737.3 · 10−12/TK) /TK
+ 4.59 ·

(

109.218pbar·(100/TK)4 − 1
))

· 10−3, (1-2)

wherepbar is the pressure in bars andkwv is the thethermal conductivity of water vapour

[1, p.39]. Value for the thermal conductivity of moist air isgot by combining previous

values by the method of Wilke

kma =
x̃dakda

x̃da + φ12x̃wv
+

x̃wvkwv

x̃wv + φ21x̃da
, (1-3)

where

kma is the thermal conductivity of moist air [W/mK],

x̃da is the molar fraction of the dry air [-],

x̃wv is the molar fraction of the water vapour [-],

φ is the interaction term of the compounds [-] [22, pp.407,410].

Value for interaction term is got from equation

φ12 =

(

1 + (kda/kwv)
1/2 (Mwv/Mda)

1/4
)2

(8 (1 + Mda/Mwv))
1/2

. (1-4)

Value forφ21 is got by interchanging the subscripts in the formula.

continues



Appendix 1 continued

Dynamic viscosity for dry air is got by equation

µda =
1.458 · 10−6

√
TK

1 + 110.4/TK
(1-5)

whereµda is the dynamic viscosity of the the dry air [1, p.39] and for water vapour by

equation

µwv = (0.0361TK − 1.02) · 10−6, (1-6)

whereµwv is the dynamic viscosity of the the water vapour [1, p.39]. Value for the

dynamic viscosity of moist airµma is got by the method of Wilke as in previous case by

substituting values for dynamic viscosity in place of values of thermal conductivity.

Specific heat capacity for dry air is got from formula

cpda
= 3.7348 · 10−7T 2

C + 1.8304 · 10−5TC + 1.0063, (1-7)

wherecpda
is the specific heat capacity of dry air [1, p.40] and for watervapour from

formula

cpwv
=

32.24 + 1.924 · 10−3TK + 1.055 · 10−5T 2
K − 3.596 · 10−9T 3

K

1000 · Mwv

, (1-8)

wherecpwv
is the specific heat capacity of water vapour [1, p.40]. Specific heat capacity

for the mixture of dry air and water vapour is got by equation

cpma
= cpda

+ ωcpwv
, (1-9)

wherecpma
is the specific heat capacity of moist air [23, p.81].
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